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Abstract

Heterogeneity among cells affects function and dysfunction across many complex biological
systems. This heterogeneity is particularly important in cancer biology, where variation in the
cells composing tumors and their surroundings can affect a patients' response to treatment and
subsequent survival. While current methods, such as bulk RNA-Sequencing, are incredibly
powerful, they typically measure average phenomena, mischaracterizing the distribution of
behaviors within a system. Single-cell technologies - single-cell RNA Sequencing in particular -
have been foundational in elucidating cellular heterogeneity from first principles, but there are
limitations to their application for studying cancer and its response to treatment. Here, we detail
efforts to address current needs in profiling treatment responses of tumors and their
microenvironments at single-cell resolution.

Specifically, we characterize the underlying cellular diversity of tumor microenvironments,
investigate the effect of drug treatment in specific cellular compartments, identify proxies of
response in accessible cellular reservoirs, and investigate orthogonal cellular readouts of
response. We first apply single-cell RNA Sequencing to study heterogeneity in metastatic
melanoma, detailing heterogeneity and potential sources of resistance in cancer cells of profiled
patients. Next, we study the effect of drug treatment in leptomeningeal carcinomatosis (LMD),
extending previous strategies to utilize pre- and post-treatment patient sampling. We
demonstrate the effect of immunotherapy in this microenvironment, and use longitudinal data
from specific patients describe the evolution of cancer cell response to treatment. We next
expand liquid biopsy profiling to other compartments, specifically circulating tumor cells (CTCs)
in blood. We describe the development of a microfluidic device that captures murine CTCs with
minimal sampling. We perform single-CTC RNA-Sequencing to study their response to
treatment and relationship to their primary tumors. Finally, we develop a device that
simultaneously measures the mass, growth rate and transcriptome of single cells, and use it to
investigate the transcriptional activity of cancer cells that continue to grow after therapeutic
challenge. Together, this body of work represents contributions towards extending single-cell
profiling to understand how cells in naturally occurring and model cancer microenvironments
respond to drug treatment.

Thesis Supervisor: Alex K. Shalek

Title: Pfizer-Laubach Career Development Associate Professor of Chemistry
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Lay Summary

Cells are the building blocks that make up all biological systems and their microscopic functions
can influence the macroscopic behavior we observe in tissues and organisms. In particular, the
dysfunction of a tumor - the spontaneous and uncontrollable multiplication of particular cells in a
tissue - is driven not only by cancer cells, but also by immune cells and other non-diseased
cells in their surroundings that can aid or hinder cancer progression. Specifically, the response
of a tumor after treatment with drugs that eradicate cancer cells is influenced by how the
individual cancer and surrounding cells react to the treatment.

While cells tend to behave according to their "type" (immune, cancer, tissue, etc.) they
sometimes exhibit subtle variation in function, even from the same population. This variation can
be incredibly important because the different "subpopulations" of cells can have different roles
and contribute to macroscopic behavior in different ways. In cancer and cancer treatment, for
example, a drug may only target certain subpopulations in a tumor, and new groups can arise
which adapt to treatment in unpredictable ways. Resolving, identifying, and cataloging this
variation and its effects is important to fully understand a biological system, and in the case of
cancer, how to properly treat and manage it.

One strategy for identifying the variation among individual cells is to collect them one at a time
and profile them independently. This strategy, known as single-cell biology, has challenged our
previous understanding of how cells work together, perform tasks, and respond to stimuli. In
particular, single-cell RNA Sequencing, which measures the RNA transcripts from individual
cells in order to infer their behavior, allows us to investigate the expression level of all the genes
in a cell rather than just ones we target. This technique has had a profound impact on a number
of fields, from immunology to neuroscience to cancer. However, applying single-cell RNA
Sequencing to study cancer treatment and its effects is complicated by unique problems. For
example, we often want to sample the same tumor before and after treatment, which is hard to
do with samples from patients. Additionally, many samples contain too few cells to apply
existing single-cell methods (such as liquid biopsies from the clinic - often the only ones
available). In cases where we want to study rare cell populations, we must detect, capture, and
enrich them in a single-cell manner. Finally, we sometimes want to use RNA Sequencing
together with other techniques, and the development of these multimodal tools is still underway.

In this thesis, we describe work that addresses some of the aforementioned needs in single-cell
applications to cancer and cancer therapeutics. We begin with one of the first applications of
single-cell RNA Sequencing to study patient tumors, particularly surgical resections of
metastatic skin cancer, or melanoma. In our investigations, we discovered that the strongest
variation of cancer cells is primarily driven by which patient they came from, while the variation
in non-cancer cells is driven more by the type of cell. Furthermore, even within a patient, we find
that cancer cells exhibit a range of functions. We focused on two pathways, which were
previously thought to be mutually exclusive in any given tumor. We discovered that although
individual cells tend to activate only one of these pathways, a given tumor could possess both
subpopulations of cells in their tumor, which could be responsible for resistance to drugs that
target only one pathway at a time.

We next used pre- and post-treatment single-cell measurements to study the effect of cancer
treatment, specifically in patients whose cancer has metastasized to their cerebrospinal fluid
(CSF) and surrounding brain membranes, a complication known as leptomeningeal disease
(LMD). Here, we used a new nanowell-based technology that was designed to perform single-
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cell RNA Sequencing from small numbers of cells, such as the clinical liquid biopsies used in
this study. Our efforts represent the first single-cell exploration of LMD, and we extensively
catalog the cell types and states that are present in the CSF microenvironment of this disease.
Furthermore, our study was paired with a clinical trial of a novel immunotherapy drug, which
sought to reactivate a specific immune cell known as a CD8+ T cell to attack cancer cells in
LMD. Our single-cell investigation was able to detail the effect of this drug on the abundance
and behavior of its target cells, demonstrating its effectiveness in the CSF. Finally, we were able
to use multiple samples from a subset of these patients to study the evolution of their disease in
response to the drug, and hypothesize potential mechanisms that drove these responses.

In the last two chapters, we describe two new devices that are able to capture and measure
single cells, and enable novel, powerful investigations of their biology using single-cell RNA
Sequencing. First, we extend our previous work using CSF liquid biopsies as proxies for
treatment response to blood. We develop a device to capture rare circulating tumor cells (CTCs)
in the blood of mice with cancer. This device draws blood from the circulation of a mouse,
enriches enriches and collects CTCs, and then returns the blood back to the same mouse,
thereby only removing a very small volume of blood and leaving the mouse in a similar overall
health. We use this device to study the response of CTCs to drug treatment, and compare the
biology and response of CTCs to that of the primary tumor in the same mouse. Finally, we
consider new strategies that measure other features of single cells along with RNA to develop a
more complete picture of cellular function. We apply a device that can measure the mass and
rate of mass accumulation of an individual cell, and equip it with the ability to simultaneously
capture that cell for single-cell RNA Sequencing. This kind of measurement provides a window
into a cell's function from both a gene expression and physiological perspective at the same
time. We use this tool to predict which cancer cells from a patient-derived cell line of
glioblastoma will continue to grow after being treated with a drug, and we determine which
genes and pathways are active in cells that continue to grow in the presence of drug relative to
cells that stopped growing.

Together, this body of work aims to address some of the complications of using single-cell
techniques to study the response of cancer to drug treatment, and provides new methods to
continue learning how variation in cancer (and other) cells can change the response of a tumor
to treatment.
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Chapter 1: Introduction

Heterogeneity among individual cells affects function and dysfunction in complex biological

systems across a variety of different contexts, including immune', differentiation2 , embryonic3

and neoplastic4 '. Resolving and investigating this variation is vital to identifying the cell types

and states that compose a cellular ensemble 58, exploring the molecular drivers that underlie

macroscopically observable phenomena,9 and understanding how cellular components work

together in response to changes in their environment or external stimuli10 .

Cellular heterogeneity is of particular concern in cancer biology, where variation in the malignant

and non-malignant cells composing tumors and their surroundings can affect cancer patients'

response to treatment and subsequent survival". For example, genetic and phenotypic variation

of cancer cells in the tumor microenvironment can complicate the sensitivity of an entire tumor

to chemo-10, radio-1 2, or immunotherapy 1 3 14. Furthermore, the resident non-malignant cells can

also influence tumor response to therapy through direct (cell-cell communication) and indirect

(cytokine signaling) interactions that modulate cancer cell phenotype15'6. While recent studies

have demonstrated that the underlying variation of cells in the microenvironment can modulate

resistance to many forms of therapy5'1 0 14 '7- 19, the mechanisms driving these phenomenon have

remained difficult to characterize in both human and model systems.

Among the most powerful strategies for profiling cellular phenotype is to capture and sequence

the RNA transcripts of a cell, providing a window into its instantaneous gene expression20. By

detecting the transcript-level expression of all possible genes in a sample, RNA-Sequencing

enables novel discovery of active genes and pathways in a manner that targeted profiling

methods (such as quantitative polymerase chain reaction (qPCR), mass spectrometry, and
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microscopy) do not. Since its development and widespread adoption, RNA-Sequencing has

been an effective tool to detail active pathways in a biological system, and has even been

applied across numerous clinical settings, such as testing for HIV infection2 12 2 and drug efficacy

in cancer . While transcriptomics is incredibly powerful, these measurements are typically

performed in a bulk setting, detecting the average abundance of a transcript across many cells.

By measuring the average phenomena, this and other bulk techniques may mischaracterize the

distribution of behavioral states within a system or even mischaracterize them altogether2.

Average misrepresentation is particularly problematic when studying the effect of perturbations,

such as drug treatment, as changes in subpopulation representation, rare or transient

phenotypes, or other unappreciated diversity are lost. Even while isolation methods, such as

flow cytometry, can homogenize analyzed cells into well-defined, seemingly "identical"

populations, heterogeneity persists and complicates the interpretation of their bulk

measurement27

Over the past decade, technologies have been developed that can resolve cellular identity and

function at the single-cell level. These tools have been foundational in elucidating genetic,

epigenetic, transcriptomic, and proteomic heterogeneity in biological systems 27-29 (see Chapter

2). Single-cell RNA sequencing7,27, in particular, has benefited from considerable experimental

and computational advancements in recent years32, and has transformed our understanding of

cellular biology in health and disease3 0 31. In contrast to techniques that require previous

knowledge of the comprising cells and their biomarkers in a biological system, single-cell RNA

Sequencing enables true discovery of these components by uncovering patterns in gene

expression that distinguish groups of cells from first principles. We can subsequently use this

information to identify novel axes of variation among different cell populations and even profile

diversity across seemingly "identical" cells. Furthermore, comparing these profiles across a

perturbation (such as drug treatment in a tumor) can learn induced changes in composition,
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activated pathways, and cellular interactions, better characterizing its effect on a system de

novo. However, there is considerable need to adjust these techniques to study therapeutic

resistance in cancer, including enabling longitudinal investigation to track the short- and long-

term effect of a drug in a system, handling of smaller input samples to utilize clinical samples

such as biopsies, and increased utilization of the data from any captured single cell when the

transcriptome does not provide enough information.

In this thesis, we detail our efforts to address current needs in profiling response dynamics of

tumors and their microenvironments at single-cell resolution. We present an overview of the

state of the field of single-cell RNA sequencing, describe our work applying these tools to

uncover single-cell heterogeneity and its consequences for studying cancer therapeutics, and

demonstrate opportunities for, and advantages of, performing multiple measurements on a

single cell.

1.1: Challenges and improvements in tool development for single-cell profiling.

Current techniques in single-cell genomics, and particularly in single-cell RNA Sequencing, are

challenged by stochasticity in recovery of molecular material and inherent biological noise. As

such, the measurement of a given analyte (such as transcript, protein, variant, etc.) in any

particular cell can be unreliable due to significant dropout 33 3 4 . Improved statistical power in

zero-inflated, high dropout data can be achieved by increasing confidence in the rate of

detection of variables (cells across genes) and the number of measurements in a single

observation (genes across cells) (Figure 1-1). The genome-wide nature of RNA-Sequencing

has maximized the number of gene expression measurements per cell (although additional

measurements are possible as covered in Chapters 1.3, 2, and 5). Therefore, much of the

current work in single-cell RNA Sequencing has focused on optimizing the interpretation of

biological signal, with substantial effort tasked towards improving the number of cells profiled in
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an individual experiment. The application of microfluidic devices to aid in cell capture and lysis

has expanded the scale of single-cell experiments by several orders of magnitude in the past

decade, especially those which utilize early bead-based barcoding strategies7'35'36 (2013- 102

cells; 2019 - 106+ cells). The development and widespread adoption of these tools has launched

large-scale single-cell investigations of many previously uncharacterized systems such as

HIV 37 ,allergy93 8, and Zika virus39. Moreover, their preliminary success and promise has

encouraged the establishment of resources towards profiling entire organisms at single-cell

resolution°-4

Increased
observations

Increased
measurements

Figure 1-1: Improving biological signal in single-cell measurements. Paucity in both the
number of cells profiled and their analytes as well as decreased observation due to technical
artifacts (see technical noise, Figure 2-1 a) can lead to substantial and fundamentally limiting
noise in single-cell measurements. This noise can be overcome by 1) increasing the number of
cells profiled (observations) to bolster confidence in true signal across many cells and 2)
increasing the number of measurements (of one or multiple types of analyte) to increase the
interpretation of true signal from any one cell.

As these techniques have matured and been applied across numerous biological systems, new

challenges have surfaced. Some of the general considerations for single-cell experiments

include the tradeoff between complexity and cell number and the optimization of rate and
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detection of multiple-cell capture. Others are unique to particular circumstances, such as

longitudinal and/or spatial transcriptomics of tissue morphology, or the utilization of

progressively smaller starting cellular material in clinical settings. Further application of single-

cell transcriptomics will build on and tailor current experimental and computational frameworks

to increasingly nuanced biological phenomena.

1.2: Consequences of heterogeneity in understanding the effects of cancer therapeutics.

Both solid and liquid tumors consist of a combination of malignant tumor cells and non-

malignant stromal cells, infiltrating immune cells, resident immune cells, and others 4 ,1 ,16 ' 4 3.

Variations in types and phenotypes of these cells can have a profound impact on the

macroscopic function and dysfunction of the tumor microenvironment within and across

individuals'' 44 6. Moreover, when subject to therapeutic intervention, heterogeneity in individual

cells' responses can influence systems-level behaviors, including whether the entire tumor (or

subject, or patient) is sensitive or resistant to the treatment. Examples of this include

immunotherapy resistance from point mutations 47-49, metabolic underpinnings of BRAF-inhibitor

sensitivity in melanoma°0 '5 05 1, and drug resistance in breast cancer resulting from clonal

evolution4 '52

Advances in single-cell genomics, as described above, present a unique opportunity to

understand the mechanistic bases for the drug responses observed in complex cancer systems.

However, application of these techniques to profile cancer treatment also presents new

challenges. In particular, experiments that examine the same tumor microenvironment before

and after treatment are necessary to properly interpret the effect of a drug. Additionally,

strategies to sample perturbed systems longitudinally can enable study of the long-term effect of

treatment. Such experiments will require the development or creative implementation of existing
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single-cell tools. Moreover, as these investigations grow increasingly translational in nature,

methods that accomplish these tasks with low-input, clinical samples hold particular value.

1.3: Opportunities to improve single-cell measurements

Applications of genomic tools to profile single cells have achieved important advances in

understanding cellular phenotype, many of which have been noted above. However, while gene

expression provides one perspective of cellular behavior, there are inherent limitations to the

biological interpretability of transcriptomics. The abundance and activity of gene products

(proteins) may represent a more tangible proxy for cellular behavior than gene transcript as they

perform the direct chemical and physical biological functions within a cell, and previous work

has demonstrated the complications of interpreting protein function from transcript-level

readouts 53 . Furthermore, physical properties of individual cells, such as their growth, mobility,

and organization, provide additional information about instantaneous cellular function, and can

be particularly valuable in understanding a cell's response trajectory54 ~ 57. As single-cell

transcriptomics remains arguably the most widely applicable genome-wide phenotyping option,

opportunities abound to collect additional information from single cells simultaneously with

transcriptome capture.

In addition to increasing cell numbers and utilization of low-input samples, many novel

techniques are currently under development seeking to increase the number of measurements

53 58performed on any given single cell. These include protein expression , genetic variation ,

epigenetic variation 5°, biophysical properties6 , temporal properties2 , and spatial

organization 6 3 .These techniques have already uncovered previously unknown information

regarding the stochasticity of transcription and translation, structure-function relationships in

tissues, and changing clonal architecture of tumor cells over time. As these and other

multiplexed modalities continue to improve, single-cell technologies have incredible potential to
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resolve widespread biological problems complicated by cellular heterogeneity, particularly in the

context of tumor resistance to therapy.

1.4: Contributions of this work

In this thesis, we describe our efforts towards the advancement and utilization of single-cell

technologies to profile the response of tumor cells and their microenvironments to therapeutic

challenge. This body of work addresses the need for: 1) investigation of single-cell

heterogeneity in cancer and its contribution to therapeutic resistance, 2) longitudinal

investigation of tumor and microenvironment response to therapy with single-cell genomics, 3)

utilization of small cellular inputs, namely liquid biopsies, to profile tumor and microenvironment

response at a single-cell level, and 4) incorporation of multiple measurements of single tumor

cells to more comprehensively profile their response to challenge.

In Chapter 2, we explore recent developments in single-cell transcriptome profiling, with

particular emphasis on the advances that microfluidic tools and their application have made

towards achieving more robust and cost-effective single-cell RNA Sequencing experiments. We

highlight tools and efforts over the past decade that have significantly improved the number of

single cells measured in an experiment and extended the utility of a given captured single cell to

include multiple measurements.

In Chapter 3, we detail our early efforts to utilize plate-based single-cell transcriptome profiling

to study the tumor microenvironments of patients with melanoma. This study represents among

the first explorations of a human tumor microenvironment using a genome-wide single-cell

approach, enabling novel, unsupervised discovery of previously uncharacterized heterogeneity

and its consequences for patient care. This work has helped promoted an explosion of single-

cell investigations in other tumor systems4-66, and these data have been further explored in
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studies of tumor heterogeneity67 , algorithm designes, immunotherapy 69 and immune tolerance 9.

The particular results of our work demonstrate, among other findings, that the presence of

patient-specific malignant cell heterogeneity may predict the response of patients in this study to

specific chemotherapy agents. We further explore cancer cell subpopulation heterogeneity and

its consequences on therapeutic resistance in the following chapters of this thesis.

In Chapter 4, we apply the strategies described in the Chapter 3 to explore the response of a

tumor microenvironment to immunotherapy. In particular, we study the effect of Pembrolizumab,

a blocking antibody of the immune checkpoint molecule PD-1 on CD8+ T cells, on the tumor

microenvironment of leptomeningeal carcinomatosis (LMD), the metastasis of malignant cells to

the cerebrospinal fluid (CSF) and surrounding meninges in the central nervous system (CNS).

In this study, we utilize a nanowell-based technology, Seq-Well, to conduct single-cell RNA

Sequencing using sparse liquid biopsy material (clinical CSF draw from a clinical trial studying

the efficacy of Pembrolizumab to treat LMD (NCT02886585)). Our work represents the first

single-cellular description of the LMD microenvironment, elucidating the cell types and states

present in the CSF during leptomeningeal invasion. Additionally, the clinical trial NCT02286585

demonstrated clinical efficacy of intravenously administered Pembrolizumab in LMD. Our data

demonstrate that intravenous Pembrolizumab produces not only a systemic response, but also

a shift in immune composition and phenotype of specific cells directly in the CSF

microenvironment. Finally, we use longitudinal single-cell RNA Sequencing and CSF-derived

cell-free DNA Sequencing (cfDNA) to develop case studies on the response in individual

patients, highlighting adaptive selection and tumor phenotype as potential mechanisms of

resistance, and demonstrating the utility of longitudinal single-cell measurements from liquid

biopsies to identify subpopulations, their drivers, and their implications in patient resistance.

In Chapter 5, we describe work applying longitudinal liquid biopsy profiling in a controlled murine

model system to study the response of rare circulating tumor cells (CTCs), in blood. CTCs
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present an opportunity for diagnostic measurement and biomarker discovery in patients with

inaccessible tumors. However, the relationship of CTCs to primary tumors, their response to

treatment, and their heterogeneity are difficult to characterize. Model organisms such as murine

models enable more targeted investigation of rare cells such as CTCs, but CTC studies in

murine systems are hindered by low cell numbers and capture efficiency. Furthermore,

treatment studies in CTCs are severely limited because the volume of blood required to capture

CTCs cannot be drawn across the acute window of drug action while maintaining the

physiological condition of the mouse. We describe a novel microfluidic device to enrich and

capture CTCs from a single mouse, enabling, for the first time, sampling over acute time

intervals of drug response. We perform single-cell RNA Sequencing on these cells, investigating

their transcriptional heterogeneity across different mice and their response to JQ1, a selective

bromodomain inhibitor. Additionally, we use paired single-cell profiling of matched primary tumor

resections to investigate how CTCs differ from solid malignancies in their heterogeneity and

response to therapy.

Finally, in Chapter 6, we describe work extending single-cell transcriptome profiling to include

additional metadata to analyze the therapeutic response of tumor cells. As described previously,

transcriptomic data from a single-cell may not totally capture its phenotype. Other phenomena,

especially biophysical features such as mass and change in mass over time, can better

elucidate the instantaneous condition of a cell. Mass and growth rate in particular have been

recently shown to be powerful predictors in some cancers of the sensitivity or resistance of

individual tumor cells following treatment. This observation presents a unique window into the

eventual fate of single cells, which is functionally undetectable by profiling the end state by

genomic means. To take advantage of this orthogonal readout of cell function, we develop and

apply a novel single-cell platform to simultaneously profile the mass, growth rate, and

transcriptome of individual cells, demonstrating correlative features between their gene
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expression and biophysical properties. We pilot the utility of this platform to investigate the

molecular underpinnings of chemotherapy response, applying this technique to patient-derived

cell lines (PDCLs) of glioblastoma treated with the transcription inhibitor MDM2. We

demonstrate that cells continuing to grow following treatment upregulate resistance

mechanisms to MDM2-inhibition, and elucidate the active pathways in these cells that might

enable escape, highlighting the potential extension of the results from this study to other cancer

systems.

Together, this body of work represents our contributions towards extending single-cell profiling

to understand how individual malignant and non-malignant cells in naturally-occurring and

model cancer microenvironments interact with and change their behavior following therapeutic

intervention, and how single-cell variability can modulate the response of an entire tumor

microenvironment.
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Chapter 2: On the development & utilization of

microfluidics for single-cell profiling

This chapter is partially adapted from the following article published in Nature Reviews
Genetics:

Prakadan SM, Shalek AK*, Weitz DA*. "Scaling by shrinking: empowering single-cell 'omics'
with microfluidic devices," Nature Reviews Genetics 18, 345-361 (2017).

* Denotes equal contribution

Recent advances in cellular profiling have demonstrated substantial heterogeneity in the

behavior of cells once deemed 'identical', challenging fundamental notions of cell 'type' and

'state'. Not surprisingly, these findings have elicited substantial interest in deeply characterizing

the diversity, interrelationships and plasticity among cellular phenotypes. Such phenotypic

heterogeneity is particularly important to assess the biological response of malignant and non-

malignant cells in the microenvironment of cancer systems to therapeutic intervention. To

explore these questions, experimental platforms are needed that can extensively and

controllably profile many individual cells and/or many components within an individual cell. Here,

microfluidic structures have an important role because they can facilitate increased capture of

single cells and opportunities to profile multiple components within a single cell. Here, I review

the current state-of-the-art methodologies with respect to microfluidics for improving mammalian

single-cell transcriptomics.
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Forward

In this chapter, we provide a brief overview of some of the techniques used to profile single-cell

phenotypes, and the underlying challenges associated with this task. We begin with a

discussion of the specific problems associated with noise in single-cell data. We then survey

some of the advances in technologies tailored for single-cell genomics, focusing on

improvements in cell capture enabled by microfluidic technologies and techniques which extend

single-cell profiling beyond one analyte to simultaneous measurement of multiple modalities,

genomic and otherwise, from a particular single cell. The further development and application of

these strategies to understand the phenotypic response of malignant and non-malignant cells in

the tumor microenvironment provides the framework for the contributions detailed in subsequent

chapters.

2.1: Introduction

The phenotypic identity of a cell is informed by many factors, including the abundance,

distribution and dynamics of its internal components and the spatiotemporal pattern of signals it

receives from its environment. Scientists have long attempted to classify cells into distinct types

based upon defining characteristics, extending from, at first, macroscopic observables (such as

anatomical location, gross morphology, origin, or distinct behaviors) to eventually more nuanced

molecular ones (like what proteins or mRNAs they express). However, recent advances in the

processing and profiling of cellular components have uncovered previously unappreciated

heterogeneities within both seemingly 'uniform' cell populations and complex tissues". In many

instances, these findings have altered existing cellular classification schemes (introducing new

categories, redefining their breadth, uncovering more informative features, or suggesting
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previously unappreciated interrelationships); in others, they have challenged some of our

atomistic operating assumptions and long-held rubrics9' 0 .

Accurate cellular classification itself is complicated by the considerable difficulties associated

with characterizing the properties of single cells. Indeed, the resolving power of any individual

measurement is limited by technical problems associated with handling and profiling the minute

inputs obtained from just one cell, as well as the stochasticity inherent in biological processes 26

(Figure 2-1). Small processing losses (technical noise) that are inconsequential at the

population level can be disastrous when attempting to accurately score single cells (Figure 2-1

a). Similarly, differences in the timing of individual cellular events, driven by the biological,

physical, and temporal properties that control their generation (intrinsic noise27), can average

cleanly at the ensemble level, but render any single measurement an unreliable marker of a

specific cell's identity (Figure 2-1 b). Moreover, given the broad range of factors that can

potentially impact cellular phenotype (and hence a cell's classification), several variables can be

required for accurate description.
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Figure 2-1. Technical and biological noise in single-cell measurements. a) Technical errors
in cellular processing ('technical noise'), such as failure to reverse transcribe an mRNA
transcript or over-amplification during the ensuing PCR, can dramatically impact the utility of any
single measurement in a single-cell experiment. b) Similarly, the physical, spatial, and temporal
processes governing biological phenomena ('intrinsic noise'), such as the burstiness of mRNA
transcription26 , can limit the information content in any single instantaneous end-point
measurement.

One strategy for overcoming the noise that is inherent in single-cell measurements is to

increase the number of cells profiled. Although any given cellular measurement is subject to

systematic (technical noise) and random (intrinsic noise) artifacts, improved throughput, coupled

with a fundamental understanding of the limitations of the specific assay in use, can empower

studies of the distribution of a variable across a population. Microfluidic devices, tailored to

approximately the size of individual cells, can help to achieve this, enhancing experimental
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scale by miniaturizing, parallelizing, and integrating. This substantially reduces labor and

reagent costs, simplifies workflows, and improves consistency.

