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ABSTRACT

This paper reports the results of ny investigations as
to the advantages of the Multidimensionslwegstein Method
over the Classical Method of Successive Substitution, the
Bounded Wegstein Method, and the Newton-Raphson Method,
I demonstrated its superiority by applying them to several
engineering example problems, and to Mathematical model problems,

The method solved all the engineering problems better
than any of the other methods. This method does require more
time for each iteration, so its speed must be balanced against
this difference.

The Mathematical problems were chosen such that the
procedures performance for various values of the parameters
would relate information as to the classes of problems the
various iterative procedures are likely to solve well, These
reésults suggest that the Multidimensional Wegstein method is
likely to solve a very wide class of functions, and to do so
in less function evaluations than the other methods,
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I. INTRODUCTION

The development of new nrocesses, the evaluation of
alternative plant designs and the improvement of existing
processes rely on the mathematical modeling of the process
itself, and usually require the computer aided simulation of
the process, The most widely accepted approach to this problem
has been the "modular" formulation-- a package of "unit
computational subroutines™ simulate each ﬁarticular piece
of equipment in a plant design, These units are connected to
each other by an executive program, which calls each computat-
ional routine in sequence, using the product stream from one
unit as the feed stream to the next unit in the plant model(

When no recycle streams are present, and the feed cond-
ition to the first uhit are all known, the steady-state
process simulation can be effected directly by one sequential
pass through each of the units, When a recycle stream is
pfesent, however, one must guess its stream values and employ
some sort of iterative procedure., The executive Routine,
therefore, must handle the processing of all input and output
information, the flow of information between units and the
convergence of all recycle streams in the process formulation.
The "unit computational routines™, on the other hand, are

models of processing equipment, which can be used for a



variety of process simulations (any simulation requiring
that particular piece of equipment).

The formulation of executive subprograms and unit
computational routines has been extensive;y researchedl and
currently are in general use, The choice of an iterative
convergence procedure to use, however, is still a topiec of
research, Many procedures have been developed in recent
years, that appear to be better than the classical method
of Successive Substitution, One of the purposes of this
work is to present one more procedure (the Multidimensional
Wegstein Method), that anpears to solve a wider variety of
recycle problems than the other methods, and does so in fewer
function evaluations, The mekhod would be much more efficient
for problems which require a lot of time to evaluabe the
fonctions, like plant simulations,

Previously, convergence procedures were evaluated, by
applying them to several engineering example problems, and
by applying a few other methods to the same problem-- they
are compared as to the rate at which they converge to the
solutions, (data is recorded in error versus iterations plots),
I have done this with the Multidimensional Wegstein Method:
comparing it to the Newton-Raphson Technique, the Method of
Successive Substitution; and the Bounded Wegstein Method for

a variety of engineering examples.,



The other purpose of this paper is to suggest a more
general method for evaluating the many methods of converging
recycle streams in order to develop an understanding of when
the method on hand is most likely to be the quickest method
for solving any particular type of problem, Hopefully,
sweeping generalizations will be easily formulatable(e.g.
Highly interacting problems are solved much more quickly
by the Multidimensional Wegstein Method).



TI. PROBLEM FORMULATION

A: General DpDefinition:

In order to compare the efficiencies of the four methods;
I programmed subroutines whiech would predict the values of
the variables based upon each of the methods, Successive
Substitution, the Newton-Raphson Method, the Bounded Wegstein
Method, and the Multidimensionsl wegstein Method, A list of
the auxillary subroutines used to effect this goa#can be found
in Appendix A, while the listings for the methods themselves,
along with a sample solution can be found in appendix B,
| Subroutine XAT9 initializes the starting guesses, then calls
each of the methods to the problem at hand, A different
Subroutine FUNV9 simulates each of these problems, (see Section

ITI, Engineering wxamples),

I programmed five different Chemiéal Engineering example
problems, and obtained solutions (plots of error vs, function
evaluations) by each of the four methods, TIn order to get
a feel for how varying degrees of interaction affect each
method, T investigated several actual engineering example
problems,

Of the many possible ways to define the error of the
system, T chose to consider each variable separately and

consider the error of the system to be the maximum error



amongst @&ll the variables, The individual variablets error
was taken to be the minimum of the absolute difference
betwegn the variable and its funetion value and the relative
error, the absolute error divided by the variable's value,

In order to obtain a deeper understanding of the var=-
iables that affect the rate of obtaining solutions, I
programmed several simple Mathematical cases, One of the
cases T investigated was that of linear variables with linear

interaction, The particular set of equations employed was:

= AXy+ Bx,+ G
xX,= Ax2+ Bx1+ c
By varying the value of B, one alters the amount of interaction

amongst the two variables, TFor example, if B=0, there would

be no interaction present, but for any finite value, 'there

_/0,-

is a finite amount of interaction., This problem is particularly

important for, near the solution, all prcblems appear linear,
Varying the value of A, affects the degree to which the value
of x depends upon its own value, intra-variable interactions,
Many values for the variables of this example were solved
in order to obtain as clear an idea of the affects of these
values as possible.
A few runs were also attempted, varying the exponents
on the unknowns in order to see the affects of these changes.
For the results of these runs, see Section IV, Mathematical

Examples,



B: Method Descriptions:

(1) The Classical Method of Successive Substitution is
one of the simplest methods to understand, and to implement,
Bach equation must be solved for a single output variable

to obtain the form:

x= F(x) (1)

An initial assumption, E(O), is made and then successive

improvements are attempted by applying the algorithm:

()2 py () (2)

The flow sheet for this methed is illustrated in wig, 1,
while the subroutine listing and example problem are listed

in Appendix B,

(i1) The Newton-Raphson Method proceeds by expanding
the set of equations F(x)=0 in a Taylor Series about the

present guess, E#§(k), and retaining only the linear terms:

g ar - ar
i il Sy oo S,

r.= £

| (3)
n nlk+ g;;L?xl+ ...‘%%gLéxn ;

where dxi= xi-x¥’ and Imeans evaluated at x= x(k).

-1~
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This system of equations can be represented as:
t(x)= ()= 7(x®)yax= o ()

where J(E(k)) denotes the Jacobian of f with respect to x,

evaluated at x= E(k).

The Newton-Raprhson Technique generates the new anprox-

(k+1)

imation x , according to:

{x+l), (k)
. B e AR (5)

where dx= -J'l(g(k))rfi(k))
The Jacobian is acquired for each iteration by verturbing

each variable separately, and calculating the derivatives
with respect to each wvariable,

The flow sheet for this method is illustrated in Fig. 2,
while the Subroutine listing and example problem are in

Appendix B,

(iii) The Bounded Wegstein Method is again formulated to

solve the recyele problem:

x= F(x) (1)

where P(x) is the recycle solﬁtion for the variables x in the

simulation problem,
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(5

The Wegstein Method assumes a linear form for F(x):

P(x)= ax+ b (6)

The parameters, a and b, are obtained from two sets of (x,F(x)),
obtained by successive substitution. Using these two (x,F(x))

pairs the equation above is solved for a, and b,

P(0)= ax(0)y p
1)z ax@)yp

(7)

or:

(ror(0)y/ (x(1)ox(0)y
- (0 (1) _p(1)(0)y, (1)_,(0),

o @
LI

The next guess is the value of x, for which the assumed

form of P(x) equals x, or:

therefore,

x(2)= v/ (1-a) (9)

by substituting the solutions for a and b we obtain:

<2, BB (1) Sf1)_(0)

L 6.8 R (0} Rty b e (10)
(x 1= (r(1)p(0),

- X



By defining a convergence parameter q, such that:

x(2)= qx(1)+ (l-q)F(l) (11)

solving these equations for q yields:

(1) @]
St (12)
(?(I)_ F(o))ﬂ(x(l)—x(o))
or in terms of a:
q=a/(a~-1) (13)

generalizing these results for the uni-variable case:

MCL AT B &

q=a/ (a=1) (1)
a= df/dx

where df, and dx are defined as:

= p(l)_ p(i-1)
af= ' - P
(15)
PRSI S 0

Subroutine RBweg9 was formulated to apply this procedure
independently to each variable of multi-varisble problems,
The parameter q was bounded in the range -20<¢q< 0, The
flow sheet for this method mey be found in Fig, 3, while the

subroutine listing is in Appendix B,
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(iv) The Multidimensional Wegstein Method is developed
along the same reasoning as the one-dimensional Wegstein

Method, The recycle formulation is again stated as:

x= F(x) o
A linear form is assumed for each variable in each funetion:

By™ Syt e sy Ve Py

: (16)
Fn= an1x1+ an2+ ""ann+ bn
or in matrix form:
F= Ax+ Db (17)

in order to apply the method, N+l paired values of F and x

are obtained by Successive Substitution., If these are numbered

i= 0,1,2,3,... N, and d4f and dx are defined:

oy Lre)
Lo B L (18)
(25,(1)= 5‘1’- 5(0)

then substitution into the equation abole yields:

