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Abstract

Quantum information science is believed to create the next technological revolution.
As key ingredients of quantum information science, quantum networks enable various
technologies such as secure communication, distributed quantum sensing, quantum
cloud computing, and next-generation positioning, navigation, and timing. The main
task of quantum networks is to enable quantum communication among different nodes
in the network. This includes the topics such as the transmission of quantum states
involving multiple parties, the processing of quantum information at end nodes, and
the distribution of entanglement among remote nodes. Since quantum communication
has its own peculiar properties that have no classical counterparts, the protocols
and strategies designed for classical communication networks are not well-suited for
quantum ones. This calls for new concepts, paradigms, and methodologies tailored
for quantum networks. To that end, this thesis studies the design and operation
of quantum networks, with focus on the following three topics: state transmission,
queueing delay, and remote entanglement distribution.

The first part develops protocols to broadcast quantum states from a transmitter
to N different receivers. The protocols exhibit resource tradeoffs between multiparty
entanglement, broadcast classical bits (bcbits), and broadcast quantum bits (bqubits),
where the latter two are new types of resources put forth in this thesis. We prove
that to send 1 bqubit to N receivers using shared entanglement, O(logN) bcbits are
both necessary and sufficient. We also show that the protocols can be implemented
using poly(N) basic gates composed of single-qubit gates and CNOT gates.

The second part introduces a tractable model for analyzing the queuing delay of
quantum data, referred to as quantum queuing delay (QQD). The model employs
a dynamic programming formalism and accounts for practical aspects such as the
finite memory size. Using this model, we develop a cognitive-memory-based policy
for memory management and show that this policy can decrease the average queuing
delay exponentially with respect to memory size.

The third part offers a design of remote entanglement distribution (RED) protocols
that maximize the entanglement distribution rate (EDR). We introduce the concept
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of enodes, representing the entangled quantum bit (qubit) pairs in the network. This
concept enables us to design the optimal RED protocols based on the solutions of
some linear programming problems. Moreover, we investigate RED in a homogeneous
repeater chain, which is a building block for many quantum networks. In particular,
we determine the maximum EDR for homogeneous repeater chains in a closed form.

The contributions of this work provide guidelines for the design and implementa-
tion of quantum networks.

Thesis Supervisor: Moe Z. Win
Title: Professor, Aeronautics and Astronautics

Committee Member: Sanjoy Mitter
Title: Professor, Electrical Engineering and Computer Science

Committee Member: Marco Chiani
Title: Professor, Electronic and Information Engineering “G. Marconi,” University of
Bologna
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Chapter 1

Introduction

In this chapter, we provide background and preliminaries on quantum networks, moti-

vate the research on quantum broadcasting, quantum queuing delay, as well as remote

entanglement distribution, and review related research results. We then summarize

the contributions of the thesis and provide the thesis organization.

1.1 Background and Preliminaries

Quantum information science has the potential to create the next technological rev-

olution [1–3], enabling quantum communication [4–6], quantum sensing [7–9], quan-

tum computing [10–14], as well as next-generation positioning, navigation, and tim-

ing [15–17].

The breakthroughs in the physical layer in quantum information science bring

myriad novel research topics, most of which are interdisciplinary. The research on

quantum networks is such an example. Quantum networks are the key ingredients in

quantum information science as they can support quantum communication, quantum

computing, and quantum metrology [18]. The main task of quantum networks is

to enable quantum communication among different nodes that may be far apart.

While physical layer implementations of quantum networks are advancing rapidly

[19–22], little is known about the design and analysis of upper layer transmission and

operation strategies that are responsible for sending quantum information reliably
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and efficiently. The lack of a systematic framework for transmission and operation

strategies limits the power of quantum networks. This critical issue motivates the

research in this thesis, including the topics such as the transmission of quantum states

involving multiple parties, the distribution of entanglement among remote nodes, and

the processing of quantum information at end nodes.

Quantum networks have both similarities and differences compared to their clas-

sical counterparts. Regarding similarities, quantum networks employ many concepts

that originate from classical communication networks such as protocol stack. On

the other hand, quantum networks have their own peculiar properties that do not

exist in classical networks. For example, a distinctive property of quantum net-

works comes from quantum entanglement that represents the non-local interconnec-

tion among quantum objects. Therefore, the protocols and strategies designed for

classical communication networks are not well-suited for quantum ones. This calls

for new concepts, paradigms, and methodologies tailored for quantum networks.

Before moving on to the specific discussions of the topics, we present some pre-

liminaries that are the foundations of our work.

Quantum Teleportation

The quantum teleportation protocol aims to transmit quantum states to a receiver

using entanglement and classical communication [23]. In quantum teleportation, a

transmitter performs Bell measurements on the quantum bit (qubit) to be transmit-

ted, denoted as |ψ〉, as well as its half of the entangled qubit pair; the measurement

result is then sent to the receiver, which will perform operations on its half of the

entangled qubit pair accordingly; the resulting qubit at the receiver then becomes |ψ〉.
This protocol permits the quantum node to transmit 1 qubit at the cost of sending 2

classical bits (cbits) and consuming 1 entangled qubit pair.

18



Entanglement Swapping

A critical operation in the use of building quantum networks is entanglement swapping

[24]. Entanglement swapping can be seen as a special case of teleportation [23] and is

explained as follows. Suppose there are three nodes i, j, and k. Node i has one qubit,

node j two, and node k one. Node i’s qubit and node j’s first qubit are maximally

entangled, and so are node j’s second and node k’s qubit. Node j teleports the qubit

entangled with the one in node i to node k. Then node i’s qubit is entangled with

node k’s even though these two nodes have never directly interacted with each other.

Remote State Preparation

Another important technique for transmitting quantum states is remote state prepa-

ration (RSP) [25–29]. In contrast to teleportation, the transmitter is given the

knowledge about the quantum states to be sent. Such knowledge makes it possi-

ble to transmit quantum states with fewer resources. In [30], it is shown that using

backward communication and entanglement distillation, a pure quantum state in a

two-dimensional Hilbert space can be transmitted by consuming 1 cbit and 3.79 bit of

entanglements (ebits) asymptotically. In [31], a transmitter performs measurements

(depending on the quantum state to be transmitted) on its half of the entanglement;

the measurement result is then sent to the receiver, which will perform operations

on its half of the entanglement accordingly; the resulting qubit at the receiver then

becomes the desired quantum state. This protocol consumes 1 cbit and 1 ebit asymp-

totically per qubit.

1.2 Motivation and Related Research

In this section, we present the motivation and review relevant studies about quantum

broadcasting, quantum queuing delay (QQD), and remote entanglement distribution

(RED).

19



Quantum Broadcasting

The protocols for sending quantum states exploiting classical communication and

quantum correlation, such as teleportation [23] and RSP [25, 26, 30, 31], exhibit fun-

damental tradeoffs among different types of resources. For example, a qubit can be

sent via teleportation using 1 maximally entangled pair (or equivalently, 1 ebit) and

2 cbits [23], leading to the following schematic tradeoff:

1 ebit + 2 cbits → 1 qubit.

It is natural to ask if it is possible to generalize this tradeoff to a network setting. One

class of the network settings that attracts research interest is quantum broadcasting

[32], in which a transmitter aims at sending a quantum state identically to a collection

of receivers using classical and quantum resources [33–35].1 Such a broadcast setting

calls for the new types of communication resources. In a network with 1 transmitter

and N receivers, we define two types of resources: a broadcast cbit (bcbit) as the

transmitter’s ability to send 1 bit of classical information identically to N different

receivers; and a broadcast qubit (bqubit) as the transmitter’s ability to send a pure

quantum state in a two-dimensional Hilbert space identically and exactly with high

probability to N different receivers.2 Note that bcbits have been used widely as a

metric for applications such as radio and television [36], whereas bqubits can be used

as a metric for applications such as quantum metrology [37] and quantum digital

signatures [38]. A typical quantum broadcasting protocol consumes f1(N) ebits3 and

f2(N) bcbits, leading to the following schematic tradeoff:

f1(N) ebits + f2(N) bcbits → 1 bqubit. (1.1)

1The notion of identical means that the reduced density matrices at each receiver are the same.
2The notion of exact means that the output state at each receiver is the same as the desired

state.
3Since there is no commonly agreed measure of multiparty entanglement, this thesis considers

the amount of ebits that are shared between two parties, namely, the transmitter and the receivers,
as in [35].
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There are some studies that investigated the problem of sending a quantum state

identically to multiple receivers [32–35]. However, the protocol [33–35] results in

the fidelity between the desired state and the state at each receiver to be at most

(2N + 1)/(3N), thus unsuitable for sending bqubits. The protocols in [32] are valid

only for N 6 3 unless an infinite number of bcbits is utilized. To the best of the

author’s knowledge, there are no existing quantum broadcasting protocols for general

N .

The difficulty of quantum broadcasting lies mainly in the fact that only distributed

measurements and operations among spatially separated receivers are allowed. As

a consequence, certain operations involving multiple receivers are not permitted in

the design of protocols. The fundamental question related to quantum broadcasting

is how to develop distributed measurements and operations that have capabilities

comparable to centralized ones. The answer to this question enables the design of

efficient quantum broadcasting protocols and provides fundamental tradeoff among

different types of resources.

The goal is to develop protocols for sending an arbitrary pure quantum state

|ψ〉 = α |0〉+β |1〉 from a transmitter, Alice, to N different receivers in two scenarios:

1) Alice knows the state |ψ〉 (non-oblivious with a known state) and 2) Alice has the

state |ψ〉⊗N (oblivious with multiple copies).4 We aim at minimizing the resources,

i.e., f1(N) and f2(N) in (1.1), for sending 1 bqubit.

Note that sending a bqubit to N receivers can be trivially achieved by sequen-

tially performing teleportation, resulting in the schematic tradeoff O(N) ebits +

O(N) bcbits → 1 bqubit. With this approach, the last receiver experiences the la-

tency of O(N), which may be undesirable for many applications, especially those

involving large N . Note that the state |ψ〉⊗N to be sent is in a Hilbert space H with

4The quantum no-cloning theorem prevents Alice from sending an unknown pure state to N(> 2)
receivers if Alice has no knowledge about this state (referred to as obliviousness) and has only one
copy of the state |ψ〉. Relaxing the former leads to scenario 1 and relaxing the latter leads to scenario
2.
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dimension N + 1 instead of 2N . Specifically,

|ψ〉⊗N =
N∑

j=0

√(
N

j

)
αjβN−j |j〉s , (1.2)

where |j〉s denotes the completely symmetric state of N qubits with j of them in state

|0〉 and (N − j) of them in state |1〉, i.e.,

|j〉s =
(
N

j

)−1/2 ∑

zk∈{0,1}:
∑N

k=1 zk=N−j

⊗N
k=1 |zk〉 . (1.3)

This gives us credence to develop a protocol that consumes O(logN) bcbits. In

fact, the structure (1.2) has been widely used in processing a collection of identically

prepared qubits [39,40]. Moreover, note that the set {(α |0〉+β |1〉)⊗N : |α|2+|β|2 = 1}
indeed spans the Hilbert space with dimension N + 1, which suggests that a lower

bound for the number of consumed bcbits is Ω(logN).

Quantum Queuing Delay

Queuing delay of quantum data, referred to as QQD, is one of the critical issues in

transmission of information across quantum networks. Compared to its classical coun-

terpart, queuing delay is even more important for quantum networks: the quantum

states interact with the environment and will lose a significant amount of information

if not delivered on time [41–43]. The difficulties of analyzing QQD are two-fold. First,

there is arguably no mathematical model that characterizes the queuing node and the

queuing process in quantum networks. Such a model has to tally with the physical

realizations (e.g., the quantum channels and quantum operations) and practical con-

straints (e.g., quantum memory size and quantum state lifetime). Second, quantum

communication has its own peculiar properties that have no classical counterparts.

For example, quantum communication may exploit quantum entanglement [44–47], a

phenomenon representing non-local interconnection among quantum objects. These

peculiar properties make the strategies designed for classical networks ill-suited for
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quantum networks.

Existing work related to QQD can be divided into two groups: queuing delay

in classical networks and operation design in quantum networks. There are myriad

studies on queuing delay in classical networks [48–50]. Although some of the concepts

such as queue length, Little’s theorem, blocking probability, and stability [51–53]

may be borrowed for studying quantum networks, the many methods tailored for the

classical queuing theory do not apply directly to QQD. On the other hand, there are

only a few studies on the operation designs for quantum networks, proposing ad-hoc

protocols and verifying their performance via simulations. In [54], a decentralized

entanglement routing protocol is proposed to find the shortest path in a quantum

network using local knowledge of quantum nodes. In [55], optimized entanglement

routing protocols are developed based on dynamic programming. In [56], link layer

protocols are proposed for quantum networks and their performance is evaluated via

simulations. These studies either maximize the quantum network throughput instead

of queuing delay or provide heuristic protocols without performance guarantee.

The fundamental questions related to QQD are

• how to develop a tractable quantum queuing model that is consistent with the

physical realizations and practical constraints; and

• how to characterize and exploit the properties specific to quantum nature for

developing efficient policies that minimize QQD.

The answers to these questions will enable us to minimize QQD, which can further

unleash the potential of quantum networks.

The goal of this part in the thesis are to build a mathematical model for charac-

terizing QQD and to determine policies for controlling such a delay with performance

guarantee. An essential part in this model is teleportation [23], a celebrated tech-

nique for sending quantum information from one node to another using entanglement

and classical communication. The new technical idea in this part of the thesis is the

introduction of dynamic programming in the modeling of QQD. Our view is that

quantum nature can bring new phenomena in the area of queuing delay. We believe
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that QQD can be significantly reduced by establishing entanglements and storing

them in the entanglement memory before, instead of waiting until, quantum data

arrive. Specifically, entanglements can be seen as resources that are reserved in the

memory of a node, and quantum data in the queue can be delivered via teleportation

using these resources instead of waiting for the transmission time.

Remote Entanglement Distribution

Many of quantum-enabled technologies rely on distributing quantum entanglement

[57–59]. For example, distributing entanglement enables quantum teleportation [23,

60,61] and remote state preparation [30,31,62], sending quantum information without

having to move physical particles.

The main difficulty of distributing entanglement at two distant nodes in quantum

networks lies in the significant decay of communication capacity with the length of

the channel. For example, the capacity of a lossy channel decays exponentially with

the distance of optical fibers, thereby hindering distributing entanglement between

two nodes that are far apart.

To address this issue, researchers introduced quantum repeaters in the design of

quantum networks. A quantum repeater is a node with quantum memory and Bell-

state measurement capability. With quantum repeaters, entanglement can be dis-

tributed between distant nodes without physically sending entangled qubits through

the entire network [57–59]. The benefits of using quantum repeaters have been demon-

strated in several studies [63,64]. For example, inserting quantum repeaters between

two nodes connected by optical fibers can improve the channel capacity; such capac-

ity is determined by the maximum distance of the quantum channels divided by the

quantum repeaters.

Several protocols have been proposed for entanglement distribution in quantum

networks [54,63–68]. A key metric to evaluate these protocols is the entanglement dis-

tribution rate (EDR), i.e., the average amount of entanglement distributed between

two specified nodes, referred to as source and sink, per time slot. Most protocols

cannot provide the maximum EDR except for [63,64], in which optimal entanglement
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routing protocols are proposed for basic decoherence channel models. However, the

results in [63,64] rely on the assumption of perfect quantum repeaters, i.e., the entan-

glement swapping can be performed with success probability of one.5 This assump-

tion is unlikely to hold in the foreseeable future. In [68], the scenario with imperfect

quantum repeaters is considered with the constraint that entanglement swapping is

successfully and simultaneously performed at all the nodes along a path connecting

the source and the sink, and this leads to suboptimal protocols since the order of

entanglement swapping is not optimized. Little is known about the protocols that

schedule entanglement swapping optimally with imperfect quantum repeaters.

Among different quantum networks, we are particularly interested in the homo-

geneous repeater chain, a network that connects two distant nodes with a chain of

identical and equally spaced repeaters. This is because the investigation of homoge-

neous repeater chains can shed light on quantum networks with general structures

and lay the foundation for the study of more complicated network structures. Since

the introduction of homogeneous repeater chains in [69], many protocols and EDR

analyses have been provided [19,70–77]. These protocols and analyses can be catego-

rized into two groups. The first group of work considers quantum memories that can

store qubits only for a short time. Such consideration accounts for the limitation of

current quantum-hardware capabilities [75–77]. For example in [75], entanglement-

based quantum key distribution rate is determined, and different factors such as fiber

loss, detector dark counts, and detector inefficiency are accounted for. However, if

the quantum memory cannot store qubits for a sufficiently long time, entanglement

swapping operations need to succeed simultaneously at each quantum repeater. This

makes the EDR decrease exponentially with respect to the length of a repeater chain.

The second group of work considers quantum memories that can store qubits for a suf-

ficiently long time. Within this group, some studies aim at experimentation of entan-

glement distribution using atomic ensembles and linear optics [19,70–73]; some studies

aim at the design and analysis of entanglement distribution protocols [55, 69, 78, 79].

5In the rest of this thesis, “perfect/imperfect repeaters” and “perfect/imperfect entanglement
swapping” are used interchangeably when clear in the context.
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Most existing protocols, e.g. in [55], assume that two neighboring quantum repeaters

stop generating entanglement once an entangled qubit pair (EQP) is generated be-

tween them, and this assumption may decrease the EDR. Despite the extensive

entanglement distribution protocols, it still remains unclear whether the designed

protocols can achieve the maximum EDR, even in the scenario that considers simple

photon-loss quantum channels and probabilistic entanglement swapping.

The consideration of imperfect quantum repeaters creates a new research topic:

how to design protocols that schedule entanglement swapping to maximize the EDR

in a quantum network. These protocols are referred to as RED protocols in this thesis.

Note that RED protocols differ from entanglement routing protocols [54, 64, 65, 68]:

entanglement routing protocols find paths between two nodes and perform entangle-

ment swapping at each node sequentially along the path, whereas RED protocols not

only find the paths, but also determine the sequence of entanglement swapping. In

this way, entanglement routing can be viewed as a special case of RED. To the best

of the authors’ knowledge, how to develop the optimal RED protocol with imperfect

quantum repeaters remains unknown.

