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Abstract

During the past years, the neural networks drew more and more interest from the solid

mechanics community. In particular, they have proven to provide a powerful framework

for constitutive modeling. This work takes first tentative steps towards the use of

convolutional neural network based modelling techniques to estimate structural response.

The present work investigates the initial yield of two-dimensional architected

materials. The dataset is obtained either by physical or virtual tests. In future applications,

the network will be trained based on physical experiments. In the course of this work, they

have been replaced by virtual experiments relying on numerical simulations. The

computational framework is modeled as an encoder-decoder network and leverages the

effectiveness of convolutional neural networks to estimate the structural response of two-

material structures. More specifically, the constructed network manages to replicate shape

distortions of the yield surface for numerous hole configurations as well as various types

of perforation. Furthermore, it accurately predicts the orientation dependent material

response for varying degrees of anisotropy. The fact that the network directly translates

geometrical data into mechanically significant quantities leads to the strong conjecture that
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the neural network is capable to extract and encapsulate all geometrical and mechanically

significant information into a small number of scalar variables.
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Chapter 1 General Introduction

1.1 Motivation and Objectives

Comprehensive studies on the theory of homogenization methods have been carried

out throughout the last decades. There exists an increasing demand because of a need for

more advanced materials and structures in terms of their weight and strength. Due to their

superior specific mechanical properties and fatigue behavior, composite materials are

becoming more and more attractive for a vast number of applications in automotive,

aerospace, marine, as well as biomedical industry. Other applications of homogenization

theory include modelling of granular materials used in lithium-ion batteries, metamaterials

and other porous structures.

Material heterogeneities arise in these materials by combining different materials such

as particle inclusions or fiber reinforcements. Deriving the macroscopic deformation as

well as mechanical properties of the composite based on the microscopic stress states as

well as local deformation is computationally expensive, even on modem high-speed

computers. The characterization of interface behavior and failure between the combined

materials poses an additional challenge, which needs to be addressed on atomic or particle

level describing the interaction of individual pendant groups of molecules. Therefore, and

especially in structural large-scale applications, it is infeasible to use microscale material

models and to describe the exact microscale material structure in numerical simulations.

The first efforts of determining the effective elastic moduli of porous cellular materials

date back to forty years ago. Gibson and Ashby (1982, 1988), as well as Christenson

(1986), published a comprehensive list of scaling laws connecting the evolution of the

apparent Young's modulus as a function of relative density for different load cases and

structures like beam bending and axial compression. More recent approaches to

approximate the effective elastic properties are summarized in the so-called self-consistent

methods. Starting from an initially homogenous material, the second material is introduces

as inclusion according to different mathematical rules and assumptions (e.g. Mori and

Tanaka, 1973; Willis, 1977).

- 13-



General Introduction

Each of these approaches is physically motivated but leaves a certain degree of

uncertainty that prevents these approximations from being generally applicable. In this

regard, several attempts have been made to derive general upper and lower bounds on the

effective strain energy that later allows to derive upper and lower bounds on the stiffness

tensor as well as engineering constants like the Young's or bulk modulus for anisotropic

composites (Kr6ner, 1977). Linear formulations lead to the well-known Voigt (1889) and

Reuss (1929) bounds for composite materials. Based on this approach, the upper and lower

boundaries for the bulk and shear modulus result in being the harmonic and arithmetic

mean of the properties of the base materials. Following this procedure, one obtains bounds

that describe the effective mechanical properties accurately for low phase-contrasts but is

not practical in the higher phase-contrast regime. In order to obtain stricter bounds on the

effective strain energy, Hashin and Shtrikman (1963) relied on variational principles and

deployed the concept of polarization stress allowing to reduce the mechanical problem to

a Lippmann-Schwinger type of equation. The derived bounds on the elastic energy for

macroscopically isotropic composites are often referred to when benchmarking optimal

mechanical properties of porous or two-phase materials.

Later efforts refined the general bounds to more specific application and use cases

based no experimental observations. Semi-empirical models were proposed by Halpin and

Tsai (1967) incorporating an additional parameter accounting for the microstructure

packaging, e.g. hexagonal close packing or quadratic arrangements. The experimentally

determined factor scales the estimate of the effective moduli between the Voigt and Reuss

bounds. A few decades later, Baxter et al. (2001) carefully develop a technique to extract

the effective elastic moduli of particle reinforced metal matrix composites from three-

dimensional random microstructure. Around the same time, Bystr6m (2003) investigates

the influence of the inclusions distribution on the measured effective conductivity of

composite materials. Within this framework, a large amount of research effort focuses on

determining the optimal representative volume element (RVE) to accurately capture the

material response of a random material property field (Drugan and Willis, 1996; Gusev,

1997; Ostoja-Starzewski, 1998). Trias et al. (2006) clearly demonstrate the advantage of

random models over periodic models for fiber reinforced composites concerning fracture

initiation and other local phenomena.

- 14-



Motivation and Objectives

Suquet (1987) adopted the modem term of homogenization. The theory of

homogenization uses the asymptotic expansion to approximate the relevant field variables

like displacements, strains and stresses via an additive split in an average, constant value

and perturbations in the field variable as a result from heterogeneity on a microscopic level.

The assumption of the existence of a certain degree of microstructure symmetry allows to

substitute the on a local level rapidly varying coefficients with constant or slowly varying

coefficients on a global scale within the differential equations defining the physical

problem. The resulting partial differential equations can be solved analytically or by

deploying numerical methods like the boundary element method or spectral method. In

recent times, the finite element method (FEM) is the most popular method in numerical

homogenization. While providing a convenient and generally accurate way to generate

predictions, the FEM also suffers from inherent drawbacks originating from the very nature

of the underlying numerical procedure. The predictive accuracy is tied to the mesh quality

and exact element formulation used to discretize the geometry as well as microstructure.

As a result, especially with ongoing element distortion under large local deformations the

methods suffers a significant accuracy loss and tends to provide an overall too stiff response

(Liu, 2002). To overcome these issues, Liu (2010) developed multiple numerical methods

summarized under the name smoothed finite element methods (S-FEMs). The strain

smoothing technique helps to overcome some of the shortcomings of the traditional FEM

and is believed to yield a higher accuracy compared to existing methods (He et al., 2013).

