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Abstract

Nonlinear evolution of shear waves into shocks in incompressible elastic materials is
investigated using the framework of large deformation elastodynamics, for a family of
loadings and commonly used hyperelastic material models. Closed form expressions
for the shock formation distance are derived and used to construct non-dimensional
phase maps that determine regimes in which a shock can be realized. These maps
reveal the sensitivity of shock evolution to the amplitude, shape, and ramp time of the
loading, and to the elastic material parameters. In light of a recent study (Espindola
et al., 2017), which hypothesizes that shear shock formation could play a significant
role in Traumatic Brain Injury (TBI), application to brain tissue is considered and
it is shown that the size matters in TBI research. Namely, for realistic loadings,
smaller brains are less susceptible to formation of shear shocks. Furthermore, given
the observed sensitivity to the imparted waveform and the constitutive properties, it is
suggested that the non-dimensional maps can guide the design of protective structures
by determining the combination of loading parameters, material dimensions, and
elastic properties that can avoid shock formation.
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Chapter 1

Introduction

Solids are capable of transmitting mechanical shear waves, which can evolve into

shocks depending on the nonlinearity of the shear response. Generating such shear

shocks in stiff materials, such as metals, would require extreme strain rates at high

stress and would lead to catastrophic damage and failure by other competing processes

before shock wave phenomena can be observed (Marchand and Duffy, 1988; Mercier

and Molinari, 1998). By contrast, even weak impacts can generate shear shocks within

small distances in soft solids, owing to their low shear moduli and significantly higher

nonlinearity in shear (Catheline et al., 2003). Many soft solids including biological

tissues typically have a shear modulus that is orders of magnitude smaller than the

bulk modulus and can hence be assumed to be incompressible. This thesis concerns

the nonlinear evolution of shear waves into shear shocks in such materials.

Nonlinear shear waves have been studied extensively by both the continuum me-

chanics and nonlinear acoustics communities. Propagation of finite amplitude plane

shear waves and shear shocks were investigated by Chu (1964, 1967), in incompress-

ible isotropic elastic materials. Therein, the condition for shear shock formation was

established and the shear loading problem of an incompressible elastic half space was

studied using the method of characteristics. Collins (1966, 1967) extended the inves-

tigation of wave propagation to materials with transverse isotropy and allowed for

transverse displacements in two directions. Davison (1966) studied nonlinear shear

waves and propagation of shock waves that are generated by impact loadings in com-
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pressible hyperelastic materials wherein accounting for coupled longitudinal motion is

necessitated by the compressibility. There, an instantaneous constant loading is con-

sidered whereby a shock would immediately form at the loading surface, as opposed

to evolution of a smooth loading waveform into shocks as considered by Chu (1964).

Recently, Ziv and Shmuel (2019) applied the formulation developed by Davison (1966)

to specific compressible hyperelastic material models. Aboudi and Benveniste (1973,

1974) developed a finite-difference based scheme to study such impact induced non-

linear waves. Solutions to the wave equations for compressible hyperelastic materials

was provided by Destrade and Saccomandi (2005), including the possibility of dissi-

pation, extending the pioneering works of Carroll (1967, 1974, 1977a,b, 1979).

The nonlinear evolution of shear waves has also been extensively studied in acous-

tics, where it is routine to perform expansions of the strain energy density function,

which is essentially an assumption of weak nonlinearity. The paraxial approxima-

tion of small but finite' wave amplitudes is also employed to obtain reduced wave

equations. A nonlinear parabolic wave equation for shear wave beams in isotropic

solids was first derived by Zabolotskaya (1986) accounting for nonlinearity, viscous

dissipation and diffraction. In the absence of diffraction, the equation reduces to the

Modified Burgers equation (MBE) which is similar to the Burgers equation except

the quadratic nonlinearity term is replaced by a cubic one. The MBE was studied

in detail by Lee-Bapty and Crighton (1987). An alternative expansion of the strain

energy density, suitable for application to soft solids, was provided by Hamilton et al.

(2004) and used to derive equations that describe nonlinear propagation of plane

shear waves for different polarizations (Zabolotskaya et al., 2004). The plane wave

model was extended to account for diffraction by Wochner et al. (2008). Recently,

Destrade et al. (2019) extended the formulation to any isotropic incompressible solid

without having to rely on expansions of the strain energy density.

While the theoretical investigation of shear shocks in solids dates back to the 60's,

the first observation of shear shocks in an elastic medium was only reported recently

(Catheline et al., 2003). This was achieved by application of a transient elastography

'The shear response would be linear for infinitesimal displacements.
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technique to measure the displacements induced by transverse vibrations applied on

one end of a gelatin phantom sample. A more recent study by Espindola et al.

(2017) employed a similar method and demonstrated the spontaneous evolution of

smooth shear waves into shear shocks in a porcine brain and reported acceleration

magnifications of up to a factor of 8.5. Hence, it was suggested that shear shock waves

could be an unappreciated damage mechanism that could play a significant role in

traumatic brain injury. To reliably study shear shock generation in the brain and

other soft solids, it is vital to consider realistic loadings and the possibility of large

deformations. However, both the experimental studies discussed, apply harmonic

loading, and make use of reduced wave equations and strain energy density expansions

that apply for small amplitude deformations and weak nonlinearity.

In light of these recent studies, in this work we utilize a large deformation elastody-

namics framework to study shear shock evolution using realistic constitutive relations

that can capture the strongly nonlinear response of soft and biological materials, with

the goal of answering the fundamental question: Can shear shocks be induced in soft

materials, such as brain tissue, within the length of the impacted object, when sub-

jected to realistic loadings at large deformations? To answer the question, we conduct

a parametric analysis using three different constitutive relations that capture a wide

range of incompressible material response, and a family of loading waveforms.

The thesis is organized as follows: In the following Chapter, we begin by defining

our problem setting, deriving the governing equations and introducing the method of

characteristics. Then, in Chapter 3, we solve the boundary value problem by employ-

ing the method of characteristics, as in Chu (1964), and derive general expressions

needed to evaluate the shock formation distance for a family of loadings. Subse-

quently, in Chapter 4, we apply these expressions to analyze various stress responses,

and arrive at closed form expressions for the shock formation distance. These expres-

sions are used to construct non-dimensional phase maps that determine regimes in

which a shock can exist and illuminate the effect of material properties and loading

scenarios on shock evolution. A parallel supplementary investigation of the distance

taken for realization of a given finite acceleration magnification is also carried out.
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Finally, in Chapter 5, we demonstrate application of our results to the problem of

shear impact of the brain to answer the question posed earlier. We provide some

concluding remarks and future research directions in Chapter 6.
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Chapter 2

Nonlinear Shear Wave Equation and

Method of Characteristics

In this chapter, we begin by defining our problem setting in Sec. 2.1 and then deriving

the governing equations in Sec. 2.2. For the resulting nonlinear shear wave equation,

we discuss the conditions under which a shock can spontaneously evolve in Sec. 2.3,

and then introduce the method of characteristics in Sec. 2.4 to be able to solve the

same.

2.1 Problem setting

Consider a homogeneous and isotropic semi-infinite medium whose undeformed stress-

free configuration is described by the Lagrangian coordinates X = (X1 , X 2, X 3 ), with

-00 < X1,X 3 < 00, and X2 > 0, as shown in Fig. 2-1(a). The body is subjected

to shearing motion by imposition of a continuous time dependent shearing velocity

V(t), on its surface X2 = 0, along X1 as shown in Fig. 2-1(b). Using symmetry con-

siderations and incompressibility, the mapping between the Lagrangian coordinates

of a material point, X, and its current coordinates, x, at time t, is necessarily given

by

Xi = X1 + u(X 2, t), x 2 = X 2, X 3 = X 3 (2.1)
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X2I
undeformed

X1
3

(a) The initial undeformed configuration.

X21

a= 0-

a= t-

IX3

deformed

V(t)

cS

x1

(b) Deformed configuration where a continuous time varying shearing velocity V(t) is applied

on the surface X2 = 0. The wavefront, a = 0 (see Chapter 3), travels at the linear elastic

shear wavespeed c, (before shock formation).

Figure 2-1: Dynamic simple shear deformation of a homogeneous isotropic perfectly

incompressible material occupying the half-space X2 > 0. The white dashed lines are

shown to observe the shear deformation.

where u(0, t) = f V(t)dt is the shear displacement of the surface X2 = 0. The shear

strain -y(X2, t) is given by

Y(X 21,t) - 49X1  Ou(X2 , t)
9X2 ~ 9X2

16
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and the particle velocity is given by

v(X 2 , t) =u(X 2 , where v(0, t) = V(t) (2.3)
at

The deformation gradient F and the left Cauchy Green deformation tensor B can

then be written as

1 Y 0 72+1 01

F x I '9 0 FFT 1 0(2.4)ax
00 - 0 0 1-

and the invariants of B are given by I1 = I2= 3+ -y 2 and J = det(F) = 1.

In our analysis we consider a purely mechanical theory and restrict our attention

to incompressible hyperelastic materials. The strain energy density per unit volume,

W, can then be written in its most general form as

W = W(I1 , 12 ) (2.5)

Defining Wi = w for i = 1, 2, the first Piola-Kirchhoff stress tensor P and the

Cauchy stress T are given by

P = TF-T , T= -p 1-+2[(W1 +IiW2)B - W2B 2 ] (2.6)

where p p(X2 , t) is a pressure field that arises due to the incompressibility constraint

and is determined by the boundary value problem. Substituting the deformation field

(2.4) in (2.6), we arrive at a stress state of the form'

2W1 + 4W2 - p 2-(Wi + W2 ) 0

P(X 2, t) = -(-2W2 + p) 2W1 + 4W2 - p 0 (2.7)

0 0 2W1 + 4W2+ 222 -_p

'Note that different authors (ex: Chu (1964), Horgan and Murphy (2011)) might report seem-
ingly different longitudinal stress expressions for the simple shear problem, but they all differ only
by a hydrostatic term which can be absorbed into the undetermined pressure field p.
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where the stress component P12(= T12 ) is denoted by r(-y)(= 2-y(Wi + W2 )) and is

referred to as the shear stress. Note that T(-y) is an odd function.

