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Abstract we study, numerically, the behavior of capillary pressure (P,) during slow immiscible
displacement in a rough fracture as a function of the degree of fracture aperture heterogeneity that results
from two distinct mechanisms: normal confining stress and fracture surface correlation. We generate
synthetic self-affine rough fractures at different correlation scales, solve the elastic contact problem to
model the effect of confining stress, and simulate slow immiscible displacement of a wetting fluid by a
nonwetting one using a modified invasion percolation model that accounts for in-plane curvature of the
fluid-fluid interface. Our modeling results indicate that the power spectral density, S(f), of P., can be used
to qualitatively characterize fracture aperture heterogeneity. We show that the distribution of forward
avalanche sizes follows a power law N (S ) o« S7%, with exponent & = 2, in agreement with previously
reported values for porous media and equal to the expected theoretical exponent for a self-organized
criticality process.

1. Introduction

The slow immiscible displacement of a wetting fluid by a nonwetting one in porous media, a process known
as drainage, is governed by capillary forces (Holtzman et al., 2012; Lenormand et al., 1983, 1988; Mélgy et al.,
1992; Wilkinson & Willemsen, 1983). This flow regime has a number of important practical applications,
such as geological CO, storage (Pruess, 2008), underground nuclear waste disposal (Nuske et al., 2010), and
secondary oil migration (Meakin et al., 1992). During slow drainage in porous media, the invasion process
is marked by intermittency with bursts of fluid invasion, or avalanches, in which capillary pressure fluctu-
ates rapidly, followed by quiescent periods with no interface motion (Berg et al., 2013; Biswas et al., 2018;
Furuberg et al., 1996; Haines, 1930; Mélgy et al., 1992; Moebius & Or, 2014). Experiments and numerical sim-
ulations have shown that these rapid capillary pressure fluctuations depend on the degree of organization
of the porous medium (Biswas et al., 2018; Moura et al., 2017).

While porous rocks account for the bulk of fluid volume in the subsurface, in low permeability media most
of the fluid flow may take place through networks of interconnected fractures. Natural fractures differ sig-
nificantly from porous media because they consist of rough surfaces with variable degree of roughness and
a distinct self-affine correlation structure (Brown, 1995; Brown & Scholz, 1985a; Power & Tullis, 1991).
Another key difference is that, in its natural setting, a single fracture is subject to large geological confin-
ing stresses that compress the two sides of the rough fracture and reduce the available space for fluid flow
(Brown & Scholz, 1985b; Jaeger & Cook, 1979; Kang et al., 2016; Pyrak-Nolte & Nolte, 2016; Pyrak-Nolte &
Morris, 2000; Wang & Cardenas, 2016; Zimmerman & Bodvarsson, 1996). Thus, given these differences rela-
tive to porous media, it is unclear whether capillary pressure during slow drainage through a rough fracture,
at different confining stresses, behaves similarly to its porous media counterpart.

Previous investigations of drainage through rough fractures have focused on the impact of confining stress
on macroscopic properties such as relative permeability and pressure-saturation relations. Experiments and
numerical modeling have shown that increasing confining stress increases fracture roughness and fracture
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contact area, resulting in lower relative permeability values and a reduction in displacement efficiency
(Bertels etal., 2001; Huo & Benson, 2016; Lian & Cheng, 2012; McDonald et al., 1991; Pyrak-Nolte et al., 1990;
Watanabe et al., 2015). Similarly, the capillary pressure-saturation relation for slow drainage through rough
fractures has been modeled using empirical and semianalytic models obtained for porous media, such as
Brooks-Corey (Brooks & Corey, 1964), van Genuchten (van Genuchten, 1980), and v-type models (Watanabe
et al., 2015). Measurements of the capillary pressure-saturation relationship during slow drainage through
a natural rough fracture have shown good agreement with the Brooks-Corey function (Reitsma & Kueper,
1994), whereas numerical simulations using a continuum-based model indicates that both Brooks-Corey
and van Genuchten models yield similar results (Yang et al., 2013). These experiments and numerical simu-
lations were conducted under prescribed pressure, which is slowly increased in order to force invasion into
the fracture. Here, in contrast, we are interested in the capillary pressure behavior for a flow rate controlled
boundary condition, which allows capillary pressure to vary as the invasion into the fracture proceeds.

Measurements and simulations of capillary pressure (P,) during slow drainage have been extensively
reported for the case of imposed flow rate in porous media (Aker et al., 2000; Biswas et al., 2018; Furuberg
et al., 1996; Malay et al., 1992; Moebius & Or, 2014; Moura et al., 2015, 2017). Similar measurements for a
rough fracture are scarce. Persoff and Pruess (1995) were the first ones to report, experimentally, P, vari-
ations during slow drainage through a rough fracture. In their experimental configuration, the fracture
aperture structure was kept constant and the boundary conditions were changed. They observed strong
phase interference and cyclical pressure variations, associated with flow instabilities, that were interpreted
as the interaction between capillary pressure and pressure drop due to viscous flow. Auradou et al. (2003)
numerically modeled P, in a vertical gouge-filled fracture but did not investigate the sensitivity of P, to the
degree of fracture aperture heterogeneity. Other studies of drainage through rough fractures have focused,
for example, in the quantification of amount of trapping of the defending phase (Yang et al., 2016) and
crossover from capillary fingering to viscous fingering (Chen et al., 2017; Chen, Guo, W, et al., 2018; Chen,
Wu, Fang, et al., 2018).

In addition to characterizing P, variations, we are interested in characterizing avalanches, or invasion
bursts, associated with the rapid capillary pressure fluctuations in rough fractures. The scaling behavior of
avalanche size is well known for drainage in porous media (Aker et al., 2000; Biswas et al., 2018; Maslov,
1995), but it is unclear whether such scaling extends to slow drainage through a rough fracture.

In our numerical simulations, we first generate self-affine fracture surfaces with different degrees of spatial
correlation (Brown, 1995), solve the elastic contact problem between both surfaces to model the impact of
confining stress (Kang et al., 2016), and then perform simulations of slow drainage using both the original
invasion percolation algorithm (Wilkinson & Willemsen, 1983) and a modified invasion percolation method
that accounts for the fluid-fluid in-plane curvature (Glass et al., 1998, 2003 ; Yang et al., 2012). Here, we
design our numerical experiment to mimic a condition of controlled volume (constant flow rate). The idea
behind “volume control” is that the displacement—assumed to be quasi-static—is conducted one pixel at
a time, which permits in turn to track the minimum capillary entry pressure (or, simply, the capillary pres-
sure) at each single-pixel invasion event. This capillary pressure record exhibits positive and negative jumps
through the displacement process. This differs from “pressure control,” a protocol in which, even if the dis-
placement is assumed to be quasi-static, the capillary pressure is monotonically increasing, with associated
avalanches in the volume of fluid displaced. We then analyze the behavior of the capillary pressure as a func-
tion of the degree of heterogeneity in the aperture field that results from different confining stresses and
different fracture aperture correlation lengths.