(art)y= araxit)) (19)

therefore it follows that:

ar= adx (20)



or:

A= (df)(dx)~1 (21)
and ¢

b= P- Ax | (22)

for the next guess we want = x:

§(i+1)= éi(i+l)+ b

e i (23)
=)= gk~

If we define a convergence parameter matrix, q, as:

and using the values for A and E calculated above one can

solve for Q, as was done in the one-dimensional case, The

results are summarized below:

242 g ()4 (1og)p()

o= (a-D)7a (25)
4= (af) (ax)~1

The previous W jiterations are used to obtain the matrices
df and dx, from which the new guess x(i+1) is derived., The
flow sheet for the method is illustrated in Pig. 4. A listing

of the SUBROUTINE MVWG9 can be found in Appendix B.
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III ENGINEERING EXAMPLES

This section considers several engineering example
problems, The first two are examples which confronted me
during my course work, and the last three are examples used
by previous investigators to illustrate the superiority of
their iterative procedures, The executive program is written
as described in the Problem Formulation, SUBROUTINE FUNV9
simulates the particular process on hand, while SUBROUTINE XQT9
initializes the recycle guess, and calls each convergence
procedure to solve the simmlation problem,

A: Aluminum purification Problem2

This is a vapor phase deposition reaction, where crudes
Aluminum is fed to the first reactor, maintained at 1u50°K,

along with a mixture of Al¢l, and AlCl, The reaction takes

3

the form of:

A1013(8)+ 2A1(1)= 3al1cl(g)

This gas is then fed to the second reactor, which is main-
tained at 1350°K. The same reaction occurs here, but the
equilibrium is shifted to the left, depositing purified

liquid aluminum in the second reactor, (see Fig. J).

In order to calculate the pound moles of aluminum

purified per pound-mole of gas 1eavinglneactor 1, I chose



Al (erude) .

A1013(84—-a

| 14,50°K

Arcl(g)

e

RETR T

|

RCTR II

=% R (1)

1350°K |

FIGURESES ALUMINTM PURIFPICATION SET-TUP
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as a basis one 1b,-mole of gas leaving Reactor 1, This gas
will contain X, moles of AlCl and X, moles of A1013 since

the ggs contains only these two components,
X+ x,= 1.9 (26)

The equilibrium constant for t his reaction is defined by the

equation:

1n XK= (61,2- 92,940/T7)/R (27)

This yields Ky)50™ 0.233, Ky3gp= 0.021, Therefore, for Reactor 1:

0,233= x%PREsffxg (27)

Here, PRES, is the total pressure in Reactor 1, A chlorine
balance around Reactor 1 yields the amount of chlorine in the

product stream, x3:
Xy= Xy + 3%, (28)

This also determines the chlorine balance for the second
reactor, for if there are xu moles of AlCl in the product
stream, there must be (x3-xu)/3 moles of A1013 in the stream
(this assumes the chlorine is insoluble in the liquid alum-
inum), Substituting these relations into the equilibrium

relation yields, for the second reactors

9thRES?/T(x3-xu)(x3+ th))— 0,021 (29)



,94!—

Xg, the amount of aluminum formed per lb-mole of gas leaving

Reactor 1, can now be determined by using an aluminum balance

around Reactor 2.
Xg= Xyt Xy= Xy - (x3- h)/3 (30)

Having set the temperatures and prﬁssures as in the problem
statement, we ¢an now use an iterative procedure to determine
the values of all these unknowns, (see Fig. (). The number
of iterations required by the four procedures being studied
were obtained, using the stated pressures and various other
pressures for the first reactor, (see Pigs, 7-10), The
Bounded Wegstein method failed to approach the solution in
one hundred iterations for a pressure;or one atmosphere in
the first reactor, even though it obtained selutions for all
the higher pressure simulations,

The Multidimensional wWegstein method obtained solutions
much more cuickly then did any of the other methods, with
Successive Substitution close behind in efficiency, The
Newton=Raphson method is much slower because of the number
of function evaluastions necessary to generate the derivative
matrix for each iteration. Obviously, the trade-off here
on which method is best would be influenced greatly by the
length of time reguired to obtain each funetion evaluation,
such that any one of the four methods might be the best, The

differences become ewen less pronounced as the pressure in
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SUBROUTINE FUNV9(X,F,JOBB)

THIS SUBROUTINE SOLVES AN ALUM, PURTF, PROBLEM

DIMENSTION X(10), F(10)

30 T0(100,150, 200, 300, 1100), JOBB

THTS SECTTON SOT.VES x=p(x)

CONTINUR

P(1)= (,233%x(2)/ (PRES1#%0) )#20,333

P(2)= 1,0-x(1)

F(3)= X(1)+ 3.0%x(2)

F(l)= (0.233R.02%#(x(3)ax (k) )% (x(3)+2.%x(lL) ) /PRES2:%2

)20, 333

P(5)= x(1)+ x(2)- X(4)=(X(3)- x(hk))/3.,0

RETURN

THIS SECTION SOT.VES FOR FP(X)= 0

CONPINTR

P(1)= .233-PRES1x222X(1)%%3/X(2)

P12)= 1.0-X(1)=- X(2)

P(3)= X(3)- A(1)=- 3.0%Xx(2)

F(h)a ?ﬁl- 9.*x(u)**3*an32%%2/((X(B) X(l))=(X(3)
#X

P(5)= Xx(5)- x(l) X(2)+x(h)+ (X(3)X(l))/3.0

IONT= TIONT + 1

RETURN

THIS SECTINON SETS INITTAL CONDITIONS

CONTTINTR

PRES1= 1.0

PRES2= 1,0

ICNT= O

N= 5

RETURN

THIS SECTIOY FOR ALTERING ﬁONDITIONS

CONTINTIE

TCNT= O

PRES1= PRES1l+ 2,0

IF(PRES1- 5.0) 325,325,350

WRITE(3,9000) PRES1, PRES?2

FORMAT('1 ALUM, 1=‘URI‘*-'*’ PROB,, PRES1=!,F10,2,! PRES2=! Fl0,2)

RETTIRN

CONTINUE

IF(PRES1- 10.0) 360,370,370
PRES1= 10,0

@0 To 325

(Continued)
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380

Caraeaest
Lo

9100

PRES1= PRES1+ 5,0

IF(PRES1- 40.0) 325,325,380
CONTIVUR

CALIL, EXIT

THIS SECTION PRINTS WO, OF ITS, REQUIRED FOR SOLN,

CONTINTE

WRITE(3,9100) ICNT

FORMAT(!' SOLN REQUIRED!, I6 t* FUNCTION EVALS')
ICNT= O

RETURN

END

FIGURE 6 ALUMINUM PURIFICATION LISTING
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the first reactor is increased,

B: Combustion Problem3

The second example considers an important industrial
reaction, the water-Gas shift reaction, The problem statement
is as follows:

A fuel oil analyzing 86% ¢., 11% H, and 3% Inerts is
burned with 504 of the theoretical air needed for complete
combustion, The gas mixture is brought to equilibrium at
1800°P, wWhat is the compostion-of the product gas if these

two reactions are the only important ones?

II. Co+ 3H2= GHu-l- H,0 %,1600;' 1.48x10

ans :

Chose as a basis, 100 1bs, oil,

moles rm6135702

ypasent needgg
e 867% i 5 & 4 T«1T
3§ 11% 11,0 2.75
T 3% 0,00 0,00
9,92

one half the theoretical 0, need is ;.96 moles, so 18,65 moles
of N2 are introduced with the air, Defining the amounts of
each species present as follows: €O, &; 002, b; H20, c;3 CHH’

d; and H,, e, one can obtain the following equations to



simulate the system:

¢ balance 7/17= a+ b+ 4

H, balance 5.50= c+ 24+ e

0, bélance h.96= a/2+ b+ ¢/2

Equil, Retr, 1 1.66= ac/(be)

Equil. Retr, 2 1.48x107%= de (18.65+a+b+c+d+e)>/ (ae PRESS?)

