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Autonomous Excavation of Rocks Using a Gaussian Process Model
and Unscented Kalman Filter

Filippos E. Sotiropoulos and H. Harry Asada, Member, IEEE

Abstract—In large-scale open-pit mining and construction
works, excavators must deal with large rocks mixed with gravel
and granular soil. Capturing and moving large rocks with
the bucket of an excavator requires a high level of skill that
only experienced human operators possess. In an attempt to
develop autonomous rock excavators, this paper presents a
control method that predicts the rock movement in response to
bucket operation and computes an optimal bucket movement
to capture the rock. The process is highly nonlinear and
stochastic. A Gaussian process model, which is nonlinear, non-
parametric and stochastic, is used for describing rock behaviors
interacting with the bucket and surrounding soil. Experimental
data is used directly for identifying the model. An Unscented
Kalman Filter (UKF) is then integrated with the Gaussian
process model for predicting the rock movements and estimating
properties of the rock. A feedback controller that optimizes a
cost function is designed based on the rock motion prediction
and implemented on a robotic excavator prototype. Experiments
demonstrate encouraging results towards autonomous mining
and rock excavation.

Index Terms—Robot manipulation, mining robotics, robotics
in construction, model learning for control, field robots, Gaus-
sian process, UKF

I. INTRODUCTION

UTONOMOUS excavation promises to aid in meeting

the ever-growing demand of mining and infrastructure
industries. Excavators are among the most versatile machines
in mining and construction environments [1], being used for
a variety of earthmoving tasks. In particular, for large-scale
open-pit mining and other construction works where a large
ledge is blasted, excavators have to deal with large monolithic
rocks [2] mixed with gravel and finer soil. Collecting these
large rocks and transferring them to dump trucks and other
locations requires a high level of skill; only experienced
human operators can perform those challenging tasks.

In the literature of autonomous excavation a number of
methods have been reported for improving productivity and
energy efficiency as well as for controlling excavators under
diverse soil conditions [2]-[10]. The primary challenge arises
from the complexity of soil-bucket interactions which are
difficult to model. Initial efforts used simple soil models [4],
[5] to select digging trajectories. These methods rely on the
Fundamental Equation of Earthmoving [11] and other simple
models, which are limited in validity. Various feedback con-
trol methods have been developed to deal with uncertain soil-
bucket interactions. Bernold [3] utilized impedance control
to excavate fine soil and more recently Dobson et al. [2]
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proposed admittance control to deal with interaction forces
while loading fragmented rock with a load hauler.

Collecting large monolithic rocks with an excavator is
a new research challenge. Behaviors of large rocks are
significantly different from those of homogeneous soil and
gravel. The control objective, too, differs significantly. A
discrete rock must be captured with a bucket, unlike the
scooping of homogeneous soil, which is distributed and
continuous. It should be noted that capturing a large rock
resembles robotic manipulation where discrete rigid bodies
are grasped and transferred. Inspired by the analogy between
robot manipulation and rock excavation, we can gain insights
into the handling of rocks. This opens up the possibility of
applying the technologies developed for robotic manipulation
to excavation.

Capturing a rock with a bucket can be classified as a non-
prehensile manipulation task in the robotics literature [12].
Essentially, a bucket or a non-prehensile end-effector must
make the rock move in a desired direction through interac-
tions with the environment. This area of robotics research has
seen significant progress in recent years. Improved physical
models, which often harness data-driven methods make it
possible to handle complex dynamics arising from friction
[13]-[15]. Furthermore, other work has addressed dealing
with environments with less structure due to cluttering [16],
manipulating multiple rigid bodies interacting with each-
other through modeling their interaction [17] and learning the
control policy directly from video sensory data [18]. These
methods, though, have in common that the manipulation in-
volves direct contact of the end-effector with the manipulated
objects and often leverages planar sliding to constrain the
task. These assumptions do not apply to the current work
where instead interaction between the bucket and rock can be
transmitted through the surrounding soil. The behavior of soil
is significantly complex and difficult to model. Furthermore,
the motion of the rock will not be along a ground plane due
to the uneven and changing nature of the soil supporting it.