2.2 Equation of Motion

While dilatational stresses are transmitted instantaneously in an incompressible elas-

tic medium, shear stresses are transmitted at a finite velocity. As the surface X2 = 0 is

put to motion to generate deformation, a shear wave propagates into the undeformed

material and its propagation is governed by balance of linear momentum, which, in

absence of body forces, reads

/ podVo = j PnodAo   
(2.8)

Here v is the material acceleration, po is the constant density, and integration is

performed on a subregion Do in the reference configuration. In the absence of shocks,

assuming the smoothness of fields, this balance law can be localized as

Div P = poV (2.9)

Substituting (2.7) into (2.9) gives us the following equations,

= PO (2.10a)
aX2 t

_P22 Op _ 0(2W1 + 4W2) (2.1Ob)
ax 2  ax 2  ax 2

While perfect incompressibility allows us to impose an arbitrary normal traction

o- = P 22 that will be instantaneously equilibrated throughout the body (as seen from

(2.10b)), in a compressible material, coupling between the longitudinal and shearing

deformations might become significant (see for example Ziv and Shmuel (2019)).
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Plugging (2.2) into (2.10a) gives us the nonlinear wave equation

= c where c(y) = (2.11)at2 aX22 W

where in writing the expression for the wavespeed c(-y) the tacit assumption has been

made that T'(-) > 0, to ensure hyperbolicity of the wave equation such that shear

stresses are transmitted through waves. Note that c(-y) is an even function. At the

linear elastic limit shear waves are transmitted at the constant wavespeed c, given by

cS = lim c(-) = (2.12)

where p is the linear elastic shear modulus. In terms of strain and velocity, written

in (2.2) and (2.3), equation (2.11) can be written as a system of equations,

V c2 0 -y (2.13a)
at OX2

- O(2.13b)
at aX2

where (2.13b) is the compatibility condition.

It should be noted that, in practice, the simple shear deformation (2.4) is a non-

trivial one to generate, especially in the large deformation settings, as it requires

suitable tractions to be applied on the inclined surfaces, see Destrade et al. (2012),

Horgan and Murphy (2011), and Horgan and Murphy (2012). Generating a dynamic

simple shear deformation in finite dimensional blocks would be even more tedious,

requiring time and spatially varying tractions on the inclined surfaces and would not

correspond to any real life shearing scenarios. In the present study we consider shear-

ing of an elastic half-space which can be considered an approximation of a physical

shearing setting with large in-plane dimensions X 1-X 3 , such that effects from the free

surfaces can be neglected in the mid-section where the deformation can be assumed

to be one of simple shear.
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2.3 Shear shock condition

The shear wavespeed c in (2.11) is a function of the local shear strain 'y(X 2 , t). Hence,

if the local wavespeed increases along the wave propagation direction, a given wave

form will spatially spread over time. On the other hand, if the wavespeed decreases

along the propagation direction, the waveform would steepen spatially over time and

can eventually develop a local discontinuity when a shock forms. Accordingly, for

a shear wave travelling in the positive X2 direction, shocks can form when 9 =ax2

d, a^, < 0. Hence, using the expression for c(-y) from (2.11) and the fact that r(y) isd&y aX2

an odd function, we obtain the condition for shear shock formation as 2

(I < 0 (2.14)
CBX2

Formation of a shock thus depends on the loading program - loading or unloading

the material, as defined by the sign of a'9i and on the nonlinear shear response of8x2

the material through the sign of T"(l-yl). A material with shear stress response such

that T"(1 yl) > 0 will thus evolve a smooth shear loading waveform into a shock when

it is being sheared, and one with a shear stress response such that T"(lYI) < 0 will

produce a shear shock when unloaded from a sheared state. Fig. 2-2 shows a loading

shear waveform steepening into a shear shock versus spreading out, depending on

the material constitutive shear response. If T"(-y) = 0, that is if the material shear

response is linear (r = py) and the wavespeed is constant, the waveform will be

relayed at the constant speed c, without steepening or spreading out (dashed lines in

Fig. 2-2).

The most commonly used neo-Hookean (Rivlin, 1948) and Mooney-Rivlin (Mooney,

1940) hyperelastic models both predict a linear shear stress response, in which case

there would be no nonlinear shear wave evolution. Biological tissues such as the

brain have a strain stiffening shear response (Mihai et al., 2017, 2015; Pogoda et al.,

2 Here we have used the definitions T"(Ix|) r"(y) = (-ysign(y)), and we considerxax2 - x2
situations in which shear strain does not change sign. Also, whenever we discuss sign of r"(|yI) we
consider non-zero shear strains.
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2014; Storm et al., 2005) and unsurprisingly commonly used hyperelastic models for

soft solids and biological tissues such as the Gent model (Gent, 1996; Horgan, 2015)

and the Fung model (Fung, 1993) predict stiffening shear response i.e T"([y|) > 0

(see Mihai et al. (2015)). Thus soft tissues and other materials whose constitutive

response is well captured by these models would allow for shock formation in shear

loading. Hence, in this work, we focus our attention on shear loading (as opposed to

unloading from a pre-sheared state). Note that the velocity V and the strain -y will

be of opposite signs by virtue of their definition. Thus when the elastic half-space is

sheared along positive X1 direction (i.e V > 0) it develops a negative shear strain.

While (2.14) gives us the condition under which a shear wave can nonlinearly

evolve into a shock, it does not provide information about the length and time scales

over which the nonlinear evolution of the smooth waveform into a shock happens, or

how this evolution depends on the material nonlinearity and the waveform. To that

end, we will analyze the transient evolution of shear waves up to shock formation.

We will then apply the analysis to different constitutive stress responses.

2.4 Method of Characteristics

To investigate the transient evolution of shear waves we follow the formulation in Chu

(1964) (results recapitulated here) which makes use of the method of characteristics,

we first introduce the auxiliary function Q(y) and its derivatives

-y

Q(7 c(7)d-y, =9 c(-) , q = c(, ) a1(2.15)f ~) at at aX2  c X2
0

The monotonicity of Q ensures that a unique value corresponds to a given shear strain

y. Further, Q(-y) is an odd function (Q(--y) = -Q(-y)) as c(-) is an even function.

Using the above definitions, we can reduce the system of equations (2.13) to the two

21
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The figure was made for the exponential stress model (4.1), and the parameters chosen were
such that the'loading was in the regime m > mth (and n > nc = 1) so that the first shock

forms somewhere in the middle of the ramping part of the waveform (see Sec. 4.1).
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a general softening solid.

Figure 2-2: A quadratic loading waveform (n = 2 in (3.28)) nonlinearly evolving while
being spatially relayed by a material. The dashed lines represent the response of a
material with a linear shear stress response.
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ordinary differential equations,

(v + Q) _ (v + Q)
at aX2  (2.16)

a(v - Q) a(v - Q)
+ c(Y) x 2  = 0

whose solution can be shown to be

v+Q=f(() andv-Q=g(a) (2.17a)

where d# =0 along dX2  -c and da = 0 along dX 2  c (2.17b)
dt dt

The variables a and # identify sets of characteristic curves described by = C

along which characteristic relations dv = ±cd-/ hold. The general solution (2.17)

can be applied to our boundary value problem to solve for the transient shear wave

evolution up to formation of shocks. Upon formation of discontinuities the assumption

of smoothness used to localize the integral form of momentum balance (2.8) breaks

down, and thus the method of characteristics solution will not hold in regions with

shocks.
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Chapter 3

Solution to Boundary Value Problem

This chapter is organized as follows: In Sec. 3.1, we formally pose the boundary

value problem (BVP) for the problem setting described in the previous chapter and

provide the solution for a general loading using the method of characteristics discussed

in Sec. 2.4. The distance from the loading surface at which shock formation initiates

is discussed in Sec. 3.2 and the distance for earliest realization of a given acceleration

magnification is discussed in Sec. 3.3. The condition under which shock formation can

initiate immediately at the loading surface is examined in Sec. 3.4. Finally, in Sec.

3.5, the general solution to the BVP is specialized for a family of loading waveforms

and general expressions are derived which are used to analyze different constitutive

models in the next chapter.

3.1 General solution to BVP

Summarising our boundary value problem we have the initial and boundary conditions

v(X2 > 0, t = 0) = 0 , 'Y(X 2 ;> 0, t = 0) = 0 , v(X 2 = 0, t > 0) = V(t) (3.1)

where we consider V(t) to be a continuous piece-wise differentiable function of t.

Using the method of characteristics, the solution for the velocity and strain fields is1

'There is no dependence on # (from (2.17)) as the initial shear strain in the body is constant

(and zero).
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(Chu, 1964),

f)(a) = V(a) (3.2a)

Q(a) = -V(a) V(a) = f c()dy (3.2b)

0

where fields written as a function of a have () accents and, as such, Q(a) = Q(^(a)).

According to (3.2), the velocity v and shear strain 7 (or equivalently Q) are constant

along characteristic lines identified by the characteristic variable a. The equation of

a characteristic line identified by a is (Chu, 1964)

X2 = a(a)(t - a) (3.3)

where (a) = c((a)) and the characteristics are labelled such that a = t on X2 = 0

so that the characteristic a sets out from the loading surface at t = a. Equation (3.3)

determines a relation

a =a(X2, t) (3.4)

which allows us to convert the solution field from functions of a to functions of

(X2 , t). When characteristics meet, a shock is formed, a becomes multivalued at a

given (X2 , t), and the solution (3.2) is invalid beyond this time as previously discussed

in Sec. 2.4. In this work we are only concerned with the transient nonlinear evolution

of shear waves up to the first formation of a shock.

3.2 Shock formation

We now apply the formulas from the previous section to evaluate the length and time

scales needed for the development of a shock discontinuity. Representative character-

istic lines in the t - X2 plane are shown in Fig. 3-1(a). The slope of a characteristic

line setting out at the loading surface X2 = 0 at time t = a is 1/2(a). Consider two

characteristics described by some a > 0 and a + da > 0, that set out from the load-
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e'(a2) < Of

a2+ da

al

da '(0) > 0

0

(a) Characteristics with slope 1/c on the t - X2 plane, described by (3.3), along which shear

velocity and strain are constant. In regions where the characteristics run away from each

other (6' < 0) the waveform spatially spreads with time and in regions where their separation

reduces (C' > 0) the waveform steepens. In regions where characteristics are parallel (Z' = 0)

the waveform is locally relayed with no nonlinear evolution. When characteristics run into

each other, shear shocks are formed, causing discontinuous strain and velocity fields.

to

002

(b) The earliest time at which characteristics run into each other is the time at which the

first shear shock is formed, i.e tshock -at for the figure shown. At later times (t > tsbock)

the solution using method of characteristics breaks down and jump conditions would have

to be applied at the location of the shock. The location at which the characteristics meet

earliest can also be shown to be the shortest distance from the loading surface at which

characteristics meet.