Where PRES is the pressure operated at, SUBROUTINE FINVG

was formulated to simulate this problem (see ®ig, 11), Tests
were run for the various convewmgence procedures with the
pressure varyving from one to thirty-two atmospheres. The

speed of solving this problem appears to be independent of the
pressure, for all the test runs proceeded at the same pace

(see ®igs. 12-13), The Multidimensional Wegstein method proved
much guicker than the method of Successive Substitution, The
Bounded Wegstein and the Newton-Raphson methods both failed

to obtain solutions to the problem,

C: FRthvlene I)i.chlo::':i.dea"L

Napthali proposed a hypothetical process for the making
of ethylene dlehloride, where a recycle stream from the separator
is mixed with the feed-stock and fed into a mixed reactor,

which converts 90% of the ethylene per pass, Its nroduct



//7OR

Catstesrae
100

125

[BPEEE
200

225

Oaeseaese
300

Cesedest
1400

SUBROUTINE WINVO(X,®,JOBR)

30 T0 (100,200, 300, uoo 500), JOBR
THIS SEGTION SOLVRES F(X)“X
CONTINUR

?(1)= 7. 12 ~X(2)=%X(L)
P(2)= L (X(1)+x(3))/2,
F(3)= 1 66%X(2)#x(5)/X(1)
PART= 0,0

DN 126 1= 1,5

PART= PART+ X(I)

PART= ((PART+ 18,65)#22)%X(3)

F(l)= .IuBW-OS%PRVR**E*X(I)ﬁX(S)%%3/PART
F(5)= 5, S-X(B) 2.0%X(l)

ICNT= ICNT+ 1

RETIIRN

THIS SEGTTION SOTVES P(X)= 0

GONTINUE

P(1)= 7.17=-X(1)=-x12)=X(L)

F(2)= u 96-x(2)-(x(1)+ X(3))/2.0

F(3)= 1.66=X€1)%X(3)/(X(2)%X(5))

F(5)= 5.5-x(3)-x(5)—2.0*x(h)

PART= 0,0

DO 225 1=1,5

PART= PART+ X(T)

PART= (PART+ 18,65)%x2

P(li)= X(1)#X(5)##3%PRES%%2

F(l )= ,148E-05- X(l)#X(3)#PART/F(})
TONT= IONT+ 1

RETTIRN

THIS SECTION SETS THE TNITIAT, CONDITIONS
CONTTVUR

PRES= 1,0

TONP= O

N= 5

GO TO 150

2,0

ey

THIS SECTION ROR CHANGIWG INITIAL VALTES OF PARAMS,

CONTIVUE
ICNT= 0

PRES= PRES#2,0
IF(PRES-50,0) 450,125,425

(Continued)



1oae™

10™2

= R B- B R

COMBUSTION PROBTLEM  PRESS= 1,0

s

10“5

1 \
EEE
0 L aaam!
53 SENE
19"'3 A
1]
—l! i H

FUNCTION EVALUATIONS
Figure 12



o e Bo i B

10

10

10

10

COMBUSTION PROBLEM PRE3SS= 32.0

-]

]
w

1 1
L1 6 . In mmEi

FUNCTION EVALUATIONS

Figure 13

LBE -



WEL R

stream is fed to a separator whose overhead will contain 98%
of the chlorine entering the unit, 92% of the ethylene, and
0,1% of the ethylene dichloride entering the unit, Five
percent of the overheald is purged by a splitter, FPFor the
mathematical formulation of the problem sees Fig, 1.

SWRROUTINE FUNVO was developed to effect this simulation
(see Pig. 15), Two test runs were made, one with the feed
containing 1154 ethylene, I15% dhlorine, and 104 inerts; the
other with the feed containing 50% chlorine and 50% ethylene,
For both simulations the Bounded Wegstein Method was the
quickest, followed closely by the Multidimensional Wegstein
Method (see Figs, 16 and 17), Successive Substitution is very
slow, so that if any reasonable degree of accuracy is required,
this method would be an unlikely choice, The Bounded Wegstein
method would be the overwhelming choice, it is quicker than
the Multidimensional method; both in the speed of its iterations

and in the amount of iterations required.

D: Photochemical Reaction Problem5

Kwon proposed a photochemical reaction oroblem, The
equations he derives to model this can be seen arounddstatement
100 of the listing for SUBROUTINE FUNV9 (see Fig, 18), the
routine developed to simulate this situation, The reaction

constants and flow rates of the various species follow statement



(M |gprrrrer | (©)
' (5)
(1) MTXER (ZFJ RCTR. i SEP.
l (1)
stem. £ 1 2 3 b 5 . .
C,?‘_HLI, A A‘A'{Q‘f'?{l'l llxil ,0??{‘3 .?:)vx;g]_ .05:<¢'_1 -?5’)‘;;
j_ >c\‘37 %;’-Txla .ﬂl)(gg "78X3l '65.15"' '?57(':1
Yar I +.9%, | M99%s5 | joeing. | .oosnes | Aéx,
3=
I I I._‘)L 7(1'7 —_i:‘f“ 1‘)1‘1 55 7(!}'5 105*5'1 vqg—Xs‘/

where xij is the amount of component i in stream no, j, where
1=1, %= CoH), 1=2, is C1,,1=3 is C,H Cl,, i=l &8 inerts,

Figure 1l RTHYLWNE DTCHLORIDE SYSTEM



// FOR

Capsratyess

Capazsrapie
100

B i
150

175
200

Caktestae
300

350
9000
|

Carseaest
400

110

1450

Caeaeanst
500
9100

SUBROUTINE FUNVO{X,F, JOBB)
DIMENSION X(10),™(1)

THIS SURRATITTIVE SOTVES RTHYLENE DICHLORIDE SYSTEM
GO0 TO0(3nn,100,300,400,5000, JOBB
SOT.VES FUNCT. FOR X=F(X)

CONTINUR

F(1)= 0,087hs=(A+ x(l))
P(2)=.0,931#(B+X(2)=0,9%(A+ X(1))
P(3)= 0,00095%(X({3)+ .9%(A+X(1 1)
F(l)= .95*(XI+ x(u))

IONT=TCNT+ 1 -

I®(JoRB-2) 200,150,200

THIS SECTION SOT.VES FOR F(X)= 0
CONTPINTE

DO 175 I= 1,k

F(I)= X(I)=P(I)

COVTINUE

RETURN

THIS SECTTON INITTAT.TZES PARAMETERS
CONTINUR

A= h5.0

B= 45.0

1= 10.0

ICNT= O

WRITE(3,9000) A,B,XT

VORMAT('I RTUYT,ENE DTCHTORIDR PROBLEM, A=! F12 2,
B=1,¥2,2,' C=! F12.2)

RETURN

INITIALIZE SECOND PROBLEM

CONTINUR

IP(B-h7 0) 410,450,150

ICTT="0

A= 50,0

B= 50,0

XI= 0,0

G0 TO 350

CONTTINURE

CALI, EXIT

RESET ICNT, PRINT RESULTS
WRITE(3,9100) ICNT

PORMAT(' SOLTTION REQRD',I6,! FINCTTON RVALUATIONS!)
TCHNT= O

RETURN

END

Figure 15 ETHYTENE DICHLORIDE LISTIVG
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// POR

w
Casmses

Caesestr
100

Okttt
150

Catieasse
200

350
9000

ST

SUBROTUTINE PINVY(X,F, JOBB)

DIMENSTON X(10),®(10)

SOTVES THE PHOTOCHEMICAT, PRORLEM OF KWON

G0 T0(100,150, 200, 300,500), JOBB

SOT.VES WOR PROBIEMS OF FORM X=F(X)

CONTT MR

ICNT= ICNT+ 1

F(1)= F1/(PP+RKR#X(1)+RKLX (6 )3 (RLITE%%0,5))
F(2)= P2/ (FFP+RK1#X(1)+2,0%RK2%X(3))

P(3)= ®3/(FP+ RK2%X(2))

F(lL)= 2,02RK1%X(1)*X(2)/ (FF+REK3%X(5))

F(5)= 2,0#RK2#X(2)*X(3)/(FFP+RK3#X(l)) -
P(6)= 2,0#RK3#X (L )%#X(5)/ (FP#RKl1#X (1) #RLIT™#:%0,5)

P(7)= 2,0#RKLh#X(1)#X(6)%#RLITE*#0,5/FF

RETURN

SOLVRS FNR PROBLEMS OF FORM P(X)= 0

CONTINUE

ICNT = TCNT+ 1

F(1)= Fl-FP#X(1)=-RK1#X(1)%X(2)=RKl%X(1)#X(6)#RLITE**#0,5
F(2)= FP2=-FmX(2)=REK1%#X(1)#X(2)=2,0:#RR2%X(2)=#X(3)
F3=FFX(3)=-RK2:#X(2)%X(3)
2,0%RK1%X(1)%X(2)=-FReX (L) =RK3%X (11 )#X(5)
3,0#RK2%#X(2) %X (3) - FP#X(5) ~RELX (L ) %X (5)
2.,0%RR3%X (11 )#5(5)=PPX (6 )=REh %X (1)#X (6 )#RLITE:##0,5
F(7)= 2.0#RRl#X(1)#X(6)#RLITE®#*0,5-FF:X(7)
RETURN

INITIALIZE GUESS AND PARAMETERS

CONTTNUR

ICNT= 0

DO 350 1=1,7

Xit)= 0.0

WRITE(3, 9000)

FORMAT (! SOTVES PHOTOCHEMICAT, PROBLEM!)