II. ROCK EXCAVATION PROBLEM

In this section the framework proposed to tackle the rock
collection problem is outlined. Figure 1 shows a preliminary
experiment of rock excavation. Case A is a successful trial
where the rock was captured by the bucket as it moved
forward. Case B, on the other hand, is an unsuccessful case.
As the bucket moved forward in the same way as Case A,
only soil was taken into the bucket, and the rock was pushed
away. The rock behaviors are complex and confounding.



Case B

Case A

Fig. 1. Initial experiments in excavation using heuristically generated
trajectories. It was observed that generally similar conditions resulted in
both success and failure for identical trajectories.

The following observations were made from our preliminary
experiments:

o It is difficult to predict the rock movement relative to
the bucket from a snap-shot image and data. The rock
motion must be tracked.

o Physical models, such as terramechanics models, are
difficult to use for rock movement prediction due to
many unknown parameters and factors.

o The process is stochastic. Under the same conditions
in a well-structured environment, the resultant rock
motion may often differ, leading to success or failure
in capturing a rock.

In an attempt to autonomously excavate rocks despite these

challenges, here we present:

« A recursive filter that predicts the rock movement recur-
sively from real-time measurement;

e A data-driven probabilistic model for designing the
predictor; and

e A recursive optimal control law for controlling the
bucket based on the prediction of the rock movement.

Figure 2 shows a schematic of the rock-bucket system
considered in this paper. For simplicity, we consider a single,
isolated rock, the size of which is approximately 30-80 % of
the bucket size. It is smaller than a bucket, but is significantly
larger than the grain of the surrounding soil. Furthermore, we
consider the motion in only the x-z plane. This is consistent
with the motion of the excavation machinery where the
bucket moves along the direction perpendicular to the front
edge except for a few special cases.

The task of collecting a large rock in the bucket must be
defined in terms of quantifiable variables. For a rock to be
successfully collected it must be brought to a position relative
to the bucket where it is mostly encompassed by the bucket.
This then allows a simple scooping motion to capture the
rock so that it can be transported to another location to be
dumped. Thus, the essence of the problem comes down to
controlling the relative position between the bucket and rock.
Given the restriction to the x-z plane the configuration of the

rock relative to the bucket can be described by:
Xy = [xrb Zrb er]T (1)

where the subscript rb indicates the relative position of rock
and bucket in the world frame and 6, is the orientation of

the rock in the world frame. The rock orientation, 6,, is also
included since, although it is not explicitly controlled for, its
evolution through time may help in performing the overall
task by informing the rock property estimation as will be
discussed in Section IIl. The system is controlled with the
machine inputs:

u, =[Ax, Az, AB,]" 2)

which describe incremental movements of the bucket in the
world coordinate frame. Thus, the discrete state-transition
equation is:

Xrk = f(Xpk—1,Wp k1) + &1 3)

which describes the transition between consecutive times
which are At apart. &_ is additive Gaussian noise. This is
important since the task at hand is influenced by phenomena
dominated by grain-to-grain mechanics as well as friction
which on a macroscopic scale make the process inherently
noisy. An analytic expression for the transition function f is
difficult to determine given the complexity of the dynamics
and thus a data-driven approach is taken as will be described
in Section III.

Fig. 2. The input (a) and output (b) space of the data driven model.

III. ROCK MOTION PREDICTION MODEL

The discrete transition in (3) can also be described in terms
of the change in the state variables:
Axrb,kfl
Xk = Xrk—1 + AZrb,kfl
Aer,kfl
The changes to the rock position and orientation are the
random variables to be predicted:

Y= [Axrb

+ & “

AZrb Aer]T (5)



In the subsequent section we will obtain the probabilistic
model for predicting the output y.

