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INTRODUCTION b

NATURE OF THE PROBLEM

The recent upswing in the development of nat-
ural hydraulic resources in this country and abroad
has resulted in the design of many power, irrigation
and flood control projects in which high velocitles
of fiow are utilized for the rapid and efficient
handling of water.

This high velocity flow has introduced problems
in hydraulie engineering which had not previously
been encountered. Chief among these problems 1s
the formation of standing waves, which are usually
unpredictable and require expensive high-walled
structures to prevent overtopping.

Methods of design used in the analysis of low
velocity structures have been found insufficient and
cannot be utiliz ed to predict standing wave format-
inn. Many high velocity channels have of course been
designed, and with some degree of success. But these
channels were designed by empirical methods without
making any contribution to our understanding of the
fundamental faectors which underlie the problem.

Recently, i.e. in the last ten or fifteen years,
some research has been done on the subject of high

veloclty flow in chanhels with a free surface. Most
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important of this work has followed from the re-

cognition of the analogy between supercritical flow

Figure 1
Standing Waves in Laboratory Apparatus
in water and supersonic flow in gases. This anal-
ogy has malle possible the utilization in hydraullc
design of methods which have been highly developed

in gas dynamics.



Supersonic flow in gases occurs when the vel-
ocity of flow is greater than the local velocity of
a compression wava. Since sound travaéls at the vel-
ocity of a compression wave, Or more correctly, since
sound is a compression wave, such flow 1is termed
supersonic.

Supercritical flow 1ln water occurs when the
velocity of flow is greater than the velocity of a
small wave disturbance in the water surface. This
velocity, termed the critical velocity, 1s given by
the equation:

Ve :J[EH
whene h 13 the water depth.
Hereafter in this thesis supercritical flow

will signify that V>Ve, suberitical flow that V<V,.

HISTORICAL NOTE:

The analogy between supercritical flow in water
and supersonlic flow in gases was pointed out by
Prandtl in 1931. (See reference 1l in bibliocgraphy)
It has received thorough mathematical treatment by
Prandtl, Von Karman (2), Riabouchinsky (3), and
Busemann (4). Their work was extended and veri-

fied by prelswerk (5), whose published report of



his theoretical and experimental study, based on
the methods of gas dynamics, of flow in the Laval
nozzle is especially noteworthy as an'exdhple of
the methods of design based on gas wave theory.

In this country, Ippen and EKnapp (6) did fur-
ther research on this subject, and Ippen (7) has
published a very concise summary of the previous
work, demonstratihg in some detall the methods

involved in hydraulic design.

PURPOSE AND SCOPE OF THIS WORK:

The purpose of this thesis is to demonstrate
between
the correlation/theory based on the methods of gas

dynamics and experimental results obtained in lab-
oratory flumes. A study 1s made of two types of
channel sontractions at various veloclties of flow

in the supercritical range.



THEORY

THE STANDING WAVE

If the velocity of a wave with respect to the
body of water on which it moves is C, usually called
the wave celerity, the wave when propagated by a
point source of disturbance will mowe out in all dir-
ections at the velocity C, and at any time T the wave
front will form a ciwcle of radius CT.

If the wave 1a propagated on the surface of wat-
er which 1s moving down a channel with velocity V,
the center of the wave front will move downstream
with the velocity V. At any time T after the wave
1s propagated the center will be a distance VT down-
stream from the disturbance source, and the wave
front will still be a circle of radius CT.

The velocity with which the disturbance moves

| directly upstream is then given by C - V, and the
velocity with which it moves directly downstream 1s
given by C 4+V. Thus if V is greater than C, the
disturbance 1s never transmitted upstream. When V
1s greater than C the flow is termed supercritical,
and the consequence that in supercritical flow dis-
turbances are not transmitted upstream is cf con-

siderable importance in hydraulic design.




We may now investigate the manrer in which a
standing wave 1s formed in supercritical flow. A
standing wave 1s & stationary wave, a wave which
does not move with respect to a stationary observer.
In other words its velocity with respect to the
water over which it moves 1s equal and opposite to
the absolute velocity of the water. Assume that the
source of disturbance is a change in well angle 6,
(Figure 2). The water is flowing with a veloclity

V which we assume to be greater than the wave velocity C.

Figure 2

The disturbance is continuous, that is new

disturbance waves are constantly being propagated.




We shall study the disturbances which are prop-
agated at small intervals of time AT.