RK1= 17.6 ,

RK2= 73.0

RK3= 51,3

RKl1=23,0

Fl= 3.0

F2= l1,75

F3= 1,25

=
=
nmu uu

(Continued)



Caesesese
300

Caeaesest
500

9100

FP= 9,0

RLITE= 0.6

RETTRN

THTIS SEATION TERMTVATES THE RUN
CONTTNUR

CALT. BXIT

THTS SEGTION PRINTS TTONT. AWD 7ZERO'S IT
CONTTNUR

WRITE(3,9100) ICNT -

FORMAT (' SOLTITION REQUIRED!,I6,! FUNCTION EVAT,UATIONS!)
TONT=0

RETURY

END

Figure 18 PHOTOCHEMICAT. PROBLEM LISTIVG
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number 350, The problem was solved by each of the four methods
(see Fig, 19), The Multidimensional Wegstein Method was much

better than any of the other methods at solving this problem,

E: 011 Separation Problam6

Nagiev proposed an oil separation problem, described by
the equations following statement number 100 of the listing
for SUBROUTINE FUNV9, which was developed to simulate this
problem, (see Wig, 20)., The results of the simulation are
plotted in Fig, 21. The Multidimensional Wegstein Method
again was much better than the other methods, The Newton-
Raphson method failed in an attempt to invert a matrix, so

it would require higher precisions to solve the problem,



// FOR

Ciese2ta

Caestaesr
100

Coesetas
150

175
190

(3ese3e3e
200
350
Q000
300

Catspsrsn
500

T

SUBROTITINE FUNVY(X,F, JOBB)

DIMENSION X(10),F(10)

THIS SUB SOLVES NAGIREV'S OII, SEP PROB.

0 T0(100,100,200,300,500), JOBB

SOTL.VES FOR FUNCT SOLVED BRY X=F(X)

CONTINTE

ICNT= ICNT+ 1 :

P(1l)= 1000,+ L62l=X(1)+ ,0l36%#X(2)

F(2)= 200,+ ,235#X(1)+ ,67=X(2)+ ,1667:#X(5)+,05%X(7)
P(3)= 100,+ ,008#X(1)+,061%X(2)+. 415X (3)+;001X(})
F(L)= 200+n,021%X(1)+,0022%X(2)+, 268X (I )+, 011%X(6)
F(5)= 50,+ 0,0032#X(1)+ .0025#X(2)+ ,213%#X(3) +
«08332X(5)+ ,05#X(7)

P(6)= 70,0+ ,0017%X(1)+ ,001L%X(2)+ ,29#X(h)+ ,L82%X(6)
F(7)= (,75#X(5)+ ,08«X(7))/.27

IF(JORB-2) 190,150,190

THIS SECTION SOT.VES ROR ®(X)= 0

CONTINTRE

DO 175 1=1,7
P(I)= X(I)=-F(T)
CONTINTE
RETTTRN

SEOTTON INITIALTZES ALI THE PARAMRTERS
CONTTNUR

ICNT= O —

DO 350 1= 1,7
X(I)= 0.0
WRITE(3, 9000)

FORMAT(' SOLVES THE NAGTEV EXAMPL,E PROBLEM!)
RETURNW

CONTINUE

CAT,T. BXIT

PRINT TTCNTP AND REZERO TT

CONTINIR

ICNT=0

RETURN

END

Figure 20 NAGTEV'S OTT, SEPAR PROBLEM
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IV, MATHEMATICAL EXAMPLES

A: Linear Variables, Tinear Tnteraction,

The purpose of these axamples is to determine if it is

possiple to make relevent generalizations as to when one
iterative method will nerform better than another in solving
certain recycle problems, Since, in the vieinity of the
solution, all problems appear linear, I investigated this

case first, The simplest equations of this form is the

get:

x1= Ax1+ Bx2+ c

(1)

By setting A=0.5, and ¢=5,0, and varying the value of B,

we can measure the sensitivity of solution procedures to

the amount of interactions amongst the variables, Thus, for
B=0,0, there is no interaction between the variables, and as
the megnitude of B increases, the degree of interaction also
increases,

The solution %o this problem is: x.= x_= ¢/(1l-A-B),

1 2
while the eigenvalues of the system of equations are:

X

A= A+B, Successive Substitution only obtains solutions for

[ A[§1.0, so that for B20,5, it will diverge,



49 -

In order to obtain a e¢learer idea of how the other methods
were affected by the value of B, however, I did a panoramic
"spot-check" of the value B. T did this by solving the problem
using various values of B, originally spanning several orders
of magnitude, by each of the methods and noting how many
iterations are required to achieve a_specified tolerance(,01),
see fig, 22, Since both Successive Substitutions, and the
Bounded Wegstein's methods ran into trouble near B=1,0, I
expanded the search in this area, see fig, 23, 1In order to
explore the area where the Multidimensional Wegstein's and
the Newton-Raphson Method have problems solving the prohlem,

I expanded the search to include values of B between 100 and
10,000, see fig, 24,

Rased on these exploratory runs; I chose the following
values of B for more detailed review: 0,0, 0,01, 0,1, 0,2,
0.y, 1.0, 200,0, B800,0, These values of B correspond to
regions where one of the methods of solution required substant-
ially more iterations than it previouslr needed, The results
of these runs are plotted in figs. 25=34.

For all values of B; Successive Substitution tends to
level out, so that if increased precision is recuired, the
method becomes much slower,

The Bounded Wegsteints Method is the best method for the
case of no interaction among- " the variables, for here it

proceeds directly to the solution in one iteration, As .
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B || 0.0 10" | 10°2 1,04 10° 10l 10° !
SUc. SUR i 4 : 7 # # # #

B, WEG 3 3 3 # # # - #
N.-RAPH|| I " n ¢ 7 bl 7
M. WEG 6 b 5 1 6 # #
f-matrix inversion failed
#-method diverged

figure 22 T"spot check"

AT T T 0.9| 1.0
SUC, SUB, ) 11 15 2l # # #
B, WAG 2 g 6 10 # 2 #
N.-RAPH h b I It 7 1

M. WEG 3 s 3 3 3 3
#= method diverged

figure 23 "spot check"

B 100 | 200 300 | 500 800 | 900 | 1000 | 3000 | 5000
M,WEG:| 5 7 7 10 32 1l 19 # #
N.RAPH| =~ 7 7 i d 7 7 7 7 AN

#=method diverged

figure 2

"spot check"
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interaction is increased, its rate of convergence decreases,
Finally it becomes very erfatic and eventu#illy fails to
solve the problems for values of B greater than O,l,

The Newton-Raphson Method anpears to be very good in
solving a large class of these two-dimensional problems, It
was able to solve problems for wdlues of B up to 1,000,000,
This method did, however, run into trouble for the value of
B=1,0, Here, the procedure assymptoted quickly, The main
problem with this method is that it needs N function évalunations
for each iterative step, thus slowing it down drastically,

One probab}y would not to use this method for small to moderate
values where other methods are fairly good,

The Multidimensional Wegstein Method works very well Ior
values of B up to about 30u0, where its slope levels out; AnD,
finally, the procedure diverges, The degree of interaction
needed to cause this method to diverge, might, however, be
lowered by its use of three successive Substitution iterations
before the procedure takes over, These steps send the procedure
far from the solutienf and, for values of B great enough, it
is unable to recover, and fails to return, If this is the case
The Multidimensional Wegstein Method may.:e able to solvs
"tougher" problems by using a differegtf:ohgenerate the first
N iterations(e.g. perturbations of the initial values), As
it is presently programmed, however, it works very well for a

wide range of interactions,



B i

In order to test the sensitivity of the methods to
intravariable interactions, T set B= 0,1, and ¢= 5,0, then
ran a"spot" check for each of the methods to see how high of
a valuedof A is needed before the method can no longer solve
the problem, PFor this check, T used a convergence criterion
of 0,01 both for thé relative and the absolute error tolérances,
and starting values of 0,25 and 0,75 for the two variables,
See figure 32 for the results of the"spot" check, Based on
these results, T chose values of A= 1.25,,-6, 6.5, 0.7, 0.99,
5.0, and 100 for closer examination, @Graphs of error versus
number of function evaluations(figs. 33-37) were obtained for

these values of 7,

Successive Substitution works well for small amounts of
intra-variable interaction, A 4&0,5. AsS the value of A gets
ﬁdderately large, though, the method rapidly levels out.

