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Abstract 

Metasurfaces have become a promising means for manipulating optical wavefronts in flat and 

high-performance optical devices. Conventionally metasurface device design relies on trial-and-

error methods to obtain target electromagnetic (EM) responses, which demands significant efforts 

to investigate the enormous number of possible meta-atom structures. In this paper, a deep neural 

network approach is introduced that significantly improves on both speed and accuracy compared 

to techniques currently used to assemble metasurface-based devices. Our neural network approach 

overcomes three key challenges that have limited previous neural-network-based design schemes: 

input/output vector dimensional mismatch, accurate EM-wave phase prediction, as well as 

adaptation to 3-D dielectric structures, and can be generically applied to a wide variety of 

metasurface device designs across the entire electromagnetic spectrum. Using this new 

methodology, examples of neural networks capable of producing on-demand designs for meta-

atoms, metasurface filters, and phase-change reconfigurable metasurfaces are demonstrated. 
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I. Introduction 

Metasurface devices or meta-devices, enabled by arrays of meta-atoms, provide a novel platform 

for realizing ultrathin and planar/conformal electromagnetic (EM) components and systems (e.g. 

meta-optics). By harnessing the electromagnetic multipoles excited within subwavelength meta-

atoms (1, 2) that act as scattering particles, independent phase (and amplitude) control can be 

achieved at the element level by manipulating the geometry of the individual meta-atoms, allowing 

EM wavefronts to be tailored with high precision (3-6) for use in optical meta-devices. Recently, 

metasurfaces consisting of all-dielectric meta-atoms have drawn enormous attention, since they 

readily support magnetic multipole resonances and are less lossy at optical and infrared 

wavelengths compared to their metallic counterparts (4, 7-11). The multipole responses in a given 

meta-atom can be highly complicated even for simple shapes, and thus a meta-atom’s impact on 

the phase and amplitude of an EM wave is difficult to predict. This problem is further complicated 

by the fact that meta-atoms are generally utilized in arrays and so accurate predictions must also 

account for the collective response of the array. As such, it can be time-consuming and laborious 

to find an appropriate set of meta-atoms for a particular design, and so reliable and efficient 

modeling tools are being heavily investigated. One approach is to develop analytical effective 

medium models, such as the Lewin model (12) and GEM model (13). However, these models 

assume the long-wavelength approximation and become inaccurate when the wavelength is 

comparable to the meta-atom size. Another approach, which relies on iterative numerical full-wave 

simulations (e.g. finite-element method (FEM), finite-difference time-domain (FDTD) method and 

finite integration technique (FIT)), is widely adopted today. This approach provides accurate 

device response predictions but is severely time consuming. Moreover, the design process largely 

relies on empirical reasoning or trial-and-error (8, 9), which is inefficient and often ineffective, 

especially when the problem is highly nonlinear. 

To overcome these obstacles, we consider a machine-learning-based design approach. Recently, 

machine learning (ML) has emerged as a powerful computational tool that has been broadly 

applied to many areas of science and engineering. It provides a promising solution to reducing 

time-consuming calculations and producing results with limited computational resources (14-17). 

Among the different machine learning techniques, deep neural networks (DNNs) based approaches 

have shown great promise for solving non-intuitive problems. DNNs usually contain multiple 

hidden-layers that provide sufficient hidden units, which can be used to represent complicated 

functions according to the universal approximation theorem (18-20). Therefore, it is possible to 

uncover hidden relations between variables, such as between nanophotonic structure geometries 

and their electromagnetic (EM) responses. Inspired by this idea, a data-driven method targeting 

rapid design by prediction of the EM responses of sub-wavelength structures has recently surfaced. 

Specifically, several DNNs that connect nanophotonic structures to their EM responses are 

constructed and then trained with a massive amount of pre-simulated data calculated by full-wave 

simulations based on FEM, FDTD or FIT. Recent progress shows that fully trained DNNs and 

inverse DNNs are able to predict the EM responses of select nanophotonic or metasurface devices 

on the scale of milliseconds (21-23). There are, however, three key standing challenges facing 

current DNN implementations: (1) dimensional mismatch between input and output data (22); (2) 

poor phase prediction accuracy; and (3) adapting DNN-based approaches from 1-D and 2-D 

structures to 3-D dielectric metasurfaces. 