2. Rough Fracture Generation and Flow Modeling

2.1. Fracture Aperture Generation

We construct synthetic rough-walled fractures using the spectral synthesis method (Brown, 1995; Kanget al.,
2016). In this method, each fracture surface is decomposed into its power spectral density function and a
phase spectrum. The power spectral density G(k) exhibits a power law decay with wavenumber k = 27/ 4,
where A is wavelength, as

G(k) = Ck~¢, €Y

where the exponent ¢ is related to the fractal dimension D of the fracture surface as D = (7 — £)/2 and
the intercept C is determined by the standard deviation of surface heights o; . Measurements of surface

DA SILVA ET AL.

7425



Geophysical Research Letters 10.1029/2019GL082744

a) aperture (mm) b) aperture (mm)

0.8 14
o
_S 1.2
A0'6 Low ]
Ig Stress g 1.0
& s
0.4 g 0.8
S
&
3 0.6
0.2 v
High
Stress 0.4
0.0 -
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 1074 103 1072 107!
b/b Confining stress (MPa)

Figure 1. (a) Example of fracture aperture at low confining stress, o,, = 0.02 MPa. Here, we show an aperture field
generated from self-affine fracture surfaces with mismatch length scale L. = L/8. (b) Same as (a) but for a larger
confining stress, o, = 0.15 MPa. The white arrows indicate the flow direction. (c) Cumulative aperture distribution,
Fg(b/b), at different confining stresses. Each line corresponds to the average of 20 fracture aperture fields. (d) Average
coefficient of variation, 6 = o},/ b, where oy is the aperture standard deviation and b is the mean fracture aperture, as a
function of confining stress.

roughness in several rock fractures have shown that D tends to fall in the range 2 < D < 2.5 (Brown &
Scholz, 1985a). Values of D close to 2 and 2.5 result in smoother and rougher surfaces, respectively (Brown
& Scholz, 1985a; Power & Tullis, 1991). Here we fix D = 2.5 to construct rough surfaces.

The phase spectrum of an individual fracture surface is assumed to be a random process independent of
the frequency. Thus, different fracture surfaces can be generated by changing the seed used in the random
number generator. Measurements of the fracture surface heights have shown that they are uncorrelated at
small wavelengths and correlated at long wavelengths (Brown & Scholz, 1985a). To model this process, Kang
et al. (2016) introduced a phase correlation function y = %[1 + erf(— kke )], where u is a model parameter
that determines the rate of correlation decay, here fixed at 4 = 6. k, = 1/L, is the wavenumber at which the
phase correlation between top and bottom surfaces is 0.5, and L, is the mismatch length scale, beyond which
the fracture surfaces are correlated. Here we choose L, = L/8, L/16, L/32, L /64, where L is the domain
size, to investigate also the impact of the fracture correlation length, along with confining stresses, on the
capillary pressure behavior.

Based on previous work, we construct a numerical model of a synthetic fracture with dimensions of
0.65 m X 0.65 m (Neuweiler et al., 2004; Yang et al., 2012). We discretize the fracture surface using
1,024x1, 024 pixels, where each pixel has dimensions dx = dy = 0.63 mm, and generate several fracture sur-
faces using different seeds for the random number generator. Figure 1a shows an example of the resulting
fracture aperture field.
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2.2. Modeling the Impact of Confining Stress on Fracture Aperture

We consider fracture apertures generated from self-affine fracture surfaces with different correlation lengths.
To model the impact of confining stress on the fracture aperture, we assume a linear elastic medium and
follow the procedure described in Kang et al. (2016). The fracture aperture is represented by its composite
topography (Brown, 1995), which is given by the sum of the fracture surface heights relative to a parallel
reference plate.

We model the deformation of the aperture field, represented by its composite topography, as a flat rigid
surface makes contact with it. The deformation of the composite topography is constrained such that there
is no interpenetration between the two surfaces. In the areas where interpenetration occurs, resulting in
an aperture less than or equal to zero, the compressive normal stress S(x,y) is positive and the composite
topography surface deforms elastically. In areas where the aperture is greater than zero, the compressive
stress is zero. This is a mixed boundary value problem, where displacements are defined over parts of the
surface and normal stress over the remainder of the surface.

To model the elastic displacement of the composite topography due to an applied normal stress S(x,y),
we use the analytical solution for normal displacement due to a point force on an elastic half-space

known as Boussinesq solution, B(r) = (;(V;)% , where r is the distance to where the point load is applied,

r = \/ (x—=x')?>+ (y — y')?, v is the Poisson ratio, and G is the shear modulus. The normal displace-
ment w(x,y) due to stress field S(x,y) is obtained by convolution of the Boussinesq solution: w(x,y) =
[/ S, y)B(rydx'dy’ (Andrews, 1988; Unger & Mase, 1993) . The solution to the mixed boundary value
problem is obtained using the two-dimensional Fast Fourier Transform (FFT), which makes the solution
biperiodic (Kang et al., 2016). In our simulations, we used G = 20 GPa and v = 0.25, which are values
corresponding to Berea sandstone under confining stress around 30 MPa (Mavko et al., 2009).

The elastic deformation is controlled by the effective stress, which is the difference between confining total
stress and fluid pressure. Because we assume quasi-static displacements, the viscous pressure drop is zero,
and the only contribution to pressure differences within the fracture is the capillary pressure. Values of
capillary pressure in our system are ~1 kPa, several orders of magnitude smaller than confining stresses
~1 MPa (Figure 1d). Thus, it is reasonable to assume that the influence of fluid pressure variations within
the fracture can be neglected.

The solution is obtained by iteratively updating S(x, y) until the stress field satisfies the zero-interpenetration
condition everywhere. During the iteration, where there is an overlap (negative fracture aperture), the
normal stress is changed to be more compressive. The normal stress is used to recalculate the elastic displace-
ment, the aperture is then recalculated, and the procedure is repeated until a threshold value is met. Solving
the elastic deformation problem does lead to different fracture geometry compared with simply removing
the overlaps between the two surfaces, especially at high normal stress.

As expected, a high confining stress leads to large contact area between the fracture surfaces, while a low
confining stress results in almost no contact area. This behavior can be synthesized by computing variations
in the cumulative fracture aperture, Fyz(b), with the confining stress (Figure 1c). Increasing the confining
stress causes the mean fracture aperture to decrease and the standard deviation to increase. We have verified
that the shape of Fj is nearly independent of the fracture correlation length scale, indicating that variations
in the confining stress exert the main control in the cumulative fracture aperture distribution.

2.3. Modified Invasion Percolation (MIP)

Invasion Percolation (IP) was introduced by Wilkinson and Willemsen (1983) as an extension of ordinary
percolation (Broadbent & Hammersley, 1957) to model the slow immiscible displacement of a wetting fluid
by a nonwetting one in porous media. In the IP model, it is assumed that flow is quasi-static, and therefore,
viscous forces vanish and flow is controlled by the capillary pressure at the interface between the two fluids.

