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ABSTRACT

This paper reports the results of fny investigations as
to the advantages of the Multidimensionslwegstein Method
over the Classical Method of Successive Substitution, the
Bounded Wegstein Method, and the Newton-Raphson Method.
I demonstrated its superiority by applying them to several
engineering example problems, and to Mathematical model problems.

The method solved all the engineering problems better
than any of the other methods. This method does require more
time for each iteration, so its speed must be balanced against
this difference.

The Mathematical problems were chosen such that the
procedures performance for various values of the parameters
Would relate information as to the classes of problems the
vArious iterative rrocedures are likely to solve well. These
tosults suggest that the Multidimensional wegstein method is
likely to solve a very wide class of functions, and to do so
In less function evaluations than the other methods,
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I. TWTRODTTCTTON

The development of new Drocesses, the evaluation of

alternative plant designs and the improvement of existing

processes rely on the mathematical modeling of the process

itself, and usually require the computer aided simulation of

the process. The most widely accepted approach to this problem

has been the "modular" formulation-- a package of "unit

computational subroutines" simulate each particular piece

of equipment in a plant design. These units are connected to

each other by an executive program, which calls each computat-

ional routine in sequence, using the product stream from one

unit as the feed stream to the next unit in the plant models

When no recycle streams are present, and the feed cond-

ition to the first uhit are all known, the steady-state

process simulation can be effected directly by one sequentio.

pass through each of the units. When a recycle stream is

present, however, one must guess its stream values and employ

some sort of iterative procedure. The executive Routire,

therefore, must handle the processing of all input and output

information, the flow of information between units and the

convergence of all recycle streams in the process formulation.

The "unit computational routines", on the other hand, are

models of processing equipment, which can be used for a



variety of process simulations (any simulation requiring

that particular piece of equipment).

The formulation of executive subprograms and unit

computational routines has been extensively researched and

currently are in general use. The choice of an iterative

convergence procedure to use, however, is still a topic of

research. Many procedures have been developed in recent

years, that appear to be better than the classical method

of Successive Substitution. One of the purposes of this

work is to present one more procedure (the Multidimensional

Wegstein Method), that anpears to solve a wider variety of

recycle problems than the other methods, and does so in fewer

function evaluations. The mebhod would be much more efficient

for.problems which require a lot of time to evaluabe the

ftnctions, like plant simulations.

Previously, convergence procedures were evaluate4, by

applying them to several engineering example probleta, and

by applying a few other methods to the same problem-- they

are compared as to the rate at which they converge to the

solutions,(data is recorded in error versus iterations plots).

I have done this with the Multidimensional Wegstein Method:

comparing it to the Newton-Paphson Technique, the Method of

Successive substitution, and the Bounded Wegstein Method for

a variety of engineering examples.



The other nurpose of this paper is to suggest a more

general method for evaluating the many methods of converging

recycle streams in order to develop an understanding of when

the method on hand is most likely to be the quickest method

for solving any particular type of problem. Hopefully,

sweeping generalizations will be easily formulatable(e.g,

Highly interacting problems are solved much more quickly

by the Multidimensional Wegstein Method).



TI. PROBLEW FORMULATION

A: General Definition:

In order to compare the efficiencies of the four methods'

I programmed subroutines which would predict the values of

the variables based upon each of the methods, Successive

Substitution, the Newton-Raphson Method, the Bounded Wegstein

Method, and the Multidimensional Wegstein Method. A list of

the auxillary subroutines used to effect this go & can be f6und

in Appendix A, while the listings for the methods themselves,

along with a sample solution can be found in appendix B.

Subroutine XPT9 initializes the starting guesses, then calls

each of the methods to the problem at hand. A different

Subroutine FUNV9 simulates each of these problems. (see Section

III, Engineering Examples).

I programmed five different Chemical Engineering example

problems, and obtained solutions (plots of error vs. function

evaluations) by each of the four methods* In order to get

a feel for how varying degrees of interaction affect each

method, I investigated several actual engineering example

problems.

Of the many possible ways to define the error of the

system, I chose to consider each variable separately and

consider the error of the system to be the maximum error



amongst ill the variables* The individual variable's error

was taken to be the minimum of the absolute difference

between the variable and its function value and the relative

error, the absolute error divided by the variable's value.

In order to obtain a deeper understanding of the var-

iables that affect the rate of obtaining solutions, I

programmed several simple Mathematical cases. One of the

cases T investigated was that of linear variables with linear

interaction. The particular set of equations employed was:

X 1 = Axl+ "2+ C

X2  + BX1 + C

By varying the value of B, one alters the amount of interaction

amongst the two variables. For example, if B=0, there would

be no interaction present, but for any finite value, 7there

is a finite amount of interaction. This problem is particularly

important for, near the solution, all problems appear linear.

Varying the value of A, affects the degree to which the value

of x depends upon its own value, intra-variable interactions.

Many values for the variables of this example were solved

in order to obtain as clear an idea of the affects of these

values as possible,

A few runs were also attempted, varying the exponents

on the unknowns in order to see the affects of these changes.

For the results of these runs, see Section TV, Mathematical

Examples.
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B: Method Descriptions:

(1) The Classical Method of Successive Substitution is

one of the simplest methods to understand, and to implement.

Each equation must be solved for a single output variable

to obtain the form:

x= F(x) (1)

An initial assumption, x (0), is made and then successive

improvements are attempted by applying the algorithm:

((k+x) (( ) ) (2)

The flow sheet for this method is illustrated in Fig. 1,

while the subroutine listing and example problem are listed

in Appendix B.

(i) The Newton-Raphson Method proceeds by expanding

the set of equations F(x)=0 in a Taylor Series about the

present guess, X(k), and retaining only the linear terms:

n k+ dxI+ ... iX

where dx =XX-4, and Imeans evaluated at X= X(k)

a
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This system of equations can be represented as:

f(X)= f(xk(k)))= J(xW)dx= 0 (4)

where T(x(k)) denotes the Jacobian of f with respect to x,

evaluated at x= x .

The Newton-Raphson Technique generates the new approx-

ination x(k+l), eeording to:

l(k+1)= (k )+ dX
- - (5)

where dx= -Jl ((k))f (x (k)

The Jacobian is acquired for each iteration by perturbing

each variable separately, and calculating the derivatives

with respect to each variable.

The flow sheet for this method is illustrated in Fig. 2,

while the Subroutine listing and example problem are in

Appendix B.

(iii) The Bounded wegstein Method is again formulated to

solve the recycle problem:

X= (X)(1)

where F(x) is the recycle solution for the variables x in the

simulation problem.
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The Wegstein Method assumes a linear form for F(x):

'(x)= ax+ b (6)

The parameters, a and b, are obtained from two sets of (x,T(x)),

obtained by successive substitution. Using these two (x,F(x))

pairs the equation above is solved for a, and b.

?(O)=x (1)+ b

F(1)= a(1)+ b

(7)
or:

a= (F -p )/NI)O-x()

b= (P'(0 )X(1)_?(1)X (0) W (1) x(0 )

The next guess

form of F(x) equals

is the value of x,

x, or:

for which the assumed

x (2). a(2)+b

therefore,

x (2 ) b/(1-a)

by substituting the solutions for a and b we obtain:

X(2). () ))

(8)

(9)

(10)



By defining a convergence parameter q, such that:

x (2)= qx(1)+ (1-q)F 1  (11)

solving these equations for q yields:

(1). (O)
q= (12)

or in terms of a:

q=a/(a-1) (13)

generalizing these results for the uni-variable case:

x(+1) qx(i)+ (1-q)!P(i)

q=a/(a-i) (14)

a= df/dx

where df, and dx are defined as:

df= P ()-.F II)(15)
& x(i) (i-I)

Subroutine Bweg9 was formulated to apply this procedure

independently to each variable of multi-variable problems.