The first challenge arises because typical meta-atoms can be characterized using a limited number 

of variables (the inputs), but the output describing the response over a bandwidth of frequencies 

must be sampled at a sufficiently high rate to account for narrowband resonance features. Hence, 



a refined large-size tensor is mandated to accurately represent the transmission spectra, leading to 

a much higher number of outputs than inputs. To tackle this problem, one common approach is to 

shrink the size of the output tensor by sampling and interpolating (21, 24). However, this approach 

fails to provide accurate predictions of transmission spectra involving optical resonances, since the 

typical mean square error (MSE) loss function used in the regression task averages the error over 

the entire target frequency band and error contributions by resonance features are diluted and 

ignored. In another approach adopted in (22), an auxiliary network was created to predict the 

spectra around resonances at the expense of significant extra neural network construction and 

training efforts. 

Although previous DNN-based approaches have yielded promising results in predicting amplitude 

responses of certain metasurface or nanophotonic devices (17, 21-24), accurate phase prediction 

has yet to be demonstrated. This difficulty is mainly caused by the 180° phase discontinuities that 

are introduced by the electromagnetic dipoles and/or quadrupoles (and possibly even higher order 

poles) inside the meta-structures (25). The only phase predicting DNNs presented in previous work 

(21) are limited by a relatively large average prediction error of 16°. Phase prediction failures 

severely restrict the accuracy of designing phase-based meta-devices such as meta-lenses or 

deflectors using DNNs or related approaches. Moreover, EM responses of all-dielectric 3-D 

metasurfaces/meta-atoms (which can support both magnetic and electric dipole resonances to 

obtain highly transmissive, full 2π phase coverage (25)) are difficult to predict, because the 

resonances excited within the 3-D structures all contribute to the scattering field with varying 

strengths (10, 26). As such, previous DNN implementations have been limited to either 2-D 

metallic metamaterials/metasurfaces or one-dimensional 1-D dielectric nanophotonic structures 

(21-24). 3-D dielectric meta-device design based on DNNs has been an open question. 

In this work, a new approach to designing all-dielectric meta-devices employing DNNs is 

presented, which addresses all three key challenges discussed above. For the first time, predicting 

neural networks capable of simultaneously and accurately modeling amplitude and phase 

responses of all-dielectric meta-atoms over a wide spectrum have been demonstrated. Based on 

this highly accurate forward predicting neural network, several inverse design networks 

corresponding to different design objectives were constructed to illustrate the versatility of the 

method. These included a meta-filter design network, a meta-atom design network, and an index-

reconfigurable meta-atom design network incorporating phase change materials. The design 

examples employing these networks substantiate that the proposed approach accomplished two 

important goals in the field of all-dielectric meta-device design: (1) reduction of time-consuming 

EM simulations for validating the performance of meta-device designs; and (2) finding non-

intuitive device designs based on pre-determined EM response requirements, especially for multi-

functional device designs. Importantly, the proposed approach also validates the feasibility of 

objective-driven 3-D optical device design, which can be easily generalized to many other 

electromagnetic problems, such as all-dielectric antenna and photonic integrated circuit designs. 

 

II. Results 

“Forward” predicting neural network. To realize the DNN-based optical design functions and 

address the two goals described above, a unique deep network called the predicting neural network 

(PNN) is constructed. The PNN is a fast data-driven DNN-based tool that is able to predict the 

complete EM response (both phase and amplitude) of 3-D all-dielectric meta-structures with high 

accuracy. It plays a pivotal role in designing meta-devices with on-demand functions (as will be 

demonstrated later). The all-dielectric meta-device under consideration consists of a dielectric 



meta-atom (preferably with a high refractive index) and a dielectric substrate (preferably with a 

lower refractive index). Without loss of generality, cylinder-shaped dielectric meta-atoms are 

investigated as the first example due to their robust shape and low fabrication complexity (10, 11). 

During the modeling process, the meta-atoms are arranged in rectangular lattices, while their 

electrical permittivity, radius, height and the gaps between adjacent meta-atoms are considered as 

design variables. The spectra of interest are set in the infrared regime from 30 to 60 THz (5 m to 

10 m in wavelength) for the purpose of demonstration. 
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Fig. 1. Methods and structure of the PNN. (A) Amplitude (red) and phase (blue) responses of a sample all-dielectric 
meta-atom. The design parameters are listed in the accompanying table. The phase jumps (black dashed circles) 
represents the π phase discontinuities introduced by electromagnetic poles. (B) Real part (red) and imaginary part 
(blue) of the field transmission coefficient of the same meta-atom. (C) Input of the PNN, including the structural 
dimensions and material properties. (D) The main structure of the proposed PNN. Two individual fully-connected 
neural networks, each containing four hidden layers, are constructed to predict the real and imaginary parts of the 
complex transmission coefficient, respectively. Blue circles represent the input parameters, gray circles represent 
the hidden neurons, and red circles are the output values. Full network architecture of this PNN can be found in fig. 
S1. (E) One sample of discrete real and imaginary part data given by the PNN. (F) Continuous data (blue curves) 
reconstructed by interpolating the discrete output samples (red dots). (G) The corresponding transmissive phase 
and amplitude. 
 

