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ABSTRACT: Successful identification of complex odors by sensor 
arrays remains a challenging problem. Herein, we report robust, 
category-specific multiclass-time series classification using an 
array of 20 carbon nanotube-based chemical selectors. We 
differentiate between samples of cheese, liquor, and edible oil 
based on their odor. In a two-stage machine-learning approach we 
first obtain an optimal subset of sensors specific to each category 
and then validate this subset using an independent and expanded 
dataset. We determined the optimal selectors via independent 
selector classification accuracy as well as a combinatorial scan of 
all 4,845 possible four selector combinations. We performed 
sample classification using two models – a k-nearest neighbors 
model and a random forest model trained on extracted features. 
This protocol led to high classification accuracy in the independent 
test sets for five cheese and five liquor samples (accuracies of 91% 
and 78% respectively) and only a slightly lower (73%) accuracy on 
a five edible oil dataset. 

The three major functions of the human olfaction system are 
related to social communication,1,2 avoidance of environmental 
hazards,3 and ingestive behavior.4–6 Our ability to successfully 
differentiate between stimuli in these applications is enabled by 
more than 1000 distinct olfactory receptors (ORs).7 Activation of 
an OR by an odorant generates an electronic signal that is 
transmitted to the brain.8 Each OR recognizes several odorant 
molecules and each odorant molecule is recognized by several 
distinct ORs. The identification of a specific odorant molecule, or 
mixture thereof, is confirmed by the activation of a specific 
combination of ORs.8,9 Thus, the olfaction system of humans and 
animals can identify complex mixtures of chemicals and not just 
pure chemicals against an odorless background.

Array-based chemical sensors follow a similar biomimetic 
approach. Detection of chemical inputs is achieved through a 
combination of multiple sensing channels where each channel 
responds to several analytes.10,11 Single-walled carbon nanotube 
(SWCNT) chemiresistors and carbon nanotube-based 
electrochemical sensors have been shown to provide suitable 
platforms for array-based detection of various gases.12 Several 
sensor arrays comprising CNT-based sensing channels have been 
used to discriminate between single volatile organic compound 
(VOC) vapors,13–18 inorganic gases,19,20 and biological samples.21–

24 However, few reports have been published on the differentiation 
between food samples, among them are the determination of 
caffeine content in coffee,25 the electrochemical detection and 
differentiation between rice wines,26 electrochemical determination 
of capsaicin content of hot sauces,27 and chemiresistive 
differentiation of liquors using multi-walled CNT/polymer 
composites.28,29

Herein, we differentiate between complex odors using an array 
of 20 SWCNT-based chemiresistive sensors (Figure 1). As a 
proof-of-principle system we investigated samples of different food 
item categories – cheese, liquor, and edible oil. The odor 
compounds of these food items include distinct combinations of a 
multitude of sulfur compounds, alcohols, ketones, aldehydes, 
esters, organic acids, alkanes, and aromatic compounds.30–40 We 
strategically designed the sensor array to include selectors that can 
interact with odor compounds containing these functional groups. 
In addition to the choice of selectors, a similarly sophisticated 
analysis of the sensing data is necessary to enable successful 
differentiation. 

Figure 1. Schematic of sensing device with carbon-based 
electrodes deposited on a Kapton substrate. The active layer of 
SWCNTs and selectors is deposited between the electrodes. All 20 
selectors are listed in Table S1.

Previously, classification in gas sensing applications has been 
performed by discriminant factor analysis (DFA) to diagnose 
disease,22 principle component analysis (PCA) to differentiate 
between VOCs,13 a neural network model to differentiate between 
formaldehyde and ammonia gas,19 and a support vector machine to 
differentiate between NO2, NH3, EtOH, and acetone.41 These 
methods generally only use a limited number of features from the 
sensing response (sometimes with additional metadata concerning 
the specifics of the sensing apparatus). In contrast, we use the entire 
time series of the sensor response or a large set of diverse features 
extracted from the exposure-recovery cycle to perform accurate 
classification.