In the above context, of interest is the construction of the RVE for a class of cellular

material both in the elastic and plastic range (compare to metamaterials in Tancogne-

Dejean et al. (2018) or Bonatti and Mohr (2017)).

Despite all the comprehensive studies carried out and the considerable progress that

has been made during the last decades, the homogenization of material properties still

remains a challenge nowadays. The preceding paragraphs should not leave the reader with

the impression that the problem at hand has been solved, the reality is far from it. Every

new class of materials and category of physical interaction of components requires a

rigorous investigation and formulation of new mathematical formulations. Additionally,

material sciences still advance much faster than the research regarding the material

characterization. Our suggested approach does provide a robust solution to the problem at

- 15-



General Introduction

hand providing a fully anisotropic, three dimensional material model capable of covering

all physical material properties of metallic, polymeric or composite nature. The machine

learning based procedure promises to be generally applicable to any material class and can

be paired with any numerical method.

1.2 Problem statement

In the scope of this work, the author would like to propose a novel approach to bridge

the gap between geometrical, structural information and effective mechanical properties.

The introduced framework is capable of predicting effective material properties as well as

full field quantities, like displacements or stresses. At the same time, it can be easily applied

to a large variety of different applications (compare Fig. 1). These use cases include, but

are not limited to particle and fiber composites (Fig. a), microstructural information of

metallic materials (Fig. lb), architected optimal metamaterial (Fig. 1c) and lithium-ion

batteries (Fig. Id).

c O~c
, -----------.--- ------- ------ --- ----- - ----- -----------..-.I_ _ _ _ _ __ _ _ _ _ _ I__ _ _ _ __ _ _ _ _ -------------- -------------

a) b) c) d)

Figure 1. Illustration of possible use-cases of the proposed modelling framework: a)

particle and fiber composites; b) microstructural information of metallic materials; c)

architected optimal metamaterial; d) lithium-ion batteries

For simplicity, the capabilities of the new modelling technique will be demonstrated

by the means of a well-defined two-dimensional problem originated in the world of

composite materials. Starting out with a particle or fiber reinforced basis material with a
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random distribution of inclusions (see Fig. 2a), the investigations are limited to a regular

square of five-by-five elementary unit cells (Fig. 2b). In order to avoid the numerically

challenging description of the interactions between the different materials via the interface,

the problem is reduced to a single, porous material (compare Fig. 2c). Circular holes,

schematically representing the porosity, are randomly distributed on 13 out of the 25

regular grid positions. To limit the number of virtual experiments and simulation costs, we

introduce a four-fold symmetry by rotating the structure around one of its corner points

(Fig. 2d). A more detailed description of the geometries can be found in section 2.1.

Figure 2. Refining the problem statement starting from acomposite structure with arandom

particle or fiber distribution

In this study, the matrix material is taken tobe adual phase steel, the primary goal of

this investigation is topredict the anisotropic yield surface of these architected, two-

dimensional structures based on geometrical information. The geometrical input is

diversified by different hole configurations (Fig. 3)as well as three different hole types:

circular, square and triangular (see detail in Fig. 3). The author would like to showcase a

neural network based modelling framework. After asuccessful training with the help of

physical or virtual experiments, the only input to the system, an architecture relying on a

convolutional neural network (CNN), is the geometry (a detailed description follows in

section 2.1) and it directly outputs the structure's yield surface (compare Fig. 4).
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Types of perforations:

Ustee Vm T 0

Figure 3. Selected examples of different hole configurations; detail depicts the three hole

types

This is a very specific, precisely defined example of the general CNN based

framework. However, this illustrative, simplified showcase should not diminish the fact

that the proposed modelling procedure can be deployed for arbitrary geometric structures

and full three dimensional investigations targeting effective material properties or field

quantities.

NN enabled framework

Figure 4. Problem statement: Prediction of anisotropic yield surface based on structural

information only
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Structure of the thesis

1.3 Structure of the thesis

In order to tackle the problem pictured in the preceding paragraphs, the thesis will be

divided in five main chapters. Each of these chapters will be dedicated to a detailed

description of sub-tasks leading to the development of a CNN-based computational

framework to predict the yield surface for the structures at hand.

After the motivation and the brief problem statement in the previous paragraphs, the

second chapter is centered on the virtual experiments in order to create the required input

data for the neural network. As substitution of physical experiments, we preform numerical

simulations relying on an isotropic, elastic-plastic behavior of the base material. The

simulations are carried out using the software package Abaqus/Standard. Periodic

boundary conditions are deployed to generate the macroscopic material response based on

the discretized reference volume element. A subsequent post-processing step is conducted

to extract adequate data for adjusting the free parameters of the neural network model via

the training procedure described in the next chapter.

Two neural network architectures are gently introduced to the reader covering the basic

mathematical foundation of each structure. Furthermore, these two paragraphs on

feedforward and convolutional neural networks help to establish common terminology and

techniques that will be used throughout the work. The last section will be devoted to the

training procedure. The described problem set-up results in a high-dimensional

optimization problem that is very difficult to solve with a standard gradient descent

algorithm. Thus, this work relies on both, more sophisticated training schemes as well as

suitable transformations of input variables.

Combining all previous aspects, the forth chapter will explain the final architecture of

the numerical framework in detail. It will elaborate on the importance of the appropriate

choice of various model parameters in order to allow for a successful training procedure.

In addition to that, an array of diverse model capabilities is demonstrated. The presented

results include the prediction of the anisotropic material response of a single structure.

Besides this material orientation dependent behavior, the modelling framework is capable

to replicate shape distortions for different perforation types as well as hole configurations.