The parameter q was bounded in the range -20 q 5 0. The

flow sheet for this method may be found in Fig. 3, while the

subroutine listing is in Arpendix B.
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(iv) The Multidimensional Wegstein Method is developed

along the same reasoning as the one-dimensional wegstein

Method. The recycle formulation is again stated as:

x= F(x) (1)

A linear form is assumed for each variable in each function:

? l= 1X+ al 2+ a....,+ b,

* (16)

=a x+ a,2+ .... % + bn

or in matrix form:

F= Ax+b (17)

in order to apply the method, N+l paired values of F and x

are obtained by Successive Substitution. If these are numbered

i= 0,1,2,3,... N, and df and dx are defined:

(=)(i) (O
(dx) X - 2 O)

then substitution into the equation abole yields:

(dft())= A(dxi) (19)

therefore it follows that:

df= Adi20 (20)



or: 

(21) 

and: 

b= F- Ax - - - (22) 

for the next guess we want F= x: . - -

or: (23) 

If we define a convergence pare.meter matrix~ Q, as: 

and using the values for! and~ calculated above on oan 

solve for g, as was done in the one-dimensional ease~ The 

results are summarized below: 

x(i+l)= QX(i)+ (I-Q)F(i) - ...... -.,iitl,-
Q= (A-I)-lA (25) 

!= c~lc~)-1 

The previous N iterations are used to obtain the matrices 

df and~' from which the new guess x{i+l) is derived~ The 

flow sheet for the method is illus.tra.ted in Fig. 4. A listing 

of the SUBROUTINE MVWG9 can be found in Appendix B. 
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III ENGINERING EXAMPLES

This section considers several engineering example

problems. The first two are examples which confronted me

during my course work, and the last three are examples used

by previous investigators to illustrate the superiority of

their iterative procedures. The executive program is written

as described in the Problem pormulation, SUBROUTINE FUNV9

simulates the particular process on hand, while SUBROU'ITNE XQT9

initializes the recycle guess, and calls each convergence

procedure to solve the wimmlation problem.

A: Aluminum purification Problem
2

This is a vapor phase deposition reaction, where crudea

Aluminum is fed to the first reactor, maintained at 1450 0 KO

along with a mixture of Ald3 and A101. The reaction takes

the form of:

AC13 (g)+ 2A1(l) 3A1C1(g)

This gas is then fed to the second reactor, which is main-

tained at 13500K. The same reaction occurs here, but the

equilibrium is shifted to the left, depositing puriftied

liquid aluminum in the second reactor. (see Pig. 5).

In order to calculate the pound moles of aluminum

purified per pound-mole of gas leaving Reactor 1, I chose



Al (crude) R~~~RC TRTI--Al (1)

AlCl1(g- l.50*11350* -
ClU(g)

?TGTRE5 ALMYPT7M P!!RITTCATTON SPT-UP



as a basis one lb.-mols of gas leaving Reactor 1. This gas

will contain x moles of AlCI and x2 moles of AlC 3 since

the gas contains only these two components.

X3+ X2= 1.0 (26)

The equilibrium constant for t his reaction is defined by the

equation:

ln X= (61.2- 92,940/T)/R (27)

This yields 45 0.233, K1 3 0  0.021. Therefore, for Reaetor 1:

0.233 1 PREt1 2 (27)

Here, PRESM is the total presatue in Reactor 1. A chlorine

balance around Reactor 1 yields the amount of chlorine in the

product stream, x3

x xi+ 3X2 (28)

This also determines the chlorine balance for the second

reactor, for if there are X moles of AlC in the product

stream, there must be (x3-x4)/3 moles of AlC1 3 in the stream

(this assumes the chlorine is insoluble in the liquid alum-

inum). Substituting these relations into thc equilibrium

relation yields, for the second reactor;

9xRES2/( (z:x )(x.+ 2x )) 0.021 (29)



x5, the amount of aluminum formed per lb-mole of gas leaving

Reactor 1, can now be determined by using an aluminum balance

around Reactor 2.

x5= x1 +X 2- X4- (X3 m4)/ 3  (30)

Having set the temperatures and pressures as in the problem

statement, we pan now use an iterative procedure to determine

the values of all these unknowns. (see Fig. 4,). The number

of iterations required by the four procedur' p being studied

were obtained, using the stated pressures and various other

pressures for the first reactor. (see Figs. 7-10). The

Bounded Wegstein method failed to approach the solution in

one hundred iterations for a prestire of one atmosphere in

the first reaetor, even though it obtained solutions for all

the higher pressure simulations.

The Multidimensional Wegstein Miethod obtained solutions

much more quickly then did any of the other methods, with

Successive Substitution close behind in efficiency. The

Newton-Raphson method is much slower because of the number

of function evaluations necessary to generate the derivative

matrix for each iteration, Obviously, the trade-off here

on which ethod is best would be influenced greatly by the

lo*kgth of timo rquired to obtain each function evaluation,

Such that any ona t tt th fou methods might be the best. The

difftrencea beeoie even less pronounced as the pressure in



// FOR
SUBROUTINE FUTV9 (X, F, JOBB)

C
C***r- THIS SUBROUTINE SOLVES AN ALM. RTP. ?PROBLEM
C

DIMEWTSION X(10), F(10)
GO TO(100,150,20,30,p400) ,JOBB

C**** THIS SECTION SOT4V1S X=F(X)
100 CONTIYUE

F(1)= (.233*x(2)/(PRES1**p)**O.335
P(2)= 1.0-x(1)
F(3)= x(1)+ 3.O*x(2)
P (4)= (O .23.3F..02*(x(3).x(4) )*(x(3)+2.*X(4) )/PRERS2**2

1 )**0,333
F(5)= X(1)+ X(2)- X(4)-(X(3)- X(4))/3.0
R7'TURN

C0* THIS SECTIOW STOLVES FOR F(X)= 0
150 CO*TWTT

P(1)= .233-PRES1**2*X(1)**3/X(2)
FV-1= 1.0-X(l)- X(2)
F(3)= X(3)- A(l)- 3.0*X(2)
P(4)= *021- 9.*X(4)**3*PRES42**2/((X(3)-X(4))*(X(3)

1 + 2.0*X(4)))
P(5)= X(5)-X(1)-X(2)+X(4)+ (X(3)..X(4))/3.0
ICWT= WINT + 1
RETURN

C**** THIS SECTION SETS IIYTTIAL CO17DITIONS
200 CONTTT7UE'

PRES1= 1.0
PRES2= 1.0
ICNT= 0
N= 5
RETURN

C**** THIS SECTTOY POR ALTERING CONDITIONS
300 CONTTKUE

ITCT= 0
PRES1= PRES1+ 2.0
IF(Pprllll- 5.0) 325.325.350

325 WRITE(3,*9000) PRES1,PRES2
9000 FORMAT('1 ALUM. PURIF. pRO13., PRES1=',F1O2, PRES2=1,F10.2)

RETURN
350 CONTINUE

IP(PRES1- 10.0) 360,370,370
360 PRES1= 10.0

GO TO 325

(Continued)



370 PRES l=PRF5l+ 5.0
IF(PRES1- 40.0) 325,325,380

380 069TIrUE
CALL EXIT

C**** THIS SECTION PRINTS NO. OF ITS. REQUIRED FOR SOLN.
400 CONTINUF.

WRTTE(3,1100) ICwTr
9100 FORMAT(' SOLN REQUIREDtI6,t ?TUNCTION EVALS')

IGNTV 0
RETURN
END

FIGURE 6 ALUMTINUM PURIFICATION LISTING
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the first reactor is increased.

B: Combustion Problem3

The second example considers an important industrial

reaction, the Water-Gas shift reaction. The problem statement

is as follows:

A fuel oil analyzing 86% C., 11% H, and 3% Inerts is

burned with 50% of the theoretical air needed for complete

combustion. The gas mixture is brought to equilibrium at

18000F. What is the compostion-of the product gas if these

two reactions are the only important ones?

I* C02+ H2  CO+ H20 ,i8 o& 1.66

II. CO+ 3H2 = CHT,+ H20 KP,1800 1i48x0

ans:

Chose as a basis, 100 lbs. oil.

6r8aent needed2
C 861'974*17 7.17
H 11% 11.0 2.75
I 3% 0.00 0.00

one half the theoretical 02 need is 4.96 moles, so 18.65 moles

of i2 are introduced with the air. Defining the amounts of

each species present as follows: CO, a; C02 , b; H20, o; CH ,

d; and H2, e, one can obtain the following equations to



(-)

simulate the system:

C balance 7/17= a+ b+ d

H2 balance 5.50= a+ 2d+ e

02 balance 4.96= a/2+ b+ e/2

Equil. Rctr. 1 1.66= ac/(be)

Equil. Retr. 2 1.48xl0"! do (18.65+a+b+o+d+e)
2 /(ae 3PRES2 )

Where PRES is the pressure operated at, SUBROTJTTNE FTUhV9

was formulated to sivulate this problem (see iig. 11). Tests

were r!n for the various convggence porcedures with the

pressure varying from one to thirty-two atmospheres. The

speed of solving this problem appears to be independent of the

pressure, for all the test runs proceeded at the same pace

(see Figs. 12-13). The Multidimensional Wegstein method proved

much quicker than the method of Successive Substitution. The

Bounded Wegatein and the Newton-Raphson metods both failed

to obtain solutions to the problem.