Traditional time series classification has relied on nearest 
neighbor approaches via either Euclidean or dynamic time 
warping-based (a means of aligning time series) distance 
comparisons used to calculate a similarity between two time 
series.42–44 Similarly, time series decompositions where the data is 
represented as piecewise linear45 or piecewise polynomial 
segments46 as well as feature extraction techniques, combined with 
more traditional machine learning models like random forests (RF) 
or support vector machines47 have also been proposed. Lately, 
ensembles of models have become a popular choice for high 
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performance time series classification leveraging potentially 
multiple techniques with different models.48 Often, improvement 
over the simple k-nearest neighbors algorithm (KNN) is difficult, 
questioning the need for these highly sophisticated methods49 that 
often require larger training datasets. In this study, we found a RF 
model trained on features extracted from the sensing data 
(featurized-RF model, f-RF) to be a highly accurate method for 
analyzing time series data of very similar food samples. This model 
can classify samples of cheese, liquor, and edible oil with up to 
91% accuracy.

EXPERIMENTAL SECTION

Sensor array. The sensing substrates are made of carbon-based 
electrodes (1 mm gap width) on a Kapton support. One substrate 
contains 16 individual working electrodes with a shared counter 
electrode separated by a gap of 1 mm. The active material of the 
sensor channels consists of SWCNTs as a transduction material and 
a chemical selector (S1-S20) as a selective moiety. The active 
material is deposited between the electrodes in a one- or two-step 
process. For the one-step process, 1 µl of a dispersion of selectors 
S17, S18, or S19 and SWCNTs in ortho-dichlorobenzene (o-DCB) 
was drop-casted between the electrodes and dried in vacuo. For the 
two-step process, 1 µl of a dispersion of SWCNT in o-DCB was 
drop-casted between the electrodes and dried in vacuo, then 1 µl of 
a solution of the selector S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, 
S11, S12, S13, S14, S15, S16, or S20 was drop-casted on top of the 
SWCNT layer and again dried in vacuo. Chemical structures of the 
selectors and detailed experimental procedures can be found in the 
supporting information and all solvents, concentrations, and 
dispersion parameters are listed in Table S1.

Gas sensing data. During the gas sensing experiment, 0.100 V 
was applied across the sensing electrodes and the resulting current 
was measured as a function of time. All gas sensing data was 
collected using air (approximately 40 % relative humidity) as the 
carrier gas at a flow rate of 100 ml/min. The sample gas was 
generated by heating the food sample to 30-50 °C and collecting 
the headspace over the sample at a distance of 3 cm. During the gas 
measurement, the active material was exposed to the sample gas for 
120 s followed by a 600-900 s recovery period under air flow.

Machine learning model training. We used 300 s of sensing 
data (120 s of exposure, and 180 s of recovery) to train either a 
KNN model (k=1) that directly used the time series data or a f-RF 
(100 estimators) using features extracted via tsfresh. Tsfresh 
extracts 794 features ranging from the coefficients of a continuous 
wavelet transform or fast Fourier transform to parameters like time 
series length, mean, max, and median among many others.50 Data 
from each selector were used to train individual models for 
classification using Scikit-learn.51 The 20 selector-three-class 
models were trained with a stringent 0.67:0.33 train:test split while 
the four selector-five-class models were trained with a 0.80:0.20 
train:test split. The combinatorial selector scan was performed on 
all 4,845 possible combinations of 4 out of 20 selectors. Final 
model accuracy was assessed via a 50× repeated model training on 
randomly shuffled train:test splits. Complete protocols for the 
computational analysis and model building can be found in the 
supporting information.  

RESULTS AND DISCUSSION

Collection of sensing data. To develop a sensing system that 
can differentiate between complex organic odor mixtures, the 
choice of selectors is critical. We assembled an array of 20 
selectors including: transition metal complexes (S1, S2, S3, S4) 
to bind organic acids52 and sulfur-containing compounds, ionic 
liquids (S5, S6, S7, S8) to interact with ketones, aldehydes, 

alkanes, and aromatic compounds;53 porous polymers (S9, S10, 
S11, S12) to sequester a large number of organic vapors;54,55 
cavitand molecules (S13, S14, S15, S16, S20) for detection of 
aromatic compounds and alcohols with size exclusion 
properties;15,17 and metalloporphyrins (S17, S18) to bind amines, 
alcohols, ketones, alkanes, and aromatic compounds.13,56

The input data for our machine learning algorithms consist of the 
chemiresistive responses of the active material to the sample odor. 
We examined five categories of samples, including cheeses 
(cheddar, cream cheese, Cambozola, Mahón, and pecorino), liquors 
(gin, tequila, rum, vodka, and whiskey), and edible oils (canola, 
olive, coconut, toasted sesame, and walnut oil). During the gas 
measurement, the active material – SWCNT and selector – was 
exposed to the sample odor for 120 s followed by a 600-900 s 
recovery period under air flow. The response is recorded as the 
conductance through the active material at a constant applied 
voltage (0.100 V). 