For A= 0,99, it approaches an assymptote at an error of about
.0l, PFor larger values of A it diverges,

The Bounded Wegstein Method seems very sensitive to the
8ize of A, Por A small to wmoderate, the method works very
well, As the value of A becemes Llarge enough to make the
eigenvalues of the system grespter than 1,0 at the solution,
the method becomes much slower, For values that make 1.0,

the method diverges,



,éaf

The Newton-Raphson method appears very stable to the value
of A. Tt obtains solutions in the same amount of function
evaluations for values of A from O to 100, The method is
slowed somewhat by the (N+1) funetion evaluations needed for
each iteration, Phis affect would become more drastiec for
systems of equations involving more variables,

The Multidimensional Wegstein Method was, again, consist-
ently better than any of the.other three methods, For small
values of A, this was not very evident, for all the methods
were working very well, But, as the size of A increases, both
the Newton-Raphson and the Multidimensionsl wegstéin Method

become substantially better than the other two methods, For

very large values of A, the Wewton-Raphson and the Multi-
dimensional wegstein method get better, Since the Multi-
dimensional Wegstein method requires a lot more computational
time than the Newton-Ranhson Method, the latter might be
preferred in this range, T suspect, however, that the
Newton-Raphson Method will not work so well for equations

involving more variables,
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A SUCC,.SYB | B, WRG W.%RAPH | M, WRG
1.25,34 2 3 I 5
2,54 9=6 2 3 I 5
0.5 8 3 H 5
0.7 1 3 Iy s
0.9 99 L1 2 o
0.99 * * i1 6
2,5 K # h 5
5.0 # # 7 5
100 # # 10 5

d-matrix inversion incomnlete

#=falled to converge in 100 iterations
#-method diverged

.

figure 32
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B: Iinear Variables, ¥Won-Linear Interaction:

To determine if non-linearity of the interaction would
have any affect as to the number of function evaluations

needed to solve the problems and as to the range of problems

-

solved by the various procedures, I chose this set of eguations:

i 2
xl— Axl-l- Bx2+ o
o 2
12 AX2+ Bx1+ c
The solution to this set of equations is x=((1-A):
sqrt (((A-1)2- 4BC))/2B. T again set A= 0.5 and €=5,0, and

varied the value of B, the amount of interaction, The solution

now becomes: x= (0.5+ sqrt (0,25-208))/2B, and is not preal
for values of RB20,0125, TIn order to determine where each
procedure ran into problems, I set the absolute and relative
errors tolerances to 0,01, and solved the problems using the
various values of B, The initial values of x were: x1=0.25,
x5= 0,75 (see figure 8).

All of the methods were very efficient right un to the
point where the solution no-longer exists, so T decided to
investigate this area further, and to extend the search into
the negitive region(see fig., 39). Since the Newton-Raphson
and the Multidimensional wWegstein Methods ran into problems
between B=-1,0 and B= -10,000, T also expanded in this range

(see fig, }10), Based upon these "spot" checks, I chose these
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Figuve do

3 0.0 s5*5 | 107% 01072 | 1077 | 10
S.SUBSTY| 7 7 7 7 11 #
B.WEGST)| 3 3 3 3 6 *
N.-RAPH,| L I I L 7 %
M.WEGST] h I 3 3 5 #*

~ s-procedure failed to converge
figure 38
s I o11l.002 [.012¢] ~1079-107% |-20°2 [-1.0 |-10% |-20"
s. sl 12 | ‘1h 1 16 6 6 5 # # #
B.WEG) 7 7 8 3 3 4 # # #
M WEG]| 5 8 T h 3 5 10 * #
N.-RAR.L 10 | 10 10 |13 13 | 18 31 13 #*
#-system diverged
sematrix inversion incomplete
figure 39
B 25 -50 -75 =200 500
N.=RAPH,| 10 13 13 7 2
M. wmesT.| L 22 # P 2
.wamatri* inVerqion incomplete
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values of B for further analysis: 0.0, 0,01, 0,011, 0,0125,
-0,01, -1,0, =50,. The results are plotted on figs., L1~ Lb,

The Method of Successive Substitution consistently required
more function evaluations than any of the other methods. The
Range of problems that it could solve was also very limited,
It would only'solve problems whese values of B ranged between
0.0125 and -0,1, the NewtonsRaphson and the Multidimensional
Wegstein Methods appear to solve equations for which B can
be up to about =100,

The Bounded Wegstein Method has the same range problem
as the Method of Successive Substitution, though it solves
problems with very little interaction in much fewer function
evaluations than does the Method of Successive Substitution,

The Newton-Raphson and the Multidimensional Wegstein
Methods both solve a wider range of problems than the other two
methods, and solve the problems in far fewer iterations,

The Newton-Raphson method requires less time per function
evaluation than does the Multidimensional Wegstéin Method,

so that if function evaluations do not require very much time,
then the Newton-Raphson method would be preferréd, If,
however, function evaluations require much more time than the
iteration itself; the Multidimensional Weestein Method would

be preferred,
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Again, to determine the affect of intra-variable inter-
actions on the rate of convergence for the case of linear
variables with non-linear interaction, I now set B= 0,1, and
¢=5.0. TFrom the equation for the solutién to this problem,
one can see that the solution is real for all negative values
of A<-,hlly, and for positive values of A greater than 2,L1l,
The eigenvalues of the solution are only less than one for a
very narrow interval, -,7175Az-,llh, and for 2,h14L<4<2,717.

T now did a‘spot' check of values of A for which the methods
will solve this problem(see fig, I7)., Rased on these tests,
I chose the following values of A for further analysis: A=
-0,5, 5.0, 100(see figs., 48-L9).

Even though the eigenvalues were less than one at the
solutions for three of these test runs, the methods of Successive
Substitution and the Bounded Wegstein method failed to obtain
solutions to these test runs, This probably resulted because
the eigenvalues at the test solution were greater than one.

The Newton=Ranhson and the Multidimensional Wegstein
Method again worked very well for small values of A, When the
value of A gets very large; however, the Newton Ravnhson Method
becomes even better than the Multidimensional Method., The
Multidimensionai wegstein Method fails for values of A greater

than 10,000, while the Wewton-Raphson Method still works well,



~ivi

1
A S. SUBST| N=-RAPH, WEG.
"07 10 5
iy B 10 -
2.5 10 8
5,0 7 7
102 7 10
104 7 2

#-system diverged

figure 47



10

10

1071

10-2

oA

10-3

1074

16 10~°

LINFAR VARTABLE-=-NON-LINEAR INT.

b a8 ui

TITT 1

st

—

an3as

2ot e

B &

FUNCTION EVALUATIONS

figure L8

- 707



WO

10!

10

1071

10~2

' LINEAR VARTABIES=-NON-LINEAR INTERACTION

11
1T

1
| B

X

z.&’

ot

)

T
el
L 1
ImEE
Foim 3

£t

H

6

FUNCTION EVALUATIONS
figure 49

2



=i

C: NON-LINEAR VARTABLES, LINEAR INTERACTION,

To investigate the case of non-linear variables, with

linear interaction, T chose this set of equations:

ey R
xl—Ax1+ Bx2+ c

x2=Ax§+ Bx1+ a8
Again, by setting A= 0,5, and ¢= 5,0, one ¢an determine the
sensitivity of solution attainment to the amount of interaction,
B, Pirst T did a broad "spot" check by varying the value of
B between 5 and IOM, and setting the convergence tolerance to
0,01, see fig. 50,

The Method of Successive Substitution and the Bounded
wegstein Method both fail to obtain proper solutions for any
of the values of B, while the Multidimensional wegstein Method
ran into trouble for values of B betﬁeen 100 and 1000, T,
therefore, picked several values of B betweem these numbers
and did another "spot check" of this range, see fig. 51.

Based on these "spot checks", I chose several values of
of B for furfher analysis, B= 5, 50, 100, 150, 200, These
runs are plotted on fig. 52,

The solution to this problem is x=(1—Btsqrt((l-B)E-hAC))/EA,

for A= 0,5, 0= 5,0, this becomes x= (I-Bisqrt((l-B)e-lo). So
the solution is real for B greater than l;,162, The absolute

value of the eigenvalues of these egquations at the solution
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figure 50
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are greater than one for all values of B, therefore, the Method
of Successive Substitution was unable to solve any of the
problems, The Bounded Wegstein Method also failed consist-
ently, The Multidimensional wegstein and the Newton-Raphson
Methods were able to solve these problems successfully for
values of B up to 200,

Again the Newton-Raphson method was slightly better than
the Multidimensional Wegstein Method., Both-methods get slower
as the lower bound of B is anproached (4,162), The Multi-
dimensional wegstein Method gets much better as it approaches
the solution, and_appears to be as gogd as the Newton-Raphson
mebthod once it gets near the solution, Apparently the first
two succdssive substitution iterations send the method far
away from the solution, and it takes a long time for the
method to recover, TIn this case the Multidimensional Wegstein
Method would be much better if the first N iterations were
made by perturbing each variable slightly.

In order to test the sensitivity of each convergence
procedure to the amount of intra-variable interaction, T again
set B= 0,1, and 0= 5,0, The solution im now defined for values
of A less than ,045, T, therefore, ran a series of tests,
using values of A varying between 0,0 and 0,045 to see how
weéll each of the methods performed over this range,

See figso 53-550



The Multidimensional Wegstein Method again performed
better than any of the other methods over this range.