The neural network based model exhibits a large amount of flexibility and agility to

19-



General Introduction

accurately predict the unique characteristics and varying degrees of anisotropy of numerous

architected materials.
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Chapter 2 Virtual experiments

2.1 Detailed FE model

As briefly mentioned in section 1, the present illustrations are based on architected,

two-dimensional structure as briefly shown in figure 2 and 3. The basis material will

represented by a dual phase steel. The material porosity is introduced by randomly

distributing 13 holes onto a five-by-five grid. By choosing this ratio we limit the number

of possible hole configuration to 5,200,300. All cut-outs, both circular and square as well

as triangular, are designed to reduce the surface are of an elementary cell by half; yielding

a relative density of p* = 0.74 for the entire structure. The final structure is created by three

successive 90°-rotations of the five-by-five base array of about the upper right corner

(compare Fig. 5a). Introducing this four-fold symmetry significantly reduces the number

of numerical simulations to construct the yield surface. The simulations are carried out

using the software package Abaqus/Standard. The structures are discretized using

approximately 37,500 linear, quadrilateral S4R-elements. The four basic unit cells are

depicted in Fig. 6.

CP2

10

................ --- C P 1 0

00 0 300

0 1

a)

0

00

0.. •

.130 .100 .50 0 s0 100 1;0

on [MPa]
b)

Figure 5. Virtual experiments - a) Detailed FE model; b) 24 (oa,a )-pairs obtained from

individual numerical simulations
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In the following, we define the initial yield strength to be the corresponding stress

values as the plastic dissipation reaches 10% of the elastic strain energy observed for the

entire unit cell. Each yield surface is constructed based on 24 different loading scenarios

(compare Fig. 6b). The linear, monotonic radial loadings are applied to the structures via

periodic boundary conditions. The linear kinematic constraints between the control nodes

and the created quadrilateral mesh allow to prescribe the macroscopic deformation gradient

F to the unit cell. Imposing the symmetry of the deformation gradient, the Hencky strain

tensor e can be directly obtained from the input fields.

E = Iln(F TF) (1)
2

The components of the first Piola-Kirchhoff stress P' tensor can be directly extracted

from the reaction forces at the control nodes. For convenience, we define a ratio between

the normal strain components 1 ,and 22 to differentiate the different loading scenarios,

in the following referred to as strain angle a.

tana = -22 (2)

Due to the introduced symmetry of the investigated structures, we only require 13

different strain angles to span the entire yield surface. Thus, we can limit the strain angle

a to the interval [r / 4, 5r / 4]. These loading scenarios range from biaxial tension to

biaxial compression covering the first to the third quadrant of figure 5b. Despite the four-

fold rotation symmetry, the structures still exhibit an anisotropic response for angles

between 0 and ir /2. Therefore, we define a second measure, the material angle #,
tracking deviation of the material orientation relative to the loading direction (Fig. 14). We

construct an entirety of six different yield surfaces for one structure, using the material

angles #={0,r/12,r/6,r/4,r/3,5r/2}. Considering both strain and material

angles, this scheme leads to a total of 78 numerical simulations per structure.

- 22-



Basis material

Figure 6. FE discretization of the four basic unit cells

2.2 Basis material

We have chosen the DP980 dual phase steel to function as the basis material for the

architected structures. Rigorous investigations of Pack (2017) revealed that the anisotropy

of DP980 as a sheet metal with a thickness of 0.82mm is almost negligible. Therefore, we

use the isotropic von Mises yield criterion combined with an associated flow rule.

f[o7, T,]= -k[T,]= ':'-k[- ] 03~ a,-E (3)

The material resistance k only depends on the equivalent plastic strain Z, . The

isotropic hardening behavior is defined using a weighted sum of a power law k,[T,] (Swift,

1952) and an exponential law k[E,] (Voce, 1948).

k[Z,]= ck,,]+(1- w)k,[-,]
(4)

= wA( 0o + ,)±+(I-W)(k, +Q(1-exp(-b,)))

The calibrated material parameters are taken from Pack (2017). The resulting values

are summarized in table 1.

Table 1. Calibrated parameters of the mixed Swift-Voce hardening law

O [-] A [MPa] 6o[-] n [-] ko [MPa] Q [MPa] b[-]

0.58 1570 2.56E-05 0.129 548 531 92.8

-23-
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Virtual experiments

2.3 Simulation post-processing: Determine initial yield strength

The resulting yield surfaces, as shown in Fig. 5b, are drawn using the Cauchy stress

tensor. This decision has been made with regard to the future anticipation to be implement

this scheme inside the framework of numerical simulations. However, the simulation

results, as described in paragraph 2.1, will be obtained in terms of deformation gradient

and first Piola-Kirchhoff tensor. Therefore, we convert the obtained field values to

calculate the components of the Cauchy stress tensor

a= det F IFP', (5)

where det ... denotes the determinant of a tensor. In order to identify the thickness,

normal strain 633, which is not part of our input, we monitor the Hencky strain in thickness-

direction at each integration point. An effective measure of thickness strain is determined

by area-averaging these strain components considering the current surface area of each FE-

element. This effective strain is transformed to the engineering strain space and allows to

complete the three-dimensional deformation gradient. Through this, all stress components

at the onset of yielding, determined by the energy ratio discussed in the previous paragraph

2.1, can be obtained.

- 24-



Chapter 3 Neural network architectures

The design of the neural network architecture deployed in the present work is inspired

by the working principle of encoder-decoder networks. These network types are most

commonly used for time-series input and thus predestinated for natural language

processing tasks, like machine translation and speech recognition. The first encoder part of

the network takes the inputs and transforms them into a vectorized feature map. This

encoded hidden state is transferred into a decoder network. This second network use the

encoded features and maps them onto the desired output. The present studies are carried

out using a combination of a convolutional neural network and a feedforward neural

network. The convolutional part is presented with the structural input and encodes the

geometrical information into a hidden state. The feedforward neural network functions as

a decoder network, translating the input vectors to the fimal network output.

3.1 Feedforward neural networks (FNN)

Mathematically, feedforwards neural networks can be expressed as vectorial non-linear

function mapping N-dimensional input vector x to N1 -dimensional output vector y :

fFNN: X -+y . (6)

The structure of a FNN model is composed of multiple hidden layers NHL, each layer

characterized by a hidden state vector h'I and potentially featuring a different number of

neurons NNPLi (see Fig. 7a). The input vector x is sequentially passed through the

network's hidden layers h"' until resulting in the desired output vector y:

x -y h!" -* h -+... -+ h[Ng ] -+ y. The hidden state of the i-th layer is calculated by the

following computation:

h[ = g(W1'Jh[-] +bus (7)

-25-



Neural network architectures

The trainable parameters of the FNN model are represented by the weight matrix W ]

of dimension NNL x NNPL-1 and the bias vector bE of dimension NNPLi . The function

g(..) is formally known as activation function and introduces the required non-linearity

into the NN model. In the scope of this paper, we will have a closer look at four activation

functions: hyperbolic tangent function (tanh), sigmoid function as well as rectified linear

unit (ReLU).