C: Ethylene Dichloride4

Napthli proposed a hypothetical process for the mAkIng

of ethylene dtphloride, where a recycle stream from the separator

is mixed with the feed-stock and fed into a mixed reactor,

which converts 904 of the ethylene per rss. Its nrodust



//FOR
STBROUTPTYE 9VV9 (X, P, JOBB)
Go TO(10, 200,300,00,500), J01B

C*** THIS SECTION. SOLVs (X)=X
100 CONTINUE

F(1)= 7.17-X(2)-X(4)
P(2)= 4.96-(X(l)+X(3))/2.0
?(3)=.1.66*x(2)*X(5)/X(l)
PARTm 0.0
Do 125 T= 1,5

125 PART= PART+ X(iI
PART= ((PART+ 1I.65)**2)*X(3)
P (4)= o.k$-P-05*PR'PS**2*X (I)*X(5)**3/PAR T
F(5))= 55-X(3)-2.0*X(4)
IC!'T= ioiuT+ 1
RETrn

C**** THIS SCTT0OW SOTVES F(X)= 0
200 BOYTTIUE

F(1)= 7.17-X(l)-Xf2)-X(4)
F(2)= 4.96-X(2)-,(X(1)+ X(3))/2.0
F(3)= 1.66-Xj11)*X(3)/(x(2)*X(5))
F(5)= 5.5-X(3)-X(5)-2.0*X(4)
PART= 0.0
DO 225 I=1,5

225 PART= PART+ X(I)
PART= (PART+ 18.65)**2
P(4)= x(1)*x(5)*,3*PRVS**2
F(W= ,148,R-05- X(4)*X(3)*PART/F(4)
ICNT= ITNT+ I

0**%* THIS SiCTION SETS THE-IVITIAL CONDITTONS
300 CONTPT U1E

PRES= 1.0
I ,T= 0
iq= 5
GO TO 450

C***. THIS SECTION WOR CTANGING INITIAL VALUES OF PARAMS.
400 CONTIVUR

ICNT= 0
PRES= PRES*2.0
IF (PREs-5o0.Q) 4509,h25,9425

(Continued)
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stream is fed to a separator whose overhead will contain 98%

of the chlorine entering the unit, 92% of the ethylene, and

0.1% of the ethylene dichloride entering the unit, Five

percent of the overhead is purged by a splitter. For the

mathematical formulation of the problem see Fig. 14.

SUBROUTTVE FUNV9 was developed to effect this simulation

(see Pig. 15). Two test runs were made, one with the feed

cont&ining 459K ethylene, 45< chlorine, and 10% inerts; the

other with the feed containing 501 chlorine and W, ethylehe.

For both simulations the Bounded Wegstein method was the

quickest, followed closely by the Multidim01OhiOnal Wegstein

Method(see Figs. 16 and 17). Successive Substitution is very

slow, so that if any reasonable degree of accuracy is required,

this method would be an unlikely choice. The Bounded Wegstein

method would be the overwhelming choice, it is quicker than

the Multidimensional method, both in the speed of its iterations

and in the amount of iterations required.

D: Photochemical Reaction Problem5

Kwon proposed a photochemical reaction oroblem. The

equations he derives to model this can be seen around statement

100 of the listing for SUBROVTTWE FUJNV9 (see Fig. 18j, the

routine developed t6 simulate this situation. The reaction

constants and flow rates of the various species follow statement



SPLITTR _

(5)

()YT IR ROTR. SEP.

Strei.# 12 3 115 6 7

C H _ 4 ,>(1306 .oIC .-2 .fA ..
012+A7l2  G +~7~~7/ ________

02 4

T + 7 1 t i __s

where x is the amount or component i in stream no. where

1=1 , ls C 2 T, 9 =29, is -2' 2ti3Isa 012, =4 tsinerts,

Figure 14 ITHYLSTE DTCHLORTDE SYSTEM
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// FOR
SUBROUTIN7 FUTv9MV%,'?, JOBB)
DIMENSION Z(10);i1)

C***** THIS 3MTROITNE SfLVES 'THYLENE DICHLORIDE SYSIRM
GO TO(1.,loo10 ,to,00,50OO0,0OBB

C**** SOLVES FUNCT. FOR X=F(X)
100 CONTINUE

P(I)= 0.0874*(A+ X(1)).
F(2)= 0.931*(B+X(2)-0.9*(A+ X(1))
P(3)= .0095*(X(3)+ .9*(A+X(1)))
F(4)'= .95*(XT+ X(4))
ICNTT=ICNT+ 1
IP(JOBB-2) 2QQ,150,2OO

C---- THIS SECTION SOLVES FOR F(X)= 0
150 CONTINUE

DO 175 i= 1,4
175 F(T)= X(I)-?(T)
200 COYTINUE

RETURN
c**** THIS 3ECTTON INITIATIZES PARAMETERS
300 CONTIWUE

A= 45.0
B= 45.
XT= 10.0
IC'T= O'

350 WRTTE(3,9000) AB2,XT
9000 P0RMAT('1 ETHYLENE DTCHLORTTWP~RLEM, A=',F12,2,

1 B=',F12.2, C=',F12.2)
RETURN.

c**** INITIALIZE SECOND PROBL47
k0 COTTITUE

IF(B-47.0) 410,450,450

A= 50.0
B= 50.0
XI= 0.0
GO TO 350

450 CONTIn-
CALL EXIT

C**** RESET ICNT, PRIrT RESULTS
500 WRITE(3, 91001 ICNT
9100 FORMAT(' SOLTTTTON REQRD',16,' FUNMCTTON EVALUATIONS')

IC!T= 0
RETURN
END

Figure 15 ETYTIVNE DICHLORIDE LISTPTG
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// FOR
SUBROUTIWE FTTTV9 (X, F, JOBB)
DIMETNTSTOW X(10),F(10)
SOLVE3 TTE P7T0CHEmCAL PROBLEM OF KWON
GO TO(100,150,200, 300,500 ),.jOBB

C**** SOLVES FOR PROBLEWS OF FORM X=F(X)
100 CONTTIUB

TCOT=T ICT+ 1
P(1)= F1/(PP+RK*x(1)+pK4*X(6)*(RLITE**o.5))
F(2)= F2/(FF+RK1*X(1)+2.0*RK2*X(3))
F(3)= F3/(WF+ RK2*X(2))
F(4)= 2.O*RK1*X(1)*X(2)/(FF+RK3*X(5))
F(5)= 2.0*RK2*X(2)*X(3)/(FF+RK3*X(4))
F(6)= 2.O*RK3*X(4)*X(5)/(FF*RK4*X(1)*RLITT*o.*5)
F(7)= 2.O*RKh*x(1)*X(6)*RLITE.**Oo/F?
RETURN

(e** SOLVES FOR PROBLEPS OW FORM F(X)= 0
150 COWTTITUE

CYT = TCNT+ 1
F(1)= F1-FF*X(1)-RK1*X(1)*X(2)-RK4*X(1)*X(6)*RLITE**o.5
P(2)= F2-FP*X(2)-Rn*X(1)*X(2)-2.0*RK2*X(2)*X(3)
F(I)= F3-"P1*X(3)-RK2*X(2)*X(3)
F(4)= 2.0*RK1*X(1)*X(2)-?P*X(4)-RK3*X(4)*X(5)
F(c')= 3.O*RK2*X(2)*X(3)-FF*X(5)-R41.*X(4)*X(5)
F(6)= 2.O*RK3*x (4)*5(5)-FF*X(6)-RK*X(1)*X(6)*RLITE**O.5
F(7)= 2.0*RK1*X(1)*X(6)*RLITE**0.5-FF*X(7)
RETURN

C**** INITIALIZE GUESS AND PARAMETERS
200 CONTTNUE

ICNT= 0
DO 350 1=1,7

350 X(I)= 0.0
WRITE(3, 9000)

9000 FORMAT( SOLVES PHOTOCHEMI CAL PROBLEr t)
RK1= 17.6
RK2= 73.0
RK3= 51.3
RK4=23.0
p1= 3.0
F2= 4.75
F3= 1.25

(Continued)



1??= 9.0
RLXTE= 0.6
RETURN

C**** THIS SECTION TTERMTATES THE RUN
300 COVTINTTE

CALL EXIT
C**** THIS SECTION PRINTS ITCT. AND ZERO'S IT
500 CONTINUE

WRTTE(3,9100) ICNT
9100 FORMAT( SOLTION REQUIREDtI6,t FUNCTION EVALUATIOWS')

TCNT=
RETURN
END

Figure 18 PHOTOCHTMICAL PROBLEM LISTIYG
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number 350. The problem was solved by each of the four methods

(see Fig. 19). The Multidimensional Wegstein Method was much

better than any of the other methods at solving this problem.