After an interval of time nAT since its prop-
agation, the center of a wave front will have moved
downstream a distance nVAT from the disturbance
source. In this tlme the radius of the wave front
has increased to nCAT. The angle § between the or-
iginal velocity vector and the tangent to the wave
front through the disturbance source 1is given by:

5/Uﬁ _ hecAt _ C

hvAT "
This equation shows that the angle f 1is indep-

endent of time, and is a property of all the waves
originating at the disturbance source. Hence all

of these waves have a common tangent passing through
the disturbance source, and this tangent is the lim-
it above which the disturbance 1s not transmitted.
This tangent 1s then a standing wave front.

DERIVATION OF WAVE CELERITY - C

We may now proceed to determine the factors
which determine the angle f. We have found that

Sin¢5=.€. V is a measurable quantity, predetermined

for a given design. We shall determine C as follows.

Referring to figure 3, we have a flow which is sub-

¥07

ey



Ject to a disturbance such that the stream lines

are deflectsd through an angle © as the flos crosses

Peaion 2

Filgure 3

the standing wave shown. In regimn 1, the depth 1s
hy, the veloclty is Vl, with components normal and
tangential to the wave front given by an and th
respectively. Beyond the wave front in region 2
we have h2, Vo, Vn2, and the same tangential com-

ponent th.

From continuity considerations we may write:

hr%w : hivkl-



Whence:
h,
\/n2= T,\/”‘ (1)
From the geometry of the flow:
Vi = Vi omp = C (2)

The above follows from the fact that V , is the
veloclty of the approaching water relative to the
wave front and vice versa.

From the momentum equation:

The static force across the wave front per
unit length of wave 1is given by:

Lwh®- Lub® 9 (h-h7) (3)

The change in momentum across the wave

‘front per unit length of wave is given by:

Y sy (Vo ~Voz (4)

Substituting from (1), (4) becomes:

%’\/m"hl (,_%) - "gi \/n,’%'i (h,=h) s)

Equating (3) and (5)

2 (h=ht) = %Al & (h=h)

Solving for Vn 2:

2 h1. h1. >
‘jnl - %E’ (hg"'b,)‘ ghla"_"’;.' ﬁ‘l‘ﬁ)

Vn( " C '/qhn %?(['f‘%t) (6)

We can now see that if the wave 1s small, 1l.e.

ir he/hl is near unity, C is approximately /ghl, as

originally stated.
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DEVELOPMENT OF FLOW DIFFERENTIAL EQUATION

We are now in a position to develop an express-
ion containing all the principsl variables which aff-
ect the flow, making only such simplifying assump-
tions as are necessary for the mathematical analysis
of the problem, without compromising seriously the
accuracy of the method.

From (6) and the fact that Vi = VISinﬁ>, we may

write:
Y [ h
i /2 B (14
Introducing the Froude number F = JL— , this
Jah
becomes:
[ h
Sip s 250 (1+2) )

We have not yet introduced the angle 6, and its
effect on the flow. From thﬂkgeometry of the flow:

Vhi vz Vnig
Twp "TED T T(ke)

Whence-

A, TAug - Tan 8
7 TAuﬁ -TAuﬂ -9) - TCTNYATT,

Solving for Tan 6:
TIN @ = Tmﬂ (1- 'h‘L)

8
hTA,@ (8)
All the above equations hold regardless of en-

ergy dissipation. We may now simplify (8) and ob-

tain the differential equation we seek. We will make

s g
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the slmplifying assumption that there 1is zero en-
ergy dlssipation as the flow crosses a disturbance
wave. To investigate the validity ef this assumption,
we shall‘determine the factors which control the am-
ount of energy dissipation.

The energy per pound of fluid in region 1,
taken with bespect to the channel bottom as a datum
is given by:

‘£+b,
9
and the energy per pound in region 2 1s given
v ,
H-@;h
9
The losfgin energy in crossing the wave front,
if the charnel bottom 1s level, or nearly so, is:
V- vy
A =V=Y o (h
1‘3 "I‘ | h‘l)

Since:

1 ? 2 z 2 2
w=%V+% Vi = Vnz + Vi
It follows that:
2
NS r s (h,
V-V = Vo =V - \/nl[l-(m)]
From (6):

%3=9m O+

Hence:

v"_\l')r 9h  ha . / hf;) r‘_

= T T

7 'h ]