The output layer follows a standard linear combination of activations of the activations

of the last hidden layer. In other words, the output layer itself features a linear activation

function:

y = W[NL+1]h[NHL]+b [NH±l] (8)

Summarizing all described mathematical operations a FNN model results in the a total

number of trainable variables NtrainaIe -

NtrinaIe =(Nn +1)NNPL,1+ (NNPL ,-1 +)NNPLJ +(NNPL,N, +1)No . (9)

3.2 Convolutional neural network (CNN)

The second basic neural network architecture we would like to rely on in the course of

our investigations are convolutional neural networks. These networks have proven to be

very efficient and reliable in detecting patterns and extracting feature maps of two-

dimensional input data. Therefore, they are widely used in a variety of different image

recognition tasks ranging from classical classification problems to object detection and

localization as well as semantic segmentation.

The core building block of every CNN is based on the mathematically convolution

operation. Hereby, a smaller weight matrix W , known as filter or kernel, is used to

transform the two- or three-dimensional array into a feature map (compare Fig. 7b). The

modified discrete, two-dimensional version of the convolution operation for each element

hil can be summarized as:

-26-



Convolutional neural network (CNN)

hin, =(h['-' *W h )p-, = W ,h_1. (10)
q r

Each element h, is determined by means of a double contraction between a filter

W of size f[I x fu [and a subset of the input array or the previously obtained feature map

at hand.

The output dimension hi] of a convolution operation is governed by two parameters,

namely the stride sul and the padding p[". The filter is shifted over the feature map during

convolving. The stride determines how many units the filter is moved each time. Thus, it

directly characterizes the overlap of two filter passes. The stride is comparable to the step

size in the context of digital image correlation that determines the successive shift of the

pixel subset ('filter'). The two most commonly used padding options are referred to as

'same' or 'valid'. A same convolution results in a feature map of the same dimension as

the input. Since the input shrinks while performing the convolution operation the input has

to be padded with additional boundary layer of zero values. In contrast, a valid convolution

does not alter the respective input array. Consequently, the output dimension can be

directly calculated based on filter size and stride, only. Using the floor function L...1, the

output size based on the two-dimensional convolution operation follows the equation:

h5i + 2plil - fli
n in +1 .(11)

Similar to the hidden state in a FNN, the non-linearity is introduced by utilization of

appropriate activation functions. According to a general notion in the pattern recognition

and image processing community, we use ReLU activation functions for all convolutional

layers as they proof to be extremely reliable and show a good performance in this

framework. In the final network structure, we add one more level of complexity by

performing the convolution operations over volume. A third dimension is added to weight

matrices, referred to as channels ni , and filters are assigned a certain depth nr'.

Mathematically, this new, three-dimensional operation can be broken down into stacked

two-dimensional convolutions as described above. In close analogy to a hidden layer
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definition in FNN architectures, a bias vector 'l is added after performing the convolution

operation with the dimension ny'l. Summarizing the explanations given in the previous

paragraphs, the total number of trainable variables for each convolutional layer adds up to:

(12)

Note that the total number of parameters of a convolutional layer does not depend on

the width and height of the previous layer and therefore size of the structural input.

This gives rise to one of the main advantages of CNNs over FNN for the task at hand.

The architecture of CNNs allows to shift comparably small filters over larger input images

and/or feature maps. This parameter sharing significantly reduces the total number of

trainable parameters. In addition, each entry of the current convolutional layer only

depends on a small number of pixels originating from the previous layer, whereas in a fully

connected layer each neuron depends on each of the previous activations. Both features,

parameter sharing as well as the sparsity of connections enable a good level of

generalization and help to avoid overfitting.

a) b)

Figure 7. Schematic drawing of the internal connections for different NN architectures: a)

feedforward neural network (FNN); b) convolutional neural network (CNN)
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3.3 Model parameter identification (supervised learning)

In order to evaluate the performance of the neural network during the training phase

we introduce the mean squared error (MSE) based on the difference between the targeted

output values and the network's predictions.

S=-(13)

For each of the n training examples, we refer to the respective target value as y') and

the current prediction by j'". The minimization of the loss function and incremental

adjustments of the weights and biases is carried out using the Adam optimization algorithm

(Kingma and Ba, 2015). Adam combines the ideas of momentum (Qian, 1999) and

RMSprop (Hinton, 2012). The extension of the standard gradient descent with momentum

helps to damp out oscillations in the parameter updates of the network relying on the

exponentially weighted average of gradients to tune weights and biases. In contrast,

RMSprop tunes the parameters with the help of an exponentially weighted average of the

past squared gradients. Similarly, this helps to smooth the training process and generally

allows to choose a larger step size to speed up the minimization scheme.

We would like to highlight two features that significantly contribute to further facilitate

a successful training, namely the normalization of input data as well as the weight

initialization. Both strain angles as well as material angles are transformed according to the

Z-score normalization described by the following equation:

x = (14)

Here, P) denotes a single example of the respective input feature, strain or material

angle, and z') its normalized value. In contrast, p represents the mean value over all

examples and - corresponding the standard deviation. In case the input feature experiences

a large standard deviation the normalized values will be projected to values close to zero,

with a mean of zero and a standard deviation of one. The Z-score normalization transforms

all input features to approximately the same scale putting equal importance and emphasis

on all features helping with the gradient based optimization process.
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Closely related to the normalization of the input features is the initialization of weights

matrices. This helps to prevent vanishing or exploding gradients while passing the inputs

through multiple neural network layers and to produce a meaningful output. A large

number of commonly activation functions, like sigmoid or tanh, are symmetric.

