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Abstract

We present a new approach for estimating printer model parameters that can be
applied to a wide variety of laser printers. Recently developed “model-based” digi-
tal halftoning techniques depend on accurate prirter models to produce high quality
images using standard laser printers (typically 300 dpi). Traditional halftoning tech-
niques are designed to be fairly robust to printer distortions at the expense of spatial
and gray-scale resolution. Since printer characteristics vary considerably, e.g. write-
black vs. write-whitc laser printers, the model parameters must be adapted to each
individual printer. Previous approaches for estimating the printer model parameters
are based on a physical understanding of the printing mechanism. One such approach
uses the “circular dot-overlap model,” which assumes that the laser printer produces
circularly shaped dots of ink. The “circular dot-overlap model” is an accurate model
for many printers but cannot describe the behavior of all printers. The new approach
is based on measurements of the gray level produced by various test patterns, and
makes very few assumptions about the laser printer. We use a reflectance densitome-
ter to measure the average brightness of the test patterns, and then solve a constrained
optimization problem to obtain the printer model parameters. To demonstrate the
effectiveness of the approach, the model parameters of two laser printers with very
different characteristics were estimated. The printed models were then used with both
the modified error diffusion and the least-squares model-based approach to produce
printed images with the correct gray-scale rendition. We also derived an iterative
version of the modified error diffusion algorithm that improves its performance.
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Chapter 1

Introduction

Digital halftoning is the process of generating a pattern of binary pixels that the eye
perceives as a continuous-tone image. Digital halftoning is necessary for display of
gray-scale images in media in which the direct rendition of gray tones is impossible.
Examples of 'such media include paper and binary CRT displays. In this thesis we
examine “model-based” digital halftoning techniques that have been developed re-
cently [1, 2] and depend on accurate printer models to produce high quality images
using standard laser printers (typically 300 dpi). The goal of this thesis is to de-
velop an experimental procedure for estimating model parameters for a wide variety
of printers.

Model-based halftoning can be used to improve the quality of gray-scale images
transmitted by facsimile. A new approach to gray-scale facsimile is proposed in [3],
in which the image is transmitted in gray-scale form using high fidelity image coders.
This approach allows more efficient encoding of data and, more importantly, permits
the halftoner to be tuned to the individual printer on which the document is printed.

Figure 1-1 shows how halftoning works. A halftoning algorithm generates a binary
pattern of pixels which is printed and perceived by the eye. All halftoning techniques
rely on the fact that the eye acts as a spatial low-pass filter. Essentially, the eye
averages the brightness over an area and perceives a gray level proportional to the
number of black spots (represented by 1's) and white spaces (represented by 0's) in

that area. A considerable research effort has been devoted toward understanding
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Figure 1-1: Digital halftoning

human perception in the past, and various models of the eye have been proposed.
Some of the model-based techniques we examine in this thesis use an eye model that
is based on estimates of the spatial frequency sensitivity of the eye by Mannos and
Sakrison [4].

Another important factor affecting the performance of a halftoning technique is the
behavior of the display device. Most halftoning techniques assume that the displayed
binary pattern consists of identically shaped dots of two colors, usually on a rectan-
gular grid. This assumption does not hold for most printing devices which introduce
significant distoriions. Such distortions make most halftoning techniques unsuitable
for printers. Printer characteristics are know: to vary considerably from printer to
printer. For example write-black laser printers have very different characteristics than
write-white laser printers. Traditional halftoning techniques are designed to be fairly
robust to printer distortions. As a result, they coriicromise both spatial and gray-scale
resolution. Model-based halftoning techniques [1, 2, 5], on the other hand, exploit
the characteristics of each particular printer to maximize the quality of the printed
images. Thus, they depend on an accurate printer model, whose parameters must be
adapted to each individual printer.

The printer model describes the “gray” level, that is the reflectance, of the printed
pattern. The parameters of the printer model can be derived from a physical under-
standing of the printing mechanism or from direct measurements of the reflectance of
various printed patterns. One approach for estimating the printer model parameters
uses the “circular dot-overlap model,” which assumes that the laser printer produces

circularly shaped dots of ink [1]. The gray level at each pixel of the printed image
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is calculated to be the area of the pixel that is covered by ink. Thus, by estimating
the radius of these circularly shaped ink dots, the gray values at each location can be
calcu'ated.

The “circular dot-overlap model” is an accurate model for many printers but
cannot describe the behavior of all printers. The black dots produced by actual
printers are not perfectly round, they are not perfectly black, and their size and
shape may depend on the presense of adjacent dots. For example, as was pointed out
in [1], a white line surrounded by several black lines is brighter than when surrounded
by two single lines. For some printers the circular dot approximation may not be valid
at all. In this thesis we develop an approach for estimating printer model parameters
that is based on measurements of the gray level produced by various test patterns, and
makes very few assumptions about the laser printer. The “measurement approach”
is intended to be general so that it can be applied to any write-white or write-black
printer.

The first step in developing the measurement approach is to select a set of test
paiterns to be generated. The reflectance of the printed test patterns is then measured
using a reflection densitometer. The densitometer measures the average reflectance
of each pattern over an area whose diameter is roughly 4 mm. As was suggested in
[6], the measured reflectance can be related to the printer model parameters by a set
of linear equations. This system of equations cannot be solved directly because of
discrepancies in the measurements and, more importantly, because of possible rank
deficiency of the associated matrix. Instead, we formulate a constrained optimization
problem which incorporates various constraints on the model parameters. Finally,
the constrained optimization problem is solved by standard iterative techniques to
prcvide the printer model parameters.

To demonstrate the effectiveness of the approach, we estimated the model param-
eters of two laser printers with very different characteristics. The printed models were
then used with two model-based halftoning techniques: the modified error diffusion
algorithm and the least-squares model-based (LSMB) halftoning algorithm. The most

important criterion for the effectiveness of the measurement approach is the accuracy

11



of the gray-scale rendition of the printed images.

The modified error diffusion algorithm (1] uses the printer model to predict the
gray level of the printed pixels and thus account for printer distortions. This al-
gorithm provides ligh quality reproductions with reasonable complexity. However,
since the error diffusion algorithm is causal and the printer models are noncausal,
certain problems may arise. For the circular dot-overlap printer model this results
in a small (barely noticeable) bias in the darkness of the printed images. For the
measured printer models this may result in instabilities in the algorithm. We propose
two solutions to this problem. One is to impose further constraints on the printer
parameters. The other is to use an iterative (multi-pass) version of the modified
error diffusion algorithm. The multi-pass error diffusion algorithm eliminates the in-
stabilities, produces the correct gray-scale, and even eliminates some low-frequency
artifacts.

One drawback of the error diffusion algorithm is that it does not make use of an
explicit eye model. This results in some well known artifacts and asymmetries [1].
In contrast to the modified error diffusion algorithm, the least-squares model-based
halftoning technique [2] exploits both a printer model and a model of visual percep-
tion. It produces an “optimal” halftoned reproduction, by finding the binary image
that minimizes the squared error between the output of the cascade of printer and
visual models in response to the binary image and the output of the visual model
in response to the original gray-scale image. The solution to the two-dimensional
least-squares problem is only approximate and is obtained by iterative techniques.
The LSMB method produces images that are sharper than those produced by the
modified error diffusion algorithm. The least-squares approach eliminates the prob-
lems associated with error diffusion. More importantly, the gray scale rendition of
the halftoned images is good.

The experimental results demonstrate that when the measured inodel parameters
are used with the two model-based techniques, they produce the correct gray scale and
maintain the overall performance of these techniques. For one of the laser printers we

used, the circular dot-overlap model and the measurement approach produce results
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that are equally good. The circular dot-overlap model does not apply to the second
laser printer. Thus, even though the measurement approach is considerably more
complicated than the circular dot-overlap model, it can be used to establish the
limitations of simpler and easier to calibrate models.

The remainder of this thesis is organized as follows. Chapter 2 discusses the stan-
dard halftoning techniques. In Chapter 3, the model-based approaches to halftoning
are reviewed. OQur results are presented in Chapters 4 and 5. Chapter 4 describes
the measurement approach for estimating printer model parameters. The application
of the measurement approach to specific laser printers and halftoning techniques is
presented in Chapter 5. The conclusions are summarized in Chapter 6.

One special note concerning the plates that are included at the end of the report
should be mentioned here. These plates are original laser printer outputs and should
not be xeroxed. They illustrate the characteristics of a particular laser printer and
demonstrate the performance of the various halftoning techniques. Xeroxed copies of

these plates may severely distort the characteristics of the printed images.
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Chapter 2

Standard Halftoning Techniques

Digital halftoning is the process of converting a continuous-tone gray scale image into
a binary image. This process is necessary in the reproduction of images in media
where pixels can take only two possible values, usually black and white. The illusion
of continuous tone images in such media is created by the arrangement of pixels of
the two colors in specified formations. In the past, digital halftoning algorithms have
been studied extensively (see [7]). The most popular techniques currently used are
screening and error diffusion.

In our study of halftoning techniques, it will be assumed that the gray-scale images
have been sampled so there is one pixel for each binary value generated. When
the samples of a given image are fewer than the number of dots to be generated,
interpolation is necessary. In this thesis, the test images were upsampled by a factor
of 2 using an interpolation scheme consisting of an ezpander (8, pp. 105-109] and an
equiripple low-pass FIR filter [8, pp. 462-480). For the specification of the binary
values of the halftoned image, we will use a “1” to denote a black pixel and a “0” to

denote a white pixel.