A second approach is to increase the number of variables that are measured from a single cell

so that a more coherent picture can be achieved. Whereas the expression of any single gene

may be an unreliable indicator, the average value of a collection of genes whose expression co-

vary across cells is more buffered from noise and thus may more effectively reveal a cell's type,

state, or properties3,6 ,28,2 9 . Furthermore, the measurement of additional, orthogonal analytes or

metadata of a given cell, including cross-'omic', longitudinal, or biophysical variables can

improve the interpretation of biological signal from a given single cell. Over the past few years,

several new technologies have been developed that exploit this principle, driven, in part, by the

reduced cost and improved accessibility of next-generation sequencing (NGS), a currently

preferred method for investigating several variables at once. Microfluidic devices can also

considerably improve the preparation of single-cell analytes for NGS-based readouts.

In this chapter, I will describe the common microfluidic approaches for profiling single-cell

transcriptomes, as well as advances in techniques that improve the number of single cells

profiled and profiling potential of each single cell.

2.2: Increasing the number of single cells measured

Arguably the most common molecular variable used for examining cellular phenotype at the

genomic scale is messenger RNA (mRNA). The presence of polyadenylated tails on mRNAs

allows universal priming via a single oligo(dT)-based scheme while avoiding excess ribosomal

RNA contamination. This enables transcriptome-wide profiling of cellular state, and the

identification of distinct cell types, states, and circuits through patterns in gene expression

covariation1 ,3,03
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In most instances, single-cell transcriptional profiling is performed by first isolating and lysing

individual cells of interest, reverse transcribing their mRNA into cDNA and amplifying that

material. Afterwards, amplified cDNA, whether obtained by specific target amplification (STA) or

whole-transcriptome amplification (WTA), can be profiled using established methods, such as

qPCR, dPCR, or sequencing (mRNA-seq). One of the first demonstrations of single-cell

transcriptomics using microfluidics was performed by Warren and colleagues 3 : following FACS-

based sorting of single hematopoietic stem cells and FLK2+ and FLK2- common myeloid

progenitor cells into strip-tubes for reverse-transcription PCR (RT-PCR), they used a custom

valve-based IFC to array each single-cell cDNA sample and perform on-chip quantification of

Pu.1 and Gapdh levels by dPCR.

Whereas qPCR and dPCR work has continued to find niche applications, sequencing now

dominates. Importantly, foundational work3 o3 7-40 has helped demonstrate that tens to hundreds

of thousands of sequencing reads are sufficient for gene expression analyses in end-tagging

and full-length protocols, respectively. Thus, efforts in the field, which were once dominated by

protocols performed by FACS-sorting single cells into multiwell plates 44 for tens to hundreds

of cells, have now, in part, begun to embrace valve-based microfluidics for profiling hundreds of

cells, and droplet- and nanowell-based approaches for studying thousands of cells. For all

methods, further work will be needed to realize methods for studying non-polyadenylated RNAs,

such as small RNAs 33' 35 42.

As mentioned above, valve-based methods initially focused on processing and profiling single-

cell transcriptional information. For example, White and coworkers 43 developed a valve-based

IFC for single-cell reverse-transcription qPCR (RT-qPCR) that enabled up to two transcripts to

be measured on-chip for up to 50 single cells from each of 6 independent sample loading lanes.

Here, the number of genes that could be simultaneously assayed was limited due to the

decision to detect on-chip, although off-chip detection using other microfluidic chips 14 or
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sequencing4 is possible. The C1 Auto Prep System's IFC, meanwhile, has transcriptome-

compatible protocols that facilitate an order of magnitude improvement in throughput over plate-

based methods with an order of magnitude reduction in cost. Leveraging the scale afforded by

this platform, researchers have been able to uncover rare immune cell states3, survey neuronal

diversity34 , assess cellular hierarchy within lung epithelia44 , and more.

However, further scaling of this and related systems, which will be necessary to study

increasingly complex cellular ensembles, has been hindered by the reliance on separate

microfluidic channels for delivering processing reagents to each single cell in parallel. Moreover,

for single-cell RNA-Seq, multiwell-plate based methods are still superior with respect to

transcript capture4 5. For instances where emphasis is placed on efficiency, defined as the

percent of input mRNAs recovered, plate-based methods are preferred. Still, in many instances,

more cells, even if captured with lower fidelity, are preferred since, collectively, they minimize

the impact of the technical and biological noise associated with any single cell or measurement

on global analyses. Among the microfluidic strategies, valve-based systems still provide the

greatest molecular efficiency and have utility in applications for which the highest-quality

transcriptomes are needed at moderate scale46; newer methods that enable on-chip pooling

should help to decrease the throughput gap between valve-based and droplet- or well-based

approaches.

To address the fundamental shortcomings of scale presented by valve-based microfluidic

systems and plate-based methods, several platforms have emerged that leverage the power of

early cellular barcoding to achieve high throughput single-cell transcriptomics. By tagging the

mRNAs from each cell with a unique barcode during reverse transcription, these methods

simplify library preparation by enabling ensemble processing with single-cell resolution via

barcode-based computational deconvolution. To perform early barcoding, in one version,

microfluidic devices have been used to capture single cells in droplets with uniquely barcoded
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mRNA capture beads 30 ,3 7. Illustratively, Macosko et al presented a method called Drop-Seq 30

that employs barcoded acrylic mRNA capture beads to achieve bead-bound cDNA replicas of

the individual cells with which they are co-encapsulated; this allows user-control over the

number of cells sequenced and archiving for subsequent re-querying. Using a mixture of human

and mouse cell lines (species mixing experiments), the authors demonstrated the feasibility of

Drop-Seq, obtaining >95% cell-of-origin specificity, >7,000 recovered genes per cell, and >12%

RNA capture. By collecting 44,808 single-cell profiles from the mouse retina over 4 days of

experiments, they uncovered, with high reproducibility, -39 subtypes and their molecular

markers, and subsequently validated select observations in situ. However, to avoid cell or bead

doublets, Drop-Seq requires that both cells and beads be loaded at low densities into the co-

flow device used to confine cells, lyse them, and capture cellular mRNAs by hybridization, prior

to breaking the emulsion. As a result, only a small fraction of the cells encapsulated are

effectively used.
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Figure 2-2. Selected examples of microfluidic devices used to measure single-cell
transcriptomes and proteomes. a) InDrop from Klein et al. 37, a droplet-based single-cell
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transcriptomics method, works by co-confining single cells with hydrogel beads containing
uniquely barcoded primers (top view). Upon UV-mediated release of those primers, reverse
transcription and barcoding is performed in-droplet, and the resulting cDNA is collected after the
droplets are broken for subsequent processing. b) Seq-Well, a massively-parallel single-cell
RNA-sequencing method from Gierahn et al4 , combines early bead-based barcoding with
nanowells to generate thousands of single-cell libraries (top: top view; below: side view). Single
cells are gravity-loaded onto an array that has been preloaded with uniquely barcoded oligo(dT)
capture beads, sealed with a membrane that permits buffer exchange but not mRNA escape,
and lysed; mRNAs are then captured by oligo(dT) primers bound to the surface of the barcoded
beads, and the beads are removed for off chip reverse transcription, amplification, library
preparation and sequencing.

A second technique developed by Klein et al called InDrop 37 overcomes this inefficiency through

the use of hydrogel capture particles than can be more efficiently loaded, filling about 90% of

the drops (Figure 2-2 a). As a result, most encapsulated cells are efficiently used. In InDrop,

barcodes are released after cell lysis, and reverse transcription occurs in-droplet prior to the

breaking of the emulsion. Species mixing validations showed 96% cell-of-origin specificity,

5,000-15,000 genes, and >7% RNA capture. Klein and coworkers then used this method to

probe population structure and cellular heterogeneity in 11,149 mouse embryonic stem cells

during their differentiation in response to leukemia inhibitory factor (LIF) withdrawal 37 .

Nevertheless, the InDrop workflow necessitates that all captured cells be processed in a single

reaction, eliminating the ability to tune sequencing library complexity and complicating the re-

sampling of selected cells. Additionally, both Drop-Seq and inDrop can only accommodate one

sample at a time and process and lyse cells in series, rather than in parallel, leading to time-

dependent biases that can obfuscate underlying biology. Some of these limitations have been

overcome by a more user-controllable device introduced by 1-Cell (http://lcell-bio.com/), which

is commercializing the InDrop method, and 10x Genomics, which has brought a hybrid of the

Drop-Seq and inDrop methods to market 48. Future work will be needed to improve cell and

transcript capture efficiency, and the uniformity of the final library so that each cell gets similar

coverage.
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Arrays of nanowells can also be used to mate single cells and barcoded beads. Wells rely on

gravity-assisted cell and bead loading, reducing the need for peripherals. By matching bead and

well size, more efficient bead loading can be achieved, which minimizes the frequency of cells

without beads and improves sampling efficiency. In a method they dubbed CytoSeq, Fan et a1 29

demonstrated a system for co-confining cells and beads in unsealed nanowell arrays, enabling

targeted transcriptional profiling from approximately 5,000 human PBMCs. However, the use of

an open well design considerably limited capture efficiency and increased cross-contamination

between individual libraries 47.

DeKosky et a149 utilized a sealed well-based device to isolate and capture mRNA from single B

cells with pools of magnetic poly(dT) beads. Following bead removal, the heavy and light chain

sequences on each bead were linked using emulsion PCR and sequenced to determine the B

cell receptor (BCR) pairs found across individual cells. To enable unique determination of the

full transcriptomes of single cells, Bose et al50 utilized a single uniquely-barcoded bead per well,

as introduced in CytoSeq, Drop-Seq and InDrop 29 ,30 ,37,51. Unlike in CytoSeq, here, the authors

integrated their nanowell array into a microfluidic circuit to enable oil-based well sealing,

allowing them to profile hundreds of cells from a cancer cell line with reduced cross-

contamination. A more recent improvement by Yuan and Sims further increased cell and

transcript capture efficiency52. Still, in both implementations, operation required integrated

temperature and pressure controllers, and the use of oil-based sealing limited reagent

exchange. To address this requirement, most recently, Gierahn et a147 (Figure 2-2 b)

demonstrated improved transcript capture and portability using a simple-to-implement, semi-

permeable membrane-based nanowell sealing approach (Seq-Well) that envisions global

application of single-cell RNA-Seq to precious samples. In each instance, further improvements

can be made in transcript capture. Similarly, in instances where multiple measurements have
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been made on the same cell (e.g. immunophenotyping and transcriptional profiling in Seq-

Well47), experimental strategies are needed to link these mutually informative metrics.

2.3: Increasing and extending the utility of a single cell measurement

In addition to enabling studies of host-pathogen and host-host interactions, microfluidic devices

are now beginning to empower multi-'omic' studies that examine the interrelationships among

distinct classes of cellular components. Illustratively, recent efforts have begun to characterize

how RNA expression patterns correlate with and are driven by the levels and activity of various

protein species,53-55,56. Whereas early studies featured fluorescent- or isotope-labelling

strategies for proteomic readout, including FACS and mass cytometry, a more recent approach

leverages PEA-based protein detection which can be coupled with STA using the valve-based

design of the C1 IFC 6. Similar methodologies, focused on simultaneously profiling mutually

informative classes of variables, such as DNA and RNA or RNA and the epigenome57 , appear to

be just around the corner (Box 1), and may soon guide our understanding of cellular function.

Importantly, many other informative properties of cells have been measured with microfluidic

devices - for example, morphology58 , proliferation dynamics59, motility6°, invasiveness61,

interactions6 2 , calcium dynamics6 3 , and familial relationships6
4 - all of which may help

determine cellular identity in the future.

The precision of microfluidic devices holds promise for simultaneously profiling multiple analytes

across thousands of single cells. New strategies for improved multi-omics are likely on the

horizon, as are approaches for collecting additional, relevant cellular metadata, such as mass5-

". Additionally, high throughput methods, such as droplets and nanowells, provide a powerful

means of probing and selecting single cells from large ensembles. For example, using droplets,

it is possible to directly identify antibody-producing B-cells without the need to first immortalize

them through the production of hybridomas6 9. This enables a much faster and deeper search of
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the antibodies produced by an immunized animal. Similarly, these methods make it possible to

screen enzymatic activity and search large libraries of enzymes, produced either in a cell-free

manner or expressed in cells, to perform directed evolution for iteratively exploring a much

larger library size 70 . Relatedly, microfluidic devices that couple perturbations and '-omic'

readouts in many single cells have begun to fundamentally transform our studies of cellular

phenotype and function by allowing us to uncover how different cellular components impact cell

cellular behaviours 31 71 72 73. Future work, both experimental and computational, will be required

to integrate these profiling and screening approaches to fully leverage the comprehensive views

of cellular phenotype they afford.

Before diving in, it is important to first weigh the costs and benefits of porting any single-cell

assay into a microfluidic device (Box 1). As these advances continue to mature, there are likely

to be substantial improvements in the efficiency of processing both cells and cellular analytes.

As this occurs, an important question will be how to best balance the number of cells profiled

and the depth to which each is sampled, given a fixed number of reads per sequencing run.

Further progress will result in overcoming the technical obstacles of preparing different classes

of single-cell 'omics.' This will lead to a deeper understanding of how a cell's identity is

influenced by its components and their interactions, and the cellular microenvironment, as well

as questions of how to balance the number of reads afforded to each different analyte. In

parallel, improved computational algorithms, enhanced statistical frameworks, and advanced

visualizations will be needed to truly maximize the insights that single-cell 'omic' profiling

promises to afford, and guide the development of future devices 6 28 74 75. Overall, the coming

years should to be an extremely exciting time for single-cell biology and the interdisciplinary

science that enables.
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Note 2-1: Considerations for porting single-cell 'omic' assays into microdevices.

Before attempting to develop a new microfluidic device or port an established assay to an

existing one, it is important to consider the relative utility of miniaturization and integration in the

context of the problem at hand. Indeed, each cellular analyte poses unique challenges with

respect to detection and readout; similarly, each assay has nuances that inform if and how it

should be adapted.

A first means by which microfluidic devices can improve assay implementations concerns scale.

In some instances, such as constructing cellular atlases with single-cell RNA-Seq ' 76, a

researcher may need to profile thousands of cells to build as comprehensive a catalogue as

sequencer bandwidth allows. In such cases, considerations of scale may surpass others, such

as capture efficiency, especially given the limited resolving power of any single cell in light of

technical and intrinsic noise sources4'3977. Alternatively, for whole-genome or whole-exome

sequencing, a sequencing run may only support full coverage of a few cells7 8 .

Outside of scale, microdevices can benefit biological assays in other ways, such as by

increasing control and reducing background. For example, in the context of whole-genome

sequencing, valve-based microdevices can be used to isolate individual chromosomes from a

single cell, enabling direct analysis of haplotypes, which would be difficult using a multiwell-

plate-based approach. Similarly, for assays that have a constant background per unit volume

due to non-specific hybridization, such as PEA56', miniaturization can reduce the noise floor by

increasing the relative frequency of positive detection events to spurious ones. Thus, even when

the need for scale is not the driving factor, microfluidic devices may have utility.

Ultimately, decisions on when and how to deploy microfluidic devices must carefully weigh the

pertinent costs and benefits. At present, valve-, droplet-, and well-based devices each offer

unique advantages, making them preferentially suited for different biological tasks. Valve-based

devices enable exquisite control over cells and their components, and are often most
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appropriate when careful manipulation of analytes is imperative, such as PEA and direct

deterministic phasing 56 '79,8 0. Droplet-based methods do not engender the same degree of

precision but facilitate dramatic scaling, making them most pertinent when attempting to profile

thousands of cells30,37,48,76. Well-based platforms, meanwhile, offer simplicity at intermediate

scale with defined spatial locations that ease the coupling of multiple discrete readouts from the

same cell47 .

Collectively, these and related considerations will influence how existing assays are ported and

the choice of device for future efforts. While it is hard to fully envision what the future holds, we

predict that future applications will include new single-cell measurements (such as chromatin

conformation via Hi-C (probably using valves)) 1' 2s, biophysical parameters such as cell

mass 65 e66 68 83 (with requires tracking but not isolation), lineage determination6 4 (using

hydrodynamic traps), integrated multi-'omic' profiling (probably most easily implemented using

valve-based5 6 or well-based 47 devices), and studies of how microenvironmental considerations

(soluble factors and other cells) 8 485 impact cellular behaviours.
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Chapter 3: Dissecting the multicellular ecosystem of

metastatic melanoma by single-cell RNA-seq

This chapter is adapted from the following article published in Science:

Tirosh 1*, Izar B*t*, Prakadan SM, Wadsworth MH 11, Treacy D, Trombetta JJ, Rotem A,
Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin J, Cohen 0, Shah P,

Lu D, Genshaft AS, Hughes TK, Ziegler CGK, Kazer SW, Gaillard A, Kolb KE, Villani AC,
Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty
KT, Frederick DT, Jan6-Valbuena J, Yoon CHt, Rozenblatt-Rosen OT, Shalek AKt, Regev A*

and Garraway LAt*. "Dissecting the multicellular ecosystem of metastatic melanoma by single-
cell RNA-seq," Science 352, 189-196 (2016).

" Denote equal contribution

*Denote corresponding authorship

To explore the distinct genotypic and phenotypic states of melanoma tumors we applied single-

cell RNA-seq to 4,645 single cells isolated from 19 patients, profiling malignant, immune,

stromal and endothelial cells. Malignant cells within the same tumor displayed transcriptional

heterogeneity associated with the cell cycle, spatial context, and a drug resistance program. In

particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such

that "MITF-high" tumors also contained "AXL-high" tumor cells. Single-cell analyses suggested

distinct tumor micro- environmental patterns, including cell-to-cell interactions. Analysis of

tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and

to clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular

ecosystem of tumors and how single cell genomics offers insights with implications for both

targeted and immune therapies.
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Key Contributions

BI led the design and implementation of the single-cell experiments. IT led the analysis of

single-cell RNA-Sequencing data. SMP, with MWH and others, led the single-cell RNA-

Sequencing and pre-processing efforts.

Forward

Tumor biology is influenced by variation among the behaviors of its component cells. This

impacts overall tumor function and dysfunction to an extent that has not yet been fully

appreciated, largely due to difficulties associated with acquiring primary patient samples and

heterogeneity in cell type composition, both within and across samples. Here, we apply single-

cell RNA Sequencing to study freshly resected tissue samples of metastatic melanoma across

19 patients. Our results represent among the first applications of single-cell genomics to

examine the tumor microenvironment of patient-derived tissue samples, and detail specific

consequences of tumor cell heterogeneity on resistance of patients to therapeutic intervention.

Together, these investigations reveal important information about how cellular variation drives

tumor function, and introduce new problems regarding the application of single-cell genomics to

cancer systems, which we seek to address in future chapters.

3.1: Introduction

Tumors are complex ecosystems defined by spatiotemporal interactions between

heterogeneous cell types, including malignant, immune and stromal cells'. Each tumor's cellular

composition, as well as the interplay between these components, may exert critical roles in

cancer development2. However, the specific components, their salient biological functions, and

the means by which they collectively define tumor behavior remain incompletely characterized.
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Tumor cellular diversity poses both challenges and opportunities for cancer therapy. This is

exemplified by the varied clinical efficacy achieved in malignant melanoma with targeted

therapies and immunotherapies. Immune checkpoint inhibitors can produce clinical responses in

some patients with metastatic melanomas 3-7 ; however, the genomic and molecular determinants

of response to these agents remain poorly understood. Although tumor neoantigens and the

PD-L1 antibody clearly contribute to this response3-1°, it is likely that other factors from subsets

of malignant cells, the microenvironment, and tumor-infiltrating lymphocytes (TILs) also play

essential roles".

Melanomas that harbor the BRAFV 60 0 E mutation are commonly treated with RAF/MEK-inhibition

prior to or following immune checkpoint inhibition. Although this regimen improves survival,

virtually all tumors eventually develop resistance to these drugs . Unfortunately, no targeted

therapy currently exists for patients whose tumors lack BRAF mutations-including NRAS

mutant tumors, those with inactivating NF1 mutations, or rarer events (e.g., RAF fusions).

Collectively, these factors highlight the need for a deeper understanding of melanoma

composition and its impact on clinical course.

The next wave of therapeutic advances in cancer will likely be accelerated by technologies that

assess the malignant, micro-environmental, and immunologic states most likely to inform

treatment response and resistance. Ideally we would be able to assess salient cellular

heterogeneity by quantifying variation in oncogenic signaling pathways, drug-resistant tumor cell

subsets, and the spectrum of immune, stromal and other cell states that may inform

immunotherapy response. Toward this end, single-cell genomic approaches enable detailed

evaluation of genetic and transcriptional features present in 100s-1000s of individual cells per

1416tumor-. In principle, this approach may identify all major cellular components simultaneously,

determine their individual genomic and molecular states 16, and ascertain which of these features

may predict or explain clinical responses to anticancer agents. In order to explore this question
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we used single-cell RNA-seq to examine intra- and inter-tumoral heterogeneities in both

malignant and non-malignant cell types and states, their drivers and interrelationships in the

complex tumor cellular ecosystem.

Results

3.2: Profiles of individual cells from patient-derived melanoma tumors

We measured single-cell RNA-seq profiles from 4,645 malignant, immune and stromal cells

isolated from 19 freshly procured melanoma tumors that span a range of clinical and therapeutic

backgrounds (Table 3-1). These included ten metastases to lymphoid tissues (nine to lymph

nodes and one to the spleen), eight to distant sites (five to sub-cutaneous/intramuscular tissue

and three to the gastrointestinal tract) and one primary acral melanoma. Genotypic information

was available for 17 of 19 tumors, of which four had activating mutations in BRAF and five in

NRAS oncogenes; eight patients were BRAF/NRAS wild-type (Table 3-1).

To isolate viable single cells suitable for high-quality single-cell RNA-seq, we developed and

implemented a rapid translational workflow (Figure 3-1)16. Tumor tissues were processed

immediately following surgical procurement, and single-cell suspensions were generated within

-45 minutes with an experimental protocol optimized to reduce artifactual transcriptional

changes introduced by disaggregation, temperature, or time. Once in suspension, individual

viable immune (CD45+) and non-immune (CD45-) cells (including malignant and stromal cells)

were recovered by flow cytometry (FACS). Next, cDNA was prepared from the individual cells,

followed by library construction and massively parallel sequencing. The average number of

mapped reads per cell was -150,000, with a median library complexity of 4,659 genes for

malignant cells and 3,438 genes for immune cells, comparable to previous studies of only

malignant cells from fresh glioblastoma tumors16.
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Figure 3-1: Dissection of melanoma with single-cell RNA-seq. (a) Overview of workflow. (b)
Chromosomal landscape of inferred large-scale copy number variations (CNVs) distinguishes
malignant from non-malignant cells. The Mel80 tumor is shown with individual cells (y-axis) and
chromosomal regions (x-axis). Amplifications (red) or deletions (blue) were inferred by
averaging expression over 100-gene stretches on the respective chromosomes. Inferred CNVs
are concordant with calls from whole-exome sequencing (WES, bottom). (c,d) Single cell
expression profiles distinguish malignant and non-malignant cell types. Shown are t-SNE plots
of malignant (c, shown are the six tumors each with >50 malignant cells) and non-malignant (d)
cells (as called from inferred CNVs as in b) from 11 tumors with >100 cells per tumor (color
code). Clusters of non-malignant cells (called by DBScan) are marked by dashed ellipses and
were annotated as T cells, B cells, macrophages, CAFs and endothelial cells, from preferentially
expressed genes (Figure 3-3).

3.3: Single-cell transcriptome profiles distinguish cell states in malignant & non-malignant cells

We used a multi-step approach to distinguish the different cell types within melanoma tumors on

the basis of both genetic and transcriptional states (Figure 3-1 a). First, we inferred large-scale
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copy number variations (CNVs) from expression profiles by averaging expression over 100-

gene stretches on their respective chromosomes16 (Figure 3-1 b). For each tumor, this

approach revealed a common pattern of aneuploidy, which we validated in two tumors by bulk

whole-exome sequencing (WES, Figure 3-1 b, Figure 3-2). Cells in which aneuploidy was

inferred were classified as malignant cells (Figure 3-1 b, Figure 3-2).
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Figure 3-2: Classification of cells to malignant and non-malignant based on inferred CNV
patterns. (a) Same as shown in Figure 1b for another melanoma tumor (Me178). (b) Each plot
compares two CNV parameters for all cells in a given tumor: (1) CNV score (X-axis) reflects the
overall CNV signal, defined as the mean square of the CNV estimates across all genomic
locations; (2) CNV correlation (Y-axis) is the Pearson correlation coefficient between each cell's
CNV pattern and the average CNV pattern of the top 5% of cells from the same tumor with
respect to CNV signal (i.e., the most confidently-assigned malignant cells). These two values
were used to classify cells as malignant (red; CNV score > 0.04; correlation score > 0.4; grey
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lines mark thresholds on plot), non-malignant (blue; CNV score < 0.04; correlation score < 0.4),
or unresolved intermediates (black, all remaining cells). In four tumors (Mel58, 67, 72 and 74),
we sequenced primarily the immune infiltrates (CD45+ cells) and there were only zero or one
malignant cells by this definition; in those cases, CNV correlation is not indicative of malignant
cells (since the top 5% cells by CNV signal are primarily non-malignant) and therefore all cells
except for one in Mel58 were defined as non-malignant. Note that while these thresholds are
somewhat arbitrary, this classification was highly consistent with the clustering patterns of these
cells (as shown in Figure 1c) into clusters of malignant and non-malignant cells.

Second, we grouped the cells on the basis of their expression profiles (Figure 3-1 c,d, Figure

3-3). Here, we used non-linear dimensionality reduction (t-Distributed Stochastic Neighbor

Embedding (t-SNE)), followed by density clustering 17. Generally, cells designated as malignant

by CNV analysis formed a separate cluster for each tumor (Figure 3-1 c), suggesting a high

degree of inter-tumor heterogeneity. In contrast, the non-malignant cells clustered by cell type

(Figure 3-1 d, Figure 3-3), independent of their tumor of origin and metastatic site (Figure 3-4).

Clusters of non-malignant cells were annotated as T cells, B cells, macrophages, endothelial

cells, cancer-associated fibroblasts (CAFs) and NK cells on the basis of preferentially or

uniquely expressed marker genes (Figure 3-1, Figure 3-3).
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Figure 3-3: Identification of non-malignant cell types by tSNE clusters that preferentially
express cell type markers. (a-h) Each plot shows the average expression of a set of known
marker genes for a particular cell type (as indicated at the top) overlaid on the tSNE plot of non-
malignant cells, as shown in Figure Ic. Gray indicates cells with no or minimal expression of
the marker genes (e, average log2(TPM+1), below 4), dark red indicates intermediate
expression (4<E<6), and light red indicates cells with high expression (E>6). (i) DBscan clusters
derived from tSNE coordinates, with parameters eps=6 and min-points=10. Eleven clusters are
indicated by numbers and colors. (-k) Combined plot of all cells profiled in this work. Colors
indicate tumor-of-origin in (j) and expression of cell type-specific marker genes (E>5) in (k).
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Figure 3-4. Limited influence of tumor site on RNA-seq patterns. (a-b) Heat maps show
correlations of global expression profiles between tumors, which were ordered by metastatic
site. Expression levels were first averaged over melanoma (a) or T cells (b) in each tumor and
then centered across the different tumors before calculating Pearson correlation coefficients.
Differential expression analysis conducted between the two groups of tumors found zero
differentially expressed genes with FDR of 0.05 based on a shuffling test for both T cells and
melanoma cells.