Furthermore, these functions asymptotic approach a certain threshold value for large or

small input values. These properties entail a number of numerical problems and challenges.

For input values in close proximity to the origin, these functions exhibit a linear behavior.

Due to the loss of non-linearity in this range, the network degrades to a linear combination

of input values and there is no use of concatenating multiple layers in the network anymore.

On the other side, large as well as small input values to these activation functions leads to

vanishing gradients which significantly slows down the parameter updates during training

and worst case prevents the optimization from reaching a satisfactory minimum. In order

to prevent the layer activations to take on unreasonably large or small values, we rely on

the Xavier initialization scheme (Glorot and Bengio, 2010) for layers using symmetric

activation functions. The initial values are drawn from a random uniform distribution U

bounded by the values scaling with the size of the previous n! and current layer nd:

6_ 61L~ ~ i out~ti ot

WN ~ U - 66(15)
ni +noru ' nl' +n,[u

Resulting in a mean of zero and a standard deviation around one. For layers introducing

the non-linearity based on non-symmetric activation functions, like ReLU, we utilize the

Kaiming initialization (He et al., 2015). Here, the weight matrices are populated by random

samples drawn from a normal distribution and each multiplied by 2/fl. For a

convolutional layer, we take the input size nQ to be the product of the number of incoming

channels nf and the square of the filter size fI x fE . Both initialization schemes help to

keep the standard deviation of the individual layer activations around one on average which

significantly helps in the challenges discussed above.

All of the features described above are implemented in python making use of the

tensorflow library.
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Chapter 4 Results and Discussion

4.1 Final network architecture

The final network architecture can be considered to act as a large black-box converting

two dimensional structural data into pairs of normal stress components (a,o22)

characterizing the structure's global yield surface. This first paragraphs of chapter 5

focuses on the encoding of the input data as well as sheds some light on the techniques

hidden inside the black-box structure that allow this architecture to produce accurate

predictions.

Generally, as described in chapter 3.2, a two-dimensional array or matrix serves as

input of a CNN. In order to distinguish the four basic unit cells, shown in figure 6, we

introduce a 20-by-20 points grid of pixel values. This grid is fitted onto the elementary

cells (see Fig. 8a). The dark grey points coincide with the base material. These pixels will

be represented by a value of one in the final input array. The light greys points lie on top

of void areas. Hence, the corresponding matrix values are chosen as minus one. To describe

the complete structure of interest, we assemble the basic five-by-five base array (compare

Fig. 5a). Thus, the final input of the neural network is a matrix of dimension 100-by-100.

Figure 8b features an exemplary input using a round hole perforation on one of the random

hole configurations.

a) b)

Figure 8. Mathematical encoding of the structural information in a two-dimensional matrix

of zeros and ones (blue represents pixel values of one; red depicts values of minus one)

-31-



Results and Discussion

As indicated in previous paragraphs, the layout of the neural network relies on two

parts - a CNN-based encoder and a subsequent FNN-based decoder. Figure 9 shows the

final computational framework as well as summarizes the detailed values of some of the

underlying hyperparameters like filter sizes, filter depths, strides, activations functions and

hidden layer sizes.

The encoder part consists of two convolutional layers, which are separated by one

maximum pooling layer. The first convolutional layer features a rather large filter size of

8-by-8. In combination with a valid padding, this filter extracts key features of the

geometrical structures. Using a stride of four, the filter is slowly shifted across the input

image to gather every detail of the input structure as the transformation of the first

convolutional layer is crucial to later distinguish different hole types. The following max

pooling layer does not feature any additional trainable parameters but significantly reduces

the dimension of the encoded feature map from an image of 24-by-24(-by-8) pixels to 11-

by-11(-by-8). Similar to convolutional layers, pooling layers are also characterized by filter

size, stride and padding. However in case of a max pooling, for each pass the corresponding

component of the output is selected based on the maximum value within the filter's

boundaries. The subsequent, second convolutional layer turns the feature map into a matrix

of size 5-by-5(-by-4). Both convolutional layers rely on ReLU based on the notions

mentioned in chapter 3.2. After the first processing through convolutional layers, the

obtained feature map is flattened to a one-dimensional array of length 100. The last layer

of the encoder part of the framework is a fully-connected layer with 2 neurons. In contrast

to the first layers, the fully-connected layer is completed by a symmetric sigmoid activation

function, putting equal emphasis on positive and negative pixel values. The output of this

layer is considered to represent the compressed version of all information hidden in the

geometrical input. In other words, all geometrical as well as mechanically significant

information describing the entirety of the structures at hand as well as the differences in

mechanical behavior is contained in the combination of two scalar values, the outputs of

this first CNN-based neural network.

Before processing the compressed data by the FNN, we introduce the strain and

material angle to the modelling framework. For this purpose, we concatenate the

geometrical data with the two angles, yielding a four-dimensional vector. Both, strain and
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material angle are considered to be internal variables. Unlike, the geometrical information

which are different for every structure, the strain and material angles stay constant for each

structure. Therefore, these two quantities are not considered to be part of the actual input

to the overall model and consequentially labeled as internal variables. The core of the FNN

decoder network is composed of three hidden layers featuring 20 neurons each. The

mathematical formulation works based on the principles explained in chapter 3.1. Once

more, the activations of the fully-connected layers are generated using the sigmoid

activation function. The last layer reduces the 20-dimensional array carried through the

FNN to the output pair of normal stress components (o , 22) . Additionally, this output

layer is linear. That is, it does not introduce any further non-linearities or dilatations to the

output vector. This overall size of the FNN-based part of the modelling framework might

seem large for the task at hand. Indeed, a smaller FNN decoder does achieve comparable

results in terms of MSE and visual comparison of the prediction initial yield surfaces.

However, the explained network architecture has been chosen in regard to future extensions

to this framework as well as the enrichment of the input by a variety of additional, different

structures. On top of that, even the larger FNN decoder, used to create the predictions that

will be presented in the following paragraphs, does not show signs of overfitting if the

remaining hyperparameters targeting the learning procedure itself are chosen appropriately.