The fundamental questions related to RED in quantum networks are

• how entanglement swapping affects the EDR in quantum networks; and

• how to exploit the structure of the homogeneous repeater chains to maximize

the EDR.

The answers to these questions will enable the distribution of entanglement over long

distances with noisy intermediate-scale quantum (NISQ) technologies [2] and take an

essential step for the development of quantum networks.

The goal of this part of the thesis is to develop the optimal RED protocols for

quantum networks. We introduce the concept of enodes, representing the entangled

qubit pairs in the network. Entanglement swapping can be viewed as an operation

that exchanges entangled qubit pairs among different enodes. The introduction of

enodes allows us to employ techniques from linear programming and classical networks

to design the RED protocols in quantum networks.
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1.3 Contributions

In this thesis, we develop protocols/policies for state transmission and network opera-

tion for quantum networks and quantify their performances. The main contributions

are summarized in four areas: quantum broadcasting, multiparty RSP, QQD, and

RED.

Quantum Broadcasting

In the first part of the thesis, we develop quantum broadcasting protocols and es-

tablish the resource tradeoff among entanglement, bcbits, and bqubits. The main

contributions are summarized as follows.

• We develop a protocol for sending 1 bqubit in the two scenarios: 1) non-oblivious

with a known state and 2) oblivious with multiple copies. This protocol leads

to the result that f1(N) = logN and f2(N) = O(logN);

• We prove that to send 1 bqubit to N receivers using shared entanglement,

O(logN) bcbits are both necessary and sufficient;

• We show that the protocols can be implemented using poly(N) gates com-

posed of single-qubit gates and CNOT gates, demonstrating their practicality

in the near future. Furthermore, we designed a gate-level quantum circuit for

a proposed protocol and evaluated its performance using the IBM quantum

simulator [80].

Quantum Queuing Delay

In the second part of the thesis, we establish a mathematical formalism for character-

izing QQD and propose policies to significantly reduce QQD. The main contributions

are summarized as follows.

• we establish a tractable model for characterizing QQD using dynamic program-

ming;
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• we determine the average queuing delay for the scenario with one receiver and

show that such delay can decrease exponentially with respect to the memory

size of a node;

• we develop a cognitive-memory-based policy for minimizing the average queue

length in a general scenario and show that it is optimal for the scenario with

two receivers;

• we derive an upper bound for the average queue length corresponding to the

proposed cognitive-memory-based policy. This bound implies that the average

queuing delay can decrease exponentially with respect to the memory size of a

node.

Remote Entanglement Distribution

In the third part of the thesis, we establish a framework of designing RED protocols

for quantum networks. We transform the design of the optimal RED protocols into

linear programming problems. The main contributions are summarized as follows.

• We determine the maximum achievable EDR for quantum networks;

• We determine the structural properties of the graph corresponding to the opti-

mal solution of the linear programming problem;

• We develop the optimal RED protocols for quantum networks based on the

solution of the linear programming problem;

• We determine the maximum EDR for homogeneous repeater chains in a closed

form.

1.4 Organization and Notations

Random variables are displayed in sans serif, upright fonts; their realizations in serif,

italic fonts. Vectors and matrices are denoted by bold lowercase and uppercase letters,
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respectively. For example, a random variable and its realization are denoted by x and

x; a random vector and its realization are denoted by x and x; a random matrix and its

realization are denoted by X and X, respectively. Sets and random sets are denoted

by upright sans serif and calligraphic font, respectively. For example, a random set

and its realization are denoted by X and X , respectively. The m-by-n matrix of

zeros (resp. ones) is denoted by 0m×n (resp. 1m×n); when n = 1, the m-dimensional

vector of zeros (resp. ones) is simply denoted by 0m (resp. 1m). The m-by-m

identity matrix is denoted by Im: the subscript is removed when the dimension of the

matrix is clear from the context. The cardinality of a set S is denoted by Card(S).
The set {m,m + 1, . . . , n} is denoted by Km:n. The sets of integers, even integers,

odd integers, and positive integers are denoted by Z, Ze, Zo, N+, respectively. The

cardinality of a set S is denoted by Card(S). The set {m,m + 1, . . . , n} is denoted

by Km:n. For an edge set E , the function 1E(i, j) is an indicator function defined to

be 1 if (i, j) ∈ E and 0 otherwise. Throughout this thesis, the state of a quantum

system and its corresponding density matrix will be used interchangeably; Ξ (|ψ〉)
denotes the density matrix corresponding to the pure state |ψ〉 and the part (|ψ〉)
is omitted if clear in the context; the notation Ξx,y denotes a maximally entangled

qubit pair between two systems x and y, each corresponding to one qubit; the notation

Ξi:j denotes a maximally entangled qubit pair between two systems, where one of the

systems is in node i and the other is in node j. The Hermitian adjoint is denoted by †;

the transpose and the complex conjugate with respect to basis |0〉 and |1〉 are denoted

by T and ∗, respectively; exp denotes the exponential function with the natural basis.

The rest of the thesis is organized as follows. In Chapter 2, we present the design

of quantum broadcasting protocols and establish the resource tradeoff among entan-

glement, bcbits, and bqubits. In Chapter 3, we introduce a formalism to analyze

QQD and develop policies for managing entanglement memory. In Chapter 4, we

establish a framework of designing RED protocols for quantum networks. The thesis

is concluded with remarks in Chapter 5.
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Chapter 2

Quantum Broadcasting

In this chapter, we will explore the design of quantum broadcasting protocols. We

will consider two scenarios: 1) non-oblivious with a known state and 2) oblivious

with multiple copies. We will establish the resource tradeoff among entanglement,

broadcast cbits (bcbits), and broadcast qubits (bqubits).

2.1 A Non-oblivious Quantum Broadcasting Proto-

col with a Known State

Consider Scenario 1 in which Alice knows the state |ψ〉. Since the state |ψ〉⊗N is a

linear combination of states |j〉s, a natural form for the shared entangled state is

|Φ〉 = 1√
N + 1

N∑

j=0

|j〉As |j〉Bs , (2.1)

where |j〉As and |j〉Bs denote bases of Alice’s system and the receivers’ system, re-

spectively. Each qubit in |j〉Bs corresponds to each of the N different receivers. The

goal is to send an arbitrary pure state |ψ〉 ∈ H2 to each of N receivers, where H2 is

a two-dimensional Hilbert space. The non-oblivious quantum broadcasting protocol

with a known state is described as follows.

1) Alice performs the positive-operator valued measure (POVM) on her part of
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the entangled state |Φ〉. The POVM is given by

Hk =
N + 1

K(1 + ǫ)
Vs,kΞ

(
|ψ〉∗⊗N

)
V

†
s,k, k ∈ K1:K

Hfailure = 1s −
K∑

k=1

Hk

where ǫ ∈ (0, 1) is a pre-determined constant, Vs,k = V ⊗N
k with Vk being unitary

operators on H2 such that

K∑

k=1

Hk 4 1s (2.2)

in which 1s denotes the identity operator on the Hilbert space H with basis |j〉s.

2) Alice broadcasts the classical message (representing the outcome of the POVM)

to N different receivers. If outcome k is received, each receiver applies V T
k to

their part of the state. If outcome “failure” is received, the protocol fails.

In the protocol above, the outcome k of the POVM performed by Alice indicates

that the state at each receiver is

(
〈ψ|∗⊗N V

†
s,k

)A( N∑

j=0

|j〉As |j〉Bs
)
=

N∑

j=0

((
〈ψ|∗ V †

k

)⊗N |j〉s
)A

|j〉Bs =
(
V ∗
k |ψ〉

)⊗N
.

If each receiver applies V T
k to its state V ∗

k |ψ〉, the pure state |ψ〉 is obtained at each

receiver.

The specific structure of Vs,k as a tensor product of N matrices is inspired by

the need to accommodate the non-locality imposed by spatially separated receivers.

The validity of the protocol above requires the existence of Vs,k’s that satisfy (2.2)

for every pure state |ψ〉. The following theorem shows such existence for sufficiently

large K. The proof is in Appendix A.1.

Theorem 2.1. For ǫ > 0, there exist unitary operators Vs,k = (Vk)
⊗N , k ∈ K1:K ,
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such that for every pure state |ψ〉 ∈ H2,

N + 1

K(1 + ǫ)

K∑

k=1

Vs,kΞ
(
|ψ〉∗⊗N

)
V

†
s,k 4 1s (2.3)

where

K 6

⌈
32(N + 1)2

ǫ2
ln

20(N + 1)

ǫ
+

64(N + 1)

ǫ2
ln

20N(N + 1)

ǫ

)⌉
. (2.4)

Note that the outcome “failure” occurs with probability

tr
{
Hfailure ⊗ 1sΞ (|Φ〉)

}
= 1−

K∑

k=1

tr
{
Hk ⊗ 1sΞ (|Φ〉)

}

= 1−K
N + 1

K(1 + ǫ)(N + 1)
6 ǫ.

Moreover, the POVM is constructed according to the state |ψ〉 and thus, this protocol

is non-oblivious. Regarding the resources, this protocol requires logK = 2 logN +

o(logN) bcbits according to (2.4), thus reducing the number of consumed bcbits from

O(N) to O(logN) compared to sequential transmission of quantum states.

2.2 An Oblivious Quantum Broadcasting Protocol

with Multiple Copies

Consider Scenario 2 in which Alice possesses N qubits |ψ〉⊗N (denoted by Ã), but

does not have knowledge of the state |ψ〉. As in the previous protocol, the shared

entanglement between Alice and receivers is given by (2.1). The oblivious quantum

broadcasting protocol with multiple copies is described as follows.

1) Alice performs the POVM on the system consisting of Ã and her part of the
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entangled state |Φ〉. The POVM is given by

Mi =
(N + 1)2

I(1 + ǫ)
Ξ (|ξi〉) , i ∈ K1:I

Mfailure = 1
Ã
s ⊗ 1

A
s −

I∑

i=1

Mi

where ǫ ∈ (0, 1) is a pre-determined constant,

|ξi〉 =
1√
N + 1

(Ui)
⊗N ⊗ 1

⊗N
N∑

j=0

|j〉Ãs |j〉As

in which 1 denotes the identity operator on H2 and Ui denotes a unitary oper-

ator on H2 such that

I∑

i=1

Mi 4 1s ⊗ 1s. (2.5)

2) Alice broadcasts the classical message (representing the outcome of the POVM)

to N different receivers. If outcome i is received, each receiver applies Ui to

their part of the state. If outcome “failure” is received, the protocol fails.

In the protocol above, the outcome i of the POVM performed by Alice indicates

that the state at receivers is

( N∑

j=0

(
〈j|s U

†⊗N
i

)Ã 〈j|As

)
(|ψ〉⊗N)Ã

( N∑

j=0

|j〉As |j〉Bs
)

=

N∑

j=0

(
〈j|s

(
(Ui)

† |ψ〉
)⊗N)Ã |j〉Bs =

(
U

†
i |ψ〉

)⊗N
.

If each receiver applies Ui to its state U
†
i |ψ〉, the pure state |ψ〉 is obtained at each

receiver.

The validity of the protocol above requires the existence of |ξi〉’s that satisfies

(2.5). The following theorem shows such existence for sufficiently large I. The proof

is in Appendix A.2.
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Theorem 2.2. For ǫ > 0, there exist unit vectors |ξi〉 = 1√
N+1

(Ui)
⊗N⊗1⊗N ∑N

j=0 |j〉
Ã
s |j〉As ,

i ∈ K1:I such that

(N + 1)2

I

I∑

i=1

Ξ (|ξi〉) 4 (1 + ǫ)1s ⊗ 1s (2.6)

where

I 6

⌈
32(N + 1)4

ǫ2
ln

(
10(N + 1)2

ǫ

)⌉
. (2.7)

Analysis similar to that in the previous section shows that the outcome “failure”

occurs with probability no greater than ǫ. Moreover, the POVM does not rely on the

state |ψ〉 and thus, this protocol is oblivious. Regarding the resources, this protocol

requires log I = 4 logN+o(logN) bcbits according to (2.7), thus reducing the number

of consumed bcbits from O(N) to O(logN) compared to sequential transmission of

quantum states.

2.3 Lower Bound for the bcbits

We next show that both in Scenario 1 and Scenario 2, the number of consumed bcbits

for sending an arbitrary pure state |ψ〉 to each of the N different receivers is lower

bounded by Ω(logN).

Theorem 2.3. For any protocol that can send N copies of an arbitrary pure state

|ψ〉 ∈ H2 exactly with success probability no less than 1−ǫ to a collection of receivers

(the receiver is notified whether the protocol is successful), it is necessary for the

transmitter to send at least (1− ǫ) log (N + 1) bcbits.

Proof. We prove Theorem 2.3 by contradiction. We consider a scenarios where all

the receivers are colocated. Suppose there exists a Protocol H so that the transmitter

can send N copies of an arbitrary pure state |ψ〉 exactly with a success probability

no less than 1 − ǫ using only (1− ǫ) log(N + 1)−∆ cbits for some ∆ > 0. Then for

an arbitrary pure state |ψ〉 at the transmitter (either in Scenario 1 or Scenario 2),
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Protocol H can prepare a state with the following density matrix at receivers:

W (|ψ〉) := (1− ǫ) |1〉 〈1| ⊗Ξ
(
|ψ〉⊗N

)
+ ǫ |0〉 〈0| ⊗

( 1

N + 1
1s

)

where |1〉 〈1| and |0〉 〈0| indicate whether the protocol is successful or not. Note that

if for certain states, the success probability is strictly less than ǫ, we can enforce the

receivers to prepare the state 1s/(N +1) with an appropriate probability even in the

success case so that W (|ψ〉) can be prepared.

We choose pure states |ψm〉, m ∈ K1:M , such that

1

M

M∑

m=1

Ξ
(
|ψm〉⊗N

)
∈
[
1− ǫ1
N + 1

1s,
1 + ǫ1
N + 1

1s

]
(2.8)

where ǫ1 ∈ (0, 1) is a given constant and the closed interval refers to the operator

order. This is valid for sufficiently large M because

∫

|ψ〉∈H2

Ξ
(
|ψ〉⊗N

)
d |ψ〉 = 1

N + 1
1s

as shown by Lemma A.4 in the appendix.

We consider a transmitter Charlie and a receiver David, and Charlie would like

to send classical information to David using Protocol H. Consider letter states with

density matrices

Wm = W (|ψm〉), m ∈ K1:M

with a priori probabilities pm = 1/M . For fixed ǫ2, δ > 0, there exist a code (whose

codewords are strings of L letter states) and a decoder with a probability of error no

greater than ǫ2 such that the classical information carried per letter state is at least

χW − δ [81], where χW denotes the Holevo information:

χW := H
( M∑

m=1

1

M
Wm

)
−

M∑

m=1

1

M
H(Wm)
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in which H(·) denotes the von Neumann entropy. For a codeword (c1c2 . . . cL), Charlie

uses Protocol H to send letter states with density matrices Wcl, l ∈ K1:L, to David.

Due to the causality, the information obtained by David is no greater than that used

in Protocol H, i.e.,

(1− ǫ2)L · (χW − δ) 6 L ·
(
(1− ǫ) log(N + 1)−∆

)

implying that

χW 6
(1− ǫ) log(N + 1)−∆

1− ǫ2
+ δ (2.9)

for arbitrary small ǫ1, ǫ2 and δ.

Note that

χW = H
( M∑

m=1

1

M
Wm

)
− h(ǫ)− ǫ log (N + 1)

= (1− ǫ)H

(
1

M

M∑

m=1

Ξ
(
|ψm〉⊗N

))

> −(1− ǫ) log

(
1 + ǫ1
N + 1

)
(2.10)

where h(x) = −x log x − (1 − x) log(1− x), and the inequality can be obtained by

bounding the eigenvalues of 1
M

∑M
m=1 Ξ

(
|ψm〉⊗N

)
based on (2.8). Combining (2.9)

and (2.10), we have

(1− ǫ) log(N + 1)− (1− ǫ) log(1 + ǫ1)

6
(1− ǫ) log(N + 1)−∆

1− ǫ2
+ δ.

Letting ǫ1 → 0, ǫ2 → 0, and δ → 0, the inequality above becomes ∆ 6 0, which

provides the desired contradiction.

Theorem 2.3 implies that it is impossible to send an arbitrary pure state |ψ〉 to

each of the N receivers by using fewer than (1− ǫ) log (N + 1) bcbits.

37



2.4 Efficient Implementation of Protocols

The proposed two protocols have success probability of at least 1− ǫ for an arbitrary

pure state |ψ〉 ∈ H2. It is possible to increase the success probability by optimizing

the POVM performed by Alice.1 We next describe an optimization method for the

non-oblivious protocol through an example; a similar method can be adopted for the

oblivious one.

1) For a given pure state |ψ〉, Alice obtains the optimal solution λ̊k of the following

semidefinite programming (SDP) problem

P : maximize
λk,k∈K1:K

K∑

k=1

λk

subject to
N + 1

K(1 + ǫ)

K∑

k=1

λkVs,k (Ξ (|ψ〉)∗)⊗N V
†
s,k 4 1s

λk > 0, k ∈ K1:K .

2) Alice performs the POVM on her part of the entangled state |Φ〉. The POVM

is given by

H̊k = λ̊k
N + 1

K(1 + ǫ)
Vs,k (Ξ (|ψ〉)∗)⊗N (Vs,k)

†, k ∈ K1:K

H̊failure = 1s −
K∑

k=1

H̊k.

3) Alice broadcasts the classical message (representing the outcome of the POVM)

to N different receivers. If outcome k is received, each receiver applies V T
k to

their part of the state. If outcome “failure” is received, the protocol fails.

The solutions of P do not affect the receivers’ operations, thus the transmit-

ter is not required to consume additional classical resources for sending these solu-

tions to the receivers. The success probability achieved by this protocol is given by

1Using optimization techniques for improving performance has been widely used in quantum
communication [82].
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Figure 2-1: The CDF of the failure probability with and without SDP. K is set to
be (N + 1)2.

∑K
k=1 λ̊k/

(
K(1 + ǫ)

)
, which is at least 1/(1 + ǫ) as λk = 1 is a feasible solution for

P. The optimization over λk can significantly improve the success probability in

practice. To study such improvement, we consider the cases: N = 10 and N = 20. In

particular, K = (N +1)2 unitary operators are drawn from the Haar measure. For an

instantiation of K unitary operators, the average failure probability of a protocol is

obtained by averaging over pure states from H2 uniformly. The outage is defined as

the empirical probability that the average failure probability is greater or equal than

the abscissa. For N = 20, in 99% of cases, the protocol without SDP optimization

has a failure probability less than or equal to 0.276, whereas the protocol with SDP

optimization has a failure probability of 0.004. This corresponds to an reduction by

a factor of around 70.