To simulate slow drainage through horizontal rough fractures shown in Figure 1, we use the original IP
model (Wilkinson & Willemsen, 1983) and a MIP model to account for the fluid-fluid interface curvature
on the plane of the fracture (Glass et al., 1998, 2003; Yang et al., 2012). In both IP models, we allow for trap-
ping of the defending fluid. The MIP model was originally proposed by Glass et al. (1998)—they introduced
a “curvature number” C controlling the influence of the in-plane curvature relative to the aperture-induced
curvature. Later, this approach to account for the in-plane curvature was modified by Yang et al. (2012),
who proposed local fitting of a circle to estimate the in-plane curvature along the fluid-fluid interface. These
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studies have shown that in-plane curvature can significantly influence the predictions of fluid trapping
(Glass et al., 2003; Yang et al., 2016).

We conceptualize the fracture aperture as a square lattice where each pixel has a fourfold connectivity to the
neighbor pixels on the lattice. Flow occurs from the left boundary to the right boundary of the fracture, with
no flow through the top and bottom boundaries (Figure 1b). The threshold invading pressure for each site on
the fracture plane is calculated according to aperture and interface geometries. The site which is connected
to the invasion boundary (nonwetting fluid) and has the smallest threshold invading pressure is identified
and invaded. This event modifies the list of available sites connected to the nonwetting phase, and again,
available sites are sorted and the site with the smallest pressure is invaded, and so on. We take into account
defending phase trapping; that is, the sites that are surrounded by the invading fluid are removed from the
list of available sites.

The threshold invading pressure, assuming that the pressure in the defending phase is negligible, is
calculated according to the Young-Laplace equation as

Pc=2yH=y(k1+k2)=y<l+l>, @)
non

where y is the interfacial tension (here taken to be y = 72 mN/m, considering an air-water system at a
temperature of 25 °C), H is the mean curvature, k; = 1/r, and k, = 1/r, are the two principal curvatures
with radii r; and r,, respectively. k; is termed the out-of-plane or aperture-induced curvature, and k, is the
in-plane curvature. Assuming that the fracture walls are symmetric about a mean plane, r, is related to the
local aperture b and the contact angle 6 as r; = b/(2 cos #). The aperture-induced radius r, is always positive
since b is always positive and for strong drainage we have 0 < 6 <« 90°. To compute the in-plane curvature
k,, we use the adaptive circle-fitting method proposed by Yang et al. (2012). In this method, the in-plane
radius of curvature r, is adaptively computed by fitting a circle using the coordinates of the neighboring
interfaces sites to a local point (Figure S1 in the supporting information [SI]). Note that, in contrast to r,
the radius of curvature r, can be either positive or negative, depending on whether the fluid-fluid interface
is convex or concave, respectively (Figure S1 in the SI).

When the fracture aperture is very small, the in-plane curvature k, can be neglected by assuming it to be
much smaller than k; (or r, much smaller than r,). If this assumption is valid, then the invading pressure
can be approximated as P;,, ~ 2y cos 8/b. This assumption has been invoked in modeling multiphase flow

through rough fractures (Wagner et al., 1997, 1999; Ye et al., 2015, 2017). Here we investigate also the extent
to which neglecting the in-plane curvature is a valid assumption.

3. Impact of Aperture Heterogeneity on Capillary Pressure Behavior

3.1. Capillary Pressure Behavior in a Random Fracture

It is useful to first consider the behavior of P, for a spatially uncorrelated random aperture field, in the
absence of confining stress. This case is an end-member case for later comparison with aperture fields gen-
erated from self-affine fracture surfaces. We generate 60 random uniformly distributed fracture aperture
fields with mean b = 1.5 mm and coefficient of variation 6 = 0.57. Here, the fracture dimension is the same
as the one described previously (0.65 m X 0.65 m).

We run simulations of capillary invasion using the standard IP and the MIP models and track the local
capillary pressure, P,, by reporting for each invaded location the threshold pressure required for an invasion
to occur. The threshold capillary pressure for a given pixel changes as the invasion front advances and is
updated according to equation (2). We apply a spatial medium filter with a distance of 2 pixels (on each
side of the invaded location) to remove numerical artifacts brought by the jagged numerical interface. Our
record of P, is a measure of the minimum capillary pressure required for an invasion to occur at each menisci
configuration. Similar measurements in porous media have been obtained experimentally (Aker et al., 2000;
Biswas et al., 2018; Moebius & Or, 2014; Moura et al., 2017). These experiments were conducted at very low
flow rates, where it was assumed that the measured capillary pressure is the local capillary pressure. Recent
numerical simulations in porous media have also used the local capillary pressure from the IP invasion to
investigate pressure and saturation relations for different sample sizes (Moura et al., 2015).

As an example, we show, in Figure 2a, P, records from IP simulations with and without in-plane curvature
for a completely uncorrelated uniformly distributed fracture aperture field. As expected, P, values in both
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Figure 2. Behavior of capillary pressure (P,) during invasion percolation (IP) invasion in a uniform-distributed random
fracture aperture field. (a) P, variation for IP with (blue) and without (red) in-plane curvature. P, is normalized by the
capillary pressure computed using the average fracture aperture. (b) Average power spectral density of the normalized
P, for IP with and without in-plane curvature. The black dashed lines are linear fits to the data and have slopes

B ~ 0.07 and g =~ 0.51 for IP models with and without in-plane curvature, respectively. (c) Definition of hierarchical
avalanches according to Maslov (1995) and Furuberg et al. (1996). (d) Distribution of hierarchical avalanche sizes for a
random fracture for IP with and without in-plane curvature. Both follow a power law distribution with exponent a = 2,
in agreement with the theoretical exponent for self-organized criticality (Maslov, 1995).

cases appear uncorrelated and without any macroscopic structure. The minimum value of the normalized
P, without in-plane curvature is not a constant of 0.5 but instead shows variations that can be observed when
a narrow range of invaded volumes is shown. Invasion percolation with in-plane curvature results in larger
P.. This result of larger P, is consistent with displacement processes where the invading fluid flows through
small aperture areas inaccessible to invasion in the case of IP without in-plane curvature, thus reducing the
amount of trapping of the defending fluid (Yang et al., 2016).

The power spectral density, S(f), of the capillary pressure record reveals the connection between P, and the
structure of the aperture field. It also elucidates the impact of considering the in-plane curvature in our IP
simulations. To compute S(f), we use the Welch method (Welch, 1967). Our results suggest that S(f) follows
a power law S(f) « f*, with § ~ 0.38 and # ~ 0.51 for IP model with and without in-plane curvature,
respectively (Figure 2b). Thus, despite our random uncorrelated fracture aperture structure, the invasion
process self-organizes, although weakly, resulting in nonflat S(f).