2.1 Screening

Traditional halftoning relies on a simple but effective technique known as screening.

In screening, the image is compared, pixel by pixel, to an array of image-independent
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076 .635 .608 .514 | 424 .365 .392 .486
847 878 910 .698 | .153 .122 .090 .202
.820 969 .941 .667 | .180 .031 .059 .333
125 788 757 545 | .275 212 .243 455
424 365 392 .486 | .576 .635 .608 .514
53 122 .090 .302 | .847 .878 .5i0 .698
180 .031 .059 .333 | .820 .969 .941 .667
275 212 243 455 | .725 .788 .757 .545

(a) “Classic-4” (8 x 8)

S13 272 724 483 | 543 302 .694 .453
151 .735 .091 .966 | .181 .785 .121 .936
.634 .392 .574 .332 | .664 .423 .604 .362
.060 .875 .211 .815|.030 .906 .241 .845
043 302 .694 453 | .513 .272 .724 483
81 .785 121 .936 (.151 .755 .091 .956
.664 423 .604 .362 | .634 .392 .574 .332
.030 .906 .241 .845.060 .875 .211 .315

(b) “Bayer-5" (8 x 8)

Figure 2-1: Ordered dither threshold matrices

thresholds to produce the binary array that specifies the halftone image. The binary
pixel is black whenever the gray level of the image is greater than the corresponding
threshold and white otherwise.

There are many ways to generate the array of thresholds. When the thresholds are
generated randomly, the technique is called random dither. Random dither is seldom
used in practice because the patterns it preduces have visible and objectionable low-
frequency artifacts [7]. When the thresholds are periodic, the technique is called
ordered dither. The threshold array is specified by one period which is typically a
rectangular array, e.g. an 8 x 8 matrix. Figure 2-1 shows the threshold matrices
we used in this thesis. The matrix in Figure 2-1(a) specifies a clustered ordered
dither technique. The thresholds are arranged so that they produce clusters of black
bits. The matrix in Figure 2-1(b) specifies a dispersed ordered dither technique. The
thresholds are arranged so that they produce dispersed black and white bits.
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The popularity of screening techniq:i:s is attributed to their simplicity and ease
of implementation. In the following two subs:tions we evaluate the performance of
ordered dither techniques. The resolution of the images we used to test the halftoning
methods in this thesis is 460 x 460 pixels. We upsampled by a factor of 2 to obtain
920 x 920 pixels that result in 3.07 x 3.07 inch printed images. The plates at the end
of the thesis were all printed on a 300 dpi HP LASERJET II printer, except Plate 9,
which was printed on a DATA PRODUCTS LZR 2665 printer.

2.1.1 Clustered-Dot Approach

Clustered ordered dither is designed to simulate traditional analog halftoning tech-
niques used in printing. Its main advantage is that it produces images that are very
robust to dot overlap and other printer distortions. When the ink dots are printed
in clusters or macrodots, most of the black dots overlap other black dots rather than
white spaces. Thus the effect of dot overlap is minimized, and the accuracy of gray-
scale rendition of the printed image is more or less maintained.

The macrodots are formed by choosing the elements of the threshold matrix so
that they decrease towards a fixed point. In the case of the “Classic-4” threshold
matrix, two macrodots will be formed, one in the lower left quadrant and one in the
upper right. The spacing of the dots is fixed. The darker the image the bigger the
macrodots that are generated. This is precisely how traditional analog halftoning
works.

Plate 1 demonstrates the robustness of clustered-dot techniques. Plate 1(a) shows
two test images halftoned with the “Classic-4” screen and printed on a wriie-black
printer with a fair amount of dot overlap. The images in Plate 1(b) were halftoned
with the “Bayer-5” screen, which disperses the dots, and results in printed images
that are too dark. Thus, clustered screens like “Classic-4” are generally preferred for
printing in the presence of dot overlap.

Although the rendition of gray levels is fairly reasonably maintained in the clus-
tered dot approach, there are serious drawbacks. For one, the spatial resolution of

the printed images is compromised. It can be seen in Plate 1 that “Bayer-5" pro-
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duces images that are sharper, even though their gray-scale is distorted. Also, the
macrodots of the clustered technique are more visible and unpleasant to the eye than
the patterns of the dispersed technique. We usually refer to such patterns as low-
frequency artifacts. As the period of the screen increases, the number of gray levels
we can generate increases but the macrodots become more visible. Thus there is a
tradeoff between the gray-scale resolution and the severity of the low-frequency ar-
tifacts. The low-frequency artifacts become more severe when we use printers with
lower resolutions.

Finally, even though the clustered-dot approach minimizes the effects of ink spread-
ing, the rendition of gray scale is still not perfect. The resulting images do not accu-
rately refiect the original gray levels. The effects of printer distortion are still apparent
for some printers. This can be corrected using direct measurement of printed images

(7, p. 36], or a printer model [9].

2.1.2 Dispersed-Dot Approach

In dispersed-dot techniques, the threshold matrix is designed to maximize the spread-
ing of the dots in the printed image. This increases the spatial resolution of the printed
images and minimizes the low-frequency artifacis. The disadvantage of dispersed-dot
techniques is that they suffer major degradations in terms of gray-scale rendition.
The images produced tend to be too dark or too light, depending on the type of
printer used. As we saw in Plate 1(b), “Bayer-5" produces sharper printed images
with less objectionable low-frequency artifacts than “Classic-4,” but also results in

far greater distortions of the gray scale.

2.2 Error Diffusion

A halftoning technique that produces sharper images than the screening techniques
is error diffusion [10]. In error diffusion, the image pixels are compared to thresholds,
like in screening, but in this case the threshold for each image pixel is dependent

upon “prior” image pixels (usually above and to the left). Alternatively, each image
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pixel is compared to a fixed threshold, after a correction factor is added to its original
gray level to account for past “errors.” Thus, error diffusion uses feedback to correct
for errors it has committed in the past. We will outline the error diffusion algorithm
below. A block diagram of the algorithm is shown in Figure 2-2.

We first introduce the following notation in our description of error diffusion. Let
[vi,;] be a gray-scale image (after interpolation), where y; ; denotes the pixel located
at the i-th column and the j-th row of a Cartesian grid. Without loss of generality,
we assume that the image is scanned left to right top to bottom. The binary image

[bi,;] produced by error diffusion is obtained by the following set of equations [1]

Vij = Yij— 2 hmn€iomion (2.1)
1, if Vi,j > t

bi s { (2.2)
0, otherwise

€ = b,"j = Vi; (23)

Here v;; is the “corrected” value of the gray-scale image. The error ¢;; at any
“instant” (z,7) is defined as the difference between the “corrected” gray-scale image
and the binary image. The “past” errors are low-pass filtered and subtracted from
the current image value y; ; before it is thresholded to obtain the binary value b; ;,
where [h; ;] is the impulse response of the low-pass filter. Thus, errors are “diffused”
over the image.

The threshold t is typically fixed at 0.5, the middle of the gray-scale range. The
low-pass filter [h;;] has non-symmetric half-plane support, so that only the past
and already computed errors are filtered. This is the two-dimensional equivalent of
“causality,” and enables the algorithm to make instantaneous decisions at each point.
Thus, error diffusion requires only one pass through the data. The filter coefficients
are positive and their sum is equal to one. This guarantees stability.

Various error diffusion filters have been suggested in the literature (see [7]). In cur
experiments we will use the filter proposed by Jarvis, Judice and Ninke [11}, shown

in Figure 2-3.
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Figure 2-3: Jarvis, Judice and Ninke error filter
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Error diffusion allows more flexibility in the placement of dots than screening tech-
niques. This results in sharper images. However, as with all dispersed-dot schemes,
error diffusion is very sensitive to printer distortions such as dot overlap. In the pres-
ence of dot overlap, error diffusion produces very dark images in write-black printers,

as can be seen in Plate 2(a). This has limited its application to cases where no dot

overlap occurs, such as binary CRT displays.

2.3 Summary

In the absence of significant printer distortions, e.g. for display on most binary CRTs,
the best of the currently used techniques is error diffusion [7]. Ordered dither, which
is simpler but inferior, is used when the amount of computation is an issue. When
there is substantial dot overlap, as with laser printers, the clustered ordered dither
schemes have been the only available choice [7]. As we discussed, the clustered dot
approach is successful in reducing the effects of dot overlap, but it sacrifices spatial
resolution and generates more low-frequency artifacts. As we will see in the next
chapter, model-based halftoning techniques can correct for the effects of dot overlap
without any sacrifices in spatial resolution and low-frequency artifacts. Actually, they
can even exploit printer distortions to increase the gray-scale resolution. The key to
such techniques is an accurate printer model, whose parameters are adapted to each

individual printer.
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Chapter 3

Model-Based Halftoning

The correct modeling of printer behavior and human perception can be used to im-
prove the quality of printed images. This is the goal of model-based halftoning tech-
niques which are examined in this chapter. We are primarily interested in laser
printers, which generate “distortions” such as “dot overlap.” Conventional meth-
ods, such as clustered-dot ordered dither, resist distortions at the expense of spatial
and gray-scale resolution. Model-based methods, on the other hand, rely on printer
models to exploit printer distortions in order to increase both gray-scale and spatial
resolution.