Note that the problem P has K variables, where the semidefinite constraints

involve a matrix of size N +1 by N +1. Therefore, solving P requires computational

complexity of only poly(N) [83]. Moreover, sparsity analysis similar to [84] shows

that there exists an optimal solution of P with at most (N + 1)(N + 2)/2 non-zero
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Figure 2-2: The state fidelity under different noise levels.

elements. This observation significantly decreases the complexity of circuits when

implementing the POVM H̊k.

We next consider the implementation of the developed protocols. Note that in the

optimized non-oblivious protocol, the success probability and the output will remain

the same if the entanglement (2.1) is replaced by

|Φ〉b =
1√
N + 1

N∑

j=0

|j〉Ab |j〉Bs

where |j〉b is the binary representation of j with ⌈logN + 1⌉ quantum bits (qubits)

(e.g., for N = 6, j = 5, |j〉b = |101〉) and the POVMs H̊k and H̊failure (with bases

|j〉s) are replaced by their isometries H̊b,k and H̊b,failure (with bases |j〉b), respectively.

Similarly, in the optimized oblivious protocol, the success probability and the output

will be the same if the entanglement (2.1) is replaced by |Φ〉b, M̊i and M̊failure (with

bases |j〉s |j〉s) are replaced with by their isometries M̊b,i and M̊b,failure (with bases

|j〉b |j〉b), and the given state |ψ〉⊗N (with bases |j〉s) is replaced by its isometry |ψ〉b
(with bases |j〉b).
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The key steps in the implementation of the proposed protocols are (a) building

the entangled state |Φ〉b; (b) implementing the POVM H̊b,k, H̊b,failure, M̊b,k, and

M̊b,failure; and (c) transforming the state |ψ〉⊗N to the state |ψ〉b. The next theorem

shows that these three tasks can be efficiently performed with basic gates.2

Theorem 2.4. (a) The entangled state |Φ〉b can be built with poly(N) basic gates;

(b) the POVM H̊b,k, H̊b,failure, M̊b,k, and M̊b,failure can be implemented with poly(N)

basic gates and standard basis measurements; and (c) the state |ψ〉⊗N can be trans-

formed to the state |ψ〉b with poly(N) basic gates.

Proof. See Appendix A.4.

Based on Theorem 2.4, we have implemented quantum broadcasting protocol for

both scenarios (non-oblivious with a known state and oblivious with multiple copies)

using basic gates on the IBM quantum simulator [80]. To investigate the effects

brought by practical imperfect operations, we follow the error model in [85]: the

CNOT gates depolarizes with probability pdp, i.e., Ξ → (1 − pdp)UCNOTΞU
†
CNOT +

pdp
4
I, where Ξ is a density matrix, UCNOT represents the CNOT operator, and 1

4
I

is the matrix representing the maximally mixed two-qubit state. We also assume

the measurement readout error is pro, i.e., the binary measurement result flips with

probability pro. As a representative case, we consider N = 3 and K = 5. Fig. 2-2

shows the average fidelity E{〈ψ|ϕ |ψ〉} as a function of pdp, where ϕ denotes the state

obtained at a single receiver when the transmission succeeds. When pro = 0.5, the

resulting state is a maximally mixed state, hence the state fidelity is 0.5, regardless of

the depolarization probability as expected. In practice, pro can be as low as 0.01 [86],

at which case the fidelity of the received state is affected only slightly by the readout

error. For a small gate error, the protocol can achieve a desirable performance (e.g.,

when pdp ≈ 0.001, pro ≈ 0.01, the average fidelity achieves around 0.93). The current

technology reaches two-qubit gate fidelity around 0.994 [87], which would correspond

to pdp = 0.008. As the technology is rapidly improving, the quantum broadcasting

protocol becomes close to a reality.

2We refer to single-qubit gates and CNOTs as basic gates.
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Chapter 3

Quantum Queuing Delay

In this chapter, we will introduce a formalism to analyze quantum queuing delay

(QQD) and develop policies for managing entanglement memory.

3.1 System Model

This section presents the system model and introduces the problem of minimizing

queueing delay in quantum networks.

3.1.1 Quantum Node

We consider a quantum system composed of a quantum node and a collection of

receivers as illustrated in Fig. 3-1. A quantum node is composed of an entanglement-

generating platform, an entanglement memory, and Nr quantum data queues, where

Nr is the number of receivers. Quantum data are quantum states (e.g., the spin of

an electron and the polarization of a photon), and they arrive at the quantum node

according to a stochastic process.1 Each quantum datum is associated with a destined

receiver and is quantified by a quantum bit (qubit). Next we describe each component

1These quantum data are either generated by the quantum node itself or are sent to the quantum
node by a collection of transmitters, which are not illustrated in Fig. 3-1 explicitly. In the latter
case, the quantum data are sent to the node from transmitters via either direct transmission or
teleportation; then the quantum node needs to move the data to the corresponding data queues.
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in the quantum node as well as the protocol for transmitting quantum data to the

corresponding receiver.

Quantum Data Queue: Each quantum data queue is associated with a receiver.

Quantum data are stored in the quantum data queue after arrival. These data are

assumed to be stored perfectly for infinite time in the quantum data queue.

Entanglement-generating Platform: In practice, there are multiple ways of gener-

ating entanglement, i.e., entangled qubit pairs, between two nodes [88–90]. We focus

on abstract models and leave more detailed physics realizations for later. We consider

a platform for making attempts to generate entangled qubit pairs between the node

and a receiver. Such attempts may fail due to imperfection in practical operations.

Note that the platform does not have the storing capability and qubits are assumed

to be collapsed in the next time slot if stored at the platform.

Entanglement Memory : If the attempt of entanglement generation succeeds, an

entangled qubit pair will be shared between the quantum node and a receiver, with one

qubit at the quantum node and the other at the receiver. The quantum node will use

this entangled qubit pair for teleportation immediately or move half of the entangled

qubit pair (i.e., the qubit at the quantum node) to the entanglement memory for

future use [91]. Such half of the entangled qubit pair will be referred to as entangled

qubit in the rest of the thesis. The entangled qubit pairs are assumed to be stored

perfectly for infinite time in the entanglement memory.

Teleportation Protocol : The quantum node employs the teleportation protocol

to transmit quantum data to a receiver [23].2 In teleportation, the quantum node

performs Bell measurements on the qubit to be transmitted, denoted as |ψ〉, as well as

its half of the entangled qubit pair; the measurement result is then sent to the receiver,

which will perform operations on its half of the entangled qubit pair accordingly; the

resulting qubit at the receiver then becomes |ψ〉.
The teleportation protocol permits the quantum node to transmit 1 qubit at

2The reason for employing teleportation rather direct transmission using quantum channels are
two folds. First, it is less challenging to establish entanglement and perform teleportation using
near-future quantum technologies compared to direct transmission, which requires entanglement
involving many qubits for quantum error correction coding. Second, as will be shown in this thesis,
using teleportation results in much less QQD compared to direct transmission.
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Entangled Qubit Pair

Moving

Entanglement Memory

Figure 3-1: An illustration of the quantum node and receivers. Quantum nodes are
composed of quantum data queues, platforms, and entanglement memories. Purple,
red, and blue circles represent qubits corresponding to Receiver 1, 2, 3, respectively.
Hollow circles represent vacant spot in the entanglement memory. Double green lines
represent teleportation. Dashed lines represent entangled qubit pairs. Black arrows
represent the operation of moving qubits from the platform to the entanglement
memory.

the cost of sending 2 classical bits (cbits) and consuming 1 entangled qubit pair.

In this thesis, we consider that classical communication resources are free since in

the foreseeable future, the communication capability of classical information will be

significantly larger than that of quantum information. Therefore, the delay brought

by the classical communication is negligible compared to QQD, and is omitted in

this thesis. The bottleneck of quantum information transmission then lies in the

entanglement generation rate and in the storage capability.

3.1.2 Dynamic Programming Formalism

We formulate the quantum data transmission at a quantum node as a dynamic pro-

gramming problem. Consider a dynamic system with discrete time slots tn (n =

0, 1, 2, . . . ). Let s(n)i denote the number of qubits associated with Receiver i in the

system at the beginning of time slot tn. In particular, s(n)i > 0 implies there are

s
(n)
i qubits in the ith data queue; s(n)i < 0 implies there are −s(n)i entangled qubits
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associated with Receiver i in the memory.

Each time slot is divided into the following three phases.

1. Data arrival and entanglement generation: a(n)i qubits of quantum data associ-

ated with Receiver i arrive at the node; meanwhile, the node makes an attempt

to generate entanglement in the platform with every receiver; b(n)i entangled

qubit pairs associated with Receiver i are successfully generated.

2. Teleportation: the node adopts teleportation to transmit quantum data by

consuming entangled qubit pairs. The entangled qubits at the node are in the

platform and the entanglement memory. The entangled qubits in the platform

are given priority for serving as resources in teleportation.

3. Entanglement storage: the remaining entangled qubits in the platform are

moved to the entanglement memory.

Note that in the third phase, if the entanglement memory cannot accommodate all

the entangled qubits in the platform, the node has to discard some entangled qubits

and move the rest to the memory. The policy for discarding entangled qubits in such

a scenario is referred to as entanglement memory management. Moreover, we consider

that there is a physical limit Qt for the number of quantum data corresponding to a

receiver, meaning that after the teleportation phase, if the number of quantum data

in the queue is greater than Qt, the node has to discard the newly arrived quantum

data. This gives s(n)i 6 Qt, ∀i, n.3

The number of entangled qubit pairs that are successfully generated, i.e., b(n)i , are

known to the node before the control decision u(n) is made. If this assumption does

not hold (e.g., if the node and the receiver are far apart), one can create a slightly

different model, but the insights obtained in this thesis would still be valid.

With the background introduced above, the mathematical model for quantum

3If the discarded quantum data are required to be recovered, one can either encode the quantum
data with error correction coding techniques, or require the retransmission of the quantum data.
In the latter case, the transmitters need to have knowledge about the quantum data so that the
no-cloning theorem is not violated.
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data transmission at a quantum node has the form

x(n+1) = f(x(n), u(n),w(n)), n = 0, 1, 2, . . . (3.1)

where

• x(n): the state of the system, consisting of the number of qubits at the begin-

ning of time slot tn, as well as the difference between the number of quantum

data arriving at the quantum node and the number of entangled qubit pairs

successfully generated during the first phase of the time slot, i.e.,

x(n) =
[ (

s(n)
)T (

c(n)
)T ]T

in which

s(n) =
[
s
(n)
1 s

(n)
2 . . . s

(n)
Nr

]T

c(n) =
[
c
(n)
1 c

(n)
2 . . . c

(n)
Nr

]T

and c(n)i = a
(n)
i − b

(n)
i .4

• u(n): the control policy at time slot n, i.e., the policy for entanglement memory

management. In particular, u(n) is a function that maps x(n) into s(n+1) with

the constraint that

Nr∑

i=1

max{0,−s(n+1)
i } 6M

where M denotes the capacity of the entanglement memory. Moreover, due to

the upper bound for the number of quantum data, we require that

s
(n+1)
i = Qt if s(n)i + c

(n)
i > Qt. (3.2)

4Note that due to the teleportation in the second phase, the difference between a
(n)
i and b

(n)
i is

sufficient for entanglement memory management.
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• w(n): the instantiation of the random vector that represents all the uncertainty

in the system at time slot tn+1, i.e., w(n) = c(n+1). The distribution of w(n)

is assumed known a priori. In particular, consider that a
(n)
i are independent

and identically distributed (i.i.d.) Bernoulli random variables with parameter

P{a(n)i = 1} = pi (independent over i and n) and that b(n)i are also i.i.d. Bernoulli

random variables with parameter P{b(n)i = 1} = qi.5 The distribution of c(n)i is

found to be

P{c(n)i = k} =





(1− pi)qi, if k = −1

piqi + (1− pi)(1− qi) if k = 0

pi(1− qi) if k = +1

0 otherwise.

In the sequel, we assume that 0 < pi, qi < 1, i ∈ K1:Nr
.

• f : a function that describes the system. Note that u(n)(x(n)) = s(n+1) and

w(n) = c(n+1); therefore, f can be expressed as

f(x(n), u(n),w(n)) =
[ (
u(n)(x(n))

)T (
w(n)

)T ]T
.

This model is illustrated in Fig. 3-2. When n = 0, s(0)i = 0, i ∈ K1:Nr
, a(0)1 = 0,

a
(0)
2 = 1, a(0)3 = 1, b(0)1 = 1, b(0)2 = 0, b(0)3 = 1. Consequently, c(0)1 = −1, c(0)2 = 1,

c
(0)
3 = 0. The entangled qubit corresponding to Receiver 1 is moved to the memory,

which gives s(1)1 = −1. When n = 1, s(1)1 = −1, s(1)2 = 1, s(1)3 = 0, a(1)1 = 0, a(1)2 = 1,

a
(1)
3 = 0, b(1)1 = 1, b(1)2 = 0, b(1)3 = 1. Consequently, c(1)1 = −1, c(1)2 = 1, c(1)3 = −1. Note

that in this case, there are three entangled qubits in the memory and the platform

after the teleportation phase, and this is beyond the capacity of the memory. The

control policy in this case chooses to discard the entangled qubit in the platform

5As no large-scale quantum networks have been implemented, it is not clear how to model the
distribution of the quantum data arrival. In this thesis, motivated by classical networks, we con-

sider that a
(n)
i follows the Bernoulli distribution. The justification for b

(n)
i following a Bernoulli

distribution will be shown in the next section.
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Figure 3-2: An illustration of dynamic programming formalism for Nr = 3, M = 2,
Qt = 2. Purple, red, and blue circles represent qubits corresponding to Receiver 1, 2,
and 3, respectively. Hallow circles represent vacant spot in the receivers, platforms,
data queues, and the entanglement memory. Double green lines represent telepor-
tation. Dashed lines represent entangled qubit pairs. Black arrows represent the
operation of moving qubits from the platform to the entanglement memory and the
operation of discarding qubits.

corresponding to Receiver 1, which gives s(2)1 = −1 and s
(2)
3 = −1. When n = 2,

s
(2)
1 = −1, s(2)2 = 2, s(2)3 = −1, a(2)i = 1, b(2)i = 0, i ∈ K1:Nr

. Consequently, c(2)i = 1,

i ∈ K1:Nr
. After the teleportation phase, there are three qubits in the second data

queue, which is beyond the capacity of the data queue. The node has to discard one

qubit, which gives s(3)2 = 2.

The goal is to minimize the average delay of the quantum queuing system. Due

to the relationship between average delay and average queue length shown by Little’s

law [92], we aim at designing the control policy u(n) for minimizing the expected

average queue length.6 In particular, let JL(x(1)) denote the expected average queue

length starting in the state x(1), i.e.,

JL(x
(1)) := lim sup

N→∞
E

{
1

N

N∑

n=1

Nr∑

i=1

max
{
0, s

(n)
i

}∣∣∣x(1)

}
. (3.3)

6Little’s law shows that the average queue length is the multiplication of the average queuing
delay and the effective arrival rate of quantum data. Later we will see that the blocking probability
is almost zero for the developed policies and hence the effective arrival rate is almost a constant.
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3.1.3 Practical Implementation

We now consider one of the practical methods of entanglement generation and justify

the Bernoulli distribution assumption of b(n)i in the previous section. As mentioned in

[56,93], Nitrogen-Vacancy (NV) platforms are available for entanglement generation.

There are three practical factors that need to be considered:

• Time for one entanglement attempt: consider that the distance between the

quantum node and a receiver is about 25 kilometers (a typical distance between

two neighboring European cities) [56]. The time for an attempt to generate

an entangled qubit pair between the node and the receiver is about 145 µs,

including photon emission, electron readout, and the communication delay.

• Success probability for one entanglement attempt: according to [56], the suc-

cess probability for one entanglement attempt is about α × 10−3, where α is a

parameter such that the fidelity of the entanglement is 1− α.7 For example, if

the fidelity of the entanglement is required to be 0.9, the success probability is

about 10−4.

• Times for teleportation and entanglement storage: the operation for telepor-

tation in the transmitter’s side is essentially a Bell-state measurement, which

takes about 100 µs using an NV platform [93]; the time for moving qubits to

the memory or the queue is about 1040 µs.

Note that the times for teleportation and entanglement storage are akin to the

overhead in the classical communication networks, whereas the time for the entan-

glement attempt is akin to communication time. Moreover, the total time for tele-

portation and entanglement storage is much larger than that for one entanglement

attempt. To improve entanglement generation efficiency, multiple attempts of en-

tanglement generation can be made in the first phase of a time slot. Suppose there

are 500 attempts in the first phase. Then the duration of the phase is 7.25× 104 µs,

7Fidelity is a real number in [0, 1] that characterizes the quality of entanglement. Higher fidelity
implies higher quality.
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which is much larger than the time of the second and third phase (about 1.1×103 µs).

With the mild assumption that the results of these attempts are i.i.d., the number

of generated entanglements follows a binomial distribution. If the success probability

for one attempt is set to be 10−4, corresponding to a fidelity value of 0.9 as shown

above, then

P{number of the generated entanglement = k}






= 0.9512 if k = 0

= 0.0476 if k = 1

≈ 0 if k > 1

which can be approximated as a Bernoulli distribution as the probability of generating

more than one entangled qubit pair is lower than 1.2× 10−3. If the required fidelity

value is higher than 0.9, b(n)i can be approximated only better as a Bernoulli random

variable. This justifies the assumption that b(n)i follows a Bernoulli distribution.

3.2 One-Receiver Scenario

We consider a simple scenario, where there is only one receiver, i.e., Nr = 1, to gain

insights into the quantum queuing system.