To further validate the P, records from our numerical simulations, we use well-established scaling laws
for the occurrence of hierarchical forward avalanches, N¢(Sp), which have been employed to character-
ize drainage in porous media (Aker et al., 2000; Biswas et al., 2018; Furuberg et al., 1996; Maslov, 1995)
(Figures 2c and 2d). The scaling behavior of Ny(Sy) is valid for a broad class of models that are known
to self-organize in critical states (self-organized criticality model), such as IP in porous media (Maslov,
1995; Paczuski et al., 1996), landslide and forest fire occurrence (Turcotte et al., 2002), and earthquake
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Figure 3. Behavior of capillary pressure (P,) for invasion percolation (IP) models with and without in-plane curvature
and for self-affine fracture surfaces at two different confining stresses. In these two cases, the mismatch length scale is
fixed at L. = L/8. (a) P, for IP with and without in-plane curvature for fracture aperture fields containing one location
of contact (6 = 0.23, first contact). (b) Same as (a) but for a confining stress of o,, = 0.4 MPa (6 = 1.33). In both cases P,
is normalized by the capillary pressure computed using the respective average fracture aperture. (c) Distribution of
avalanche sizes, N¢(Sp), for IP without in-plane curvature and different confining stresses. (d) Same as (c) but for IP
with in-plane curvature. (e) Power spectral density, S(f), of P, for IP without in-plane curvature and different confining
stresses. (f) Same as (e) but for IP with in-plane curvature.
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frequency-magnitude scaling (Bak & Tang, 1989). In the context of drainage in porous and fractured media,
the distribution of avalanches informs whether the invasion occurs via events of relatively homogeneous
sizes (narrow avalanche size distribution) or, instead, via events of very disparate sizes (e.g., a wide power
law distribution for which one cannot define a standard deviation).

Thus, similar to the drainage processes in porous media, the rapid capillary pressure fluctuations observed
in our numerical simulations are associated with avalanches or bursts of activity (Maley et al., 1992). An
avalanche starts when P, drops suddenly and stops when P, increases to a value above the pressure that
initiated the burst (Figure 2c). Therefore, an avalanche may consist of a large pressure valley containing
a hierarchical distribution of smaller pressure jumps within it (Figure 2c). Avalanches are associated with
fluid advancement through areas of larger fracture apertures, associated with low capillary entry pressure
values, up to the point where its advancement stops at an area of small fracture aperture, which requires the
capillary pressure to increase in order to overcome the new barrier.

For a broad class of models with intermittent behavior, under the condition that the measured capillary
pressure is the local capillary pressure, Maslov (1995) showed that the probability distribution of forward
avalanches, Nf(Sf), follows a power law

N/(S,) =577, (3)

where S¢ is the forward avalanche size, defined as the number of invaded sites during an avalanche. The
power law exponent « was predicted to be « = 2 for all invasion models showing intermittent behavior of
activity (Maslov, 1995). For our completely random fracture aperture, our measurements of the distribution
of avalanche sizes, using both IP models, are in good agreement with the theoretical exponent predicted by
Maslov (1995; Figure 2d). Our results are also consistent with previous numerical simulations performed
by Furuberg et al. (1996), who obtained « = 2.00 + 0.01 for a porous media case, experiments performed by
(Aker et al., 2000), using a porous media composed of glass beads, where « = 1.9 + 0.1, and drying experi-
ments reported by Biswas et al. (2018), where @ = 1.99 + 0.05. This agreement points to the validity of the
P, records from our simulations of quasi-static drainage in rough fractures, which we analyze further next.

3.2. Capillary Pressure Behavior in a Self-Affine Fracture
We now explore the behavior of the local capillary pressure, P,, during slow drainage through fracture
aperture fields generated from self-affine fracture surfaces.

For fracture surfaces at first contact (no confining stress), P, for IP with and without in-plane curvature
show similar mean variations that are proportional to the mean fracture aperture (Figure 3a). As expected,
IP without in-plane curvature does not invade small aperture areas, resulting in smaller invading phase
saturation (Yang et al., 2012). For highly stressed fracture surfaces, the standard and modified IP models
show large drops in P, that occur when the invading fluid reaches an area of large fracture aperture, as
revealed by the records of local P, fluctuations during invasion (Figure 3b). The capillary pressure then
increases gradually as the invading fluid moves into the small fracture aperture areas. The invading fluid
then breaks into another area of large fracture aperture and the process repeats. This process is more evident
for very heterogeneous fracture apertures, as is the case for high confining stress (Figure 3b). In this case,
the large P, variations are related to the increase in fracture surface contact area and the reduction of the
mean aperture when a confining stress is applied (Figure 1b).

The local coefficient of variation (6 = o,/b), which quantifies the degree of variability of the aperture field
relative to the mean aperture, controls whether IP with and without in-plane curvature, and for fracture
aperture at any confining stress amount, will yield similar results. The coefficient of variation controls the
roughening and smoothing of the fluid-fluid interface and consequently the degree to which the in-plane
curvature can impact P,. For a self-affine fracture surface with nearly constant ¢, throughout the domain,
locally large 6 values will result from locally small aperture values, a situation that leads to small differences
between the two IP models. Smaller § values, on the contrary, correspond to larger mean aperture values,
where the in-plane curvature has larger impact on P,, resulting in larger differences between the two IP
models.

We quantify the avalanche behavior during invasion, using the standard and modified IP models, by com-
puting the probability distribution of forward avalanche sizes, Ny(S;) (equation (3)). We find that, for the
standard IP model where in-plane curvature is neglected, the probability of forward avalanches follows a
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Figure 4. Capillary pressure power spectrum S(f) (left column) and avalanche size distribution Ny(Sy) (right column)
as a function of confining stress and fracture aperture correlation length scale for invasion percolation model with
in-plane curvature. (a, c, e, g) S(f) for L. = L/8, L/16, L/32, and L/64, respectively. (b, d, f, h) Nf(Sf) for

L.=L/8, L/16, L/32, and L/64, respectively. The black dots represent results for fracture surfaces at first contact. The

solid line with slope —1.5, for S(f), is a guide-to-eye line to indicate the approximate slope for results at high confining
stresses (larger § values). The solid lines with slope -2, for N¢(Sp) distribution, represent the theoretical power law

decay for avalanche size distribution from Maslov (1995).

DA SILVA ET AL.