A. Data-Driven Rock Motion Model

Gaussian Process (GP) regression [19] is used to generate
the predictive model for the three outputs. The three outputs
are treated independently so that a separate GP is used to
model each output y;.

The inputs to the GP model must inform how the output
y; is created. The current state of the rock-bucket system as
well as the motion of the bucket will result in variation in the
outputs. Therefore, we consider the following input variables,
collectively denoted as vector &:

E=[xp z» 6 6, A ¢ AL, AB,]"  (6)

which is composed of x, describing the configuration of the
rock, u=1[¢p AL, A6,]|" which is a reformulated robot
action where:

A
o= arctan(AxiZ) and AL, = \/Ax] + Az} (7N

are the bucket movement direction (¢) and absolute change
in bucket position (ALp), respectively. The properties of the
rock are approximated here simply by a characteristic length
scale A, describing the longest dimension of the rock. Finally,
0, is the bucket angle, which can have a significant effect on
how the tool interacts with the rock and soil.

The training data-set for each output is composed of Np
instances of & and y;: D; = (E,y;) where & = [§;,6,,...,En,)]
and y; = [yi1,)i2,---,Yinp)- Then for a new input &, the GP
defines a Gaussian distribution over the predicted output y;,
[19]:

Elyi] =k [Ki+op0] "y, @®)

n,t

Var[yi] = kiex — ki, [Ki+ 0, 1] ki )

where k; represents the kernel function used for the GP for
predicting output y;. Subsequently, K;, is the vector evaluating
the kernel between the test input and the training inputs:
Ki[j] = k(€. E[)j]), K; is a square matrix evaluating the
kernel between all training inputs: K;[j,{] = k;(E[j], E[l]) and
finally kj.. is the kernel evaluated between the test input
and itself: ki = k(&x,&). The kernel embodies the level
of similarity between different inputs. o2, represents the
variance of the process noise. A commonly used kernel is
the squared exponential kernel and in this work we use
the Automatic Relevance Determination (ARD) [19] variant
which allows for similarity along each input dimension to
have its own characteristic length scale. The kernel for each
of the three independent models is:

1 _
6(EE) = ew (-5 E-EIWE-E)) (O
where G%i is the output variance and W;, which is a diagonal

matrix, defines the length scales along the input dimen-
sions. The set of hyperparameters describing each model:

Y, = [Gr%,i GJ%J W;] are then optimized by minimizing the

negative log likelihood for the training data:

¥; = argmin~log(p(yi[Z. )] an

Yi
Conjugate gradient descent is used to perform the opti-
mization. For the purpose of brevity the independent models
for each output will be combined such that the predicted
output mean and covariance are:

E[Axrh*}

Ely.] = | E[Az.]
E[AG, 12

=GP, (&[D)
Var[Ax,p.] 0 0
CoVarly,] = 0 Var[Az,p] 13
0 0 Var[AG,.] (13)
= GPZ(&* |D)

Given the uncorrelated output assumption, GPx(&|D) is
diagonal.

B. Rock Length Estimation

Rocks are partially buried in soil and may be partially
occluded. During a rock excavation operation the character-
istic rock length cannot be measured directly. It is there-
fore estimated online recursively using a Bayesian filtering
approach. More specifically, a Gaussian Process Unscented
Kalman Filter (GP-UKF) [20] is applied. The use of an UKF
is motivated by the nonlinear nature of the transition model.
The estimation is enabled by augmenting the state space X,
to include the rock length:

x=[xp» z5 6 O A" (14)

The UKF yields an estimate of the states (X;) and co-
variance (Xj;) of that estimate at each time step, k, based
on previous estimates (Xz_j, X;_;) given models for the
transition (X = f(Xx—1,uUx—1) + wy) and observation (z; =
h(x) 4+ vy), as well as matrices describing the process (Qy)
and measurement (R;) noise covariance.