Recall that the number of quantum data a
(n)
i and the number of entangled qubits

b
(n)
i are i.i.d. Bernoulli random variables. In the presence of only one receiver, the

subscript is dropped in this section, e.g.,

P{a(n) = 1} = p, P{b(n) = 1} = q. (3.4)

In the scenario with Nr = 1, the control u(n) is trivial: in the third phase, the

quantum node simply moves the remaining entangled qubits in the platform to the
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entanglement memory as long as the memory does not reach its full capacity, i.e.,

u(n)
(
[ s(n) c(n) ]T

)
=





Qt if s(n) + c(n) > Qt

−M if s(n) + c(n) < −M

s(n) + c(n) otherwise.

Note that if there are multiple receivers, then determining u(n) becomes challenging

as it involves the allocation of memory among different receivers. We next evaluate

the expected average queue length in the following proposition.

Proposition 3.1. For Nr = 1, if p, q ∈ (0, 1), the expected average queue length is

JL(x
(1)) =






αM
[
α− αQt+1 − (1− α)Qtα

Qt+1
]

(1− α)(1− αQt+M+1)
if p 6= q

Qt(Qt + 1)

2(Qt +M + 1)
if p = q

where

α =
p(1− q)

q(1− p)
.

Proof. Consider the evolution of s(n). The transition probability from the state s(n)
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to the state s(n+1) is

P

{
s(n+1) = s(n+1)

∣∣s(n) = s(n)
}

=






p(1− q) if s(n+1) = s(n) + 1 and

s(n+1)
6 Qt

pq + (1− q)(1− p) if s(n+1) = s(n) and

s(n) ∈ K−M+1:Qt−1

q(1− p) if s(n+1) = s(n) − 1 and

s(n+1)
> −M

1− p+ pq if s(n+1) = s(n) = −M

1− q + pq if s(n+1) = s(n) = Qt.

Let π denote the stationary distribution of s(n), i.e.,

πi = lim
n→∞

P{s(n) = i|s(1) = s(1)}, i ∈ K−M :Qt
.

The stationary distribution π satisfies the following properties:

π−M = (1− p+ pq)π−M + q(1− p)π−M+1

πi = (1− q)pπi−1 + [ pq + (1− p)(1− q) ]πi + q(1− p)πi+1, i ∈ K−M+1:Qt−1

πQt
= (1− q)pπQt−1 + (1− q + pq)πQt

.

Solving these equations gives

πi =






αi
αM(1− α)

1− αQt+M+1
, if p 6= q

1

Qt +M + 1
if p = q
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Figure 3-3: Expected average queue length as a function of the memory size M with
Nr = 1 and Qt = 30. The parameter q is fixed as 0.05, whereas different values of p
are considered.

where i ∈ K−M :Qt
. The expected average queue length is

JL(x
(1)) =

Qt∑

i=1

i · πi

which is the desired result after some calculation.

Fig. 3-3 shows the expected average queue length as a function of M with Nr = 1

and Qt = 30. The parameter q is set as 0.05 for consistency with the analysis

in Section 3.1.3. The observations obtained from Fig. 3-3 are as follows. These

observations will also hold for other values of q.

• If p < q, i.e., α < 1, the expected average queue length decreases exponentially

as a function of M . This is because for α < 1,

C1α
M

6 JL(x
(1)) 6 C2α

M

where C1 =
[
α − αQt+1 − (1 − α)Qtα

Qt+1
]
/(1 − α) and C2 = C1/(1 − αQt+1),

and they do not rely on M . This observation manifests the peculiar property of
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quantum information transmission via teleportation: entanglement can be built

before the quantum data arrive so that the delay can be significantly reduced.

Note that the scenario with α < 1 is common in practice since it is akin to the

case that the arrival rate is lower than the processing rate in classical queuing

problems.

• If p = q, the expected average queue length is approximately inversely pro-

portional as a function of M . If p > q, the expected average queue length

converges to Qt (for sufficiently large Qt). These two scenarios correspond to

the uncommon case for which the arrival rate is no less than the processing rate.

One can also verify that the “blocking probability,” i.e., the probability that the

quantum data are dropped because the queue is full, is

P{blocking of quantum data}

= (1− q) lim
n→∞

P{s(n) = Qt|s(1) = s(1)}

=





(1− q)αQt+M(1− α)

1− αQt+M+1
if p 6= q

1− q

Qt +M + 1
if p = q .

It is straightforward to see that this probability is a decreasing function of Qt, whereas

the expected average queue length is an increasing function of Qt. One may optimize

over Qt to achieve a desirable tradeoff between the blocking probability and the

expected average queue length.

Before finishing the analysis of single-receiver scenario, we would like to discuss

the scenario where the discarded qubits are required for retransmission, referred to

as retransmission model. In this model, the assumption that a(n) are i.i.d. may

not hold. However, one can show that the expected average queue length under

the retransmission model is lower-bounded by JL(x(1)) shown in Proposition 3.1 and

55



upper-bounded by

JL,retra(x
(1)) =





αM+1

1− α
if p 6= q

∞ if p = q

where JL,retra(x
(1)) is obtained by letting Qt go to infinity in JL(x(1)). Note that if p <

q, both JL(x
(1)) and JL,retra(x

(1)) decrease to zero exponentially with respect to the

memory size M ; hence, the expected average queue length under the retransmission

model also decreases to zero exponentially with M .

3.3 Multiple-Receiver Scenario

In this section, we design the control policy u(n) for Nr > 2. Recall that u(n) is a

function that maps x(n) into s(n+1). We first consider the scenario where Nr = 2, and

extend the analysis to the scenario where Nr > 2.

3.3.1 The Two-Receiver Scenario

In this section, Nr = 2. Recall that s(n) represents the numbers of qubits in the

system at the beginning of the time slot tn, and c(n) represents the difference between

the numbers of qubits arriving at the node and the numbers of entangled qubit pairs

generated in the first phase of the time slot tn. For certain values of s(n) and c(n), the

optimal control u(n) is trivial: in the third phase, the quantum node simply moves the

remaining entangled qubits in the platform to the entanglement memory as long as the

memory does not reach its full capacity. Specifically, recall that u(n)
(
[ s(n) c(n) ]T

)
=

s(n+1) and

s
(n+1)
i = min{Qt, s

(n)
i + c

(n)
i } (3.5)
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provided that

2∑

i=1

max{0,−s(n)i − c
(n)
i } 6M.

In addition, one can verify that (3.5) also holds if s(n)j + c
(n)
j > 0, j = 1 or 2.

We now consider the scenarios where

2∑

i=1

max{0,−s(n)i − c
(n)
i } > M (3.6)

s
(n)
i + c

(n)
i < 0 i = 1, 2. (3.7)

Note that in these scenarios, c(n)i 6 0 (i = 1, 2) since
∑2

i=1max{0,−s(n)i } 6 M . The

next theorem shows that the optimal control is a threshold-based policy for these

scenarios.

Theorem 3.1. ForNr = 2, if (3.6) and (3.7) hold, there exists T ∗ ∈ {0,−1,−2, . . . ,−M}
such that the optimal control u∗ for minimizing the expected average queue length

gives

s
(n+1)
1 =




s
(n)
1 + c

(n)
1 for s(n)1 + c

(n)
1 > T ∗

−M −
(
s
(n)
2 + c

(n)
2

)
otherwise

and

s
(n+1)
2 =




−M −

(
s
(n)
1 + c

(n)
1

)
for s(n)1 + c

(n)
1 > T ∗

s
(n)
2 + c

(n)
2 otherwise.

Proof. See Appendix B.1 and therein Lemmas B.1-B.4.

Remark 1. Given a threshold T , we develop the corresponding control policy for

Nr = 2, summarized in Algorithm 1. One way to interpret the entanglement memory

management in Algorithm 1 is as follows. We assign M1 = T and M2 =M − T slots

of memory budget to the entangled qubit pairs corresponding to the Receivers 1 and
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Algorithm 1 Control for the Two-Receiver Scenario

Require: the current state (s
(n)
1 , s

(n)
2 , c

(n)
1 , c

(n)
2 ), the threshold T , the memory size M ,

the upper bound of the queue length Qt

Ensure: the qubit number in the system s
(n+1)
1 , s

(n+1)
2 at the next time slot

1: if s
(n)
i + c

(n)
i > 0, i ∈ {1, 2} or

∑2
i=1max{0,−s(n)i − c

(n)
i } 6M then

2: // Control is trivial in these scenarios
3: for i = 1 : 2 do

4: s
(n+1)
i = min{Qt, s

(n)
i + c

(n)
i };

5: end for

6: else

7: // Entanglement memory management

s
(n+1)
1 =

{
s
(n)
1 + c

(n)
1 if s(n)1 + c

(n)
1 > −T

−M −
(
s
(n)
2 + c

(n)
2

)
otherwise

and

s
(n+1)
2 =

{
−M −

(
s
(n)
1 + c

(n)
1

)
if s(n)1 + c

(n)
1 > −T

s
(n)
2 + c

(n)
2 otherwise.

8: end if

2, respectively. When the budget of Receiver i is not used up, the entangled qubits

corresponding the Receiver i have a higher priority of using the memory: the entangled

qubits are moved to the memory, even at the cost of discarding the entangled qubits

corresponding to the other receiver if the memory is full.

This structure of memory use is akin to the spectrum use in cognitive radio.

Consider two virtual sets of entanglement memory slots, denoted as R1 and R2 with

Card(R1) =M1 and Card(R2) =M2. The entangled qubits associated with Receiver

i have a higher priority on the usage of the memory set Ri, and we can exploit the

memory set of the other Receiver j as long as Rj is not full. In other words, the

entangled qubits associated with Receiver i are akin to the primary user regarding

the usage of Ri; and they are akin to the secondary user regarding the usage of Rj .

This idea is referred to as the cognitive memory and can be used for the policy design

in general scenarios where Nr > 2.

Remark 2. Algorithm 1 requires the value of the threshold T as input. It remains
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unclear how to determine the optimal value threshold T ∗, but in the next section we

will provide an upper bound for the expected average queue length of Algorithm 1 as

a function of T , which can guide the choice of T .

3.3.2 Harnessing Cognitive Memory

For the design of the control policy in the scenario with Nr > 2, one can use the value

iteration method or the policy iteration method, which is commonly used for solving

the dynamic programming problem [94]. However, these methods require computing

the values of certain functions corresponding to every state in the system in which the

number of states increases in the order of O(MNr). Therefore, these methods become

computationally unfavorable for large Nr.

Alternatively, inspired by the idea of cognitive memory, we assign Mi slots of

memory budget to the entangled qubits corresponding to Receiver i, i ∈ K1:Nr
, where

Mi ∈ N+, i ∈ Nr (3.8)

Nr∑

i=1

Mi 6M. (3.9)

Similarly to Algorithm 1, we design control policies for Nr > 2, summarized in Algo-

rithm 2. The control policy based on the output of Algorithm 2 is referred to as the

cognitive-memory-based policy. In particular, the threshold-based policy for Nr = 2

can be viewed as a special case of the cognitive-memory-based policy.

A subroutine in the line 12 of Algorithm 2 determines how to discard the entan-

gled qubits that use up their memory budgets. Note that this subroutine can be

designed heuristically. Later in Section 4.4, we will see that even a simple design of

the subroutine can achieve near-optimal performance. The performance of Algorithm

2 relies on the subroutine. However, we can provide an upper bound for the expected

average queue length regardless of the design of the subroutine.

Proposition 3.2. The expected average queue length achieved by Algorithm 2 is
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Algorithm 2 Control for the Nr-Receiver Scenario

Require: the current state s
(n)
i , c(n)i , the budget Mi, the probabilities pi and qi,

i ∈ K1:Nr
, the memory size M , and the upper bound of the queue length Qt

Ensure: the qubit number in the system s
(n+1)
i , i ∈ K1:Nr

at the next time slot
1: Let D = ∅;
2: if

∑Nr

i=1max{0,−s(n)i − c
(n)
i } 6M then

3: s
(n+1)
i = min{Qt, s

(n)
i + c

(n)
i };

4: else

5: for i = 1 : Nr do

6: if s
(n)
i + c

(n)
i > −Mi then

7: s
(n+1)
i = min{Qt, s

(n)
i + c

(n)
i };

8: D → D ∪ {i};
9: end if

10: end for

11: if Card(D) 6= Nr then

12: Call a subroutine to determine s(n+1)
j , j ∈ K1:Nr

\ D;
13: end if

14: end if

upper bounded by

J(M1,M2, . . . ,MNr
)

=

Nr∑

i=1

[
(1− δpi,qi)

αMi

i

[
αi − αQt+1

i − (1− αi)Qtα
Qt+1
i

]

(1− αi)(1− αQt+Mi+1
i )

+ δpi,qi
Qt(Qt + 1)

2(Qt +Mi)

]

(3.10)

where δx,y is the Kronecker delta function and

αi =
pi(1− qi)

qi(1− pi)
,

Proof. The set K1:Nr
\D represents the set of receivers whose corresponding entangled

qubits use up the memory budget. The subroutine in the line 12 aims to determine

s
(n+1)
i , i ∈ K1:Nr

\ D. From the way that D is generated, we have that s(n)i = −Mi

and c(n)i = −1, i ∈ K1:Nr
\ D. Consider a naive algorithm that discards the entangled
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qubits corresponding to Receiver i ∈ K1:Nr
\ D in the platform, i.e.,

s
(n+1)
i = −Mi, i ∈ K1:Nr

\ D.

This algorithm has the worst performance among all possible designs of subroutines.

Using this algorithm, the queuing system is decomposed into Nr independent sub-

systems. Each subsystem i has a memory size Mi and the corresponding expected

average queue length is derived in Proposition 3.1. The total expected average queue

length is then given by Proposition 3.2.

Next, consider the choice of Mi for minimizing the expected average queue length.

Since the expected average queue length depends on the design of subroutine, we use

the upper bound J(M1,M2, . . . ,MNr
) as the objective and formulate an optimization

problem as follows:

P : minimize
{Mi,i∈K1:Nr}

J(M1,M2, . . . ,MNr
)

subject to (3.8) and (3.9).

Note that P is an integer programming problem and solving P may be computa-

tionally cumbersome.8 Therefore, we relax the constraints (3.8) and (3.9) to Mi > 0,

i ∈ Nr, and
∑Nr

i=1Mi 6 M , respectively. The effect brought by such relaxation be-

comes negligible for large M . Moreover, we consider the scenarios where the following

conditions hold:

pi < qi i ∈ Nr (3.11)

αQt+Mi ≪ 1 i ∈ Nr. (3.12)

The condition (3.11) is consistent with the discussion in Section 3.2 and the condition

(3.12) is reasonable for achieving the low blocking probability shown in Section 3.2.

8Note that optimization techniques have been used to solve problems on quantum information
science [82, 95–97].
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With these two conditions, the objective function of P can be approximated by

Nr∑

i=1

αMi

i

[
αi − αQt+1

i − (1− αi)Qtα
Qt+1
i

]

1− αi
.

Using this approximated term as the objective function and the relaxation of the

constraints on Mi from integers to real numbers, we obtain the following relaxed

optimization problem:

PR : minimize
{Mi,i∈K1:Nr}

Nr∑

i=1

λiα
Mi

i

subject to Mi > 0, i ∈ Nr

Nr∑

i=1

Mi 6M

where

λi =
αi − αQt+1

i − (1− αi)Qtα
Qt+1
i

1− αi
.

One can easily verify that λi > 0; moreover, the objective function is convex and

the constraints are linear. Therefore, PR can be solved by standard convex program-

ming. We next show that, by checking the Karush-Kuhn-Tucker conditions, we can

obtain a closed-form solution for the problem PR under some mild assumptions.

Proposition 3.3. For

µ := − exp

{
1

∑Nr

i=1(1/ logαi)

[
M +

Nr∑

i=1

log (−λi logαi)
logαi

]}

> λi logαi, i ∈ K1:Nr

the optimal solution for PR is

M∗
i =

1

logαi
log

µ

λi logαi
.
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Remark 3. The condition in Proposition 3.3 holds for a large M . In such a scenario,

the minimum of the objective function is

µ
Nr∑

i=1

1

logαi

which decreases to zero exponentially as a function of M and the exponent is

1
∑Nr

i=1 1/ logαi
.

This shows that forNr > 1, the delay can be significantly decreased with entanglement

built before the quantum data arrive. Such an observation is consistent with the one

shown in Section 3.2, where Nr = 1.

3.4 Numerical Results

This section illustrates the performance of the proposed policies through numerical

results. The probabilities are set as qi = 0.05, i ∈ K1:Nr
. Here qi is chosen according

to the analysis of the practical implementation in Section 3.1.3.

3.4.1 Two-Receiver Scenario

We first evaluate the expected average queue length in the scenario with two receivers.

As an example, consider p1 = 0.5q1 and p2 = 0.6q2. We compare the following four

policies:

• Value Iteration (Optimal): the policy obtained by value-iteration [98], which is

also the optimal policy.

• Threshold-based I: the policy shown in Algorithm 1, with the optimal choice of

the threshold T . The optimal choice is obtained by evaluating the performance

of all choices of the threshold.
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Figure 3-4: Expected average queue length as a function of the memory size M with
Nr = 2.

• Threshold-based II: the policy shown in Algorithm 1, with the choice of thresh-

old T by solving the problem P.

• Prioritized: the policy that gives priority to discarding the entangled qubits of

the receiver with a lower arrival rate when the memory is full.

Note that the prioritized policy severs as a baseline. The upper bound (3.10) for

the threshold-based policy will also be shown for evaluating the performance of the

policies.

Fig. 3-4 shows the expected average queue length of the Value Iteration policy,

the Threshold-based policies, and the Prioritized policy, as well as the upper bound

for the performance of the threshold-based policy as a function of the memory size.

First, the curves associated with the Value Iteration policy, the Threshold-based

policies, and the upper bound demonstrate exponential decrease as a function of the

memory size M . This observation is consistent with the analysis in Section 3.3.2

and further validates the insights into QQD: by building and storing entanglement

before the quantum data arrive, the queuing delay can be significantly reduced and

such reduction largely relies on the memory size. Second, Threshold-based Policy I
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achieves the same performance as the optimal policy. This observation is consistent

with Theorem 3.1, which shows that the Value Iteration policy is threshold-based.

Third, the benefit of the Value Iteration and the Threshold-based policy is evident.

For example, the expected average queue length is 0.4143 for the Prioritized policy

when M = 14, whereas it is 0.0268 and 0.0268 for Threshold-based Policy I and

Threshold-based Policy II, respectively. This corresponds to an average queue length

reduction of 93.5%. Fourth, the curve associated with the upper bound is close to

the one associated with the Value Iteration policy, showing that the upper bound is

tight.