Here we propose an implicit way to construct and train the networks to predict the amplitude and 

phase responses of meta-structures. For a typical meta-structure, like the one shown in Fig. 1A, 



the amplitude and phase response of its transmission coefficient will abruptly change (especially 

the phase) around resonant frequencies. In contrast, the real and imaginary parts remain smooth 

and non-singular (Fig. 1B). This observation prompted us to choose the prediction targets as the 

real and imaginary parts of the transmission coefficient, rather than the phase and magnitude 

during network constructing and training. This choice significantly improves the phase prediction 

accuracy by the network. In addition, the amplitude dips and phase discontinuities in Fig. 1A only 

happen when both the real and imaginary parts are close to zero (27). This enables us to down-

sample the frequency points and reduce the output tensor dimension, which solves the mismatch 

problem. Considering that both phase and amplitude can be predicted through these two networks 

simultaneously, no further complexity was added. 

The detailed architecture of the proposed PNN is shown in Fig. 1 (C-G).  It deals with the 

regression problem between structure dimension parameters (refractive index, gap, radius and 

height) and the complex transmission coefficient over the 30-60 THz band. The whole spectrum 

is down-sampled into 31 frequency points (between 30 to 60 THz) with a frequency step of 1 THz, 

corresponding to 31 coefficients which are specified as the network output. Two independent 

neural networks (to be further discussed later) are constructed to predict the real and imaginary 

parts of the transmission coefficient, respectively. After the real and imaginary parts are derived, 

the amplitude and phase responses can subsequently be retrieved by applying the following 

equations: 

 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = √𝐼𝑚𝑎𝑔(𝑆21)2 + 𝑅𝑒𝑎𝑙(𝑆21)2 (1A) 

 
𝑃ℎ𝑎𝑠𝑒 = tan−1

𝐼𝑚𝑎𝑔(𝑆21)

𝑅𝑒𝑎𝑙(𝑆21)
 (1B) 

Due to the high nonlinearity of the problem, we used a revised Neural Tensor Network (NTN) (25) 

in the predicting neural network instead of traditional fully connected layers (which take simple 

linear combinations of the previous tensor and pass them on to the next layer). More specifically, 

we replace the first standard linear neural network layer with a bilinear tensor layer that directly 

relates the two entity vectors across multiple dimensions. The output of this layer is given by: 

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓 (𝑒𝑇𝑊1
[1:𝑘]𝑒 + 𝑒𝑇𝑊2

[1:𝑘](𝑒 ⊙ 𝑒) + 𝑉 [
𝑒

(𝑒 ⊙ 𝑒)] + 𝑏) (2) 

where 𝑓 is the rectified linear unit activation function applied element-wise and 𝑒 is the vector of 

four design parameters (radius, height, etc.). 𝑊[1:𝑘] is a 4 × 4 × 𝑘 tensor and the bilinear tensor 

products 𝑒𝑇𝑊1
[1:𝑘]𝑒 and 𝑒𝑇𝑊2

[1:𝑘](𝑒 ⊙ 𝑒) both result in a vector where each entry is computed 

by one slice of the tensor: 𝑒𝑇𝑊1
[𝑖]𝑒 𝑎𝑛𝑑 𝑒𝑇𝑊2

[𝑖](𝑒 ⊙ 𝑒), 𝑖 = 1, … , 𝑘. 𝑉 and 𝑏 are parameters in 

the standard form of a neural network with dimensions of 𝑘 × 8 and 𝑘 × 1. Compared to standard 

neural networks where the entity vectors are simply concatenated, the main advantage of this NTN 

is that it can relate the two inputs multiplicatively instead of only implicitly through nonlinearity. 

For example, the dielectric constant (𝑖𝑛𝑑𝑒𝑥2) and cross sectional area component (π𝑟2) of a meta-

atom can be given directly by 𝑒𝑇𝑊1
[1:𝑘]𝑒, while the volume component (π𝑟2ℎ) can be given by 

𝑒𝑇𝑊2
[1:𝑘](𝑒 ⊙ 𝑒). In contrast, it takes several concatenated layers for standard neural networks to 

generate these nonlinear components. Considering that these physical quantities are closely related 

to the meta-atom’s EM responses, these additional vector interactions significantly accelerate the 

training process. In our design, k is set to be 50, and this bilinear tensor layer is followed by three 

fully connected hidden layers containing 500, 500 and 200 neurons, respectively.  The output layer 

contains 31 units, corresponding to the 31 frequency points that were chosen to sample the 30-60 

THz spectrum under consideration. The supervised training process is performed by minimizing 



the loss function, which measures the squared differences between the spectra prediction generated 

from the network and simulation results given by full-wave EM simulations. 
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Fig. 2. Examples demonstrating the PNN performance. Small subplots shown on the left are the real and imaginary 
parts of each meta-atom’s transmission coefficient. The red curves shown in the large subplots represent the phase 
profiles, while the blue curves refer to the amplitude responses. Dots represent data generated by the PNN, while 
solid curves are data obtained from numerical full-wave simulations. Design parameters of each meta-atom are 
given in the insets in the following order: dielectric constant, gap, thickness and radius (in microns). All four meta-
atoms presented are randomly selected from the test data set. 