For a more comprehensive study of the network's architecture and the hyperparameters

aiding in the overall training procedure the reader may refer to section 4.4. These

paragraphs will elaborate on the thought process that went into creating the network

structure and setting its parameters. The following subchapters are dedicated to the

demonstration of different aspects and capabilities of the fully-trained framework. The

training of these particular results was performed based on 14 different hole configuration

for each of the three different hole types - using 13 strain angles and six material angles

each. Here, the 14 different hole configurations have not been chosen randomly, but they

have been handpicked out of a pool of 1000 different instances. The selected configurations

represent the largest variety of possible stress values and different degrees of anisotropy

with regard to both the shape of the individual yield surfaces themselves as well as the

sensitivity to the material angle. At this point, the author would like to kindly emphasize

once more that all predictions are based on geometrical information only.
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Figure 9. Schematic illustration of final neural network based modelling framework

4.2 Model's predictive capabilities: Degrees of anisotropy

The following lines aim to showcase two aspects of the model's predictive capabilities.

On the one hand, the network is able to accurately predict the influence of the hole type,

circular-, square- as well as triangular-shaped perforations. On the other hand, the network

is capable of reproducing the influence of the different hole configurations. During all
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considerations in this chapter, the material angle stays constant. The material anisotropy

will be subject of the investigations of the chapter 4.3.

Figure 10 shows three different initial yield surfaces in 0 -22 - space corresponding

to the different perforation types - circular (a), square (b) and triangular (c) - of one specific

hole configuration (in the following referred to as configuration 900). The individual points

in the first to the third quadrant correspond to the 13 strain angles used during the training

procedure of the network. Due to material symmetry as well as loading scenarios, these

points can be used to complete the yield surfaces that now consist of 24 individual points,

respectively. The comparison of the three graphs highlights the differing magnitudes of the

yield contours. Both the circular as well as the square-holed structure reach maximum

stress component values around 200 MPa. Whereas, the triangular perforation features a

maximum component value at around 170 MPa, about 15% lower compared to the other

hole types. Another major characteristic is the difference in shape of the resulting yield

surfaces. Considering configuration 900, the triangular perforation yields the most narrow

envelope. As for all surfaces, the structure exhibits the highest load bearing capacity until

initial yield under equibiaxial straining. Whereas, the performance significantly decreases

to only 71% compared to its equibiaxial equivalent under confined tension and to roughly

52% under pure shear loading. The square-holed structure shows the least variation due to

a change in the loading scenario. Generally, the circular perforation lies in-between these

two extremes. However, a closer inspection reveals an additional peculiarity of this yield

surface. While moving along the envelope starting from biaxial straining via confined

tension towards a pure shear loading scenario we observe a change in curvature. Based on

the chosen criteria of initial yield of the architected two-dimensional structure, the obtained

surface does not exhibit convexity. Despite all of these inherent differences and subtleties,

the NN-based computational framework succeeds in predicting all of these diverse aspects.

In order to compare the network's predictions and the results of the numerical simulations,

Fig. 10 features both datasets. The large circles depict numerical simulations, whereas the

small circles represent the network's predictions. For all graphs, every of these

corresponding pairs of numerical simulation and network's predictions is in close

agreement, which is evidence of the good network performance. The color-coding used in

Fig. 10 gives more insight into the training procedure of the free network parameters. The
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color blue indicates that these points belong to the training dataset. In contrast, the green

and red points are part of the validation and testing dataset, respectively. This implies that

only 80% of the entire dataset (blue points) is used for determining the weights and biases

of the neural network as validation and testing dataset are excluded from gradient

calculations during the training procedure itself. As all of these points are randomly

assigned to training, validation or testing data, each structure features a different

composition of points from these three datasets. Thus, for one structure, all or rather most

of the 13 points might be used for training or as it is the case for the triangular perforation

many are solely used for validation and testing purposes. Hence, these points are results of

the network's generalization and illustrate once more its capabilities.
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Figure 10. Model's predictive capabilities: Influence of hole type: a) circular, b) square and

c) triangular perforation of hole configuration 900 (large circles depict the numerical

simulations, small circles show the network's predictions; colors represent training (blue),

validation (green) and testing dataset (red))

On top of the influence of the individual hole types, the network possess the agility to

predict the influence of different hole configurations on the mechanical response of the

created architected material. Figure 11 displays the yield surfaces of three different

structures (from left to right: structure 900, 964 and 300). Each of the subplots contains the

RVE material response of all three hole types considered in the present study. Note, that

these curves are not based on any interpolation scheme based on the 13 points highlighted

in e.g. Fig. 10 but correspond to the direct, smooth network output. The left subplot shows
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structure 900, which is subject of discussion in the previous paragraph and hence serves as

comparison. Whereas the yield surfaces of structure 900 are of a particularly sharp nature,

resembling an almost rhombic shape, the envelopes of structure 964 and especially

structure 300 tend to be square-shaped. Figure 11 implicitly contains three major

challenges that have to be handle by the neural network at the same time. Firstly, there

exists a notable difference in magnitude for the different hole configurations. Whereas as

simple scaling of the yield envelopes could be taken care of by two scalar factors, the

envelopes additionally exhibit a change in their overall shape. This observation goes hand

in hand with the next and second challenge. The comparison of the graphs of the circular

perforation reveals a transformation from a rhombic (structure 900) to a square-shaped

surface (structure 964 and 300) only by varying the hole configuration. Lastly, but rather

the most delicate and demanding nuance, the distinct characteristics of each structure upon

combining both of the previously mentioned differences. In case of structure 900, all yield

surfaces tend towards a rhombic shape. In contrast, structure 964 exhibits a variation from

rhombic to square shaped yield surfaces. Additionally, the specificities of this variation

might be different from structure to structure. While structure 964 features a rhombic-

shaped envelope in case of a triangular perforation, the graph's shape for structure 300

shifts towards a square-type of yield surface.

Despite this multitude of different facets and subtleties, the neural network based

framework has the capability to accurately reproduce any shift and transformation of the

yield surfaces with regard to changes in magnitude as well as shape.
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Figure 11. Model's predictive capabilities: Influence of hole configurations: a) structure

900, b) structure 964 and c) structure 300. Solid lines represent the network's predictions

4.3 Model's predictive capabilities: Material anisotropy

The investigations of the preceding section 5.2 did not incorporate any considerations

in regard to material anisotropy. Therefore, the following analysis is targeted at the

examination of the material angle and its influence on the effective material response.