3.4.2 Multi-Receiver Scenario

We next evaluate the expected average queue length in the scenario with multiple

receivers. In particular, we consider that Nr = 3 and p1 = 0.3q1, p2 = 0.35q2, p3 =

0.4q3.9 We compare the following three policies:

• Value Iteration: the policy obtained by value-iteration [98], which is also the

optimal policy.

• Cognitive-memory-based: the policy shown in Algorithm 2, with the choice of

Mi by solving the problem PR. The subroutine in Algorithm 2 gives priority

to discarding the entangled qubits of the receiver with a lower arrival rate.

• Prioritized: the policy that gives priority to discarding the entangled qubits of

the receiver with a lower arrival rate when the memory is full.

Note that the prioritized policy severs as a baseline. The upper bound (3.10) will

also be shown for evaluating the performance of the policies.

Fig. 3-5 shows the expected average queue length of the Value Iteration policy,

the Cognitive-memory-based policy, and the Prioritized policy, as well as the upper

bound for the performance of the Cognitive-memory-based policy as a function of

9For large Nr, the optimal policy is computationally cumbersome as mentioned in Section 3.3.2.
Therefore, we choose a moderate value of Nr in this section.
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Figure 3-5: Expected average queue length as a function of the memory size M with
Nr = 3.

the memory size. First, the curves associated with the Value Iteration policy, the

Cognitive-memory-based policy, and the upper bound demonstrate exponential de-

crease as a function of the memory size M . Again, this observation shows that the

queuing delay can be significantly reduced and such reduction largely relies on the

memory size. Second, the benefit of the Value Iteration and the Cognitive-memory-

based policy is evident. For example, the expected average queue length is 0.7644 for

the Prioritized policy when M = 10, whereas it is 0.0738 and 0.0815 for the Value It-

eration policy and the Cognitive-memory-based policy, respectively. This corresponds

to expected average queue length reductions of 90.4% and 89.3%, respectively. This

observation is consistent with the two-receiver scenario and Proposition 3.2. Third,

the curve associated with the upper bound is close to the one associated with the

Value Iteration policy, showing that the upper bound is tight.

Next, we evaluate the blocking probability in the scenario with multiple receivers.

Recall that the blocking probability is the probability that the quantum data are

dropped because the queue is full. Fig. 3-6 shows the blocking probability of the

Value Iteration policy, Cognitive-memory-based policy, and the Prioritized policy as
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Figure 3-6: Blocking probability as a function of the memory size M with Nr = 3.

a function of the memory size. The blocking probability converges to zero quickly a

function of the memory size M for all the policies. This is consistent with the analysis

in Section 3.2 and shows that almost none of the quantum data are dropped in the

considered scenario. Together with Little’s law, this shows that the expected average

queuing delay is proportional to the expected average queue length, which justifies

the use of expected average queue length as the objective function.
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Chapter 4

Remote Entanglement Distribution

In this chapter, we will establish a framework of designing remote entanglement dis-

tribution (RED) protocols for quantum networks.

4.1 System Model

Consider a quantum network consisting of nodes equipped with quantum devices.

Such a network can be abstracted by a graph consisting of nodes and edges. Let

N and E denote the set of nodes and the set of edges, respectively. Each node in

N has the capability of performing quantum measurements and storing quantum

bits (qubits) for a sufficiently long time. Consequently, each node can serve as a

quantum repeater.1 Each edge (i, j) ∈ E represents a quantum channel, and this

channel can be used to generate entanglement between nodes i and j. We aim to

distribute entanglement at two remote nodes with the help of quantum repeaters for

general networks. Note that we are particularly interested in homogeneous repeater

chains, a special case of quantum networks with desired properties, and will discuss

them in Section 4.3.

There are two essential operations in RED: entanglement generation and entan-

glement swapping, as illustrated in Fig. 4-1.

• Entanglement generation - For (i, k) ∈ E , nodes i and k are connected by

1We use “repeater” and “node” interchangeably in the rest of the thesis.
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(a) (b)

Figure 4-1: An illustration of entanglement generation and entanglement swapping.
In (a), nodes i and k are connected by a quantum channel, and so are nodes k and
j. Purple lines represent generated EQPs. Entanglement can be generated between
i and k. In (b), the node k performs entanglement swapping using Ξi:k and Ξk:j to
distribute Ξi:j. Blue lines represent distributed EQPs.

a quantum channel. Nodes i and k can attempt to generate2 entangled qubit

pairs (grey dots connected by purple dashed lines in Fig. 4-1(a)). Entanglement

generation can be implemented, for example, by locally preparing an entangled

qubit pair at one of the nodes (e.g., i) and sending one entangled qubit in this

pair to the other node (e.g., k) [90]. The entangled qubits are stored in the

nodes for a sufficiently long time. The attempt of entanglement generation may

not always succeed. If the attempt succeeds, the density matrix of the entangled

qubit pair is:

Ξia,kb :=
1

2
(|00〉ia,kb + |11〉ia,kb)(〈00|ia,kb + 〈11|ia,kb)

where ia and kb represent physical systems in node i and k, respectively; other-

wise, no entangled qubit pair is obtained.

• Entanglement swapping - Entanglement swapping [24,99] can be seen as a spe-

cial case of teleportation [23]. Suppose there are three nodes i, k, and j. Node

2In this thesis, we use the term “generate/generation" to describe the operation of preparing an
entangled qubit pair at one node and sending one of the qubits through a quantum channel; we
use the term “distribute/distribution" to describe the operation of preparing entangled qubit pairs
at two nodes that are not directly connected by a quantum channel via entanglement generation
and entanglement swapping. Moreover, “distribution” in entanglement distribution should not be
confused with that in probability distribution.
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i has one qubit, node k two, and node j one. Node i’s qubit and node k’s first

qubit are maximally entangled, and so are node k’s second qubit and node j’s

qubit. Node k teleports the qubit entangled with the one in node i to node

j. Then, the node i’s qubit is entangled with node j’s even though these two

nodes have never directly interacted with each other. This operation is referred

to as entanglement swapping. The attempt of entanglement swapping may not

always succeed. If the attempt succeeds, one entangled qubit pair Ξi:j is dis-

tributed; otherwise, no entangled qubit pair is obtained even though the two

EQPs are consumed.

We consider a time-slotted system in which slots are indexed by τ ∈ N+. Each

time slot is divided into two phases:

• Phase I: For any (i, k) ∈ E , nodes i and k can make an attempt to generate an

entangled qubit pair with success probability of pi:k.3

• Phase II: For any i, j, k ∈ N , node k can attempt to perform entanglement

swapping with success probability qk to distributed entanglement Ξi:j using

Ξi:k and Ξk:j.

Note that the model for entanglement generation includes the lossy optical chan-

nel, which is commonly used for quantum communication. The results presented in

this thesis can be extended to a general quantum channel by replacing pi:j with the

quantum channel capacity between i and j, ∀(i, j) ∈ E .

We are interested in designing efficient RED protocols for scheduling entanglement

swapping in the network so that a large number of entangled qubit pairs can be

distributed between a source node s and a sink node t (s, t ∈ N ). The node s

may be remote from the node t. Once an entangled qubit pair between s and t is

distributed, it is stored and will not be used for entanglement swapping. For a given

network described by N , E , and {pi:j}(i,j)∈E , our goal is to maximize the entanglement

3Note that this probability does not rely on the order of i and k, i.e., pi:k = pk:i.
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distribution rate (EDR) achieved by a protocol π, i.e.,

λπ = lim inf
T→∞

1

T

T∑

τ=1

E{gπs:t(τ)} (4.1)

where gπs:t(τ) denotes the number of EQPs generated and/or distributed between s

and t distributed at time slot τ using an RED protocol π. The maximum EDR over

all RED protocols is denoted by λ∗.

4.2 Imperfect Entanglement Swapping Operation

In this section, we determine the maximum EDR λ∗ and design the optimal RED

protocol.

4.2.1 Optimal EDR

Analyzing entanglement swapping directly on the original network is complicated

because the entanglement swapping operation involve pairs of nodes rather than in-

dividual nodes. Such difficulty motivates us to consider a graph consisting of nodes

that represent node pairs in N . Specifically, we introduce a directed graph G:

• A node in G corresponds to a pair of nodes in N , denoted by ei:k for some

i, k ∈ N . To distinguish the nodes in G from those in N , we refer to ei:k,

i, k ∈ N in G as enodes. We do not differentiate the order of the two nodes i

and k in an enode, i.e., ei:k = ek:i. These enodes represent the entangled qubit

pairs.

• Let a nonnegative number f i:ki:j denote the eflow from ei:k to ei:j . If f i:ki:j > 0,

there is a directed edge from the enode ei:k to the enode ei:j. The eflow f i:ki:j

represents the amount of EQPs Ξi:k used for distributing Ξi:j via entanglement

swapping. Since the order of the two nodes in an enode is not differentiated,

we have f i:ki:j = fk:ii:j = f i:kj:i = fk:ij:i . However, f i:ji:k is not necessarily equal to f i:ki:j .
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An illustration of the enode and eflow is depicted in Fig. 4-2. The next theorem

provides an upper bound for the optimal EDR. This upper bound is based on an

optimization problem, where the variables are the eflows.

Theorem 4.1. For a given graph with node set N , edge set E , entanglement gen-

eration success probability {pi:j : (i, j) ∈ E}, and entanglement swapping success

probability {qk : k ∈ N}, the optimal EDR is upper-bounded by the optimal value

of the following problem P:

P : maximize
{f i:ki:j :i,j,k∈N}

I(s, t)

subject to I(i, j) >
∑

k∈N\{i,j}
(f i:ji:k + f i:jk:j), i, j ∈ N , {i, j} 6= {s, t} (4.2)

f i:ki:j = fk:ji:j > 0, i, j, k ∈ N (4.3)

f s:ts:k = f s:tk:t = 0, k ∈ N (4.4)

where for i, j ∈ N ,

I(i, j) = 1E(i, j)pi:j +
∑

k∈N\{i,j}
qk
f i:ki:j + fk:ji:j

2
.

Proof. See Appendix C.1.

Remark 4. The objective function and the constrains of P can be interpreted as

follows. The objective function I(s, t) represents the amount of entanglement Ξs:t

generated/distributed between the source node and the sink node. The constraint

(4.2) represents the entanglement balance corresponding to an arbitrary enode ei:j.

In particular, the left hand side of (4.2) represents the amount of entanglement Ξs:t

generated/distributed between node i and node j; the right hand side of (4.2) rep-

resents the amount of entanglement Ξi:j that is used for distributing other entan-

glement. The constraint (4.3) represents the symmetry in entanglement swapping.

In particular, in entanglement swapping, the amount of entanglement Ξi:k and Ξk:j

consumed to distribute Ξi:j needs to be the same. The constraint (4.4) represents
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(a) (b)

Figure 4-2: An illustration of enodes and eflows. In (a), the node j performs entangle-
ment swapping using Ξi:j and Ξk:j to distribute Ξi:k with EDR λ. Correspondingly,
in (b), the enodes ei:k and ek:j contribute eflows to ei:j with f i:ki:j = fk:ji:j = λ.

the requirement that the entanglement Ξs:t is not used for entanglement swapping.

Remark 5. The problem P is a linear programming problem. The computational

complexity of P depends on the numbers of variables and constraints, and both

numbers are poly(Card(N )) [100–103]. Therefore, the optimal solution of the problem

P can be obtained efficiently by standard linear optimization algorithms. Note that

optimization techniques have been used to solve problems on quantum information

science [82, 95, 96, 104].

We next determine some structural properties of a graph that corresponds to an

optimal solution of P.

4.2.2 Structural Properties

Definition 1 (Directed acyclic graph). A directed acyclic graph (DAG) is a directed

graph with no directed cycle.

Proposition 4.1. There exists an optimal solution of P such that the graph G
corresponding to this solution is a DAG.

Proof. See Appendix C.2.

There are some standard concepts such as isolated node, parent, child, ancestor,

and descendant for DAGs and we can employ them in the graph consisting of enodes.

74



Definition 2 (Efficiency). A directed graph consisting of enodes is efficient if for

every enode ei:j except for es:t, either ei:j is isolated or ei:j is an ancestor of es:t.

Proposition 4.2. There exists an optimal solution of P such that the graph corre-

sponding to this solution is acyclic and efficient.

Proof. See Appendix C.3.

The constraint (4.2) in the problem P can be interpreted as follows: the incoming

flow into the enode ei:j is no less than the outgoing flow. If the equality does not

hold, some of the entanglement will be wasted. To reduce such waste, we introduce

control variables {ui:j : (i, j) ∈ E} for limiting the number of generated EQPs, which

induces the following problem Ps:

Ps : maximize
{f i:ki:j :i,j,k∈N}
{ui:j :(i,j)∈E}

I(s, t)

subject to ui:jpi:j1E(i, j) +
∑

k∈N\{i,j}
qk
f i:ki:j + fk:ji:j

2
=

∑

k∈N\{i,j}
(f i:ji:k + f i:jk:j),

i, j ∈ N , {i, j} 6= {s, t} (4.5)

f i:ki:j = fk:ji:j > 0, i, j, k ∈ N (4.6)

f s:ts:i = f s:tt:i = 0, i ∈ N (4.7)

0 6 ui:j 6 1, (i, j) ∈ E . (4.8)

Evidently, if {f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} is an optimal solution of

Ps, then {f̊ i:ki:j : i, j, k ∈ N} is a feasible solution of P. The next theorem implies

that P and Ps are equivalent.

Theorem 4.2. The optimal value of Ps is the same as that of P. Moreover, there

exists an optimal solution of Ps such that the graph corresponding to this solution

is acyclic and efficient.

Proof. See Appendix C.4.
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Theorems 4.1 and 4.2 have shown that the optimal value of Ps is an upper bound

for the EDR. Next we will show that this bound is tight by designing an RED protocol

that achieves this bound. The RED protocol will employ the optimal solution of Ps.

4.2.3 Stationary Protocol

By Theorem 4.2, we can consider an optimal solution {f̊ i:ki:j : i, j, k ∈ N} and

{ůi:j : (i, j) ∈ E} of Ps such that the graph corresponding to this solution is acyclic

and efficient. This solution will be used to develop the RED protocol. Note that

topological ordering is possible for a DAG consisting of enodes, and we can find a

linear ordering of all the enodes, such that if f i:ki:j > 0, the enode ei:k precedes the

enode ei:j in the ordering.

For each enode ei:k that has a descendant es:t in G, we consider a set Mi:k, con-

sisting of the EQPs between i and k; we also consider a collection of sets, denoted as

F i:k
i:j and F i:k

j:k, j ∈ N \ {i, k}, consisting of the EQPs between i and k that will be

used for distributing Ξi:j and Ξj:k, respectively. This stationary protocol, denoted

by π̊, is described as follows:

• In Phase I,

– For any (i, k) ∈ E , nodes i and k attempt to generate an entangled qubit

pair Ξi:k with the probability ůi:k.4 If the attempt is successful, the entan-

gled qubit pair Ξi:k is moved to the set Mi:k.

– For every enode ei:k, if ei:k 6= es:t, we move each EQP Ξi:k in Mi:k to the

set F i:k
i:j or the set F i:k

j:k, j ∈ N \ {i, k} randomly. In particular,

P{move Ξi:k to F i:k
i:j } =

f̊ i:ki:j∑
l∈N\{i,k}(f̊

i:k
i:l + f̊ i:kl:k )

(4.9)

P{move Ξi:k to F i:k
j:k} =

f̊ i:kj:k∑
l∈N\{i,k}(f̊

i:k
i:l + f̊ i:kl:k )

. (4.10)

4The control variable ůi:k is the probability of attempting to generate entanglements. Note that
only if they make the attempt and the attempt is successful, can an entangled qubit pair be generated
between nodes i and k. Hence, an entangled qubit pair can be generated with probability ůi:kpi:k.
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• In Phase II, for every i, j, k ∈ N , the node k performs entanglement swapping

to distribute Ξi:j using Ξi:k in F i:k
i:j and Ξk:j in Fk:j

i:j until the set F i:k
i:j or Fk:j

i:j is

empty. The distributed EQPs between i and j are then moved to Mi:j.

Note that the target entangled qubit pair Ξs:t is in Ms:t. We claim that the

number of entangled qubit pairs that the enode ei:j has accumulated after sufficiently

large time slot T in G, denoted by ni:j(T ), satisfies

lim
T→∞

1

T
ni:j(T )

a.s.
= ui:jpi:j1E(i, j) +

∑

k∈N\{i,j}
qk
f̊ i:ki:j + f̊k:ji:j

2
. (4.11)

This claim can be rewritten as follows: for any x ∈ K1:Card(G), the equation (4.11)

holds, where ei:j denotes the xth enode in the topological order of G. This claim can

be proved by strong mathematical induction on the position x of an enode in the

topological order determined by G [105].

Base case: If x = 1, then f̊ i:ki:j = f̊k:ji:j = 0 for ∀k ∈ N , and by the strong law of

large numbers, the number of the EQPs Ξi:j accumulated in the enode ei:j satisfies

lim
T→∞

1

T
ni:j(T )

a.s.
= ui:jpi:j1E(i, j)

which equals (4.11) with f̊ i:ki:j = f̊k:ji:j = 0 for ∀k ∈ N .

Induction step: Suppose equation (4.11) holds for x = 1, 2, . . . , r. We will prove

(4.11) holds for x = r+1. For k ∈ N \ {i, j}, if f̊ i:ki:j > 0, then the enode ei:k precedes

ei:j in the topological ordering, showing that the position of ei:k is less than r+1. By

the induction hypothesis,

lim
T→∞

1

T
ni:k(T )

a.s.
= ui:kpi:k1E(i, k) +

∑

l∈N\{i,k}
ql
f̊ i:li:k + f̊ l:ki:k

2
. (4.12)

Consequently, the number of the EQPs Ξi:k consumed for distributing Ξi:j, denoted
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by di:ki:j (T ), satisfies

lim
T→∞

1

T
di:ki:j (T )

a.s.
= lim

T→∞

1

T

[
ni:k(T )P{move Ξi:k to F i:k

i:j }
]

a.s.
= f̊ i:ki:j (4.13)

where we have used (4.12) and (4.9) together with (4.5) to obtain (4.13). Similarly,

we have

lim
T→∞

1

T
d
k:j
i:j (T )

a.s.
= f̊k:ji:j . (4.14)

Then

lim
T→∞

1

T
ni:j(T )

a.s.
= ui:jpi:j1E(i, j)

+
∑

k∈N\{i,j}
qk lim

T→∞

1

T
min{di:ki:j (T ), dk:ji:j (T )}

a.s.
= ui:jpi:j1E(i, j) +

∑

k∈N\{i,j}
qk
f̊ i:ki:j + f̊k:ji:j

2

where the summand T ui:jpi:j1E(i, j) comes from direct entanglement generation, and

the rest of the summand comes from entanglement swapping due to (4.13) and (4.14).