 

Over 50,000 groups of randomly generated 1 × 4 input vectors were fed into the bilinear tensor 

layer. Among them, 70% are assigned to the training set, while the remaining 30% are used as the 

test set. We then calculated the predicted real and imaginary parts and compared the results to full-

wave simulations to extract the prediction error. After the training is completed, the overall test 

mean square error is 0.00035 for the real part, 0.00023 for the imaginary part, with a corresponding 

fractional error of 0.5% for both amplitude and phase responses (see methods for error definitions 

and table S1 and Fig. S2 for training details). Several prediction samples randomly selected from 

the test data sets are showcased in Fig. 2 (insets show the corresponding design parameters), while 

more prediction samples are included in Fig. S3 and Fig. S4. These examples show excellent 

consistency between numerical simulations and PNN predicted results across the full spectrum 

under consideration. Given the vital role the PNN plays in our deep-learning approach, such 

agreement is critical to objective-driven meta-device design as will be discussed in the following 

sections. 

On-demand meta-atom design. To demonstrate the efficacy of our deep learning design approach, 

we will first apply it to designing meta-atoms, the fundamental building blocks of meta-devices. 

In general, functionalities of most meta-optical devices, such as beam deflectors and lenses, are 

achieved by tailoring the wave front using a group of meta-atoms that cover the full 2π phase range 

(28). Therefore, a meta-atom design method capable of rapidly and precisely identifying design 

parameter combinations with large phase coverage is highly advantageous compared to time-

consuming design iterations based on full-wave simulations. However, due to the diverse meta-



atom design goals and restrictions on input parameters, it is unrealistic to build one single design 

network that applies to all situations. For example, most meta-atom designs stipulate a uniform 

refractive index, lattice size, and height, but allow varying radii (10, 11, 25). In contrast, fixed-gap 

meta-atom designs specify the size of gaps (29, 30). Even refractive index can become a design 

variable for meta-atoms based on phase-change materials (31-34). To meet the different 

application-specific needs, we adopt a closed loop design network instead of constructing a single 

cascaded inverse design neural network. Fig. 3A shows the architecture of the constructed meta-

atom design network. The output design parameters given by the meta-atom model generator are 

fed to the PNN, and the predicted transmission and phase spectra of the current design are then 

sent back to the model generator, where a new design is given to further reduce the difference 

between the current result and the final goal. The model generator can be readily modified to meet 

different design requirements. As a demonstration, we constructed a meta-atom design network 

that produces meta-atom designs with large phase coverage. Here the operating frequency and 

dielectric constant are fixed and specified as inputs, while the network explores the parameter 

space to find the period and thickness combination that provides the largest phase coverage (ideally 

2π) with maximum transmittance. 
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Fig. 3. Structure of the proposed meta-atom design network and a design example. (A) Flowchart of the closed-
loop meta-atom design network. Designs produced from the model generator are evaluated by the cascaded PNN, 
and the predicted EM responses shown in the rectangular plot are subsequently sent back to the design generator. 
New designs are then given to minimize the differences between the current results and design goals. (B) PNN-

predicted phase profiles of proposed designs over the spectrum. All 93 designs have 1.23 m lattice size and 1.5 m 

thickness, while their radii vary from 0.1 m to 0.56 m in 5 nm increments. (C) PNN-predicted phase and amplitude 
profiles at the target frequency (58 THz). (D) Numerically-simulated results produced for verification. (E) Eight cells 
picked from the simulated data with different radii (100, 315, 370, 410, 445, 475, 505 and 560 nm) to form a class 
of 3-bit meta-atoms. (F) Performance and top-views (inset) of these eight cells. 
 