Figure 3-1: Analysis using characteristics on the t - X2 plane.

27



ing surface within an infinitesimal time separation da, with slopes 1/ a and 1/(a+ da)

respectively; if a' > 0 they can meet and form a shock at a time

to +tc,> a (3.5)

and at the location (using (3.3))

a2
CX,e = a(too a) = - (3.6)

where, from here on, quantities with the superscript a are assosciated with the char-

acteristic line a. Since c(-y) is an even function, we have c(Y) = c(1y). Thus we

have a' = dli where the sign of d ="4 dly(O,t)l is decided by the loading programOiJyl ada dt

(positive for loading and negative for unloading) and has the same sign as r"(lyl).

Thus, the shock condition ' > 0 implies that a strain stiffening material (T"([y|) > 0)

would develop shocks under shear loading and a strain softening material (T"(lY ) < 0)

would develop shear shocks in unloading. This is consistent with the discussion in

Sec. 2.3.

From (3.5) and (3.6), the time and distance taken for characteristics to meet

depend inversely on a' = gi', where d is smaller in magnitude for materials with

weaker nonlinearity of shear response, and 2 = d,O,t) is the strain rate generated atda dt

the loading surface which can be related to the velocity loading rate by differentiating

(3.2b),
, i . dV _ dy(0, t) (7V (a) = -c i.e - -c (3.7)

da dt dt

Accordingly, (3.5) and (3.6) can be written as

2 dc
t~o  a + V,(a) where V = V(') and 0(-y) = -c2 -1 (3.8a)

=~ b (3.8b)V' (a)

Functions of a can be rewritten as functions of the strain and vice versa using

(3.2b), i.e P(a) = F((a)). Thus higher the loading rate (|V'|) and/or stronger
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the material nonlinearity (higher I|), the quicker the characteristics meet and over

shorter distances.

The velocity gradient on a given characteristic a, denoted by v' 2 , can be found

using (3.2a) and (3.3) as function of the time t(> a) or location X2 ,

a8O(a(X 2, t)) -, 9a '() - V'(a) V'(a) (3.9)
2 OX4a 2  aX2  2'X2/c - c c'(t - a) -c

Similarly, the strain gradient, 74 2, can be found using (3.7) and (3.9), as

B9'y(a((X2, t)) 9, a V'(a) aa VX 2  (3.10)
ax2 X 2  aX2  6 aX2 a

Thus, using (3.5) or (3.6) in (3.9) and (3.10), it can be seen that when characteristics

meet the magnitude of local spatial gradients of the velocity and strain become infi-

nite. The local acceleration on a given characteristic a, denoted by a', can be also

written as a function of X2 or t using (3.2a) and (3.3),

a - a -(a (X2 t)) 0,a V'(a) d = V'(a)
19t'- ('/a)(t - a)

(3.11)

and its magnitude is also seen to become infinite when characteristics meet (using

(3.5) or (3.6) in (3.11)).

The earliest time at which characteristics meet is when the first shock forms and

the method of characteristics solution will not hold at later times. Fig. 3-1(b) shows

a set of representative charactersitics starting out at different times ai meeting at

different times tag, the earliest time at which characteristics meet, ta , is the time at

which the first shock forms. Thus, in the general case, the time at which the first

shock is formed is given by

tshock (312)

Using (3.8b), the location at which it forms, denoted by Xshock, can be found as

X shock = X, - where am = arg mint" (3.13)
V 2 ( 9) a[o,o)
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The characteristics that start out at t = am°i are the ones that meet earliest in time

to form a shock. When X' and t' are smooth functions of a, which is true when

the material response and loading are smooth (from (3.8)), we can differentiate (3.6)

and use (3.5) to write

dX"co dt" ~ _ dtc"
°= '(o -a) + C °-1 =2° (3.14)

da da da

Thus the sign of df and d will be the same and ac will also be a minimizer ofdce d min

Xa', that is,

a°in =arg min X, (3.15)
aElo,oo)

Hence, among the locations of intersection of characteristics, the location at which

the first shock forms, Xshock, is also at the shortest distance from the loading surface,

when the loading and material behaviour are smooth.

3.3 Acceleration magnification

While the spatial steepening of a waveform ultimately results in a shock, we would

also like to quantify the nonlinear evolution of the shear wave as it progresses into

the material. One way to do this is to analyse the magnification in acceleration along

a characteristic with respect to the initial imposed acceleration. Physical systems are

finite in length and we might be interested in knowing if a shock can form within

a certain length for a given loading and if not what the maximum magnification in

acceleration or field gradients would be, since higher velocity and strain gradients or

equivalently higher accelerations, can cause damage in the material. Also, real materi-

als are not perfectly elastic, they have some viscosity which has a spatial smoothening

influence on the evolving waveform, hence a pure shock (discontinous fields) is never

achieved, so it makes sense to talk in terms of acceleration/field gradient magnifica-

tion which is a staple of nonlinear wave evolution irrespective of whether viscosity is

included in the modelling.

The magnification in acceleration along a characteristic a with respect to the
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imposed acceleration at the loading surface (a(X2  0, t = a)), can be written as a

function of progressing t or X2 using (3.11),

aa(X2 ) 1 - &a(t) 1
aa(0) 1 - ('/8 2)X 2  -( (a) 1 - O()(t-a)

(3.16)

Using (3.9), (3.10), and (3.16), it can be shown that the magnification in the velocity

and strain gradients along a characteristic a, with respect to their values at the

loading surface, is equal to the magnification in acceleration, M',

1X2)17 2 (X2 ) _ vi2 (X2 ) - M (3.17)
vx2(0) 1 - ('/ 2)X2  '7 7 2(0) va2(0)

Thus, henceforth, whenever we talk about magnification in acceleration, it is tanta-

mount to talking about magnification in the velocity or strain gradients.

From (3.16), it can be seen that when .' > 0 (converging characteristics in the

t - X2 plane as shown in Fig. 3-1(a)), the magnitudes of velocity gradient, strain

gradient, and acceleration, along a characteristic a, magnify as the wave progresses

into the material and become infinite when characteristics meet and form a shock

(seen by using (3.5) and (3.6) in (3.16)). On the other hand, when 6' < 0 (diverging

characteristics in Fig. 3-1(a)), the magnitudes of acceleration and field gradient along

the characteristic decrease, and the wave locally spreads out. If e' = 0 (parallel

characteristics in Fig. 3-1(a)) there is no magnification of fields. For a material
, dc',with linear shear response c' = 0 everywhere and the imposed waveform is

relayed with no nonlinear evolution at the constant linear elastic shear wavespeed

(v(X2 , t) = V(t - X2/c,) using (3.2a) and (3.3)). Since we are considering the loading

of strain stiffening materials in this thesis, the discussion hereon is for2 6' > 0.

From (3.16), the time at which a given magnification in acceleration, M, is

achieved along a characteristic a, denoted by t' , is given by

t =a+AM- where Am=1-- (3.18)
' M

2 Recall that 6' = d/. At zero shear strain, g can be zero, and thus ' can be zero.Tky d-y
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and the location at which it is achieved is given using (3.3) and (3.18) as

82
X = (ta - a) = Am-   (3.19)

c

Note that for 6' > 0 and t < ta, M E [1, oc) using (3.16) and thus AM E [0, 1). The

earliest time at which an acceleration magnification M is realized in the material, tm,

and the characteristic along which it is realized earliest, aM , are given by

tM mi M I min =arg min M   (3.20)
aE[O,oo) aE[0,oo)

and the location at which the acceleration magnification M is realized earliest, XM

is given by (using (3.19) and (3.20))

xQ 62
XM - XA - (3.21)

& am
min min

Using (3.7) we can rewrite eqs. (3.18)-(3.21) as

ta = a + Au1 , tM = min t (3.22a)
V'(a) aE[o,oo)

XM = Am (3.22b)
V(a) a

When the loading and material behaviour are smooth, we can differentiate (3.19)

and use (3.18) to write

dXa dtf dt_
ii ~ + A0 (3.23)

da da da

dXO'Note that for a finite magnification M, we have Am < 1 and thus, the signs of m~

and dtm need not be the same. Hence, in general, a"i need not be the minimizerdami

of Xa and thus, the location at which a given finite acceleration magnification is

realized earliest in time need not be the shortest distance from the loading surface

at which it is realized. The analysis for shock formation from the previous section
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is related to the acceleration magnification analysis by taking the limit M -4 o,

namely,
{to, tshock In, Xshock = lim M, tM, in, XM} (3.24)

00o, M1 mi~s M-+oo

From eqs. (3.9)-(3.11) and eqs. (3.16)-(3.17), it can be seen that a local discon-

tinuity in the imposed waveform (V' -* oc) would mean infinite local acceleration

and field gradients but not necessarily an infinite magnification. By basing our inves-

tigation on analysis of the acceleration magnification (3.16), we distinguish between

two types of discontinuities: those that are evolved due to nonlinearity of the ma-

terial; and those that are imposed by a discontinuity in the loading waveform V(t).

The discussion of shock waves in this thesis refers to the former, which is associated

with the intersection of characteristics, and in turn represents the limit of acceler-

ation/field gradient magnification becoming infinite. The question may arise as to

why one might want to draw the distinction between an imposed and a nonlinearly

evolved discontinuity; in a physical system with even minute viscosity a high imposed

local gradient would be immediately smoothened and a linear material will not try to

steepen the smooth wave into a shock, whereas in a nonlinear material (with ' < 0),

the material would continuously try to steepen the waveform, increasing the strength

of the field gradients/acceleration with time while the viscosity tries to dissipate them

away (Bland, 1965).

3.4 Immediate shock formation

If the very first characteristics (a -+ 0+) meet immediately, then a shock is instan-

taneously formed at (t, X 2 ) = (0, 0) and there would be no need to perform the

minimisation in (3.12) and (3.13). To see when this could happen we first find the

time it takes for the very first characteristics to meet by setting a -+ 0+ in (3.8a).