This proves that (4.11) holds for x = r + 1.

Let I̊(s, t) denote the optimal value of Ps. Then

lim
T→∞

E

{ 1

T
ns:t(T )

}
= E

{
lim
T→∞

1

T
ns:t(T )

}

= ps:t1E(s, t) +
∑

k∈N\{s,t}
qk
f̊ s:ks:t + f̊k:ts:t

2

= I̊(s, t)

where the first equality is due to the dominated convergence theorem [106]. Therefore,
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the EDR achieved by the stationary protocol π̊ is

λπ̊ = lim inf
T→∞

1

T
E{ns:t(T )} = lim

T→∞

1

T
E{ns:t(T )} = I̊(s, t)

where the second equality is due to the existence of the limit. This shows that the

protocol π̊ achieves the maximum EDR.

4.3 Homogeneous Repeater Chains

In this section, we consider a special quantum network, homogeneous repeater chains,

and derive the solution for Ps in a closed form.

4.3.1 Network Model

The model of homogeneous repeater chains is described in several related works,

e.g., [78]. A repeater chain is connected by N quantum channels as illustrated in

Fig. 4-3. Specifically, the nodes are labeled as 0, 1, 2, . . . , N and the edge set

E = {(0, 1), (1, 2), (2, 3), . . . , (N − 1, N)}. Each edge (i − 1, i) has associated prob-

ability pi−1:i describing the probability of success in generating entangled qubit pair

Ξi−1:i. The node 0 and the node N are the source and sink nodes, respectively. The

enode es:t is then e0:N . In a homogeneous repeater chain, the quantum channels be-

tween neighboring nodes are the same, i.e., p := p0:1 = p1:2 = p2:3 = . . . = pN−1:N .

Furthermore, the success probability of entanglement swapping in the chain is as-

sumed to be the same for all nodes and denoted by q.

Section 4.2 shows that designing the optimal RED protocol is equivalent to solving

the optimization problem Ps. Therefore, we aim at solving Ps corresponding to

homogeneous repeater chains. We have the following result:

Claim 1. For homogeneous repeater chains connected by N quantum channels, the

maximal EDR is

(N − ξ(N))pqn+1

2(N − 2n) + (2n+1 −N − ξ(N))q
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...

Figure 4-3: Illustration of repeater chains. The purple dashed lines represent the
quantum channels between neighboring nodes.

where n = ⌈log2N⌉ − 1, and ξ(N) is a parity indicator function of N : ξ(N) = 1 if N

is odd, otherwise ξ(N) = 0.

The proof of the claim and the design of the optimal protocol will be discussed in

the next subsections.

4.3.2 Scenarios with an Even N

We consider the scenario where N is even, i.e., N ∈ Ze. We first present a solution

of Ps, denoted by {f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E}, and then prove that it is

the optimal solution of Ps.

Let n = ⌈log2N⌉ − 1. If N = 2n+1, the solution {f̊ i:ki:j : i, j, k ∈ N} and {ůi:j :

(i, j) ∈ E} of Ps is

ůk:k+1 = 1, k ∈ K0:N−1

f̊ 2ka:2ka+2k−1

2ka:2ka+2k
= f̊ 2ka+2k−1:2ka+2k

2ka:2ka+2k
= pqk−1, (4.15)

a = 0, 1, 2, . . . , 2n+1−k − 1, k = 1, 2, . . . , n + 1.

For example, if a = 1 and k = 2, then 2ka = 4, 2ka + 2k−1 = 6, 2ka + 2k = 8, and

consequently f̊ 4:6
4:8 = f̊ 6:8

4:8 = pq. An illustration of this solution for N = 8 is given in

Fig. 4-4. This solution corresponds to a graph with the structure of a perfect binary

tree. Specifically, the entanglement swapping is first performed between the enodes

e2a:2a+1 and e2a+1:2a+2, and this gives the EQPs corresponding to the enode e2a:2a+2,

for a = 0, 1, 2, . . . , N/2 − 1. Then the entanglement swapping is performed between

e4a:4a+2 and e4a:4a+4, and this gives the EQPs corresponding to the enode e4a:4a+4, for

a = 0, 1, 2, . . . , N/4 − 1. Such entanglement swapping can continue until the EQPs

corresponding to the enode e0:N are obtained.
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If N < 2n+1, the optimal solution {f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} can be

obtained in six steps:

1. ůk:k+1 = 1, k ∈ K0:N−1;

2. We consider the enode: e0:1, e1:2, . . . , eN−1:N and divide them into N/2 pairs of

enodes: e0:1 and e1:2, e2:3 and e3:4, . . . , eN−2:N−1 and eN−1:N ;

3. There are
(
N/2
N−2n

)
possible ways to choose (N − 2n) out of N/2 enode pairs.

These choices are labeled as 1, 2, . . . ,
(
N/2
N−2n

)
;

4. For the choice l, we have (N − 2n) enode pairs chosen. Entanglement swapping

is performed between two enodes in each chosen pair, resulting in an enode that

is the common child of these two enodes; now we have a chain consisting of 2n

quantum channels and we can relabel the nodes in the chain as 0, 1, . . . , 2n;

5. For the newly labeled chain, we determine the following eflow:

f̊ 2ka:2ka+2k−1

2ka:2ka+2k
(l) = f̊ 2ka+2k−1:2ka+2k

2ka:2ka+2k
(l) =

1(
N/2
N−2n

) N/2

N − 2n + q(2n −N/2)
pqk,

a = 0, 1, 2, . . . , 2n−k − 1, k = 1, 2, . . . , n+ 1

6. We repeat Steps 4 and 5 until all
(
N/2
N−2n

)
combinations are iterated. We add all

the eflows to obtain the optimal solution.

In Step 3, we transfer the problem from the scenario with N ∈ Ze to the scenario

where N is a power of two. An illustration of this step is in Fig. 4-5. The method

of developing the optimal solution for N = 6 is illustrated in Fig. 4-6. In this case,

n = ⌈log2 6⌉ − 1 = 2. We divide six enodes into three pairs: e0:1 and e1:2, e2:3 and

e3:4, as well as e4:5 and e5:6. There are three possible ways of choosing N − 2n = 2

out of N/2 = 3 pairs. The choices are labeled as 1, 2, and 3, and are shown in three

red rectangles. In each rectangle, we perform the Steps 4 and 5. The eflows in three

rectangles can then be added to obtain the optimal solution of Ps.

81



e0:1 e1:2

e0:2 e2:4

e2:3e2:3 e3:4

e0:4
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pqpq pqpq

pq
2

pq
2

e6:7 e7:8

e6:8

e4:8

e0:8

. . .

. . .

Figure 4-4: Illustration of the optimal RED protocol for N = 8 = 23. The quantities
near the edges represent the eflow.

Remark 6. The feasibility of the {f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} as a

solution of Ps can be verified by checking conditions (4.5)-(4.8). The value of the

objective function corresponding to this solution is

I̊(s, t) =
1(
N/2
N−2n

) N/2

N − 2n + q(2n −N/2)
pqn+1 ·

(
N/2

N − 2n

)

=
Np

g(N)

where g(·) is a function defined as

g(L) =
2(L− 2l) + q(2l+1 − L)

ql+1
(4.16)

in which l = ⌈log2 L⌉ − 1.

We next determine an upper bound for the optimal value of Ps for N ∈ Ze. If

this upper bound coincides with I̊(s, t), then the optimality of {f̊ i:ki:j : i, j, k ∈ N} and

{ůi:j : (i, j) ∈ E} will be proved.

Note that the EQPs generated in Phase I correspond to the term ui:jpi:j1E(i, j)
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e0:1 e1:2

e0:2

e2:3 e3:4

e4:5 e5:6e2:4

4 = 2
2
enodes

Figure 4-5: Illustration of Step 3 for N = 6. In this case, n = ⌈log2 6⌉ − 1 = 2. We
choose N − 2n = 2 pairs of enodes. In this figure, the two chosen pairs are: e0:1 and
e1:2; e2:3 and e3:4. Entanglement swapping between e0:1 and e1:2 results in the enode
e0:2; entanglement swapping between e2:3 and e3:4 results in the enode e2:4. We now
have a chain consisting of 22 = 4 segments, separated by the repeaters 0, 2, 4, 5, and
6. These five repeaters are relabelled as 0, 1, 2, 3, and 4.

in Ps. These EQPs are generated directly from quantum channels instead of entan-

glement swapping. In the rest of the section, these EQPs are referred to as “crude

entanglements.” We now consider a homogeneous repeater chain with infinite quan-

tum channels. For this chain, let h(L) denote the minimum expected number of crude

entanglements required to distribute one EQP shared between nodes that are con-

nected by L quantum channels. The upper bound for the optimal value of Ps relies

on the lower bound for h(L). The next proposition provides a lower bound for h(L).

Proposition 4.3. For N ∈ N+, the minimum expected number of crude entangle-

ments required to distribute one EQP shared between nodes that are connected by

N quantum channels, denoted by h(N), is lower bounded as

g(N) 6 h(N) (4.17)

where g(N) is defined in (4.16).

Proof. See Appendix C.5.

Theorem 4.3. For homogeneous repeater chains with N quantum channels, if N ∈
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Figure 4-6: An illustration of the solution for N = 6.

Ze, the maximum EDR is

λ∗ =
Npqn+1

2(N − 2n) + q(2n+1 −N)

where n = ⌈log2N⌉ − 1.

Proof. See Appendix C.7.
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4.3.3 Scenarios with an Odd N

We consider the scenario where N is odd, i.e., N ∈ Zo. We first present a solution of

Ps, denoted by {f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E}, and then prove that it is

the optimal solution of Ps.

Choice 1

Choice 2

e0:1

e0:1

e1:2

e1:2

e2:3

e2:3

e3:4

e3:4

e4:5

e4:5

e0:2

e0:2

e0:3 e3:5

e0:5

e0:5

e2:4
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+

Figure 4-7: An illustration of the solution for N = 5. The quantities near the edges
represent the eflow.

Let n = ⌈log2N⌉ − 1. The solution {f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} can

be obtained in six steps:
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1. ůk:k+1 = 1, k ∈ K0:N−2 and

ůN−1:N = q
(N − 1)

2N − 2n+1 + q(2n+1 −N − 1)

2. We consider the enodes: e0:1, e1:2, . . . , eN−2:N−1 and divide them into (N−1)/2

pairs of enodes: e0:1 and e1:2, e2:3 and e3:4, . . . , eN−3:N−2 and eN−2:N−1;

3. There are
(
(N−1)/2
N−2n

)
possible ways to choose (N − 2n) out of (N − 1)/2 enode

pairs. These choices are labeled as 1, 2, . . . ,
(
(N−1)/2
N−2n

)
;

4. For the choice l, we have (N − 2n) enode pairs chosen. Entanglement swapping

is performed between two enodes in each chosen pair, resulting in an enode that

is the common child of these two enodes; now we have a chain consisting of 2n

quantum channels and we can relabel the nodes in the chain as 0, 1, . . . , 2n;

5. For the newly labeled chain, we determine the following eflow:

f̊ 2ka:2ka+2k−1

2ka:2ka+2k
(l) = f̊ 2ka+2k−1:2ka+2k

2ka:2ka+2k
(l)

=
1(

(N−1)/2
N−2n

) N − 1

2N − 2n+1 + q(2n+1 −N − 1)
pqk,

a = 0, 1, 2, . . . , 2n−k − 1, k = 1, 2, . . . , n+ 1

6. We repeat Steps 4 and 5 until all
(
(N−1)/2
N−2n

)
combinations are iterated. We add

all the eflows to obtain the optimal solution.

In Step 3, we transfer the problem from the scenario with N ∈ Zo to the scenario

whereN is a power of two. The method of determining {f̊ i:ki:j : i, j, k ∈ N} is illustrated

in Fig. 4-7. In this case, n = ⌈log2 5⌉−1 = 2. We divide four enodes to two pairs: e0:1

and e1:2; as well as e2:3 and e3:4. There are two possible ways of choosing N − 2n = 1

out of (N − 1)/2 = 2 pairs. The choices are labeled as 1 and 2, and are shown in

two red rectangles. For example in the first rectangle, the chosen pair is: e0:1 and

e1:2. Entanglement swapping between e0:1 and e1:2 results in the enode e0:2. We now

have a chain consisting of 22 = 4 segments, separated by the repeaters 0, 2, 3, 4, and
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5. These five repeaters are relabelled as 0, 1, 2, 3, and 4 and we can perform the

Steps 4 and 5. After we perform the Steps 4 and 5 in each rectangle, the eflow in two

rectangles can then be added to obtain the optimal solution of Ps.

Remark 7. The feasibility of the {f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} as a

solution of Ps can be verified by checking conditions (4.5)-(4.8). The value of the

objective function corresponding to the solution is

I̊(s, t) =
N − 1

2N − 2n+1 + q(2n+1 −N − 1)
pqn+1.

We next determine an upper bound for the objective function of Ps for N ∈ Zo.

If this upper bound coincides with I̊(s, t), then the optimality of {f̊ i:ki:j : i, j, k ∈ N}
and {ůi:j : (i, j) ∈ E} will be proved.

Recall that the EQPs generated in Phase I are referred to as “crude entangle-

ments.” We now refer to the crude entanglements Ξ2k:2k+1, k ∈ Z as odd crude

entanglements; analogously, we refer to the crude entanglements Ξ2k−1:2k, k ∈ Z as

even crude entanglements. We now consider a homogeneous repeater chain with in-

finite quantum channels. For this chain, let ho(L) and he(L) denote the minimum

expected number of odd crude entanglements and even crude entanglements required

to distribute one entangled pair shared between nodes that are connected by L quan-

tum channels. The upper bound for the optimal value of Ps relies on the lower

bounds for ho(L) and he(L). The next proposition provides lower bounds for ho(L)

and he(L).

Proposition 4.4. For N ∈ N+, the minimum expected number of odd crude en-

tanglements and even crude entanglements required to distribute one entangled pair

shared between nodes that are connected by N quantum channels, denoted by ho(N)

and he(N), respectively, satisfy the following conditions: ho(1) = 1, he(1) = 0, if

N > 1,

go(N) 6 ho(N) and ge(N) 6 he(N)
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where go(·) and ge(·) are functions defined as

go(L) =





2(L− 2l) + (2l+1 − L− 1)q

2ql+1
+

1

ql
if L ∈ Zo

2(L− 2l) + (2l+1 − L)q

2ql+1
if L ∈ Ze

ge(L) =





2(L− 2l) + (2l+1 − L− 1)q

2ql+1
if L ∈ Zo

2(L− 2l) + (2l+1 − L)q

2ql+1
if L ∈ Ze

where l = ⌈log2 L⌉ − 1.

Proof. See Appendix C.8.

Theorem 4.4. For homogeneous repeater chains with N quantum channels, if N ∈
Zo, the maximum EDR is

λ∗ =
(N − 1)pqn+1

2(N − 2n) + q(2n+1 −N − 1)

where n = ⌈log2N⌉ − 1.

Proof. See Appendix C.10.

4.4 Numerical Results

This section illustrates the performance of the proposed RED protocols through nu-

merical examples.

4.4.1 General Networks

We evaluate the maximum EDR for the following general networks. Consider a region

of 60×60 km2. The nodes are deployed in this region according to a Poisson process.

Let N denote an instantiation of node deployment. For i, j ∈ N , (i, j) ∈ E if the

distance between i and j, Di:j, is less than 30 km; the parameter pi:j for an edge (i, j)
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Figure 4-8: The average EDR in a random network.

is

pi:j = 10−γDi:j/10

where γ = 0.2 dB/km is the loss rate [107]. The pair of source node and sink node is

randomly selected with equal probability among the nodes in the network.

Consider the performance metric as the average EDR, i.e., the empirical mean of

the EDR achieved by solving Ps averaging over instantiations of node deployments.

Fig. 4-8 shows the average EDR as a function of q for different values of the average

node number N .5 Theorem 4.2 is used to generate results in Fig. 4-8. First, the

average EDR increases with N . For example, when q = 0.8, the average EDR is 1.10

ebit/slot for N = 10, whereas it is 4.13 ebit/slot for N = 30. This corresponds to

an increase of 2.75 times. This is because more nodes and more edges can provide

more crude entanglements for distributing the target EQP Ξs:t. Second, the average

EDR increases with q. For example, when N = 20, the average EDR is 1.59 ebit/slot

for q = 0.5, whereas it is 3.26 ebit/slot for q = 1.0. This corresponds to an increase

5Here, the amount of entanglement is quantified by the bit of entanglement (ebit), for example,
one ebit corresponds to one entangled qubit pair.
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Figure 4-9: The average entanglement distribution ratio in a random network.

of 1.05 times. This observation agrees with the intuition, since unsuccessful entan-

glement swapping wastes the entanglements and larger q implies less unsuccessful

entanglement swapping.

We showed in Section 4.2.3 that the stationary protocol approaches the maximum

EDR for large time slot T . To characterize the behavior of the stationary protocol as

a function of T , we consider the average entanglement distribution ratio at the time

slot T , i.e., the empirical mean of the following random variable ηT :

ηT :=

∑T
τ=1 g

π̊
s:t(τ)

T λ∗

where gπ̊s:t(τ) is the number of EQPs at the time slot τ distributed by the station-

ary protocol π̊, and λ∗ is the optimal value of Ps. The randomness of ηT originates

from node deployment, parameters pi:j, (i, j) ∈ E , and the probabilistic nature of the

protocol. Fig. 4-9 shows the average entanglement distribution ratio as a function

of T for different values of N and q. First, the average entanglement distribution

ratio converges to one for different values of N and q. This verifies that the proposed

stationary protocol achieves the maximal EDR. Second, the convergence speed de-
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Figure 4-10: The EDR in a repeater chain with γ = 0.2 (dB/km).

creases with N . For example, when q = 0.6 and T = 3 ·104, the average entanglement

distribution ratio is 0.9848 for N = 25, whereas it is 0.9905 for N = 15. This is

because more edges implies that there are more short paths from the source to the

sink, and short paths require less entanglement swapping, so that the convergence

speed can be increased.