7432



~1
AGU

Geophysical Research Letters 10.1029/2019GL082744

power law N ,(S,) o S;”‘, with @ ~ 1.55 (Figure 3c). In contrast, for the modified IP model where in-plane
curvature is accounted for, the same avalanche size distribution also follows a power law but with a ~ 2
(Figure 3d). In both cases, the power law exponent a does not change as the fracture aperture changes from
first contact case to the highly stressed case. Our expectation for a = 2 exponent is due to (1) the theoretical
results for SOC processes (Maslov, 1995), (2) the fact that a similar exponent is observed for porous media
displacements (Aker et al., 2000; Biswas et al., 2018; Furuberg et al., 1996), and most importantly (3) the fact
that this is the exponent observed for purely random fractures with no spatial correlation in the fracture gap
(Figure 2). The fact that the distribution of avalanche sizes for IP without in-plane curvature deviates from
the theoretical power law with exponent « = 2 (Figure 3c) suggests that it lacks the necessary physics to
properly model the invasion process through a self-affine rough fracture. Therefore, our results support the
validity of the MIP model with in-plane curvature as the rough fracture analogue of the IP model in porous
media, even for very highly stressed fracture surfaces.

To further quantify the differences between the capillary pressure behavior during invasion for IP models
with and without in-plane curvature, we computed the power spectral density, S(f), of P,. For IP model with-
out in-plane curvature, S(f) decays as a power law for nearly all frequencies (Figure 3e). IP with in-plane
curvature, in contrast, exhibits a decay in S(f) at low frequencies but a stagnation at high frequencies
(Figure 3f). Thus, our results indicate a decrease of self-organization when in-plane curvature is included.
This decrease in self-organization appears to be larger for fracture surfaces at first contact, in agreement with
the notion that in-plane curvature dominates the P, behavior for very large fracture apertures (1/r, > 1/r,
in equation (3)).

Finally, for a self-affine surface at first contact, we have verified that the scaling exponent for the distribution
of avalanche sizes, a, and the behavior of S(f) of P, are almost insensitive to the grid size (see Figures S2 and
S3 in the SI). Thus, in the remainder of the paper, we use a grid of 1,024 x 1, 024 pixels.

3.3. Impact of Confining Stress on Capillary Pressure Behavior

We focus on a self-affine fracture, with different correlation lengths, and we now investigate the impact of
confining stress on the capillary pressure behavior. Here, we concentrate on results with the MIP model
where in-plane curvature is used, since this model incorporates the necessary physics to reproduce the
expected scaling of forward avalanches. The results shown in this section were produced by averaging, for
each stress level, the results of 20 statistically similar fracture apertures generated using different random
number seeds.

At high confining stresses, S(f) follows a power law as S(f) « f#, with g ~ 1.5, for the entire frequency range
and for all fracture correlation length scales, L, (Figures 4a, 4c, 4e, and 4g). As the confining stress decreases,
and for all L, cases shown here, S(f) tends to nearly white noise at high frequencies. At low frequencies, S(f)
tends to flatten as the fracture aperture correlation length scale decreases from L, = L/8 to L, = L/64. Thus,
our numerical simulations indicate a decrease in self-organization of the invasion process as the confining
stress decreases and when fracture aperture correlation becomes smaller. It is interesting that the impact of
these sources of fracture aperture heterogeneity in the S(f) of P, is in separate ranges of the power spectrum:
a decrease in stress flattens the high frequencies, whereas a decrease in correlation length flattens the low
frequencies.

Finally, we have verified that the distribution of avalanche sizes decays as a power law N(s) « s*, with
the exponent @ = 2 being independent of the applied confining stress and the fracture correlation length
(Figures 4b, 4d, 4f, and 4h). This result points to the validity of the P, measurements reported in our numeri-
cal simulations for different confining stresses, and for different aperture correlation lengths, using the MIP
model that accounts for fluid-fluid curvature. In contrast, the distribution of avalanche sizes for IP without
in-plane curvature does not follow a power law decay with a« = 2, suggesting that the theoretical universal
scaling is only recovered in the modified IP model (Figure S4 of the SI).

4. Discussion and Conclusions

Moura et al. (2017) observed a transition in the power spectrum of P, during drainage in porous media,
from 1/f at low frequencies to 1/f* at higher frequencies, which they could explain due to the exponential
viscous relaxation following a burst in their experimental system. As our system is strictly quasi-static with
no viscous dissipation, we suspect that the origin of self-organization in our model is intimately related to
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the coefficient of variation of the fracture aperture, 6 = o,/ b, and that the transition we observe is related
to spatial organization, rather than to temporal organization. For § < 1 (low stress), the in-plane curvature
dominates the aperture-induced curvature (1/r, < 1/r, in equation (2)), since the average fracture aperture
is larger than the aperture standard deviation. For § > 1, the opposite occurs (1/r, < 1/r;), since the
average fracture aperture is smaller than the aperture standard deviation, and thus, the in-plane curvature
has a smaller impact on P,. We hypothesize that the departure from self-organization at high frequencies
can be attributed to the preponderance of negative in-plane curvatures at high stress, where the low-aperture
regions act as “pinning sites” for the evolution of the interface (Jung et al., 2016; Primkulov et al., 2018).

The observation that our recorded distribution of forward avalanche sizes, Ni(Sp), decays as a power law,
N,(Sy) o S;Z, is new for the MIP model in rough fractures. This broad property of the MIP model suggests
that it may embody the key physics for simulating slow immiscible displacement through rough fractures,
in contrast with the original IP model. Since the MIP model is quasi-static, however, it does not permit
investigating the cumulative distribution of Haines jumps (Haines, 1930), a phenomenon that has been
extensively studied, accompanied by avalanches, in similar investigations in porous media (Berg et al., 2013;
Furuberg et al., 1996; Malay et al., 1992; Moebius & Or, 2014; Moura et al., 2015, 2017).

We have shown that a key parameter controlling the behavior of P, in a rough fracture is the coefficient of
variation 6 = ¢, /b. For a self-affine fracture, we observe the evolution of P, from a weakly self-organized
state at low 6 values, at low confining stress and for fracture surfaces with large correlation length, to a
strongly self-organized state at large  values, at high confining stress and fracture surfaces with small cor-
relation length. Here, we have employed a global § value and assumed that it is representative of the entire
fracture. It is likely that local  variations are also relevant, because in the evaluation of P, only a few sites
near the would-be-invaded location are used in the computation of the in-plane curvature, suggesting that P,
may be sensitive to § changes throughout the fracture domain, as, for example, in the case of correlated frac-
ture surfaces (Yang et al., 2016). Further numerical investigation is required to fully understand the impact
of heterogeneous 6 on the behavior of P..

While the impact of in-plane curvature on slow drainage in rough fractures was not considered in several ear-
lier studies (e.g., Amundsen et al., 1999; Murphy & Thomson, 1993; Wagner et al., 1997, 1999; Ye et al., 2015,
2017), our comparison between IP with and without in-plane curvature shows that the original IP model
deviates from the theoretical scaling of hierarchical avalanche sizes, supporting the notion that in-plane
curvature is an important mechanism in modeling immiscible flow displacement, even at large confining
stresses and large degrees of fracture aperture correlation.