The Wewton-Rarhson Method performed poorly for A=0,0,
but as the value of A increased, this procedure became much
more competitive with the other procedures,

The Bounded Wegstein Method also worked very well for
all these values of A, and for problems requiring only
moderate evaluations times, it would probably have been the
choice,

The Method of Successive Substitution again performed

increasingly poorly as the value of A was increased,

EY
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V. .CONCLITSION

One of the purposes of this paper was to assert the
superiority of the Multidimensional Wegstein method over
other iterative techniques, PFor the five engineering examnles
studied, the Multidimensional Wegstein method's overall
performance was much,better than that of any of the other
procedures, Similarly, the mathematical examples were all
solved very well by the Multidimensional Wegstein method, and
the Wewton-Raphson method, The Newton-Raphson method, however,
requires N function evaluations for each iterative step, so
that its performance on relations involving more unknowns would
probably be lowered,

Viewing the Mathematical problems overall, we can already
begin to categorize the four iterative procedures as to the
types of problems they are likely to solve well, The Method
of Successive Substitution works best when both the degree
of intra-variable interaction and the amount of interaction
amongst the variables is wvery low-- values of A and B small,
When the exponent of these relations was increased(set to 2),
the method beeame even more sensitive to these wvalues, and

would generally solve a smaller range of values, For exponents
less than one on either x;or x, of the relations tested in

Séction IV, one would ,therefore expect the Method of Successive

would work better., Obviously, for the exponent of Xy and x,
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equal to zero, this method would obtain the solution in one
iteration,

The Newton-Raphson method appears to work very well over
all the classes of equations studied, This procedure bases
1ts new guess upon a linearized Taylor series expansion sbout
the present guess, For all these problems, such an approximation
would represent the system well, hence the good performance
of the procedure, The main drawback of this method, again,
is its method of obtaining the derivative matrix, These test
equations involved only two variables, so three function
evaluations were needed for each iterative step, For systems
of N variables; N+l function evaluations are needed for each
new step, T suspect that these extra function &valuations
would offset the extra speed exhibited by the procedure for
these test problems, The Newton-Raphson method performed
rather poorly for the Engineering problems,

The Bounded Wegstein Method appears to solve almost
exactly the same range of equations as the method of Successive
Substitution, Pmor the equations it does solve, however, it
works very well, As the degree of interaction incresses, it
becomes progressively more erratic; eand eventually diverges,
This result seems reasonable; for, the Bounded Wegstein method
was designed to solve equations involving only one wvariable,
and this situation would be closely approached for small values

of B,



The Multidimensional Wegstein method, on the other hand,
was designed for systems of several variables; it is a multi-
dimensional extension of the reasoning behind Wegstein's method,
This procedure solves a much wider range of problems than
does the method of Successive Substitution, and the Bounded
Wegstein methods, Problems involving little interaction were
solved very rapidly, as were‘problems involving moderately
large degrees of interaction, Judging from its performance
on the engineering example problems, T suspect that it becomes
even more effective on problems involving several varigbles.
Clearly, this iterative method appears quite promising, and
should be investigated further,

The second objective of my work was to investigate the
pedagogical values of the simple sets of equations employed
in Section IVy Mathematical Examples, The broad classifications
that T just made based on these Mathematical models allows
one to separate particular aspects of equations that affect
the rates of convergence attainment, This sort of comparison
is not as easily obtained by comparing several engineering
problems alone, It is only useful, however, if it can be
simply related to the actual engineering examples,

The equations for the Aluminum Purification problem all
have exponents of one or less and values for A of 0,0, This
problem is solved best by the Multidimensional Wegstein method

The method of Successive Substitution works moderately well
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for all values of the nréssure. The Bounded Wegstein; howevef,
only works for pressures greater than one, TIncreasing the
pressure decreases the degree of interaction, This result

is in line with our exmectations, for the Bounded Wegstein
method was very sensitive to the amount of interaction, but
problems that it could solve, it solved very rapidly. The
Newton-Raphson method required about as many iterations as

the Multidimensional Wegstein method; but, because it required
six function evaluations fa each iteration, it appears much
slower than the Multidimensional method,

In the equations for the Combustion problem, A would be
zero for all the variables, except xh, whose exponent is -1,
Intra-variable interaction, therafofe, would be very small,
The values corresponding to B, howe#er, vary from zero to
moderately high values., Non-linearities in the variable
interactions are complicated, but all correspond to an order
less than or equal to one,

The Multidimensional Wegstein method was the guickest
method at solving this problem, with the method of Successive
Substitution being the only other method to obtain solutions,
Apparently the degree of interaction is high enough to cause
the Bounded Wegstein method to diverge, The Newton-Raphson
method;_on the other hand, failed because of a matrix inversion
failure., This results from a singularity in the derivative

matrix., This singularity may have been prevented if T used
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"extra" precision in the caleulations, I suspect, however,
that the complete independence of some of the relations
from the rest of the equations in the problem formulation,
might have led to the inversion problems.

The rates of convergence attainment for both the methods
that solved the problem were not affected by the total pressure
of the system. This too is reasonable, for the pressure term
only affects the equation for the fourth unknown, This term
is damped by a very small coefficient, so that its wvalue
never becomes significantly large.

The performaﬁce of the methods for this example.seem to
agree with what one would exnect, judging from the Mathematical
Examples, Admittedly, these two examples weren't ideally
matched to the models, that T have investigated, The Nagiev
examvle problem; however; resembles very much the 1in§ar
equations with linear interaction found in Section IV, The
values of A range between 0,08 and 0,67, with most of them
being around 0,5. The interaction terms, B, are moderately
sized, Pive of them are greater than 0,1, with one of these
greater than 1,0, The plots of error versus fungtion evaluations
for this example, wig. 21; greatly resembles Fig._29, the
rlot Qf error versus function evaldations for B=0,h, A=0.5,
¢=5,0, The Newton=-Raphson method again suffered a matrix
inversion failure; though others have reported solutions to
this problem by this method, TUse of double precision would

probably eliminate this problem,
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Since the correlation between the Mathematical and the
Engineering examples appears so good, the Mathematical equations
appear to allow one to prediet how well procedures will perform
on various classes of problems, One possible way to implement
this knowledge, is to test each new iterative proceduré on
these and other Mathematical example problems and compare their
performance to that of methods already tested, as T just did,
One can then choosewhich procedure to use for a particular
problem by matching the problems characteristics to the various
mathematical models, and choosing the iterative procedure from
those methods known to work well for its particular character=

istiecs,
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VI SUGGESTIONS FOR FUIRTHER STUDY

I believe this procedure merits further investigation
and development, Mv Mathematical examples tested only two
variable equations, Tt would be interesting to see what the
affect of extending this analysis to sets containing several
more unknowns would be., (Most engineering problems involve
j=7 wvariables), |

The exponerit: of the variables and the interaction terms
is the next most interesting area to probe, Tt've investigated
the case of the exponents equal to 0, 1, and 2, T®ngineering
problems often involve fractional exponents, so the region
between 0 and 1 is very important. |

Another type of interaetion often encountered 1is X%,
type interactions, Probably, recognizing this as a second
order interaction would suffice, but this needs to ve verified,

The Dominant Rigen Value method and the Complex method
would be good methods to next compare the Multidimensional
Wegstein method too, for they approach the problems differently
from the other methods T programmed, The application of the
MultidimensionallWegstein method to several large plant designs
would probably be the most convincing evidence of its overall

usefullness, however,
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APPENDTX A

This appendix contains the listings of all the supnlemental

subprograms used by the various convergence procedures and

a deseription of their functions,

(1) SUBROUTIVE ZER9(X,N1,N2). This subroutine places

zeroes in each element of the N1 by N2 array, X

(2). SUBROUTINE PROD¢(N1,N2,N3,4,B,C). This Subroutine

calculates the nroduct of two vectors ¢= A:B, where A is an

Nlby N2 vector, and B is an N2 by N3 vector,

(3) SUBROUTINE INVR9(A,AI,N1,N2), This subroutine inverts
the N1 by N2 matrix A, by verforming various manipulations on
the matrix until it obtains the ideritity matrix, The same
operations are performed on the identity matrix to obtain the

inverse,

(L) SUBROUTINE RITZ9(X,?,N,KOUNT), This subroutine
prints the values of x and W, and the iteration count when
it is called, The various convergence routines call RITZO

when they are called with the value of Job=3,

(5) SUBROUTINE XOT9(IDOO,RERR,ABER), This routine
initializes the first guesses for the problem, then calls

each of the iterative proceduresin turn to solve the simulatinn,
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}/ POR

Caeaees

5000
1000

(3)
// FOR
Carataee

Caeseaest

100

S

4

SUBROUTINE ZER9(X,N1,N2)

THTS SUBROUTINE ZREROES AN N1xN2 MATRTX
DIMENSTON X(10,10)

DO 100 I=1,N1

DO 100J= 1,NW2

xX(1,J)= 0.0

CONTIVUR

RETTRN

END

SUBROUTTNE PROD9(W1,N2,N3,A,B,C)