4.4.2 Homogeneous Repeater Chains

We evaluate the maximal EDR in homogeneous repeater chains. Let D (km) denote

the distance of a quantum channel in the repeater chain. Then the total distance L

between the node 0 and the node N is L = D · N . Let the loss rate of the channel

be γ (dB/km). The parameter pi:j for an edge (i, j) is determined by the distance D

and the loss rate γ [107]. In particular,

pa:b = 10−γD/10.

The success probability of entanglement swapping in the network is assumed to be the

same for all nodes and denoted by q. In this subsection, Claim 1 is used to generate
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Figure 4-11: The EDR in a repeater chain with N segments. The total distance
L = 200 km is fixed.

results in the figures.

Fig. 4-10 shows the EDR as a function of the total distance L for γ = 0.2 dB/km.

First, the EDR increases with q. This observation is consistent with the results in

general networks. For example, when D = 20 km and L = 1500 km, the EDR is 0.016

ebit/slot for q = 0.6, whereas it is 0.205 ebit/slot for q = 0.9. This corresponds to an

increase of 12.212 times. Second, the EDR decreases with L and the rate decreases

faster with smaller q. For example, for D = 10, the EDR decreases 1.18 times as

the total distance L increases from 1000 km to 3000 km when q = 0.9, whereas it

decreases 2.24 times when q = 0.6.

We next consider the scenario where the total distance L between the source and

the sink is fixed. Fig. 4-11 shows the EDR as a function of N for L = 200 km and

γ = 0.2 dB/km. A key observation is that the EDR first increases dramatically and

then decreases slowly as a function of N . For example, when q = 0.6, the EDR is 10−4

ebit/slot, 0.0627 ebit/slot, and 0.0288 ebit/slot for N = 1, N = 21, and N = 100,

respectively. This corresponds to an increase of 626 times from N = 1 to N = 21,

and a decrease of 54.1% from N = 21 to N = 100. The EDR first increases with
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N because the two neighboring quantum repeaters are far apart for a small N , and

increasing N can significantly decrease D; the EDR then decreases with N because

for a large N , increasing N does not significantly reduce D, and the imperfectness

of quantum repeaters becomes the bottleneck of EDR. Therefore, more repeaters

may not necessarily increase the EDR. The results in Fig. 4-11 provide guidance to

the choice of repeater density in a chain and can offer insights into the design and

implementation of general quantum networks.
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Chapter 5

Concluding Remarks

This thesis studies the design and operation of quantum networks in the following

three fields: state transmission, queueing delay, and remote entanglement distribu-

tion.

In Chapter 2, we develop protocols to broadcast quantum states from a transmitter

to N different receivers in two scenarios, namely, non-oblivious with a known state

and oblivious with multiple copies. To characterize the resources in this broadcast

setting, we introduce two types of resources, broadcast cbits (bcbits) and broadcast

qubits (bqubits). The protocols lead to a resource tradeoff inequality in the setting

of quantum broadcasting: logN ebit +O(logN) bcbits → 1 bqubit and reduced the

required cbits from O(N) to O(logN) compared to sequentially sending quantum

states. Moreover, we prove that Ω(logN) bcbits are necessary for sending 1 bqubit

to N receivers using shared entanglement. We also build circuits composed of single-

quantum bit (qubit) gates and CNOT gates to show that the developed protocols can

be implemented efficiently. As for future work, one may ask if the number of required

bcbit can be further reduced, for example, from 2 logN to logN for the non-oblivious

scenario.

In Chapter 3, we introduce a formalism to analyze quantum queuing delay (QQD).

The main methodologies used are dynamic programming and stochastic processes.

We develop a cognitive-memory-based policy and show that this policy is optimal for

the scenario with two receivers. For a general scenario, we derive an upper bound
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for the expected average queue length achieved by the cognitive-memory-based pol-

icy. With this upper bound, we show that the expected average queuing delay can

decrease exponentially with respect to the memory size. The performance of the

proposed policies are evaluated in practical scenarios. Numerical results verify the

optimality/near-optimality of the policies and show that the developed upper bound

is tight. A key insight is that, unlike classical queuing delay, QQD can be signifi-

cantly reduced by establishing entanglements before the quantum data arrive. The

exponential decrease of QQD with respect to the memory size shows that a moderate

memory size suffices to achieve a near-zero QQD.

In Chapter 4, we establish a framework of designing remote entanglement distribu-

tion (RED) protocols for quantum networks. We develop the optimal RED protocols

for quantum networks based on the solutions of the linear programming problem.

Moreover, we determine the maximum entanglement distribution rate (EDR) in a

closed form for homogeneous repeater chains. The new vision developed in this the-

sis is the introduction of enodes and eflows. We transform the RED problem into

linear programming and employ concepts and methods from the graph theory and

classical flow networks. The performance of the proposed protocols is evaluated by

simulation. The results for homogeneous repeater chains demonstrate that the issue

of significant decay of communication capacity can be essentially solved by properly

deploying quantum repeaters, even if the quantum repeaters are imperfect. Our re-

sults enable the distribution of entanglement over long distances and provide insights

into the design and implementation of quantum networks. We hope that our results

may incite some future work. For example, one may be interested in designing a

protocol that converges to the maximum EDR faster than the protocol proposed in

this thesis. It may also be worth investigating quantum networks in addition to the

homogeneous repeater chains and trying to determine a closed-form maximum EDR.

It is also interesting to see how to extend the results in this thesis to other models. For

example, the parameters pi:j and qk may vary over time; moreover, the entanglement

generated or distributed may not be perfect. One may wonder how to determine the

maximum EDR and how to obtain optimal protocol in these scenarios.
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Appendix A

Proofs of the Results in Chapter 2

A.1 Proof of Theorem 2.1

Equation (2.3) is equivalent to the following claim: for every |ϕ〉s ∈ H and |ψ〉 ∈ H2,

K∑

k=1

N + 1

K
tr
{
Ξ (|ϕ〉s)VkΞ

(
|ψ〉⊗N

)
V

†
k

}
6 1 + ǫ. (A.1)

We next prove the claim above. For Vs = V ⊗N , where V is a unitary operator on

H2, we have

tr
{
VsΞ

(
|ψ〉⊗N

)
V †

s Ξ (|ϕ〉s)
}

= tr
{
(V |ψ〉)⊗N

(
〈ψ|V †)⊗N |ϕ〉s 〈ϕ|s

}

=
∣∣∣ 〈ϕ|s (V |ψ〉)⊗N

∣∣∣
2

. (A.2)

Consider the random variable

x = (N + 1)
∣∣ 〈ϕ|s (V |ψ〉)⊗N

∣∣2

where V is drawn from the Haar measure on the unitary group. We then bound the

probability of the deviation for the sample mean of x as follows.
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Lemma A.1. Let x1, x2, . . . , xK denote K i.i.d. samples of x, then for ǫ ∈ (0, 1),

P

{
1

K

K∑

k=1

xk > 1 + ǫ

}
6 exp

{
− Kǫ2

4(N + 1)

}
.

Proof. We first prove that E{x} = 1. Rewrite V |ψ〉 = u |0〉 + v |1〉 and |ϕ〉 =
∑N

j=0wj |j〉s. Then

E{x} = (N + 1)E

{∣∣∣∣∣

N∑

j=0

wju
jvN−j

(
N

j

)1/2
∣∣∣∣∣

2}

= (N + 1)E

{ N∑

j=0

|wj|2|u|2j|v|2(N−j)
(
N

j

)}

= (N + 1)

N∑

j=0

|wj|2
j!(N − j)!

(N + 1)!

N !

j!(N − j)!
= 1 (A.3)

where the second equality is due to E{uj(u∗)j′vk(v∗)k′} = 0 unless j = j′ and k = k′;

and the third equality is because the joint probability density function (PDF) of |u|2

and |v|2 follows a Dirichlet distribution of order 2 with parameter (1, 1).

We then bound the moments of x as follows:

E{xk} = (N + 1)kE
{∣∣ 〈ϕ|s (V |ψ〉)⊗N

∣∣2k
}

6 (N + 1)kE
{∣∣ 〈ϕ|s (V |ψ〉)⊗N

∣∣2
}

= (N + 1)k−1 (A.4)

where the inequality is because
∣∣ 〈ϕ|s (V |ψ〉)⊗N

∣∣ 6 1, and the last equality is because

of (A.3).

Let Λ
x
(·) denote that the Cramér function associated with x. We next show that

for ǫ ∈ (0,∞)

Λ
x
(1 + ǫ) >

ǫ2

4(N + 1)
. (A.5)
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By definition of the Cramér function, we have

Λ
x
(1 + ǫ) = sup

z∈R

[
z(1 + ǫ)− lnE{ezx}

]
.

Let z take the value of z∗ = ǫ/(2N + 2). We have

Λ
x
(1 + ǫ) > z∗ · (1 + ǫ)− lnE{ez∗x}

= z∗ · (1 + ǫ)− ln

(
1 +

∞∑

k=1

(z∗)kE{xk}
k!

)

> z∗ · (1 + ǫ)−
∞∑

k=1

(z∗)kE{xk}
k!

>
ǫ(1 + ǫ)

2N + 2
−

∞∑

k=1

ǫk

2kk!(N + 1)

=
ǫ2

2N + 2
−

∞∑

k=2

ǫk

2kk!(N + 1)

>
ǫ2

2N + 2
−

∞∑

k=2

ǫ2

2 · 2k(N + 1)

=
ǫ2

4(N + 1)

where the first inequality is because the Cramér function is a superior for all possible

z ∈ R, the second inequality is because ln(1 + α) 6 α for α > 0, the third inequality

is because of (A.4), and the last inequality is because k! > 2 for k > 2. This proves

(A.5).

According to Cramér’s theorem [108], for i.i.d. real random variables x1, x2, . . . ,

xK ,

P

{
1

K

K∑

k=1

xk > 1 + ǫ

}
6 exp

{
−K inf

a>1+ǫ
Λ

x
(a)

}
6 exp

{
− Kǫ2

4(N + 1)

}

where the second inequality is because of (A.5).
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Lemma A.1 implies that for any given |ϕ〉s ∈ H and |ψ〉 ∈ H2,

P

{
1

K

K∑

k=1

tr
{
Vs,kΞ

(
|ψ〉⊗N

)
V

†
s,kΞ (|ϕ〉s)

}
>

2 + ǫ

2(N + 1)

}
6 exp

{
− Kǫ2

16(N + 1)

}

(A.6)

where Vs,k = V
⊗N
k and the Vk’s are i.i.d drawn from the Haar measure on the unitary

group.

Lemma A.2. For every ǫ > 0, there exists a subset of H2, denoted as M, of cardi-

nality

|M| 6
(
5N

ǫ

)4

and for every state vector |φ〉 ∈ H2, there exists a state vector |φ̃〉 ∈ M such that

∥∥Ξ
(
|φ〉⊗N

)
−Ξ

(
|φ̃〉⊗N

) ∥∥
1
6 2

∥∥ |φ〉⊗N − |φ̃〉⊗N
∥∥
2
6 ǫ. (A.7)

Proof. By Lemma 4 in [31], there exists a set M ⊆ H2 with

|M| 6
(
5N

ǫ

)4

and for every state |φ〉 ∈ H2 there exists a state |φ̃〉 ∈ M such that

∥∥∥ |φ〉 − |φ̃〉
∥∥∥
2
6

ǫ

2N
.

We next prove M constructed in this way satisfies the condition (A.7). In fact, we

apply Lemma A.3 below repeatedly N times to obtain
∥∥ |φ〉⊗N − |φ̃〉⊗N

∥∥
2
6 ǫ/2.

Lemma A.3. Consider two arbitrary Hilbert spaces H and H̃. For any state vectors

|ψ1〉 , |ϕ1〉 ∈ H, |ψ2〉 , |ϕ2〉 ∈ H̃, ‖ |ψ1〉 ⊗ |ψ2〉 − |ϕ1〉 ⊗ |ϕ2〉 ‖2 6 ‖ |ψ1〉 − |ϕ1〉 ‖2 +
‖ |ψ2〉 − |ϕ2〉 ‖2.
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Proof.

‖ |ψ1〉 ⊗ |ψ2〉 − |ϕ1〉 ⊗ |ϕ2〉 ‖2
= ‖|ψ1〉 ⊗ |ψ2〉 − |ϕ1〉 ⊗ |ψ2〉+ |ϕ1〉 ⊗ |ψ2〉 − |ϕ1〉 ⊗ |ϕ2〉‖2
6 ‖(|ψ1〉 − |ϕ1〉)⊗ |ψ2〉 ‖2 + ‖ |ϕ1〉 ⊗ (|ψ2〉 − |ϕ2〉)‖2
= ‖ |ψ1〉 − |ϕ1〉 ‖2 + ‖ |ψ2〉 − |ϕ2〉 ‖2

where the inequality is due to triangular inequality, and the last equality is due to

the fact that |ψ2〉 and |ϕ1〉 are unit vectors.

Lemma A.2 shows that we can find a set M1 ⊆ H2 with |M1| 6
(
20N(N +1)/ǫ

)4

and for every pure state |ψ〉 ∈ H2 there exists a state |ψ̃〉 ∈ M1 such that

∥∥∥Ξ
(
|ψ〉⊗N

)
−Ξ

(
|ψ̃〉⊗N

) ∥∥∥
1
6 2

∥∥∥ |ψ〉⊗N − |ψ̃〉⊗N
∥∥∥
2
6

ǫ

4(N + 1)
. (A.8)

Moreover, by Lemma 4 in [31], we can find a set M2 ⊆ H with |M2| 6
(
20(N +

1)/ǫ
)2(N+1)

and for every pure state |ϕ〉s ∈ H, there exists a state |ϕ̃〉s ∈ M2 such

that

∥∥∥Ξ (|ϕ〉s)−Ξ (|ϕ̃〉)
∥∥∥
1
6 2

∥∥∥ |ϕ〉 − |ϕ̃〉
∥∥∥
2
6

ǫ

4(N + 1)
. (A.9)

Using (A.6) and the union bound, we have

P

{
∃ |ψ̃〉 ∈ M1, |ϕ̃〉s ∈ M2,

1

K

K∑

k=1

tr
{
Vs,kΞ

(
|ψ̃〉⊗N

)
V

†
s,kΞ (|ϕ̃〉s)

}
>

2 + ǫ

2(N + 1)

}

6 |M1| · |M2| · exp
{

− Kǫ2

16(N + 1)

}
< 1

where the inequality is because |M1| 6
(
20N(N+1)/ǫ

)4
, |M2| 6

(
20(N+1)/ǫ

)2(N+1)
,

and K is as large as stated in the theorem. Therefore, there exist Vs,k, k ∈ K1:K such
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that for all |ψ̃0〉 ∈ M1, |ϕ̃0〉s ∈ M2,

1

K

K∑

k=1

tr
{
Vs,kΞ

(
|ψ̃0〉⊗N

)
V

†
s,kΞ (|ϕ̃0〉s)

}
<

2 + ǫ

2(N + 1)
. (A.10)

For any |ψ〉 ∈ H2 and |ϕ〉s ∈ H, we can find |ψ̃〉 ∈ M1 and |ϕ̃〉s ∈ M2 such that

(A.8) and (A.9) hold. Then

1

K

K∑

k=1

tr
{
Vs,kΞ

(
|ψ〉⊗N

)
V

†
s,kΞ (|ϕ〉s)

}

6
1

K

K∑

k=1

∣∣∣∣∣ 〈ψ|
⊗N

V
†
s,k

[
Ξ (|ϕ〉s)−Ξ (|ϕ̃〉s)

]
Vs,k |ψ〉⊗N

∣∣∣∣

+
1

K

K∑

k=1

∣∣∣∣∣ 〈ϕ̃|s Vs,k

[
Ξ

(
|ψ〉⊗N

)
−Ξ

(
|ψ̃〉⊗N

) ]
V

†
s,k |ϕ̃〉s

∣∣∣∣∣

+
1

K

K∑

k=1

tr
{
Vs,kΞ

(
|ψ̃〉⊗N

)
V

†
s,kΞ (|ϕ̃〉s)

}

6
1

K

K∑

k=1

∥∥∥Ξ (|ϕ〉s)−Ξ (|ϕ̃〉s)
∥∥∥
1
+

1

K

K∑

k=1

∥∥∥Ξ
(
|ψ〉⊗N

)
−Ξ

(
|ψ̃〉⊗N

)∥∥∥
1
+

2 + ǫ

2(N + 1)

6
ǫ

4(N + 1)
+

ǫ

4(N + 1)
+

2 + ǫ

2(N + 1)
=

1 + ǫ

N + 1

where the first inequality is due to repeated use of the triangular inequality, the second

inequality is because ‖ · ‖1 denotes the sum of the absolute values of eigenvalues and

(A.10); and the last inequality is because of (A.8) and (A.9). This proves the claim

(A.1).

A.2 Proof of Theorem 2.2

Equation (2.6) is equivalent to the following claim: for any |ϕ〉 ∈ H ⊗H, there exist

I unitary operators Ui’s such that

1

I

I∑

i=1

tr(Ξ (|ϕ〉) |ξi〉 〈ξi|) 6
1 + ǫ

(N + 1)2
. (A.11)
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We next prove the claim above.

Suppose |ξi〉 are drawn i.i.d. according to the random vector |ξ〉, where

|ξ〉 = 1√
N + 1

(U)⊗N ⊗ 1
⊗N

N∑

j=0

|j〉s |j〉s

in which U is distributed according to the Haar measure. Let y = (N+1)2 tr{Ξ (|ϕ〉) |ξ〉 〈ξ|}.
In order to study the statistical property of y, we first present the following lemma,

where the proof is given in Appendix A.3.

Lemma A.4. Suppose a unitary operator U ∈ C2×2 is distributed according to the

Haar measure, the following equality holds:

(N + 1)E
{
U

⊗N |x1〉 〈x2|U†⊗N} = 〈x2|x1〉1s

where |x1〉 and |x2〉 are pure states in Hs.