E: Oil Separation Problem6

Nagiev proposed an oil separation problem, described by

the equations following statement number 100 of the listing

for SUBROUTTN1R FTYMV9, which was developed to simulate this

problem. (see pig. 20). The results of the simulation are

plotted in Fig. 21. The Multidimensional Wegstein Method

again was much better than the other methods. The Newton-

Raphson method failed in an attempt to invert a matrix, so

it would require higher precisions to solve the problem.



-

// FOR
SUBROITINE FTh1V9 (X, F, JOBB)
DIMENfSION X (10 ), F(10)

C**M* THIS SUB SOLVES NAGIEV'S OIL SEP PROB.
GO TO(100,100,200, 300,500),JOBB

0*** SOLVES FOR FUNCT SOLVED BY X-F(X)
100 CONTTYUE

ICNT= IC1T+ 1
F(1)= 1000.+ .4624*X(1 )+ *0436*X(2)
F(2)= 200.+ .235*X(1)+ .67*X(2)+ .1667*X(5)+.05*x(7)
F(3)= 100.+ .008*x(1)+.061*X(2)+;445*x(3)+.001*x(h)
P(4)= 200+o.021*X(1)+.0022*X(2)+.268*X(4)+.o11*X(6)
F(5)= 5E0.+ 0.0032*X(1)+ .0025*x(2)+ .213*X(3) +

1 .0833*x(5)+ .05*x(7)
F(6)= 70.0+ .0017*x(1)+ .0014*X(2)+ .29*X(4)+ .482*X(6)
F(7)= (.75*X(5)+ .08*x(7))/.27
IF(JOBB-2) 190,150,190

C**W* THIS SFGTION SOLVES FOR ?(X)= 0
150 0NTINUE"

DO 175 T=1,7
175 F(?)= X(I)-F(I)
190 CONTPTTE

RETTTRNq
C**** SECTTOV TITIALTZES ALL THE PARAMETERS
200 COYTTMUE

ICNT= 0 -
DO 350 = 1,7

350 X(I)= 0.0
WRITE( 3,9000)

9000 FORMAT(' SOLVES THE NAGTEV EXAMPLE PROBLEM' )
RETURN

300 CONTTTUE
CALL EXIT

C*** PRINT TTCWT AND REERO IT
500 COTNT1UE

ICWTT=0
RETURN
9ND

Figure 20 WAIEV'S OIL SEPAR PROBLEM
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IV. MATLEMATICAL EXAMPLES

A: Linear Variables, Linear lytrdtoion.

Thi purpose of these - exampleIs to determine If it is

PossibiP to make relevent generalizations as to when one

iterative method will nerform better than another in solving

certain recycle problems. Since, in the vicinity of the

solution, all problems appear linear, I investigated this

case first. The simplest equations of this forta is the

set:

X= AT,+ Bx2 + C

x2= AX2 + Bx1 + C

By setting A=O.5, and C=5.0, and vArying the value of B,

we can measure the sensitivity of solution procedures to

the amount of interactions aiongst the variables. Thus, for

B=0.0, there is no interaction between the variables, and as

the magnitude of B increases, the degree of interaction also

increases.

The solution to this problem is: x,= x2= C/(l-A-B),

while the eigenvalues of the system of equations Are:

X=A 3B. Successive Substitution only obtains solutions for

(X6l.o, so that for B 0.5, it will diverge.



In order to obtain a clearer idea of how the other methods

were affeoted by the value of B, however, I did a panoramic

"spot-check" of the value B. I did this by solving the problem

using various values of B, originally spanning several orders

of magnitude, by each of the methods and noting how tmny

Iterations are required to achieve a specified tolerance(.01),

see fig. 22. Sines both Successive SubstitutiOn. and the

Bounded Wegstein's methods ran into trouble near B=1.0, I

expanded the search in this area, see fig. 23. In order to

explore the area where the MUltidimensional wegsteints and

the Newton-Raphson Method have problems solving the protaiem,

Y expanded the search to include values of B between 100 and

0,000, see fig. 24.

Based on these exploratory runs, I chose the following

values of B for more detailed review: 0.0, 0.01, 0.1, 0.2,

04, 1.0, 200.0, 80O0.. These values of B correapand to

regions where one of the methods of. solution required bubstant-

ially more iterations than it previousl-T needed. The results

of these runs are olotted in figs. 25'31.

Por all valueg of -g Successive Substitution tends to

level out, so that if increased precision is required, the

method becomes much slower.

The Bounded wegstein's Method is the best method for the

case of no interaction among"i the variables, for bre it

proceeds directly to the solution in one iteration. As
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B 0.0 10-4 10 -. 2 1.o01 102 104 106

SUC. S1L4 7 7 7#
B WFG3 3 3 _#_ #

N.-RAPTI 4 4 4 7 7

M. WG 6 14 5 7 6
--matrix inversion failed
#-method diverged

figure 22 "spot check"

B 0.1 0.2 0.3 0.4 0.7 0.9 1.0

SUC.SUJB a 11 15 24 #_ _ #

B. W 6 10

N.-RAPH 4 4 4 14 7 4
M. WC 3 3 3 3 3 3 3

#- method diverged

figurs 23 "spot check"

B 100 200 300 oo 800 900 1000 3000 5000

N.ww- 5 7 7 10 12 14 19 # #

N.RAPi 7 7 7 7L 7 7 7 7 7
#-method diverged

figure 24 "spot check"
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interaction is increased, its rate of convergence decreases.

Finally it becomes very erratic and ovent1u11y fails to

solve the problems . for values of B greater than 0.4.

The Newton-Raphson Method appears to be very good in

solving a large class of these two-dimensional problems. It

was able to solve problems for vdlues of B up to 1,000,000.

This method did, however, run into trouble for the value of

B=1.0. Here, the procedure asymptoted quickly. The main

problem with this method is that it needs N function evaluations

for each iterative step, thus slowing it down drastically.

One probably would not to use this method for small to moderate

values where other methods are fairly good.

The Multidimensional wegstein Method works very well for

values of B up to about 3000, where its slope levels out *RO)

finally, the procedure diverges. The degree of interaction

needed to cause this method to diverge, might, however, be

lowered by its use of three successive Substitution iterations

before the procedure takes over. These steps send the procedure

far from the solutiaJ and, for values of B great enough, it

is unable to recover, and fails to return, If this is the case

The Multidimensional wegstein Method may be able to solve

"tougher" problems by using a differentAto generate the first

N iterations(e.g. Derturbations of the initial values). As

it is presently programmed, however, it works very well for a

wide range of interactions.



In order to test the sensitivity of the methods to

intravariable interactions, I set B= 0,1, And c= '.0, then

ran a"spot" cheek for each of the methods to see how high of

a valuedof A is needed before the method can no longer solve

the problem. For this check, I used a convergence criterion

of 0.01 both for the relative and the absolute error tolerances,

and starting values of 0.25 and 0.75 for t. tw6 variables.

See figure 32 for the results of thespot" check. Based on

these results, I chose values of A- 1.2510,6, .5, 0.7, 0.99,

5.0, and 100 for closer examination. Graphs of error versus

number of function evaluations(figs. 33-37) were obtained for

these values of A.

Successive Substitution works well for small amouhtt of

intra-variable interaction, A 40.5. AS the value of A gets

moderately large, though, the method rapidly levels out.