In this specific example, the dielectric constant and operating frequency are fixed to be 24 and 58 

THz respectively, while the upper bound of the meta-atom thickness is set to be 1.5 m due to a 

presumed fabrication constraint. A minimum amplitude transmission threshold of 0.7 is also 

included in the generator to ensure high optical efficiency. With the help of design algorithms (e.g. 

genetic algorithm), the model generator searches for the optimized lattice size and thickness 

combination that can provide the largest phase coverage, which is 1.23 m and 1.5 m, 

respectively. The corresponding phase coverage is 330° when the meta-atom’s radius is changed 

from 0.1 m to 0.56 m. A total of 93 samples, with a radius step of 5 nm, are chosen to sketch 

the phase coverage range in Fig. 3B. Phase and amplitude profiles at the working frequency (58 

THz) are sliced and shown in Fig. 3C. Full-wave simulation results are also included in Fig. 3D 

for comparison. The excellent agreement between Fig. 3C and 3D once again shows the accuracy 

of the PNN. The 330-degree phase coverage above the preset amplitude threshold enables the 

design of 3-bit meta-atoms (a set of 8 meta-atoms), with a 45-degree phase difference between 

adjacent cells as depicted in Fig. 3E and 3F. It only took 22 seconds (see Table S2) to find the 

optimal design parameters using the proposed approach, while these designs’ numerical 

verification alone (shown in Fig. 3D) took more than 30 minutes with the same hardware and 

environment settings. Arriving at this design via conventional methods would have taken hours or 

days depending on the skill and luck of the designer. 

To further demonstrate that the developed meta-atom design network constitutes a universal design 

methodology, the approach is used to explore meta-atoms with a tunable refractive index for use 

in reconfigurable meta-device designs. The design network presented in Fig. 4A has been slightly 

modified by removing the dielectric constant from the input vector and adding meta-atom radius 

to the output vector. The general goal remains the same: find the optimal design with maximum 

phase coverage. The results are presented in Fig. 4. In this example, the index tuning range was 

set from 3.5 to 4.5 with reference to the widely-applied phase change material GST (GeSbTe) (32) 

while similarly assuming an operating frequency of 58 THz. According to PNN predictions, the 

generated optimal design (1.04 m gap, 0.79 m radius and 0.91 m thickness) is able to achieve 

more than 320 degrees of phase coverage while the meta-atom switches progressively from one 

state to the other. 101 samples with a refractive index increment of 0.05 are chosen to illustrate the 

phase coverage range in Fig. 4A. Corresponding numerical simulation results are also included in 

Fig. 4B. Four meta-atoms with the same shape but different indices (Fig. 4C) are selected from 

these 101 individual designs to form a set of a 2-bit meta-atom design. Fig. 4D and 4E sketch the 

field distributions inside the meta-atoms. In state 1, which corresponds to a material index of 3.57, 

the meta-atom supports an electric dipole resonance as shown in Fig. 4D. When switched to state 

4 with a material index of 4.15, a strong magnetic dipole moment emerges as evidenced by the 

field profile in Fig. 4E. The alternating electric and magnetic dipole resonances with changing 

index of refraction is essential to realizing full 2π phase coverage, and our meta-atom design 



network precisely captures this critical feature to identify the design parameters within a short 

timeframe (less than 5 minutes, details can be found in Table S2). In contrast, conventional 

methods necessarily demand laborious parameter sweeps and elaborate field distribution analysis 

to find a design fulfilling the same function (25, 35).  
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Fig. 4. A 2-bit reconfigurable meta-atom design example. (A) PNN-predicted phase and amplitude profiles of the 

optimized reconfigurable meta-atom design. All 101 meta-atoms have the same dimensions: 1.04 m gap, 0.79 m 

radius and 0.91 m thickness, while their refractive indices vary from 3.5 to 4.5 with a 0.05 spacing, to represent 
intermediate states of a material phase change. (B) Numerically-simulated phase and amplitude results of designs 
generated by the meta-atom design network. Insets schematically depict meta-atoms in different material phases. 
A color bar correlating the colors and index values is shown at the bottom. (C) Four meta-atoms (insets) selected 
from (A), with refractive indices of 3.57, 3.89, 3.99 and 4.15, to form a class of 2-bit meta-atom design with 90-
degree phase increments. (D, E) Electric (arrows) and magnetic (color coded) field distributions inside the meta-atom 
under (D) state #1 and (E) state #4. Arrow showing in the left indicates the incident light direction. 
 

“Inverse” neural network enabled on-demand meta-filter design. Meta-filters or frequency-

selective surfaces (FSS) represent another widely-used class of meta-devices. The design objective 

of meta-filters is a pre-assigned target transmission spectrum which can be parameterized as a 

vector, suggesting that the model generator can also be constructed with a DNN – the “inverse 

design” deep neural network. Once the data set is created and the inverse DNN is trained, the 

design progress is non-recurring and the model generators are inquired only once per design target. 

Therefore, this approach is extremely time-efficient. 