P —
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And the lost energy per pound referred to the
initiasl depth is given by:
AH ]h1.( h l’)tl /
A _ b m [y (0 T (-
h; 4 M h’) {hQ) h, [ /')7)
Multiplying out all terms in the numerator after
multiplying and dividing by 4 ho/hy
hay? h2)* hz
(51—3(5}1”1—’

dH
h, 4 he
h
This is readily recognized as:
h )3
AI—J=(—h_._I) (9)
h b

It 1s now evidgnt that the loss of energy is
nearly zero when the wave is small, i.e. when h2/hl
is near unity. It is evident from (8) that this re-
quires a small change in wall angle O. If the change
in wall angle is small:

TIW = 6 =de
h,-h = dh
5m1}>——v-ér
hy — h, —h
Making these assumptions,we may rewrite (8) as

follows:

hy - h,
TN o - dé - . MP_ _dhTmp  dh
hodh T8 h(1+Tin*p)  hesc’pTuf

5
' dh

ThEPTINE Y
3 Tin b

(10)
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THE METHOD OF CHARACTERISTICS

Equation (10) is the basis for the method of
characteristics long used in gas dynamics for the
solution of problems involving supersonic flow. It
is this equation which demonstrates the analogy
between gas and water flow. We can put it in more
useful form by transforming the velocity to a dim-
ensionless form such as v j@%ﬁ’ WHERE H is the energy
per pound of fluid with respect to the channel bot-
tom, given byz
-2g P
Then:

h - u-—--u{ﬁ-v/

dh = 2VHdV
““ﬁ Jan /QH//‘VU
VT “NEah  [T%aH —an(i-
3> —|

We may then wrlte: -
2HV dV
Vhaw L=V
/392~
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and by rearranging we obtain the equation:
- (11)

This expression 1s the differential equation
in polar form of & family of epicycloids between
circles of radiusj%= and 1. The equation states
that if the fluld is moving with a given velocity
V, represented in magnitude and direction by a radius
vector to a point on the epicycloid, and the flow is
deflected through a small angle 0O, the velocity
vector will be motated through an angle O, its
point remaining on the eplcycloid.

A portion of thls family of eplcycloids has
been plotted by the author in figure 4, for ang-
uler increments of two degrees. The graphlcal
method used with the epicycloids, called the methods
of characteristics 1s excellently descriqu in Dr.
Ipperis paper, "Gas Wave Analogiles in Open Channel
Flow." (7) It is the method based on these curves
which was used throughout the investigations carried

out in this thesils.

POLAR! GURVES - FLOW WITH ENERGY DISSIPATION

If we have flow conditions such that the flow is de-

flected through large angles, under which conditions
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the ass'mptions underlying the method of character-
istics are no longer valid, we may derive another
graphical method which does not depend upon these
assumptions, and in which 1t 1s not necessary to
assume energy dissipation equal to zero.

If we transform equations (1) and (2) to con-
tain the x and y components of the velocity instead
of the tangential and normal components, by intro-
duceing into thése equations the geometric relation-
ships:

Vo Tor W) = Ty (T - o) (12)
(Vop - Tpp)2 =2 Tg2 0 (T - Tpp)?  (13)
we may combine the resulting expressions with
the energy equation to obtain the "Jump Polar" or
"Shock Polar" curves, given by the expression:

v \7,(2 Vrz .//‘V;(?'

-2 ,
W =V (‘— \'E) Vo -//_{47._4\&?,_?/&) (14)
X

In thls case, since there 1s energy dissipation
along the channel, H is not a constant and the dim-
ensionless velocity z:must be recomputed when each
new region of the flow is reached. These curves are
plotted in figure 5 anq the values required for
plotting the curves are given in table II in the app-

endix.
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METHOD OF APPROACH

SOURCE OF EXPERIMENTAL DATA

The subject of this study is the corre}ation
of experimental data with the theoretidal method
previously outlined. Experimental data were avail-
able from the work of J. H. Dawson (8), D. P. Rod-
riguez (9), and D. Coles and T. Shintaku (10). Their
work was done in the hydraulic laboratories of the
University of Lehigh, under the direction of Dr. A.
T. Ippen.
RESUME OF THE COLES - SHINTAKU EXPERIMENTS

Mention Qill firstiﬁe made 6f the work of Cnles
and Shintaku, since their study brings out an import-
ant point not evident in the author's results.