The fundamental training of the neural network structure has been carried out using six

distinct material angles 8 ={0, /12, r /6, r /4, r /3, 5;r/12}. The graphs in Fig. 12

summarize the results for structure 946 starting from =0 at the top left corner to

=51r/12 at the bottom right corner. The rotated structure in the center of each plot

schematically shows the current material orientation for each individual graph. Analogous

to Fig. 10 each diagram includes 24 data points based on numerical simulations in blue as

well as the network's predictions in orange. Each of the six network's predictions is densely

sampled and comprised of 400 individual points. One major achievement of the modelling

framework is the smooth output in all cases. For all material angles, the predictions are in

very good agreement with the numerical counterparts. The model is able to predict the

continuous change in shape of the yield surfaces as the material angle 8 progresses from
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p =0 to 6 = r /2. Furthermore, it is capable to capture the change in curvature of the

yield envelope when necessary (e.g. p = i /6 at the top right corner).
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Figure 12. Model's predictive capabilities: Material anisotropy. Continuous shape change

of the yield surfaces of structure 946

While this first glance at the effect of the material orientation implies a relatively

simple shape-change of the yield surfaces, the comparison of various hole configurations

reveals an additional level of complexity. Figure 13 depicts the effective material response

of structure 900 on the left ad structure 964 in the right hand side. Both structures feature

a circular perforation and are shown for all six material angles. Structure 900 on the left

features a very homogenous perforation of the base material. Consequently, the effective

material response appears to be virtually isotropic. The envelopes of all six different

material orientations lie almost on top of each other. On the other hand, structure 964

depicted on the right exhibits an even more pronounced anisotropic material response

compared to structure 946 shown in Fig. 12. While a material angle of 8= i / 4 results in

a narrow, rhombic yield surface, the yield surface gradually adjusts to a square shape as
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the material angle approaches =0 and / = z /2, respectively. In other words, the

performance under a pure shear loading scenario successively increases as the material

angle converges to 8=0 as well as 8= r /2. The comparison of the both structures'

material responses highlights the different degrees of anisotropy. Both extreme cases as

well as all intermediate forms and combinations occurring for various hole configurations

and perforation types are accurately handled by the neural network.
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Figure 13. Model's predictive capabilities: Varying degrees of material anisotropy for

different structures. Solid lines represent the network's predictions

As stated before, the smooth predictions for arbitrary strain angles make this modelling

framework very attractive. On top of that, the network manages to give accurate results for

unseen material angles. These additional material angles were not part of either training

nor validation or testing dataset during parameter identification. Figure 14 illustrates this

capability with the help of structure 964. The plot on the left hand side depicts the curves

based on the original six material angles. The right hand side shows nine different material

angles in the interval 8=[0, 7 /2[. Note, that this request of additional material angles is

simply reflected in a change of the internal variables within the computational framework

and can be adjusted arbitrarily. That is, any desired number of material angles can be
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retrieved whilst the actual input to the network remains unchanged. Once more, the

network provides accurate, smooth predictions and a seamless transition between the

different material angles even for unseen material angles within the original training

interval.
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Figure 14. Model's predictive capabilities: Network's prediction for unseen material angles

4.4 Remarks on training the CNN based architecture

So far, the study only showcased the model's capabilities with the help of polished

results during the previous chapters and did not elaborate on the thought process that went

into creating the final network architecture. Thus, the following paragraphs will give more

insight into selected aspects of the framework as well as the comprehensive training

procedure allowing for a successful parameter identification.

At such an early stage of research into the use of convolutional neural networks in

mechanics, it is difficult to draw general conclusions based on the conducted investigations.

However, the present study and results provide enough evidence to give first tentative

guidance and allow the author to share a collection of first hunches. One of the key aspects

to a fruitful application of neural network based modelling frameworks is to provide clean
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input data that can later be successfully interpreted by the machine learning algorithm. The

individual examples have to be distinct and contain just the right amount of independent

information in order to be correctly processed, either be means of classification or

regression. This very general notion is interlinked with the choice concerning the filter of

the first convolutional layer. Here, the filter size of 8-by-8 has been chosen with respect to

the exact input of the network, more precisely the network's task to accurately distinguish

between the elementary unit cells (see Fig. 6). In case the filter size is set out to be too

large, the filter evaluation would inevitably smooth out the differences between the three

perforations. Consequentially, the different types of perforations would not be

distinguishable by the final network architecture. In contrast, a very small filter size in

connection with the currently chosen representation of the geometrical information many

filter passes would be identical comparing different hole configurations as well as hole

types. Hence, this is expected to make training significantly more difficult because it would

involve an additional sorting of relevant and irrelevant information.

Training a neural network is equivalent to a classical mathematical optimization

problem aiming at minimizing the cost function. In most practical applications, this

problem tends to be ill-defined that is the optimization landscape exhibits a multitude of

local minima that make it very difficult to identify suitable weights and biases which is

crucial for the networks later performance. In certain ways, you could consider the decoder

part of the modelling framework to be a single, isolated FNN featuring its own set of input

and output variables. This is of special importance since the input of the decoder network

combines the compressed geometrical information as well as the introduced internal

variables. As mentioned in the previous sections of chapter 4, two scalar variables seem to

be sufficient to incorporate all geometrically and mechanically significant information to

characterize and distinguish all considered structures. Another notion concerning the

choice of exactly two scalar values as geometrical representations focuses around creating

a well-defined input to the decoder network. This input consists of a concatenation of two

structural and two internal variables. Both aspect are equally important for determining the

effective material response. Therefore, instead of compressing the geometrical information

in a larger number, e.g. eight, parameters the author specifically chose two scalars in order

to provide a well-balanced internal input after introducing the internal quantities. Overall,
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this architecture puts equal emphasis on the geometrical information identifying the

individual structure as well as on the strain and material angle defining the exact loading

scenario and material orientation. This idea is somewhat comparable to the well-established

concept of input normalization. By transforming the individual inputs onto the same

numerical interval, the normalization helps to allow for equal importance of every input

feature and every pixel of the input image, which contributes towards a successful

parameter identification.