ﬁka Zk%UKF(ﬁk,“Zk,] |f) ha QkaRk) (]5)

The mean (noiseless) state propagation is determined from
the output mean of the GPs for the states associated with the
rock configuration, an integration of the input A8y, and no
change to the rock length:

Xp = f(Xk—1,W—1)
GPy(&-1/D)
A6,

0

16
I (16)

As described in [20] the output covariance estimate pro-
vided by GPs is used as the process noise for the UKF:

GPg(&—1/D) 0 0
Ok = 0 o; 0
0" 0 o;

A7)



where 63 is the process noise associated with the control of
the bucket angle, G;ZL is the process noise for the transition
of the rock length estimate (which is set to zero). All other
terms in the square Q; matrix are zero. Most generally the
observation model can also be nonlinear, and modelled as
a GP, but presently given the experimental implementation
(further described in Section V) a linear measurement model
is used:

7 = h(Xp) = Xk (18)

The measurement noise Ry, is determined from the sensor
specification. Now the estimate of the rock state (including
the estimated characteristic length) can be used as input to
the prediction model:

A

E=[%&s 20 6. 6, A ¢ AL, AG]" (19

which can be used for predicting future motion based on the
trained model and current observations.

IV. RocK COLLECTION CONTROL

As alluded to previously in Section I, a strategy for
successfully collecting a rock in the bucket is to have the
bucket and rock move so that their relative distance may get
smaller, resulting in the bucket to surround the rock. The
rock motion model is used to achieve this active control,
while the initial positioning and final scooping actions are
performed with given reference trajectories. As can be seen in
Fig. 3, firstly the bucket is moved to a location just behind the
rock. From there the bucket is controlled, using the predictive
model, to minimize the relative distance between the rock
and bucket. Finally, when the rock is considered “in” the
bucket (as judged by a threshold distance, rs < rg in Fig. 3c)
a scripted scooping action is taken.

During the middle stage the control is based on selecting
the control input at each time step such that the predicted
relative distance between rock and bucket reference points is
minimized at the next time step. In other words the inputs
are chosen such that:

w; = argmin J(ug|x;) (20)
uy
where the cost J is defined as:
J = E[(xpp 4+ Ax,p)% + (20 + Azrp)?] @1)
= Var[Ax,;| + Var[Az,;] (22)

+ (xrb + E[Axrb])z + (Zrb + E[Azrb])z

This optimization is performed at each time-step.

V. EXPERIMENT

In this section the procedure for implementing and testing
the methods described in previous sections is presented. The
experimental implementation has two key aspects. The first
is the procedure for generating the training data with which
to train the GP. Then, using the simple controller specified
in Section IV the feasibility for use in rock excavation tasks
is evaluated.

(@

(b)

(©

Fig. 3. The complete rock collection is performed in 3 stages. Firstly (a) the
bucket is moved to a reasonable position behind the rock. Then the bucket
motion is controlled using the data-driven model (b) so as to minimize the
distance rg between rock and bucket. Finally (c) when rg falls below a
threshold rg a scooping action is performed.

A. Experimental Setup

The experimental setup shown in Fig. 4 was developed to
test the proposed methods. The robot used is a Universal
Robots UR10e, which has been fitted with a 3D printed
bucket end-effector. The rock motion is measured with an
OptiTrack Flex3 motion capture system which has been
calibrated with respect to the robot. Furthermore, the gran-
ular “soil” material surrounding the rock is EPDM rubber
granules approximately 3mm in size.

UR10e
robotic arm

Granular medium

Rock with
tracking markers

OptiTrack motion
capture system

Fig. 4. Experimental setup used for data acquisition and experimentation. A
digging pit environment is created where a robotic arm fitted with a bucket
can excavate rocks surrounded by granular material. An OptiTrack motion
capture system tracks the motion of the rock.