In the following sections, we consider two model-based techniques. The modified
error diffusion algorithm [1] uses the properties of the eye implicitly, while the least-
squares model-based method [2, 5] uses an explicit eye model. Both methods use a
printer model explicitly. We will begin our discussion on model-based techniques by

presenting the eye models and the printer models.

3.1 Eye Models

Human perception has long been a topic of great interest. Much research has been
devoted toward understanding the behavior of the eye. The theory behind human
perception is a complex one, and no one model of the eye can fully account for the

complexity of human perception. However, for the purpose of this work, a simple
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model of human perception is enough to fulfill our need.

When viewing an image, the human eye has the peculiar characteristic of averaging
the brightness over a small area. This area depends on the viewing distance. The
farther the viewer is away from the image, the larger this area becomes. The physical
behavior of the eye can be characterized in the spatial frequency domain as follows.
Essentially, the eye acts as a low-pass filter. Thus, the eye filters out the high-
frequency components of the image and passes the low-frequency components. The
frequency domain description of the eye characteristic should reflect the fact that its
response depends on the viewing distance. To accomplish this, spatial frequency is
measured in terms of cycles per degree.

Numerous researchers have estimated the spatial frequency sensitivity of the eye,
often called the modulation transfer function (MTF). Typical of such is the estimate

which Mannos and Sakrison developed.

H(f) =2.6(0.0192 +0.114 f) exp {—(0.114 N} (3.1)

where f is in cycles/degree. This MTF is plotted in Figure 3-1. As indicated by
Equation (3.1), the eye is most sensitive to frequencies around 8 cycles/degree. Ac-
cording to this model, the eye is a band-pass filter. However, it is the attenuation of
the high frequencies that is the most critical to halftoning. For model-based halfton-
ing, we adopted the eye model that was used in [5]. It is an FIR filter whose frequency
response closely resembles the Mannos and Sakrison model. However, instead of a
band-pass filter, this filter is low-pass. The impulse and frequency responses of this
filter are shown in Figure 3-2. A two-dimensional eye filter can be obtained as a

separable combination of two one-dimensional filters, as in (2]

3.2 Printer Models

The purpose of a printer model is to predict the “gray” levels produced by a printer.

Accurate and objective predictions of gray level make it possible, not only to correct
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for the effects of printer distortions, but also to take advantage of them to produce
more gray levels. To obtain good printer models, we first need to understand the
different factors that affect the behavior of the printer.

The main function of a printer is to place ink dots in designated areas, usually
on a Cartesian grid. We will refer to grid locations with ink as black dots and
grid locations without ink as white dots. There are two types of printers which
perform this function: write-black printers and write-white printers. The difterence
between the two is that write-black printers print dots of black ink against a white
background, while write-white printers, effectively, “print” dots of white ink against
a black background. In reality, both printer types use black ink for printing. The
actual difference lies in the way the drum of the printer and the particles of carbon or
ink are charged. The nature of the distortions in these two types of printers is quite
different. There are many causes for these distortions. They include the spreading
of the laser beam, interactions of the laser and the charge applied to the drum, the
type of toner particles used, and the heat finishing. The printer distortions have a
significant effect on the actual darkness of a printed image. The purpose of printer
models is to be able to predict these distortions.

In our description of printer models, we will introduce the following notation. The
printer is driven by a binary image [b;;] , where b;; =1 means that an ink dot is
to be printed at pixel (z,j) and b;; =0 means that no ink dot is to be printed. As
a result of printer distortions, the gray level p;; produced in the vicinity of (Z,7)
depends in some complicated way on b;; and the neighboring pixel values. The

printer model takes the form

pij = P(Wi;) (3.2)

where W;; consists of &; and the bits in its neighborhood. This is the most
general form of the printer model proposed in [2]. Our task is to find the function
P(.). For the model-based techniques, it is essential that the window W;; is finite.

To obtain such a printer model, two approaches can be taken. The first approach

relies on the mathematical formulation of the physical behavior of printers. The
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second approach, which is the goal of this thesis, relies on measurements. In the

following subsections, brief discussions of each of the twe approaches will be presented.

3.2.1 Circular Dot-Overlap Model

One approach for modeling th: behavior of printers is through a mathematical for-
mulation of the physical phenoraena that affect it. One model which was proposed
in (1] is the “circular dot-overlap 1n0odel.” In this model, each ink dot is assumed to
be circular with uniform distribution of ink.

The radius of the dots produced by a printer must be at least T/V?2, where
T is the spacing of the Cartesian grid, so that a page can be blackened entirely [1].
We will refer to a printer that produces dots of minimal size as the “ideal” printer.
Actual printers produce dots that are larger than the minimal size. We will use p to
denote the ratio of the actual dot radius to the radius of the dot of the ideal printer.
The eﬂ'ectiv‘ev gray level of a printed pixel is assumed to be the percentage of the area
of the pixel that is covered by ink. If an appropriate value of p 1s chosen, then the
effective gray level of all 2-D patterns can be predicted by calculating the area of each
pixel that is covered by ink.

The amount of ink spreading at each pixel can be expressed in terms of the
parameters «, [, and 7, shown in Figure 3-3. These parameters are the ratios of
the areas of the shaded regions shown in the figure to 72, the area of the pixel. They
can easily be expressed in terms of the radius p [1]. In terms of these parameters,
the circular dot-overlap model becomes

1, if b =1

ij = P(Wi;) = : 3.3
P (Wis) {fla+f2.3—f37s ifd,; =0 (33)

where f; is the number of horizontally and vertically neighboring dots that are black,
f2 is the number of diagonally neighboring dots that are black and not adjacent to
any horizontally or vertically neighboring black dot, and f; is the number of pairs
of neighboring black dots in which one is a horizontal neighbor and the other is a

vertical neighbor. Since the parameter a is the largest of the three parameters, we
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Figure 3-3: Definition of a, # and 7.

also refer to this model as a dot overlap.

The circular dot-overlap model is an idealization of the physical behavior of print-
ers. It provides a good first order approximation for the behavior of many printers.
The main advantage of the circular dot-overlap model is its simplicity. However, it
does not adequately explain all the printer distortions that occur. Often there are
significant discrepancies between predictions of the model and the measured values.
Plate 3 shows an example of some of these discrepancies. For each pattern we list
the gray level that would result if no dot overlap were present (square dots), the gray
level predicted by the circular dot-overlap model with a = .33, and the gray level
measured by our reflection densitometer.

More importantly, for some printers the circular dot-overlap model cannot explain
the effects of printer distortions. In order to accurately predict the behavior of any

printer, we need to consider the measurement approach.

3.2.2 Measurement Approach

An alternative approach for predicting printer behavior is by direct measurement
of the printer parameters. The parameters of the printer model can be obtained

directly from measurement of the gray level of various printed test patterns. As the
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measuring device we used a reflection densitometer, the MACBETH RD922 (Answer
IT). The measurement approach makes minimal assumptions on the printing process
and can apply to any write-black or write-white printer. The development of such a
measurement approach is the main focus of this thesis, and will be discussed in detail
in Chapter 4.

The measured printer model parameters can be used by various halftoning tech-
niques to enhance their accuracy of gray-scale rendition. Two such model-based tech-
niques are the modified error diffusion algorithm and the least-squares model-based

method. We now consider these two techniques.

3.3 Modified Error Diffusion

The standard error diffusion algorithm, as mentioned earlier, is sensitive to the effects
of ink spreading. By incorporating a printer model into error diffusion, the modified
error diffusion algorithm [1], not only corrects for the effects of printer distortions,
but also takes advantage of them to produce more gray levels.

In the modified error diffusion algorithm, the printer model is used to correctly
calculate the error values. In the standard error diffusion algorithm, the errors are
calculated under the assumption that the printed pixels are either perfectly black or
perfectly white, and thus their gray value is equal to the binary value assigned to
the output pixels. However, in actual printers this assumption does not hold. The
gray value of what is printed is affected by dot overlap. The printer model is used to
predict the gray values of the printed pixels. A block diagram of the modified error
diffusion algorithm is shown in Figure 3-4. The notation is the same as that used for
the standard error diffusion algorithm in the previous Chapter.

The modified error diffusion equations are [1]

Vij = Yij— Z - e::fm_j-,, (3.4)
m,n
1, ifv; >t
bi; = { (3.5)
0, otherwise
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Figure 3-4: Error Diffusion With Ink-Spreading Compensaticn

ei;;j,n = pi;lj,n — Um,n for (m’n) = (Z’J) (36)
where (m,n) < (i,j) means (m,n) precedes (i,j) in the scanning order and
pii = P(Wai) for (m,n) < (,7) (3.7)

where WS consists of bn . and its neighbors as in Equation (3.2). Notice, however,
that in this case the neighbors bx; have been determined only for (&, 1) < (1,7);they
are assumned to be zero for (k,{) > (i,7). Since only the dot-overiap contributions
of the “past” pixels can be used in (3.7), the “past” errors keep getting updated as
more binary values are computed. Hence the dependence of the error and the printer
model output on the “instant” (1,7).

Plate 2(b) shows the results of the modified error diffusion algorithm with the
circular dot-overlap printer model applied to the test images. Recall that Plate 2 was
printed on a write-black HP LASERJET II. Observe that the images are sharper than
any of the screening techniques, have fewer low-frequency artifacts, and also have no
apparent distortion of the gray-scale.