Without loss of generality, we make the assumption V > 0, y < 0 henceforth. When

33



the initial shear strain is zero, we have <(O) = 0(0), yielding

(3.25)to-= lim )= - lc2 lim Va d°° a-+0+ V'(a) sa-++(l dy
^t-0-

where we have used (3.8a)2 ,3 and (2.12). Since L is bounded near zero shear strain,d'y

the only way for a shock to immediately form is when the initial loading rate, V'(0),

is infinite. However, this condition alone is insufficient, since for common materials

the slope g - 0 may balance the loading singularity, leading to to > 0, as seen by

examining the above equation. The distance at which the very first characteristics

meet is given, using (3.6), as

X0 = c'to (3.26)

The time taken for the very first characteristics to realize an acceleration magnification

M, and the distance at which it is realized, are similarly given by setting a -+ 0+ in

(3.22a) and (3.22b)

(a) dc 
to = Am lim Am lim V' (a)-m a-+o+ V/(a) S a-0+ d-y

^ -+0-

X = cAtcu (3.27)

It can be seen from (3.25) and (3.27) that when the very first characteristics meet

immediately (t = 0), any acceleration magnification M > 1 is also immediately

realized (to = tM 0).

3.5 Solution for a general family of loadings

Our goal is to study the effect of material behaviour and the loading waveform on

the shock evolution. To that end, we choose a general loading profile

- n
V (t ) = V I to)

1I

0 t to
(3.28)

t > to
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0.8 - n=0

0.6- n = 0.5
_V. -- n = 1

0.4- - n=2

- n =10
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t
to

Figure 3-2: Family of loading profiles described by (3.28), V is the ramp velocity, to
is the ramp time and n is the loading exponent. The initial loading rate is infinite for
n < 1.

wherein the shearing velocity is ramped up in a continuous and monotonous fashion

from zero at t = 0 to a ramp velocity V within a ramp time to, after which the

velocity is held constant. Different values of the loading exponent n > 0 reflect

different ramping forms, as shown in Fig. 3-2, and in particular, n = 1 corresponds

to linear ramping where the acceleration is constant during the ramping phase. Note

that as discussed earlier in Sec. 3.3, an infinite initial loading rate (t = 0, n < 1) is

not an evolved shock.

For the loading (3.28), using (3.2a) and (3.2b), the velocity and strain fields can be

seen to be constant for characteristics a > to and thus the characteristics are parallel

and there is no magnification in acceleration along charactersitics a > to (setting

V'(a) = 0 in (3.22a) gives t' -+ oo for t > to and M > 1). Thus we can restrict the

minimisation in (3.20) and (3.22) to the ramping phase

tM = min a + Am , am = arg mint' (3.29)
aE[o,to] V'(a) min aE[O,toI

Henceforth, unless mentioned otherwise, we consider a E [0, to]. The loading is
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smooth in the interval of interest and hence, as discussed in Sec. 3.2, Xhock is also the

shortest distance from the loading surface where characteristics intersect (assuming

smooth material response). Using (3.2b), we can specialize (3.22b) for the loading

(3.28) as (see Appendix A.1)

XM oAm V) = ( (.0XM = to1 t/Q_;c n-1 ,Y ymn - MMin (.0
nV" (--Q(7)) 1 

'Y* m

The time to at which the very first characteristics attain acceleration magnifi-

cation M, from (3.27), can be specialised for the loading (3.28) as (see Appendix

A.1)

to = )lim -(-)in (3.31)
nM 1n - d-y

If po is the order of the Taylor expansion of c for -y 0-, i.e if

dc-

dc -co(-7)P° (3.32)

d-y o_+~~(.yP

where co and po are constants 3 , then using (3.32) in (3.31) yields

1+-

M cs (-Y)(-1-po
ncnV

We can define a critical loading exponent, denoted by nc( 1),

nc = 1 (3.34)
1+Po

so that for n < nc, we have to XM = 0 (using (3.33) and (3.27)2), i.e there

exists a material nonlinearity dependent loading exponent below which a shock forms

immediately irrespective of the ramp velocity and ramp time. For n > nc, we have

t,XO -+ oo (using (3.34) in (3.33), (3.27)2), that is the initial characteristics are

parallel and there is no acceleration magnification along them (there will still be

sco > 0 for a shock to form and po ;> 0 since physically in the linear elastic limit we expect I|
to be bounded.

36



acceleration magnification and shock formation along later characteristics). For n =

nc, the values of tM and X' are finite and given by

C +po toAA(1 +pO) X -c3+po t0A_(1+ p) 335
M Co1+po M 1+po

n=nc 0 n=nc c o

Essentially from (3.27), to and X' are inversely proportional to the limit of the

product V'(a) near zero strain and thus there is a competition between the loading

rate and the material's ability to resist nonlinear evolution decided by I I (the smaller

it is the less nonlinear the shear response and the easier it is for the material to relay

the waveform as a spatially smooth one). For n < nc, the loading rate singularity

immediately overpowers the material's ability to resist shock formation (resisting

characteristics intersecting / acceleration magnification limit from becoming infinite).

The weaker the nonlinearity, the higher the po (from (3.32)) and thus smaller the

ne using (3.34), meaning more powerful/singular loadings (n < n,) are required to

immediately form shocks for materials with weaker nonlinearity.

An essential function required for the minimisation in (3.29) is the derivative ds-,

which for the loading (3.28) can be written as below (see Appendix A.2 for derivation),

dta V)(n - 1)Am dO
S=O(a)=1+NAM+ - R() = c2 (3.36)

da Qn dy

In the next Chapter, we will apply the formulas developed here to investigate transient

evolution of shear waves into shocks for materials with different constitutive responses.
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Chapter 4

Analysis for different nonlinear shear

constitutive responses

In this Chapter, we will use the formulas developed in Chapter 3 to investigate tran-

sient evolution of shear waves into shocks for materials with different constitutive

responses. The Gent (Gent, 1996) and Ogden (Ogden, 1972) models are widely used

for modelling the response of soft solids. We first use an exponential stress model

which is not derived from any hyperelastic strain energy, but is one that greatly sim-

plifies the analysis, and different features of the results therein carry over to the Gent

and two parameter Ogden hyperelastic models (for parameter values that predict

stiffening) analyzed subsequently. We apply the results of our analysis to a physical

problem of shear impact of the brain in Chapter 5.

4.1 Exponential stress model

A simple function for the shear response that captures the nonlinear strain stiffening

reported in experiments and allows for easy analytical tractability for our problem,

is an exponential stress-strain response of the form

r(Ay) =(ekIl'y - 1)sign(y) (4.1)
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(a) Plot of the dimensionless shear stress as a function of the shear strain -y.
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(b) Plot of the dimensionless shear wavespeed as a function of the shear strain y.

Figure 4-1: Exponential stress model (4.1). The k -+ 0 limit reduces to a Neo-
Hookean shear response and -y -+ 0 for any k captures the linear elastic stress strain
response.

where k > 0 is a dimensionless parameter that quantifies the nonlinear stiffening.

This function reduces to a linear elastic response in the limit of 7 -+ 0. However, it

is not derived from any established hyperelastic strain energy function and is simply

being used as a phenomenological model for analytical tractability; many features of

the results carry over to the analysis for Gent and two parameter Ogden hyperelastic

models in the subsequent sections. For the response (4.1), we have r"(|-|) > 0 and
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hence shocks will be formed in loading. Using (2.11), the wavespeed is given by

c(-) = cse2IYI (4.2)

Fig. 4-1 shows plots of the stress response and the shear wavespeed for different

values of the stiffening parameter k.

The derivative of the wavespeed is given by

d - -Le 1 ,sign(y) for -14 0 (4.3)
d-y 2 e2Sg

Thus from (3.32), we have po = 0 and co = csk/2 for (4.3), and using (3.34) we

get nc = 1. Thus, for n < 1, we have tshock tM= 0 and Xshock = XM = 0.

This is not an artifact of the initial loading rate being infinite for n < 1 but instead

represents the limit of acceleration magnification becoming infinite. In the subsequent

sections for Gent and Ogden solids it will be shown that an infinite initial loading

rate can still require a finite time and distance for the magnification in acceleration to

increase or become infinite. Note that this deviation from conventional hyperelastic

models essentially stems from the sign(-) factor in the stress response that allows for

a quadratic term in the stress expansion whereas conventional hyperelastic models

would only allow a cubic term. For n > 1 we have to perform the minimization in

(3.29)2 to find avmin'

Further, we write,

2c(
Q(-y) = V(el - 1)sign(-/) where V = k (4.4)

where we define a characteristic scaling velocity V (not to be confused with velocity

of a characterisitic). As mentioned earlier we assume V > 0, -y ; 0. Using (3.2b), we

have
2 /V

= -Q'(V(a)) = In 1 +- (4.5)
k V,
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Using (4.5), we have for the exponential solid (refer Appendix A.3.1)

6= c, 1 + = V + RV, , =1 (4.6)

Combining eqs (3.36), (4.6) and (3.2b) we have

dt (n- (47)= 1 + A m - (- ) 1 + --- (4.7)
da n V

For n = nc = 1 we have dtm > 0 and thus a,in = 0. Acceleration magnification and

shock formation thus initiate at the leading edge of the waveform for n = ne and

using (3.21) and (3.35)2 we have

(4.8)XM = XM = XM = 2c2 toAM _ L,AM
mA n=nc kVo   m

miun

where we define the loading mach number m(> 0) and the characteristic length scale

L, as
Vom

= * L, = csto (4.9)

Using (4.7) to perform the minimization in (3.29)2 for n > 1, we end up with (see

Appendix A.3.1)

1
rnth n

amin = m

to

n > 1, m >mth

(4.10)

n > 1, 0 < rn < mth

where we have defined the the threshold mach number mth as

(n- 1)AM(n1
mth = Am (n > 1)n + Am

0 < mth < AM(< 1)

The threshold mach number is an increasing function of both the loading exponent n

and the target acceleration magnification M(= 1 - 1/AM). Additionally, mth -+ 0 as

n -+ 1. From (4.10), we see that for loadings with n > 1, the earliest realization of
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target acceleration magnification or shocks can happen either at the the trailing edge

of the waveform (a = to) or in the ramping part (0 < a < to) depending on m and

mth.