B. Training Data

Training data is collected by performing sequences of in-
cremental random bucket movements that cause interactions
with a rock and the surrounding soil, and measuring the
resultant rock displacements. Firstly, the bucket is moved so
that the bucket center is aligned with the center of the rock in
the y-direction and offset by a small random amount in the x-
direction (as in Fig. 3a). The bucket is then moved repeatedly
where each component of u, is selected randomly from
a uniform distribution with reasonable limits. The bucket
motions, uy, are executed at a piece-wise constant velocity
over the time-step Ar = Isec. 20 consecutive increments are
performed before the rock and bucket are reset'. Two rocks
of different sizes were used in training.

C. Robot Control

The control algorithm is run at the same frequency as
the training data increments: 1Hz. The new commands are
calculated as well as rock size estimation is performed at this
frequency. The low level position tracking controller for the
robot arm uses a high stiffness impedance controller to deal
with soil-bucket interactions.

VI. RESULTS AND DISCUSSION

In this section we evaluate the model and its effectiveness
for moving the rock into the bucket so that it can be collected
successfully.

A. Model Evaluation

We evaluate the performance of the models in terms of
two metrics commonly used to evaluate probabilistic models.
These are the normalized means squared error (NMSE) and
the normalized log probability density (NLPD) [13], [21]:

Z’;;()’*j *}A’*j)z
Z?*:l()’*j *)7)2
1 &
NLPD =~ 3 1oz p(y-|P)
* =

NMSE = (23)

(24)

Here y.; is the j-th sample in a testing data-set, J.; is the
corresponding mean prediction from the model, n, are the
number of test samples and  is the mean training observation
used to normalize the NMSE. The NMSE evaluates the
accuracy of the mean prediction and is often useful in
evaluating the utility of the model where the prediction
is directly used for control. In contrast, NLPD evaluates
the probability that the test observations are to come from
the model output distribution. In other words it penalizes
predictions with variance that is too high or low. This is
important in the estimation framework where the prediction
variance is used in the UKF update.

Fig. 5 shows how the NLPD and NMSE vary as a function
of training data-set size. As is to be expected both metrics
decrease with increasing training data-set size, however the

'A video file includes example of training data cycle and other experi-
mental results.

performance appears to approach saturation as one goes
above 500 training points. This is equivalent to only 25 test
SCoops.

It is also worth noting the considerably worse performance
for the prediction of the change in rock orientation (A6,)
compared to the two translation predictions. This could be
due to the fact that current inputs (£), do not inform the
rotational dynamics adequately. For example, the distribution
of soil providing support in front and behind the rock may
heavily influence the direction and extent in which it tips, as
might the location of its center of mass.

[SIE
& (a)
Z

—54 \‘—\\‘—o—._._._._._,_.

10' 107 10’
Training Set Size

1.5
@ 1.0 b
2 (b)

0.5

0.0

10 10 10
Training Set Size

Fig. 5. NLPD (a) and NMSE (b) with varying training set size. Each point
on the graphs represents the mean of 25 evaluations of the metric with
random test sets of 150 samples and a randomly chosen training set of the
remaining available data points.

An implicit assumption made in including the rock length
in the prediction model is that the rock size has a measurable
effect on the motion. This hypothesis is tested by evaluating
the NLPD and NMSE while setting the rock length to the
ground truth value vs. then using the mean rock length of all
the training data. As can be seen in Table I the NLPD and
NMSE is lower for all outputs when the true rock length is
included.

TABLE 1
EFFECT OF ROCK LENGTH ACCURACY ON MODEL PREDICTION
NLPD NMSE
Axrb Azrh Aer Axrb Azrh Aer
True Rock Length -50 | 56 | -23 | 0.12 | 0.06 | 0.37
Mean Rock Length | 4.7 | -48 | -22 | 0.19 | 0.16 | 0.40

B. Rock Length Estimation

The estimation is tested on the rocks used for training.
Each trial run consists of moving forward with random
trajectories similarly to the data collection procedure. The
mean and standard deviation for 30 tests on each rock are
shown in Fig. 6. The dashed lines indicate ground truth
lengths. As can be seen in Fig. 6 the mean rock estimate
converges to a value in the neighborhood of the ground truth
value.
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Fig. 6. Mean and standard deviation of the characteristic rock length
estimate determined online. 30 trials for two different rocks are tested. The
dashed line indicates the ground truth rock length.