These investigators, in a thests entitled "Ex-
perimental relation between standing waves and sud-
den wall angle changes in supereritical flow," ran
tests on the sharp angle contraction shown in figure
6, varying slope and discharge to obtain a wide range
of Froude numbers. They then made measurements of
the wave angle ﬁ and the depth ratio across the wave,
he/h1° These values were then compared in a tabul-
atlon to the theoretical values of these variables
obtained from equations (7) and (8) of this work.

In order to demonstrate>this correlation the aubhor
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has plotted the curves of depth ratio and ﬂ thus ob-

tained, (figure 7).

[ 4 l/’\'ﬁao'/”—l

| i
SR Y . —

G- . R

Figure 6

Coles - Shintaku channel

The4tests performed by Coles and Shinpaku are
not numerous enough to be conclusive, but they show
a definite trend. Theory and experiment show re-
markable agreement between Froude numbers of 3.5 to
7.0, The theoretical and experimental curves diverge
above and below this range.

This divergence is probably explained in the
low Froude number range by the fact that viscous
forces play a large part at low velocities, and give
rise to a velocity distribution across the channel

which invalidates the assumption of constant H.

A
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At high Froude numbers, vertical accelerations
which result in non-hydrostatic pressure distributions
probably causs the divergence between theory‘and ex-
periment. Hydrostatic pressure distribution is a nec-
essary condition for the validity of the 'statément
that energy per pound H =2%2e he.

Thus 1t would seem that theofy gives the best
results in ithe Froude number range between 3.0 and
7.0, a range in which viscous effect is relatively
small and the pressure distribution in curvilinear

flow is close to hydrostatic.
DAWSON EXPERIMENTS

J. H. Dawson (8) did very extensive work on
the effect of lateral contractions on supercritical
flow. His results fér a flow with a Froude number
of 4 for the symmetrical curved contractlion shown
in figure 8 were checked by the method of charact-
eristics. Figure 10 shows the characteristics dia-
ream of the flow. In figure 11 are plotted the ex-
perimental and theoretical side wall profiles which
result from the contraction of the flow. The graph-

1cal construction of the flow is shown in figure 12.

RODRIGUEZ EXPERIMENTS

D. P. Rodriguez carried on experimental work

using the sharp angle contraction shown in filgure

TN B
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9. The author made theoretical solutions by the

method of characteristics for conditions corresponding
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to Reriguez's experiments at Froude numbers of 2.71
3.17, 3456, and 4.00, The resulting characteristic
diagrams, comparisons of experimental and théoretical
side wall profiles, and the graphical constructions
of the flow for these analyses are shown'in figures
13-23 inclusive. Because of lack of experimental
data, side wall profiles for F = 4 were not plotted.

NOTES ON THE USE OF THE METHOD OF CHARACTERISTICS

As pointed out previously, the characteristic
curves are constructed from the differential equat-
ion of the floﬁ. They #ﬁe a plof in polar coordin-
ates of V vs. 6. Their use enables on to analyze
the flow in a channel and determine the effect that
changes in diredtion have on the flow. Thg equation
silows that the effect of a change in direction in
supercritical flow is to change the velocity and the
depth -- the characteristic curves make possible the
quantitative determination of these changes.

L To analyze a given flow, it 1s neceasary first
to determine the V associated with the flow. V is
a vector having magnitude and direction. It is us-

ually most satisfactory to so orient the diagram that



the V, axis of the diagram is parallel to the in-
itial direction of flow in the channel. Since the
Froude number of the flow 1s known, the magnifude
of V may be directly determined from the relation-

ship:
qo, o F
VT e

This equation is derived on page 532 in the app-
endix and plotted in figure 24.

The point of the vector V corresponds to a
point on some epicycloid in the diagram. When the
flow is deflected through an angle ©, the point of
the velocity vector moves along the epicycloid and
the vector is rotated to a new position in the dia-
gram through the angle 6. The new point'gﬁ the epi-
cycloid represents a new region of the flow -- this
region is characterised by the magnitude and direct-
jon of the velocity vector and the depth which is a
unique function of V and is given by the relationship:
2 a7
This equation is plotted in figure 25. The dir-

ection of the disturbance line or standing wave re-

sulting from the change in direction of flow is given



by the mean of the perpendiculars to the epicycloid
at the two points representing the regions of flow
before and after the disturbance. This line 1s best
drawn for small deflédction angles by taking the per-
pendicular midway along the epicycloid batween the
two points. The perpendicular is easily drawn using
a graphical method which is very well described in
Dr. Ippen's paper (7).