The meta-filter design network is illustrated in Fig. 5 (A-E). In principle, a fully functional meta-

filter design network should be able to generate meta-atoms with performance resembling the user-

defined filter spectral responses. To achieve this goal, we connected the fully-trained PNN to a 

meta-filter generator to form a cascaded network and avoid the non-convergence problem resulting 

from non-unique solutions (21, 22). The meta-filter generator is also a DNN (aka the “inverse” 

network) that consists of four consecutive fully-connected hidden layers containing 500, 500, 500 



and 50 neurons, respectively. As shown in Fig. 5A, the meta-filter generator employs the target 

spectrum as the input. In the output layer, a 4 by 1 output vector is generated, which contains the 

parameters of the newly generated design. The design parameters are then designated as input for 

the consecutive PNN, where the design’s electromagnetic response is evaluated. Finally, the 

transmission spectrum of the current design is compared to the target spectrum and the Euclidean 

distance between them is calculated. During training, the weights and biases in the hidden layers 

of the meta-filter generator are optimized to minimize this distance, while the values of hidden 

neurons in the previously-trained PNN remain unchanged. As a result, the model generator 

becomes “smarter” as training proceeds, eventually forming a cascaded DNN able to generate on-

demand meta-filter designs on a one-time calculation basis. 
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Fig. 5. Architecture of the meta-filter design network and design examples. (A) Target spectra designated as input. 
(B) The model generator of the meta-filter design network, which is constructed using DNNs. Cells in green represent 
the inputs, whereas gray and blue cells represent the hidden neurons and outputs, respectively. Full network 
architecture of this PNN can be found in fig. S1. (C) Output of the model generator, which is a combination of design 
parameters such as dielectric constant and meta-atom dimensions. (D) These parameters are then fed into the PNN 
to yield the complex transmission coefficient. (E) The refined amplitude response of the generated design as derived 
from the complex transmission coefficient. (F) Several design examples from the proposed meta-filter design 



network on single-band design targets (first row) and dual-band design targets (second row). Red curves are target 
filter spectral responses, and the blue curves are the PNN-predicted filter spectral responses based on the designs 
given by the design network. All design parameters including dielectric constant, gap (μm), thickness (μm) and radius 
(μm) are given as insets. 
 

Two data sets were used to train the meta-filter design network, including randomly generated 

Gaussian-shaped single-band and dual-band targets. Specifically, these targets were created using 

the following equations: 

 
S𝑠𝑖𝑛𝑔𝑙𝑒(𝑓) = 1 − 0.8exp [−

(𝑓 − 𝑓0)2

2𝜎2
] (3) 

 
S𝑑𝑢𝑎𝑙(𝑓) = 1 − 0.8exp [−

(𝑓 − 𝑓0)2

2𝜎2
] − 0.8exp [−

(𝑓 − 𝑓0′)2

2𝜎′2
] (4) 

where 𝑓0, 𝑓0′ are the center frequencies of stopbands and 𝜎, 𝜎′ dictate the bandwidth. The final 

training sets include 20,000 groups of randomly generated single-band targets and 20,000 groups 

of dual-band targets, among which 80% are used for training and the remaining 20% are left for 

accuracy tests. The training was executed in an unsupervised way, since the input transmission 

spectra are not labeled with corresponding structure dimensions. After 50,000 epochs of training 

for each group of data, the error (see Methods for definitions) eventually stabilized at 15.0% and 

24.7% for single-band targets and dual-band targets, respectively. Since the randomly-generated 

target spectra may be physically unrealistic, these stabilized error values indicate that the training 

had completed. The relatively large error of single-band targets and even larger error for dual-band 

targets do not present a limitation to our DNN approach; rather they manifest the inherent inability 

of achieving increasingly complex filter functions with the simple cylinder-shaped all-dielectric 

meta-atom geometry. 

The hyperparameters used during training and more training details can be found in Table S1 and 

Fig. S2. Several representative samples from each group of targets are shown in Fig. 5B. More 

filter designs corresponding to different targets can be found in Fig. S5. Some instances with large 

errors, which correspond to physically unattainable designs with cylinder-shaped meta-atoms, are 

also included. 