For A= 0.99, it approaches an assymptote at an error of about

.01. For larger values of A it diverges.

The Bounded wegstein Method seems very sensitive to the

size of A. For A small to voderate, the method works very

well. As the value of A becomes tsige enough to make the

eigenvalues of the sysiAm greot*.r -than 1.0 at the solution,

the method becomes much slower. For values that make 1.0,

the method diverges.



The Newton-Raphson method appears very stable to the value

of A. It obtains solutions in the same amount of function

evaluations for values of A from 0 to 100. The method is

slowed somewhat by the (N+l) funoition evaluations needed for

each iteration. This affect would become more drastic for

systems of equations involving more variables.

The Multidimensional wegstein Method was, again, consist-

ently better than any of the other three methods. For small

values of A, this was not very evident, for all the methods

were working very well. But, as the six* of A increases, both

the Newton-Raphson and the Multidimension4t wegstbin Method

become substantially better, than-the other two methods. For

very large values of A, the Newton-Raphson and the Multi-

dimensional wegstein method get better. Since the Multi-

dimensional wegstein method requires a lot more computational

time than the Newton-Raphson Method, the latter might be

Oreferred in this range. I suspect, however, that the

Newton-Raphson Method will not work so well for equations

involving more variables.



A 9C".O,895 B. W G N.'RAPH M. W7G

1.2553 2 3 4 5

2.50-6 2 3 4 5

0.5 8 34

0.7 14 3

0.9 99 41 2

0.99 * * 4 6

2.v5 5~

5.o 7 5

100 # 10 5

9-matrix
*-f ailed
#-method

inversion incomlete
to converge in 100 Iterations
diverged

figure 32
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B: Linear Variables, Non-Linear Interaction:

To determine if non-linearity of the interaction would

have any affect as to the number of function evaluations

needed to solve the problems and as to the range of problems

solved by the various procedures, I chose this set of equations:

x = Ax + BX2 + c
12 1' 2

X2= Ax2+ Bx+ a

The solution to this set of equations is x=((-A)t

sqrt(((A-1)2 - 4BC))/2B. I again set A= 0.5 and 0=5.0, and

varied the value of B, the amount ovf interaction. The solution

now becomes: x= (0.5t sqrt(2i25-20M-)/2B, and is not real

for values of BkO.0125. In order to determine where each

procedure ran into problems, I set the ab*olute and relative

errors tolerances to 0.01, and solved the problems using the

various values of B. The initial values of x were: x =0.25,

x2 0.75 (see figure 8).

All of the methods were very efficient right un to the

point where the solution no-longer exists, so I decided to

investigate this area further, and to extend the search into

the negitive region(see fig. 39). Since the Newton-Raphson

and the Multidimensional Wegstein Methods ran into problems

between B=-l.0 and B= -10,000, I also expanded in this range

(see fig. 40). Based upon these "spot" checks, I chose these
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values of B for further analysis: 0.0, 0.01, 0.011, 0.0125,

-0.01, -1.0, -50. The results are plotted on figs. 41- 46,

The Method of Successive Substitution consistently required

more function evaluations than any of the other methods. The

Ranrg of problems that it could solve was also very limited.

It would only solve problems whose values of B ranged between

0.0125 and -0.1, the Newton*Raphson and the Multidimensional

Wegstein methods appear to solve equations for which B can

be up to about -100.

The Bounded Wegstein Method has the same range problem

as the Method of Successive Substitution, though it solves

problems with very little interaction in much fewer function

evaluations than does the Method of Successive Substitution.

The Newton-Raphson and the Multidimensional Wegstein

Methods both solve a wide'range of problems than the other two

methods, and solve the problems in far fewer iterations.

The Newton-Raphson method requires less time per function

evaluation than does the Multidimensional Wegsthin Method,

so that if function evaluations do not require *eV! much time,

then the Newton-Raphsort method would bo preferl'd. If,

hoWever, function evaluations require much more time than the

iteration itself, the Multidimensional We'gstein Method would

be preferred.
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Again, to determine the affect of intra-variable inter-

actions on the rate of convergence for the case of linear

variables with non-linear interaction, I now set B= 0.1, and

C=5.0. rom the equation for the solution to this problem,

one can see that the solution is real for all negative values

of A-.414, and for positive values of A greater than 2.414.

The eigenvalues of the solution are only less than one for a

very narrow interval, -.7175A'.44, and for 2*41416A32.717.

I now did a'speo check of values of A for which the methods

will solve this probleni;(see fig. 47). Based on these tests,

I chose the following values of A for further analysis: A=

-0.5, 5.0, 100(see figs. 48-49).

Even though the eigenvalues were less than one at the

solutions for three of these test runs, the methods of Successive

Substituttln and the Bounded wegstein method failed to obtain

solutions to these test runs. This probably resulted because

the eigenvalues at the test solution were greater than one.

The Newton-Ranhson and the Multidimensional Wegstein

Method again worked very well for small values of A. When the

value of A gets very large, however, the Newton Raphson Method

becomes even better than the Multidimensional Method. The

Multidimensional wegstein Method fails for values of A greater

than 10,000, while the Newton-Raphson Method still works well.
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To investigate the case of non-linear variables, with

linear interaction, I chose this set of equations:

2x I=Axl + Bx 2+ C

x 2=Ax2 + Bx + C

Again, by setting A7 0.5, and C= 5.0, one Can determine the

sensitivity of solution attainment to the amount of interaction,

B. First I did a broad "spot" check by varying the value of

B between 5 and 10 and setting the convergence tolerance to

0.01, see fig. 50.

The Method of Successive substitution and the Bounded

Wegstein Method both fail to obtain proper solutions for any

of the values of B, while the Multidimensional wegstein Method

ran into trouble for values of B between 100 and 1000. I,

therefore, nicked several values gf B betwem-these numbers

and did another "*pot cheek" of this range, see fig. 51.

Based on these "spot cheeks", I chose several values of

of B for further analysis, B= 5, 50, 100, 150, 200. These

runs are plotted on fig. 52.

The solution to this problem is x(1-Bisqrt((1-B)2-4AC))/2A.

for A= 0.5, C= .0, this becomes x= (l-uB-sqrt((l-B)2 -l0). So

the solution is real for B greater than 4.162. The absolute

value of the eigenvalues of these equations at the solution
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are greater than one for all values of B, therefore, the Method

of successive Substitution was unable to solve any of the

problems. The Bounded Wegstein Method also failed consist-

ently. The Multidimensional wegstein and the Newton-Raphson

Methods were able to solve these problems successfully for

values of B up to 200.

Again the Newton-Raphson method was slightly better than

the Multidimensional Wegstein Method. Both-methods get slower

as the lower bound of B is aDnroached (4.162). The Multi-

dimensional Wegstein Method gets much better as it approaches

the solution, and appears to be as good as the Newton-Raphson

method once it gets near the solution. Apparently the first

two sucedssive substitution iterations send the method far

away from the solution, and it takes a long time for the

method to recover. In this case the Multidimensional Wegsteia

Method would be much better if the first N iterations were

made b# perturbing each variable slightly.

In order to test the setisitivity of each convergenee

procedure to the amount of intra-variable interaction, I again

t B= 0.1, and C= 5.0. The solution is now defined for values

of A less than .045. T, therefore, ran a series of tests,

using values of A varying between 0.,0 and 0.045 to see how

well each of the methods performed over this range.

See figs. 53-55.

l&,3 -



The Multidimensional Wegstein Method again performed

better than any of the other methods over this range.

The Newton-Raphson Method performed poorly for A=0.0,

but as the value of A increased, this procedure became much

more competitive with the other procedures.

The Bounded Wegstein Method also worked very well for

all these values of A, and for problems requiring only

moderate evaluations timrs, it would probably have been the

choice.

The Method of Successive Substitution again performed

increasingly poorly as the value of A was increased.
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V. -CONCLUSION

One of the purposes of this paper was to assert the

superiority of the Multidimensional Wegstein mothbd over

other iterative techniques. or the five engineering examples

studied, the Multidimensional wegstein method's overall

performance was muchbetter than that of any of the other

procedures. Similarly, the mathematical examples were all

solved very well by the Multidimensional wegstein method, and

the Newton-Raphson method. The Newton-Raphson method, however,

requires N function evaluations for each iterative step, so

that its performance on relations involving more unknowns wquld

probably be lowered.