We now present without proof some general rules
for the use of the method of characteristies. Full
discussions of these poihts gare to be found in Preis-
werk's memorandum (5).

1. A point in the characteristic diagram des-
cribes the depth and the magnitude and dirgﬁtion of
the velocity in a region of the flow plane.

2. When two disturbance lines of the same fam-
ily (1.e. disturbance 1ines emanating from the s ame
wall and thus represented by nerpendiculars to the
same family of epicycloids) meet, they converge to
form one disturbance line. ‘The three regions orig-

inally involved beccme two, the one between the two

disturbence lines diasappearing and the upper and lower

regions characterizing the new disturbance line.

iv'.
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3. When two disturbance lines of different
families meet, they cress. The four regions involved
form a parallelogram on the characteristics diagram.
Since three of the regions are known before the lines
cross, the fourth is always easlily determined.

4, When a disturbance line meets a straight
wall, it is reflected back 1nto the flow. The three
reglons involved lie in a triangle on the charac-
teristics diagram, the first and last reglons lying
on the same radial line. Since the first and sec-
ond reglon are known, thé third region is readily de-
termined.

5. It is very valuable in making a study using
this method, exzmpecially if the problem 1s complicated,
to adppt some type of systematic numberingqor let-
tering system for the points on the characteristic
diagram. A careful study of figures 10 and 12 will
show that this systemmtic approach glves a very good
checking method in the flow plane. The author ad-
vocates no particular numbering system. But any
systematic system ylelds valuable rewards in prov-
i1ding a continuous check agalnst erpors.

6, For flow along a smooth curved surface, such

as the contraction in figure 8, the curve 1s broken
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into 1, 2, or 4 degree arcs and approximated by a
series of short straight lines. The accuracy of

course increases as the increments are taeken smallar.

4‘,.
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DISCUSSION OF RESULTS

SYMMETRICAL CURVED CONTRACTION

within the length of the contraction the the-
oretical and experimental side wall profiles are
practically superimposed. although the experiment-
al profile tends to lag the theoretical. - This is
probably due to viscosity which gives & lower vel-
ocity along the wall than the avefage. The lag 1is
more considerable when the wave peak reaches the
center of the contraction. In general the amplit-
ude of the wave 18 decreased by viscous action in
the contraction.

Beyond the contraction & diamond shaped wave is
set up, both in theory and experiment. The tendency
in the theoretical wave js toward a very high peak
near the end of the contraction, this peék(rapidly
diminishing with ensuing waves. Theory shows that
this diminution is due to the convergence of dis-
turbance lines, and the resultant disappearance of
those regions which are characterlzed by great depthe.
The theoretical curves show the same tendency. In
a solely experimental study it would appear logical
to assyme that the diminution {s due to viscous
damping. It would be difficult, however, to explain

the steep slope of the wave envelope 1in the early

¥

llm.

e
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part of the channel, and the gradual slope of the
envelope in the lower regions. Here theory gives
us the answer. The steep slope of the envelope,
the rapid diminution of wave crésts, is due prim-
arily to dynamic damping, the convergence of dis-
turbance lines to give disturbance lines of lesser
intensity. In the lower regimns of the channel,
where all but two theoretical disturbance lines
have converged and the remaining two are parallel
and will never converge, the reason for the decreas
in wave height is completely viscoqs damping. Here
we get a true plcture of thse magnit@de of the vis-
cous effect. o
In the reglon where the theoretical disturb-
ance lines are parallel, the theoretical wave has
a wave length of 2.7 feet. 1In the same region the
actual wave has & wave length of 3.5 feet. The
ratio of actual to theoretical wave length is 1l.3.
In this one test this value means little, but it
would be interesting to determine from further re-
search the factors which effect this ratio. If these
factors are determinable, a step will have been

made in the science of predicting wave action in

advance of design.
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6.9 SHARP ANGLE CONTRACTION

This channel was studied for values of R of
2.71, 3.17, 3.56, and 4.00., No experimental data
were available for F = 4, but the.channel_was des-
igned for thls value. Accurately designed channels
should be waveless at the design F. This channel
appears to be slightly inaccurate, as shown by
the disturbance lines in the fileld of flow. If the
. channel were correctly designed, the disturbance
line originating at the upstream angle of the con-
traction would be reflected in such a manner that
it just met the downstream angle of the contraction.
Here an equal and opposite disturbance line is prop-
agated, which would exactly cancel the first dis-
turbance, leaving the channel waveless. As the chan-
nel is designed viscosity would undoubtedly brigg
about a quick damping of the wave which develops.