THIS STBROUTTINE CATAUTLATES THE PRODUCT OF TWO MATRICES
' C= A%*B d

DIMENSTON A{10;10),8(10,10),0(10,10)

CALI, %ZER9(C,10,10)

DO 1000 T=1,WM

DO 1000 J=1,N3

DO 5000 X= 1,N2

c(1,J)= C(T,J)+ A(T,X)#B(K,J)

CONTTINUR

CONTINTR

RETURN

END

SUBROUTINE INVRO(A,AT,N1, Ne)

THTS STB TNVERTS MATRTX A AND RETURNS TT TN MATRTX AT
DIMENSTON A(yn,61n),B(10,10),€(10,10),AT(10, 10)
ESTART.TSH mww TDENTTITY MATRIX AND SUBPTANT A IN B
CALT, ZFR9(AT,10,10)

Do 100 1= 1,W1

AT(T,T)= 1.0

DO 100 J=1,W2
B(I,J)=A(T,J)
CONTINUE

JRk= 1

JKP= 2

(continued)



Citsestst  THIS SECTION OBTAINS A NONZERO IN THE DIAGONAL
125 CONTINUE

IF(B(JK,JK)) 200,150,200
150 CONTINUE -

DO 775 KI=1,N2

XCHG= B(JK,KL)

B(JK,KL)= B(JKP,XL)

B(JKP,KL)= XCHG}

XCHGI= AT (JK,KL)

AT (JK,KL)= AI(JKP,XL)

AT (JKP,KL.)= XCHGI

175 CONTINUE _
JKP=JKP+ 1 :
IF(JKP=N1) 105, 1?5,6969

200 CONTINUE

C##s#%  OBTATIN A OVE IN THE DIAGONAL
DIV= B(JK,JK)
DO 250 J= 1,N2
B(JK, J)= B(JK IY/DIV

; AT(JK,T)= AT (7K, J)/DIV

250 CONTTINUE

Ci#wxst  OBTAIN ZEROES IN RESIT OF COLUMN
DO 300 1= 1,NM1
DIV= B(I, JK) :
IP(T-JK) 260,300,260

260 QONTINTE
DO 300 J= 1,N2
B(I,J)= B(JK J)#DIV-B(T,JT)
AI(I J)= AI(JK J)#DIV- AI(I J)

300 CON.TIT\TUF

Catstaese GO ON TO WEXT ROW
JK=JK+ 1
JKP= JK+ 1

IF(JTKLN1) 125,125,330
6969 CONTINUE
WRITE(3, 9000)
9000 FORNAT(' MATRTX TNVERSTON UNRESOLVED!)

CATT, BXTT
330 CONTINTE
DO 00 JK= 1
IF(B(JK,JK)) 350 6969 1100
350 CONTINTIR -

DO 100 J=1,¥%2

AT(JK,J)= -AI(JK,J)
1,00 CONTIVUE

RETTRN

END



(ﬂ)
// FOR

Caeabsras

75
100

91400
9500

(5)
// FOR

50

Citaeaese

100

150

200

SUBRNUTINE RITZ9(X,?,N,KOUNT)

THIS ROUTINE PRINTS VATURS OF ITRRATTONS
DIMENSTON X{10),®(10),ERR(10)

Do 100 I= 1,N

ERR(I)= ABS(F(T)- X(T))
IF(ABS(ERR(I)/X(T))=ERR(T)) 100, 1oo 75
ERR(TI)= ABS(ERR(T)/X(T))

CONTTNUR

WRTTE(3,9h00) KouN®, (X(T), Iﬂ.N)‘
PORMAT(7/,' ITER=" ST, x=r, 5(%10.3,5X))
WRITE(3, 9500)(FRR(17 =1.8%)

FORMAT (' ERROR=! ,7x,5(w10 3.5X))

RETTRN

END

SUBROUTINE X0T9(IDO0,RERR,ABER)
DIMENSTON X(10), F(lO) ann(lo) ABER(10)
@0 T0(g0,600),IDOO

CONTINUE

THIS PROGRAM TESTS THR TTERATIVE PROCEDURES BY
CALT,TNG RACH METHOD IN SUCCESSION
N=2

MAXIT=100

JOBR=3

JOB=0

CONTINUE

CALI, FINVY(X,F JOBB)

METH=1

JOBRB=l

IF(JORBRB-10) 150 700 150

CONTIVTE

X(1)= 0,0

X{2)= 6,0 - s

G0 TO (200, 300 uoo 500) , METH
CONTINTR

CALI SS9(¥,X,*,MAXIT, RERR, ABER, JOB)
CALT, Fﬂwv9(x F, 5)

G0 TO 600

{(continued)

e



300

1400

500

600

700

CONTINUE"

CALT, BWEGO(N,X,F,MAXIT
CALIL FUNVO(X,R,5)

G0 TO 600

CONTINURE

CALL NEWRO(N,X,F,MAXTT
CALT, PUNVY(X.F,5)

G0 TO 600

CONTINUR

CALL MVWGG(N,X,* MAXTIT

N,X,F,
CALT, FUNV9(X,F,5)
CONTTNTR
METH= METH+ 1 -
IF(METH=l) 150,150,100
CONTINUE
RETTURN
END

, RERR, ABER, JOB)
, RERR, ABER, JOB)

, RERR, ABFR, JOB)

400~



101
APPENDIX B TITERATIVE ROUTINES

(1) SUCCESSTIVE SUBSTITUTION

// FOR
SURROUTTNE S39(WN,X,R,MAXIT,RERR, ABER, JOB)
Cs#%x%  THIS SUB SOTLVES-SYSTEM OF EQTS - BY SUco, SUBST,
DIMENSTON X(10),F(10),RERR(1l0),ABER(10)
KOUNT= 1
100 CONTTINTIE
CALL FUNVO(X,F,l)
Gt PREST CURRENT SOLUTTON TOR CONVG,
DO 150 K=1,W
ERROR= AB%(P(K3-X(K1)
TF(ERROR=-R%RR(K):%ARBRS(?(K))=-ABER(K)) 150 150 200
150 CONTINUE
Cs%  SUCAESSFUL CONVERGENCE®, RETURN TO CP
JOB= 1
CALT, RITZ9(X,P,N,KOUNT)
WRITE(3, 9100) ROTNT
9100 FORMAT(' CONVG OBTAINED IN? Iu,' ITERS BY THE METHOD
> 1 OF STGn SURBRST!)

RFTURN
200 CONTINUE -
IF(JOB=-3) 2,0, 220 2110
220 CONTINURE
CALT, RTITZ9(X,?,N,KOUNT)
210 CONTINUE

Cx#%%x  NOT YER CONVG. TEST FOR' MAX NO OF ITS,
IF(KOUNT-MAXTT) 250, 300, 300

250 KOUNT= KOTNT+ 1
DO 275 XK=1,W
X(K)= R(K)

275 CONTIVIRE
G0 TO 100

Caeses  TINSTICORSSFIN, CONVG, RETURN TO CP

300 CONTIVUR
CALT, RITZ9(X,F,N,KOTNT)
WRITE(3, 9200) : :

9200 FORMAT(' MAX. W0 OF ITS EXGEEDED, NO fOWVG, BY SUCC SUB,!')
JOB= 2
RETTRN
END



Jod

(2)

// FOR

SUBROUTINE BWEGY(W,X,R,MAXIT,RERR, ABRER, JOB)
Ciedese THIS ROUTINE CALCULATWS RECVGL? PRORLFMS UNSIN THE

c BOUNDED WEGSTREIN METHOD ON RACH VARTARTE SEPARATELY
DIMENSTON X(10),F(10),RERR(10), ABER(10), XOLN(10),FXOLD(10)
JOBB=1
'KOUNT= 1
OMIN= =20

Cx#x%  FIRST ITERATION BY Succ, SURST,
CALL FUNV9({X,F,JOBRB)
DO 100 I=1,NW
XOLD(I)= X(T)
FXOLD(I)= ®(TI)

X(I)= P(T)
100 CONTINTR
325 CONTINUR

CALL FTNV9(X,F,JORB)
TR(JOR=3) 1u0 130,140

130 CONTINUE
CATI, RITZ9(X,P,N, KOUNT)
140 CONTINTE
TF(KOTUNT-MAXTT) 200,200,150
150 CONTTNUE
JOB= 2
CATI, RITZ9(X,P,N,KOUNT)
WRITE(3, 9000)
9000 FORMAT(!' MAX VUMBER OF TITS EXCEEDED, NO CONVG!)
RETTIRN
200 CONTINUR