PNN for H-shaped meta-atoms. Finally, to demonstrate that the method is universally applicable 

to meta-atoms of different geometries and not limited to the design of cylinder-shaped dielectric 

nanostructures, we trained another PNN for H-shaped meta-atoms (4). As shown in Fig. 6A, H-

shaped structures can be uniquely determined by six parameters, which are combined into 1 × 6 

vectors and assigned as the PNN’s input. Dimensions of the bilinear tensor layer in the PNN are 

slightly modified to adapt to this change. The structure of other hidden layers and the output 

vectors are the same as those of the PNN for cylinder-shaped meta-atoms. After being trained with 

14,800 groups of H-shaped meta-atom datasets, the PNN is able to achieve 99.4% accuracy for 

amplitude prediction and 99.5% for phase prediction. Three instances were presented in Fig. 6 (B-

D) to demonstrate the PNN performance, and more examples are included in Fig. S6. 
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Fig. 6. PNN for H-shaped dielectric meta-atoms. (A) Top-view figure showing the dimensions that parameterize the 

H-shaped meta-atom structure. (B-D) Examples of EM responses of H-shaped meta-atoms predicted by the PNN 

(dots) and full-wave numerical simulations (lines). Meta-atom design parameters are given as insets in the following 

order: dielectric constant, Lx, Lx1, Ly and Ly1 (in microns). 

 

III. Discussion  

The DNN-based design method features several noteworthy advantages. First, compared to 

traditional meta-device design approaches, a trained neural network avoids the large volume of 

full-wave simulations and realizes on-demand designs in a few seconds. By generating an optimal 

design that provides the closest match to the preset performance target, the network is able to 

quickly determine whether or not the target is physically viable based on the given meta-atom 

design constraints (e.g. sizes and geometries) and prescribe the performance limitations. This is 

accomplished without involving numerous computationally intensive, iterative full-wave 

simulations necessary to cover the enormous parameter space (e.g. dielectric constant, shapes, and 

geometric dimensions). Second, the DNN-based method can readily handle non-intuitive, 

multifunctional meta-device design. For example, it is intuitive to conceptualize a single-band 

meta-filter design, because larger meta-atom volume is usually correlated with lower resonant 

frequencies. The target stopband frequency can therefore be straightforwardly met by adjusting 

the radius and/or height of the meta-atom. However, for multifunctional meta-atom designs, 

changing one design parameter (radius, gaps or thickness) inevitably affects other functions (e.g. 

phase or amplitude response at another frequency or polarization direction). Escalating complexity 

resulting from such coupling makes iterative design purely guided by intuition nearly impossible. 

DNN-based methods are uniquely poised for solving such complex, multi-objective design 

challenges. Third, the PNN’s remarkable accuracy is retained even with out-of-range parameters 

(see the Supplementary Materials, e.g. Fig. S8), which suggests that its network architecture is 

able to capture the intrinsic physical traits of the light-matter interaction process in the metasurface 

structures. With this unique property and unparalleled speed, the solutions provided by the well-

trained design networks can potentially be used to elucidate the underlying physical mechanisms 

behind nanophotonic structures such as coupling and resonances. 



Compared to previously proposed DNN-based optical device design methods (17, 21-24), the PNN 

realized in this paper resolves difficulties associated with predicting resonant frequencies and 

achieves wideband phase prediction for the first time. In addition, we successfully expanded DNN-

based methods from 1-D and 2-D metamaterials to 3-D dielectric metamaterials. Importantly, our 

PNN approach is geometry-agnostic, evidenced by its successful application to H-shaped meta-

atom design. Since the in-plane pattern of any lithographically defined meta-atom can always be 

parameterized with a 2-D matrix, our approach can be extended to metasurface designs based on 

topologically optimized, non-intuitive meta-atom geometries by using the 2-D matrix as the PNN 

input. 

Like all other DNN-based approaches, performance of the PNN (and on-demand design networks) 

is limited by the quality and quantity of training data. The PNN is a data-driven simulator, which 

becomes increasingly accurate in finding the implicit yet inherent connections between meta-atom 

structures and their performances as more training data are included. The data collection process, 

which takes significantly longer time than network construction and training, is a bottleneck for 

this methodology. Nevertheless, this shortcoming can be overcome with data sharing: large 

amounts of simulation data have already been and are continuing to be generated during the 

traditional trial-and-error design process. These data, including what traditionally were considered 

as “failed” designs, constitute an existing asset that can readily be utilized to build training datasets. 

Moreover, once the training is completed, the on-demand design network is able to provide the 

optimal designs with minimal amount of time and is generically applicable to different design 

targets. Furthermore, we have shown that PNN offers far better prediction accuracy compared to 

classical interpolation methods based on the same set of prior information (refer to Supplementary 

Section VII for more details). This result is readily understandable from the standpoint that unlike 

numerical interpolation, DNN builds on the intrinsic (albeit non-intuitive and hidden) relation 

between metasurface structure and its electromagnetic response. The superior data-driven 

prediction efficacy positions DNN as the universal metasurface design optimization method of 

choice. 