Using (4.10) in (3.22b), and the result (4.8), we have XM, the location where an

acceleration magnification of M is realized earliest in the solid, non-dimensionalized

by L, as (see Appendix A.3.1)

0

M

m

n(1 + AM) mth

(n - 1)(n + AM) (m

AM(1)A(2 +m+ -)
n mn

n < 1, m > 0

n = 1, m > 0

n > 1, 0 > mth

n > 1, 0 < m < mnth

The solution is continuous at n - 1+ and at m -+ mh but is discontinuous at

n -+ 1- (see Appendix A.3.1). Setting M -+ oc, that is Am = 1, in (4.12) gives the

non-dimensionalized shock location,

0

1

4n mth

n2 m)

-(2+m +-
n m

n<1, m>0

n=1, m>0

(4.13)

n>1, m;>mth

n>1, 0<m<mth

where mth = (n - 1)/(n+1). The expressions in (4.12) and (4.13) provide us the loca-

tion of first realization of given acceleration magnification and of first shock formation

respectively.

Non-dimensional maps: The result in eq. (4.13) allows us to make non-

dimensional phase maps, such as the representative one shown in Fig. 4-2(a) for
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ce Shock

b0

No shock

Non-dimensional shock location

(a) Representative non-dimensional phase map of the shock location for a given loading

exponent n ;> nc.
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(b) Non-dimensional maps of shock location as a function of the loading mach number m,
for various loading exponents, using the result (4.13) for the exponential stress model (4.1).

For n > 1(nc), a threshold mach number (mth) separates two different functional forms

of Xsh ock/L. In different loading mach number regimes different loading exponents might

delay shock formation.

Figure 4-2: Non-dimensional maps of shock location.

a given loading exponent n > n, that would allow us to determine whether or not

a shock would form within a given distance from the loading surface. The maps can

serve as a guide in design problems. For example, they can be used to estimate the

maximum length one could design for, while avoiding shock formation for a given
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material and loading1 . Similarly they can be used to design loadings that will avoid

shock formation given a material and a length scale, or to choose a material that will

avoid shocks within a given length scale for a given loading. In Fig. 4-2(b), we use

(4.13) to make such maps for different values of the loading exponent n, where we

have the loading mach number m = kVo/(2c,) on the vertical axis and the distance

for first shock formation non-dimensionalized by L. = cato on the horizontal axis. We

can see that Xshock/L, reduces with increasing loading mach number for any n (can

be shown for any n > 1 from (4.13)). For n > 1(nc) there is a threshold mach number

separating different functional forms of Xshock.

Effect of material parameters: We first fix the loading waveform and study the

effect of material parameters on shock evolution. The material response is quantified

by the nonlinearity parameter k, which influences the loading mach number m, and

by the linear elastic shear modulus y, which appears through c, in both m and L,.

Since Xshock reduces with increasing m and reducing L,, higher material nonlinearity

(higher k) and lower y reduce the distance taken for first shock formation.

Effect of loading: Next, we fix the material properties and analyze the effect of

the loading parameters. The loading mach number m increases with V and hence, a

higher ramp velocity reduces Xhock (for a fixed n and to). The ramp time to enters

through L, = c.to, and thus Xshock scales linearly with to for given Vo and n. Thus as

to -± 0, we have Xshock -+ 0 , i.e as the loading waveform approaches a discontinuity,

a pure shock is immediately formed. The loading exponent n seems to have the most

profound and non-trivial effect on shock evolution. For example, it can be seen that

going from n -+ 1- to n = 1(nc) may be the difference between a shock immediately

forming versus at a distance L,/m (see (4.13)). From Fig. 4-2(b), it can be seen that

at a given loading mach number the trend in first shock location with respect to the

loading exponent is non-monotonous. Also, the maps for different loading exponents

intersect each other, meaning that there are different loading mach number regimes

in which different loading exponents could delay shock formation. This could have

implications for design of protective structures, if we know the mach regime we are

'Neglecting reflections in a finite dimensional system.
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Figure 4-3: Exponential stress model (4.1): Maps of the dimensionless distance of
first realization of acceleration magnification M, for varying loading mach number m
and different loading exponents n, using (4.12).

operating in for a given problem, we can select a target waveform (by choosing n)

that could delay the shock formation.

Acceleration magnification: Using (4.12) we can make non-dimensional maps

as shown in Figs. 4-3-4-4, where we have the loading mach number on the vertical

axis and the location of first realization of a given acceleration magnification M, non-
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(a) Maps at different M for n = 1(nc).
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Figure 4-4: Exponential stress model (4.1): Maps of the dimensionless distance of

first realization of acceleration magnification M, for varying loading mach number m,

using (4.12). Curves for XM quickly converge to that of the shock location (M -+ oo)

at higher values of M.

dimensionalized by L, on the horizontal axis. From Fig. 4-3, it can be seen that

XM shows a similar qualitative dependence on the material and loading parameters

as Xshock and the commentary for shock formation carries over. However, when

n > 1(nc) and m > mth, the distance at which a given finite acceleration magnification

is realized earliest in time need not be the shortest distance at which it is achieved
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(see Appendix A.3.1). In Fig. 4-4, we have maps of XAI/L, for two different loading

exponents and a range of increasing M, the limit M -+ oc corresponds to Xshock/L*.

For a given material and loading it takes longer distances for first realization of

higher acceleration magnifications, as one would expect. More importantly, it can be

seen that the evolution from high acceleration magnifications (M - 5) to a shock

wave (M -+ oo) happens over much shorter distances than the distance taken for

realization of those high acceleration magnifications (starting from M = 1). This is

true for any n > 1(ne) though only two loading exponents have been shown here.

If the ramping is linear (n = 1) so that the acceleration imposed at the loading

surface is constant during ramping, maps in Fig. 4-4(a) can also be used to predict

the maximum acceleration realized within a length scale2 . This might be useful for

application to biological systems where the damage tolerance might be quantified in

terms of maximum acceleration.

Post first shock formation: Note that we have restricted our discussion so far

to the onset of shock formation and have not touched on the strength of the shock.

The first shock that forms would be weak, with the jump in velocity and strain fields

being small. Assuming a steady state pure shock ultimately propagates into the

material, the weak initial shock would eventually grow into a stronger shock with a

jump in velocity from 0 to V across the shock, and this would happen over longer

distances for materials with weaker nonlinearity of shear response. The strength of

the steady state shock would be higher for higher ramp velocity V and a consideration

of the shock strength would be pertinent for materials with viscosity as it would be

tougher to dissipate away larger discontinuities. Post the first shock formation we

would have to apply the integral form of balance laws in a small volume surrounding

the shock while using (2.17) in the smooth regions, however f(3) (from (2.17)) will

no longer be constant behind the shock and there will be information travelling along

negative X2 direction as well (see Appendix B for a relevant discussion). The problem

becomes analytically intractable post shock initiation and would have to be studied

numerically wherein numerical viscosity effects are inevitable.

2 Neglecting reflections in a finite dimensional system.
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4.2 Gent model
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(b) Plot of the dimensionless shear wavespeed (same plot legend as for (a)) as a function of

the shear strain -y.

Figure 4-5: Gent model (4.15). The stresses and wavespeeds become unbounded as

the magnitude of shear strains approach the locking limit Q. Smaller the Jm, the

more nonlinear the shear response of the solid.

The popular and widely used Gent hyperelastic model (Gent, 1996) is based on

the concept of limiting chain extensibility where the strain energy density function is

designed to have a singularity when the first invariant of B, reaches a limiting value
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Im = Jm + 3,

W =-t ln 1 - (4.14)
2 Jm

For the simple shear deformation (2.4), this translates to limiting the magnitude of

shear strain to a locking strain of 7ym = v/I as the shear stress keeps increasing

(using (4.14) in (2.7)),

[tJm?

T(-Y) = Jm -72 where Jm = (4.15)

Plots of the shear stress-strain curves for various values of Jm are shown in Fig. 4-

5(a), the smaller the Jm the more nonlinear the shear response. When Jm + 00,

the strain energy density function in (4.14) reduces to that of the neo-Hookean solid,

yielding a linear shear stress-strain response. For finite Jm, we have T"(YI) > 0 and

hence, a solid whose shear response is well modelled by the Gent model will produce

shear shocks in loading. We define a fractional shear strain 6 which is the ratio of the

shear strain and the locking strain 7ym,

j = - = o < 1 (4.16)

Once again, without loss of generality we assume V > 0 and thus ,, 6 ; 0. Functions

of the shear strain f(7,) can be written as f(J) = f(6v7 ) where the tilde superscript

denotes that the argument of the function is 6. Using (2.11), the wavespeed for the

stress response (4.15) is given by

/Jm +72 /1 +62
c(+7) = mV* 2  where V, = c, m ; a(6) 8 = c 2 (4.17)

J* m - 7- 1 - J2

Here, as in (4.4), we have defined a stiffening parameter dependent characteristic

scaling velocity V. Plots of the wavespeed as a function of the shear strain are

showin in Fig 4-5(b) for various values of Jm. All of these curves collapse onto a

single curve when plotted as a function of 6 as shown in Fig. 4-6. We can also write
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Figure 4-6: Gent model (4.15): Plot of the dimensionless wavespeed as a function of
the fractional shear strain 6 = /v 7 , using (4.17).

(3.2b) in terms of the fractional shear strain,

Q(6) -V(a)

For the Gent stress response (4.15), we have

1

Q(6) = V log 6+Vrl I6

(4.18)

(4.19)

where Q is an odd function. We can divide (4.18) and (4.19) by V to write

V where d(6) = log V -+ T7f
S+ V1-+62

(4.20)

where |4(6)| can be thought of as the local mach number dependent on the local

velocity field V(a(X2 , t)) (different from the loading mach number m which depends

on ramp velocity V and is constant for a given loading). Equation (4.18) provides
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a mapping J = 6(a), allowing us to switch function arguments between 6 or a i.e

F(a) = F(J(a)). Thus, we can rewrite (3.30) as

XM = _I
n ( M

where 6M = (a)

which can be evaluated further for the Gent solid as (see Appendix A.3.2)

L,AM K(J)
XM = ~ -()~

nmI (-q(6))" nn
K(J) = - (1 + 62)2

J(3 + 62)(1 - 62)

The loading mach number m and characteristic length scale L, are defined in (4.9).