Figure 2 shows the representative response of average change in 
conductance normalized to the conductance at the start of the 
exposure (ΔG/G0) for one selector (S4) towards the odor of three 
different cheeses: cheddar, Mahón, and pecorino. The data used for 
classification consists of all time points in the 300 s time period 
after the start of the exposure (120 s of exposure, and 180 s of 
recovery, purple shaded area in 

Figure 2).
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Figure 2. Example of sensing response for one selector (S4) 
towards cheddar, Mahón, and pecorino. The response is 
represented as a change in conductance normalized to the 
conductance at the start of the exposure (ΔG/G0). The exposure 
starts at t = 60 s and ends at t = 180 s (marked by dashed vertical 
lines). The response is an average of 12 separate sensing 
experiments, the blue/green shaded areas represent the standard 
deviation of the response. The purple shaded area represents the 
data used for classification.

Selector analysis on three-class datasets. When designing a 
sensor array, including sensor channels that have insignificant 
signal or the same signal for all samples weakens the overall 
performance of the array. To ensure we only use selectors that have 
high prediction ability, we identified which of the 20 selectors 
demonstrates the highest accuracy in differentiating between the 
food samples. For this, we collected 12 sets of sensing data for each 
one of the 20 selectors and for three items from each category 
(2,160 individual sensing traces). To evaluate the classification 
utility of the selectors in our sensor array, we built two models. The 
first model was the f-RF model trained on a set of features extracted 
using the tsfresh computational package50 from each selector time 
series. The second model directly leverages the time-dependent 
nature of the data via a KNN model for which a Euclidean distance 
metric was used to measure time series similarity. Importantly and 
in contrast to typical analyses, both models rely on data from both 
the initial exposure and recovery time period, as the curvature and 

absolute values for both of these periods provides valuable time-
based patterns. The models are used to differentiate between three 
food items from each category: for cheese, the classes include 
cheddar, Mahón, pecorino; for liquor, the classes include rum, 
vodka, whiskey; for edible oil the classes include canola, olive, 
walnut.

Each of the 20 selectors was analyzed independently using both 
models on held-out test sets; 67% of the collected data sets were 
used for training the model (training set) and the remaining 33% 
were used to test the model (test set). The models assign the 
samples of the test set into classes – like cheddar, Mahón, pecorino 
for the cheese samples.

The accuracy for each selector was then calculated as the fraction 
of correct assignment made by the f-RF or KNN model 
corresponding to that selector:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 assignments

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 assignment
 Figure 3a,b show the accuracies for f-RF and KNN models 

when differentiating between three cheese samples (Figure S13 
shows analogous graphs for liquor and edible oils). Selectors that 
performed well in an f-RF model often showed high accuracies in 
the KNN model, suggesting the importance of specific selectors for 
each use case. Similarly, selectors showing near random 
performance in one model, often display commensurate 
classification ability in the other model. S4 for example, 
demonstrates reasonable test set accuracy for classification of the 
three cheeses using the f-RF (0.78±0.20) and the KNN (0.69±0.14) 
model. Across data sets (cheese vs. liquor for instance), different 
selectors exhibit high performance; selectors working well in one 
use-case may have lower classification ability in another (Figure 
S13). This observation can be ascribed to the difference in chemical 
makeup of the items in these categories. One of the selectors 
showing high accuracy in the cheese use-case is S4, a nickel 
bis(ortho diiminosemiquinate) known to detect organic acids.52 S5 
and S6 are two methylimidazolium based ionic liquids, 1-(2-(2-(2-
hydroxyethoxy)ethoxy)ethyl)-3-methylimidazolium chloride and 
1-(nonyl)-3-methylimidazolium hexafluorophosphate, designed to 
interact with aldehydes and ketones.53 Organic acids, aldehydes 
and ketones are all important aroma compounds with moderate 
volatility which can be found in the odor of cheese.31,57,58
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Figure 3. a,b) Selector accuracies for both the (a) f-RF and (b) KNN models using single selectors for differentiating between cheddar, 
Mahón and pecorino cheese. The shaded, grey area corresponds to random guessing (33 % accuracy between cheddar, Mahón, and pecorino), 
selectors with accuracies around this threshold do not assist in this particular application. c,d) Example results from the combinatorial selector 
scan for both the (a) f-RF and (b) KNN models on the cheese dataset (cheddar, Mahón and pecorino) using combinations of four selectors. 
Plotted are the top three (1-3), three medium (2423-2425), and the bottom three (4843-4845) combinations. Each selector combination was 
trained 27 times, plotted are the average accuracies and standard deviations.