3.5: Heterogeneity in the abundance of a dormant, drug-resistant melanoma subpopulation

Pre-treatment melanoma tumors may harbor malignant cell subsets less likely to respond to

targeted therapy. The transcriptional programs associated with principal components PC4 and

PC5 of these data were highly correlated with expression of MITF (microphthalmia-associated

transcription factor), which encodes the master melanocyte transcriptional regulator and a

melanoma lineage-survival oncogene 8. Scoring genes by their correlation to MITF across

single cells, we identified a "MITF-high" program consisting of several MITF targets, including

TYR, PMEL and MLANA. A second transcriptional program, negatively correlated with the MITF

program and with PC4 and PC5 (Pearson correlation, P<10-24 ), included AXL and NGFR

(p75NTR), a marker of resistance to various targeted therapies19 20 and a putative melanoma

cancer stem cell markerl, respectively. Thus, these transcriptional programs resemble

reported 22- 25"MITF-high" and "MITF-low/AXL-high" ("AXL-high") transcriptional profiles that can

distinguish melanoma tumors, cell lines and mice models. Notably, "AXL-high" program has

been linked to intrinsic resistance to RAF/MEK inhibition2224
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Figure 3-5: MITF- and AXL-associated expression programs vary between and within
tumors, and following treatment. (a) Average expression signatures for the AXL program (y-
axis) or the MITF program (x-axis) stratify tumors into 'MITF-high' (black) or'AXL-high' (red). (b)
Single-cell profiles show a negative correlation between the AXL program (y-axis) and MITF
program (x-axis) across individual malignant cells within the same tumor; cells are colored by
the relative expression of the MITF (black) and AXL (red) programs. Cells in both states are
found in all examined tumors, including three tumors (Me79, Me180 and Me181) without prior
systemic treatment, indicating that dormant resistant (AXL-high) cells may be present in
treatment naive patients. (c) Me181 and Mel80 immunofluorescence staining of MITF (green
nuclei) and AXL (red), validating the mutual exclusivity among individual cells within the same
tumor (Figure 3-7). (d) Relative expression (centered) of the AXL-program (top) and MITF-
program (bottom) genes in six matched pre-treatment (white boxes) and post-relapse (gray
boxes) samples from patients who progressed through RAF/MEK inhibition therapy; numbers at
the top indicate patient index. Samples are sorted by the average relative expression of the AXL
vs. MITF gene-sets. In all cases, the relapsed samples had increased ratio of AXL/MITF
expression compared to their pre-treatment counterpart. This consistent shift of all six patients is
statistically significant (P<0.05, binomial test), as are the individual increases in AXL/MITF for
four of the six sample pairs (P<0.05, t-test; black and gray arrows denote increases that are
individually significant or non-significant, respectively). (e) Flow-cytometric quantification of the
relative fraction of cells with AXL-high (log-scale, y-axis) expression, when cells were treated
with increasing doses of RAF/MEK-inhibition (dabrafenib and trametinib in a 10:1 ratio at
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indicated doses). In all examined cell lines (x-axis), there was a dose-dependent increase in the
AXL-high expressing cell fraction. (f) Quantitative, multiplexed single-cell immunofluorescence
for AXL expression (y-axis top), MAP-kinase pathway inhibition (pERK levels, y-axis) and
viability (y-axis bottom) in the example cell line WM88 treated with increasing concentrations (y-
axis) of either RAF inhibitor alone (black bars) or a combination of RAF/MEK-inhibitors (yellow
bars). We observe increasing relative AXL-high expressing cell fraction (top panel), consistent
with flow-cytometry, as well as a dose-dependent decrease of p-ERK (middle) and viability
(bottom), overall consistent with phenotypic selection (killing of MITF-high cells) as part of the
shift towards the AXL-high fraction.

While each melanoma could be classified as "MITF-high" or "AXL-high" at the bulk tumor level

(Figure 3-5 a), at the single cell level every tumor contained malignant cells corresponding to

both transcriptional states. Using single-cell RNA-seq to examine each cell's expression of the

MITF and AXL gene sets, we observed that MITF-high tumors, including treatment-naive

melanomas, harbored a subpopulation of AXL-high melanoma cells that was undetectable

through bulk analysis, and vice versa (Figure 3-5 b). The malignant cells thus spanned the

continuum between AXL-high and MITF-high states in both (Figure 3-5 b, Figure 3-6). We

further validated the mutually exclusive expression of the MITF-high and AXL-high programs in

cells from the same bulk tumors by immunofluorescence (Figure 3-5 c, Figure 3-7)
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Figure 3-6: Intra-tumor heterogeneity in AXL and MITF programs. AXL-program (Y-axis)
and MITF-program (X-axis) scores for malignant cells in each of the three tumors with a
sufficient number of malignant cells (n>50) that were not included in Figure 3-5. Cells are
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colored from black to red by the relative AXL and MITF scores. The Pearson correlation
coefficient is denoted on top.

MITF AXL MITF/AXL

Me180

Me181

Me179

Figure 3-7: lmmunofluorescence staining of MITF & AXL. AXL/MITF immunofluorescence
staining of tissue slides of Mel80, Mel8l and Me179 (40x magnification) revealed presence of
AXL-expressing and MITF-expressing cells in each sample. Consistent with single-cell RNA-seq
inferred frequencies of each population, Mel80 contained rare AXL-expressing cells (red, cell
membrane staining) and mostly malignant MITF-positive cells (green, nuclear staining), while
malignant cells of Mel8l almost exclusively consisted of AXL-expressing cells. Me179 had a
mixed population with rare cells positive for both markers, all in agreement with the inferred
single-cell transcriptome data.

Since malignant cells with AXL-high and MITF-high transcriptional states co-exist in melanoma,

we hypothesized that treatment with RAF/MEK inhibitors would increase the prevalence of AXL-

high cells following the development of drug resistance. To test this, we analyzed RNA-seq data

from a cohort 12 of six paired BRAFV600E melanoma biopsies taken before treatment and after

resistance to single-agent RAF inhibition (vemurafenib; n=1) or combined RAF/MEK inhibition
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(dabrafenib and trametinib; n=5), respectively. We ranked the 12 transcriptomes on the basis of

the relative expression of all genes in the AXL-high program compared to those in the MITF-

high program. In each pair, we observed a shift towards the AXL-high program in the drug-

resistant sample (Figure 3-5 d; P<0.05 for same effect in six out of six paired samples, binomial

test; P<0.05 for four of six individual paired-sample comparisons shown by black arrows). RNA-

seq data from an independent cohort26 also showed that a subset of drug-resistant samples

exhibited increased expression of the AXL program (Figure 3-8). Other genes previously

implicated in resistance to RAF/MEK inhibition were also increased in a subset of the drug-

resistant samples. PDGFRB 27 was upregulated in a similar subset as the AXL program, while

MET 2 6 was upregulated in a mutually exclusive subset (Figure 3-8), suggesting that AXL and

MET may reflect distinct mechanisms for drug resistance.
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Figure 3-8. AXL upregulation in a second cohort of post-treatment melanoma samples
and mutual exclusivity with MET upregulation. Each point reflects a comparison between a
matched pair of pre-treatment and post-relapse samples from Hugo et al.26 , where the X-axis
shows expression changes in MET, and the Y-axis shows expression changes in the AXL
program minus those of the MITF program. Note that some patients are represented more than
once based on multiple post-relapse samples. Fourteen out of 41 samples (34%) shown in red
had significant upregulation of the AXL vs. MITF program, as determined by a modified t-test as
described in Methods; these correspond to at least one sample from half (9/18) of the patients
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included in the analysis. Eleven out of 41 samples (27%) shown in blue had at least 3-fold
upregulation of MET; these correspond to at least one sample from a third (6/18) of the patients
included in the analysis. Notably, the AXL and MET upregulated samples are mutually
exclusive, consistent with the possibility that these are alternative resistance mechanism.

To further assess the connection between the AXL program and resistance to RAF/MEK

inhibition, we studied single-cell AXL expression in 18 melanoma cell lines from the CCLE.

Flow-cytometry demonstrated a wide distribution of the proportion of AXL-positive cells, from

<1% to 99% per cell line, correlated with bulk mRNA levels, that were inversely associated with

sensitivity to small-molecule RAF inhibition.

We treated 10 cell lines with increasing doses of a RAF/MEK inhibitor combination (dabrafenib

and trametinib) and found a rapid increase in the proportion of AXL-positive cells in six cell lines

initially composed of a small (<3%) pre-treatment AXL-positive population (Figure 3-5 e; Figure

3-9). In contrast, cell lines with an intrinsically high proportion of AXL-expression, showed

modest or no changes (Figure 3-9). Similar results were obtained by multiplexed quantitative

single-cell immunofluorescence (IF), which also demonstrated that the increased fraction of

AXL-positive cells following RAF/MEK inhibition are associated with rapid decreases in ERK

phosphorylation (reflecting MAP-kinase signaling inhibition) (Figure 3-5 f). In summary, both

melanoma tumors and cell lines demonstrate drug-resistant tumor cell subpopulations that

become enriched during treatment with MAP-kinase targeted treatment.
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Figure 3-9: Flow-cytometry of melanoma cell lines before and after treatment with
RAF/MEK-inhibition. (a) Sensitive cell lines show an increased proportion of AXL-positive cells
while resistant cell lines (b) show modest or no changes following treatment with RAF/MEK-
inhibitors.

3.6: Discussion

Our analysis has uncovered intra- and inter-individual, spatial, functional and genomic

heterogeneity in melanoma cells and associated tumor components that shape the

microenvironment. We identified a cell state in a subpopulation of all melanomas studied that is

linked to resistance to targeted therapies and validated the presence of a dormant drug-

resistant population in a number of melanoma cell lines using different approaches.

While future work is necessary to clarify the interplay between these cell types and functional

states in space and time, the ability to carry out numerous, highly-multiplexed single cell

observations within a tumor provides power to identify meaningful cell subpopulations and gene

expression programs that can inform on both the analysis of bulk transcriptional data and
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precision treatment strategies. Conceivably, single cell genomic profiling may soon enable a

deeper understanding of the complex interplay among cells within the tumor ecosystem and its

evolution in response to treatment, thereby providing a versatile new tool for future translational

applications.
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3.7: Methods

Tissue handling and tumor disaggregation. Resected tumors were transported in DMEM

(ThermoFisher Scientific) on ice immediately after surgical procurement. Tumors were rinsed

with PBS (Life Technologies). A small fragment was stored in RNA-protect (Qiagen) for bulk

RNA and DNA isolation. Using scalpels, the remainder of the tumor was minced into tiny cubes

<1 mm3 and transferred into a 50 ml conical tube (BD Falcon) containing 10 ml pre-warmed

M199-media (ThermoFisher Scientific), 2 mg/ml collagenase P (Roche) and 1OU/pl DNase I

(Roche). Tumor pieces were digested in this digestion media for 10 minutes at 370C, then

vortexed for 10 seconds and pipetted up and down for 1 minute using pipettes of descending

sizes (25 ml, 10 ml and 5 ml). If needed, this was repeated twice more until a single-cell

suspension was obtained. This suspension was then filtered using a 70pm nylon mesh

(ThermoFisher Scientific) and residual cell clumps were discarded. The suspension was

supplemented with 30 ml PBS (Life Technologies) with 2% fetal calf serum (FCS) (Gemini

Bioproducts) and immediately placed on ice. After centrifuging at 580g at 40C for 6 minutes, the

supernatant was discarded and the cell pellet was re-suspended in PBS with FCS and placed

on ice prior to staining for FACS.

FACS. Single-cell suspensions were stained with CD45-FITC (VWR) and Calcein-AM (Life

Technologies) per manufacturer recommendations. For sorting of ex vivo co-cultured cancer-

associated fibroblasts, we used a CD90-PE antibody (BioLegend). First, doublets were

excluded based on forward and sideward scatter, then we gated on viable cells (Calceinh9h) and

sorted single cells (CD45+ or CD45- or CD45-CD90+) into 96-well plates chilled to 4°C, pre-

prepared with 10pl TCL buffer (Qiagen) supplemented with 1% beta-mercaptoethanol (lysis

buffer). Single-cell lysates were sealed, vortexed, spun down at 3700 rpm at 40C for 2 minutes,

immediately placed on dry ice and transferred for storage at -80C.
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RNA and DNA isolation from bulk specimens. RNA and DNA were isolated using the Qiagen

minikit following the manufacturers recommendations.

Whole transcriptome amplification. Whole Transcriptome amplification (WTA) was performed

with a modified SMART-Seq2 protocol, as described previously 29 30 , with Maxima Reverse

Transcriptase (Life Technologies) used in place of Superscript II.

Library preparation and RNA-seq. WTA products were cleaned with Agencourt XP DNA

beads and 70% ethanol (Beckman Coulter) and Illumina sequencing libraries were prepared

using Nextera XT (Illumina), as previously described 30 . The 96 samples of a multiwall plate were

pooled together, and cleaned with two 0.8x DNA SPRs (Beckman Coulter). Library quality was

assessed with a high sensitivity DNA chip (Agilent) and quantified with a high sensitivity dsDNA

Quant Kit (Life Technologies). Samples were sequenced on an Illumina NextSeq 500 instrument

using 30bp paired-end reads.

Whole-exome sequencing and analysis. Exome sequences were captured using Illumina

technology and Exome sequence data processing and analysis were performed using the

Picard and Firehose pipelines at the Broad Institute. The Picard pipeline

(http://picard.sourceforge.net) was used to produce a BAM file with aligned reads. This includes

alignment to the hg19 human reference sequence using the Burrows-Wheeler transform

algorithm 3 1 and estimation of base quality score and recalibration with the Genome Analysis

Toolkit (GATK) (http://www.broadinstitute.org/qatk/) 32. All sample pairs passed the Firehose

pipeline including a QC pipeline to test for any tumor/normal and inter-individual contamination

as previously described33 34. The MuTect algorithm was used to identify somatic mutations34
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MuTect identifies candidate somatic mutations by Bayesian statistical analysis of bases and

their qualities in the tumor and normal BAMs at a given genomic locus. To reduce false positive

calls we additionally analyzed reads covering sites of an identified somatic mutation and

realigned them with NovoAlign (www.novocraft.com) and performed additional iteration of

MuTect inference on newly aligned BAM files. Furthermore, we filtered somatic mutation calls

using a panel of over 8,000 TCGA Normal samples. Small somatic insertions and deletions

were detected using the Strelka algorithm 35 and similarly subjected to filtering out potential false

positive using the panel of TCGA Normal samples. Somatic mutations including single-

nucleotide variants, insertions, and deletions were annotated using Oncotator36 . Copy-ratios for

each captured exon were calculated by comparing the mean exon coverage with expected

coverage based on a panel of normal samples. The resulting copy-ratio profiles were then

segmented using the circular binary segmentation (CBS) algorithm 37.

Processing of RNA-seq data. Following sequencing on the NextSeq, BAM files were

converted to merged, demultiplexed FASTQs. Paired-end reads were then mapped to the

UCSC hg19 human transcriptome using Bowtie 38 with parameters "-q --phred33-quals -n 1 -e

99999999 -125 -1 1 -X 2000 -a -m 15 -S -p 6", which allows alignment of sequences with single

base changes such as due to point mutations. Expression levels of genes were quantified as

E;=/og2(TPM,,/10+1), where TPMij refers to transcript-per-million (TPM) for gene i in sample j,

as calculated by RSEM 39 v1.2.3 in paired-end mode. TPM values were divided by 10 since we

estimate the complexity of our single cell libraries to be on the order of 100,000 transcripts and

would like to avoid counting each transcript -10 times, as would be the case with TPM, which

may inflate the difference between the expression level of a gene in cells in which the gene is

detected and those in which it is not detected. When evaluating the average expression of a

population of cells by pooling data across cells (e.g., all cells from a given tumor or cell type) the
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division by 10 was not required and the average expression was defined Ep(/)=/og 2(TPM(/)+1),

where I is a set of cells.

For each cell, we quantified the number of genes for which at least one read was mapped, and

the average expression level of a curated list of housekeeping genes. We then excluded all cells

with either fewer than 1,700 detected genes or an average housekeeping expression (E, as

defined above) below 3. For the remaining cells, we calculated the pooled expression of each

gene as (Ep), and excluded genes with an aggregate expression below 4, which defined a

different set of genes in different analyses depending on the subset of cells included. For the

remaining cells and genes, we defined relative expression by centering the expression levels,

Eri,=Ei;-average[E i n].

Data availability

Raw and processed single-cell RNA-seq data is available through the Gene Expression

Omnibus (GSE72056).

CNV estimation. Initial CNVs (CNVo) were estimated by sorting the analyzed genes by their

chromosomal location and applying a moving average to the relative expression values, with a

sliding window of 100 genes within each chromosome, as previously described1 6. To avoid

considerable impact of any particular gene on the moving average we limited the relative

expression values to [-3,3] by replacing all values above 3 by 3, and replacing values below -3

by -3. This was performed only in the context of CNV estimation. This initial analysis is based on

the average expression of genes in each cell compared to all other cells and therefore does not

have a proper reference which is required to define the baseline. However, we identified five

subsets of cells that each had more limited high or low values of CNVo and which were
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consistent across the genome despite the fact that these cells originate from multiple tumors.

We thus considered these as putative non-malignant cells and used their CNV estimates to

define the baseline. The normal cells included five cell types (see below, not including NK cells),

which differed in gene expression patterns and accordingly also slightly in CNV estimates (e.g.,

the MHC region in chromosome 6 had consistently higher values in T cells than in stromal or

cancer cells). We therefore defined multiple baselines, as the average of each cell type, and

based on these the maximal (BaseMax) and minimal (BaseMin) baseline at each window of 100

genes. The final CNV estimate of cell i at position j was then defined as:

{CNVo(i,j) - BaseMax(j), if CNVO(i,j) > BaseMax(j) + 0.2
CNVf(ij) CNVO(i,j) - BaseMin(j), i f CNVO(i,j) < BaseMin(j) - 0.2

0, if BaseMin(j) - 0.2 < CNVO(i,j) < BaseMin(j) + 0.2

To quantitatively evaluate how likely each cell is to be a malignant or non-malignant cell we

summarized the CNV pattern of each cell by two values: (1) overall CNV signal, defined as the

sum of squares of the CNVf estimates across all windows; (2) the correlation of each cells' CNV

vector with the average CNVf vector of the top 10% of cells from the same tumor with respect to

CNV signal (i.e., the most confidently-assigned malignant cells). These two values were used to

classify cells as malignant, non-malignant, and intermediates that were excluded from further

analysis, as shown in Figure 3-2.

T-SNE analysis and cell type classification. A Matlab implementation of the tSNE method

was downloaded from http://lvdmaaten.github.io/tsne/ and applied with dim=15 to the relative

expression data of malignant and to that of non-malignant cells. Since the complexity of tSNE

visualization increases with the number of tumors we restricted the analysis presented in Figure

3-1 to the 13 tumors with at least 100 cells, and for the malignant cell analysis we further

restricted the analysis to 6 tumors with >50 malignant cells. To define cell types from the non-
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malignant tSNE analysis we used a density clustering method, DBscan17 . This process revealed

six clusters for which the top preferentially expressed genes (p<0.001, permutation test)

included multiple known markers of particular cell types. In this way, we identified T cell, B-cell,

macrophage, endothelial, CAF (cancer-associated fibroblast) and NK cell clusters, as marked in

Figure 3-1 (dashed ellipses). To ensure the specificity of our assignment of individual cells to

each cell type cluster, while avoiding potential doublet cells (which might be composed of two

cells from distinct cell types), cells with low-quality data, and cells that spuriously cluster with a

certain cell type, we next scored each non-malignant cell (by CNV estimates, as described

above) by the average expression of the identified cell type marker genes. Cells were classified

as each cell type only if they express the marker genes for that cell type much more than those

for any other cell type (average relative expression, Er, of markers for one cell type higher by at

least 3 than those of other cell types, which corresponds to 8-fold expression difference).

Principal component analysis. In order to decrease the impact of inter-tumoral variability on

the combined analysis of cancer cells we re-centered the data within each tumor separately,

such that the average of each gene was zero among cells from each tumor. The covariance

matrix used for PCA was generated using an approach outlined in Shalek et a 14 0 to decrease the

weight of less reliable "missing" values in the data. This approach aims to address the challenge

that arises due to the limited sensitivity of single-cell RNA-seq, where many genes are not

detected in a particular cell despite being expressed. This is particularly pronounced for genes

that are more lowly expressed, and for cells that have lower library complexity (i.e., for which

relatively fewer genes are detected), and results in non-random patterns in the data, whereby

cells may cluster based on their complexity and genes may cluster based on their expression

levels, rather than "true" co-variation. To mitigate this effect we assign weights to missing

values, such that the weight of E is proportional to the expectation that gene i will be detected
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in cell j given the average expression of gene i and the total complexity (number of detected

genes) of cell j.

Following PCA, we focused on the top six components as these were the only components that

both explained a significant proportion of the variance and were significantly correlated with at

least one gene, where significance was determined by comparison to the top 5% (of variance

explained and of top gene correlations) from 100 control PCA analyses on shuffled data. PCI

had a high correlation (R=0.46) with the number of genes detected in each cell and we did not

observe a more specific biological function that may be associated with it and thus we infer this

to be a technically-driven component which is reflecting the systematic variation in the data due

to the large differences in the quality and complexity of data for different cells. Subsequent

analysis was focused on understanding the biological function of the next components PC2-6,

which were associated with the cell cycle (PC2 and 6), regional heterogeneity (PC3) and MITF

expression program (PC4 and 5).

MITF and AXL expression programs and cell scores. The top 100 MITF-correlated genes

across the entire set of malignant cells were defined as the MITF program, and their average

relative expression as the MITF-program cell score. The average expression of the top 100

genes that negatively correlate with the MITF program scores were defined as the AXL program

and used to define AXL program cell score. To decrease the effect that the quality and

complexity of each cell's data might have on its MITF/AXL scores we defined control gene-sets

and their average relative expression as control scores, for both the MITF and AXL programs.

These control cell scores were subtracted from the respective MITF/AXL cell scores. The

control gene-sets were defined by first binning all analyzed genes into 25 bins of aggregate

expression levels and then, for each gene in the MITF/AXL gene-set, randomly selecting 100

genes from the same expression bin as that gene. In this way, a control gene-sets have a

comparable distribution of expression levels to that of the MITF/AXL gene-set and the control
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gene set is 100-fold larger, such that its average expression is analogous to averaging over 100

randomly-selected gene-sets of the same size as the MITF/AXL gene-set. To calculate

significance of the changes in AXL and MITF programs upon relapse, we defined the

expression og2-ratio between matched pre- and post- samples for all AXL and MITF program

genes (Figure 3-5). Since AXL and MITF programs are inversely related, we flipped the signs of

the log-ratios for MITF program genes and used a t-test to examine if the average of the

combined set of AXL program and (sign-flipped) MITF program genes is significantly higher

than zero, which was the case four out of six matched sample pairs (Figure 3-5, black arrows).

Immunohistochemical staining. All melanoma specimens were formalin fixed, paraffin-

embedded, sectioned, and stained with hematoxylin and eosin (H&E) for histopathological

evaluation at the Brigham and Women's Pathology core facility, unless otherwise specified.

Immunohistochemical (IHC) studies employed 5 mm sections of formalin-fixed, paraffin-

embedded tissue. All were stained on the Leica Bond Ill automated platform using the Leica

Refine detection kit. Sections were deparaffinized and HIER was performed on the unit using

EDTA for 20 minutes at 900C. All sections were stained per routine protocols of the Brigham

and Women's Pathology core facility. Additional sections were incubated for 30 min with primary

antibody Ki-67 (1:250, Vector, VP-RM4) and JunB rabbit mAb (C37F9, Cell Signaling

Technologies) and were then completed with the Leica Refine detection kit. The Refine

detection kit encompasses the secondary antibody, the DAB chromagen (DAKO) and the

Hematoxilyn counterstain. Cell counting using an ocular grid micrometer over at least five high-

power fields was performed.

Tissue immunofluorescence staining. Dual-labeling immunofluorescence was performed to

complement immunohistochemistry as a means of two-channel identification of epitopes co-

expressed in similar or overlapping sub-cellular locations. Briefly, 5-mm-thick paraffin sections

67



were incubated with primary antibodies, AXL rabbit mAb antibody (C89E7, Abcam) plus MITF

mouse mAb (clone D5, ab3201, Abcam) and JARID1B rabbit mAb (ab56759, Abcam) plus Ki67

(ab8191, Abcam) that recognize the target epitopes at 40C overnight and then incubated with

Alexa Fluor 594-conjugated anti-mouse IgG and Alexa Fluor 488-conjugated anti-rabbit IgG

(Invitrogen) at room temperature for 1 h. The sections were cover slipped with ProLong Gold

anti-fade with DAPI (Invitrogen). Sections were analyzed with a BX51/BX52 microscope

(Olympus America, Melville, NY, USA), and images were captured using the CytoVision 3.6

software (Applied Imaging, San Jose, CA, USA). The following primary antibodies were used for

staining per manufactures recommendations: mouse anti-MITF (DAKO), rabbit ant-AXL (Cell

Signaling), goat anti-TIM3 (R&D Systems), rabbit ant-PD1 (Sigma Aldrich), and goat anti-PD1

(R&D Systems).

Cell culture experiments and AXL flow-cytometry. Cell lines from the Cancer Cell

Encyclopedia Lines28 were used for flow-cytometry analysis of the proportion of AXL-positive

cells. Based on IC50 values for vemurafenib, we selected seven cell lines that were predicted to

be sensitive to MAP-kinase pathway inhibition, including WM88, IGR37, MELHO, UACC62,

COLO679, SKMEL28 and A375 and three cell lines predicted to be resistant, including IGR39,

294T and A2058. These ten cell lines were used for drug sensitivity testing and pre-treatment

and post-treatment analysis of the AXL-positive fraction. For WM88, IGR37, MELHO, UACC62,

COLO679, SKMEL28 and A375, cells were plated at a density to be at 30-50% confluent after

16 hours post seeding. A total of four drug arms were plated for each cell line using two T75

(Corning) and two T175 (Corning) culture flasks. Approximately 16-24 hours after seeding, cells

were treated with DMSO or dabrafenib (D) and trametinib (T) at the following drug doses of D/T:

0.01uM/0.001uM, 0.1uM/0.01uM and 1uM/0.1uM (T175 reserved for higher drug

concentrations). Cells were maintained in drug for a total of 5 days, at which point, cells were

harvested for flow sorting. For IGR39, 294T and A2058, cells were plated at a density to be at
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20-30% confluent 16 hours post seeding. Cells were treated with the DMSO or D/T at using the

same doses as above and maintained in drug for a total of 10 days, at which point, cells were

harvested for flow sorting. For AXL-flow sorting, cells were first washed with warm PBS,

followed by an addition of 10mM EDTA and incubated for 2 minutes at room temperature.

Excess EDTA was then aspirated and cells incubated at 37°C until cells detached from flask.