At F a 2.71 the side wall profile plot shows
quite good correlation within the contraction. Tpg_
incréases in depth are of course sudden in theory;
whereas agaln in practise viscoslty smooths out all
sudden changes and smooth curves result. The dis-
turbance wave propagated at the beginning of the con-

traction results in a sharp rise both in theory and
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experiment. This wave when reflected back to the
wadl gives another sharp rise theoretically, but
actually its influence has spread out and it\is
evidenced only by an inflection of the curve up-
ward.

Theoreticalliy - see the characteristics dia-
gram, figure 13 - the flow jumps into the suberit-
ical range toward the end of the contraction. 1In
reality it does not do this, but remains in the sup-
ercritical range. Apparently the slope of the chan-
nel 1is sufficisnt to maihtain supercritical flow,
whereas the theory assumes a level channel.

Here & problem arises. The characteristic
diagram gives no information for subcritical flow.
We are faced with the problem of plotting the depth
in the suberitical portion of the chamnel. A re-
lationship 1s derived on page 5, of the appendix,
stating:

(hpofp &k
H H 294 P b”

We may determine A at any pecint in the chan-
nel, since 1t 1s a constant throughout the channel.
If we choose the entrance, where h/H = 0.213 and

b=1Tft.:
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f= 62 8)2 ]
. /[,0454 —.0091] = 0357

At the contracted section b = 6.51
v

(%) _([’{’7)3_ ;_5;}7 - . 1428
This gives h/H = 0,737, which we sought.

At F a 3.17 quite good correlation was obtained
in the contraction, as at F a« 2.71. On leaving the
contraction theoretical and actuml flows both show
a drop and subsequently a rise. The several individ-
ual waves of the theoretical solution are replaced
by a much longer wave in the experimental flume.

At F = 3.56 thls same phenomenon is noted. This
seems to show a lack of aecuracy in the theory.

Further study may show some correlation bet&een

these two wave types.
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CONCLUSIONS

The method of characteristics has been shown
to show the trend of wave patterns 1n'channels
with flow at supercritical velocitles. An exper-
ienced man, faced with the design of a channel con-
traction, can make a theoretical study of a prop-
osed contraction and ﬁfedict qulite accuretely the
wave forms which will be present in the contraction
at farious Froude numbers and draw the sidewall
and centerline profiles which would result.

Beyond the contraction the effécts are not so
well defined. In the curved contraction it seems
that some correlation could be found between theor-
etical and actual wave length. Amplitudes ©f the
waves are predictable with some dggree of accuracy.
In the sharp angle contraction wave forms beyond the
contraction were very poorly approximated by theory.

It has been indicated, but not conclusiwvely

shown, that the method is most accurate between Froude

numbers of 3.5 and 7.0, that below this range the
effect of viscosity is considerable, and that at
higher Froude numbers the assumption of hydrostatic

pressure distribution loses its validity.

L
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TABLE I

Comparison of experimental and calculated

values of hp/hy and ﬂ

(From work of Coles and Shintaku (8))

10

ﬂ (Degrées)

1.665

2,130

2.180

1.276

l.464

1,680

2.170

2.880

Cal.
Eq. 7

22.83

19.67

14,50

13.42

13.67

Cal.
Eq. 8

29.30

19.38

15.00

11.25

9.27

Exp.

21.33

20,08

15.30

11.47

11.23

J



TABLE II

Solution of equation (14)

Information for plot of Jump Polar curves

Ve = -650 "l V.o =7.675 || 'Vxg ='.700 " f| "V ='.725
Vxo | Vy Vxo | Vy Veo | Vy Veo | Vy
.620 |.017 .650 |.018 .650 |.039 .700 |.025
+800 |.025 .625 |.031 600 |.0B1 .650 |.061
.580 | .030 .600 |.042 .550 |.069 .600 |.082
560 |.032 575 |.048 .525 |.065 550 |.090
.540 | .030 .550 |[.050 .500 |.058 .500 |.082
520 |.022 .525 |.046 475 |,038 475 |.068
508 | 0 .500 |.033 .460 | © .450 |.045
485 | 0 .436 | ©