In the presense of dot overlap, the error diffusion algorithm is no longer causal. The
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Figure 3-5: Error calculation in modified error diffusion

gray level at each printed pixel depends on its own pixel value plus the neighboring
values. Figure 3-5 shows the binary values that are necessary for the calculation of
the error for all the points in the error diffusion filter mask. For the points on the
edge of the filter mask, the error depends on future points which have not yet been
determined. As we will see in Chapter 5, this can cause detrimental instabilities in

the algorithm if the wrong initial conditions are assumed.

3.4 Least-Squares Model-Based Method

The least-squares model-based (LSMB) method is an alternative halftoning technique
that takes advantage of both an eye model and a printer model [2]. The least-
aquares method attempts to produce an “optimal” halftone image by minimizing the
error between the original gray-scale image as seen through the eye and the printed
image as seen through the eye. Thus the computation of the error between the two
images requires modeling the behavior of the eye and the behavior of printer. This is
illustrated in the block diagram of Figure 3-6.

Given a gray-scale image [y;;], the LSMB method finds the binary image [5; ;]

that minimizes the sum of the squares of the differences between the two perceived
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Figure 3-6: The Visual and Printer Perceptual Models.

images (z;;] and [w;;]
Nw Ny
E= 33 (z;—wij)’ (38)

=1 j=1

where, as illustrated in Figure 3-6,

zt.,J. = yl,J * h:.J (3-9)
wi; = pij*xhij = P(W;)*h; (3.10)

and * indicates convolution. As in {2], we have allowed different impulse responses
[Rij], [Ri;] for the eye filters corresponding to the continuous-tone and halftone
images. In fact, in the examples of Chapter 5, we dropped the filter [h].] completely
as this results in sharper halftone images [2].

In principle, the optimal solution can be obtained by generating all the possible
combinations of “1”s and “0”s for the entire image and finding which combination of
binary values minimizes the error. Unfortunately, this approach is not computation-
ally feasible. For instance, let us consider an image with 512 x 512 pixels. If all the
possible combinations of “1”s and “0”s were generated for this image, there would be
25128312 pogsible binary images. This makes the search for the minimum error next

to impossible.

Although the search through all the possible combinations of binary values is not
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feasible, there are alternative ways to approach the problem. One approach is to
update only one pixel at a time. For each image pixel, the error is computed for each
of the two possible values of the binary pixel in question, and the algorithm picks the
binary value which results in the lower error value. Since the assignment of a binary
value at this point only affects the gray value of that point and the gray values of its
surrounding neighbors, the minimum error calculation can be performed by simply
re-computing the error values for the pixels that are affected. In fact, the hest results
are obtained when the error is computed only at the point being updated (see [2]).

Another strategy for implementing the least squares method is to increase the
number of points updated at each particular instant. Instead of updating one point
at a time, four or nine points can be updated at a time. However, the computational
complexity increases exponentially with the number of points being updated.

The above minimization must be repeated for all pixels in the image, and the
whole procedure should be repeated through several iterations until convergence.
Thus, the least-squares method is iterative. The starting point can be an all white or
all black image, or the result of some other halftoning algorithm, e.g. the modified
error diffusion. The number of iterations depends on the starting point. Typically

9-10 iterations are required for convergence.

3.4.1 One-dimensional Least-squares

In the one-dimensional case, each row or column of the image is halftoned indepen-
dently. One-dimensional halftoning is simpler than two-dimensional halftoning and
easier to analyze, but is seldom used in practice because it does not exploit the two-
dimensional properties of the eye. One-dimensional least-squares halftoning can be
implemented, in closed form, with the Viterbi algorithm, which is a dynamic pro-
gramming algorithm [5]. Unfortunately, the Viterbi algorithm cannot be used in
two dimensions. Therefore, no closed form solution exists for the two-dimensional
least-squares problem and, as we saw above, iterative techniques are necessary. In
addition to their theoretical interest, the one-dimensional results are a useful guide

to understanding the two-dimensional problem.
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Chapter 4

Measurement of Printer Model

Parameters

The model-based halftoning techniques outlined in Chapter 3 depend on an accurate
representatidﬂ of printer behavior. The characteristics of different printers vary con-
siderably and have a significant effect on the darkness of the printed images. Thus, a
model which accurately predicts the behavior of a printer is necessary for the effec-
tiveness of the model-based halftoning techniques.

One printer model that is based on the physical understanding of printer behavior
is the circular dot-overlap model discussed in Chapter 3. The circular dot-overlap
model is a good model for predicting the effects of printer distortions for many print-
ers, including one of our test vehicles, the HP LASERJET II. However, this model
does not apply to all printers. Rather than trying to understand the behavior of
each individual printer or class of printers, we develop an alternative approach which
is based on direct measurement of printer characteristics and can be applied to any
printer.

The main goal of this thesis is to develop a method for obtaining accurate estimates
of the printer model parameters. This method is based on direct measurement of
the reflectance of a set of printed test images. As was suggested in [6], the measured
reflectance can be related to the printer model parameters by a set of linear equations.

We then formulate a constrained optimization problem which incorporates various
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constraints on the model parameters. This optimization problem can be solved by
standard iterative techniques. We will refer to the resvlting printer model as the
“measurement model.” The approach we develop is general and makes verv few
assumptions about the laser printer.

In this chapter, we present the formulation of the problem. We first describe
the approach for one-dimensional printer models, which are used in one-dimensional
model-based halftoning. This is done to test the feasibility of the measurement ap-
proach. Next, we consider the two-dimensional problem. The two-dimensional mea-
surement model is the most important in practice and will be the main focus of this
work.

As our test vehicles, we used an HP LASERJET II, which is a write-black printer
with 300 dpi resolution and a DATA PRODUCTS LZR 2665, which is a write-white
printer. As a measuring device, we used a MACBETH RD922 (Answer I1) Reflection
Densitometer. This densitometer is designed to measure the average reflectance over
an area whose diameter is approximately 4 mm.

The reason for choosing an instrument which measures the average reflectance
of the test patterns, instead of using an instrument which measures the gray level
of individual pixels, is that we do not have to estimate the transfer function of the
instrument. Estimating the characteristics of the measuring device and the printing
device at the same time would be very difficult, if at all possible. Also, measurement
of average reflectance does not require precise alignment of the measuring device with
the printed patterns. Finally, measuring the average reflectance over a small area of
the image is in fact similar to what the human eye is doing. Thus, to some extend,

our measuring device resembles the behavior of human perception.

4.1 One-dimensional Measurement Model

There are many reasons for studying the one-dimensional problem, even though it
is of limited practical significance. First, the problem is simpler in one dimension

in terms of the number of unknown parameters and measurements involved. It is
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thus easier to test the various assumptions that we make and to look for potential
problem areas before attempting to tackle the two-dimensional problem. Second, the
model can be tested using the Viterbi algorithm to obtain the solution to the one-
dimensional least-squares model-based halftoning problem. As we saw in the previous
chapter, no closed form suiution exists for the two-dimensional least-squares problem.
We thus have to rely on approximate solutions to the least-squares problem and the
modified error diffusion algorithm, in order to test the two-dimensional model.

The goal of a printer model is to predict the “gray” level of printed pixels. The
gray level of each printed pixel depends in a complicated way on the pixels in its
surrounding neighborhood. The advantage of the measurement approach is that we
can measure the effect of the surrounding pixels directly, instead of trying to predict
it based on the physical understanding of printer behavior. In the following section,

we will describe the procedure for obtaining the one-dimensional measurement model.

4.1.1 Formulation

One-dimensional images are assumed to be invariant in the horizontal (or vertical)

direction. An one-dimensional binary image is specified as a sequence of bits.

...01011. ..

The horizontally (or vertically) invariant image is obtained by repeating the pattern

several times.

...01011...
...01011. ..
...01011...

This sequence of bits is the data that is sent to the printer for printing. At each
location of the image, the printer prints a dot of ink where a “1” is specified and
prints no ink dot where a “0” is specified. The goal of the one-dimensional printer

model is to predict the gray level at each printed pixel.
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The gray value of eacn printed pixel is affected by the neighboring pixels. Accord-
ing to the one-dimensional version of the printer model of Equation (3.2), the “gray”

level pr produced by the pixel at site k is

pr = P(Wy) (4.1)

where W; is a window consisting of by and the bits in its neighborhood. For
the model-based halftoning techniques described in Chapter 3, it is essential that the
window be finite. The first step in the procedure of obtaining a printer model is to
select the window size. In the following discussion, for simplicity, we choose a printer
model of window size 3.

Once the window size is selected, the mapping P has to be specified for every
possible pattern W; . For a printer model with window size 3, there are 8 possible

patterns for W; :

Wl=000
W2=001
W3=010
Wi=011
WS=100
Wé=101
Wi=110
W8=111

The mapping P assigns a “gray” level p' to each pattern W' . In other
words, it determines the effect of the neighboring pixels on the pixel at the center
of the window. To determine the mapping P , we must first establish relationships
between the “gray” values p‘' corresponding to the above set of patterns and the
reflectance measurements of the test patterns. Then we can solve for the unknown
“gray” values p'.

To relate the measurement of the average reflectance to tne unknowns, we con-

sider the following strategy. First, we generate a set of test images that are printed
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of p!