The derivative of the wavespeed (4.17) is given by

dc(y) V*7(3Jm + 7Y2)

dy (Jm - 72)2 Jm+72

dc(7y) 3c,7y
* as 0-

dy im

Thus, from (3.32), po = 1, co = 3cs/Jm for (4.23), and from (3.34) we have the value

of critical loading exponent as ne = 0.5. Thus, for a Gent solid, even though the

initial loading rate is infinite for 0.5 < n < 1, the limit of acceleration magnification

does not become infinite immediately. It does however for n < 0.5. For loading

exponent values n > 0.5, we have to perform the minimization (3.20) to find a"ji

needed in (4.21). Writing the different functions in terms of fractional strain 6 and

then plugging them into (3.36) we end up with (see Appendix A.3.2)

dt 3(1 - 6 2 ) 2 Am (1 + 62) (n - 1)Am

da 62(3+ 62)2 6(3 + 62) ng(6) -

For n = 0.5(ne), it can be shown that for 0 < 161 < 1, the function O(6) is positive

and hence, a% = 0 = 0. Thus, acceleration magnification and shock formation

initiates at the leading edge of the waveform once again for n = nc, and using (3.21)
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(a) Plot of 2L versus the magnitude of the fractional shear strain for AM, n = 1 using
dck

(4.24). The nature of the plot remains the same for any AM(= 1 - 1/M) E (0, 1) and any

n > 0.5, as 6 -+ 0-, the limit -+ -oo and d changes sign from negative to positive

at the root I()| =So.
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(b) Plots of 6o versus the loading exponent for different values of AM. The dotted lines

represent the asymptotic value of 6o as n -* oo and 60 -+ 0 as n -+ 0.5.

Figure 4-7: Gent model (4.15). Quantities related to the minimization of time taken

for characteristics to meet.

and (3.35)2 we have

Xo= 2c3 toAMJm _ 2L*AMXM = X fsfl n=X c 3V2 3m 2

amin nR
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Figure 4-8: Gent model (4.15): Non-dimensional map of the shock location as a
function of the loading mach number m, for various loading exponents (using Am = 1
in (4.27)). For n > 0.5(nc), a threshold mach number (mth) separates two different
functional forms of Xsho ck/L.. In different loading mach number regimes different
loading exponents might delay shock formation.

For n > 0.5, the plot of vs 161 is qualitatively similar to the plot in Fig. 4-

7(a), with a zero, 6o E (0, 1). That is, for |61 < oo, the derivative d is negative, for

161 > Jo, it is positive and is zero at 1l1 = 6o. Thus if the loading mach number is high

enough such that a fractional shear strain magnitude of 6o is realized at the loading

surface during the loading, then 6L will bes-60 . We can evaluate the threshold

mach number mth, which is the minimum value of the loading mach number required

to realize a fractional strain magnitude of o during loading, by setting mth = )

using (4.20) (note that Jo > 0). When m < mth, the loading is not high enough to

generate fractional strain magnitudes greater than or equal to 6o and since I& < 0

for lo| < oo, the minimizer oL would simply be the largest (in magnitude) fractional

strain realized. This would correspond to the strain state at the end of ramping when
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|ql reaches m in (4.20). Thus,

for n > 0.5 ,6ma=- 60 mn > mth (- 4(60)4.6

4-'(M) m < mth

Hence, once again, for n > nc, depending on the loading mach number and threshold

mach number, earliest realization of a shock or given acceleration magnification can

happen at the trailing edge (6(to) = -4 1 (m)) or the middle of the ramping part of

the waveform. Plots of 6o as a function of the loading exponent n for different values

of Am are shown in Fig. 4-7(b), it can be seen that 6o -+ 0 as n -+ 0.5. Also, 60

is higher for higher acceleration magnification for a given loading exponent n > 0.5,

and for a given acceleration magnification, 6o is higher for higher n.

Plugging (4.26) into (4.22), and using the result (4.25), we obtain the solution for

non dimensionalized XM for Gent solids (see Appendix A.3.2),

0

2

3m2

XM
L* AM K(-6o(AM,n))

1 n-i

ni m- mth

K|1()

n mn

n<0.5, m>0

n=0.5, m>0

(4.27)

n > 0.5, m > mth

n > 0.5, 0 < m < mmth

where m th 4(6 o(AM, n)) and 6 0(AM, n) is the positive root of O(6) in (4.24). Setting

AM = 1 gives the expressions for Xshock/L* for the incompressible Gent hyperelastic

solid. Once again it can be verified that the only discontinuity in the solution space

is in moving from n -+ nc- to n, (0.5 for Gent solid).

The results for a Gent solid are shown in Figs. 4-8-4-10 and can be seen to be

exactly similar in nature to the results for the exponential stress model except the fact

that nc is now 0.5 instead of 1 and thus shocks are immediately formed for loadings
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Figure 4-9: Gent model (4.15): Maps of the dimensionless distance of first realization
of acceleration magnification M, for varying loading mach number m and different
loading exponents n, using (4.27).

with loading exponent n < 0.5 and the threshold mach number separating different

functional forms of the non-dimensional evolution distances comes in the picture for

n > 0.5. Increasing material nonlinearity (lower Jm instead of higher k) once again

hastens shock evolution and other observations made for the results of the exponential

model carry over.
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Figure 4-10: Gent model (4.15): Maps of the dimensionless distance of first realization

of acceleration magnification M, for varying loading mach number m, using (4.27).

Curves for XM quickly converge to that of the shock location (M -+ oo) at higher

values of M.

4.3 Ogden model

Another popular hyperelastic energy function commonly used to model incompressible

soft solids is the Ogden model which is a multiparameter model expressed in terms

of the principal stretches A2, which are the square root of eigenvalues of B, and
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(b) Plot of the dimensionless shear wavespeed as a function of the modified shear strain 6.
For moderate strains, the approximation of the shear wavespeed profiles as a function of the
modified shear strain collapse on a single curve described by (4.34), which approximates the
material response well over larger ranges of the modified shear strain for higher N.

Figure 4-11: Ogden model (4.30). The response is stiffening for N > 2 while the
value N = 2 recovers the neo-Hookean limit.

material constants y, and N, where p = 1, 2,3..., P. For an incompressible material

A3 = 1/(AlA 2 ) and we have the strain energy density function (Ogden, 1972),

P

W (, ) = p + A + ANPANp - 3) (4.28)

p=1 P



where the linear elastic shear modulus is given by

1N
y = 2E p N (4.29)

p= 1

The Ogden model allows for a large number of parameters that can be chosen to fit

different experimental stress-strain curves. Here we use the two parameter Ogden

strain energy function for our analysis, i.e P = 1, such that N = N1 and P =

p1/2 are the two independent material parameters that qualify the stress response

of the material. The nonlinearity of the shear response is captured by the stiffening

parameter N and the shear response is given by (using (4.28) in (2.7))

2p (Ai - AN )2 +4
T(-y) = -- 4+72 where A,   2 (4.30)

The sign of N makes no difference to the shear stress response and hence we consider

N > 0 here without loss of generality. Plots of the shear stress as a function of the

shear strain are shown in Fig. 4-11(a), for different values of the material parameter

N. The value of N = 2 yields the neo-Hookean shear response. We restrict our

attention to materials with N > 2 for which the response is stiffening. The shear

wavespeed for (4.30) can be found using (2.11), as

c(,,)=C / ( A +) (4.31)
4+ y2 2p-

The large deformation Ogden model is not amenable to find closed form solutions

using our analysis as the integration of c(y) is not analytically tractable (to find

Q(-y)). With the goal of demonstrating similarity of results to the other stress models

we make the assumption of moderate strains (such that _2 » _ 4). This allows us

to use series expansions about -y = 0, allowing for closed form expressions with the

caveat of loss of accuracy at larger shear strains. Accordingly, the wavespeed (4.31)
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and its derivative can be expanded about y = 0 as

N 2 -4 dc N2 _4
c(-Y) e cS + 2 , dc , 8 (4.32)

16 d 8

Once again we assume V > 0, -y < 0 and from (3.32) we have po = 1, co = c,(N 2 
-

4)/8 for (4.32). Therefore the critical loading exponent ne from (3.34) is once again

0.5, similar to the Gent model. Thus for loading exponents below 0.5, shocks are

immediately formed for the stiffening Ogden solid (this result does not require the

assumption of small/moderate strains). Further, Q(-y) can be approximated as

(N2 _-4)2
Q(-Y) ?CSY ( + 4) .72 (4.33)

We define a modified strain 6 = -y/N2 - 4/4, and functions of 6 once again

have a tilde accent. Functions of the shear strain f(y) can be written as f(6) =

f(46/vN2 - 4) and thus the wavespeed from (4.32) becomes

2(6) _ cS(1 + 62) (4.34)

Plots of the wavespeed as a function of the modified strain for different material

stiffening parameters N > 2 are shown in Fig. 4-11(b), at moderate values of 6 all

the curves match well with the approximation (4.34). It can be seen that the more

the stiffening (larger N), the larger the range of modified strain 6 over which the

approximation for wavespeed (4.34) is good'.

We can use (4.18) and (4.21) for the Ogden solid as well, except that 6 is now the

modified strain and Q is given by

(6¾ 4c,Q where V =   4 (4.35)
( 63 veN2_4

Equation (4.18) once again provides a mapping F(a) = F(6(a)). We can divide

4At higher N larger range of 6 still corresponds to low/moderate shear strains.
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(a) Plots of 6o, the positive root of (4.38), versus the loading exponent for different values
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(b) Non-dimensional map of the shock location as a function of the loading mach number m,

for various loading exponents (using Am = 1 in (4.40)). For n > 0.5(ne), a threshold mach

number (mh) separates two different functional forms of Xshock/L. In different loading

mach number regimes different loading exponents might delay shock formation.

Figure 4-12: Ogden model (4.30) for N > 2.

(4.18) and (4.35) by V to write

Q(6) V V 63
q(-) - 6 = where q(6)=6+- (4.36)

V V V 3
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and 14(6)1 is once again the local mach number, different from the loading mach

number m. We can specialize (4.21) for the Ogden solid as (see Appendix A.3.3)

L.AM Kog(6 )
XM1 n-1

nm- (-q(J)) n

Kog(J) = (1+J2)3
26

where m and L, are defined in (4.9).