Vg = 750 Vgy = 775 Vg = +800 Vx1 = .825
.700 |,051 .750 | .032 .750 1.065 .800 | .040
.650 |.085 700 | .079 .700 {,109 700 | 08
600 1,105 .650 | .110 .650 1,138 .600 | 139
550 [.112 .600 | .129 800 1,155 .550 | .182¢%
«500 1.106 .550 | 136 550 |.162 .500 | .188]
475 | 4096 .500 | .131 .500 |.157 450 | .18%
450 |.079 .450 | +110 450 [,139 400 | .169
.425 | 050 .400 | .55 .400 | .100 .350 | .138
412 | O I} .387 0 .361| 0O 335 | 071
0




TABLE II - Continued

V,, = -850 Vx1 = 875 Vyy = .900
Vx2 VY Vxeo VY Vxo Vy
.800 | .081 .850 | 051 || 850 | .101
2750 | .134 .800 | .122 | .800 | .165
700 | .170 750 | 174 || .750 | .209
+650 | .196 .700 | .,205 [ .700 | .231
600 | .211 650 | 4228 | 650 | o262
550 | .217 .600 | .242 | .600 | 275
500 | .214 550 | 247 || .550 | .281
450 | 197 500 | .244 | 500 | .278
«400 | .174 450 | 232 || 450 | .267
o375 | .153 <400 | +210 || 400 | .247
+350 | .126 350 | J171 || .350 | .215
+325 | .081 0325 | J142 || <325 | .192
306 0 300 | .100 || 300 | .163

277 0 275 | .122
.246 0




TABLE II - Continued

Vg = -925 Vo = +950 Vyy = 975
Vx2 Vy Vx2 Vy Vxo Vy
.900 667 .925 .079 .950 .098
.875 .115 900 .132 925 .156
850 .152 .875 172 900 .199
.800 209 850 .205 .850 0263
.750 .249 .800 256 800 «309
700 .278 700 320 .700 «369
600 2311 600 351 600 «399
500 .314 500 | 4355 500 .403
400 .287 +450 343 400 .384
350 259 400 331 +350 .373
300 .218 +350 305 300 336
275 .189 300 273 +250 .298
+250 .151 +250 223 .225 .273
.225 .092 225 .189 200 .243
212 0 +200 .143 175 205
171 0 150 .158

.125 076

.118 0




TABLE III

Ve

Values for plot of epicycloid between circkes

of radius]%Pand 1.0

) 0 ;;kage _ )

deg. | V deg.| V deg.| V deg.| V
0 0077 13 | 773 26 |.874 29 «943
1 613 14 | .782 27 |.880 40 948
2 «635 15 | .791 28 | .886 41 .952
3 «651 16 | .799 29 | .893 42 .956
4 .666 17 | .808 30 |.900 43 «960
) «683 18 | .817 31 |.905 44 «963
6 .695 19 | .825 32 | 910 45 «966
7 «709 20 | .833 33 |.915 46 969
8 720 21 |.840 34 |.920 47 .972
9 «731 22 | .848 35 | .925 48 «976

10 o742 23 | .855 36 | «930 49 .978

11 753 24 | .861 37 | 935 50 .980

12 | .763] 25 |.868 | 38 |.939 | 65 15]1.750
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DERIVATION OF RELATIONSHIP BETWEEN V AND F

By definition:

A 2yt 2, oh[?
And agalin by definition:

7V 72 Vv 2 -1

 — 2 — =1 H

V/@ v 203 V" =294V (2)
Combining (1) and (2):

ghft = 29H V"

h 297" 9y’

H < ng = F’* (5)
From the energy equation:

VPyh<d

19 ,

VEoyh oo

294 H )

h o, V5 gt
Combining (3) and (4)

NP o

T [-V

W rt PR Lo

vt P’ ;- F

14 F oz

This equation is plotted in the following figure.
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DERIVATION OF EQUATION GIVING % WHEN FLOW

ENTERS SUBCRITICAL RANGE

Writing the energy equation:

Vl

5+ h=H
29

Substituting V> Q. e

¥ 4 bh
A {h=H

29 Iy

Multiplying by h? and dividing by HO:

QR* h 2
e K - )
3

h\* h o’
W) —hﬁ ERETTINE

-56=

We make the assumption of zero energy dilssipation,

hence H is constant, and the eauation becomes:

> .

(h ¥

-rh)’: 4
' A b7

Where A, a constant determinable at some point in

the channel where conditions are known, is given by:

o’
YTE
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(4)

(5)

(6)

(7)
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