\ neighborhood

4 of p*

Sample equation: (p! + p* + p® + p*)/4 = m!
Figure 4-1: Sample periodic pattern with period “1011”

and measured. As an example, let us consider the test pattern that results when
the pattern “1011” is repeated periodically as shown in Figure 4-1. The average re-
flectance of the printed test image is equal to the average reflectance of all of the
individual pixels in the periodic pattern. Thus, an equation relating the unknowns
p' to the measurements m’ can be obtained. The equation corresponding to the
sample pattern of Figure 4-1 is also shown in the figure.

Note that the periodicity of printed test patterns does not have to equal the size
of the window of the printer model. In principle, the periodicity of the test patterns
can take any value. In practice, however, we choose patterns with low periodicity.
The main reason for avoiding patterns with high periodicity is that the reflection
densitometer can only measure reflectance over a finite area. If the periodicity is
too high, then relationships between the measurements and the unknowns cannot be
established. In this example, the periodicity of the pattern is 4, and the window size

of the unknowns is 3.
Based on the procedure outlined above, many different patterns of various period-

icities can be generated and measured. This results in additional equations relating
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the unknowns to the measurements.

a'xp' +a'?xp? + ... +al xpl)/d! = m!
p p

(a2'l=|=pl+a2'2=|=p2+...+a2"ao=p’)/d2 = m?

(a"'l *pl +a’? *p2+ .+ ald *p’)/dJ = m’

The above equations can be summarized in matrix form.
AxP=M

The number of equations J can exceed the number of unknowns I . Once the
problem is placed in matrix form, we can use constrained optimization to solve for
the unknown vector P . However, before we do that, we first seek ways to reduce the
size of the problem. There are two methods that can be used to reduce the number of
unknowns. Both assume some basic understanding of the printing mechanism. One
is based on symmetry and the other is based on some lirnitations on the amount of

ink spreading.

In the one-dimensional model with window size 3, there are originally 8 unknowns.
First, we can eliminate patterns that are the same based on symmetry. For example,
the pattern “001” is the mirror image of the pattern “100.” It is reasonable to assume
that the “gray” level of a white dot surrounded by one black and one white dot does
not depend on what side the dots are on. Thus, only one of these patterns must
be included in the set of unknowns. We are in effect setting an equivalence relation
between the pattern “001” and the pattern “100”. The only other patterns in the
one-dimensional model with window size 3 that are mirror images of each other are
“110” and “011.” The set of unique patterns after symmetry reduction is shown

below.
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000
001
010
101
110
111

We can further reduce the set of unique unknown patterns based on the fact that
the dot overlap (black or white) is limited to the immediate neighbors. For instance,
we can assume that a white dot surrounded by two white dots is white, and a black
dot surrounded by two black dots is black. Thus, the “gray” levels assigned to the
patterns “000” and “111” are 0 and 1, respectively. For most printers, this is a
reasonable assumption. Thus, for the one-dimensional printer model with window
size 3, only 4 unknowns must be determined. The set of unique patterns and their

unknown “gray” level parameters is the following.

000 — O
100 — p!
010 — p?
110 — p’
101 —» pt
111 — 1

The reduction in the number of unknowns simplifies the problem considerably,

especially for larger window sizes.

4.1.2 Window Size

In the previous section, we outlined the measurement approach for the one-dimensional
printer model with window size 3. Equations relating the unknown parameters to the
reflectance measurements were established. The next step is to use constrained op-

timization to solve for these unknown parameters to build our measurement model.
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However, before solving for these unknown parameters, we must first determine which
window size should be used.

For the one-dimensional printer model, we considered several window sizes. An
obvious choice would be to use window size 3 since it involves a relatively small
number of unknowns. However, one can argue that window size 3 can not capture all
the effects of printer distortion in one dimension. Thus, larger window sizes, such as
5 and 7, were investigated.

For window size 3, there are only 6 unique patterns after symmetry reduction.
For window size 5, after symmetry reduction, there are 20 unique patterns, and for
window size T there are 72. As saw above, for window size 3, the total number of
unknown parameters can be further reduced based on the properties of ink spreading.
Thus, patterns such as “111” and “000” can be assumed to have gray values of 1 and
0, respectively. This reduces the total number of unknown parameters to 4. Similarly,
for window size 5, patterns such as “x111x” and “x000x” can be assumed to have

“x” is used to indicate that the pixel

gray values of 1 and 0, respectively. Here,
value at that location can be either a “1” or a “0”. For window size 7, patterns such
as “xx111xx” and “xx000xx” can be assumed to have gray values of “1” and “0,”
respectively. The total number of unknown parameters for window size 5 becomes
14, and window size 7 has 52 unknown parameters.

The procedures used to generate equations for window size 3 are the same as the

procedures used to generate equations for window sizes as 5 and 7. However, more

unknowns and equations are involved in the larger window sizes.

4.1.3 Selection of Equations

For each window size we chose many different patterns of different periodicities to
obtain a set of equations for the unknown parameters. For window size 3, we used
patterns of periodicity 2, 3, and 4 to generate the set of equations. Patterns of
periodicity 2, 3, 4, 5, 6, and 7 were used to generate equations for window size 5.
Window size 7 equations were obtained using patterns of periodicity 2, 3, 4, 5, 6, 7,

and 8.
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Patterns of different periodicity can be generated through an exhaustive search
through all the possible combinations of “1”s and “0”s in the given periodicity. To
avoid redund:ncy, equations which are repeated are eliminated from the matrix. The
elimination of redundant equations is performed by comparing the coefficients in each
equation and dropping equations with the same coefficients. For window size 3, the
total number of equations used is 6. For window size 5, the total number of equations
used is 22. Window size 7 used 49 equations.

In the one-dimensional printer model, the performance of the model can be tested

by using the Viterbi algorithm. This will be done in the next chapter.

4.2 Two-dimensional Measurement Model

The development of the measurement model in two dimensions is very similar to the
one-dimensional case, in terms of generating the unkrowns and selecting the test
patterns. As we discussed, the goal of the printer model is predict the “gray” level of
a printed pixel based on the binary value of the surrounding pixels. We now describe

how this can be done using reflectance measurements of various test patteris.

4.2.1 Formulation

According to the two-dimensional printer model of Equation (4.2), the “gray” level

pi,; produced at site (z,7) is given by
pij = P(Wi;) (4.2)

where W, ; is a window consisting of b;; and the bits in its neighborhood. The first
step in the procedure for obtaining the measurement model is to determine the size
and shape of the window. In the following discussion, we shall first consider a 3 x 3

square window.
Once the window size and shape is selected, we must determine the function

P for all possible patterns W;; . Thus, given a pattern W' , we must find the
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Figure 4-2: Sample periodic pattern and corresponding equation

corresponding “gray” level p' . For example, one possible pattern is the following

101
001
100

For a 3 x 3 window, the total number of such patterns that can be obtained is equal
to 512.

To determine the mapping P , we must relate the unknown “gray” values p' to
reflectance measurements of various test patterns. As in the one-dimensional case, we
can find linear equations relating the reflectance measurements and the unknowns.
Figure 4-2 shows an example of a test pattern. It is obtained by pericdically repeating
a 4 x 4 pattern. The basic pattern is repeated both vertically and horizontally.

The measured reflectance of the printed test pattern is equal to the average re-

flectance of the 16 individual pixels contained in one period of the periodic pattern.
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The reason this is true, as explained earlier, is that the densitometer measures the
average reflectance over an area. Since each of the 16 pixels in the 4 x 4 pattern corre-
sponds to one of the unknown variables, equations relating the unknown parameters
to measurements can be established.

Using the above procedure, additional patterns based of the same and different
periodicities can be generated, printed, and measured to provide more equations. As
in the one-dimensional case, the periodicity of test pattern does not have to be the
same as the window size. In principle, the periodicity of the test patterns can be of
any value. However, practical considerations limit the periodicity of test patterns to
small values.

After equations relating the unknowns and the measurements are generated, we
can then use constrained optimization to solve for the unknowns. However, before we
do this, we again consider various possibilities for reducing the size of the problem.
This will make the solution more computationally tractable.

In light of the large number of unknowns, several steps are taken to reduce the set
of unknowns to a smaller set. First, the total number of unknowns can be reduced
using symmetry. We shall assume here that patterns that are reflected or rotated
are essentially the same. This is illustrated in Figure 4-3. Symmetry reduces the
working set of 512 unknowns to 102 unique patterns. This reduction is performed by

computer analysis.
The set of 102 unknowns can be further reduced to a smaller set by assuming that
the “gray” level of a white dot surrounded by white dots is 0, and the “gray” level of

a black dot surrounded by black dots is 1. Thus,

000
000 —0
000
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Figure 4-3: Symmetry reduction

This eliminates two more unknowns.

Further reduction in the working set can be performed based on some additional
understanding of printer behavior. In write-black printers, black dots of ink tend to
spread beyond the pixel boundaries. It is thus reasonable to assume that the “gray”
value corresponding to all patterns with a “1” in the center is 1. That is, all patterns

with the following form should be given the gray value of 1.

XXX
xlx —1
XXX

Conversely, in write-white printers, “white” dots tend to spread beyond the pixel
boundaries. Thus, we can reasonably assume that the “gray” value corresponding to

all patterns with a “0” cn the center is 0.