Cells were resuspended in cold PBS 2% FBS and kept on ice. Cells were counted and 500,000

cells were transferred to 15ml conical tubes (Falcon), spun down and resuspended in 100pl of

cold PBS 2% FBS alone (negative control) or antibodies using manufacturers

recommendations, including 1pg of AXL antibody (AF154, R&D Systems) or 1pg of normal goat

IgG control (Isotype control, AB-108-C, R&D Systems). Cells were incubated on ice for 1 hour,

then washed twice with cold PBS 2% FBS. Cells were pelleted and resuspended in 100pl PBS

2% FBS with 5pl of Goat IgG (H+L) APC-conjugated Antibody (F0108, R&D Systems) and

incubated for 30 minutes at room temperature. Cells were then washed twice with cold PBS 2%

FBS, pelleted and resuspended in 500pl of PBS 2% FBS and transferred to 5mL flow-cytometry

tubes (Falcon). 1pl of SYTOX Blue Dead Stain (Thermo Fisher) was added to each sample and

samples analyzed by flow-cytometry. Data was analyzed using FACSDiva Version 6.2 using

viable cells only (as determined by SYTOX Blue staining) and gates for AXL-positivity were set

using the Isotype control set to <1%.

Single-cell immunofluorescence staining and analysis. For single-cell immunofluorescence

(single-cell IF) studies, we included the following cell lines from CCLE: WM88, MELHO,

SKMEL28, COL0679, IGR39, A2058 and 294T. Cells were cultured and detached as

described above, and seeded at a density of 10,000 cells per well into Costar 96-well black

clear-bottom tissue culture plates (3603, Corning). Cells were treated using Hewlett-Packard

(HP) D300 Digital Dispenser with vemurafenib (Selleck) alone or in combination with trametinib

(Selleck) at indicated doses for 5 and 10 days. In the case of 10-day treatment, growth medium
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was changed after 5 days followed by immediate drug re-treatment. Cells were then fixed in 4%

paraformaldehyde for 20 minutes at room temperature and washed with PBS with 0.1% Tween

20 (Sigma-Aldrich) (PBS-T), permeabilized in methanol for 10 min at room temperature,

rewashed with PBS-T, and blocked in Odyssey Blocking Buffer for 1 hour at room temperature.

Cells were incubated overnight at 4°C with primary antibodies in Odyssey Blocking Buffer. The

following primary antibodies with specified animal sources and catalogue numbers were used in

specified dilution ratios: p-ERKT2
0

2 Y24 rabbit mAb (clone D13.14.4E, 4370, Cell Signaling

Technology), 1:800, AXL goat polyclonal antibody (AF154, R&D Systems), 1:800, MITF mouse

mAb (clone D5, ab3201, Abcam), 1:400. Cells were then stained with rabbit, mouse and goat

secondary antibodies from Molecular Probes (Invitrogen) labeled with Alexa Fluor 647

(A31573), Alexa Fluor 488 (A21202), and Alexa Fluor 568 (Al1057). Cells were washed once in

PBS-T, once in PBS and were then incubated in 250 ng/ml Hoechst 33342 and 1:800 Whole

Cell Stain (blue; Thermo Scientific) solution for 20 min. Cells were washed twice with PBS and

imaged with a 10x objective on a PerkinElmer Operetta High Content Imaging System. 9-11

sites were imaged in each well. Image segmentation, analysis and signal intensity quantitation

were performed using Acapella software (Perkin Elmer). Population-average and single-cell

data were analyzed using MATLAB 2014b software. Single-cell density scatter plots were

generated using signal intensities for individual cells.

CAF-melanoma co-cultures from melanoma 80. Solid tumor sample was removed from the

transport media (Day 1: date of procurement) and minced mechanically in DMEM culture media

(Thermo Scientific), 10% FCS (Gemini Bioproducts), 1% pen/strep (Life Technologies) on 10 cm

culture plates (Corning Inc.) and left overnight in standard culture condition (37C, humidified

atmosphere, 5% C02). The liquid media in which the procured tissue was originally placed was

spun down (1500 rpm) to isolate the detached cells in solution and the pelleted cells were

resuspended in fresh culture media and propagated in culture flasks (Corning Inc.) (fraction 1).
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The minced tumor samples were removed from the 10 cm culture dishes on Day 2 and

mechanically forced through 100 uM nylon mesh filters (Fisher Scientific) using syringe plungers

and washed through with fresh culture media. The cells and tissue clumps were spun down in

50 ml conical tubes (BD Falcon), resuspended in fresh culture media, and propagated in culture

flasks (fraction 2). The 10 cm culture dishes in which the samples had been minced and placed

overnight were washed replaced with fresh culture media so that the attached cells could be

propagated (fraction 3). Cells were propagated by changing culture media every 3-4 days and

passaging cells in 1:3 to 1:6 ratio using 0.05% trypsin (Thermo Scientific) when the plates

became 50-80% confluent.

Tissue microarray staining, image acquisition and analysis. We purchased two individual

melanoma tissue microarrays (TMAs), including ME208 (US Biomax) and CC38-01-003

(Cybrdi). These contained a total of 308 core biopsies, including a total of 180 primary

melanomas, 90 metastatic lesions, 18 melanomas with adjacent healthy skin and 20 healthy

skin controls. Each TMA was double-stained with conjugated complement 3-FITC antibody

(F0201, DAKO) and CD8-TRITC (ab17147, Abcam) per manufacturers recommendations.

Image acquisition was performed on the RareCyte CyteFinder high-throughput imaging

platform 41. For each TMA-slide, the 3-channel (DAPI/FITC/TRITC) 10x images were captured

and stored as Bio-format stacks. The image stacks were background-subtracted with rolling ball

method and stitched into single image montage of each channel using ImageJ. For the

quantification of CD8/C3 positive area and signal intensity, the gray-scale images were

converted into binary images with the Otsu thresholding method 42 43 . Each tissue spot was

segmented manually and DAPI, C3 and CD8-positive areas and intensities were calculated

using ImageJ (NIH, MD). In order to control for sample quality, core biopsies with a DAPI

staining less than 10% of total area were excluded from the correlation analysis. The raw
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numerical data were then processed and Pearson's correlation coefficients were calculated

between C3/CD8 area fraction and intensity using MATLAB 2014b software (MathWorks, MA).
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Table S1. Characteristics of patients and samples included in this study

SampleID Agesex Mutation Prm-operative Site of Post-op. Aliva
status treatment resection treatment deceased

Melanoma_53

Melanoma_58

Melanoma_59

Melanoma_60

Melanoma_65

Melanoma_67

Melanoma_71

Melanoma_72

Melanoma_74
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Melanoma_78

Melanoma_79

Melanoma_80

Melanoma_81

Melanoma_82

Melanoma_84
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Melanoma_94

77/F Wild-type

67/F

80/M

69/M

Wild-type

Wild-type

BRAF V600K
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65/M BRAF V600E
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BRAF V600E

NRAS Q61L
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nivolumab
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MED13617
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NoneSubcutaneous
back lesion
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intramuscular
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node
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Chapter 4: Transcriptomic and genomic correlates of

checkpoint blockade in leptomeningeal disease

This chapter is adapted from the following manuscript in preparation:

Prakadan SM*, Alvarez-Breckenridge CA*, Markson SC*, Klein RH, Nayyar N, Navia AW, Kuter
BM, Kolb KE, Bihun I, Mora JL, Solana Bertalan M, Shaw B, White M, Kaplan A, Stocking JH,
Wadsworth MH 11, Lee EQ, Subramanian M, Rotem D, Cahill DP, Adalsteinsson VA, Miller JW,
Sullivan RJ, Carter SLt, Brastianos PKt, Shalek AKt "Transcriptomic and genomic correlates of

checkpoint blockade in leptomeningeal disease."

'I Denote equal contribution

Immune checkpoint molecules have been shown to modulate the behaviors of multiple cell

types. Thus, immune checkpoint inhibitors (ICIs) might exert unappreciated, complex effects on

the tumor microenvironment (TME). To directly explore treatment-induced shifts within a

particular TME, we performed single-cell RNA-Seq (scRNA-Seq) and cell-free DNA-Seq

(cfDNA-Seq) on cerebrospinal fluid from patients with leptomeningeal disease (LMD) before and

after PD-1 blockade. We recover immune and malignant cell types, and characterize changes in

T cell cytotoxicity and exhaustion, innate immune polarization, and transient tumor cell

responses, including adaptive selection of a tumor subclone. Overall, our study illuminates

multicellular changes in the liquid LMD TME following immunotherapy, and demonstrates the

potential for longitudinal cell-free and single-cell genomic measurements to better understand

potential putative drivers of clinical phenomena.
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Key Contributions

SMP co-led the design and implementation of the single-cell RNA-Sequencing study with CAA,

performed the single-cell RNA-Sequencing with others, and co-led the analysis of the

transcriptomic data with SCM.

Forward

We sought to extend our previous investigations of tumor heterogeneity introduced in Chapter 3

to other cancer systems, profiling their responses to treatment using single-cell genomics.

However, limitations - including cost of sample preparation, the rarity of acquiring surgical

resections, and difficulty profiling longitudinally - challenged widespread adoption. Clinical liquid

biopsies presented an opportunity to circumvent these difficulties, but are often too low in cell

number and/or volume for traditional single-cell approaches. Here, we apply a novel, nanowell-

based single-cell RNA Sequencing technology to profile cerebrospinal fluid (CSF) liquid biopsies

from patients with leptomeningeal carcinomatosis (LMD) treated with immunotherapy in a

clinical trial studying its efficacy. We develop the first, to date, single-cell atlas of LMD, and use

it to study the response of CSF cells to intravenously administered PD-1 blockade by

Pembrolizumab. Additionally, we use paired longitudinal single-cell RNA & cell-free DNA

sequencing to study clinical correlates in specific patients, investigating potential resistance

mechanisms. This pilot study and subsequent data provide a window into the effect of drug on

the TME and suggest how the response to treatment may be coordinated across compartments,

with nuanced dynamics in individual patients.
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4.1: Introduction

Among the immunotherapies currently used to treat cancerl-4, immune checkpoint inhibitors

(lCis) have shown particularly striking clinical activity across a range of tumors' 5'6 . These

molecules can restore immune function by binding inhibitory co-receptors (or ligands) on T cells

(or tumor cells), such as PD-1 and CTLA-4 (or their cognates), that are often engaged

(expressed) by tumor cells and other cells3 5 . Despite early successes, the broad applicability of

PD-1 blockade has been challenged by mounting observations of partial response, acquired

resistance, and inconsistent benefit across patients, even for the same tumor type0,

particularly in extension of ICI beyond initially promising tumor types. Recent evidence suggests

that these obstacles may be partially explained by aspects of the tumor microenvironment

(TME), such as immune exclusion or the presence of suppressive extracellular factors, among

other processes,10-12. Overcoming these mechanisms of resistance (both inherent and

acquired) requires a detailed understanding of Cl-induced changes within the TME.

Unfortunately, given the invasiveness of conventional sampling methods (e.g., resections or

core biopsies) and the paucity of material recovered via their alternatives (e.g., fine needle

aspirates, FNAs), it has been challenging to comprehensively characterize the TME before and

after treatment13 .

Here, as part of a unique clinical trial of PD-1 blockade by pembrolizumab (NCT02886585, see

Methods), we longitudinally collected cerebrospinal fluid (CSF) samples from patients

diagnosed with leptomeningeal dissemination of cancer (leptomeningeal disease; LMD). LMD is

a devastating late-stage metastatic feature of many solid tumors in the central nervous system

associated with a median survival of 4-6 weeks'4 6 . Our trial achieved primary endpoint, with

improved overall median survival (Figure 4-1 a), providing an unprecedented opportunity to

study correlative cellular and molecular features of clinical PD1-blockade efficacy in LMD. By

profiling CSF cells before and after treatment with Seq-Well, a high-throughput scRNA-Seq
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method specialized for paucicellular patient-derived specimens 17'18 (Figure 4-1), as well as

cfDNA, we characterize changes to the liquid component of the LMD TME19 upon PD-1

blockade. Our data explicitly detail malignant (tumor) and non-malignant molecular and cellular

10 response features, and demonstrate the clinical utility of longitudinally sampling the TME.
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Figure 4-1: A phase-l clinical trial of the efficacy of pembrolizumab for treating LMD
analyzed by longitudinal scRNA-Seq: a) Schematic representation of the longitudinal
sampling performed on patients in this study. b,c) UMAP projection calculated from all cells
(14,333), colored by patient (b) and by treatment status (c) with individual clusters identified
(see Figure 4-2).
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Results

4.2: scRNA-Seq of the LMD TME

We performed massively-parallel scRNA-Seq on 18 distinct CSF samples from 11 patients

enrolled in a phase-Il clinical trial testing the efficacy of pembrolizumab on LMD associated with

breast cancer. 8 of these 11 patients surpassed the 3-month survival threshold, and overall, the

trial met its primary endpoint20. As part of the trial, CSF was drawn every 3 weeks immediately

prior to pembrolizumab administration, and a portion of this sample was utilized for single-cell

profiling. After filtering for low quality cells and doublets21'2 2, we obtained 14,333 single cells

which we further identified using standard dimensionality reduction23 and visualization

strategies2 4 2 (Methods). These analyses initially separated our data into twelve distinct

clusters comprised primarily of malignant, T/NK, immunoglobulin-expressing B, and innate

immune cells (Figure 4-1 b,c, Figure 4-2 a,c). The malignant cell clusters (n = 8) exhibited

strong patient-specific representation while the immune clusters (n = 4) grouped by phenotype

rather than by patient (Figure 4-2 b), consistent with previous observations derived through

scRNA-Seq of human tumors 21' 26 .

81



a ByClusterID

C\

D~

b

1~o

2 7 9 11 1 3 4 5 6 8 10

Immune Tumor
*P010 OP011 SP014 *P029 P037 P042

•P043 OP046 - P050 OP073 *P091

C

+ p., 4-.4 4A2

-~ ' .t

d
1.01

0.8

0.6-

g0.4-
z
0

0.2.

0.0.

e Malignant vs. Non-malignant di

0

Blood CSF

Relative Expression

-2in 2

vergence

P010-4

P011-1

P014-1

P014-2

P029-2

F'029-4

P029-5

P043-2

P043-3

P043-4

P050-3

P050-19

P0L -

I A.

f

0.3

Z0.2

4 0.1

0.0

-0.1

40*

-1

lit

WES Reference Patient

Noma nce

82

UMAP 1

Stromal

q2

n.AL



Figure 4-2: Defining cellular identity across patients. a) UMAP of all cells noted by cluster
identity calculated by SNN clustering. Gray is to distinguish cluster 9. b) Patient representation
by cluster, aggregated by cellular identity (immune, tumor, stromal). c) Heatmap showing
expression of select marker genes for all clusters (50 cells per cluster chosen for
representation). d) Tumor purity calculated by ABSOLUTE of cfDNA derived from blood and
CSF. e) Heatmap of all combinations of the mean difference between tumor (T) and non-tumor
(NT) Theil-Sen slopes cells of chromosome-level average scRNA-Seq expression vs.
chromosome-level WES tCR. f) Distributions of purity-adjusted slopes of chromosome-level
average vs. WES tCR for each sample's tumor (blue) and non-tumor (orange) cells.

We further confirmed that the identified non-immune clusters were malignant cells by inferring

copy number variation (CNV) profiles for each single cell 2 1 27,28. As the average complexity of

massively-parallel scRNA-Seq data is lower than that of plate-based methods utilized in

previous studies29, we developed an approach that combines whole exome sequencing data

(WES)-here, from CSF-derived cfDNA-with patient-matched scRNA-Seq data to detect

chromosome-level aberrations (see Methods); leveraging our CSF-derived cfDNA data as a

genomic CNV reference, we corroborated the malignancy status of our individual cells. We note

that we detected significantly higher fractions of genomic material derived from cancer cells in

the CSF than in paired peripheral blood samples, suggesting that the CSF is a largely isolated

microenvironment (Figure 4-2 d-f). Overall, we retained comparable pre- and post-treatment

cell numbers for all aforementioned cell types, enabling investigation of the impact of

intravenous PD-1 blockade on the heterogeneous cellular subsets present in LMD CSF TME.

4.3: Increased Expression of Genes Associated with Cytotoxicity and Proliferation in T Cells

Following ICI

Using a combination of unsupervised and supervised approaches, we first partitioned the T/NK

cluster (cluster 2, Figure 4-2 a) into CD4+ and CD8+ T cells, and NK cells (which can co-

segregate during high-level analyses of scRNA-Seq data based on gene-expression similarity30 )

(Figure 4-3 a-c, Methods). We then investigated phenotypic shifts within these T cell subsets

following PD-1 blockade, beginning with CD8+ T cells, the major target of pembrolizumab.
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043 and 050. i, Scoring of CD8.exhh' and CD8.exh'o T cells from e, according to progenitor and
terminally exhausted T cell signatures identified in Miller et a13 6 (***, p<0.001; Mann-Whitney U
Test).

Unsupervised analysis of expression data from LMD CSF revealed increased CD8+ T cell

proliferation following intravenous administration of pembrolizumab, consistent with previous

reports3 33 . CD8+ T cells across all patients (Figure 4-3 d) resolved into 4 distinct clusters

(Figure 4-3 g), largely partitioned by treatment status. One cluster in particular (CD8.c4)

expressed high levels of genes associated with proliferation. This cluster was primarily

composed of post-treatment cells, and it comprised a larger fraction of total post-treatment cells

than pre-treatment (14.9% vs. 1.8% of post-treatment and pre-treatment cells, respectively,

Figure 4-4).
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Figure 4-4: Unsupervised analysis of T/NK cluster. a) T/NK cluster UMAP, colored by
clusters calculated by SNN. b) Heatmap showing the expression of marker genes with select
markers per cluster. Markers represented in multiple clusters highlighted. c) Fraction of T/NK
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cells in each SNN cluster. d) SNN clusters and iteratively assigned identities of CD4+ T cells,
CD8+ T cells, and NK cells. e) MK167 expression in post-treatment T/NK cells projected over
UMAP. f) Proportion of cycling cells that comprise all pre- and post-treatment CD8+ T cells.

Additional comparisons suggested that PD-1 blockade increases cytotoxic and interferon

response gene expression among CD8+ T cells. Differential gene expression analysis between

untreated and treated non-proliferating CD8+ T cells revealed increased expression of a set of

genes containing canonical markers of cytotoxicity (NKG7, PRFI, GZMB) and interferon-

response (ISG15, STAT1, MX1) following treatment (Figure 4-3 e), as well as overall

enrichments for genes associated with leukocyte activation, interferon-y signaling and response,

and cytokine signaling pathways (Figure 4-3 f). Conversely, genes upregulated in untreated

CD8+ T cells included IL7R, S10OA4, BCL2, which have previously been associated with

memory/effector T cell state34 3 . We observed a similar bifurcation in CD4+ T cells following ICI

introduction, with higher expression of interferon- signaling and response genes post-treatment.

4.4: T cell exhaustion is heterogeneously affected by ICI introduction.

PD-1 signaling in CD8+ T cells induces a phenotype characterized by expression of genes such

as CD39, TM3, HAVCR2, and others3 6-3 8, commonly referred to as T cell exhaustion. We

examined how PD-1 blockade administration might affect this phenotype in our CD8+ T cells

using a series of curated signatures 12 ,36,38-40 (Figure 4-6). Our results suggest that post-

treatment CD8+ T cells were more exhausted than pre-treatment cells (p<2x10-3 for all

evaluated signatures, Mann-Whitney U Test; see Table 4-1 for significance tests), and that the

degree of exhaustion varied significantly between clusters, with CD8.c2 exhibiting greater

exhaustion than CD8.c3 (p<2x10-6 for all significant signatures. Mann-Whitney U Test; see

Table 4-1 for significance tests; Figure 4-6). We hereafter refer to CD8.c2 and CD8.c3 as

CD8.exhh' and CD8.exhlo, respectively. CD8.exhh also exhibited significantly higher expression
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of genes associated with cytotoxicity and interferon response (e.g., PRF, NKG7, and GZMK)

than CD8.exh'°.
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clusters represented in UMAP. b) Heatmap showing expression of differentially expressed
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We next sought to understand how these two exhaustion states varied over the course of PD-1

blockade treatment in patients. For two patients from whom multiple post-treatment CSF draws

were available (see Methods), we detected a smaller fraction of CD8.exhlo cells at the later

post-ICI time point, and a larger proportion of CD8.exhhi (Figure 4-3 h). These observations

suggest that the CD8.exhlo and CD8.exhhi phenotypes may be generally associated with early

and late PD-1 blockade, respectively. We demonstrate here that longitudinal profiling of the

same patient's liquid TME reveals congruent phenotypic shifts inferred from the full cohort.
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Recent work in transgenic murine models has suggested that PD-1 blockade may transition

exhausted CD8+ T cells from a stem-like exhausted state towards a more terminally exhausted

one36,41. Thus, we scored our CD8+ T cells according to recent work that described exhaustion

as a heterogeneous phenomenon defined by at least two distinct phenotypes3-33 ,41-44: progenitor

and terminally exhausted CD8+ T cells 36. We observed high concordance between our clusters

and these two states: CD8.exh'° cells more closely resembled progenitor exhausted T cells,

while CD8.exhhi cells mirrored terminally exhausted T cells (Figure 4-3 i; p<2x10~ 16 for

progenitor and p<2x1O-4 for terminal, Mann-Whitney U Test; see Table 4-1 for significance

tests). While CD8.exhhi cells exhibit higher cytotoxicity, CD8.exh'° cells exhibited increased

memory/effector-like function 38 (Figure 4-6), as well as increased expression of TCF7, a

biomarker frequently associated with positive patient prognosis in clinical ICI studies3 6'3 8 45

(Figure 4-5). Furthermore, our human data support a model of T cell reactivation whereby

CD8.exh'° cells achieve a more terminal exhausted state following treatment with PD-1

blockade, here demonstrated in the same patient's liquid TME over the course of PD-1

blockade.

4.5: Innate Immune Cells Exhibit Pro- and Anti-inflammatory Behavior Following PD-1 Blockade

Although PD-1 blockade directly modulates T cell activity, we also observed clinically relevant

behaviors among innate immune cells (clusters 6, 8, Figure 4-2). We identified canonical innate

immune phenotypes46 as previously described (Figure 4-7 a-c). Of these, plasmacytoid

dendritic cells (pDCs) were the only subpopulation comprised of more post-treatment than pre-

treatment cells (Figure 4-8 b). Since pDCs have been shown to produce large quantities of

interferon in response to antigen47 - also seen in our data - they may drive, in part, the

aforementioned interferon responses in the LMD CSF TME.
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Differential expression between pre- and post-treatment cells within each innate subpopulation

revealed increased expression of interferon response and antigen-processing genes post-

treatment (Figure 4-8 c-d). We found that classical DCs (cDCs), in addition to upregulating

interferon response genes post-treatment, also upregulated genes that negatively affect

immune response, such as IDO1, EPST/1, and MGP (Figure 4-7 d). IDO1 production is

stimulated by interferon-y-induced JAK/STAT signaling in the tumor-immune microenvironment,

and depletes tryptophan from the extracellular matrix, which is required by T cells to

proliferate 4 8. The observed post-treatment shift among cDCs in our data suggests the possibility
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that innate immune mechanisms of ICI resistance may become more active in response to

interferon-mediated signaling following PD-1 blockade, potentially impacting clinical benefit in

these patients.
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response and d, antigen processing scores for all innate immune subsets stratified by pre- and
post-treatment status (***, p<0.001; **, p<0.01; Mann-Whitney U test).

We further observed that, post-treatment, innate immune subpopulations exhibited independent

shifts in the expression of genes associated with the M-like (proinflammatory) and M2-like

(immunomodulatory) phenotypes12 ,49, 5 (Figure 4-7 e-f; p<3x10 15 for all signatures, Mann-
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Whitney U Test; see Table 4-1 for significance tests). In particular, expression of genes such as

CCL2 and CCL3, which drive immune recruitment, was elevated in post-treatment monocytes

and macrophages (NB CCL2 has also been implicated in M2 reprogramming in solid tumors

following its role in recruitment51), as were CCL8, LGALS3BP, CXCL10 and TLRs, which drive

cytotoxicity and defense response and are associated with M-like behavior in monocytes and

macrophages 52,53 (Figure 4-9).

Conversely, the M2-like signature and its associated genes - including CD163, MSRI, ILIOR -

maintained consistent expression levels across treatment in these monocytes and

macrophages52 (Figure 4-7 c-d, Figure 4-9; P>0.02 with effect size<0.1 for all, Mann-Whitney

U Test; see Table 4-1 for significance tests). PD-1 signaling has previously been reported to

regulate macrophage activity 5 4 '55, and macrophages have been implicated in resistance to anti-

PD-1 therapy 56 '57. Our observation of increased M-like functionality, despite constant M2-like

behavior, suggests that control of pro- and anti-inflammatory programs are contingent on

multiple factors, and that PD-1 blockade and subsequent signaling may modify the activity of

one, but not necessarily at the expense of the other.
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Figure 4-9: Monocytelmacrophage phenotype shifts in polarization following
immunotherapy treatment. a,b, Violin plots of pro-inflammatory genes stratified between pre-
and post-treatment for (a) monocytes and (b) macrophages. c,d, Violin plots of anti-
inflammatory genes stratified between pre- and post-treatment for (c) monocytes and (d)
macrophages.

4.6: Longitudinal Tumor Cell Behavior Following ICI Varies Across Patients

A comparison of pre- and post-treatment tumor cells across patients revealed differences that

suggested increased susceptibility to immune activity following treatment, consistent with

previous reports 58-6. We found that both the per-patient average and combined single-cell
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scores for interferon-y response and antigen processing genes were upregulated post-treatment

(Figure 4-10 a; p<0.03 for per-patient average, p<2x10-16 for combined single-cell, Mann-

Whitney U Test; see Methods).

Our unsupervised analysis revealed that the primary source of variation across tumor cells was

patient identity (Figure 4-10 b). We therefore performed a stratified analysis of interferon-y

response and antigen processing on four patients for whom CSF was sampled both before and

after PD-1 blockade. This comparison revealed markedly more variable longitudinal activity than

was apparent through our inter-patient analyses (Figure 4-10 c). In particular, P043 exhibited

initial upregulation of interferon response following pembrolizumab administration (p<2.2x10-1 6,

effect size = 1.61, Mann-Whitney U Test; see Table 4-1 for significance tests), consistent with

the general result across patients. However, P029 exhibited only a slight increase in interferon-

gamma response (p<1.2x10-6 effect size = 0.2, Mann-Whitney U Test; see Table 4-1 for

significance tests) at the first time point immediately following treatment. Furthermore, following

these initial increases, both P029 and P043 showed decreases toward (P043) or below (P029)

pre-treatment levels (p<4.1x109 for P029 and p<4.5x10-12 for P043, Mann-Whitney U Test; see

Table 4-1 for significance tests). We note that we were unable to evaluate tumor cell behavior in

P014, as an insufficient number of tumor cells were detected in the post-treatment time point.