Correlated fracture aperture fields and variations in the normal confining stress are distinct mechanisms
that can result in different degrees of fracture aperture heterogeneity. Interestingly, our results indicate that
each mechanism impacts the capillary pressure during slow drainage in a different range of the P, power
spectrum. In both cases, we show that the slow drainage behavior becomes less self-organized when both
the fracture aperture correlation length and the confining stress decrease. These observations, which are
absent from the avalanche size distribution, point to the additional information encoded in the P, power
spectrum. In particular, our results show that an increase in confining stress is responsible for a shift of the
cutoff frequency for self-organized behavior to higher frequencies (Figures 4a, 4c, 4e, and 4g). This transition
frequency has been ascribed to physical properties of porous media (Moura et al., 2017) and could also be
indicative of flow properties of a rough fracture (e.g., permeability-to-porosity ratio). In solving the contact
problem, we have not accounted for shear stress along the fracture surfaces, the presence of gouge in the
fracture aperture, and additionally, we assumed elastic deformation of the fracture surfaces. Despite these
simplifications, our model indicates that the degree of heterogeneity in the fracture aperture field can be
characterized using the power spectrum of P,.

Measurements of P, during slow drainage through porous media are reported routinely (Biswas et al., 2018;
Furuberg et al., 1996; Maloy et al., 1992; Moebius & Or, 2014; Moura et al., 2015, 2017; Ramstad & Hansen,
2006). However, to the best of our knowledge, P, measurements during slow drainage through a rough
fracture, for a flow rate controlled boundary condition, have only been reported in the pioneer experimen-
tal work of Persoff and Pruess (1995). Although we recognize that measuring P, variations at very slow
flow rates can be challenging due to low signal-to-noise ratio, we hope that our numerical results will raise
scientific interest to investigate experimentally P, variations during drainage through rough fractures.

DA SILVA ET AL.

7434



~1
AGU

100

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2019GL082744

Acknowledgments

This work was funded in part by the
U.S. Department of Energy (Grant
DE-SC0018357 to R. J.). P. K. K.
acknowledges a grant from Korea
Environment Industry and Technology
Institute (KEITT) through Subsurface
Environmental Management

(SEM) Project, funded by the Korea
Ministry of Environment (MOE)
(2018002440003). Z. Y. acknowledges
financial support from the National
Natural Science Foundation of China
(41877203). No data were used in
producing this manuscript.

References

Aker, E., Maloy, K. J., Hansen, A., & Basak, S. (2000). Burst dynamics during drainage displacements in porous media: Simulations and
experiments. Europhysics Letters, 51(1), 55-61. https://doi.org/10.1209/epl/i2000-00331-2

Amundsen, H., Wagner, G., Oxaal, U., Meakin, P., Feder, J., & Jossang, T. (1999). Slow two-phase flow in artificial fractures: Experiments
and simulations. Water Resources Research, 35(9), 2619-2626. https://doi.org/10.1029/1999WR900147

Andrews, D. (1988). On modeling closure of rough surfaces in contact. Eos, Transactions of the American Geophysical Union, 69, 1426-1427.

Auradou, H., Malgy, K. J., Schmittbuhl, J., & Hansen, A. (2003). Drainage in a rough gouge-filled fracture. Transport in Porous Media, 50(3),
267-305. https://doi.org/10.1023/A:1021164109061

Bak, P., & Tang, C. (1989). Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research, 94(B11), 15,635-15,637.
https://doi.org/10.1029/JB094iB11p15635

Berg, S., Ott, H., Klapp, S. A., Schwing, A., Neiteler, R., Brussee, N., et al. (2013). Real-time 3D imaging of Haines jumps in porous media
flow. Proceedings of the National Academy of Sciences, 110(10), 3755-3759. https://doi.org/10.1073/pnas.1221373110

Bertels, S. P., DiCarlo, D. A., & Blunt, M. J. (2001). Measurement of aperture distribution, capillary pressure, relative permeability, and in
situ saturation in a rock fracture using computed tomography scanning. Water Resources Research, 37(3), 649-662. https://doi.org/10.
1029/2000WR900316

Biswas, S., Fantinel, P., Borgman, O., Holtzman, R., & Goehring, L. (2018). Drying and percolation in correlated porous media. Physical
Review Fluids, 3(12), 124-307. https://doi.org/10.1103/PhysRevFluids.3.124307

Broadbent, S., & Hammersley, J. (1957). Percolation processes. I. Crystals and mazes. Proceedings of the Cambridge Philosophical Society,
53(3), 629-641.

Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers, 3(3), 27.

Brown, S. (1995). Simple mathematical model of a rough fracture. Journal of Geophysical Research, 100(B4), 5941-5952. https://doi.org/10.
1029/94JB03262

Brown, S., & Scholz, C. (1985a). Broad bandwidth study of the topography of natural rock surfaces. Journal of Geophysical Research, 90(B14),
2575-2582. https://doi.org/10.1029/JB090iB14p12575

Brown, S., & Scholz, C. (1985b). Closure of random elastic surfaces in contact. Journal of Geophysical Research, 90(NB7), 5531-5545. https://
doi.org/10.1029/JB090iB07p05531

Chen, Y.-F,, Fang, S., Wu, D.-S., & Hu, R. (2017). Visualizing and quantifying the crossover from capillary fingering to viscous fingering in
a rough fracture. Water Resources Research, 53, 7756-7772. https://doi.org/10.1002/2017WR021051

Chen, Y.-F., Guo, N., Wu, D.-S., & Hu, R. (2018). Numerical investigation on immiscible displacement in 3D rough fracture: Compari-
son with experiments and the role of viscous and capillary forces. Advances in Water Resources, 118, 39-48. https://doi.org/10.1016/j.
advwatres.2018.05.016

Chen, Y.-F., Wu, D.-S., Fang, S., & Hu, R. (2018). Experimental study on two-phase flow in rough fracture: Phase diagram and localized
flow channel. International Journal of Heat and Mass Transfer, 122,1298-1307. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.031

Furuberg, L., Miloy, K. J., & Feder, J. (1996). Intermittent behavior in slow drainage. Physical Review E, 53(1), 966-977. https://doi.org/10.
1103/PhysRevE.53.966

Glass, R. J., Nicholl, M. J., & Yarrington, L. (1998). A modified invasion percolation model for low-capillary number immiscible displace-
ments in horizontal rough-walled fractures: Influence of local in-plane curvature. Water Resources Research, 34(12), 3215-3234. https://
doi.org/10.1029/98WR02224

Glass, R. J., Rajaram, H., & Detwiler, R. L. (2003). Immiscible displacements in rough-walled fractures: Competition between roughening
by random aperture variations and smoothing by in-plane curvature. Physical Review E, 68(6), 61110. https://doi.org/10.1103/PhysRevE.
68.061110

Haines, W. B. (1930). Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture
distribution associated therewith. The Journal of Agricultural Science, 20(01), 97-116. https://doi.org/10.1017/S002185960008864X

Holtzman, R., Szulczewski, M. L., & Juanes, R. (2012). Capillary fracturing in granular media. Physical Review Letters, 108(26), 264-504.
https://doi.org/10.1103/PhysRevLett.108.264504

Huo, D., & Benson, S. M. (2016). Experimental investigation of stress-dependency of relative permeability in rock fractures. Transport in
Porous Media, 113(3), 567-590. https://doi.org/10.1007/s11242-016-0713-z

Jaeger, J. C., & Cook, N. G. W. (1979). Fundamentals of rock mechanics. London: Chapman and Hall.

Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de La Lama, M., & Herminghaus, S. (2016). Wettability controls slow immiscible
displacement through local interfacial instabilities. Physical Review Fluids, 1(7), 74,202. https://doi.org/10.1103/PhysRevFluids.1.074202

Kang, P. K., Brown, S., & Juanes, R. (2016). Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science
Letters, 454, 46-54.

Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media.
Journal of Fluid Mechanics, 189, 165-187. https://doi.org/10.1017/S0022112088000953

Lenormand, R., Zarcone, C., & Sarr, A. (1983). Mechanisms of the displacement of one fluid by another in a network of capillary ducts.
Journal of Fluid Mechanics, 135(-1), 337-353. https://doi.org/10.1017/S0022112083003110

Lian, P., & Cheng, L. (2012). The characteristics of relative permeability curves in naturally fractured carbonate reservoirs. Journal of
Canadian Petroleum Technology, 51(02), 137-142. https://doi.org/10.2118/154814-PA

Maley, K., Furuberg, L., Feder, J., & Jossang, T. (1992). Dynamics of slow drainage in porous media. Physical Review Letters, 68(14),
2161-2164. https://doi.org/10.1103/PhysRevLett.68.2161

Maslov, S. (1995). Time directed avalanches in invasion models. Physical Review Letters, 74(4), 562. https://doi.org/10.1103/PhysRevLett.
74.562

Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis of porous media (2nd ed.). Cambridge,K:
Cambridge University Press.

McDonald, A., Beckner, B., Chan, H., Jones, T., & Wooten, S. (1991). Some important considerations in the simulation of naturally fractured
reservoirs. Dallas, TX: Society of Petroleum Engineers. https://doi.org/10.2118/21814-MS

Meakin, P., Feder, J., Frette, V., & T. Jossang (1992). Invasion percolation in a destabilizing gradient. Physical Review A, 46(6), 3357-3368.
https://doi.org/10.1103/PhysRevA.46.3357

Moebius, F., & Or, D. (2014). Pore scale dynamics underlying the motion of drainage fronts in porous media. Water Resources Research, 50,
8441-8457. https://doi.org/10.1002/2014WR015916

DA SILVA ET AL.

7435


https://doi.org/10.1209/epl/i2000-00331-2
https://doi.org/10.1029/1999WR900147
https://doi.org/10.1023/A:1021164109061
https://doi.org/10.1029/JB094iB11p15635
https://doi.org/10.1073/pnas.1221373110
https://doi.org/10.1029/2000WR900316
https://doi.org/10.1029/2000WR900316
https://doi.org/10.1103/PhysRevFluids.3.124307
https://doi.org/10.1029/94JB03262
https://doi.org/10.1029/94JB03262
https://doi.org/10.1029/JB090iB14p12575
https://doi.org/10.1029/JB090iB07p05531
https://doi.org/10.1029/JB090iB07p05531
https://doi.org/10.1002/2017WR021051
https://doi.org/10.1016/j.advwatres.2018.05.016
https://doi.org/10.1016/j.advwatres.2018.05.016
https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.031
https://doi.org/10.1103/PhysRevE.53.966
https://doi.org/10.1103/PhysRevE.53.966
https://doi.org/10.1029/98WR02224
https://doi.org/10.1029/98WR02224
https://doi.org/10.1103/PhysRevE.68.061110
https://doi.org/10.1103/PhysRevE.68.061110
https://doi.org/10.1017/S002185960008864X
https://doi.org/10.1103/PhysRevLett.108.264504
https://doi.org/10.1007/s11242-016-0713-z
https://doi.org/10.1103/PhysRevFluids.1.074202
https://doi.org/10.1017/S0022112088000953
https://doi.org/10.1017/S0022112083003110
https://doi.org/10.2118/154814-PA
https://doi.org/10.1103/PhysRevLett.68.2161
https://doi.org/10.1103/PhysRevLett.74.562
https://doi.org/10.1103/PhysRevLett.74.562
https://doi.org/10.2118/21814-MS
https://doi.org/10.1103/PhysRevA.46.3357
https://doi.org/10.1002/2014WR015916

~1
AGU

100

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2019GL082744

Moura, M., Fiorentino, E.-A., Malgy, K. J., Schifer, G., & Toussaint, R. (2015). Impact of sample geometry on the measurement
of pressure-saturation curves: Experiments, and simulations. Water Resources Research, 51, 8900-8926. https://doi.org/10.1002/
2015WR017196

Moura, M., Mélay, K. J., & Toussaint, R. (2017). Critical behavior in porous media flow. EPL, 118(1), 14,004. https://doi.org/10.1209/
0295-5075/118/14004

Murphy, J. R., & Thomson, N. R. (1993). Two-phase flow in a variable aperture fracture. Water Resources Research, 29(10), 3453-3476.
https://doi.org/10.1029/93WR01285

Neuweiler, 1., Sorensen, L., & Kinzelbach, W. (2004). Experimental and theoretical investigations of drainage in horizontal rough-walled
fractures with different correlation structures. Advances in Water Resources, 27(12),1217-1231. https://doi.org/10.1016/j.advwatres.2004.
07.005

Nuske, P., Faigle, B., Helmig, R., Niessner, J., & Neuweiler, I. (2010). Modeling gas-water processes in fractures with fracture flow properties
obtained through upscaling. Water Resources Research, 46, W09528. https://doi.org/10.1029/2009WR008076

Paczuski, M., Maslov, S., & Bak, P. (1996). Avalanche dynamics in evolution, growth, and depinning models. Physical Review E, 53(1),
414-443. https://doi.org/10.1103/PhysRevE.53.414

Persoff, P., & Pruess, K. (1995). Two-phase flow visualization and relative permeability measurement in natural rough-walled rock fractures.
Water Resources Research, 31(5), 1175-1186. https://doi.org/10.1029/95WR00171

Power, W., & Tullis, T. (1991). Euclidean and fractal models for the description of rock surface-roughness. Journal of Geophysical Research,
96(B1), 415-424. https://doi.org/10.1029/90JB02107

Primkulov, B. K., Talman, S., Khaleghi, K., Rangriz Shokri, A., Chalaturnyk, R., Zhao, B., et al. (2018). Quasistatic fluid-fluid displace-
ment in porous media: Invasion-percolation through a wetting transition. Physical Review Fluids, 3(10), 104001. https://doi.org/10.1103/
PhysRevFluids.3.104001

Pruess, K. (2008). Leakage of CO, from geologic storage: Role of secondary accumulation at shallow depth. International Journal of
Greenhouse Gas Control, 2(1), 37-46. https://doi.org/10.1016/S1750-5836(07)00095-3

Pyrak-Nolte, L. J., Cook, N., & Myer, L. (1990). A stratified percolation model for saturated and unsaturated flow through natural fractures.
Amer Nuclear Soc.