XXX
x0x =0
XXX

This reduces the working set. The final working set contains 50 unknowns.
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The assumptions made here are based on some understanding of the printing
mechanism. These assumptions are necessary to reduce the size of our problem and to
make the solution computationally tractable. However, by making these assurnptions,
we have also limited our scope to write-black and write-white printers only. This is
one potential drawback in our formulation. Fortunately, mest laser printers fall in one
of these two categrries. Also, for reasons which we will see later, these assumptions

also help to maintzin stability in the modified error diffusion algorithm.

4.2.2 Window Shape and Size

In the previous section, we considered a printer model with a 3 x 3 square window.
The 3 x 3 window is intended to capture the distortions caused by the pixels in the
immediate neighborhood of each printed pixel. However, one might question if the
3 x 3 window is enough to capture all the possible distortions. The answer to this
is that the 3‘I>'< 3 window does in fact capture most of the first order distortions. It
neglects, however, certain second and third order effects. This leads us to investigate
printer models with different window size and shape.

An alternative window shape that we consider is the cross-shaped window. Two
cross-shaped windows are shown in Figure 4-4. The procedu.: for generating test
patterns and equations for the cross-shaped windows is similar to the procedure out-
lined above for the 3 x 3 square window. The only difference is in the number of
unknowns and the number of equations involved. For the 3 x 3 square window, there
are 512 possible patterns. For the cross-shaped windows with lengths 3 and 5, there
are 32 and 512 possible patterns, respectively.

In principle, the best results should be obtained with a printer model with a
5 x 5 square window, shown in Figure 4-4. Unfortunately, the number of unknowns
involved is too large. There is a total of 33,554,432 possible patterns for this window.

This makes the problem intractable.
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Figure 4-4: Different window sizes and shapes

4.2.3 Selection of Equations

For each window size and shape, we selected test patterns with different periodicities
to generate equations relating the unknowns to the reflectance measurements. For
the 3 x 3 square window, we used patterns of periodicity 2 x 2,2 x 3,3 x 3, and a
subset of the 4 x 4 patterns. Again, we generated all the possible patterns for each
periodicity, and eliminated redundant equations by comparing the coefficients of the
equations. This resulted in a total of 200 patterns for the 3 x 3 window. For the 5 x5
cross-shaped window, patterns of periodicity 2 x 2, 2 x 3, 3 x 3, and a subset of 5 x 5
were used. The total number of equations generated was 244.

The equations can be placed in matrix form Ax P = M . To solve for the solution

vector P, we now introduce a constrained optimization technique.
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4.3 Constrained Optimization

In the previous section we described how we can obtain a set of equaticns relating
the unknown printer parameters to the reflectance measurements. These equations
can be placed in matrix form A+ P =M , where M is the vector of measurements
and P is the unknown vector of “gray” values that correspond to the set of window
patterns. Our goal is to solve for the vector P, which specifies the mapping P
which, in turn, specifies the printer model.

One approach to obtaining the solution vector P is to solve the linear system
directly. Unfortunately, there are two problems associated with this approach. The
first problem is the possible rank deficiency of matrix A and the second problem is
discrepancies in measurements.

The first problem, where the matrix A is not full rank, occurs when not enough
independent equations can be generated. Thus, we cannot solve for P directly. It s,
in fact, difficult to obtain enough independent equations to guarantee that the matrix
A has full rank. It is our speculation that this problem is caused by unknowns that
occur in pairs. It is possible that, in the set of printed patterns, sets of unknowns
always occur together. This causes matrix A to be rank deficient. For the 3 x 3
square window, 3 of the singular values of the matrix are zero.

The second problem is that discrepancies in measurements exist. Again, here we
cannot solve for P directly. One explanation for the discrepancies in measurements
is the fact that the window size is too small to capture all the effects of printer
distortions. For instance, for the 3 x 3 square window, it is quite possible that ink dots
which are two pixels away from a pixel affect its “gray” value. Thus, the limitations
in the window size result in inconsistencies within the set of linear equations.

The first problem suggests that we need some additional constraints, and the
second problem suggests that we need to find a best fit to the measurements. A
reasonable set of constraints on the vector P is that its components p‘, which are
gray-scale values, must be between 0 and 1. We can then minimize the error between

the reflectance measurements of the test patterns and the reflectance predicted by the
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parameter vector P. The minimization will be done in least-squares sense. Thus, we

arrive at the following constrained optimization problem:

minimize: ||A*P — M |3

subject to: 0 < p! < 1
0 <pP<1
0 <p" <1

We now turn to the solution of the constrained optimization problem.

4.3.1 Solution Vector

The main issue in a constrained optimization problem is whether it has a unique
solution and whether the algorithm we use can find it. Unfortunately, it is not always
possible to find a unique solution.

To solve the constrained optimization problem, we used an optimization routine
by Fletcher and Harwell from the Harwell Subroutine Library [13]. It is based on
Davidson’s method [12] which uses an approximation to the inverse Hessian matrix.
The linear inequality constraints are dealt with by projection techniques. An initial
estimate of the solution which satisfies the constraints must be provided. Given the
starting point P’, an initial value of the error A *x P’ — B is calculated. At each
iteration, a new point P” that satisfies the constraints and produces a lower error
value is found. The algorithm continues for several iterations until it is unable to
move toward a point with a lower error value. At this point, the algorithm stops and
returns the current vector as the answer.

If there is a unique minimum, then the algorithm converges to that point. Un-
fortunately, often, there are several local minima in the solution space, and it is not

always possible to determine the global minimum. However, if the matrix A is full
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rank, then there exists a unique minimum in the solution space, and the constrained
optimization routine returns the optimal solution [14, pp. 180-182]. When A is not
full rank, there are two possibilities. If enough of the constraints become active, then
a unique solution vector exists and the algorithm converges to that vector. Otherwise,
there may be several local minima, and the starting point determines which solution
vector is returned by the algorithm. Even though this can happen in practice, we
have found that the performance of the printer model is not strongly affected by
which solution is used to ccnstruct our printer model. This will become evident when
we present our results in the next chapter.

As mentioned earlier, in many cases the matrix A is not full rank. For the
one-dimensional printer models, the matrix A becomes full rank when the following
assumption is made. If we assume that the gray value of all patterns with “1” at the
center is 1, then the matrix A becomes full rank and a global minimum can be found.
This assumption is valid for write-black printers only. For write-white printers, if we
assume that the gray value of all patterns with “0” at the center is 0, then the matrix
A becomes full rank, and the algorithm converges to the optimal value.

For the two-dimensional printer model with window size 3 x 3, the matrix A is
not full rank, even when we make all the assumptions we made earlier to reduce the
number of unknowns. For the cross-shaped window with length 3 the matrix A is
full rank, while for the cross-shaped window with length 5 the matrix A is not full
rank.

Using the techniques which we have outlined in this chapter, we are able to con-
struct one-dimensional and two-dimensional printer models based on the measurement
approach. The accuracy of these models will be tested in the next chapter when we

apply them to the model-based halftoning techniques.
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Chapter 5

Application

Ip. the previous chapter, we described a procedure for estimating the printer model pa-
rameters based on measurements of printed test patterns. The resulting measurement
model can be used to predict printer behavior for any write-black and write-white
printer. In this chapter, we apply the procedure to obtain the parameters of the
printer model and use the model-based halftoning techniques of Chapter 3 to evalu-
ate its performance.

In our experiments, we used the HP LASERJET II write-black printer and the
DATA PRODUCTS LZR 2665 write-white printer as our test vehicles. The charac-
teristics of these two printers are very different. As our measurement device, we used
the MACBETH RD922 (Answer II) Reflection Densitometer. Based on the proce-
dures outlined in Chapter 4, we estimated the parameters of each printer model and
then used them with the modified error diffusion and the least-squares model-based
halftoning algorithms. A number of important issues arose in the process. The first

issue is related to the reflectance measurements.

5.1 Reflectance Measurements

In the development of our measurement model, we assumed that the reflection den-
sitometer measures the average reflectance of the printed test images. In our initial

experiments, we estimated the printer model parameters based on these reflectance
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measurements. The printer model was then used in model-based halftoning. The re-
sults of our experiments indicated that something was wrong. The images produced
by the model-based techniques were too dark. This led us to question the reliability
of the measurements. We suspected that the reflectance measurements need some
type of calibration.

The only way to verify this hypothesis was to print a pattern whose reflectance is
known and compare it to the reflectance measured by the densitometer. We decided
to print a 32 level gray-scale ramp on the HP LaserJet. Since the HP LaserJet is
a write-black printer with a fair amount of dot overlap, we tried to minimize the
effects of dot overlap by using the classical screen of Figure 2-1(a) and printing at a
resolution of 100 dpi. The 100 dpi resolution was simulated on the 300 dpi printer by
repetition of ink dots. The combined effect of the lower resolution image and the use
of the classical screen for halftoning minimizes the effects of ink spreading.

The reflectance of the 32 level ramp was then measured using the densitometer.
If the instrument is calibrated correctly, then the measured reflectance values should
be very close to the expected values. The expected values of the measurements lie
along a straight line with a slope of —1 and intersect at the y-axis and the x-axis
at coordinates (0,1) and (1,0), respectively. Figure 5-1 shows a comparison of
the expected values versus the measured values. Observe that the values obtained
from the densitometer are consistently lower. This explains why the model-based
halftoning algorithms using the measurement model are producing images that are
too dark. The inconsistency between the measured and expected reflectance values
had to be resolved for the measurement model to be of use in model-based halftoning.