Viewing the Mathematical problems overall, we can already

begin to categorize the four iterative procedures as to the

types of problems they are likely to solve well. The Method

of Successive Substitution works best when both the degree

of intra-variable interaction and the *mount of interaction

amongst the variables is very low-- values of A and B small.

When the exponent of these relations was increased(set to 2),

the method became even more sensitive to these values and

would generally solve a smaller range of values. Por exponents

less than one on either x or x2 of the relations tested in

Sbection IV, one would ,therefore expect the Method of successive

would work better. Obviously, for the exponent of x1 and x2



equal to zero, this method would obtain the solution in one

iteration.

The Newton-Raphson method appears to work very well over

all the classes of equations studied. This procedure bases

its new guess upon a linearized Taylor series expansion about

the present guess. Por all these problems, such an approximation

would represent the system well, hence the good performance

of the procedure. The rain drawback of this method, again,

is its method of obtaining the derivative matrix., These test

equations involved only two variables, so three function

evaluations were needed for each iterative step. For systems

0f N variables, N+1 function evaluations are needed for each

new step. T suspect that these extra function ivaluations

would offset the extra speed exhibited by the procedure for

these test problems. The Newton-Raphson method performed

rather poorly for the Ehgineering problems.

The 13ounded Twegstein Method appears to solve almost

exactly the same range of equations as the method of Successive

Substitution. Por the equations it does solve, however, it

works very well. As the degree of interaction increases, it

becomes progressively more erratic, and eventually diverges,

This result seems reasonable; for, the Bounded Wegstein method

was designed to solve equations involving only one variable,

and this situation would be closely approached for small values

of B.



The Multidimensional Wegstein method, on the other hand,

was designed for systems of several variables; it is a multi-

dimensional extension of the reasoning behind Wegstein's method.

This procedure solves a much wider range of problems than

does the method of Successive substitution, and the Bounded

Wegstein methods. Problems involving little interaction were

solved very rapidly, as were problems involving moderately

large degrees of interaction. judging from its performance

on the engineering example problems, I suspect that it becomes

even more effective on problems involving several variables.

Clearly, this iterative method appears quite promising, and

should be investigated further.

The second objective of my work was to investigate the

pedagogical values of the simple sets of equations employed

in Section IVp. Mathematical Examples. The broad classifications

that I just made based on these Mathematical models allows

one to separate particular aspects of equations that affect

the rates of convergence attainment. This sort of comparison

is not as easily obtained by comparing several engineering

problems alone. It is only useful, however, if it can be

simply related to the actual engineering examples.

The equations for the Aluminum Purification problem all

have exponents of one or less and values for A of 0.0. This

problem is solved best by the Multidimensional Wegstein method

The method of successive Substitution works moderately well
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for all values of the pressure. The Bounded Wegstein, however,

only works for pressures greater than one. Increasing the

pressure decreases the degree of interaction. This result

is in line with our expectations, for the Bounded Wegstein

method was very sensitive to the amount of interaction, but

problems that it could solve, it solved very rapidly. The

Newton-Raphson method required about as many iterations as

the Multidimensional Wegstein method; but, because it required

six function evaluations far each iteration, it appears much

slower than the Multidimensional method.

In the equations for the Combustion problem, A would be

zero for all the variables, except whose exponent is -1.

Intra-variable interaction, therefore, would be very small.

The values corresponding to B, however, vaiy from zero to

moderately high -alues. Non-linearities in the variable

interactions are complicated, but all correspond to an order

less than or equal to one.

The Multidimensional Wegstein method was the quickest

method at solving this problem, with the method of Successive

Substitution being the only other method to obtain solutions.

Apparently the degree of interaction is high enough to cause

the Bounded Wegstein method to diverge. The Newton-Raphson

method, on the other hand, failed because of a matrix inversion

failure. This results from a singularity in the derivative

matrix. This singularity may have been prevented if I used



"extra" precision in the calculations. I suspect, however,

that the complete independence of some of the relations

from the rest of the equations in the problem formulation,

might have led to the inversion problems.

The rates of convergence attainment for both the methods

that solved the problem were not affected by the total pressure

of the system. This too is reasonable, for the pressure term

only affects the equation for the fourth unknown. This term

is damped by a very small coefficient, so that its value

never becomes significantly large.

The performance of the methods for this example-seem to

agree with what one would expect, judging from the Mathematical

Mxamples. Admittedly, these two examples weren't ideally

matched to the models., that I have investigated. The Nagiev

example problem, however, resembles very much the linear

equations with linear interaction found in Section IV. The

values of A range between 0.08 and 0.67, with most of them

being around 0.5. The interaction terms, B, are moderately

sized. Five of them are greater than 0.1, with one of these

greater than 1.0. The plots of error versus function evaluations

for this example, Fig, 21, greatly resembles Fig. 29, the

plot of error versus function evaltiations for B=0.4, A=0.,

C=5.0. The Newton-Raphson method again suffered a matrix

inversion failure, though others have reported solutions to

this problem by this method. Use of double precision would

probably eliminate this problem.



Since the correlation between the Mathematical and the

Engineering examples appears so good, the Mathematical equations

appear to allow one to predict how well procedures will perform

on various classes of problems, One possible way to implement

this knowledge, is to test each new iterative procedure on

these ,Ad other Mathematical example priblems and compare their

performance to that of methods already tested, &s. I just did.

One can then choosewhich procedure to use for a particular

problem by matching the problems characteristics to the various

mathematical models, and choosing the iterative procedure from

those methods known to work well for its particular character-

istics.



VI SUGSTTUTS FOR FURTHER STUDY

I believe this procedure merits further investigation

and development. My Mathematical examples tested only two

variable equations. It would be interesting to see what the

affect of extending this analysis to sets containing several

more unknowns would be. (Most engineering problems involve

14-7 variables).

The exponent of the variables and the interaction terms

is the next most interesting area to probe. I've investigated

the case of the exponents equal to 0, 1, and 2. Engineering

problems often involve fractional exponents, so the region

between 0 and 1 is very important.

Another type of interaction often encountered is x1 x2

type interactions. Probably, recognizing this as a second

order interaction would suffice, but this needs to ve verified.

The Dominant Eigen Value method and the Complex method

would be good methods to next compare the Multidimensional

Wegstein method too, for they approach the problems differently

from the other methods I programmed. The application of the

Multidimensional Wegstein method to several large plant designs

would probably be the most convincing evidence of its overall

usefullness, however.



l's
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APPETDTX A

This appendix contains the listings of all the sunnlemental

subprograms used by the various convergence procedures and

a description of their functions.

(1) STBMOTTI1? ER9(X,N,1N2). This subroutine places

zeroes in each element of the V1 by 7N2 array, X.

(2). 3UBROUTINE PRODq (V1,1N2,173, A, B, C). This ubroutint

calculates the product of two vectors C= A.B, where A is an

Wlby N2 vector, and B is an W2 by W3 vector.

(3) SUBROUTNE INVR9(A,AI,NlN2). This subroutine inverts

the W1 by N2 matrix A, by nerforming various manipulations on

the matrix until it obtains the idettity matrix, The same

operations are Derformed on the identity matrix to obtain the

inverse.

(14) SUBROUTIN RITZ9(X,P,N,KOUT). This subroutine

prints the values of x and _R, and the iteration count when

it is called. The various convergence routines call RITZ9

when they are called with the value of Job=3.