C. Rock Collection Control

Here results as they pertain to evaluating the model for
moving the rock into the bucket are presented. Firstly, in Fig.
7 the optimal bucket direction and magnitude of translation
(in terms of the optimization in Section IV) are shown for
combinations of x,;, and z,5,. The other variables in £ are fixed
at their respective mean values for the training data. It can
be seen that for the majority of the space the optimum AL,
is in fact the maximum value of 0.02m. This makes sense
since as long as there is an available direction of movement
which is not increasing the overall distance between bucket
and rock, then maximizing the bucket motion would likely
result in the greatest decrease in relative distance.

— :AL,=0.02m, ¢ =0rad

0.10

Ve

0.08 1

Zrb (m)

0.04 1

0.02 1

LA A AL

Y/ S

(=1

Fig. 7. The optimal ¢ and AL, for varying relative rock-bucket position.

The effectiveness of the proposed method is tested by re-
peatedly attempting to excavate several rocks. The collection
success rate for various conditions is shown in Table II.

TABLE II
SUCCESS RATE OF ROCK CAPTURE (N=20).

Success Rate
Training rocks and flat soil 1.00
Other rocks and flat soil 0.90
Training rocks and disturbed soil 0.85

For the conditions which were used to train the model
the controller achieves a perfect success rate for the test
performed. It is when either the rock types or the surround-
ing soil are varied to situations not seen in training that
performance deteriorates. When the distribution of soil is
varied the controller still achieves positive results in the large
majority of cases. The controller was able to compensate
for the rock motion by choosing new optimal directions to
move in at every time step. In some extreme instances, for
example where there was a large void right behind the rock
or the material distribution results in large lateral motion, the
algorithm does not react sufficiently and the rock falls out of
the bucket.

—— Bucket

_ =0.10 Rock
g (a)
N —0.151 /\\/

-0.20 i . . .

-0.104 — Bucket
L Rock
E 0151 b
) | \/_\/ ( )

—-0.20

-0.8 -0.7 -0.6 -0.5
X (m)

Fig. 8. Sample successful bucket and rock trajectory for both a large, 22cm
(a) and small, 5cm (b) rock.

Fig. 8 shows two samples of successful rock collection
trajectories. As can be seen, the directions the bucket and
rock move for two rocks of different sizes differ substantially.
Nonetheless, the rocks are gathered successfully in both cases
due to the adaptation of the controller.

VII. CONCLUSION AND FURTHER WORK

This paper presents the integration of a GP model with a
UKF for the automated excavation of rocks. The GP model
captures nonlinear and stochastic properties of the interaction
between bucket, rock and soil, and allows an optimal control
law to then guide the rock towards the inside of the bucket.
We show that properties of the manipulated rock can be
estimated online, by observing its displacement in response
to the motion of the bucket.

In the authors’ opinion this work opens multiple avenues
for further development. One major aspect that was neglected
is the effect of soil distribution when making predictions
of the rock movement. For example, an angled soil surface
can provide additional resistance which can push the rock
into the bucket. The method presented in this paper could
be expanded to consider a description of the distribution of
surrounding soil and how this varies and can be leveraged
for the task at hand.

In this work we targeted the identification of one property
of the rock, namely its length, however an exploration into



what are the most informative parameters to identify for
the purpose of improving collection performance, could be
fruitful. For example, as opposed to simply identifying the
rock length an estimate of the location of the center of mass
of the rock may reveal more about its motion.
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