Evaluating all the different functions in terms of 6 and substituting them in (3.36)

we end up with (see Appendix A.3.3)

dtM 3AM AM 2 )2 (n.--1)AM
2 = (+) = 1 +da 2 262 2J2 (3 + 62) n

(4.38)

For n = 0.5, once again we can verify that dt= is positive for all 6 and thus,

aAi = 6ni = 0. Hence, acceleration magnification and shock formation initiates at

the leading edge of the waveform form for n = nc, as before. For n = 0.5(nc), we

have using (3.21) and (3.35)2

XM - = - 16c3 toAM _ L*AM
M a M n=nc (N2 - 4)V2 M2

(4.39)

For n > 0.5 the plot of dtm vs 161 resembles that in Fig. 4-7(a), with a zero,da

6o E (0, 1). The discussion of 6o for the Gent solid holds for the Ogden solid as well

except 6 here refers to the modified strain instead of the fractional shear strain and

Fig. 4-12(a) shows the plots of 60 for an Ogden solid. Similarly (4.26) also applies for

the Gent solid where 4 is now given by (4.36). Plugging (4.26) into (4.37), and using

the result (4.39) we obtain the solution for non dimensionalised XM at moderate
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strains for stiffening (N > 2) Ogden solids (see Appendix A.3.3),

0 n < 0.5, m > 0

1
M2 n=0.5, m>0

XML* Am Kn) (4.40)L* Kog (-o(ANm, n))
_-1 n > 0.5, M > mth

nmn

Here nth= 4 60(AM, n)) and 60(AM, n) is the positive root of O(6) in (4.38). Setting

Am = 1 gives the expressions for Xshock/L* for the incompressible stiffening Ogden

solid. Once again it can be verified that the only discontinuity in the solution space

is in moving from n -+ nc- to n, (0.5 for Ogden solid). The results for a stiffening

Ogden solid (at moderate strains) are shown in Fig. 4-12(b) and Figs. 4-13-4-14,

and are similar in nature to the results for the Gent model. A larger N corresponds

to higher material nonlinearity similar to a larger k in the exponential stress model

and smaller Jm in the Gent model. All the observations made for the results of the

Gent model also hold for the stiffening Ogden model when the strains are moderate

(72 >> /4). The general nature of results might hold for large strains as well though

closed form solutions were not attainable here.
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Figure 4-13: Ogden model (4.30) for N > 2: Maps of the dimensionless distance of
first realization of acceleration magnification M, for varying loading mach number m
and different loading exponents n, using (4.40).
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Figure 4-14: Ogden model (4.30) for N > 2: Maps of the dimensionless distance of

first realization of acceleration magnification M, for varying loading mach number m,
using (4.40). Curves for XAI quickly converge to that of the shock location (M -+ oo)

at higher values of M.
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Chapter 5

Example application to shear shock

formation in brain tissue

1.51F

U,

0

1

0.5

0

n = 1,to = 100 ms

-p = 0.3 kPa, N = -26
-p = 1.1 kPa, N = -21

10 20 30
Xshock(Cm)

40

Figure 5-1: Shock formation in the brain: Plot of the shock formation distance for the

two parameter Ogden model (4.30), as a function of the ramp shear velocity V, for a

linear ramping (n = 1 in the loading (3.28)) and ramp time of 100 ms, using (4.40).

The two curves shown are the maximum and minimum shock formation distances

for the range of Ogden parameter values reported in Budday et al. (2017) for simple

shear loading of the human brain. For the range of Vo shown, the magnitude of shear

strains generated is below 0.5.

Having quantified shear shock evolution for different hyperelastic models in the

previous chapter, we now apply our results to a physical problem of interest. Recently,
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Espindola et al. (2017) demonstrated the evolution of smooth shear waves into shear

shocks in a porcine brain, showing an acceleration amplification factor of up to M 1::::

8.5 at the shock front; the magnification is not infinite as in our study, since the

brain tissue has some viscosity. Nonetheless, it was seen in the previous chapter

that high magnifications of that order are attained practically close to the shock

location. In Espindola et al. (2017), it was suggested that shear shock waves could be

a previously unappreciated mechanism that could play a significant role in traumatic

brain injuries (TBI). To investigate shear shock formation in the brain using our

results, we idealize the brain as an isotropic hyperleastic body and neglect boundary

effects and reflections. We also ignore viscosity and any spatial variation in properties.

The Ogden model is the most commonly used hyperelastic model for constitutive

studies of the brain and consequently we will use our results for the two parameter

Ogden model.

The mechanical response of the human brain was carefully and systematically

studied across different brain regions for various loading modes in Budday et al.

(2017) and it was demonstrated that popular hyperelastic models are unable to accu-

rately capture the stress response across different loading modes with a single set of

parameters. However, we are primarily interested in the shear response of the brain

and we make use of the parameters reported for the simple shear testing. For the two

parameter Ogden shear response (4.30), averaged parameter values for P in the range

of 0.3 - 1.1 kPa and for N in the range of -26 to -21 were reported for different

regions of the brain. We take the density of the brain to be po = 1000 kg/m 3 which

yields c, in the range of 0.5 - 1.1 m/s. Assuming that a shear impact of the brain

can be represented by the loading (3.28), we consider a linear ramping (n = 1) from

zero velocity to an impact velocity Vo, over an impact time of to = 100 ms. Using

these loading and material parameters in (4.40), we can make a plot of the shock

formation distance as a function of the impact velocity as shown in Fig. 5-1. The two

curves shown are for the material parameter values, from the range of reported values,

that predict minimum and maximum shock distance. Thus, for a given impact we

have a range of distances within which a shock is expected to form for an arbitrary
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brain sample. As discussed in the previous chapter, a brain that has a lower yt and

higher nonlinearity parameter (N), evolves a shock over a shorter distance for a given

impact. Since the Ogden parameter values were reported for tests conducted in the

strain magnitude range of 0 - 0.2 and since our results for the Ogden solid are more

accurate for moderate strains we cap the curves at impact velocity values that would

generate a shear strain of' 0.5. Shock formation distance for any impact time can be

obtained by remembering that the shock formation distance scales linearly with to.

We can readily use Fig. 5-1 in a design problem such as that of a helmet to avoid

shear shocks in the brain. Since the average length of the human brain is 15 cm,

from Fig. 5-1, we find a conservative 2 maximum velocity of ~ 6 cm/s that can be

safely transferred to the brain after dissipation by the helmet and the skull, to avoid

shear shocks. Also, the order of shock distances predicted by our analysis for the

brain tissue is in agreement with the experimental values in Espindola et al. (2017)

where shocks (peak acceleration magnification) occur at distances of the order of 1

cm for shear velocities of the order 1 m/s and time periods of the order 100 ms.

These results also suggest that experiments conducted on small brain samples in TBI

research might not be able to capture shear shocks that could evolve in a real brain

subjected to the same loading. Nevertheless, the non-dimensional maps can be used

to rescale the loading waveform so that similar features of the shock evolution can be

observed at smaller scales. Finally, it can be clearly seen that larger brains are more

susceptible to shear shocks.

'Maximum value of Vo = Q(y = 0.5).
2 Viscosity would allow for higher impact velocities without shock formation.

69



70



Chapter 6

Concluding Remarks & Future Work

6.1 Conclusions

The nonlinear evolution of a loading shear wave into a shear shock was studied for

incompressible strain stiffening hyperelastic solids using the method of characteristics

in the framework of large deformation elastodynamics. A general family of loading

waveforms was considered and closed form solutions for the distance of first shock

formation or realization of a given acceleration magnification were obtained for three

different stress models. The results were encapsulated in non-dimensional maps,

formulated in terms of a loading mach number and the loading exponent. The maps

can guide design selection of loading, and material parameters and dimensions, to

avoid shock formation. The singularity of the loading required to immediately form

shocks was quantified through a critical loading exponent. For weaker loadings a

critical mach number, dependent on the loading waveform shape exists above and

below which the functional forms of the evolution distances are different. Larger

loadings over shorter times and/or higher material nonlinearity lead to shock evolution

over shorter distances. The dependence of the shock evolution on the load profile

shape was shown to be non-trivial and different shapes were seen to be better at

delaying shock formation depending on the loading mach regime. We hope that our

non-dimensional maps can guide design of protective structures and also that this

work will serve as a stepping stone for future studies of nonlinear wave evolution in
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solids in the large deformation elastodynamics framework.

6.2 Future Work

Future directions include extension to coupled longitudinal and shear waves in com-

pressible solids, inclusion of viscosity, and studying the evolution post shock initiation

(see Appendix B). Also of interest would be the inclusion of anisotropy, heterogeneity,

and boundary effects in the analysis, as they might become relevant for shear shock

evolution in biological systems.
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Appendix A

Solution for loading

A.1 Derivation of XM, toM

We have from (3.27),

to = 2- c li V'(a) d
oa-* dd y

For the loading (3.28), using (3.2b)

QQ., =
_ nV0  aan-Q(7 = Vo -

to

Thus

V'(a) = )

Substituting (A.3) in (3.22b), we obtain

nWo Q_(-y
n-1

a < to (A.3)

XM - Am c toAm $c_
n-o V7 1 

7min

to Vn 0 'mn

(A.4)

Substituting (A.3) in (A.1) and using Q(-y) -+ c,y as -y -+ 0, we can write (we assume

V > 0,y 0),
1+ 1

t "s -d (toAm (C -)
yo -Y-o- d-Y

(A.5)
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a < to (A.2)
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A.2 Derivation of dt

We have from (3.22a)

tou =a+AM Vm m V'(a)

Thus

dt =' A V"(a)A
da =1+V'(a) (V'(a))2

For a E [0, to] and the loading (3.28), using (3.2b) we can write

V"(a) _ n- 1 _ n- 1

(V'(a))2 nV(a) ng

We also have using (3.7),

d' '^7 _ -1
V'(a) V'(a) d-y

Thus the derivative dtm for a E [0, to] is ,

dt a lA ' (n - l)AAI

->dt = O(a) = 1 + NA + n
R(-) = d)c-1

dy
(A.10)

-- 21'dc)-   - diC-1 __ 2 ( d (dcUsing 0i$-Y) = C~ , we have R(-) 2 - C\ ) and thus
d-y d-y d y

G(-) = 1 + 2AM ~ CAM d2c (n - 1)AM c2

(LS)2dy 2 n Q (A.11)

A.3 Application to material models

A.3.1 Exponential model

In this section y < 0,

dc = - e-k

dy 2 ( = Ve- R(-)= dOc 1  1
d (y

(A. 12)
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' a E [0, to] (A.8)

(A.9)
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From (4.5) we have e- = 1+ V/V, which along with (A.12) yields (4.6).