In summary, we have introduced a novel DNN-based data-driven approach for accurate prediction 

of all-dielectric meta-devices’ responses, as well as inverse design of the meta-devices based on 

pre-defined performance targets. For the first time, amplitude and phase responses of all-dielectric 

meta-atoms are simultaneously derived in millisecond-timescale. We further show that objective-

driven meta-device design models can be constructed based on this predicting neural network. 

Although this paper mainly discusses the all-dielectric meta-devices designs operating at the 

infrared spectrum, the deep learning method developed herein for objective-driven design is not 

limited to this context. In general, the proposed framework can be adapted to the design of other 

complex electromagnetic media such as multi-functional meta-atoms, integrated photonic devices, 

and optical antennas. 

 

IV. Methods 

Data collection. Fig. 1 and Fig. 6 illustrates the general schematic of the all-dielectric structures 

under consideration. They all consist of a dielectric meta-atom (upper layer) and a dielectric 

substrate (bottom layer). During the modeling process, the meta-atoms are arranged in rectangular 

lattices. 

Random parameter combinations including the gap, thickness, radius and dielectric constant of 

meta-atoms were generated in the multi-paradigm numerical computing tool MATLAB, and then 

transferred to commercial software package CST Microwave Studio for full-wave simulations. 



The parameters are created with (all lengths in microns): gap ∈ [0.1, 1.5], thickness ∈
[0.5, 1.5], radius ∈ [0.1, 1.2], index ∈ [3.5, 5] , since these parameter ranges include ample 

samples of phase and amplitude responses. Real part and imaginary part data of the transmission 

coefficient over the operating spectrum are calculated using CST time domain solver, with the unit 

cell boundary condition applied for all meta-atoms in both x and y directions. For these meta-atoms, 

an x-polarized plane wave was illuminated from the substrate side. Open boundaries are 

implemented in both the negative and positive z directions (the axes are defined in Figs. 1 and 6). 

Network construction. 35,000 groups of cylinder-shaped meta-atom models and their 

corresponding complex transmission coefficients are collected and used for the training of PNNs. 

Details of PNNs and meta-filter design network structures, including hyper-parameters and 

learning curves are listed in the supplementary information. The design generator in the meta-atom 

design network employs an evolutionary computation framework, DEAP, to generate new design 

parameters. The evaluation function of the framework is set to be the phase coverage of the current 

design calculated by the trained PNN. All DNNs models are constructed under the open-source 

machine learning framework of TensorFlow. 

Loss function & error. The loss functions we use for PNNs are L2 loss functions, which stand 

for least square errors, also known as LS. More specifically: 

 
𝐿𝑃𝑁𝑁 =  

1

𝑁
∑ (𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑆𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

2

𝑖=1,2…𝑁
 (5) 

which measures the squared differences between the spectra prediction generated from the network 

( 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ) and the simulation results given by full-wave electromagnetic simulations 

(𝑆𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛). 

For the meta-filter design network, practical material and fabrication limitations will likely 

constrain the choices of refraction index, thickness, gap, and radius of the meta-atoms. Therefore, 

a constraint factor is added to the loss function of the meta-filter design network. The revised loss 

function is defined as: 

 
𝐿𝐹𝑖𝑙𝑡𝑒𝑟 =  

1

𝑁
∑ (𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑆𝑡𝑎𝑟𝑔𝑒𝑡)

2
+ (𝑃 − 𝑃𝑐𝑙𝑖𝑝𝑝𝑒𝑑(𝑚𝑎𝑥, 𝑚𝑖𝑛))

2

𝑖=1,2…𝑁
 (6) 

where 𝑃 is the output vector containing design parameters and 𝑃𝑐𝑙𝑖𝑝𝑝𝑒𝑑 is a vector with all values 

in 𝑃 clipped to a preset maximum and minimum value. The constraint factor (𝑃 − 𝑃𝑐𝑙𝑖𝑝𝑝𝑒𝑑)
2
 

measures the distance from output to the desired parameter value range, when the vector 𝑃 falls 

out of the preset value range, the increasing loss function value 𝐿𝐹𝑖𝑙𝑡𝑒𝑟 will force the trainer to re-

assign a 𝑃 value within the desired range (𝑚𝑎𝑥, 𝑚𝑖𝑛). 

The errors we use to evaluate the training results are fractional differences, which are defined as: 

 
𝐸𝑃𝑁𝑁 =  

1

𝑁
∑ (

𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑆𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑆𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

𝑖=1,2…𝑁
 

 

(7) 

 
𝐸𝐹𝑖𝑙𝑡𝑒𝑟 =  

1

𝑁
∑ (

𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑆𝑡𝑎𝑟𝑔𝑒𝑡

𝑆𝑡𝑎𝑟𝑔𝑒𝑡
)

𝑖=1,2…𝑁
 (8) 
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