These results, taken together, suggest that proper determination of the cellular and molecular

features that inform clinical course may be critically impacted by the timing of post-treatment

measurements.

94



N=4 N=6
1.0

a)

0.5

-0.5

E
E
cc
'0.0

2

C

-0.5
pie post

b
N=4 N=6

I I

T I

pre post

0 Pre-treatment UPost-treatment

.-. n.. ns..

-0.51

* Pre-treatment 1 E Post-treatment 1
* Pre-treatment 2 0 Post-treatment 2

Proportion of cells by time point - P043

By Patient

UMAP 1
OP010 OP011 O P014 OP029
0P043 P050 * P073 0 P091
o Pre-treatment 0 Post-treatment

Timepoint 2 W=3l* b~
ime pint 3 *

Tine point 4 * 3 a
AExprssion mi M I'O h.A.M J

5
AtR

A7.. 2

ILI

Windlow Mean Expression Rank (Chromosomes 1ndcaiad)22

f

0.5

0.0

-0.5-

0251

0.00--
P043-2 P043-3 P043-4

S Ascendant cluster UDescendant cluster

Interferon-gamma response by time point - P043

A3. DO A c -Ds Ais. Dec.
P043-2 P043-3 P043-4

Figure 4-10: Inter-patient vs. intra-patient analysis of tumor cells reveals dynamic,
transient response behaviors. a) Per-patient averaged (left) and cross-patient single-cell
(right) scores for interferon-gamma response genes in tumor cells stratified by pre- and post-
treatment status (*, p<0.05; ***, p<0.001; Mann-Whitney U test; see Methods). b) UMAP
calculated over all tumor cells (n = 8,071), colored by patient and denoted by treatment status.
c) Interferon-gamma response gene scores for individual patients' tumor cells, colored by
treatment status (*, p<0.05; ***, p<0.001; Mann-Whitney U test). d) Heatmap of ranked
windowed mean expression ordered by chromosome and transcriptional start site for all
considered tumor cells in P043, separated by agglomerative cluster identity (bottom, arrows
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identify peaks of mutual information between clusters). Windows are represented in
transcriptomic units (see Methods). Plotted above is mean difference in single-cell gene
expression between ascendant and descendant clusters overlaid with change in tCR between
time points. WES tCR (ranks-by-window) for each of three sampled time points from CSF-
derived cfDNA at top. e) Proportion of clusters in P043 stratified by time point (Ascendant
below, Descendant above). f) Interferon-gamma response gene score at each of the three
sampled time points in P043 stratified by cluster identity (**, p<0.01; ***, p<0.001; Mann-
Whitney U test).

4.7: Tumor Clonal Evolution Following PD-I Blockade

In one individual - P043 - we observed a dramatic change in the relative abundance of two

tumor subclones following PD-1 blockade. In all patients, we assessed the possibility of

subclonal tumor heterogeneity 6 1 ~6 5 by inferring single-cell CNV profiles21,26,27,66 via clustering in

windowed mean expression (WME, see Methods) space. Visualizing these clusters with

reduced dimensions, we found little structured CNV heterogeneity within 6 of the 7 evaluable

patients (Figure 4-11). For example, in P029, we observed clusters in gene expression space

(primarily attributable to cycling status) but not in inferred CNV space; in other patients (P014,

P050), inferred CNV variation was limited and restricted to only a few loci.

Integrative longitudinal analysis of cfDNA whole exome sequencing (WES) and scRNA-Seq

data from P043 tumor cells revealed evidence of clonal evolution whereby a subclone with low

interferon-y response expression became the majority subclone at the latest post-ICI time point

(Figure 4-10 d; see Methods). CSF-derived cfDNA WES data from P043 was highly consistent

with two major subclonal populations, and suggested a monotonic increase in the fractional

abundance of one subclone over time (Figure 4-10 e). Regions of high divergence in inferred

CNV between clusters corresponded to regions of large change in total copy ratio (tCR)

between time points. Notably, these CNV-derived clusters were highly concordant with gene

expression-based clustering (Figure 4-10 e, Figure 4-11).
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appreciable numbers of tumor cells. Structured heterogeneity in P014 and P050 is isolated to
only a few chromosomes.

We performed differential expression in aggregate and at a single time point between these two

CNV-defined subclones in P043 to determine transcriptomic features defining them. This

analysis revealed several genes associated with interferon-y response. We therefore plotted

interferon response scores for each subclone at the three time points measured for P043

(Figure 4-10 f). These data show that the descendent clone exhibited higher interferon-y

response genes at P043-3 (p<2x10-3 for post-treatment time points, Mann-Whitney U Test; see

Table 4-1 for significance tests) - the time point immediately following treatment (seen in

Figure 4-10 f). In contrast, the ascendant clone exhibited consistently lower interferon response
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across this trajectory, eventually predominating at the last time point (P043-4). These

observations are potentially consistent with adaptive selection of tumor cells that do not express

genes associated with interferon-y signaling, as the relative abundance of immunogenic cells

decreases and these less sensitive cells grow out over the course of treatment.

4.8: Discussion

We present an experimental and computational framework for efficient cell capture and analysis

of paucicellular clinical cancer samples. We use these techniques to perform the first scRNA-

Seq characterization of the liquid component of the LMD TME, as well as its response to PD-1

blockade. Our data demonstrate shifts in multiple immune programs following ICI introduction,

as well as effects on metastatic tumor cells. We find several unique pro- and anti-inflammatory

immune features that may have contributed to the clinical benefit observed in our phase-Il trial

and impacted tumor cell behavior, which we find is highly sensitive to measurement timing.

Moreover, we devised a computational workflow which couples cfDNA-Seq with massively-

parallel scRNA-Seq to interrogate single tumor cell subclonality and dynamics within individual

patients.

Among T cells in the liquid LMD TME, we uncovered shifts toward greater immune-activation

following intravenous treatment with pembrolizumab. CD8+ T cells, in particular, exhibited

increased proliferation and cytotoxicity6 7 '68, demonstrating that intravenous biological modulation

can result in altered cellular programs in the CNS. Furthermore, samples collected following

pembrolizumab administration contained new cell types, including Ig-expressing B cells and y6

T cells, which, to our knowledge, have not been characterized previously in this

microenvironment. We additionally determined that post-treatment CD8+ T cells exhibited

bifurcating exhaustion profiles 3 2
3-3

6 9 - CD8.exhh' and CD8.exh'° - with longitudinal shifts

during anti-PD-1 treatment towards CD8.exhh. We note that we cannot rule out the possibility of
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induced immune infiltration to the CNS between treatment time points. Thus, our data does not

definitely confirm CD8+ T cell reactivation. Nevertheless, they do support the idea that PD1-

blockade leads to CD8+ T cell behaviors that are more proliferative and cytotoxic, but potentially

short-lived 32 ,37 . Future work will explore the clinical implications of accruing this T cell phenotype

in LMD and other diseases, as well as the relationship of CNS T cells to those in the periphery.

We additionally profiled the effect of PD-1 blockade on innate immune cells, which, in turn, can

modulate the LMD TME to reinforce or abate immune activity. In particular, we identified

increased expression of interferon response genes, and, in the case of pDCs, interferon

production following pembrolizumab treatment. After ICI introduction, cDCs also exhibited

immune regulatory behavior, e.g. expression of IDO1. The immunosuppressive effects of IDO1

upregulation following PD-1 blockade are an important consideration for future work in this and

other malignancies 7 0. Interestingly, while PD-1 signaling has been reported to affect

macrophage polarization 54 55, we observed that PD-1 blockade independently influenced the

expression of genes associated with the M-like and the M2-like phenotypes, suggesting that

these axes may be modulated independently in future therapeutic efforts.

Among tumor cells, we observed dynamic behaviors that varied across participants following

PD-1 blockade. Notably, we found that elevated expression of interferon-gamma response and

antigen processing genes were transient, and that the degree of transience can vary across

patients. Further, our data suggest that this behavior may, in select cases, be attributed to

adaptive selection of less immunogenic subclones following pembrolizumab treatment. These

conclusions were uniquely enabled via multiple post-treatment measurements and the utilization

of CNVs inferred through cfDNA-Seq to perform differential gene expression within a single time

point in the same patient. Collectively, our results elucidate clinically significant tumor cell

behavior in the liquid component of LMD. Future work will be needed to examine how solid

meningeal metastases not sampled in the CSF respond to PD-1 blockade treatment.
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Analyses of our heterogeneous cohort across all patients exploits the resolution of scRNA-Seq

to maximize sampling power, detect conserved behaviors, and provide robustness to technical

noise. Our within-patient longitudinal analyses, meanwhile, isolate many experimental and

patient-exogenous factors, and crucially reveal the importance of sampling time when

attempting to contextualize patient behavior following intervention. While our sample numbers

were limited due to clinical considerations (see Methods), our results demonstrate the

importance of examining a patient's instantaneous state in addition to overall response when

deriving putative clinical biomarkers.

Together, our analytical approach empowers hypothesis generation across patients and

subsequent testing within patients. Employing this framework, we tracked the dynamics of T cell

exhaustion phenotypes and tumor cell interferon responses. These complementary analyses

detail a complex, dynamic tumor microenvironment response to lCis in LMD, with widespread

clinical implications in this disease and beyond.
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4.9: Methods

Participants and design of study

Study Design and Patients

This study (clinicaltrials.gov identifier NCT02886585) was designed by the principal

investigators and the Dana-Farber Harvard Cancer Center (DF/HCC) Institutional review board

approved the protocol. The study was conducted in accordance with the provision of the

Declaration of Helsinki and Good Clinical Practice guidelines. Eligible patients had histologically

confirmed disease from any solid tumor with an ECOG performance status s 2, normal organ

and marrow function, were on a stable dose of dexamethasone of 2mg or less for 7 days prior to

initiation of treatment, and leptomeningeal carcinomatosis as defined by positive cytology. Given

the progressive, end-stage nature of LMD, 7/11 patients included in this study were on a steroid

regimen at the time of enrollment and 8/11 patients were treated with steroids while receiving

pembrolizumab. Written informed consent was obtained for all participants.

Study Design, Treatment, and Endpoints

This was a single arm Phase-I study of patients with solid tumors with leptomeningeal

carcinomatosis as defined by positive cytology. Pembrolizumab was administered intravenously

at 200mg every 3 weeks until disease progression, death or unacceptable toxicity. A brain MRI

and CT chest/abdomen/pelvis CT were obtained every 6 weeks for restaging. The primary

endpoint was the rate of overall survival at 3 months (OS3). A total of 11 out of 18 enrolled

patients were included for single-cell analysis, 4 of whom were sampled at multiple time points

across the course of treatment. All of these 11 were diagnosed with metastatic breast cancer

and positive CSF cytology indicative of LMD.
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Further details of the subjects', including radiation, surgical history, imaging, disease

progression, and survival are provided in Table 4-2.

Sample processing. Cerebrospinal fluid (CSF) from patients was extracted via

ventriculoperitoneal shunt (VPS), spun at 800G for 5 min to pellet cells, and resuspended in

PBS (ThermoFisher 10010023, Ca/Mg-free). Red blood cells (RBCs) were lysed using ACK

lysis buffer (ThermoFisher A1049201) for 4 min on ice to remove RBCs. Cells were then

washed with sterile PBS and spun down at 800G for 5 min, resuspended as a single-cell

suspension in RPMI (Corning) with 10% FBS (ThermoFisher 10082-147) for subsequent

scRNA-Seq.

scRNA-Seq with Seq-Well. Resuspended CSF cells were profiled using the Seq-Well platform

for massively parallel, high-throughput scRNA-seq for low-input clinical samples. A complete

description of methods is available online17. Briefly, cells from each CSF sample were manually

counted (Bal Supply 808C1) and loaded onto one array preloaded with barcoded mRNA capture

beads (ChemGenes). All samples retained fewer than 10,000 cells with the exception of two

(CSF029-4 & DFC010-4; -100,000 cells). Thus, all available cells were loaded onto a single

array, except CSF029-4 and DFC1010-4 where -10,000 cells were loaded. The loaded arrays

containing cells and beads were then sealed using a polycarbonate membrane with a pore size

of 0.01 pm, which allows for the exchange of buffers but retains biological molecules confined

within each nanowell. Subsequent buffer exchanges facilitate cell lysis, transcript hybridization,

and bead recovery before performing reverse transcription en masse. Following reverse

transcription using Maxima H Minus Reverse Transcriptase (ThermoFisher EP0753) and an

Exonuclease I treatment (NewEngland Biolabs M0293L) to remove excess primers, PCR

amplification was carried out using KAPA HiFi PCR Mastermix (Kapa Biosystems KK2602) with

approximately 2,000 beads per 50 pl reaction volume. Libraries were then pooled into one tube
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(with the exception of CSF014-4, CSF029-4, and CSF046-2, which were pooled to two tubes)

and purified using Agencourt AMPure XP beads (Beckman Coulter, A63881) by a 0.6X SPRI

followed by a 0.8X SPRI and quantified using Qubit hsDNA Assay (Thermo Fisher Q32854).

The quality of each WTA product was assessed using the Agilent hsD5000 Screen Tape

System (Agilent Genomics) with an expected peak ranging between 800-1500 bp tailing off to

beyond 5000 bp, and a small or non-existent primer peak (-100-200 bp). 3' digital gene

expression (DGE) libraries were constructed using the Nextera XT DNA tagmentation method

(Illumina FC-131-1096) using index primers as described in Gierahn et al17 . Loaded samples

ranged from 600-2,000 pg of pooled cDNA, depending on the peak distribution of the WTA

product for the sample. Tagmented and amplified sequences were purified at a 0.6X SPRI ratio

followed by a 0.9X SPRI yielding library sizes with an average distribution of 400-750 base

pairs in length as determined using the Agilent hsD1000 Screen Tape System (Agilent

Genomics). Samples DFC1010-4, CSF011-1, CSF014-1, CSF014-2, and CSF014-4, CSF029-2,

CSF029-5, DFC1037-1, CSF046-2, and CSF073-4 were sequenced using an Illumina 75 Cycle

NextSeq500/550v2 kit (Illumina 20024906) at a final concentration of 2.2-2.8 pM. Samples

CSF029-4, CSF042-1, CSF043-2, CSF043-3, CSF043-4, CSF050-3, CSF050-19, and CSF091-

3 were sequenced using an Illumina 100 Cycle NovaSeq6000S kit (Illumina 20027464). The

read structure in both cases was paired end with read 1 starting from a custom read 1

primer containing 20 bases with a 12-bp cell barcode and 8-bp unique molecular identifier (UMI)

and read 2 containing 50 bases of transcript information.

scRNA-Seq computational pipelines and analysis

Alignment & Pre-processing of scRNA-Seq data

Read alignment was performed as in Macosko et al . In brief, for each Illumina sequencing run,

raw sequencing data was converted to demultiplexed FASTQ files using bc12fastq2 based on
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Nextera N700 & N500 indices corresponding to individual samples/arrays. Reads were then

aligned to hg19 genome using the Galaxy portal maintained by the Broad Institute for Drop-Seq

alignment using standard settings. Individual reads were tagged according to the 12-bp barcode

sequenced and the 8-bp UMI contained in Read 1 of each fragment. Following alignment, reads

were binned onto 12-bp cell barcodes and collapsed by their 8-bp UMI with a hamming distance

correction of 1. DGE matrices (genes-by-barcode) for each sample were obtained from quality

filtered and mapped reads, with an automatically determined threshold for barcode count.

DGEs from each sample were individually culled and inspected by unsupervised analysis before

inclusion into the full analysis by a combination previously described methods18 ,71. Each

barcode was initially scored on: 1) average expression of a list of curated housekeeping genes

and 2) complexity, estimated by the total number of genes detected. All sequenced samples

were cut to exclude barcodes with low complexity/housekeeping gene expression (400 gene

complexity cutoff, housekeeping gene expression cutoff ranged per array to explicitly exclude

any outliers). Each sample was then inspected using unsupervised analysis to further identify

and curate potential analyzable single cells. Individual arrays were analyzed to determine the

extent of cross-cell type gene expression contamination. Minimal cross-cell type gene

expression contamination existed between immune subsets, and select barcodes were filtered

out according to cross expression of marker genes from other immune subsets. Tumor cells,

meanwhile, exhibited some immune cell contamination and thus an immune contamination

score was developed to select high-confidence barcodes. Doublets were initially assessed using

DoubletFinder 2 2, and further restrictive analyses incorporating lowered complexity thresholds

and count-based downsampling were performed to control for technical confounders wherever

relevant. Following curation, all samples were combined and genes expressed in at least 1% of

the remaining barcodes were retained. Consecutive samples from the same patient were

combined by assigning zeros to all undetected genes per sample and concatenating columns.
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miRNA and T cell receptor chain genes were subset and saved before cutting genes to ensure

information was not lost. This curated, UMI-collapsed data was then normalized to 10,000 UMls

per barcode (tpl0k) and log2-normalized before being input into Seurat23 v2.3.4

(https;//qithub.com/satijalab/seurat) for further analysis. This yielded a Seurat object of 14,333

single cells and 12,104 genes. The 18 individually sampled time points averaged 815 cells per

sample with a range between 212 cells and 1,730 cells (Table 4-2).

Unsupervised transcriptomic analysis

Before performing dimensionality reduction, a list of the 2,448 most variable and highly

expressed genes was generated by including genes with an average normalized and scaled

expression value greater than 0.25 and with a dispersion (variance/mean) greater than 0.25. We

then performed principal component analysis (PCA) over the list of variable genes. For both

uniform manifold approximation and projection (UMAP) and SNN (shared nearest neighbor)

clustering, we used the first 24 principal components. We used FindClusters within Seurat

(which utilizes a SNN modularity optimization-based clustering algorithm) with a resolution of

0.5 and UMAP with minimum distance of 0.3 and number of neighbors of 50 to identify 17

clusters across the 18 input samples. 5 of these clusters were collapsed due to gene expression

similarity evaluated by prior biological knowledge (2 extraneous divisions in cluster 0, 2

extraneous divisions in cluster 1, and 1 extraneous division in cluster 2, Figure 4-2) to arrive at

12 total biological clusters across all samples.

Dimensional reduction on data from the CD8+ T cells and innate immune cells alone was

similarly performed using PCA followed by UMAP and SNN clustering, all implemented in

Seurat. For CD8+ T cells, principal components 1-7 were used with UMAP parameters of

minimum distance 0.3 and number of neighbors 20; a resolution of 0.4 was used to identify

clusters. For innate immune cells, principal components 1-5 were used with UMAP parameters
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of minimum distance 0.2 and number of neighbors 12; a resolution of 0.4 was used to identify

clusters.

Cell type identification and within cell type analysis. To identify genes that defined each

cluster, we performed differential expression using the "bimod" test implemented with the

FindMarkers function in Seurat based on a likelihood ratio test designed for single-cell

differential expression incorporating both a discrete and continuous component. Thresholds

were set at an average log-fold difference 0.2 and adjusted p-value (Bonferroni) less than 0.05.

Top marker genes with high specificity were used to classify cell clusters into cell types (Figure

4-2) based on literature precedent. Two closely related clusters (T/NK clusters) were merged

based on biological curation and analysis of hierarchical cluster trees yielding the twelve unique

clusters. To investigate further granularity present within the T/NK cell cluster, we subset these

cells and re-ran dimensionality reduction and clustering (Supplementary Figure 4-4). For T

cells, we subclustered first on treatment condition, as we found that the original clusters were

dependent on this metadata. The process used for clustering and subset identification was

adapted for each iteration of clustering to optimize the parameters of variable genes, principal

components, and resolution of clusters desired. Following identification of canonical subsets -

CD4+ T cells, CD8+ T cells, and NK cells - these identities were assigned to the main T/NK

cluster cells.

NK cell clusters within the pre-treatment and post-treatment T/NK groups were annotated based

on expression of CD2 and FCRG3A (CD16), lack of expression of CD3 genes (CD3D, CD3E,

CD3G). y-6 T cells were additionally distinguished from NK cells by comparison of the rate

detection of variable chain genes in y-6 T cells relative to other T cells (27.6% in y-6 T cells,

17.5% in other CD8+ T cells).
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The pDC and cDC clusters were distinguished from the other innate cells as dendritic cells, and

then the differentially expressed genes between the two clusters were enriched using GSEA.

The top GSEA hits on both gene lists distinguished cDCs and pDCs.

Confirmation of tumor cell malignancy with WES of CSF cfDNA. The mean tumor cell

purity72 measured in the CSF of patients in our study was significantly higher than that of

plasma samples (p<2.3x10-9, Mann-Whitney U Test; effect size = 1.55), enabling accurate CNV

comparison (Figure 4-2).

Malignant cells were distinguished from non-malignant ones by two approaches, similar to

previous work2 1,26 27 ,6 6

i) unsupervised clustering on gene expression, with subsequent identification of clusters

consistent with breast cancer expressional programs.

ii) the use of inferred copy number variations (CNVs).

Single-cell transcriptomes captured by Seq-Well and other high-throughput methods typically

have lower complexity than the SMART-Seq/SMART-Seq2 protocols used in previous, similar

work 17. This, in principle, limits the accuracy of CNV profiles inferred directly from scRNA-Seq

gene expression. We measure the concordance of a cell's scRNA-Seq-inferred CNV profile with

the patient-matched (and, when possible, time-point matched) 50x coverage whole exome, or,

in the case of sample DFC-010-04, 60x whole genome CNV profile, taking the mean of

log(TP10k+1) expressions for each chromosome (the Mean Chromosomal Expression,

hereafter MCE). To evaluate the concordance between the single-cell MCE profiles and patient-

matched cfDNA obtained from the cerebrospinal fluid (CSF), we took the total copy ratio (tCR)

profiles calculated from the WES (or WGS), similar to work done in Brastianos et a16 4 . For each

107



chromosome, the mean tCR was calculated over all contained genes (the Mean Chromosomal

tCR, hereafter MCtCR).

On an individual cell basis, we robustly regressed (using a Theil-Sen median of slopes

regression) the MCtCR with the MCE to obtain a relation (slope) between these two quantities.

Plotting distributions of these slopes for all cells revealed two clean separated peaks - one

positive, containing cells previously identified via expressional profiles as having breast

cell/cancer cell programs, and one with slopes close to zero, consisting of cells previously

identified as being immune associated (in P011, these are likely non-malignant stromal cells).

We note that while the MCE does not capture CNV structure at sub-chromosomal resolution,

this maximal grouping of genes is sufficient for distinguishing malignant from non-malignant

cells, even at low complexities. We also note that the patients' MCE profiles were highly

individual - matching a patient's MCE with the MCtCR from another patient's exome will not

successfully distinguish malignant from non-malignant cells.

Differential expression and scoring over gene sets. To identify differentially expressed

genes within cell types and subtypes across treated and untreated conditions, we again used

the 'bimod' setting in FindMarkers implemented in Seurat. To determine the scores of gene sets

and pathways, such as interferon response and antigen processing, we used the

'AddModuleScore' function in Seurat to construct a mean score of supplied genes subtracting a

background score constructed from a random selection of genes in bins of average expression

across all cells. When comparing scores within a specific subset of cells, AddModuleScore was

constructed only over that subset, and recalculated if the subset was further partitioned. Tumor

cell scores were calculated both across all patients (to compare pre-treatment and post-

treatment time points across patients) and within individual patients (to compare across time

points within patients). For specific comparisons of AddModuleScore-derived signatures with
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large differences in complexity between groups of cells, an upper complexity threshold and

count-based downsampling were used to examine the possibility of complexity-confounded

effects. No such effects were observed in comparing between tumor cells across patient and

within patient (P029, P043).

Inferred CNV analysis of Patient 043. To more accurately infer CNV patterns in high-

complexity tumor cells with sub-chromosomal resolution, we group genes into fixed length

windows of 200 genes consecutive along the genome, removing from consideration those

genes in the uppermost decile of dropout rate, as well as all immunoglobulin genes. All possible

windows were considered where all included genes reside on the same chromosome. We

converted the log (TP10k+1) gene expression profiles to TP10k ones. We then took the mean

TP10k expression over genes in a window, neglecting the highest 5 gene expressions in that

window. This vector of values is hereafter referred to as the unnormalized Windowed Mean

Expression (uWME).

Having identified the malignant cells for each patient, we additionally computed a normalized

version of the uWME as follows: the uWME from all patients' non-malignant cells were averaged

for each window across patients. HLA-* and associated genes on the 6p arm exhibited

particularly strong hematopoietic expression; therefore the means of these windows were

imputed with the mean (windows) of the mean (patients) WME for all other windows. These

values we refer to as the mean non-malignant uWME.

We normalize uWME for malignant cells by dividing the window uWME by the mean non-

malignant uWME for each window, hereafter referred to as Windowed Mean Expression (WME).

To reduce possible confounding factors due to experimental or batch effects during subsequent

clustering analysis, we converted the WME values in each single cell to ranks, hereafter
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referred to as the ranked, normalized WME (rWME). PCA and UMAP were performed on the

rWME using the first 50 principal components of all tumor cells. Evidence of consistent

structured heterogeneity was detected in only P043 (Figure 4-11), with changes in individual

chromosomes in P014 and P050 not confidently ascribed to potential subclonality. In this P043,

the UMAP-obtained clustering was concordant with that achieved via agglomerative clustering.

To perform this clustering, we used as a distance metric 1-TK, where TK is the Kendall's tau

coefficient between the WME of all pairs of cells. Agglomerative clustering was performed with a

complete linkage.

To support the subclonal hypothesis without relying on either inferred CNV profiles or

unsupervised clustering thereof, we performed a supervised comparison of single-cell

expression profiles at each time point to both the early and late cfDNA-derived WES copy ratios

(Figure 4-12. We calculate the Kendall-Tau correlation for all genes' total copy ratio and single-

cell expression, for all single cells. Then we calculate the difference in correlation for all single

cells when using total copy ratio from time point 4 (late) vs. time point 2 (early). We observe that

CSF043-2 single cells exhibit correlations more similar to WES from time point 2, and that

CSF043-4 single cells exhibit correlations more similar to WES from time point 4. At CSF043-3,

we observe bimodality in the distribution of the difference of Kendall-Tau correlations.

Additionally, we observe that single cells derived from post-treatment time points (CSF043-3

and CSF043-4) exhibit anti-correlation between their interferon-gamma response score and the

difference in Kendall-Tau correlations between total copy ratios derived from WES at time point

4 vs. time point 2.
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Figure 4-12: Density and scatter plots of difference in Kendall-Tau correlations between
WES and scRNA-Seq for P043 tumor cells. Lower plots: Difference between Kendall-Tau
correlations of gene expressions (scRNA-Seq) and gene copy ratios (WES) at time points 4 and
2 plotted against interferon-gamma response score for each single cell (each point in scatter
plot corresponds to one tumor cell). Upper plots: Histogram of difference between Kendall-Tau
correlations of gene expressions (scRNA-Seq) and gene copy ratios (WES) at time points 4 and
2. Theil-Sen median slopes plotted in each scatter plot (red line) with 10 th and9 thpercentileof

median slopes (blue, dotted lines).