Combinatorial selector scan. While using each selector 
individually led to moderate success in classification, we suspected 
that using combinations of multiple selectors will enable 
classification with higher fidelity. To exhaustively determine an 
optimal set of selectors for model building, analysis, and collection 
of additional data sets we trained and tested f-RF and KNN models 
on all possible combinations of 4 selectors (4,845 combinations). 

The combinatorial analysis revealed many selector combinations 
with similar scores, nonetheless common trends emerged internal 
to a dataset category (Figure 3c,d Figure S15). These trends often 
mapped to the results from the individual selector analysis. Across 
item categories, different selector combinations showed varying 
levels of usefulness for each individual classification problem 
(Figure S15), highlighting the need for tuning the selector panel 
when confronted with a new category of interest. 

Focusing only on the highest accuracy selector combination in 
all three item categories, the f-RF models typically outperformed 
the simpler KNN models (Figure 4). We propose that this results 
from the extraction of more descriptive temporal features not 
accounted for in an isolated time point-to-time point distance 
calculation used in the KNN model in combination with a more 
expressive random forest model. Indeed, principal component 
analysis (PCA) on the features extracted from the three-item 
datasets often showed a degree of class separability using only the 
first three principle components (Figure S16). 

Based on the information from the combinatorial selector 
analysis (Figure 3c,d) along with that of the individual selector 

analysis (Figure 3a,b), we picked four selectors for follow up 
analysis and validation for each sample category. For the cheese 
use-case, we identified S4, S5, S6, and S20 as a high-performing 
selector combination. We performed the analogous combinatorial 
analysis for the other two use-cases – liquor and edible oil – to 
identify use-case specific high-performing sector combinations 
(Figure S13, Figure S15). The selector combinations for liquor (S7, 
S8, S12, and S15) and the selector combination for edible oil (S5, 
S7, S8, and S13) both consist of three methylimidazolium-based 
ionic liquids and one calix[4]arene. The combinatorial approach 
leads to higher classification accuracy across all use-cases and both 
models. For example, the maximum test set accuracy for a single 
selector when differentiating between cheddar, Mahón and 
pecorino cheese is 0.79±0.12 (S6) whereas the combinatorial 
approach reaches 0.94±0.08 (f-RF). Going forward, all analysis 
was performed using the combinatorial approach.
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Figure 4. Selector scan results showing only the highest accuracy 
selector combinations for each use case. 

Optimal selector combination performance on independent 
five-class datasets. With our optimized combination of selectors 
in hand, we significantly increased the difficulty of classification 
problem by expanding the number of items in each category from 
three to five. Notably, there is the question of whether selectors 
chosen for classification can have utility for not only to the pre-
screened class, but also to additional examples (classes) from the 
same general type of samples. For cheese, the expanded selection 
includes cheddar cheese, Mahón, Cambozola, cream cheese, and 
pecorino; for liquor, the expanded selection includes rum, vodka, 
whiskey, gin, and tequila; for edible oil the expanded selection 
includes canola, olive, walnut, coconut, and toasted sesame oil. For 
this validation of our methodology, we collected new sets of data 
for all samples and retrained all models.

Even for these expanded item categories, the newly trained 
models show high levels of classification accuracy (Table 1). 
Between the three item categories, cheese was the easiest to classify 

with a test set accuracy of 0.91 followed by liquor at 0.78 and oil 
being the most challenging with a reasonable accuracy of 0.73 
when using the f-RF model. The simpler KNN model displayed a 
reduced performance across the board with an accuracy of 0.73 for 
the cheese data set while much lower values near 0.40 were 
observed for the liquor and oil data. These values are still 
significantly higher than that of random guessing (0.2) for a five-
class problem. This again highlights the additional important 
information contained in the time series that a simple point-to-point 
distance measurement does not capture. Further, these results speak 
to the chemical compositions of the odor of the different samples, 
suggesting the volatiles in oil to be more similar between samples 
than those of cheese, making the classification problem more 
challenging.
Table 1: Optimal 4-selector test set accuracya analysis on the 
five-class classification problems for both the f-RF and KNN 
models. 