Evaluation of of' for n > 1: Differentiating (4.7) we have

(A.13)d 2M - M V(a)
da2 ny2

Substituting the loading (3.28) for a < to in (A.13) we obtain

d2 tM, (n - 1)AMV*

da2 aV
(A.14)

Thsd2 t" id'47 nd(.8
Thus d   > 0 for n > 1 and a < to, and thus we can find ae" using (4.7) and (3.28)

as

dt= V_(a_ ) a (n - 1)AMdt =- 0~ -> ~ = m anf= n=+mth
da su V to n+ AM

m E [0, to]

(A.15)

Equation (A.15) has a solution ayn E [0, to] for n > 1 only if the loading mach

number m is greater than or equal to mth. For m <mth, amin o sinCe <0 for

a E [0, to] (Using V/V< m < mth in (4.7)). Using (A.15), for m > mth,

amin = mthmi (m i
(A.16)

Evaluation of XM/L* for n > 1: Substituting (4.6) and the loading (3.28) for

t < to in (3.22b) we obtain

(V(a"i) + V*)(1 + V(anin) +V(aki) +
XM = Csto AM nVo (ain CstoAM mi n 1

(A.17)

From (4.10) and (3.28), for n > 1 and m < mth, we have ami = to, V(aMin) = Vo,
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and thus (A.17) becomes

XM =CStoAM +
n

1
m

From (4.10) and (3.28), for ni

XM Amn i
(1- M n--- 2 + m+-- for 

L, n m

frn> 1 and m > mth we have aM

n> 1, m < mth

(A.18)
1

aM = (mth"
n =to( -mim

V(a",n)/Vo =rmth/n, and thus (A.17) becomes

+ Mh 2mth n)(1- mth2(m XM n(1+ AM 2 _mthn
XM = L*AM --T=--

n mr~th L, (n - 1)(n + AM) m

(A.19)

where we have used mth n+AM

Solution continuity: We demonstrate the continuity of the solution (4.12) at

n 1+ and m -* m-. We have mth = (n-1)AM and thus for n -+ 1, mth -+ 0. This

means that only the m > mth case for n > 1 is relevant for n a 1+ in (4.12). Setting

n m 1+ for that case recovers the n = 1 case,

XM n(1 + AM) 2  (n-)Am n
=lim Am

L, n-41+ (n - 1)(n + AM) (n + AM)m/ m

Setting m = mth in the n > 1, m > mth case in (4.12) yields

XM n(1 + AM) 2

L, (n - 1)(n + AM)

(A.20)

(A.21)

Setting m -+ m- in the n > 1, m < mth case in (4.12) recovers (A.21),

XM AM (mth +1)2

L, n mth

n(1 + AM) 2

(n - 1)(n +MA)

Shortest distance of realization of acceleration magnification: Let us denote

the shortest distance from the loading surface at which a given magnification M is
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realized by Xs. For n < nc, XM and X' are both zero. For n > ne, m < mth, the

derivative d is always negative in the ramping interval (Using V/V, < m < mthdo

in (4.7)) and thus using (3.23), is also negative during ramping. Thus the

characteristic a = to will minimize both t" and X' and hence once again XM

and X' are equal. For n = nc, the derivative d is always positive and greater

than one (from (4.7)) and hence, using (3.23) dxf is also always positive. Thus the

characteristic a = 0 will minimize both t" and Xa, and thus XM and X' are equal

once more. For the case n > nc, m > mth, the distances XM and X8 will not be

the same. The same observations made here can be verified for the Gent and Ogden

models as well where nc will be 0.5 for them.

A.3.2 Gent model

Evaluating the different expressions for the Gent solid,

1O _r /Jm +Y 2

C (-) V
po ay Jm - y 2

Q(-y) =V (2tanh1( y

(/Jm+y 2 +yV- v/2

V log

1+ 2 +6v2
Q(6) V"log + 2

q(6)V/ -+ 2 + lo __________

V* 6+ 1+62

dc(y) - - CS V3y (3Jm + 72)

d-y J- -y(J - 2 ) 2 /Jm + 2

c2 ('y) V(Jm + Y2) 2

fi(Y) -(3Jm + 72 )

V/1 + 62
g() + c2 )

log (+ -\ m Jr y

V/-

(A.23)

(A.24)

As y - 0, Q(y) -+ cy

As 6O 0, Q(6) -+ cs/Jm6

c86(3 +6 2 )

' J-(1 _ 6 2 )2 /1 + 62

V(1 + 62)1

6(3 +62)

(A.25)

(A.26)

(A.27)

(A.28)
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db(y) 3c, Ji(72 _ Jm) /Jm +-y 2

d-y "2(3Jm+ y 2 ) 2

R d@b - 3Jm(Jm - 72 ) 2

dy 7 2 (3Jm + y 2 ) 2

(A.29)

(A.30)
-3(1 - 62)2

6 =62(3 + 62)2

Substituting the above expressions in (3.36) and using (4.20) we obtain (O(6)

O(o(a)) = O(a))

dia 3(1 3 +2)2Am
= O(J) =1 - 62( + 2)2

3(1 - J2 ) 2 Am

62(3+62)2

(1 + 62)3 (n - l)V*Am

6(3 + 62 n(6)

(1 + 62)3 (n -

6(3 + 62) n(6)

Using (A.23) and (A.28) in (4.21) we have

AMto
XM = 1

nV;

1

c'toV AM

nVon

C'toV*Am - (1 + 62)2

nV 6(3 + 62)(1 - 62)(Q(6))

K(6)

(-q(6))nl6
min

Using (4.26) in (A.34) we obtain

K(-o(AM, n))

XM Am n-
mth

L* nmi K
MI"n 1~m)

m > mth,n > 0.5

m < mth, n > 0.5

A.3.3 Ogden model

Under the assumptions of moderate strains, for the Ogden model we have

N2 -4 4
c (-) ~ s c 1+ 16 "2 )

, ~ c'(1+ 62)
6N2 -4

4 7
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(A.31)

(A.32)

LAm

nMn

K(6)

(-q(6)) 
6

(A.33)

(A.34)

(A.35)

(A.36)

(SAmin

n-1

(-O~o)) "



N2 -4 3
Q(-) ~cs-Y(1 + 48

Q (6) 63
q(0) = * 6 + 3

dc(y) N2 -84_

d'y = i7 '8

62
,Q(J) =V6 1 + 3 )

v/-N2 - 4
' ()=c'. 2 6

A.37)4c,
* v/-N2-_4(

N 2 -4

d2 c(y) N2 
- 4

Cs
d-y 2 8

(A.38)

c2(-Y) 8c,(1 + N2 -4 2)2

fiA (N2 _1)6
V1( + 62) 2

26

Substituting the above expressions in (A.11) we obtain

AM(1 +2) 3(1 +62)2 (n - 1)AMO(b) = 1 + 2AM - 22 262(3+62) n

+ 3AM AM 3(1622 (n -1)AM

2 262 262(3 +62) n

Using (A.36) and (A.40) in (4.21) we have

XM ~AMtO CstoV*AM -(1+ 62)3

1 (Q )1 2

CtoV, AM

nV n

Kog(6)

_n 6
(-q(6)) n

1
nm

Kog()

(-q(,)) n

Plugging (4.26) in (A.44) we obtain

Kog(-o(AM, n))
n-1

M n
mth

Kog |q-'(m)
n-I

M n

M ;> mtth,n > 0.5

m < mth,n > 0.5
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(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

XM

L*

AM
1

nm"
(A.45)
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Appendix B

Post first shock formation

Consider the loading of an initially undeformed strain stiffening solid by the load

(3.28) so that we have shocks. Let us assume that after a sufficiently long time from

the first shock formation, a steady state pure shock propagates into the material, i.e

there is a propagating velocity and strain discontinuity, with a velocity jump from 0 to

V and a strain jump from 0 to -y across the shock. The momentum balance equation

(2.8) and the integral form of (2.13b), when applied to the case of a propagating pure

shock, give us the jump conditions

I-AT IA H + PO JJ= 0 (B. 1)

where, & is the shockspeed and [f f + - f- denotes the jump in a field f across a

shock, from its value f+ ahead of the shock to f- behind it. Eliminating s in (B.1)

we obtain

[][y = Po[ ] 2  (B.2)

Using -+ T(Y+) = v+ 0, and v- = V in (B.2), and defining the auxiliary function

#(Y) = r(7)T we have

#(7Y) = PoV2  (B.3)

Consider cases in which tshock > to, that is the first shock does not form before the

ramping is completed. Then the largest strain (in magnitude) realized before first

81



shock formation, 71, would be the strain state at the trailing edge of the waveform

where the velocity is equal to V, and is obtained from (using (3.2b), (2.15)1, and

definition of c in (2.11))

Q (-I)) =dy Vo (B.4)
f PO

0

Squaring (B.4) and defining the non-dimensional auxiliary function x(-) = (fV T'(Y) dY) 2

we obtain

X(Y) = PoVo2  (B.5)

For a general strain stiffening solid the functions X(-/) and #(-y) are different, and

hence, from (B.3) and (B.5) the strain state at the trailing edge of the evolving

waveform, 'y1, is different from the strain state behind a steady state shock. As

mentioned in Sec. 4.1, when applying the method of characteristics solution (2.17)

behind the shock, f(#) is not constant and the # characteristics come into play,

meaning that there is also information traveling back to the loading surface from the

growing shock. This might facilitate the change in strain state from -y1 to - for

possible steady state shock propagation but this is subject for future research. See

Ch. 4 in Hamilton et al. (1998) and the references therein for a discussion on reflection

of waves by shocks in gas dynamics. There, it is demonstrated that for weak shock

propagation the "reflected wave" is extremely small and can be neglected.
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