We note that the relative populations of the two identified clusters in P043 varied significantly

across time (Figure 4-10). We plotted, for each gene, the mean purity corrected tCR vs change

in the WME between all possible pairs of time points. The purity corrected tCR has the following

form:

tCRobserved - (1 - p)XtCRgermine tCRobserved - (1 - P)
tCRcorrected 

p

where p is purity of sample calculated by ABSOLUTE and tCRgermline = 172.

This relationship shows that the windowed expressional change between these clusters is

concordant with the change in WES-derived tCR between any two time points. This
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concordance is robust to considering only the cells obtained at time point 3 (i.e., the correlated

changes in single-cell expression and cfDNA-derived CNV profile cannot be attributed to batch

effects confounding the observed scRNA-seq profiles).

Windowed-mean expression results were compared to the InferCNV R package from the Broad

Institute, and broad amplifications and deletions were concordant between the two approaches.

We note that InferCNV employs a de-noising strategy, which largely reduces intra-sample

substructure.

Statistical analyses. Statistical analyses of differential expression were performed using

Seurat v2.3.4 implemented in RStudio. All statistical tests of distributions, cluster diversity, and

change in representation, etc. were performed using base R packages implemented in RStudio.

All statistical tests of gene set enrichment were performed using piano v1.22.0 and implemented

in RStudio for all except enrichments of cluster markers for the full dataset, which was

implemented in R. All violin plots and boxplots were generated using ggplot2 without

modifications to smoothing or density. Boxplot rectangles encompass the 2 5th to 7 5th percentile

with outliers as individual points above and below the rectangle. All genes comprising

signatures tested above and elsewhere are provided in Table 4-1. Overlapping genes between

IFN response and antigen processing signatures were removed from both before utilization.

As scores followed non-normal distributions as tested for using a Lilliefors normality test, we

used a Mann-Whitney U-test where indicated for determining statistical significance. For scores

in single-cell data, we report effect sizes in addition to statistical significance as an additional

metric to capture the magnitude of the effect observed. The calculation was performed as

Cohen'sdwhere: effect size d=(Mean 1-Mean 2)/(s.d. pooled). All p-values subject to the

multiple comparisons problem (such as marker identification by differential expression) were

adjusted by Bonferroni correction.
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Table 4-1

Jiang et al
CD8.c1vs.
CD8.c1 vs.
CD8.c2 vs.

Guo et
CD8.c1
CD8.c1
CD8.c2

al
vs.
vs.
vs.

CD8.c2
CD8.c3
CD8.c3

CD8.c2
CD8.c3
CD8.c3

Zheng et al
CD8.c1vs.CD8.c2
CD8.c1 vs. CD8.c3
CD8.c2 vs.CD8.c3

Sade-Feldman et al
CD8.c1 vs. CD8.c2
CD8.c1 vs. CD8.c3
CD8.c2 vs.CD8.c3

Sade-Feldman et al
CD8.c1 vs. CD8.c2
CD8.c1vs.CD8.c3
CD8.c2 vs. CD8.c3

Sade-Feldman et al
CD8.c1 vs. CD8.c2
CD8.c1 vs. CD8.c3
CD8.c2 vs.CD8.c3

Sade-Feldman et al
CD8.c1 vs. CD8.c2
CD8.c1vs.CD8.c3
CD8.c2 vs. CD8.c3

- CD8_B

p-value
9.OOE-15
1.75E-09

0.92

p-value
2.20E-16
1.25E-10
9.16E-10

p-value
2.20E-16
1.20E-07
1.20E-06

p-value
2.20E-16
2.14E-03
5.32E-09

p-value
2.20E-16
2.20E-16
2.90E-08

p-value
2.20E-16
8.80E-07
2.20E-16

p-value
2.20E-16
3.60E-06
2.20E-16

p-value
2.20E-16
7.50E-01
2.20E-16

- CD8_3

- CD8_G

- CD8_4

Sade-Feldman et al - CD8_6
CD8.c1vs.CD8.c2
CD8.c1vs.CD8.c3
CD8.c2 vs. CD8.c3

effect size
0.51
0.48
0.05

effect size
1

0.52
0.54

effect size
0.8

0.45
0.41

effect size
0.77
0.29

0.5

effect size
1.26
1.08
0.47

effect size
0.63
0.38
0.97

effect size
0.74
0.38
1.02

effect size
0.9

0.03
0.92
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Miller et al - Progenitor
CD8.clvs.CD8.c2
CD8.clvs.CD8.c3
CD8.c2 vs.CD8.c3

Miller et al - Terminal
CD8.clvs.CD8.c2
CD8.clvs.CD8.c3
CD8.c2 vs.CD8.c3

IFN response
monocytes
macrophages
cDCs
pDCs

Antigen processing
monocytes
macrophages
cDCs
pDCs

M1
monocytes
macrophages

M2
monocytes
macrophages

p-value
2.20E-16
4.20E-01
2.20E-16

p-value
2.20E-16
2.20E-16
2.OOE-04

p-value
2.20E-16
2.20E-16
2.20E-16
2.OOE-09

p-value
2.20E-16
6.30E-15
2.20E-16
9.OOE-03

p-value
2.20E-16
2.60E-15

p-value
7.80E-01
2.OOE-02

effect size
0.81
0.03

0.8

effect size
1.05
0.8

0.33

effect size
1.2

0.73
0.54

0.3

effect size
0.93
0.63
0.51
0.59

effect size
1.09
0.83

effect size
0.01
0.11

IFN response
per-patient - 91 included
per-patient - 91
excluded
composite - 91 included
composite - 91 excluded

Antigen processing
per-patient - 91 included
per-patient - 91
excluded
composite - 91 included
composite - 91 excluded

p-value
1.70E-01

3.OOE-02
2.20E-16
2.20E-16

p-value
7.OOE-02

1.OOE-01
2.20E-16
2.20E-16

effect size
0.85

1.36
0.5

0.35

effect size
1.21

1.34
0.54
0.63
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IFN response
P014-1 vs. P014-2
P029-2 vs. P029-4
P029-4 vs. P029-5
P043-2 vs. P043-3
P043-3 vs. P043-4

Antigen processing
P014-1 vs. P014-2
P029-2 vs.P029-4
P029-4 vs. P029-5
P043-2 vs. P043-3
P043-3 vs. P043-4

IFN response
P043-2: asc vs. des
P043-3: asc vs. des
P043-4: asc vs. des

p-value
1.30E-02
2.70E-06
4.50E-16
2.20E-16
8.36E-14

p-value
7.80E-02
2.20E-16
2.20E-16
2.20E-16
1.10E-11

p-value
3.50E-01
4.OOE-06
1.90E-03

effect size
0.22
0.36
-0.3
1.51
-1.1

effect size
0.22
0.36

-0.38
1.61

-1.15

effect size
0.33

-1.33
-1.17

115



# Patient ID Brastianos ID

1

2

Polo

Poll

3 P014

4 P029

5 P037

6

7

8

9
10

11

P042

P043

P046

P050
P073

P091

DFCI-010

CSF-011?

CSF-014

CSF-029

DFCI-037

CSF-042

CSF-043

CSF-046

CSF-050
CSF-073

CSF-091

Gender
(M/F)

F

F

55

48

White

White

F 52 White

F 36 White

F 50 African
American

F 51 White

F 45 White

F 44 Unavailable

F 52 White
F 51 White

F 40 White

ER+/PR+/Her2-

ER-/PR+/HER2+

BRCA1+, ER-/PR-/HER2-

BRCAl+, ER-/PR-/HER2-

ER+/PRlow/HER2+

ER+/PR+/HER2-

ER+/PR+/Her2-

ER-/PR-/HER2-

ER+/PR+/HER2-
ER+/PR+/HER2-

BRCA2+, ER+/PR+/HER2-

Pre- On-
Treatment Treatment
Steroids

Yes

No

Yes

Yes

No

Yes

Yes

Yes

Yes
No

No

Steroid

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

No
No

Yes

Age Ethnicity Molecular subtype

C~4

0

(U
I-

CD



Pre-Treatment Imaging
Number of
Pembrolizuma
b Doses

Leptomeningeal enhancement; Systemic disease

Brain metastases, Leptomeningeal Enhancement; Systemic

disease
Brain metastases, Leptomeningeal Enhancement; Systemic

disease
Brain metastases, Leptomeningeal Enhancement; No

systemic disease

Brain metastases, Leptomeningeal Enhancment; Systemic

disease
Brain metastases, Leptomeningeal Enhancement; No

systemic disease

Leptomeningeal enhancement; Systemic disease

Brain metastases, Leptomeningeal Enhancement; Systemic

disease
Leptomeningeal enhancement; Systemic disease

Leptomeningeal enhancement; Systemic disease

Brain metastases, Leptomeningeal enhancement; Systemic
disease

4

3

2

3

2

8

5

3

Biopsy I (days from
treatment
initiation)

42

-16

-13

-7

0

Radiation

N/A

WBRT

WBRT, SRS

WBRT

WBRT, SRS

WBRT, SRS

N/A

SRS

WBRT, SRS
WBRT

17
5

3

Biopsy II (days
from
treatment
initiation)
N/A

N/A

0

20

N/A

N/A
21

N/A
357
N/A

WBRT
45 N/A

-105
0

-157

21
21



Biopsy III (days
from
treatment
initiation)
N/A

N/A

Progression

CNS

CNS

Overall Survival (months)

2.2

8.7

CNS and systemic

CNS

CNS

CNS

CNS and systemic

Systemic

CNS and systemic
Systemic

CNS

33

39

N/A

N/A
41

N/A
N/A
N/A

N/A

2.6

2.2

3.7

15.8

3.5

2.1

14.8
3.3

5.2
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Chapter 5: Longitudinal analysis of circulating tumor

cell response to whole mouse drug treatment

This chapter is adapted from the following article published in the Proceedings of the National
Academy of the Sciences of the United States of America:

Hamza B*, Ng SR*, Prakadan SM*, Delgado FF, Chin CR, King EM, Yang LF, Davidson SM,
DeGouveia KL, Cermak N, Navia AW, Winter PS, Drake RS, Tammela T, Li CM, Papagian-

nakopoulos T, Gupta AJ, Bagnall JS, Knudsen SM, Vander Heiden MG, Wasserman SC, Jacks
Tt, Shalek AKt, and Manalis SRt. "Optofluidic real-time cell sorter for longitudinal CTC studies in

mouse models of cancer," Proc. Natl. Acad. Sci. U.S.A. 116 (6): 2232-2236 (2019).

*'T Denote equal contribution

Circulating tumor cells (CTCs) play a fundamental role in cancer progression. However, in mice,

limited blood volume and the rarity of CTCs in the bloodstream preclude longitudinal, in-depth

studies of these cells using existing liquid biopsy techniques. Here, we present an optofluidic

system that continuously collects fluorescently-labeled CTCs from a genetically-engineered

mouse model (GEMM) for several hours per day over multiple days or weeks. The system is

based on a microfluidic cell-sorting chip connected serially to an un-anesthetized mouse via an

implanted arteriovenous shunt. Pneumatically-controlled microfluidic valves capture CTCs as

they flow through the device and CTC-depleted blood is returned back to the mouse via the

shunt. To demonstrate the utility of our system, we profile CTCs isolated longitudinally from

animals over a four-day treatment with the BET inhibitor JQ1 using single-cell RNA-Seq

(scRNA-Seq) and show that our approach eliminates potential biases driven by inter-mouse

heterogeneity that can occur when CTCs are collected across different mice. The CTC isolation

and sorting technology presented here provides a research tool to help reveal details of how
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CTCs change over time, allowing studies to credential changes in CTCs as biomarkers of drug

response and facilitating future studies to understand the role of CTCs in metastasis.

Key Contributions

BH led the design and manufacturing of the optofluidic device as well as mouse CTC collection

experiments. SRN led efforts to generate mice, perform mouse viral infection and IVIS imaging

as well as processing of terminal mouse blood, primary and metastatic tumor tissue, and

immunofluorescence staining. SMP led the single-cell RNA sequencing efforts and performed

statistical analysis on the RNA sequencing data.

Forward

While studies of patient-derived samples are powerful, they can be difficult to implement and

their results difficult to interpret, due to unavailability of patient samples, incomplete patient

histories, variable treatment regimens, and lack of control groups. Model organisms enable

more organized experimental control and design, and murine models are particularly effective

for enriching and studying rare cell types and phenomena, such as circulating tumor cells

(CTCs) in blood, which are typically difficult to detect, capture, enrich, and profile. CTCs could

serve an important purpose as peripheral proxy cells for the behavior of primary tumors, but this

relationship is still under investigation. Furthermore, the volume of blood required to capture

sufficient CTCs over the acute window of treatment cannot be collected while maintaining the

physiology of a mouse. Here, we develop and implement a low-input platform to study CTCs

from a genetically engineered mouse model (GEMM) that was specifically designed to release

CTCs for detection/capture. We investigate phenotypic CTC heterogeneity across genetically
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identical mice, study among the first responses of CTCs to treatment acute time points, and

compare their responses to matched primary tumors.

5.1: Introduction

Circulating tumor cells (CTCs) are an intermediate in the hematogenous spread of tumors

during metastasis 1 .Given their accessibility and potential prognostic and diagnostic value,

CTCs have been the focus of significant clinical research efforts monitoring response to therapy

and predicting risk of relapse2-5 . Over the last decade, novel microfluidic liquid biopsy-based

techniques as well as in vivo, vein-catheter-based methods have been developed to detect and

collect CTCs directly from the blood of human patients 2 -46 -10 . Combined with recently developed

single-cell profiling methods, such as single-cell RNA-Seq 1 1 4 (scRNA-Seq), in-depth

examination of CTCs is now possible. Such studies can provide new insights into the genomic

properties of CTCs, as well as their relationship to matched primary and metastatic tumors3 -'1 5

18

Genetically-engineered mouse models (GEMMs) of cancer, which mimic the natural multistage

evolution of their human counterparts, facilitate characterization of both acute perturbations (e.g.

drug treatment) and long-term phenotypic changes (e.g. tumor evolution) not possible in human

subjects. However, despite the usefulness of GEMMs in cancer research, the combination of

the small total murine blood volume (-1.5 mL) and the rarity of CTCs in circulating blood (fewer

than 100 cells per mL) 3 19 precludes the use of existing liquid biopsy techniques for longitudinal

CTC studies in mice. When repeated blood samples are required at short intervals, a maximum

of 1.0% of an animal's total blood volume can be removed every 24 hours (-16.5pL for a 25g

mouse)20 - a miniscule volume that does not yield a sufficient sample of CTCs for analysis.
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GEMMs have been developed that combine genetic perturbations (manipulation of oncogenes

and tumor suppressor genes) with genetically-encoded fluorescent markers, enabling the

unbiased detection and isolation of CTCs from the bloodstream. In vivo flow cytometry (IVFC)

techniques have been used to enumerate CTCs in ear capillaries or tail veins longitudinally

without sacrificing animals2 1 2 3, but these techniques do not permit isolation and downstream

molecular characterization of CTCs. On the other hand, in vivo, vein-catheter-based techniques

allow for the direct capture and isolation of CTCs from much larger blood volumes in real

time 6'10. However, these techniques are currently limited to detecting EpCAM-expressing CTCs,

which may result in only a subpopulation of CTCs being detected and isolated.

Results

5.2: Optofluidic Platform Design and Characterization

To enable longitudinal, in-depth studies of CTC biology in GEMMs and other murine cancer

models, we have developed an optofluidic system capable of detecting and capturing

fluorescent CTCs in living mice over several hours, days, or weeks. Key components of the

system include a polydimethylsiloxane (PDMS)-based microfluidic CTC sorter chip, a

fluorescence detector, and computer-controlled pneumatic valves (Figure 5-1 a-b). A

cannulated mouse with two permanent catheters easily accessible on its back allows for

continuous blood withdrawal from the left carotid artery and return through the right jugular vein.

Blood flows at a rate of 30 pL/min into the CTC sorter chip. Two closely-spaced laser beam

lines illuminate the main flow channel of the chip. As such, each fluorescent cell that passes

through the device emits two pulses of light, which are detected by a photomultiplier tube

(Figure 5-1 c). The second laser line allows the controller to compute the velocity of the cells,

which is essential to ensure reliable CTC capture. Similar to the ensemble-decision aliquot

ranking (eDAR) technique for sorting CTC-containing aliquots of blood 5'9, upon fluorescent cell
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detection, the controller instantly operates pneumatic valves2 5 to redirect a small blood volume

that includes the CTC toward a collection tube (mean±s.d. = 127±47 nL/sort event, Figure 5-1

d, Methods). Blood from the collection tube can then be further enriched for CTCs and run

through a secondary single-CTC sorting chip for downstream characterization using techniques

such as scRNA-Seq (Figure 5-1 e).
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Figure 5-1: A microfluidic sorter for longitudinal CTC studies in GEMMs. a) A peristaltic
pump withdraws blood from a surgically-implanted cannula in the carotid artery of a mouse at a
flow rate of 30 pL/min. The blood is directed into the main flow channel of the CTC sorter chip.
For tdTomato-positive cells, a green (532 nm) laser illuminates two points along the main flow
channel of the CTC chip separated by a known distance. Thus, fluorescent CTCs emit two red-
shifted pulses of light, which are detected by a photomultiplier tube (PMT). Based on the timing
of the pulses, a LabVIEW program computes the velocity of the cells and operates computer-
controlled pneumatic valves to redirect fluorescent CTCs toward a collection tube. After exiting
the chip, CTC-depleted blood returns to the jugular vein of the mouse via a second surgically-
implanted cannula. b) Top-view image of the CTC sorter microfluidic chip showing the inlet,
outlets, and the valve actuation lines (V1 and V2, scale bar = 3 mm). c) Illustration of the CTC
detection mechanism using the two excitation laser lines. A low-pass filter is applied to the raw
data for determining true peaks. d) The outlet by which blood is returned to the mouse is briefly
sealed while the opposite outlet is opened to allow for CTC isolation in real time. e) After
collection, CTCs are further enriched by a secondary CTC-sorting chip designed with a parallel
channel to flush CTCs into wells containing cell-lysis buffer for downstream scRNA-Seq.
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5.3: Validation of Platform's Detection Limits with Fluorescent Microbeads and Cells

To ascertain the detection limit of our CTC sorter, we passed a sample of healthy mouse blood

spiked with flow-cytometry calibration beads through the system. The reference beads

comprised 5 fluorescence intensity groups, including one with zero fluorescence. The system

consistently detected the two brightest fluorescence levels (peaks 4 and 5) and approximately

the brightest 30% of level 3 (peak 3, Figure 5-2 a-c). This sensitivity was sufficient to detect

nearly the entire population of tdTomato-expressing murine small cell lung cancer (SCLC) cells

spiked in healthy mouse blood. We also tested blood isolated from autochthonous SCLC tumor-

bearing mice that exhibit metastasis to distant organs in a pattern similar to metastatic spread in

human patients2 6. Tumors in these mice were initiated by Cre-mediated deletion of tumor

suppressor genes Trp53, Rb1 and Pten in the murine lung epithelium 2 . This GEMM also

includes a Cre-activated tdTomato allele 27 that engenders fluorescence in all tumor cells after

tumor initiation, including CTCs. The majority of CTCs from the blood of SCLC tumor-bearing

mice were above the detection threshold (Figure 5-2 d, Methods).
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Figure 5-2: CTC sorter system characterization. a) Healthy mouse blood spiked with either
fluorescent beads or tdTomato-positive cells is used to determine the detection limits of the
system. Each sample is flowed through the sorter at a flow rate of 30 pL/min. b) Five separate
peaks representing the five different intensity levels of the SpheroTech PE Calibration beads as
detected by FACS. c) Beads representing fluorescent peaks 2 through 5 were spiked separately
into four separate 500 pL samples of healthy mouse blood. Each sample was run through the
CTC sorter to measure the recovery rate (i.e. Recovery Rate for Peak 2 sample = total
detected/1,000x100). N = 3, results demonstrated as mean±s.d. d) Comprehensive histogram
plot with Kernel smoothing function fit (dotted envelope) demonstrating the result of all spiked-
blood experiments using beads, a tdTomato-positive fluorescent cell line, or terminal bleed
samples from SCLC tumor-bearing mice containing tdTomato-positive CTCs (N=1,900 events
per population. For CTC population, six terminal bleed samples accounted for the 2,000
events). Inset represents the CTC population that lies above the detection threshold (vertical
dotted line).

5.4: Validation of Platform's Sorting Functionality

After establishing that the sensitivity of the optical detector was sufficient, we characterized and

optimized the sorting efficacy using blood samples from healthy mice spiked with low

concentrations of tdTomato-expressing murine SCLC cells. In samples containing 100 cells/mL
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or more, over 80% of detected tdTomato-positive cells were successfully captured. For samples

with only 10 cells spiked into 500 pL of healthy mouse blood, the sorted sample contained

6.0±0.7 cells (mean s.d., N=3 repeats). Applying a slight delay in actuating the pneumatic

valves until the cell has moved closer to the sorting region decreased the collected blood

volume per CTC to 76±28 nL (mean±s.d.) without compromising the capture efficiency. At this

volume, on the order of 700 neighboring white blood cells (WBCs) and over 70,000 red blood

cells (RBCs) and platelets in the bloodstream are collected in addition to the target CTC on

each valve actuation. These experiments demonstrate that the CTC sorter is capable of

isolating fluorescent CTCs from blood even at very low concentrations.

5.5: Longitudinal CTC Collection from SCLC Tumor-Bearing Mice

Next, we conducted a longitudinal study of CTCs collected from autochthonous SCLC tumor-

bearing mice treated with the BET bromodomain inhibitor JQ1, which has been demonstrated to

have anti-proliferative effects in SCLC 30. CTCs were isolated from mice over a two-hour

period prior to treatment (0-hour) and at 24-hour intervals following treatment initiation,

continuing over 96 hours (Figure 5-3, Methods). CTCs were enriched from the samples by

RBC lysis, followed by WBC depletion using magnetic-activated cell sorting (MACS), and finally

by passing through a secondary, single-cell CTC sorting chip. Enriched CTCs were then

processed using Smart-Seq2 31 (Figure 5-1 e, Methods). Cells with insufficient gene complexity

for downstream analysis post-scRNA-Seq were eliminated computationally, in addition to cells

with high expression of immune and platelet signature genes 3' 4' 16 (Methods). The overall yield

of the process (from blood to successful scRNA-Seq library) was 11.5% and 5.3% for samples

from treated and untreated mice, respectively (median values with a range of 7.4-31% for

treated samples and 3.3-6.7% for untreated samples).
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Figure 5-3: Longitudinal JQ1 study timeline. Autochthonous SCLC tumor-bearing mice
undergo arteriovenous surgery, followed by treatment with either the BET bromodomain
inhibitor JQ1 (top row), or vehicle (bottom row). Each mouse is scanned to collect an initial CTC
population before treatment. Intravenous injection of either JQ1 or vehicle then follows and
continues daily following a two-hour scan for collection of CTCs. Collected blood samples from
each mouse then undergo enrichment processes to sort single CTCs for downstream scRNA-
Seq.

5.6: Analysis of Single-CTC Transcriptomes Across Different Mice & Within Each Mouse.

We then examined our data to determine how the information collected longitudinally from the

same mouse with our system compared to the common approach of capturing CTCs across

different mice using asynchronous terminal bleeds16' 19. To analyze our longitudinal CTC data,

we pooled our collected CTC transcriptomes across all mice, performed a principal component

analysis (PCA), visualized by t-distributed stochastic neighbor embedding (tSNE) 1332 s, and

identified clusters (using k-means clustering) over the significant principal components (PCs)14'4

(Figure 5-4 a-c, Methods). This unsupervised analysis revealed that mouse of origin

contributed significantly to the variation observed in our dataset, with cluster representation

driven primarily by individual mice3,4,8 (Figure 5-4 c). We next performed PCA on CTCs

collected from each mouse individually. Here, we found that PC1 significantly correlated
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(Spearman correlation) with time since treatment (p<0.05; Student's t-test following a Lilliefors

test for normality) when independently calculated for each of the treated mice but not for either

control (Figure 5-4 d-e). This suggests that by isolating CTCs from the same animal

longitudinally, we are able to eliminate potentially confounding differences between animals that

could otherwise mask biologically-relevant gene expression changes that occur over time.

In comparison, the conventional approach for performing a longitudinal CTC analysis would be

to begin the experiment with a cohort of mice and obtain terminal bleeds from a subset at each

time point. We simulated this approach from our measurements by selecting a different treated

mouse to represent each of the 0, 48, and 96hr time points (Figure 5-5); here, regardless of

which mouse was chosen to represent which time point, we found that the mean PC1

coordinate of treated mouse 1 existed outside the interquartile range of the other mice,

suggesting a consistent mouse-specific effect that dominates the first PC (Figure 5-4 f). As

such, conclusions drawn from analysis of CTCs from terminal bleeds at different time points

across mice would be confounded by organism-specific features from the different mice.
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Figure 5-4. scRNA-Seq of captured CTCs demonstrates utility of intra-mouse CTC
profiling. a-c) tSNE of all CTCs collected across three JQ1-treated mice colored by time point
post-treatment (a), mouse (b) and cluster of assignment based on kNN clustering (c). Pie charts
on the top right show the fractional representation of each cluster in each treated mouse. d-e)
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Boxplots of the first principal component of CTC transcriptomes from PCAs obtained from
longitudinally following the same treated mouse (Corr = 0.56) (d) or untreated mouse (Corr =
-0.05) (e). Each point represents a CTC. f) Boxplots of the first principal component from three
different "mock terminal bleed" permutations across three treated mice (Figure 6-5, Methods).
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Figure 5-5: Schematic of true (a) and mock (b) data for simulations of experiments. a) shows
the process by which single CTCs are collected using our CTC sorter. b) shows one of the
combinations of mice that could lead to a time course collection of CTCs, which simulates a
terminal bleed experiment of CTCs. NB: we analyzed all six possible permutation combinations
of (b).

5.7: Supervised Analysis of Single-CTC Transcriptomes

To more formally examine treatment-induced shifts in gene expression, we calculated

differential expression across all pairs of time points within each longitudinally-profiled

mouse 14 35and once again simulated terminal bleed data (Figure 5-5, Methods). Our analyses

showed that the majority of the differentially expressed genes within each mouse (per-mouse)

were unique (Figure 5-6, Methods). Furthermore, each per-mouse differentially expressed
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gene set shared little overlap (p<0.05; Hypergeometric test) with those calculated from mock

terminal bleed datasets, regardless of the chosen mouse for the different time points. At each

time point, differentially expressed genes in the mock terminal bleed data were enriched for

several functional processes, such as mitochondrial function, cellular organization, and

metabolism36,37; however, upon further inspection of the different mock terminal bleed

permutations, we found that these enrichments were linked primarily to mouse rather than time

point (Figure 5-4 f), suggesting confounding mouse-to-mouse heterogeneity. This is evocative

of the marked inter- and intra-patient heterogeneity observed in CTCs longitudinally collected

from human patients6 , and suggests the importance of examining the same mouse over time.
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Figure 5-6: Differentially expressed genes across time course for each mouse. Left:
Heatmaps of differentially expressed genes between all pairs of time points within each treated
mouse. Rows represent genes, columns represent cells. Time points sampled are provided on
the x-axis and selected gene set enrichments for each differentially expressed gene module
(identified by hierarchical clustering; see Methods) are displayed to the left of the relevant
cluster. The majority of these gene set enrichments are unique to each pair of mouse and time
point. Right: Venn diagram shows overlap of differentially expressed genes across all treated
mice.