Cssext  INCREMENT ITERATTON COUNT
KOUNT=KOUNT+ 1
C##xx  TRIT WOR CONVRERGENCE
DO 300 T=1,N
IF(ABs(F(I) X(T))=RERR(TI):#ARS(X(T))=ABER(T)) 300 300, uoo
300 CONTINTR
Cs#s#% TP DO TOOP COMPTETED, CONVG. COMPLETED
CALT, RITZ9(X,P,N,KOTNT)
WRITE(3, 91001 ROTNT
9100 FORMAT(' CONVG, ACHIEVED IV!,T8,t ITERATIONS!')
JOB=1
RETIIRN
100 CONTINUE

(Continued)



Caparaese

Cabdestst

L25
L50

528
550

Capseses

600

Cataeseat

50
75

Capsrsearse
100

150

CALCUTATE CANVG, ACCRT, PARAM, THEN X
DO 600 I=1,N

W= (X(I)=-XO0LD(I))/(®P(T)=FXOTD(I))
0= 1,0/(1,0-W)

LIMIT 0 BETWEEN QMTIN AWD 0,0
IP(0=-0MIN) L25,450,450

0=0MIN

CONTINUE -

IF(Q) 550, 550 525

0=0,0

CONTINUE

PREPARE POR THE NEXT TTRERATION
XOLD(T)= X(T)

FXOLD(T)= F(T) ’

X(T)= o=XOLD(I)+ (7, 0.0)%FXOLD(I)
CONTTNTR

GO TO 125

END

SUBROUTINE NEWRY(N,X,R MAXIT,RERR,ABER,JOB)

CONVGS, RROVCLE PROBLEMS TUSING THE NEWTON-RAPHSO METT,
DERIVS, OBTAINED BY SMALT, PERTURB; ABNUP VARS,
DIMENSTON X(10), ®{10),DVFX(10,10);RERR{10%,ABER(10)
DIMENSTON #PT(10), XPT(lo) DVFXI(IO,lO)

KOUNT= 0O

OBTAIN THE CURRENT FIUNCTION VALURES

CALL FUNVY(X,F,2)

IF(JOB-3) 75,50,75

CONTINUR

CALL RITZ9(X,F,N,KOUNT)

CONTINTE

STORE THE POINTS IN FPT AND XPT

CONTTYUR

KOUNT=KOTNT+ 1

DO 150 k= 1,N

XPT(K)= X(X)

FPT(K)= F(K)

CONTTNUE

(Continued)



Cataesen

250

300
Citsesrst

1100
500

525
550

Cstataraess

600
c.;(. L3ne

9100

Cataraee
800
900

9000

FILT, TN TYE DRRIVATTVR MATRIX
PO 300 1= 1,NW

X(I)= XPT(T)+ ,00001%#XPT(T)+ ,0001
DELX= ,00001%XPT(4)+ ,0001
EALL anv9(x,A,2)

DO 250 J= 1,N

DVFX(J,I)= (F(J)-PPT(J))/DELX
CONTINTR

X(I)= XPT(T)

CONTTNTIR

INVERT THE JACORTAN MATRTX
CALT, INVRO(DVFX,DVFXI,¥, X)
COMPUTE THE WEW APPROX TO THE SOLUTION
DO 500 I=1,N

DELX= 0,0 -

DO 1OO J=1,N
DELX=DVPXT (I, J)%#FPT(J)+ DELX
X(T)= X(I)=DELX

CALT, FUNVO(X,D,2)"

IF(JoB-3) 550,525,550
CONTTNUR

 CALL RITZ9(X,F,Y,KOUNT)

CONTINUE

TEST CURRENT SOL'N ®OR CONVG

DO 600 K=1,¥

IP{AB%(F(K)) RERR(K)#ABS (X(K) )=-ABER(K)) 600 600 800
CONTINTR

REPURN TO CALLING PROGRAM, SUCCESSFUL CONVG,

JOB= 1

CALL RITZ9(X,F,N,KOUNT)

WRITE(3,9100) KOTNT

FORMAT(' SOLN IN' Il ' ITERS BY NEWR METHOD!)
RETURN

BEGIN NEW ITERATION-

IF(RKOTNT-MAXIT) 100,900,900

CONTINUR

CALL RITZ9(X,?,N,KOUNT)

WRITE(3,9000)

JOB =2

FORMAT(' GONVG TERMIVATED, MAX ITER, CNT EXCEEDED')
RETURN

END



(ﬂ)
// FOR

Caeseseas

Ciparsess

100

150

200
Carsesest
250

300
Caestt3r

Vi

SUBROUTINE MVWGO(N,X,P,MAXIT, RERR,ABER,JOB)

THTS ROTTTN® SOTVES REAYCLE PROBS USING THE WULTI-
DIMENSTONAT, WREGSTETN METHOD -

DIMENSION X(10);,F(10),RRRR(10), ABER(10),XT(10,10),
DIMENSTON FT(10,10); DXI(IO 10) A(10,10),Dx(10, 10)
DIMENSION DF(10,10), XNEW(10), XNsz(IO)

JOBB= 1

KOUNT= 0

FIRST OBTAIN ¥ SOLIITIONS BY SUGCARESSIVE SURST,
NEWEST FUURTHEREST TO TYE RIGHT

CALL FINV9{X,?,JOBR)

DO 200 X=1,N

PO 100 T= 1,N

XT(I,K)= X(I)

PT(I,K)= P(I)

X(1)= P(T1)

CONTINTE

CALL FUNV9(X,P,JOBR)

KOUNT=_KOUNT4+ 1 -

IF(JOB=3)200,150, 200

CONTINUR

CALT, RITZ9(X,F,N,KOUNT)

CONTINUR

TEST FOR COVVG BRET NEWEST X,F,PAIR

CONTINIERE

DO 300 K=1,N

IF(ABS(F(K) X(X))=RERR(K)#ABS(X(K))-ABER(K)) 300 300 325
GONTIVUR

RETURN TO CALLTN PG,, STCCESS CONVG,

JOB =1

CALT, RITZ9(X,P,N,RKOUNT)

wmww39um)xmmw :

FORMAT(!' CONVG IN *,Th,t' ITS BY THE MULTT WEG METHOD!')
RETURN

BEGIN NEW ITFPATIOW

CONTINTE

IF(KOUNT-MAXIT) hOO, 350 350

(Continued)



350 CONTINTE
CALL, RIT79(X,7,N,K UNT)

WRITE( 3, 9000)

9000 FORMAT(' CONVG, TERMINATED, MAX ITS EXCEEDED!)
JOB=2
RETURN

1,00 CONTINTIR

Cssst3¢ CALCULATE DF AND DX
DO 500 J=1,N
DO 600 T=1,W
DX(1,J)= XT(I,J)=-X(%)
DR(T,J)= FPT(I,J)=F(T)
600 CONTINTRE
500 CONTINUR
Caeseaer COMPUTE A MATRIX
CALL, INVRO(DX,DXI,N,N)
CALL PROD9(W,N,N,DF,DXI,A)
Caeaseat COMPUTE Q
DO 650T1=1,W
DO 625 J=1,W
DX(I,J) = A(I,J)

625 CONTTINTE '
DX(T,I)=DX(T,I)-1.0
650 CONTINUR

Cs# # % # % DX NOW CONTATIVS A-T
CALI, ITNVR9(DX,DF, N, N)
CALT, PROD9 (¥ ,N,N,DF,A,DXI)
Cx % 2 % # DXI WOW CONTATNS Q
Caaesese CAT.CULATE FIRST PART OF X::N+1
Do 670 1="1,N
XNEW(T)=0,0
DO 670 K=1,N
XNEW(T)= XNEW(I)+ X(K)#DXI(I,K)
670 CONTINTE
(o EXTETES CAT.CTILATE (I-Q)
Do 800 I= 1,¥W

Do 775 J=1,W

DX(I,J)= =1,0%DXI(TI,J)
775 CONTINUE

px(1,I)=bx({1,I)+ 1.0
800 CONTIVUE

(Continued)
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Ca#eset+  CALCULATE SECOND PART OF X:tseN+1
Do 825 1=1,W
XNEW2(I)= 0.0
DO 825 k=1,W
XNEW2 (T)= XNEW2(T)+ P(X)#DX(I,X)

825 CONTINUR

Ot MOVE ATT. PTS OVER TO PREPARE WOR WREXT ITTRATION
po 880 J= 1,W
K= J+1 ]

DO 850 T=1,n
XT(1,J)= XT(I,K)
PT(T,TJ)= FPT(T,K)
850 CONTINTR
880 CONTINUR
Do 750 1= 1,¥N
XT(I,N)= X(I)
FT(I,N)= P(T)
750 CONTINUE
(L X X3 SUM THE PARTS
B0 900 J= 1,N
X(J)= XWEW(J)+ XWEW2(J)
900 CONTINUR
Ca#stse¢  TNCREMENT TTER COUNT
KOUNT= KOUNT+1
CALT, FUNVO(X,F, JOBR)
IR(JOR-3) 250,950,250
950 CONTINURE
CALL RTT79(X,F,N,KOUNT)
G0 TO 250
FND