At this points, the author would like to emphasis once more that the preceding

paragraphs are by no means meant to represent general statements. Nevertheless, they

illustrate tentative hunches that considerably helped to construct and identify a suitable

network for estimating structure-property relationships in this present study.

During the making of the final neural network architecture, the author considered a

variety of different activation functions for the individual layers. In general, activation

functions belong to the few possibilities to introduce non-linearities to neural network

based architectures. Without any form of non-linearity, the modelling framework comes

down to an architecture of nested linear combinations based on the input features. As stated

in section 3.1, four different functions, namely the hyperbolic tangent function (tanh), the

sigmoid function as well as the rectified linear unit (ReLU), were explored. As a general

notion and based on successful implementation in a variety of different use-cases, ReLU

are the classical choice for convolutional layers. Since this choice has proven to be very

effective in this present study as well, every convolutional layer relies on ReLU activations.

However, the later selection of an activation function for the fully-connected layers has a

direct impact on the shape of the predicted yield surfaces. Figure 15 shows a comparison

of two possible shapes that are adopted based on the choice of activation functions. The

graph on the left side depicts the results originating from the use of ReLU. In contrast, the

envelope on the right hand side is generated with the help of sigmoid or tanh activation

functions. A neural network architecture that is solely comprised of ReLU activation

functions yields a piecewise linear approximation of the target values. The left diagram in

Fig. 15 shows the predicted yield surface of structure 958 in orange on top of the numerical

simulations in blue. Due to the use of ReLU, the orange envelope is constructed by a series

of linear elements that bears a great resemblance to a linear interpolation of the 24 target
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data points. In contrast, the use of sigmoid or tanh functions allows for a yield surface that

nicely adapts to the specific contour of the underlying numerical simulations, making it

possible to recreate any convex or non-convex shape. In this particular setting, considering

input representation and normalization as well as initialization of the network's parameters

and network architecture, the sigmoid activation function worked best as it was a little bit

easier to train the final network. Regardless, to the best of the author's knowledge there is

no clear and definite reason as to why the sigmoid function should outperform tanh.

Additionally, the latter is equally successful in delivering accurate predictions when

considering a fully-trained neural network. However, due to the fact that the sigmoid

function does allow for an easier and simpler model parameter identification, all fully-

connected layers are based on sigmoid activations.
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Figure 15. Influence of the activation functions on the resulting shape of the yield surfaces

In order to identify suitable weights and biases a rigorous training scheme is employed.

The results of the parameter identification of one single neural network architecture are

summarized in Fig. 16. The diagram depicts the MSE for numerous optimization runs

carried out using different sets of hyperparameters. Every optimization has been performed

using the Adam optimization algorithm. Additionally, every set of hyperparameters has

been initialized and fully-trained five times. For each set, only the best out of those five
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runs is shown in Fig. 16. The MSE is reported separately for training (blue), validation

(orange) and testing dataset (green). Generally, the validation and testing errors are higher

than the training errors. This is to be expected since both datasets are excluded from the

underlying optimization procedure. Nevertheless, all three error measures for each set of

hyperparameters lie within close proximity to each other which is a first indication of good

generalization capabilities of the trained network. Along the abscissa, there are 36 different

combinations of different initial learning rates and batch sizes, the number of examples fed

to the network during one gradient update. The learning rate has been gradually varied

between 0.05 and 0.001, whereas the batch size takes values ranging from 24 to 1024.

These are just two of the tunable hyperparameters. However, the neural networks are most

sensitive to these two parameters (alongside with the general structure, i.e. number of layers

as well as layer sizes. In case of this specific network, a small initial learning rate in

combination with a small batch size yielded the lowest MSE. Nevertheless, this does not

hold true for every network. Hence, it is necessary and essential to subject every new

architecture to this rigorous and comprehensive training procedure in order to search for

the best possible distribution of weights and biases. This approach allows to effectively,

yet tentatively, compare the performance of different neural network architectures and to

ultimately identify the structure best suited for the task at hand.

-training
000175 validation

-testing

0.001S0

0.00 125

0.00100

0.0075

M.00030

0.00025

Figure 16. Parameter identification using different sets of hyperparameters. (depicted

values correspond to the best run out of five random initializations of the neural network)
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Chapter 5 Conclusions

During the past years, neural networks drew more and more interest from the metal

forming community. They have proven to provide an effective and powerful framework,

in particular for constitutive modeling. Hence, they are certainly able to compete with

traditional physics-based models. This work takes first tentative steps towards the use of

convolutional neural network based modelling techniques to estimate structure-property

relationships.

The presented investigations clearly demonstrate the capabilities of such architectures

to directly translate geometrical data into mechanically significant quantities. In future

applications, the computational framework will be trained based on physical experiments.

In the course of this work, they have been replaced by virtual experiments relying on

numerical simulations. After successful training, i.e. parameter identification of the neural

network, the model manages to replicate the initial yielding of architected porous materials

based on geometrical information. The two-material structures differ in different

perforation types as well as perforation layouts. Additionally, a change in loading direction

leads to an increased level of complexity and require an even greater flexibility of the neural

network. All of these factors culminate in numerous augmentations of the yield surfaces.

These include but are not limited to magnifications, shape distortions as well as varying

degrees of anisotropy. On top of that, all of these specificities are of a highly non-linear

nature and unique to each structure, which creates a very intricate problem on its own.

Despite this challenging task, the created modelling framework is capable of characterizing

and distinguishing the individual structures and predicting their anisotropic material

responses. The fact that the network solely relies on structural data as well as the network's

encoder-decoder architecture strongly suggest that all geometrical and mechanically

significant information can be stored in a small number of scalar variables.

In the future, the outlined approach can easily be augmented to other geometrical

structures, extended to three dimensional considerations or used to predict a vast variety of

diverse mechanical properties. In addition to the presented architected metamaterials, the

modelling framework can be applied to particle and fiber composites as well as to interpret
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microstructural information of metallic materials or at component level to model the

effective material response of lithium-ion batteries.
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