Cheese 
(4,5,6,20)

Liquor 
(7,8,12,15)

Oil 
(4,7,9,13)

f-RF 0.91 ± 0.05b 0.78 ± 0.08 0.73 ± 0.07
KNN 0.73 ± 0.06 0.40 ± 0.09 0.36 ± 0.08

aAverage accuracies are calculated via 50 f-RF or KNN models 
trained and tested on shuffled data splits. bError values are standard 
deviations. 

Analyzing the average time course values for each sample and 
selector often revealed only subtle differences between the 
different classes with several notable cases. Typically, the overall 
shape of the selector response curve was similar between samples 
of a category (with differences in the response amplitude). For 
example, in the five-cheese data, the Cambozola cheese displayed 
similar temporal dynamics, but with a much higher selector 
response (Figure 5, purple line). 
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Figure 5. Sensing response for a) S4, b) S5, c) S6, and d) S20 towards five cheeses. The response is represented as a change in conductance 
normalized to the conductance at the start of the exposure (ΔG/G0). Each exposure starts at t = 60 s and ends at t = 180 s (marked by dashed 
vertical lines). Each response is an average of 40 separate sensing experiments, the shaded area represents the standard deviation of the 
response.

It should not be overlooked, however, that several visually 
distinct temporal traces were observed (S4,S20 in the cheese data 
Figure 5a,d; S7 in the liquor data, Figure S17a; S13 in the edible 
oil data Figure S18d). In line with the lower accuracy of the five-
oil data, the time course analysis revealed that many of the oils had 
overlapping temporal behavior in both the exposure and recovery 
periods with only subtle differences in the curvature. It is this subtle 
difference that the featurization protocol most likely leverages to 
gain a reasonable (0.73) accuracy but something the KNN 
Euclidean distance cannot overcome (0.36), leading to its 
significantly lower performance. 

Extracted feature analysis. We took two approaches to better 
understand the extracted features, the first is a dimension reduction 
(PCA), while the second is a feature-by-feature importance 
analysis. PCA analysis of extracted features of the five-class 
datasets again revealed decreased class separability going from 
cheese to liquor and finally to oil (Figure 6, Figure S19, S20, S21). 
As expected from the time course analysis, Cambozola cheese 
showed complete separation (along PC1). Nonetheless, after 
reduction of the sensing data to just a handful of principle 
components we observe significant overlap between the majority 
of the cheese classes (Figure 6). More class overlap was observed 
for the liquor samples with gin and whiskey displaying the most 
separability from the other examples (Figure S20). Finally, in the 
edible oil data, nearly all classes showed significant overlap along 

the first two principle components, again corroborating the reduced 
model performance. 

Figure 6. PCA analysis of extracted features from the five-cheese 
dataset showing the first two principle components.
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To better understand the f-RF models, we identified the features 
with the highest contribution to the prediction process. Figure 7 
shows the 16 overall most important features – out of 794 total 
features – used in the f-RF model for the classification of five 
different cheeses. As expected from our findings of the PCA 
analysis, no single feature can be used solely for classification with 
many features showing less than 1% feature importance. This 
observation holds true for all three categories (Figure 7Error! 
Reference source not found. and Figure S23, S24).

Figure 7. Top 16 overall most important features in the five-cheese 
f-RF model. The importance is averaged over 50 f-RF models 
trained and tested on shuffled data splits. The top 16 features for 
cheese, liquor and edible oil are listed in Table S2-4. 

The feature importance analysis also demonstrates that simple, 
descriptive features like maximum and minimum values, average 
values, and area under curve are not sufficient to perform this 
discriminative task (Table S2). In fact, the majority of the features 
used are coefficients from either a continuous wavelet transform 
(cwt features) or a fast Fourier transform (fFt features).

CONCLUSION

In this work, we demonstrated the classification of several 
complex odors using a chemiresistive sensing array in combination 
with a two-step machine learning approach. In doing so, we 
propose a general method for object classification that may be 
applied to a host of other challenging problems. With this method, 
we were able to differentiate between food samples with up to 91% 
accuracy. We envision this work to guide future research in two 
ways (1) our selector panel can be used to tackle a number of other 
challenging gas sensing problems like disease diagnostics, hazard 
detection, and food authentication, or (2) this general approach can 
also be used to quickly identify selectors from of a large panel of 
potential molecules. 
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