This prompted us to investigate a phenomenon known as multiple internal reflection.

5.1.1 Multiple Internal Reflection

Early studies of light reflection off highly scattering material done by Callahan [15]
showed that the reflection of light is influenced by ink dots that are placed on top of
the medium. Later studies by Clapper and Yule [16] showed that internal reflections

of light within these materials account for a significant portion of the reflected light.
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Figure 5-1: Reflectance calibration

The term multiple internal reflection is used to refer to this phenomenon.

Multiple internal reflection occurs when light multiply reflects within a medium
such as paper. This phenomenon occurs when light strikes a medium at one point
and emerges from the medium at several other points. Since light emerges at several
points, ink dots that are placed on top of the medium influence the degree to which
light is reflected. The phenomenon of multiple internal reflection is illustrated in
Figure 5-2.

The degree to which multiple internal reflection occurs in our experiments depends
on several factors. The first factor is the material of the paper. The second is
the ink used for printing. The third is the intensity of the incident light. In the
measurements of our test patterns, the third factor seems to play a large role in
skewing our measurements.

The reflectance densitometer used in our experiments measures the ratio between
the reflected light and the incident light. These measurements are obtained by shining

a beam of light directly over the patterns and then measuring the amount of light



Incident
Light

Figure 5-2: Multiple internal reflection

reflected. This beam of light is of high intensity and is placed approximately 1 mm
away from t\he- paper. In this setup, there is strong evidence which suggests that
the high intensity and the close proximity of the light source magnify the effects
of multiple internal reflection. These two combined effects cause more light to be

reflected than is predicted. This explains the bias in the measurements.

5.1.2 Densitometer Calibration

To correct for the discrepancy between the measured and expected reflectance values,
we used the measurements from the 32 level ramp to calibrate the reflectance den-
sitometer. We used the graph shown in Figure 5-1 to correct our measurements. We
then used the calibrated values to estimate the printer model parameters. The results
of the model-based halftoning techniques indicate that the calibration removes the
bias toward producing images that are too dark.

Thus, calibration of the reflectance measurements is an important step in the ac-
curate measurement of printer model parameters. The accuracy of printer model pa-
rameters strongly affects the performance of model-based halftoning. In the following

sections, we will examine the performance of our measurement modeis in model-based
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halftoning.

5.2 One-Dimensional Least-Squares Model-Based
Halftoning

In one-dimensional halftoning, each row or column of the image is halftoned inde-
pendently. One-dimensional halftoning is simpler and easier to analyze, but is sel-
dom used in practice because it does not exploit the two-dimensional properties of
the eye. Nevertheless, the study of the one-dimensional techniques, which use the
one:¢:mensioral printer model, provides a good testing ground for our measurement
approach.

As we saw in Chapter 3, least-squares model-based (LSMB) halftoning finds an
“optimal” halftoned reproduction, by minimizing the squared error between the per-
ceived intensity of the original gray-scale image and the perceived intensity of the
printed halftoned image. One-dimensional LSMB halftoning can be implemented, in
closed form, with the Viterbi algorithm. Since no closed form solution exists for the
two-dimensional least-squares problem, the one-dimensional problem offers a unique
opportunity to isolate the performance of the printer models from that of the opti-
mization algorithm.

In testing one-dimensional printer models, i.e. the accuracy of gray-level rendi-
tion, the best test image to use is a gray-scale ramp. Plate 4 shows a gray-scale ramp
halftoned using a two-dimensional classical screening technique, gray-scale ramps pro-
duced by the Viterbi algorithm using different printer models, and a gray scale ramp
halftoned by a one-dimensional equivalent of the classical screen. The resolution of
each gray-scale ramp is 1200 x 285 pixels. Since the classical screening technique is
fairly robust to printer distortion, the two-dimensional classical ramp is used as a
reference for the performance of the different one-dimensional techniques.

The second ramp in Plate 4 was produced using the Viterbi algorithm and the
circular dot overlap model with p = 1.25. The third, fourth, and fifth ramps were

produced using the Viterbi algorithm and measurement models with window sizes 3,
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3, and 7 respectively. The last ramp shown in Plate 4 was halftoned using a one-
dimensional equivalent of the classical screen. The comparison with one-dimensional
classical screening demonstrates the advantage of model-based techniques in terms of
the number of gray levels produced. The other advantage of model-based techniques,
namely that they produce sharper images, is not obvious here since we have a smooth
image. In fact, it is the second advantage that is the most important, provided of
course that the accuracy of gray-level rendition is at least preserved.

From Plate 4, we see that the gray scale of the ramp that was generated using the
circular dot-overlap model is not monotonic. The problem appears near the top of
the ramp.! This degradation in gray-level rendition is caused by the idealization of
printer behavior. The gray-scale rendition of the ramp that was generated using the
measurement model with window size 3 is considerably better than that produced
using the circular dot-overlap model. However, it is still not perfect. There is still a
minor problem with the monotonicity of the tone scale.

In the gray scale ramps produced using the models with window sizes 5 and 7,
we see that there is very little improvement over the gray-scale ramp produced using
the window of size 3. This indicates that a measurement model with window size 3 is
enough to capture most of the effects of printer distortions in one dimension. Thus,
there is no need to use larger window sizes to construct our measurement models.
This result can also be used to argue that the 3 x 3 window size is sufficient for
constructing the two-dimensional measurement models.

The most important conclusion from these comparisons is that the measurement
approach for estimating printer parameters works. The rendition of gray scale is
fairly accurate and LSMB halftoning with our measurement model produces more
gray levels than classical screening. We are now ready to test the two-dimensional
measurement model using the modified error diffusion algorithm and the least-squares

method.

!The reader is cautioned that the Mach band effect may make the halftoned ramp look more
nonmonotonic than it is.
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Figure 5-3: Mountain Effect
5.3 Modified Error Diffusion

In chapter 3, we outlined the modified error diffusion algorithm. It uses a printer
model to estimate the gray level of the printed pixels. An accurate printer model is
essential in the calculation of the error values. However, as we pointed out earlier,
there is a causality problem when using either the measurement model or the circular
dot-overlap model. Since this algorithm is not causal (as opposed to the standard
error diffusion algorithm which is causal), steps need to be taken to maintain stability
and prevent any corruption in the halftoned images.

For a write-black printer, if the assumption that all printed “1”s take on the gray
level of 1 is relaxed, then corruption in image will occur. Similarly, for a write-white
printer, if the assumption that all printed “0”s take on the gray value of 0 is relaxed,
then corruption in the output image will also occur. An illustration of the type of
corruption that results is shown in Figure 5-3. The image shown in this figure is
the output image of a gray scale ramp processed using the modified error diffusion
algorithm with a measurement model that relaxes the assumptions mentioned above.
The corruption in image occurs at the top part of the ramp where a big portion of
the image is black. We shall refer to this effect as the “mountain effect.”

The occurrence of the mountain effect is caused by instability of the error filter.
To prevent the occurrence of the mountain effect, we propose two methods. The

first is to make the constraints tighter. The second method is to use multi-pass error
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diffusion. These two methods are described in the following sections.

5.3.1 Causality Constraints

The first method for preventing the occurrence of the mountain effect is to make
stricter assumptions in the measurement model. To maintain stability, we need to
assume that all “1”s have a gray value of 1 for write-black printers and all “0”s have
a gray value of 0 for write-white printers. These assumptions were originally made
when building the printer model with the 3 x 3 window size, in order to reduce the
number of unknowns and the degrees of freedom. We see here that these assumptions
can also be used to guarantee stability.

In addition to these assumptions, the initial background of the output image must
also be fixed to specified values. For write-black printers, we found that the initial
background should be white. For write-white printers, the initial background should
be black. The reason that the initial background affects the stability of the algorithm
is that when the printer model attempts to calculate the error e; ;, it needs to know
the pixel value of some of the pixels that have not yet been determined, as was shown
in Figure 3-5. If we assume the proper background before the initial processing of
the image, then we can prevent any instability of the algorithm.

The two assumptions mentioned above prevent the occurrence of the mountain
effect. This is the reason that no instabilities were observed in [1]. However, it is
evident that the initial background assumption causes some error in the algorithm,
since assuming the background to be either black or white will bias the algorithm in
one direction. Fortunately, this error is very small.

The modified error diffusion algorithm was tested on several images. The test
images include the “Lena” and “Building” images shown in Plate 5, and the gray-
scale ramp in Plate 10. As we saw in Chapter 2, the resolution of the first two
images is 460 x 460 pixels. We upsampled by a factor of 2 to obtain 920 x 920 pixels
that result in the 3.07 x 3.07 inch printed images. As we mentioned in Chapter 2,
we used an interpolation scheme consisting of an ezpander [8, pp. 105-109] and an

equiripple low-pass FIR filter (8, pp. 462-480]. The resolution of the gray-scale ramp
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is 1200 x 240 pixels.

Plate 5 shows the results of the modified error diffusion algorithm with two 3 x 3
measurement models, obtained based on two different starting points. Plate 5 was
printed on the write-black HP LASERJET II. Plate 10 was also printed on the write-
black HP LASERJET II and compares the performance of different printer models
and model-based techniques.