5.8: Discussion

The platform outlined here represents an important advancement in the detection and

continuous capture of single CTCs from the same mouse over time. Our method enables CTCs

to be isolated in low blood volumes and prepares them for downstream characterization. Here,

we used scRNA-Seq to show that continuous CTC capture from the same mouse eliminates
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biases driven by inter-mouse heterogeneity that can occur when CTCs are collected across

different mice. Although future work will be needed to elucidate the underlying drivers of this

variability, given the baseline genetic homogeneity of the animals used to generate our GEMM,

one potential explanation could be underlying differences in the cellular composition of the

primary tumors across different animals. scRNA-Seq results from the primary tumor samples

harvested from each animal after terminal CTC collection (96hr) are consistent with this

hypothesis (Figure 5-7 a-b, Methods). These data suggest that primary tumors from each

mouse may contain multiple malignant gene expression states 3 2 '33 , which appear to be shared

across mice. Although some of these differences could be attributed to the presence of multiple

independently evolving primary tumors within each mouse, the fact that each gene expression

state is comprised of cells from multiple mice suggests that these states may be a shared

feature of our SCLC GEMM, though future experiments will be needed to robustly validate this

finding. Intriguingly, when we computationally assigned terminally collected CTCs (96hr, N=92

cells from 5 mice) to these shared states based on gene expression similarity (Methods), -67%

(62 cells) of the CTCs matched. Furthermore, we observed comparable state frequencies

between a mouse's CTCs and its corresponding primary tumor sample (p>0.5, Fisher's Exact

test, Figure 5-7 c). For mice with fewer than 10 CTCs, the statistical power in our comparison

was in some cases limited. While further experimentation will be needed to corroborate this

preliminary finding, our data demonstrate the potential value of having matched primary tumor

samples as a reference in mouse models of cancer, and that analysis of CTCs in our murine

model of SCLC may reveal similar biology to primary tumors from the same mouse, suggesting

their utility as a surrogate for matched tumors under specific circumstances.
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Figure 5-7: scRNA-Seq of endpoint primary tumors demonstrates heterogeneity in
phenotype. a) tSNE of primary tumor cells across treated and untreated mice, colored by
clusters called from kNN clustering. b) tSNE of primary tumor cells across treated and untreated
mice, colored by mouse. C) Computational cluster assignments (Methods) for 96-hr CTCs next
to their matched primary for a representative treated and untreated mouse plotted as bar plots
(N=18 and 82 cells for treated mouse #1 96hr CTCs and tumor cells, respectively, and N=52
and 84 cells for untreated mouse #1 96hr CTCs and tumor cells, respectively). Neither pairing is
significantly different (p=0.99 and 0.66 for Treated Mouse # 1 and Untreated Mouse #1,
respectively, Fisher's Exact Test).

Future work of this kind has the potential to shed new light on the relationship between CTCs,

primary tumors, and metastases, allowing for the exploration of their utility as biomarkers and

facilitating examination of how individual CTCs contribute to metastasis. Moreover, they may

help elucidate the features that inform shifts observed upon perturbation, such as drug

treatment. Ultimately, these data show that our platform opens the door for novel CTC

experimentation, such as examining longitudinal drug responses and comparing CTCs to

primary tumors (shown here), characterizing their relationship to metastases, and measuring the

rate of CTC production in an acute window. With additional development, our device could
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enable longitudinal studies in mice to find associations between individual CTCs and clusters of

CTCs, profile rare immune cells (for example, using genetic reporters or based on tetramer-

staining), monitor mesenchymal cells in a variety of contexts (including wound healing and

tumor formation), and measure induction rates of drugs or nanoparticles in circulating

mononuclear cells.
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5.9: Methods

Materials and Methods. All RNA-seq data generated in this study (raw data and processed

data matrices) have been deposited into the Gene Expression Omnibus database hosted at the

National Center for Biotechnology Information under the accession code GSE122233. For

information on mouse models, cell culture, shunt surgery, optofluidic platform design and

fabrication, real-time data processing and analysis, CTC and tumor cell processing and

enrichment, single-cell RNA-sequencing sample preparation and data analysis, please refer to

SI Appendix.

Mouse model and cell |ines. The Trp53""; Rb1""; Pten"L; Rosa26LSL-Luciferase/LSL-Luciferase(PRP-

L/L) mouse model of SCLC has been described previously2y. Rosa 2 6 LSL-tdTomato/LSL-tdTomatomice

were obtained from Jackson Laboratories (Gt(ROSA)26Som14(CAG-tdTomato)Hze)andcrossedinto

the PRP-L/L model to obtain Trp5''; Rb1"f'; Ptenf'; Rosa26LSL-tdTomato/LSL-Luciferase mice. Tumors

were initiated by intratracheal delivery of 2x108 plaque-forming units (p.f.u.) of adenovirus

expressing Cre recombinase under the control of a CGRP promoter (Ad5-CGRP-Cre3 8), as

previously described 39 . Adenoviral stocks were purchased from the Viral Vector Core Facility at

the University of Iowa Carver College of Medicine. Candidates for arteriovenous shunt surgery

were identified by in vivo bioluminescence imaging using the IVIS Spectrum In Vivo Imaging

System (PerkinElmer).

Murine SCLC cell lines (AF1281-M1, AF3291LN) were generated from mSCLC tumors isolated

from Trp531 ; Rb1f'fl; Rosa2 6 LSL-tdTmato/+ or Trp53f"'; Rb1 fl'; Pten"'; Rosa26LSL-tdTomato/LSL-Luciferase

mice as previously described4 °.
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Shunt Surgery. All animal-based procedures were approved by the Massachusetts Institute of

Technology Committee on Animal Care (CAC), Division of Comparative Medicine (DCM). The

arteriovenous shunt method was validated as an approach for real-time manipulation of nutrient

levels in the serum of anesthetized mice . We adopted the same technique for continuous

sampling of mouse blood for CTCs. Briefly, catheters are inserted into the right jugular vein and

the left carotid artery and are externalized using standard cannulation surgical techniques. A

peristaltic pump (Instech Laboratories Inc., Plymoth Meeting, PA, USA) is then connected to the

catheters for blood sampling and return through the carotid artery and jugular vein, respectively,

in the conscious mouse (Figure 5-1a). During the four-day longitudinal studies, the total

collected blood volume is monitored. If depleted blood volume exceeds 1% of the animal's body

weight (for example 260 pL for a 25g mouse), per MIT DCM guidelines, healthy-mouse donor

blood (of same strain and sex) is infused directly into the mouse using the jugular vein catheter,

equivalent to the amount removed.

Optical Detection Platform. The optical system is comprised of two optical trains, making up

two compact vertical microscopes. The top optical train divides the laser beam (OBIS 532 LS,

Coherent Inc) into two separate beams that are focused along one axis to produce two

illumination lines projected at the sample focal plane (perpendicular to the blood flow channel)

for precise velocity measurements of the flowing CTCs. The laser passes through a line filter

and polarizing beam splitters to generate the two beams with minimal losses. Next, the two

laser lines pass through a cylindrical lens to focus the two beams into lines. The focused lines

are then projected onto the microfluidic channel with a 4F optical system. The dichroic mirror

and longpass filters, placed directly above the detection region, pass a filtered fluorescence

signal to the PMT (Hamamatsu H10722-20) by blocking the 532 nm laser line signal with a
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notch filter (532 nm StopLine single-notch filter, Semrock). A 90:10 beam splitter is added

before the PMT to allow for imaging of the illumination region for device alignment purposes.

The bottom optical train is similar in configuration to the top train and uses a second green laser

to illuminate a circular region covering the valves, enabling fluorescent and bright field imaging

for confirming successful CTC sorting and valve functionality throughout the experiment.

Microfluidic Device Design and Fabrication. The microfluidic device for sorting minute

amounts of blood containing single CTCs was designed to have one inlet to a 10OOpm-long

microfluidic channel that bifurcates into two channel outlets (900 apart, Figure 5-1 b-c); one for

returning the blood to the mouse and the other for collecting the sorted CTC-containing blood

sample. The fabrication was performed using standard soft lithographic techniques on two four-

inch wafers. A single layer of photoresist (SU8 2050, Microchem, Newton, MA) was patterned to

create the pneumatic channels on the valve control wafer. For the blood flow channel, AZ9260

positive resist (MicroChemicals) was exposed, developed, and then reflowed at 120°C for 10

minutes to create the half ellipsoid channel profile necessary for a complete valve seal 2 5 .

A mixture of PDMS (Polydimethylsiloxane) and its curing agent (SYLGARD 184 A/B,

Dowcorning, Midland, M, USA) at a 10:1 ratio was spun on top of the actuation wafer to a

thickness of 50 pm and baked in an oven set to 65 °C for at least 3 hours. For the flow channel

layer, the mixture was poured to a thickness of -5 mm and cured at 65 °C for 3 hours.

Afterwards, the flow channel layer was peeled off and punched with a 0.75 mm puncher (Harris

Uni-Core, Ted Pella Inc., Reading, CA) to define the inlet and outlets to and from the channel,

respectively, and diced to prepare for bonding. The flow channel devices and the actuation

layers were then treated with oxygen plasma (100 watt, 1 ccm, 140 torr, 10 sec). Next, the flow

layer was aligned to the actuation layer and transferred to a hot plate set to 85 °C. After 15

minutes, the assembled PDMS layers were peeled off and punched with a 0.75 mm puncher to
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define inlets to the actuation channels. The assembled PDMS layers were treated with oxygen

plasma (100 watt, 1 ccm, 140 torr, 10 sec) for irreversible bonding to a glass slide (Fisherbrand

1x3", Fisher Scientific, Pittsburgh, PA).

Prior to flow experiments, the device was aligned to project the two laser lines across the flow

channel approximately 8 mm away from the valve actuation region. The device was then primed

with Heparinized-Saline (diluted to 100 USP units per mL, NDC 25021-400-30) to prevent any

clotting within the microfluidic channel.

Real-Time Data Processing and System Control. The PMT module generates an output

voltage that is sampled by a NI USB-6009 (National Instruments) 14 bit analog-to-digital

converter. This analog-to-digital converter is also used to output the control voltage signals for

the peristaltic pump and the PMT gain. The PMT voltage is acquired and displayed in real time

in LabVIEW (National Instruments) at 20,000 samples per second. The raw data is filtered with

a low pass filter to remove spurious noise and the output of a running median filter is subtracted

to remove low frequency drift or any DC offset. Upon transit of a fluorescent cell or particle, the

PMT output signal passes a specific threshold, triggering the NI USB-9472 device to actuate the

SMC Solenoid Valves (S070A-6DC, 8 ports) that are connected to an external 6-volt power

supply.

During non-sorting operation of the system (i.e. cell counting experiments), the first valve (V1)

region is kept sealed to force the blood to flow directly through to the opposite outlet and back

into the jugular vein catheter of the mouse (Top-view image, Figure 5-1 b). When the sorting

functionality is activated, and upon detection of a cell, its velocity is calculated and used to

estimate the time of its arrival at the valve region of the channel, all using a virtual instrument

(VI) program in LabVIEW. V2 then closes immediately and V1 opens for an amount of time

equal to twice the estimated time of arrival of the cell at the valve to deflect a 127±47 nL (or
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76±28 nL with a valve actuation delay) blood bolus containing the cell. This amount of blood per

single sort provides an upper limit for the number of events we can collect from a mouse over

the four-day study. For a 25g mouse, a maximum number of -2,600 total events can be

collected without the need for fluid replacement, per MIT DCM guidelines.

After CTC enrichment with RBC lysis and MACS (described below), the cells were sorted using

our secondary single-CTC sorting chip. Upon detection of a single fluorescent CTC in the

secondary single-cell sorting chip (Figure 5-1 e), micro-valves actuate to push the cell into the

parallel channel. The micro-valves then seal the primary channel and sample flow is stopped to

introduce fresh buffer into the parallel channel, releasing the cell out of the chip into the tubing

and then into a collection well containing TCL buffer (QIAGEN) with 1% 2-mercaptoethanol for

downstream scRNA-seq.

CTC enrichment by RBC lysis and MACS. Following CTC isolation, the collected blood

sample is first treated with ACK Lysing Buffer (Gibco A10492-01) to remove RBCs, then rinsed,

filtered using a 30pm Pre-Separation Filter (Miltenyi Biotec, #130-041-407), and processed

through magnetic activated cell sorting (MACS) using mouse CD45 MicroBeads (Miltenyi #130-

052-301) and MS columns (Miltenyi #130-042-201) to remove CD45-positive cells, according to

the manufacturers' protocols. The final product is then diluted to a total volume of 2 mL of

MACS buffer and flowed through the secondary single-CTC sorting chip.

Characterization with Cell Line and Beads. To validate the sensitivity of the system to detect

fluorescent cells in blood, 5-peak FACS calibration beads (Sphero PE 5-peak, Spherotech Inc)

were spiked into mouse blood and flowed through the device at 30 pL/min (Figure 5-2). To

validate the sorting functionality of the system, a tumor cell line (AF1281-M1) was established
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from a mouse with autochthonous small cell lung cancer expressing a bright and stable

cytoplasmic tdTomato fluorescent protein. Cells were then counted using Coulter Counter

(Multisizer 4, Beckman-Coulter) and re-suspended in 500 pL of mouse blood at different

densities (10, 100, 500, and 1000 cells).

JQ1 Treatment of Tumor-Bearing Mice. Tumor-bearing SCLC mice were treated with 10

mg/kg JQ1 (Cayman Chemical) by intravenous injection daily for the duration of the study. JQ1

was dissolved in DMSO to make a 20 mg/mL stock, then diluted 1:10 with 10% beta-

cyclodextrin in 0.9% saline to obtain a working concentration of 2 mg/mL. Vehicle-treated

control mice received an equivalent dose of DMSO diluted 1:10 with 10% beta-cyclodextrin in

0.9% saline (Figure 5-3).

Dissociation of Tumor Samples for Single-Cell RNA-Sequencing Analysis. Primary tumors

from tumor-bearing animals were dissected, dissociated into single cells using a lung

dissociation kit according to the manufacturer's protocol (Miltenyi Biotec #130-095-927), then

stained with APC-conjugated antibodies against CD11b (eBioscience #17-0112-82), CD31

(BioLegend #102510), CD45 (eBioscience #17-0451-83) and TER-119 (BD Biosciences

#557909). tdTomato-positive, APC-negative cells were single-cell sorted by FACS into TCL

buffer (QIAGEN) containing 1% 2-mercaptoethanol, then frozen at -80°C for downstream

processing for RNA-seq.

Single-Cell RNA-Sequencing Sample Preparation. Both CTC samples and primary tumor

samples collected in TCL buffer were processed through Smart-Seq2 as follows. Total

nucleotide material from lysed single cells was extracted with RNA-clean AMPure nucleotide
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extraction beads (Beckman-Coulter) and washed with 80% ethanol before undergoing reverse

transcription with Maxima enzyme (Thermoscientific), followed by PCR with a KAPA Hotstart

Readymix 2x kit (KAPA biosystems). Following quantification and quality control analysis by

Qubit DNA quantification (Thermoscientific) and tape station (Agilent), whole transcriptome

amplifications (WTAs) of each single cell were transformed into sequencing libraries with a

Nextera XT kit (Illumina) and barcoded with unique 8-bp DNA barcodes. cDNA libraries were

pooled, quantified, and sequenced on an Illumina NextSeq 500 to an average depth of 1.2M

reads/CTC. Raw sequencing data

Analysis of Raw Sequencing Data. Following sequencing, BCL files were converted to

merged, demultiplexed FASTQs. Paired-end reads were mapped to mm1O mouse

transcriptome (UCSC) with Bowtie. Expression levels of genes were log-transformed transcript-

per-million (TPM[i,j]) for gene i in sample j, estimated by RSEM in paired-end mode. For each

cell, we enumerated genes for which at least one read was mapped, and the average

expression level of a curated list of housekeeping genes. We excluded from analysis profiles

with fewer than 500 detected genes or an average housekeeping expression below 0.5

log2(TPM).

Identification of leukocytes and correction of platelet effect. A matrix of TPM estimates for

all genes across all cells resulted from preprocessing of RNA-Seq data. A raw principal

component analysis was run for each sample, and the first PC separated cells of immune

lineage from cells expressing epithelial genes. We selected from overlaps between this first PC

and a curated set of immune-related genes to score CTCs according to their immune score.

Cells with an average immune score below 0.5 log 2(TPM) were taken forward for analysis of

their transcriptomes as CTCs.
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Likewise, a curated set of platelet-related genes was used to develop a platelet signature for

each CTC transcriptome. The signal of this platelet signature was then regressed out using the

RegressOut function in Seurat.

Principal Component Analysis of CTCs. We performed a gene selection based on a binning

strategy across expression using Seurat to define a unique set of variable genes for each

treated and untreated mouse, as well as combined sets of treated and untreated mice. Principal

component analysis was performed over these variable gene sets for each case (per-mouse or

combined). PCs were correlated to time using Spearman correlation. To test for significance of

PC1 correlation with time, we permuted assignments of time (N = 1000) and calculated statistics

for each set of CTCs per mouse. The sets of correlations for each mouse were tested with

Lilliefors test for normality and used to determine PCs with significant correlations with time.

Generation of Mock Data. To simulate current methods of terminal bleed assays for CTC

collection across an acute time scale, we generated a series of mock datasets using our true,

continuously collected data. At each time point, the CTCs from a single treated mouse were

selected without replacement. This process was exhaustively repeated five times to generate all

unique treated mock data over which further differential expression analysis was performed.

Differential Expression Analysis. For each of the treated mice, as well as the mock data, we

performed differential expression using Seurat's built-in single-cell differential expression tool,

with a bimodal distribution model. Differential expression was performed between all pairs of

time points available for each dataset. Genes with avg_diff > 1 and p-value < 0.01 were

selected and visualized using the DoHeatmap function in Seurat. Furthermore, these genes
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were enriched for upstream regulators using gene set enrichment analysis (GSEA) through the

Broad Institute.

Analysis of Primary Tumor Data. Variable genes across primary tumor cells of all mice were

calculated and principal component analysis was performed as described above. Relevant PCs

were determined by visualizing percent variance explained in an elbow plot, significance by

Jackstraw44, and manual inspection of loadings and coordinates. Following inspection, PCs 1-5

were selected for downstream visualization of the primary tumor cells by tSNE in Seurat, with

perplexity set to 15, and 2500 iterations run.

Assignment of CTCs to Primary Tumor Cluster. Differential expression, as reported above,

was used to identify marker genes that describe the resultant clusters in the primary tumor.

These marker genes were used to develop a signature score for each cluster for each of the 96-

hr CTCs, using weighted averaging of the genes for each signature. Next, we permuted random

sets of genes with similarly binned expression distribution and size to create cluster-

independent background scores for each CTC. CTCs with cluster-specific signatures above

their cluster-independent background were "assigned" to that cluster. CTCs were assigned to all

clusters which were above background - if a CTC scored above background for more than one

cluster, it was assigned to all those clusters; if a CTC scored above background for no clusters,

it was classified as "unassigned." The total number of CTCs per mouse for each cluster was

visualized by a stacked bar plot, generated through ggplot2 in R. Distributions of assignment

between 96-hr CTCs and primary tumors from mice were tested by Fisher's Exact Test, with a

cutoff for statistically significant difference set at p<0.05.
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Chapter 6: Linking single-cell measurements of mass,

growth rate, and gene expression

This chapter is adapted from the following article published Genome Biology:

Kimmerling RJ, Prakadan SM, Gupta AJ, Calistri NL, Stevens MM, Olcum S, Cermak
N, Drake RS, Pelton K, De Smet F, Ligon KL, Shalek AKt, Manalis SR. "Linking single-cell

measurements of mass, growth rate, and gene expression," Genome Biology 19, 207 (2019).

t Denote equal contribution

Mass and growth rate are highly integrative measures of cell physiology not discernable via

genomic measurements. Here, we introduce a microfluidic platform that enables direct

measurement of single-cell mass and growth rate upstream of highly-multiplexed single-cell

profiling - e.g., single-cell RNA-sequencing. Applying our approach, we resolve transcriptional

signatures associated with single-cell mass and growth rate in L1210 and FL5.12 cell lines.

Further, we demonstrate a framework using these linked measurements to characterize

biophysical heterogeneity of a patient-derived glioblastoma cell line in the presence or absence

of drug. Our results highlight the value of coupled phenotypic metrics in guiding single-cell

genomic analyses.
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Key Contributions

RJK led the design and implementation of the platform as well as the experimental biophysical

workflow. SMP led the single-cell RNA-Sequencing efforts. RJK and SMP analyzed the

transcriptomic data.

Forward

The studies described thus far primarily utilize single-cell transcriptomics alone to profile cellular

phenotype. However, other cellular measurements also provide important information about

phenotype, such as genetics, epigenetics, protein expression, spatial orientation, intercellular

communication, and biophysical measurements. Mass and growth rate of a cell are particularly

powerful proxies for overall cellular health, which are useful when studying perturbations that

deplete a population before gene expression measurements can be made. As discussed in

Chapter 2, pairing these other measurements with transcriptomics could provide more accurate

depictions of cellular behavior, especially following perturbations such as drug treatment. In this

chapter, we describe the extension of a new microfluidic tool that can profile biophysical

changes (mass/growth) to additionally profile gene expression of the same single cell. These

multiplexed measurements enable interpretation of the presumed trajectory of a single cell

during its differentiation, activation, or response to treatment (either towards sensitivity or

resistance), and investigation of gene expression that underlies variation in these properties.

6.1: Introduction

Recent experimental advancements have dramatically improved the throughput and cost-

efficiency of single-cell RNA-sequencing (scRNA-seq) 3 . However, gene expression

measurements alone cannot fully describe many complex cellular processes 4. Thus, parallel
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efforts have focused on linking single-cell transcriptomics with complementary data that can

provide further information to help guide analyses and contextualize distinct cellular states. For

instance, various multi-omic methods have been developed to link measurements such as

protein abundance, DNA sequence or methylation, with gene expression from the same single

cel11 58. Gene expression measurements have also been linked to single-cell location within a

tissue to enable the study of cellular development and differentiation with unprecedented detail9 -

. Moreover, single-cell functional assays have been coupled with mRNA expression to obtain

novel insights into the relationships among cellular electrophysiology, morphology, and

transcription 12 .Taken together, these approaches demonstrate the value of linked single-cell

data sets to afford a deep understanding of various cellular phenotypic states that may be

difficult to glean through transcriptomic measurements alone.

Linked gene expression data sets are of particular interest when considering recent

technological developments that have enabled the precise measurement of various single-cell

biophysical properties, such as mass and growth rate 13 14 .As highly integrative metrics of

cellular state, these parameters offer unique insights into a wide range of biological phenomena,

including: i) basic patterns of single-cell mass and growth regulation; ii) biophysical changes

associated with immune cell activation; and, iii) cancer cell heterogeneity in the presence or

absence of drug1 5-17. However, the approaches and devices previously used to collect these

biophysical measurements have precluded linking these properties with molecular profiling of

the same cell.

To our knowledge, there have been no methods reported to date that allow for linked

measurements of cellular mass, growth rate, and transcriptome-wide gene expression from the

same cell. It has therefore been challenging to characterize the underlying transcriptional

programs associated with cellular mass and growth rate variability observed in a range of

normal and dysfunctional biological contexts.
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Here, we describe and characterize a microfluidic platform that enables the measurement of

single-cell mass and growth rate immediately upstream of a range of highly multiplexed single-

cell endpoint assays. We leverage this approach in combination with scRNA-Seq to examine

linked single-cell biophysical and transcriptomic properties in cell lines and primary cells. Finally,

we further apply this method to examine biophysical heterogeneity in a patient-derived

glioblastoma (GBM) cancer cell line in the presence or absence of drug, highlighting the

potential utility of guiding single-cell genomic measurements with biophysical metadata.

Results

6.2: Serial SMR platform with downstream collection for scRNA-seq

Our system relies on a modified version of a previously described serial suspended

microchannel resonator (sSMR) device (Figure 6-1) that utilizes an array of high-resolution

single-cell buoyant mass sensors placed periodically along the length of a long microfluidic

channel to allow a single cell's mass to be measured periodically as it traverses the channel'.

In addition to providing mass information, this series of measurements can also be used to

determine the mass accumulation rate (MAR), or growth rate, of each cell. Here, taking

advantage of real-time access to the data generated by each SMR mass sensor, we have

modified the system to use peak detection in the final cantilever. Detection at this cantilever

indicates a cell exiting the mass sensor array and triggers the motion of a three-dimensional

motorized stage which positions a PCR tube containing lysis buffer to capture each single cell

as it is flushed from the system. This enables, for the first time, measurements of the

biophysical properties of mass and growth rate to be linked to genomic profiles - here RNA-

seq - at the single-cell level (Methods).
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Figure 6-1: Serial SMR platform with downstream collection for scRNA-seq.
Schematic representation of the serial SMR platform, which includes an array of SMR mass
sensors, separated by a serpentine delay channel to periodically measure the buoyant mass of
a single cell. Independent control of the upstream and downstream pressures applied to two
bypass channels allows for single-cell spacing at the loading entrance of the array (top left of
sSMR image) and single-cell isolation at the unloading exit (bottom right of sSMR image)
(Supplementary Note 1). Using real-time peak detection at the final mass sensor a three-
dimensional motorized stage is triggered to capture each individual cell directly in to lysis buffer
for downstream single-cell RNA-sequencing. Based on well location each cell is subsequently
matched to its corresponding biophysical data collected from the sSMR including mass and
MAR, as schematized in the top-right panel. These linked single-cell data sets can then be used
to determine gene expression signatures associated with mass and growth rate variability, as
schematized in the bottom-right panel.

We sought to endow our platform with sufficiently high throughput to enable measurements on

populations of cells that may change over time. The total time required to flush the system's

dead volume and release each single cell (20 seconds for the system implementation described

here) sets a theoretical maximum throughput for the platform to avoid the collection of

multiplets. Crucially, to minimize the frequency of failed capture events, we implemented a new

fluidic scheme whereby single cells are loaded into the array of mass sensors at fixed intervals

(Note 6-1)1". Ultimately, this fluidic scheme allows us to achieve a throughput of one cell

approximately every thirty seconds (for a throughput of up to 120 cells per hour) with minimal
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failed collection events due to co-release. This offers a two-fold throughput improvement over

previous implementations of biophysical measurements alone, while affording the additional

ability to capture each individual cell downstream for processing - e.g., scRNA-seq.

6.3: Unique gene expression profiles related to specific biophysical properties and underlying

cell biology

To validate our method for collecting linked single-cell biophysical and gene expression data,

we first measured two murine lymphoblast cell lines (L1210 and FL5.12) that have well-

characterized mass and growth properties which are stable over the course of long-term

propagation in bulk culture (Figure 6-2)14-16'19. Single cells collected downstream of the sSMR

for scRNA-seq consistently yielded high-quality cDNA libraries, with 85 out of 87 individual

L1210 cells and 124 out 144 individual FL5.12 cells with paired biophysical data passing initial

quality controls (e.g., number of genes detected greater than 4,000, Methods).