Pyrak-Nolte, L. J., & Morris, J. P. (2000). Single fractures under normal stress: The relation between fracture specific stiffness and fluid
flow. International Journal of Rock Mechanics and Mining Sciences, 37(1-2), 245-262. https://doi.org/10.1016/S1365-1609(99)00104-5
Pyrak-Nolte, L. J., & Nolte, D. D. (2016). Approaching a universal scaling relationship between fracture stiffness and fluid flow. Natural

Computing, 7(10), 663. https://doi.org/10.1038/ncomms10663

Ramstad, T., & Hansen, A. (2006). Cluster evolution in steady-state two-phase flow in porous media. Physical Review E, 73(2), 26,306.
https://doi.org/10.1103/PhysRevE.73.026306

Reitsma, S., & Kueper, B. H. (1994). Laboratory measurement of capillary pressure-saturation relationships in a rock fracture. Water
Resources Research, 30(4), 865-878. https://doi.org/10.1029/93WR03451

Turcotte, D. L., Malamud, B. D., Guzzetti, F., & Reichenbach, P. (2002). Self-organization, the cascade model, and natural hazards.
Proceedings of the National Academy of Sciences, 99(suppl 1), 2530-2537. https://doi.org/10.1073/pnas.012582199

Unger, A. J. A., & Mase, C. W. (1993). Numerical study of the hydromechanical behavior of two rough fracture surfaces in contact. Water
Resources Research, 29(7), 2101-2114. https://doi.org/10.1029/93WR00516

van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of
America Journal, 44(5), 892-898. https://doi.org/10.2136/ss5aj1980.03615995004400050002x

Wagner, G., Meakin, P., Feder, J., & Jossang, T. (1997). Invasion percolation on self-affine topographies. Physical Review E, 55(2), 1698-1703.
https://doi.org/10.1103/PhysRevE.55.1698

Wagner, G., Meakin, P., Feder, J., & Jossang, T. (1999). Invasion percolation in fractal fractures. Physica A, 264(3-4), 321-337. https://doi.
0rg/10.1016/S0378-4371(98)00463-4

Wang, L., & Cardenas, M. B. (2016). Development of an empirical model relating permeability and specific stiffness for rough frac-
tures from numerical deformation experiments. Journal of Geophysical Research: Solid Earth, 121, 4977-4989. https://doi.org/10.1002/
2016JB013004

Watanabe, N., Sakurai, K., Ishibashi, T., Ohsaki, Y., Tamagawa, T., Yagi, M., & Tsuchiya, N. (2015). New v-type relative permeability curves
for two-phase flows through subsurface fractures. Water Resources Research, 51, 2807-2824. https://doi.org/0.1002/2014WR016515

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short,
modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. https://doi.org/10.1109/TAU.1967.1161901

Wilkinson, D., & Willemsen, J. (1983). Invasion percolation: A new form of percolation theory. Journal of Physics A (Mathematical and
General), 16(14), 3365-3376. https://doi.org/10.1088/0305-4470/16/14/028

Yang, Z., Neuweiler, I., Méheust, Y., Fagerlund, F., & Niemi, A. (2016). Fluid trapping during capillary displacement in fractures. Advances
in Water Resources, 95, 264-275. https://doi.org/10.1016/j.advwatres.2015.07.015

Yang, Z., Niemi, A., Fagerlund, F., & Illangasekare, T. (2012). A generalized approach for estimation of in-plane curvature in invasion
percolation models for drainage in fractures. Water Resources Research, 48, W09507. https://doi.org/10.1029/2012WR011829

Yang, Z., Niemi, A., Fagerlund, F., & Illangasekare, T. (2013). Two-phase flow in rough-walled fractures: Comparison of continuum and
invasion-percolation models. Water Resources Research, 49, 993-1002. https://doi.org/10.1002/wrcr.20111

Ye, Z., Liu, H.-H., Jiang, Q., Liu, Y., & Cheng, A. (2017). Two-phase flow properties in aperture-based fractures under normal deformation
conditions: Analytical approach and numerical simulation. Journal of Hydrology, 545, 72-87. https://doi.org/10.1016/j.jhydrol.2016.12.
017

Ye, Z., Liu, H.-H., Jiang, Q., & Zhou, C. (2015). Two-phase flow properties of a horizontal fracture: The effect of aperture distribution.
Advances in Water Resources, 76, 43-54. https://doi.org/10.1016/j.advwatres.2014.12.001

Zimmerman, R. W., & Bodvarsson, G. S. (1996). Hydraulic conductivity of rock fractures. Transport in Porous Media, 23(1), 1-30. https://
doi.org/10.1007/BF00145263

DA SILVA ET AL.

7436


https://doi.org/10.1002/2015WR017196
https://doi.org/10.1002/2015WR017196
https://doi.org/10.1209/0295-5075/118/14004
https://doi.org/10.1209/0295-5075/118/14004
https://doi.org/10.1029/93WR01285
https://doi.org/10.1016/j.advwatres.2004.07.005
https://doi.org/10.1016/j.advwatres.2004.07.005
https://doi.org/10.1029/2009WR008076
https://doi.org/10.1103/PhysRevE.53.414
https://doi.org/10.1029/95WR00171
https://doi.org/10.1029/90JB02107
https://doi.org/10.1103/PhysRevFluids.3.104001
https://doi.org/10.1103/PhysRevFluids.3.104001
https://doi.org/10.1016/S1750-5836(07)00095-3
https://doi.org/10.1016/S1365-1609(99)00104-5
https://doi.org/10.1038/ncomms10663
https://doi.org/10.1103/PhysRevE.73.026306
https://doi.org/10.1029/93WR03451
https://doi.org/10.1073/pnas.012582199
https://doi.org/10.1029/93WR00516
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1103/PhysRevE.55.1698
https://doi.org/10.1016/S0378-4371(98)00463-4
https://doi.org/10.1016/S0378-4371(98)00463-4
https://doi.org/10.1002/2016JB013004
https://doi.org/10.1002/2016JB013004
https://doi.org/0.1002/2014WR016515
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1088/0305-4470/16/14/028
https://doi.org/10.1016/j.advwatres.2015.07.015
https://doi.org/10.1029/2012WR011829
https://doi.org/10.1002/wrcr.20111
https://doi.org/10.1016/j.jhydrol.2016.12.017
https://doi.org/10.1016/j.jhydrol.2016.12.017
https://doi.org/10.1016/j.advwatres.2014.12.001
https://doi.org/10.1007/BF00145263
https://doi.org/10.1007/BF00145263

	Abstract


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