The test images in Plates 5 and 10 show that the performance of the modified
error diffusion using our measurement model is quite good. The rendition of gray
scale is relatively accurate, and the sharpness of the images is maintained. However,
one problem with the quality of these images is the occurrence of some low-frequency
artifacts. These low-frequency artifacts are especially apparent in the ramp of Plate 10
(third from the left). The funny patterns close to the top of the ramp are not very
appealing. These low-frequency artifacts can also be seen on the arch in the “Lena”
picture in Plate 5.

Plate 5 also demonstrates that the performance of the measurement model is not
strongly influenced by which starting point is used to obtain the solution vector. In
Section 4.3 we found that several solution vectors P may exist, and which one is
chosen by the algorithm depends on the starting point. The images in Plate 5 show
that the difference between the models obtained using two different starting points is
small.

Plate 9 was printed on the write-white DATA PRODUCTS LZR 2665 printer. It
shows the results of the modified error diffusion algorithm with a 3 x 3 measurement
model and compares them to classical screening. Again, the rendition of gray scale
is relatively accurate, and the performance of error diffusion (shar,.ness and few low-
frequency artifacts) is maintained. We have thus demonstrated that our procedure for
estimating printer model parameters works on two different printers. A comparison
of Plates 2(b) and 5 shows that the performance of the circular dot-overlap model
and the measurement model is comparable on the write-black printer. However, the
circular dot-overlap model does not apply to the write-white printer and, thus, we

have to use the measurement model.
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5.3.2 Multi-pass Error Diffusion

An alternative approach to solving the stability problem is to consider a multi-pass
modified error diffusion algorithm. The original algorithm requires one-pass through
the data. We suggest a multi-pass version which uses the image obtained from the
previous pass as the background of the next iteration. More specifically, this proce-
dure can be illustrated as follows.

During the first pass through the image, we assume the background tc be com-
pletely white. The original image is processed using modified error diffusion based
on this assumption. During the second iteration, the binary image obtained from the
first pass is used as the background. Similarly, on the third pass, the image produced
on the second pass is used as the background. The algorithm converges after a few
iterations.

The multi-pass error diffusion algorithm offers several advantages. The first ad-
vantage is that it eliminates the instability problem. The second advantage is that
the multi-pass algorithm also eliminates some of the low-frequency artifacts that the
one-pass algorithm produces. This can be seen by comparing the third and fifth im-
age from the left in Plate 10. Note that the multi-pass algorithm makes a difference
only in the presence of dot overlap or other printer distortions. Also, a careful exam-
ination of Plates 6 and 10, shows that the multi-pass algorithm produces images that
are slightly lighter than those produced by the one-pass algorithm. The difference
is very small and appears to be insignificant. However, when the multi-pass error
diffusion result is used as a starting point for the least-squares approach, then the
resulting error is much lower then that obtained when the one-pass result is used as
a starting point [2]. More importantly, the image with the lower error preserves the
(visually pleasant) error diffusion texture, while the image with higher error is very
grainy. This is because the one-pass error diffusion produces images that are darker
than the original continuous-tone image. As the iterative least-squares algorithm tries
to modify the binary image to restore the correct brightness, it destroys the error dif-
fusion patterns [2]. Finally, we should point out that the images produced by the

multi-pass error diffusion appear to be slightly grainier than those produced by the
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one-pass algorithm.

5.4 Least-Squares Model-Based Halftoning

A different approach to model-based halftoning is the least-squares method. This
method takes advantage of both an eye model and a printer model in an attempt to
produce an “optimal” halftoned image. The goal in this approach is find the binary
array that causes the perceptual printing model to produce an output that is as close
as possible to the response of the visual perception to the original image.

As we discussed in Chapter 3, only approximate solutions to the least-squares
problem can be found. Thus, the images produced using this method might only
be local optima of the least-squares problem. There could in fact be several local
minima for a given image. Here we demonstrate the approach that updates only one
pixel at a time, using the modified error diffusion result as a starting point. In our
experiments, we found that this version gives the best results. Examples using this
technique are shown in Plate 8(b). In these examples, the initial background is the
output image from 5 iterations of multi-pass error diffusion, shown in Plate 8(a). The
number of iterations for the least-squares method is 5.

From the sample outputs, we see that the images produced using the ieast-squares
method are sharper than those of the modified error diffusion algorithm. Also, the
least-squares approach maintains the texture of error diffusion, which is known to be
visually pleasant [7]. This happens only when the multi-pass error diffusion result is
used as the starting point. Using an all-white image as the starting point results in
images that are very grainy. In fact, as we discussed in the previous section, even
when the one-pass error diffusion result is used as a starting point, the least-squares
iterations result in grainy images.

More importantly, the gray-scale rendition of the halftoned images is good. We
have thus demonstrated that when our measurement model is used with the model-
based techniques of Chapter 3, it produces the correct gray scale and also maintains

the overall performance of these techniques.
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Chapter 6

Conclusions

The main focus of this work has been the development of an approach for estimating
printer model parameters based on direct measurements of the reflectance of test
patterns. The printer models predict the effects of printer distortions. They are
an essential*part of model-based halftoning techniques depend on accurate printer
models to produce high quality images using standard laser printers.

We first considered the problem of estimating the parameters of a one-dimensional
printer model. Even though it is of limited practical significance, the one-dimensional
problem is simpler, and the model can be tested using the Viterbi algorithm to obtain
the solution to the one-dimensional least-squares model-based halftoning problem.
Our results indicate that the measurement model performs better than the “circular
dot-overlap model,” which assumes that the printer produces circularly shaped dots
of ink.

The performance of two-dimensional printer models was tested using two model-
based halftoning techniques, the modified error diffusion and the least-squares method.
Both of these balftoning techniques use printer models to correct for the effects of
printer distortions. Our results using a write-black printer indicate that the perfor-
mance of the measurement model and the circular dot-overlap model is comparable.
The measurement model was the only one that could be applied to a write-white
printer, however. We thus demonstrated the necessity of a general approach that can

be applied to a wide variety of laser printers.
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We also derived an iterative (multi-pass) version of the modified error diffusion

algorithm that improves its performance.
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111111 1.0 1.0 1.0

Plate 3: 300 dots/inch printing
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Plate 8: Least-squares model-based halftoning
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Plate 9: Write-White Printer Model



CDOM MM CDOM MM CDOM MM

Classic Modified Modified Least-squares
error diffusion error diffusion model-based
1 iteration 5 iterations 5 iterations

Plate 10: Circular dot-overlap model (CDOM)
vs. Measurement model (MM)



Bibliography

[1] T.N. Pappas and D.L. Neuhoff, “Model-Based Halftoning,” Proc. SPIE, vol.
1458, Humun Vision, Visual Proc., and Digital Display II, San Jose, CA, Feb.
1991.

[2] T.N. Pappas and D.L. Neuhoff, “Least-Squares Model-Based Halftoning,” Proc.
SPIE, vol. 1666, Human Vision, Visual Proc., and Digital Display III, San Jose,
CA, Feb. 1992.

3] D.L. Neuhoff and T.N. Pappas, “Perceptual Coding of Images for Halftone Dis-
g
play,” ICASSP-91, Toronto, Ontario, Canada, May 1991.

[4] J.L. Mannos and D.J. Sakrison, “The Effects of a Visual Fidelity Criterion on the
Encoding of Images,” IEEE Trans. Inf. Theory, vol. IT-20, no. 4, pp. 525-536,
July 1974.

[5] D.L. Neuhoff, T.N. Pappas, and N. Seshadri, “One-Dimensional Least-Squares
Model-Based Halftoning,” ICASSP-92, San Francisco, CA, March 1992.

(6] D.L. Neuhoff, T.N. Pappas, and N. Seshadri, “One-Dimensional Least-Squares
Model-Based Halftoning,” to appear.

[7] R. Ulichney, Digital Halftoning. The MIT Press, 1987.

[8] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing. Prentice
Hall, 1989.

62



[9) P.G. Roetling and T.M. Holladay, “Tone Reproduction and Screen Design for

Pictorial Electrographic Printing,” Journal of Applied Phot. Eng., vol. 15, no. 4,
pp- 179-182, 1979.

[10] R.W. Floyd and L. Steinberg, “An Adaptive Algorithm for Spatial Grey Scale,”
Proc. SID, vol. 17/2, pp. 15-77, 1976.

[11] J.F. Jarvis, C.N. Judice, and W.H. Ninke, “A Survey of Techniques for the
Display of Continuous-tone Pictures on Bilevel Displays,” Comp. Graphics and
Image Proc., vol. 5, pp. 13-40, 1976.

[12] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. Aca-
demic Press, 1982.

(13] M.J. Hopper, ed., Harwell Subroutine Library: A Catalog of Subroutines, 55,
Oxfordshire, England: A.E.R.E. Harwell, 1979.

[14] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization. Academic
Press, 1981.

[15] P. Callahan, “Light Scattering in Halftone Prints,” Journal of the Optical Society
of America vol. 42, no. 2, pp. 104-105, Feb. 1952.

[16] F. Clapper and J. Yule, “The Effect of Multiple Internal Reflections on the
Densities of Halftone Prints on Paper,” Journal of the Optical Society of America

vol. 43, no. 7, pp. 600-603, Jul. 1953.

63