In order to determine the transcriptional signatures associated with the spectrum of biophysical

states in these cells, we ranked genes by how strongly their expression levels correlated with

single-cell biophysical data (Spearman's correlation coefficients; NB Both Spearman and

Pearson correlation methods yielded similar results for all comparisons considered). We then

utilized the GSEA Preranked tool to determine which gene sets showed significant enrichment

at either end of these ranked lists (FDR<0.05, Methods) 20 . For both cell lines, genes ranked by

correlation strength with single-cell mass (final mass measurement collected before cell lysis)

were highly enriched for functional annotations relating to cell cycle progression (FDR<0.05,

Figure 6-2). Specifically, genes related to early cell cycle events immediately following cell

division - such as DNA replication initiation - were more highly expressed in cells with lower

masses, whereas genes related to late cell cycle events that occur just prior to division - such

as chromosome segregation - were more highly expressed in cells with higher masses.
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Interestingly, both cell lines revealed a larger number of genes that showed a significant positive

correlation with mass relative to the number of genes with a significant negative correlation,

though this may be impacted, in part, by the transcript capture inefficiencies inherent in scRNA-

Seq protocols".
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Figure 6-2: Linked biophysical & gene expression measurements of L1210 and FL5.12
cells. (a) Plot of mass accumulation rate versus buoyant mass for single L1210 cells (top, n =
234) and single FL5.12 cells (bottom, n=296) measured in the sSMR. Kernel density plots are
included on both axes. (b) Heat maps showing the relative expression of various cell cycle-
related genes for subsets of the L1210 (top, n=85) and FL5.12 (bottom, n=124) cells depicted in
(a) that were captured downstream for scRNA-seq. Cells are ordered by buoyant mass (bar
plots above heat maps). Entries are colored by row-wise expression level rank where the cell
with the highest expression level for a particular gene corresponds to yellow and the cell with
the lowest expression level corresponds to magenta. As a demonstration, the heat map includes
genes with expression levels that showed a significant correlation with buoyant mass from the
chromosome segregation (black bar, n=58 and n=31 for the L1210 and FL5.12, respectively)
and DNA replication (gray bar, n=11 and n=8 for the L1210 and FL5.12, respectively) gene
ontology subsets (FDR<0.05, Methods).

The manifestation of cell cycle-related gene expression in scRNA-seq data has been of

particular interest to both further characterize mechanisms of cell cycle progression and regress
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out the contributions of cell cycle variability that may act as a nuisance parameter, dominating

gene expression heterogeneity amongst single cells and masking more subtle biological

signals3 2 2 23 . We therefore sought to determine how previously annotated cell cycle signatures

corresponded to the single-cell mass measurements collected here. To do so, we established

cell cycle phase specific (G1/S and G2/M) scores using an approach inspired by Macosko et a1 3

(Figure 6-3). Cells assigned to either the G1/S or G2/M phases of the cell cycle using gene

expression data alone showed significant differences in cell mass for both the L1210 and

FL5.12 cells that were consistent with expectations (i.e., lower mass for G1/S cells; P<0.001,

Mann-Whitney U Test). Furthermore, for both cell types, cell mass showed a clear negative

correlation with G1/S scoring (p = -0.46 and p = -0.25 for L1210 and FL5.12, respectively;

P<0.005) and a clear positive correlation with G2/M scoring (p = 0.74 and p = 0.54 for L1210

and FL5.12, respectively; P<0.001). Together, these results provide additional evidence of

coordination between mass and cell cycle related gene expression in actively proliferating cells.

To further confirm the consistency and reproducibility of the linked biophysical and gene

expression data sets collected with this platform, we compared the L1210 and FL5.12 results

with scRNA-seq data from additional independent experiments. For L1210 cells, we found that

genes that showed significant correlations with cell mass were also significantly enriched

amongst those previously shown to correlate with time since cell division, a proxy for cell cycle

progression (FDR<0.05) 24. In FL5.12 cells, meanwhile, we observed that the genes which

showed significant correlations between their expression levels and biophysical properties were

highly reproducible across two independent linked biophysical and gene expression

experiments (FDR<0.05). These results demonstrate the quality and reproducibility of

transcriptional measurements collected downstream of the sSMR.

158



a b
0,~

0.

0

GiS G2MGIS G2M

Increasing cell mass

G1S Score

G2M Score

-2.0 2.0 -2.0 2.0

d

CO

GiS G2M

Increasing cell mass

GiS G2M

Increasing cell mass

-2.0 2.0 -2.0 2.0

Figure 6-3: Comparison of cell cycle gene expression and cell mass. Boxplots (top)
showing the mass distribution of single-cells classified as being in the G1/S or G2/M phases of
the cell cycle for (a) L1210 cells (n = 48 and 37 for G1/S and G2/M, respectively), (b) FL5.12 (n
= 63 and 61 for G1/S and G2/M, respectively), (c) CD8+ T cells after 24h of activation (n = 25
and 34 for G1/S and G2/M, respectively), and (d) CD8+ T cells after 48h of activation (n = 25
and 24 for G1/S and G2/M, respectively) (*** indicates P<0.001, Mann-Whitney U Test). Below
each boxplot is a heatmap showing the G1/S and G2/M expression scores for cells ranked by
buoyant mass.

Given that we identified a linear relationship between mass and MAR in these cell types (p=

0.67 and p = 0.56 for L1210 and FL5.12, respectively; P<0.001, Figure 6-2), we focused our
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analysis on mass-normalized MAR, determined by dividing each cell's MAR by its

corresponding mass. We used this parameter, which measures a single cell's growth efficiency

decoupled from mass-related confounders, to resolve growth-related transcriptional signatures

in these two cell lines 25 . For L1210 cells, genes ranked by strength of correlation between

expression level and growth efficiency did not reveal any statistically significant enrichment of

functional annotations (FDR>0.05). The FL5.12 cells, however, showed significant positive

enrichment for functional annotations related to cell cycle progression amongst genes ranked by

correlation strength with growth efficiency (FDR<0.05). Specifically, subsets of genes implicated

in the G1-S transition showed a higher level of expression in cells of intermediate mass with the

highest growth efficiencies (Methods) 2 6. These results are consistent with previous FL5.12

single-cell growth measurements, which revealed an increase in growth efficiency approaching

the G1-S transition followed by a decrease later in the cell cycle".

6.5: Characterizing single-cell biophysical heterogeneity of patient derived cancer cell lines

Cancer cell drug responses are known to be highly heterogeneous at the single-cell level7 25

and it is now well established that the presence of even a small fraction of cells that are

unresponsive to a therapy can lead to resistance and recurrence of cancers 33. Single-cell

transcriptional profiling has been shown to provide a powerful means of characterizing such

heterogeneity in clinically relevant tissue samples3 4 '3 5, yet the direct interrogation of drug

response is still most commonly measured in clinical trials and the laboratory using bulk viability

assays3 6. Although effective in quantifying the relative fraction of resistant cells within a

heterogeneous population, these assays rely on endpoint measurements. Taken too late, they

may miss responding cells (which are lost to cell death) and/or the preceding molecular events

that impact survival; taken too early, bulk measurements can muddle the features of responding

and non-responding cell subsets. (Figure 6-4 a). However, we have previously shown that, prior
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to viability loss, single-cell biophysical changes of mass and MAR collected with the SMR can

predict response to drug treatment 17. Therefore, we reasoned that downstream molecular

characterization could be used to further contextualize single-cell mass and growth rate

heterogeneity both at baseline and in response to perturbation with drug treatment.

To demonstrate a framework for the characterization of single-cell biophysical heterogeneity in

the presence or absence of drug, we decided to measure the effect of an MDM2 inhibitor

(RG7388, Roche) on BT159 cells, a patient derived cell line (PDCL) generated from a primary

glioblastoma (GBM) (Methods). GBM PDCLs are known to be particularly heterogeneous with

respect to cell lineage and have a cancer stem cell like hierarchy proposed to contribute to

profound treatment resistance of these tumors 37. MDM2, meanwhile, typically binds to p53

inhibiting its transcriptional activity and leading to proteasome-mediated degradation3 . In prior

work from our group, pharmacologic inhibition of MDM2 has proven to be a promising

therapeutic avenue in GBM patients with wild-type TP53, due to the fact that, in preclinical

patient derived models, the drug leads to increased expression and stability of p53, significant

responses, and even tumor regression via induction of apoptotic cell death39. However, in vivo

testing revealed that, upon withdrawal of MDM2 inhibition, tumors consistently relapsed,

suggesting variable response to treatment39
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characterization therapeutic response using the sSMR collection platform. Mass and growth
measurements are collected after 16h of treatment, prior to loss of cell viability, which enables
downstream molecular characterization with scRNA-seq (Methods). (b) Plot of single-cell MAR
versus mass for BT159 GBM cells treated with either DMSO (blue circles, n = 83) or RG7388
(an MDM2 inhibitor, red triangles, n = 66) for 16h. Kernel density plot, using the same color
scheme, are include in the margins for both populations. *** Indicates P<0.001, Mann-Whitney
U Test. (c) Volcano plot showing log-transformed average expression fold change and log-
transformed P-values (Bonferroni corrected) for genes upregulated (red) or downregulated
(black) in BT159 cells treated with RG7388 as compared with DMSO treatment. (d) Plot of
mitosis scores versus buoyant mass for BT159 cells treated with DMSO (blue circles, n = 83) or
RG7388 (red triangles, n = 66) for 16h. Mitosis scores were calculated by taking the average z-
score adjusted gene expression values of a panel of mitosis-related genes (n = 29, Methods).
Kernel density plot, using the same color scheme, are include in the margins for both
populations. *** Indicates P<0.001, Mann-Whitney U Test. (e) Plot of significantly enriched
canonical pathways (FDR<0.05) in RG7388 treated BT159 cells (n = 66), as determined by
Ingenuity Pathway Analysis, amongst genes with significant positive (black) or negative (gray)
correlations with normalized MAR. (Methods).

To characterize biophysical heterogeneity at the single-cell level we collected linked mass, MAR

and gene expression measurements for single BT159 cells that had either been treated for 16h

with RG7388 or DMSO (control) (Methods). Overall, the drug treated population of cells

showed a marked reduction in average MAR and an increase in average mass as compared to

the control population of cells, as expected due to cell cycle exit and apoptosis (P<0.001, Mann-

Whitney U Test, Figure 6-4 b). However, there was also considerable heterogeneity in

biophysical response to drug, with some cells continuing to show a positive MAR at the time of

measurement (Figure 6-5). Since these measurements were collected at a single time point, it

is difficult to assess whether the cells that continue to grow in the presence of drug are, in fact,

resistant to therapy or simply display a delayed response to treatment. Nonetheless, the

biophysical heterogeneity found in these results affords the opportunity to determine

transcriptional signatures that correlate with this variability at this particular time point.

We next considered only the transcriptional data. As expected, an unbiased analysis

(dimensionality reduction by principal components analysis (PCA) and visualization using a t-

stochastic neighbor-embedding (tSNE) plot, Methods) revealed distinct transcriptional profiles

for drug-treated and control cell populations (Figure 6-6 a). Relative to DMSO-treated cells,
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drug-treated cells displayed gene expression signatures consistent with the mechanism of

MDM2 inhibition, with genes positively regulated by p53, such as CDKNA (p21) and MDM2,

showing significant upregulation, and genes negatively regulated by p53, such as CDKI and

CDC20, showing significant downregulation (Bonferroni-corrected P<0.05, Figure 6-4 c) 40. We

then performed dimensionality reduction (PCA) and graph-based clustering (k-nearest

neighbors, KNN) on the transcriptional data from the drug-treated cells alone, and visualized our

results using a tSNE plot (Figure 6-6 b, Methods). This clustering analysis did not reveal any

clear subsets of drug-treated cells with distinctly different responses to MDM2 inhibition.
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Figure 6-5: Mass-normalized MAR measurements for BT159 cells. Single-cell mass-
normalized MAR measurements and corresponding boxplots for BT159 cells treated for 16h
with either DMSO (left, n= 83) or RG7388 (right, n = 66). *** indicates P <0.001, Mann-Whitney
U-test.
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defining the two clusters depicted in (c). Cluster 2, which is composed of cells with a
significantly higher mass (P<0.01, Mann-Whitney U-test), shows increased expression of
various genes relating to cell cycle progression.

Since our transcriptional measurements suggested that all MDM2-inhibitor treated cells were

actively experiencing drug but our biophysical measurements revealed mass and MAR

heterogeneity, we decided to explicitly examine whether the linked nature of our measurements

could be used to shed light on the drivers of biophysical variability at this time point after

treatment with DMSO or RG7388. When examining linked measurements of gene expression

and cell mass in DMSO treated cells, we found that genes ranked by correlation strength with

mass were highly enriched for functional annotations relating to cell cycle progression. Also, as

with the other cell types presented here, larger cells in the control population expressed a higher

level of genes associated with late cell cycle events, specifically mitosis (Figure 6-4 d).

Interestingly, an unsupervised clustering analysis (PCA followed by KNN clustering, Methods)

of the DMSO-treated cells alone revealed two distinct subsets which had significantly different

average masses (P<0.01, Mann-Whitney U-test, Figure 6-6 d), and an upregulation of genes

relating to cell cycle progression in the subset with a larger average mass (Figure 6-6 e).

MDM2 inhibitor-treated cells, meanwhile, showed significantly reduced expression of mitosis-

specific genes (P<0.001, Mann-Whitney U Test, Figure 6-4 d). Moreover, in these cells, we did

not observe any significant cell cycle-related functional enrichments among those genes

correlated with cell mass (FDR>0.05). These results demonstrate that upon MDM2 inhibition

and stabilization of p53 signaling in these cells, cell cycle arrest is achieved as expected but

there is no longer a correlation between cell mass and cell cycle-related gene expression (p =

0.47, P<0.001 for DMSO-treated cells; p = -0.07, P=0.54 for drug-treated cells). Furthermore,

since a subset of cells within the drug-treated population displayed a positive MAR despite

ablated cell cycle gene expression (Figure 6-4 b), our data suggest that cell cycle gene

expression alone does not fully account for variability in the single-cell biophysical response. In
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fact, we did not observe a significant correlation between PCs computed for the drug-treated

single-cell transcriptomes and any biophysical properties measured (P>0.05; Methods).

To determine transcriptional signatures that may underlie this biophysical heterogeneity, we

utilized the corresponding single-cell MAR data to further contextualize gene expression. Genes

ranked by correlation strength with mass-normalized MAR in the MDM2-inhibitor treated

population of cells showed a significant negative enrichment (i.e. higher expression in cells

accumulating less mass over time) for functional annotations related to apoptosis regulation,

specifically related to p53 signaling (FDR<0.05). The DMSO treated population of cells,

meanwhile, did not show any significant functional enrichments amongst genes ranked by

correlation with normalized-MAR (FDR>0.05). Similarly, Ingenuity Pathway Analysis (IPA,

Qiagen) performed on drug treated cells revealed significant enrichment of canonical apoptosis

signaling amongst genes showing significant negative correlations with normalized MAR

(FDR<0.05, Figure 6-4 e) while the same analysis on DMSO treated cells did not reveal any

apoptosis-related signaling significantly correlated with MAR (FDR>0.05, Figure 6-7). Together,

these results suggest that cells with a higher normalized MAR had a lower expression of genes

related to apoptotic signaling orchestrated by p53, but only in drug treated cells, consistent with

the mechanisms of MDM2. IPA of drug treated cells further revealed significant enrichment for

PTEN signaling (a negative regulator of AKT) and mTOR signaling (a positive regulator of AKT)

amongst genes significantly negatively and positively correlated with normalized MAR,

respectively (FDR<0.05) 4 ,4 2 . IPA of DMSO treated cells, however, revealed significant

enrichment for PTEN signaling (FDR<0.05) in genes negatively correlated with normalized MAR

but did not show significant enrichment for mTOR signaling in genes positively correlated with

normalized MAR (Figure 6-7). Together, these results suggest that cells which continue to grow

in the presence of MDM2 inhibition may exhibit more stable AKT signaling, which itself drives

MDM2 expression, as compared with cells with decreased normalized MAR, pointing to a
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potential mechanism of cell survival in the presence of treatment43 44. Though preliminary, these

results demonstrate the unique insight offered by linked measurements of biophysical

phenotype and gene expression when examining cancer cell drug response at the single-cell

level.
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Figure 6-7: IPA of DMSO treated BT159 cells. Plot of significantly enriched canonical
pathways (FDR<0.05) in DMSO treated BT159 cells (n = 83), as determined by Ingenuity
Pathway Analysis, amongst genes with significant positive (black) or negative (gray) correlations
with normalized MAR. (Methods).

6.6: Conclusion

The platform presented here enables linked measurements of single-cell biophysical properties

and gene expression. Having demonstrated the resolution and reproducibility of these linked

data sets with measurements of stable cell lines (L1210 and FL5.12 cells), we present
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frameworks for two key applications of these linked data sets: i) characterizing immune cell

activation and differentiation, and ii) examining cancer cell drug response at the single-cell level.

While the primary focus of this work was on conducting scRNA-seq downstream of the sSMR,

we also envision this platform being a useful tool for linking biophysical data with other recently

developed approaches that enable DNA sequencing, epigenomic characterization, or multi-omic

measurements of single cells 5'6 '45 .

We believe that these linked measurements will offer a novel means of exploring a range of

biological questions. For instance, when paired with recently developed computational

approaches, these linked biophysical and transcriptional measurements may offer insights into

cell cycle regulation as well as provide an additional approach for addressing the potentially

confounding effects of cell cycle in scRNA-seq analyses22. Clinically, mass and MAR have

proven to be effective biomarkers for characterizing cancer cell drug susceptibility at the single-

cell level 1 7 '2 5 The ability to link these biophysical measurements with gene expression or

genetic profiling offers the exciting opportunity to move beyond the simple classification of

responding and non-responding cells and begin to explore the molecular mechanisms that may

drive such behaviors. We envision that this and related approaches may one day inform more

effective precision medicine pipelines46 .
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6.7: Methods

Cell culture and primary cell preparation. L1210 murine lymphocytic leukemia cells (ECACC)

were cultured in RPMI 1640 (Gibco) with 10% fetal bovine serum and 1% antibiotic-antimycotic

(Gibco). FL5.12 murine pre-B cells (gift from the Vander Heiden Lab, MIT) were cultured in the

same media with the addition of 10 ng/ml IL-3 (R&D Systems). For all growth and collection

experiments, cells were passaged to a concentration of 5 x 10 5 cells/ml the night before to

ensure consistent culture confluence at time of measurement.

The GBM PDCL BT159 was generated using patient tissue collected under an informed consent

protocol (Dana Farber Harvard Cancer Center protocol #10-417) approved by Dana Farber

Harvard Cancer Center and Partner's Human Research Center institutional review boards. Cells

were harvested from excess tissue resection specimens through cycles of enzymatic (neural

tissue dissociation kit with papain, Miltenyi Biotec) and mechanical dissociation in a tissue

grinder (gentleMACS dissociator, Miltenyi Biotec). Cells were grown as tumorspheres in

NeuroCult NS-A proliferation media (Miltenyi Biotec) supplemented with 2 pg/mI Heparin, 20

ng/ml human epidermal growth factor (EGF), 10 ng/ml human bFGF in ultra-low attachment

coated flasks (Corning). Prior to measurement, the BT159 cells were dissociated with Accutase

(Sigma-Aldrich) at 37 °C for 7 min. For drug experiments, cells were treated with 250 nM of the

MDM2 inhibitor RG7388 (Roche) or DMSO for 16h prior to dissociation for measurement.

Single-cell growth measurements and collection. For all experiments, cells were adjusted to

a final concentration of 2.5 x 105 cells/ml to load single cells into the mass sensor array as

described in Supplementary Note 1. Single-cell growth measurements were conducted as

described previously . In order to exchange buffer and flush individual cells from the system,

the release side of the device was constantly flushed with PBS at a rate of 15 pL per minute (P2

to P4). Upon detection of a single cell at the final cantilever of the sSMR, as indicated by a
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supra-threshold shift in resonant frequency, a set of 3-dimensional motorized stages (ThorLabs)

was triggered to move a custom PCR-tube strip mount from a waste collection position to a

sample collection position. The location of these motors was written to a file for the duration of

the experiment in order to annotate single-cell mass and MAR measurements with well position,

and thus transcriptional profiles, downstream. Each cell was collected in 5 pl of PBS directly in

to a PCR tube containing 5 pl of 2X TCL lysis buffer (Qiagen) with 2% v/v 2-mercaptoethanol

(Sigma) for a total final reaction volume of 10 pl. After each 8-tube PCR strip was filled with

cells, the strip was spun down at 10OOg for 30 seconds and placed immediately on dry ice.

Following collection, samples were stored at -80 C prior to library preparation and sequencing.

scRNA-Seq. Single-cell RNA isolation, cDNA library synthesis, next generation sequencing,

read alignment and gene expression estimation were performed as described previously 47.

Briefly, Smart-Seq2 whole transcriptome amplification and library preparation were performed

on single-cell lysates collected with the sSMR48. Single-cell libraries were then sequenced on an

Illumina NextSeq 500 using 30-bp paired end reads. Data was filtered to exclude cell doublets

or cells with failed matching of masses for growth rate measurement. This step left 87 out of 96

L1210 cells, 144 out of 192 FL5.12 cells, and 181 out of 192 BT159 GBM cells. Next, cells that

exceeded a preliminary complexity threshold (4,000 genes for L1210 and FL5.12 cells or 1,000

genes for BT159 cells) were selected for further analysis. Overall, this yielded 85 out of 87

L1210 cells, 124 out of 144 FL5.12 cells, and 149 out of 192 BT159 cells. These cells selected

for analysis were sequenced to an average depth of 1,698,879 + 106,027 (s.e.m.) reads for

L1210 cells, 760,919 + 36,679 (s.e.m.) reads for FL5.12 cells, and 993,629+ 75,796 (s.e.m.)

reads for BT159 cells respectively. Reads were aligned using TopHat2 and expression

estimates (transcripts per million; TPM) for all UCSC-annotated mouse genes (mm10, for

L1210, FL5.12) or human genes (hg19, for BT159 cells) were calculated using RNA-seq by
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expectation maximization (RSEM) 49 '5 0. The average transcriptome alignments were 67.4 + 0.38

% (s.e.m.) for L1210 cells, 64.8+ 0.51 % (s.e.m.) for FL5.12 cells, and 35.2 +0.84% (s.e.m.) for

BT159 cells. The average number of genes detected was 7,207 + 94 (s.e.m.) for L1210 cells,

6,891 ± 81 (s.e.m.) for FL5.12 cells, and 5,347+ 173 (s.e.m.) for BT159 cells.

Gene expression analysis. All analysis was performed on log-transformed expression level

measurements (ln(TPM+1)). Data pre-processing was conducted with the Seurat package for

R9. All genes that were detected in >5% of cells were included in the final analysis for each

group of cells (L1210, FL5.12, and BT159 GBM cells).

Significance-testing. To define the null distribution of correlation coefficients, we determined

the Spearman correlation between cell cycle gene expression levels and mass for randomly

shuffled data sampled from experimental values (i.e., mismatching single-cell mass and gene

expression data). After 10,000 iterations, we used the average mean and standard deviation

values of these correlation coefficient distributions to define the null distributions presented.

We computed the null distributions for the correlation coefficients between either mass, MAR, or

normalized MAR and the principal components for either the DMSO-treated, drug-treated, or

combined transcriptomic data sets using a similar random shuffling of PC coordinates across

single-cells. Following 10,000 iterations, the mean and standard deviation of these distributions

was compared to the correlation of each biophysical parameter with all significant principal

components (PCs). For each data set, the PCElbow plot and jackstraw functions in Seurat were

used to select significant PCs whose explained variation preceded a precipitous drop in

cumulative explained variation (elbow). In each data set, for consistency, the top 10 PCs were

investigated, although in some cases fewer than 10 PCs preceded the elbow. Correlation
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coefficients were deemed insignificant if they were within two standard deviations of the mean

determined from random shuffling.

Gene set enrichment analysis. Ranked gene lists were created for each cell population by

determining the gene-wise correlation coefficient (Spearman) between log-transformed gene

expression levels and either single-cell mass or growth efficiency (MAR/mass). Spearman and

Pearson correlation coefficients yielded similar results for all conditions measured. Gene set

enrichment was computed for these ranked lists using the GSEA Preranked tool, implemented

with the fgsea package in R2 0 1

Differential expression. Differential expression analysis for the DMSO versus RG7388 treated

BT159 cells, was performed using FindMarkers in Seurat with the Wilcoxon rank sum test. All P

values presented are Bonferroni corrected, as per Seurat documentation recommendation.

Dimensionality reduction. Variable genes for DMSO-treated, drug-treated, and combined data

sets were identified using Seurat's FindVaribleGenes. Principal components analysis (PCA) was

performed over these genes for each of the three sets of cells, followed by non-linear

dimensionality reduction by t-stochastic neighbor embedding (tSNE). Clusters were identified in

the linear PC space using K-nearest neighbor (KNN) clustering, and cluster assignments were

visualized on the non-linear tSNE space. For the DMSO-treated cells, we detected two distinct

clusters (Figure 6-6 c); for the RG7388 treated cells, we only detected one (Figure 6-6 b).

Ingenuity pathway analysis. Ingenuity pathway analysis (IPA, Qiagen) was performed on

canonical pathways using genes which significantly correlated positively and negatively with
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normalized MAR. Briefly, correlation and p-values for significant genes were uploaded into IPA

and analyzed using the "Core Analysis" function. Correlations were input as "Expression: Other"

measurements with range from -INF to INF. Significant canonical pathways and upstream

regulators (determined by hypergeometric test) with positive and negative z-scores are plotted

in Figure 6-4 e.

Note 6-1 | Maintaining minimum cell spacing in mass sensor array

Loading single cells into the mass sensor array at fixed, minimum spacing requires the

implementation of active switching between two distinct fluidic states. Initially, equivalent

pressures are applied to upstream and downstream ports on the bypass channel leading in to

the array (ports P1 and P3). In this "loading" configuration, all streamlines are directed into the

array and therefore cells in the bypass channel will enter the array. An imaging region at the

entrance to the mass sensor array is used as an indication of when a cell has been successfully

loaded. Real-time optical peak detection is used to switch from this loading fluidic state to a

"flushing" regime wherein the upstream pressures (P1) is increased and the downstream

pressure (P3) is decreased such that a vast majority of streamlines continue along the bypass

channel with a small fraction entering the array. Because cells are of finite size and occupy

several streamlines, they are directed along the bypass channel and not drawn in to the array.

Importantly, during this process the pressure at the entrance to the mass sensor array is

maintained at a fixed value, therefore any cells that have entered the array continue to flow at a

constant speed. Therefore, although the volumetric flow rate is maintained across the array

while flushing, no additional cells are loaded. After a desired amount of time has elapsed the

system is automatically returned to the loading configuration to obtain the next cell for

measurement.
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