(5) SBRJnT1'11'T XOT9(IDOO,RER,ABRER). This routine

initializes the first guesses for the problem, then calls

each of the iterative proceduresin turn to solve the simulatinn,



(1)
If 1OR

SUBROrTTNE ZER9 (X,NI, N2)
C**** THIS STBRUTTTNX ZROrS AN N1xN2 MATRTX

DIMERSIOY X(10910)
DO 100 I=19N1 .
DO 100J= 1,N2
X(IJ)= 0.0

100 CONTTIUP
RETURN
END

Po R
SUBROUTTNE PROD9(N1,N2oW3,A,B,C)

C** THIS qTMROUTINE CALOULATS THE DRODUCT OF TWO MATRICES
C C= A*B '

DIMENSTON A(10;10),B(10,1O),C(10,1O)
CALL ZER9(C;10,10)
DO 1000 I=1,1
DO 1000 J=1, N3
DO 5000 = 1,N2
C(I,J)= C(I,J)+ A(I,K)*B(K,J)

5000 COTTYUPE
1000 CONTTTTE

RETURN
WND

(3)

// FOR
SUBROUTPTE INVR9(A, AT, N1,N2)

C**** TTTTl SUB INVERTS MATRIX' A AYD RETURNS IT IN MATRIX AT
DIMENSION A(-,jnl),B(10,10), C (10,10),AI(10,1O)

C*** ESTALI SH TRrT IDENTITY MATRIX AND SUBPLANT A IN B
CALL ZR9(AI,10,10)

DO 100 I= 1,N1
AT(I,I)= 1.0
DO 100 J1, N2
B( IJ)=A (TJ)

100 CONTINUE
JK= 1
JKP* 2

(continued)



C**** THIS SECTION OBTAINS A NONZERO IN THE DIAGONAL
125 CONTINUE

IF(B(JK,3JK)) 200,150,200
150 CONTINUE

DO 17 qKL=1,N2
XCHG= B(JK,KL)
B(JK,KL)= B(JKP,TL)
B(JKP, Kt)= XCHG
XCHGI= AI(JK,KL)
AI(JKKL)= AI(JKPKL)
AI(TKP,KL)= XCHGI

175 CONTINUE
J1P=$KJ+ 1
IF(JKP-N1) 1v5,125,69 6 9

200 CONTINUE
C***-* OBTAIN A OFE IN THE DIAGONAL

DIV= B(JK,CJK)
DO 250 J= 1,X2
B(K, J)= B(JKJ)/DIV
20 AT(K,J)= AI(JK,3J)/DIV

250 CONTINUE
C**** OBTAIN ZEROES IN REST OF COLMN

DO 300 I= 1,11
DIV= B(I,JK) -
IF(I-JK) 260,300,260

260 069TINUE
DO 300 J 1,N2
B(IJ)= B(JK,J)*DIV-B(IJ)
AI(I,J)= AI(JK,J)*DIV- AI(I,J)

300 CONTINTUE
C**** GO ON TO NEXT ROW

JK=JK+ 1
JKP= JK+ 1
IF(3JKr1) 125,1250330

6969 CONTINUE
WRITE(3, 9000)

9000 FORMAT(' MATRIX INVERSION UWRESOLVED')
CALL EXIT

330 CONTINTTE '
DO 400 JK= 1,2 '
IF(B( JK,JK)) 350,6969,400

350 CONTTNUE -
DO 400 J=1,N2
AI(JK,J)= -AI(JK,J)

400 CONTINUE
RETURN
END



(0)
FOR

SUBROUTINE RITZ9(XP,N,KOUNT)
C** THIS ROUTINE PRINTS VALUES OF ITERATIONS

DIMENSION X(1O),F(1O),ERR(10)
DO 100 T= 1,N
ERR(X)= ABS(F(I)-X(I))
IF(ABS(ERR(l)/X(l))-ERR(l)) 100,100,75

75 ERR(I)= AfS(ERR(I)/X(I))
100 CONTITNUE

WRTTE(3,9400 ) KTTq,(X(V), 1=1,N) '
9400 FORMAT(7,I' ITER=',Ik,' *X=',5(E10.3,5x))

WRITE(3,9500) (ERR(cT),t=1,W)
9500 FORMAT(O ERROR=',7X,5(E1O.3,5X))

RETURN
END

(5)
//FOR

50
C****
C

100

150

200

SUBROUTINE X0T9jID00, RERR, ABER)
DIMENSION X (1 ) ,F(10), RERR(10), ABER(10)
GO TO(r',6OO),ID00
CONTINUE
THIS PROGRAM TESTS THE ITERATIVE PROCEDURES BY
CALLING EACH METHOD IN SUCCESSION
N=2
MAXIT=100
JOBB=3
JOB=O
CONTINUE
CALL VTWV9(XF,JOBB)
METH=1
79BB4
IF( JOBB-10 ) 150,7O0,l5O
CONTITTTE
X(1)= 0.0
X(2)= 0.0
GO TO (200,3OO,4o0,o5o),MET7
CONTINUE
CALL SS9(N,X,P,MAXIT,RERRABERJOB)
CALL FTV9(X,F,5)
GO TO 600

(Continued)



300 CONTITUFr
CALL BWE9(NX,',MAXIT, RRR,ABER,JOB)
CALL FUhv9(X,F,5)
GO TO 600

400 CONTINUE
CALL NEWR9(NX, F NAXIT, RERR,ABER,JOB)
CALL PU7V9(X,,5
GO TO 600

500 CONTTrUP
CALL MVWG9(NX, ',MAXTgRERRABJR,JOB)
CALL 'TUV9(X,F,5)

600 CONTTYMP4
METT= METH+ I
IF(METIF-4) 150,15o-,100

700 CONTINUE
RETURN
END



APPE.DIX B ITERATIVE ROTTINES

(1) SUCCESSIVE SUBSTITUTION

// FOR
SUBROUTINE S39(N,X,F,MAXITRERRABERJOB)

C**** THIS SUB SOLVES, SYSTEmr OF EQTS' BY SU7. SUBST.
DIMEYSION X(10),vF(10),jRPRR (10),ABER (10)
KQUNT= 1

100 COWTTNTE
CALL ?UNV9(X,F,1)

C**** TEST CURRENT SOLUTIONT 1OR CONVG.
DO 150 K=1,N
ERROR= ABS(F(K)-X(K))
IF(ERROR-RERR(K)*Al3(F(K))-ABER(K)) 150,150,200

150 CONTINUE
a**** SUCIES3FUL CONVERGENCE, R1fURN TO CP

JOB= 1
CALL RITZ9(X,F,N,KOUNT)
WRITE(3, 9100) KOUNT

910 FORMAT( t COFVG OBTAINED IN1 , 9T ITEMRS BY THE METHOD
1 OF STTCm SUBST )

RETURN
200 CONTINUE

IF(JOB-3) 240,220,240
220 CONTINUE

CALL RITZ9(X,F,N,KOUNT)
240 CONTINUE
C**** NOT YER CONVG. TEST'FOR-NAX NO OF ITS*

IF(KOTNT-MAXIT) 25O,300,300
250 KOTNT= KOTNT+ 1

DO 275 K=1,1
X(K)= F(K)

275 CONTIFUE
GO TO 100

C**** NSUClEl!FUL CO(VG. RETURN TO CP
300 CONTINUE

CALL RITZ9(XF,N,KMTNT)
WRITE(3,9200)

9200 FORMAT( MAX. ITO OP ITS EXCEEDED, NO f4OrVG. BY SUCC SUB.')
JOB= 2
RETURN
END



(2)

// FOR
SUBROUTE BWFG9 (X,,XF,MAXIT, RERR, AB7R, JOB)

Cr*** TF{IS ROUTINE CALCULATES RECYCLE PROBLEMS UTTSI THE
C BOUTDD WEITSTERTRMETROD ON EACH VARIABLE SEPARATELY

DIMEMSION X(io) ,1(10 ), RERR(10),,ABR(lO ,XOLD (10), FXOLD(10)
JOBB=1
KOUT= 1
QMIN= -20

C0*** FIRST ITERATION BY '31UCC. SU71-T.
CALL FUNV9(XF,JOBB)
DO 100 1=1,N
XOLD(I)= X(i)
FXOLD(I)= F(I)
X(I)= F(I)

100 CONTITUE
i P5 CONTIFUE

CALL FUPV9(X,P, JOBB)
IF(JOB-3) 140,130,140

130 CONTINUE
CALL RTTZ9(XF,N,KOUNT)

140 CONTINUE
IF(KOUNT-MAXTT) 200,200,150

150 CONTIPTU
JOB= 2
CALL RITZ9(X,p,N,KOUNT)
WRTTE(3, 9000)

9000 FORMAT(' MAX KTUMBER OF ITS EXCEEDED, OY CONVGI)
RETURN

200 CONTIUE
C**** INCREMEiNT ITERATTON COUTT

KOUNTT=KOUNT+ 1
C*** TEST WOR CONVERGENCE

DO 300 I1,N
IF(ABS(F(I)-X(I))-RERR(I)*ABS(X(I))-ABER(I)) 300,300,400

300 CONTINUE
C IF DO LOOP COMPLETED, CONVG. COMPLETED

CALL RTTZ9(X,J,N, KOTMT)
WRTTE(3,9100) OUNT

9100 FORMAT(' CONVG. ACITEVED IN TT8,T ITERATIONS?)
3OB=1
RETURN

400 CeNTINUE

(Continued)



C**** CALCULATE CANVG. ACCEL PARAM, THEN X
DO 600 1=1,N
W= (X(I)-XOLD(I))/(F(I)-FXorLD(I))
Q= 1.0/(1,O-W)

C**** LIMIT 9 BETW TOQMIN AND 0.0
IF(-QMN)425,450,450

425 0=OMIN
450 COYTINUE

IF(Q) 550,550,525
525 Qo0.O
550 CONTINUE
C**** PREPARE FOR T-E NEXT ITERATTON

XOLD(T)= X(I)
FXOLD(I)= F(I)
X(T)= Q*XOLD(I)+ ( .O.Q)*FXOLD(j)

600 CONTTvU
GO TO 125
END

(3)
//1FOR

SUBROUTTNTE NFWR9(,X,P,MAXIT,RERRABvR,JOB)
CO***' CONVGS. RECYCLE PROBLEMS USING THE NEWTON-RAPHSO ME'r.
C DERIVS, OBTAINED BY SMALL PEPTURB; AB1UTJT VARS.

DIMENSION X(10 ) F(10),D %(-f iRUR (1f7ASER110)
DIMENSION FPT(1O),XPT(10),DVFXI(101O)
KOUNT= 0

C**** OBTAIN THE CURRENT FTCTTOY VALUES
CALL PUNV9(X,F,2)
IF(JOB-3) 75,'50,75

50 CONTINUE
CALL RITZ9(X,P,N,KOTUNT)

75 CONTITNE
C***** STORE THE POTWt]S IN FPT AND XPT
100 CONTPU'TE

KOTNT=KOTNT+ 1
DO 150 (= 1,
XPT(K)= X(K)
PPT(K)= F(K)

150 CONTIaNE

(Continued)



C** FILL IN TE'DVRIVATTVE MATRIX
DO 300 T= I,N
X(I)= XPT(I)+ .00001*XPT(I)+ .0001
DELX= ,00001*XPT(I)+ v0001
CALL FTV9(X,F,2)
DO 25o J= 1,w
DVPX(JI)= (F(J)-FPT(J))/DELX

250 CONTTUE
X(I)= XPT(T)

300 COWTTTUE
C*** INVERT T'E JACOBIAN MATRIX

CALL INVR9 (DVIX, DVFXIN ,E)
O*** CO-PUTE TE WEW APPROX TO THE SOLUTION

DO 500 1=1,1!
DELX= 0.0
DO400 J ,W

400 DELX=DV'XT (IOJ)*FPT(J)+ DVELX
500 X(I)= X(I)*DtLX

CALL FT-V9(X,D,2)'
IF(JOB-3) 550,525,55o

525 CONTPNUE
CALL RTTZ9(X,F,vKOTNT)

550 CONTIVUS
C***** TEST (TTRET SOL'N T''OR CONVG

DO 6oo K1,W
IF(ABS(F(K))-RERR(K)*ABS(X(K))-ABER(K)) 600,600,800

600 CONTIPTTUE
C*** RETUR TO CALLING PROGRAM, SUCCEISFUL CONYVG.

JOB= 1
CALL RITZ9(X,F,N,KYOTT)
WRITE(3,9100) KOUNT

9100 FORMAT(O SOLN Iv',14,1 TTERS BY NEWR METHOD')
RETURN

C*V*-* BEGIN NEW ITERATION'
800 IF(KOTNT-MAXIT) 100,900,900
900 CONTINUE

CALL RITZ9(XF,N,KOUNT)
WRITE(3, 9000)
JOB =2

9000 FORMAT(t CONVG TERMIYATED, MAX ITEPR CNT EXCEEDED' )
RETURN
END



(11 )

// FOR
SUBROUTINE MVWG9(N,X,F,MAXIT, RERRABERJOB)

C*** TRI ROU7TTNE SOLV7.9 RECYCL2 PROBS USING THE MULTI-
C DIMENSIONAL WEGSTETN METHOD

DIMENSION X(10);F(10),RERR(10);ABER(10);XT(l,10 ),
DIMENSION FT(10;l0);DXT(10,10),A (10,10),DX (1,1)
DIMENSION DF(1O,10),XXEW.(1O), XNEW2(10)
JOBB= 1
KotmT=- 0

C**-* FIRST OBTAIN N SOLTTPIONS BY SU(IESSIVE SUBST.
C NEWEST DURTTEREST TO THE RIGHT

CALL TTNV9(X, P, J0lB)
DO 200 K1,N
DO 100 I= 1,N
XT(I,K)= X(I)
PT(IK)= F(I)
X(I)= P(I)

100 CONTINUE
CALL FTPV9(XF,JOBB)
KOITTTKOUNT+ 1
IF( JOB.-3)2OO,15O,200

150 CONTINUE
CALL RITZ9(X,F,N,KOUNT)

200 CONTINUE
0**** TEST FOR CONVG BET NEWEST XF,PAIR
250 COWTI TUE

DO 300 K'IN
IF(ABS(F(K)-X(K) )-RERR(K)*ABS(X(K) )-ABER(K)) 300,300,325

300 0ONTINUE
C**** RETTTRN TO ALLT PG., SCOESS CONVG.

JOB =1
CALL RITZ9(X,?,N,KOUMT)
WRITE(3,9100) KOTT

9100 FORMAT(' CONVG IN ',14,' ITS BY THE MULTT WEG METHOD')
RETURN

C*** BEGIN MEW ITERATION
325 CONTINUE -

IF(KOMNT-MAXIT) 400,350,350

(Continued)



350 CONTINITE
CALL RIT%9(X,',N,KnUNT)
WRITE(3,9000)

9000 PORMAT(' fONVG. TERMINATED, MAX ITS EXCEEDED')
JoB=2
RETURN

14.00 CO\TTTNUE
C**** CALCULATE DF AND DX

DO 5O0 J=1;N
Do 600 1=1,N
DX(IJ)= XT(I,J)-X(X)
DF(I, J)= FT(IJ)-F(I)

600 CONTINTE
500 COYTITUE
C*** COMPUTE A MATRIX

CALL INVR9(DX,DXI,N,N)
CALL PROD9(N,N,N,DF,DXTA)

C**** COMPUTE Q,
DO 650=1,N
Do 62 J=1,N
DX(IJ) = A(I,J)

625 CONTTPME
DX(I,I)=DX(I,I)-1.0

650 CONTINUE
C* * * * * DX NOW COVTATIN A-I

CALL INVR9(DX,DF,,N)
CALL PROD9(N,N,N,DF,A,DXI)

C* * * * * DXI OW CONTATNS Q
C*** CALCULATE 1IRST PART OP X**N+1

DO 670 I= 1,N
XNEW(I)=0,0
Do 6TO K=1,W
XWEN(T)= KffEW(I)+ X(K)*DXI(I9,K)

670 60NTINTTE
C**** CALCTTLATE (I-Q)

DO 800 I= 1,ST
DO 775 J=l,N
DX(IJ)= -1.0*DXI(I,J)

775 CONTINUE
DX(I,I)=DX(I,I)+ 1.0

800 M0fTIUE

(Continued)



O*%*+ CALCULATE SECOND PART OF X**rN+1
DO 825 I1,N
XN1-W2(I)= 0.0
DO 825 K=1,N
XYW2(T)= XRW2(T)+ F(K)*DX(I,K)

825 COTTTIl7U7
C** MOVE ALL PTS OVER TO PREPARE POR r7XT ITT RATION

DO 880 J= 1,w
K= J+l 1'
DO 850 11,n
XT(I,J)= XT(I,K)
PT (T,J)= FT(T,K)

850 CONTTNPTE
880 COYTIUE '

DO 750 I= 1,
XT(I,7N)= X(T)
PT(IoW)= F(T)

750 CONTINUE
C**** SUM THE PARTS

DO 900 J= 1, N
X(J)= X1"T.w(J)+ Xx2(J)

900 CONTITtUE
C**** TlCREMET ITER COTT

KOUNT= KOUWT+1
CALL IFUV9 (XyF, JOR)
TF(.T0A-'l) 25o,950,250

950 CONTI"NU
CALL RTTZ9(X,P,N,KOUNT)
GO TO 250
PND