With Lemma A.4, we can determine the mean of y as follows.

E{y} = (N + 1)E
{
tr
{
Ξ (|ϕ〉)U⊗N ⊗ 1

⊗N
N∑

j=0

N∑

j′=0

|j〉s 〈j′|s |j〉s 〈j′|s (U)†⊗N ⊗ 1
⊗N

}}

= E

{
tr

{
Ξ (|ϕ〉)

N∑

j=0

N∑

j′=0

δjj′ |j〉s 〈j′|s

}}
= 1. (A.12)

Furthermore, we can bound the probability of the deviation for the sample mean of

y as follows.

Lemma A.5. Let y1, y2, . . . , yJ denote J i.i.d. samples of y, then for ǫ ∈ (0, 1),

P

{ 1

J

J∑

j=1

yj > 1 + ǫ
}
6 exp

{
− Jǫ2

4(N + 1)2

}
.

Proof. We first bound the moments of y as follows:

E{yk} = (N + 1)2kE
{
| 〈ϕ|ξ〉 |2k

}
6 (N + 1)2kE

{
| 〈ϕ|ξ〉 |2

}
= (N + 1)2k−2
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where the first inequality is because | 〈ϕ|ξ〉 | 6 1, and the last equality is because of

(A.12). The rest of the proof is analogous to that in Lemma A.1 by replacing x and

N + 1 with y and (N + 1)2, respectively.

Lemma A.5 implies that for a pure state |ϕ〉 ∈ H ⊗H,

P

{∣∣∣∣
1

I

I∑

i=1

tr{Ξ (|ϕ〉) |ξi〉 〈ξi|} >
2 + ǫ

2(N + 1)2

}
6 exp

{
− Iǫ2

16(N + 1)2

}
. (A.13)

By Lemma 4 in [31], there exists a set M ⊆ H⊗H with |M| 6
(
10(N + 1)2/ǫ

)2(N+1)2

and for every state |ϕ〉 ∈ H ⊗H, there exists a state vector |ϕ̃〉 ∈ M such that

∥∥Ξ (|ϕ〉)−Ξ (|ϕ̃〉)
∥∥
1
6

ǫ

2(N + 1)2
. (A.14)

Using (A.13) and the union bound, we have

P

{
∃ |ϕ〉 ∈ M,

1

I

I∑

i=1

tr{Ξ (|ϕ〉) |ξk〉 〈ξk|} >
2 + ǫ

2(N + 1)2

}
6 |M| · exp

{
− Iǫ2

16(N + 1)2

}

< 1

where the inequality is because |M| 6
(
10(N + 1)2/ǫ

)2(N+1)2
and I is as large as

stated in the theorem. Therefore, there exist |ξi〉, i ∈ K1:I such that for all |ϕ̃0〉 ∈ M,

1

I

I∑

i=1

tr{Ξ (|ϕ̃〉0) |ξi〉 〈ξi|} <
2 + ǫ

2(N + 1)2
. (A.15)

For any |ϕ〉 ∈ H ⊗H, we can find |ϕ̃〉 ∈ M such that (A.14) holds. Then

1

I

I∑

i=1

tr{Ξ (|ϕ〉) |ξi〉 〈ξi|}

6
1

I

I∑

i=1

∣∣∣ 〈ξi|
[
Ξ (|ϕ〉)−Ξ (|ϕ̃〉)

]
|ξi〉

∣∣∣+
1

I

I∑

i=1

tr{Ξ (|ϕ̃〉) |ξi〉 〈ξi|}

6
1

I

I∑

i=1

∥∥Ξ (|ϕ〉)−Ξ (|ϕ̃〉)
∥∥
1
+

2 + ǫ

2(N + 1)2
6

ǫ

2(N + 1)2
+

2 + ǫ

2(N + 1)2
=

1 + ǫ

(N + 1)2
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where the first inequality is due to repeated use of the triangular inequality, the second

inequality is because ‖ · ‖1 denotes the sum of the absolute values of eigenvalues and

(A.15); and the last inequality is because of (A.14). This proves the claim (A.11).

A.3 Proof of Lemma A.4

The proof can be divided into four steps. In particular, we will prove the following

three claims sequentially.

Claim 1: (N + 1)E
{
U

⊗N |0〉⊗N 〈0|⊗N (U)†⊗N
}
= 1s.

To prove Claim 1, we rewrite U |0〉 = u |0〉+ v |1〉. Then

(N + 1)E
{
U

⊗N |0〉⊗N 〈0|⊗N (U)†⊗N
}

= (N + 1)E
{
(u |0〉+ v |1〉)⊗N (u∗ 〈0|+ v∗ 〈1|)⊗N

}

= (N + 1)E

{
N∑

k=0

ukvN−k

√
N !

k!(N − k)!
|k〉s

N∑

k=0

(u∗)k(v∗)N−k

√
N !

k!(N − k)!
〈k|s

}

= (N + 1)

N∑

k=0

N∑

k′=0

E{uk(u∗)k′vN−k(v∗)(N−k′)}
√

N !

k!(N − k)!

√
N !

k′!(N − k′)!
|k〉s 〈k′|s

(a)
= (N + 1)

N∑

k=1

E
{
|u|2k|v|2(N−k)} N !

k!(N − k)!
|k〉s 〈k|s

(b)
= (N + 1)

N∑

k=1

k!(N − k)!

(N + 1)!

N !

k!(N − k)!
|k〉s 〈k|s

= 1s

where (a) is because E{uk(u∗)k′vN−k(v∗)(N−k′)} = 0 for k 6= k′; and (b) is because

|u|2k and |v|2(N−k) follow a Dirichlet distribution of order 2 with parameters k+1 and

N − k + 1.

Claim 2: For arbitrary a, b,

E
{
U

⊗N(a |0〉+ b |1〉)⊗N 〈0|⊗N (U)†⊗N
}
=

aN

N + 1
1s.

To prove Claim 2, we denote U |0〉 = |ν〉, U |1〉 = |μ〉. Moreover, let |ν, μ〉j denote
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the completely symmetric state of N qubits with j of them in state |ν〉 and N − j of

them in state |μ〉. Then

E
{
U

⊗N (a |0〉+ b |1〉)⊗N 〈0|⊗N (U)†⊗N
}

= E
{
(a |ν〉+ b |μ〉)⊗N 〈ν|⊗N

}

=

N∑

j=0

√
N !

j!(N − j)!
ajbN−j

E
{
|ν, μ〉j 〈ν|

⊗N }
.

Note that because of the right invariance of the Haar measure, the joint distribution

of |μ〉 and |ν〉 remains the same if we replace |μ〉 with exp{iπ/(N − j)} |μ〉 provided

that j 6= N . Consequently, for j 6= N ,

E
{
|ν, μ〉j 〈ν|⊗N

}
= E

{
exp{iπ} |ν, μ〉j 〈ν|⊗N

}
= −E

{
|ν, μ〉j 〈ν|⊗N

}
= 0.

Then

E
{
U

⊗N(a |0〉+ b |1〉)⊗N 〈0|⊗N (U)†⊗N
}
= aNE

{
U

⊗N |0〉⊗N 〈0|⊗N (U)†⊗N
}
=

aN

N + 1
1s

where the last inequality is because of Claim 1.

Claim 3: for any |u〉 , |v〉 ∈ H2,

E
{
U

⊗N |u〉⊗N 〈v|⊗N (Usub)†⊗N
}
=

〈v|u〉N
N + 1

1s.

Consider a unitary operator U(v) such that U(v) |v〉 = |0〉. Then

E
{
U

⊗N |u〉⊗N 〈v|⊗N (U)†⊗N
}

= E
{
(UU(v))⊗N |u〉⊗N 〈v|⊗N (UU(v))†⊗N

}

= E
{
U

⊗N(U(v) |u〉
)⊗N 〈0|⊗N (U)†⊗N

}
=

〈0|U(v) |u〉N
N + 1

1s =
〈v|u〉N
N + 1

1s,

where the first equality is due to the right invariance of the Haar measure and the

third equality is because of Claim 2.
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With these three claims, we can prove the original lemma. Since {(a |0〉+b |1〉)⊗N :

a, b ∈ C, |a|2 + |b|2 = 1} span the space H, we can find a basis of H as follows:

(ak |0〉+ bk |1〉)⊗N , k ∈ K1:N+1. We can then write |x1〉 and |x2〉 as

|x1〉 =
N+1∑

k=1

λk(ak |0〉+ bk |1〉)⊗N

|x2〉 =
N+1∑

k=1

λ′k(ak |0〉+ bk |1〉)⊗N .

Then

(N + 1)E
{
U

⊗N |x1〉s 〈x2|s (U)†⊗N
}

= (N + 1)E
{
U

⊗N
N+1∑

k=1

λk(ak |0〉+ bk |1〉)⊗N
N+1∑

l=1

(λ′l)
∗(a∗l 〈0|+ b∗l 〈1|)⊗N(U)†⊗N

}

= (N + 1)

N+1∑

k=1

N+1∑

l=1

λk(λ
′
l)
∗
E
{
U

⊗N(ak |0〉+ bk |1〉)⊗N(a∗l 〈0|+ b∗l 〈1|)⊗N(U)†⊗N
}

= (N + 1)
N+1∑

k=1

N+1∑

l=1

λk(λ
′
l)
∗(aka

∗
l + bkb

∗
l )
N
1s

= (N + 1) 〈x2|x1〉1s

where the third equality is because of Claim 3.

A.4 Proof of Theorem 2.4

We will prove Theorem 2.4 in the following steps.

Step 1: Consider a unitary transformation F i
N that operates on an input state

with N qubits by performing the following operation only on the first, the ith, and
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the (i+ 1)th qubits:

|010〉 →

√√√√
(
N−1
i−1

)
(
N
i

) |110〉+
√(

N−1
i

)
(
N
i

) |001〉 ,

|110〉 → |010〉 , |011〉 → |011〉 ,

|000〉 → |000〉 , |100〉 → |100〉 ,

|101〉 → |101〉 , |111〉 → |111〉 .

Since the operation involves only three qubits and leaves other qubits unchanged,

F i
N can be implemented using C1 gates [109], where C1 is a constant that does not

depend on N .

Step 2: Consider a unitary transformation X i
N that operates on an input state

with N qubits by performing the following operation only on the first and the ith

qubit:

|00〉 → |00〉 , |01〉 → |01〉

|10〉 →
√

1

N
|10〉+

√
N − 1

N
|11〉

|11〉 →
√
N − 1

N
|10〉 −

√
1

N
|11〉 .

Since the operation involves only two qubits and leaves other qubits unchanged, X i
N

can be implemented using C2 gates [109], where C2 is a constant that does not depend

on N .

Step 3: Consider a unitary transformation GN that operates on an input state
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with N qubits as follows:

|N, 0〉 → |N, 0〉

|N, 1〉 →
√

1

N
|N, 1〉+

√
N − 1

N
|N, 2〉

|N, n〉 →

√√√√
(
N−1
n−1

)
(
N
k

) |1〉 |N − 1, n− 1〉+
√(

N−1
n

)
(
N
n

) |N, n+ 1〉 , n ∈ K1:N \ {1, N}

|N,N〉 → |1〉 |N − 1, N − 1〉

where |i, j〉 (i, j ∈ N
∗) denotes a pure state consisting of i qubits, and its jth qubit is

|1〉 and all the remaining qubits are |0〉; and |i, 0〉L denotes a pure state consisting of

i |0〉’s; and K1:N .

Let CNOT(i, j) denotes the CNOT gate that operates on the ith and the jth

qubits with the ith qubit serving as the control bit. Since

GN = F 2
NF

3
N . . .F

N−1
N CNOT(N, 1)X2

N

GN can be implemented with (N − 2)C1 + 1 + C2 basic gates. Consequently, the

transformation GN can be implemented usingNC3 gates, where C3 := max{1, C1, C2}
is a constant that does not depend on N .

Step 4: Consider a unitary transformation UN that operates on an input state

with N qubits as follows:

|N, n〉 → |n〉s , i ∈ {0} ∪ K1:N .

One can verify that

(1⊗UN−1)GN = UN . (A.16)

Next we will show by induction that the transformation UN can be implemented

with N(N + 1)C3/2 basic gates. For the base case: building U1 does not require any
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gate. For the induction step: UN−1 can be implemented with (N − 1)NC3/2 basic

gates by the induction hypothesis; moreover, building GN requires NC3 basic gates

as shown in Step 3; and thus, UN in (A.16) can be implemented with N(N + 1)C3/2

basic gates.

Step 5: Consider a unitary transformation TN that operates on an input state

with N qubits as follows:

|N, n〉 → |n〉s , n ∈ {0, 1}.

One can verify that

(1⊗ TN−1)AN = TN , (A.17)

where AN is a unitary transformation that operates on an input state with N qubits

by performing the following operation only on the first and second qubits:

|00〉 → |00〉

|10〉 → 1√
N

|10〉+
√
N − 1

N
|01〉 .

Since the operation involves only two qubits and leaves other qubits unchanged, AN

can be implemented using C2 gates [109].

Next we will show by induction that the transformation TN can be implemented

with NC2 basic gates. For the base case: building T1 doe not require any gate.

For the induction step: TN−1 can be implemented with (N − 1)C2 basic gates by

the induction hypothesis; moreover, building AN requires C2 qubits as shown in the

previous paragraph; and thus, TN in (A.17) can be implemented with NC2 basic

gates.

Step 6: The state 1√
N+1

∑N
j=0 |j〉s |j〉s can be prepared from the state |00 . . . 0〉

using the following circuit with
[
N(N + 1)C3 +NC2 +N + 1

]
basic gates.
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|0〉 U

TN

•

UN

|0〉 •

... •

|0〉 •

|0〉 •

|0〉

UN

|0〉

...

|0〉

|0〉
where U is given by

|0〉 → 1√
N + 1

|0〉+
√

N

N + 1
|1〉 .

Note that if the output of the first N qubits above are applied with U
†
N (or

equivalently, removing UN that operates on the firstN qubits in the circuit above), the

following state can be prepared from the state |00 . . . 0〉 with
[
N(N+1)C3/2+NC2+1

]

basic gates:

1√
N + 1

N∑

n=0

|N, n〉 |n〉s . (A.18)

Step 7: Consider a unitary transformation P that operates on an input state with

N + ⌈log(N + 1)⌉ qubits:

|N, n〉 |⌈log(N + 1)⌉, 0〉 → |N, 0〉 |n〉b , n ∈ {0} ∪ K1:N
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Recall that |k〉b is the binary representation of k with ⌈log(N + 1)⌉ qubits (e.g.,

for N = 6, k = 5, |k〉b = |101〉).

The transformation P can be implemented with N3C4 basic gates. To see this,

we consider the unitary transformation Pi that operates on an input state with N +

⌈log(N + 1)⌉ qubits by performing the following operation only on the nth qubit and

the last ⌈log(N + 1)⌉ qubits:

|⌈log(N + 1)⌉, 1〉 → |0〉 |n〉b
|0〉 |k〉b → |0〉 |k〉b , 0 6 k 6 N, k 6= n .

Since the operation Pi involves only ⌈log(N + 1)⌉+ 1 qubits, it can be implemented

withN2C4 basic gates by [109]. Note that P can be concatenated as P = P1P2 . . .PN .

Thus, P can be implemented with N3C4 basic gates.

Step 8: With the results above, we can efficiently prepare the state 1√
N+1

∑N
j=0 |j〉b |j〉s.

In fact, this can be accomplished by attaching a ⌈log(N + 1)⌉-qubit ancillary state

|00 . . . 0〉 to (A.18), applying P to the first N qubits of (A.18) as well as the ancillary

state, and keeping only the ancillary state and the last N qubits of (A.18). In total,
[
N(N +1)C3/2+NC2 +N +1+N3C4

]
basic gates are needed. This gives the proof

of the part (a) of Theorem 2.4.

Step 9: Note also that H̊failure is at most rank (N+1); if λ̊k > 0, H̊b,k is rank 1 and

there are at most (N + 1)(N + 2)/2 such matrices according to the sparsity analysis

in [84]. Such positive-operator valued measures (POVMs) can be implemented by a

unitary gate on ⌈log (N + 1)(N + 4)/2⌉ qubits, together with standard basis measure-

ment [110]. This unitary gate can be implemented with O(4⌈log (N+1)(N+4)/2⌉) = O(N4)

gates [109]. Thus, the POVMs H̊b,k and H̊b,failure can be implemented with poly(N)

basic gates and standard basis measurements. Similarly, M̊b,k and M̊b,failure can be

implemented with poly(N) basic gates and standard basis measurements. This gives

the proof of the part (b) of Theorem 2.4.

Step 10: We first apply U−1
N to |ψ〉⊗N , then attach a ⌈log(N + 1)⌉-qubit ancillary

state |00 . . . 0〉 to the output, resulting in a (N + ⌈log(N + 1)⌉)-qubit state. We then

112



apply P in Step 7 to this state and keep only the last ⌈log(N + 1)⌉ qubits to obtain

the desired state |ψ〉b. Steps 4 and 7 show that U−1
N and P can be implemented with

poly(N) basic gates. Therefore, |ψ〉⊗N can be transformed to |ψ〉b with poly(N) basic

gates. This gives the proof of the part (c) of Theorem 2.4.
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Appendix B

Proofs of the Results in Chapter 3

B.1 Proof of Theorem 3.1

The proof for Theorem 3.1 is organized in five steps.

Step 1: Connection to the Blackwell optimal policy

We first introduce the β−discounted dynamic programming problem in the con-

text of quantum queuing system: Given an initial state x(1) and β ∈ (0, 1), the aim

is to find a policy π = {u(0), u(1), . . . }, that minimizes the cost function

Jβ(x
(1)) = lim sup

N→∞
E

{ N−1∑

n=0

Nr∑

i=1

βnmax{0, s(n)i }
∣∣∣x(1)

}

subject to the system equation constraint (3.1).

The definition of Blackwell optimal policy is as follows:

Definition 3 ( [94], Chapter 4). A stationary policy µ is said to be Blackwell optimal

if it is simultaneously optimal for all the β−discounted problems with β in an interval

(β∗, 1), where β∗ is some scalar with 0 < β∗ < 1.

Lemma B.1 ( [94], Proposition 4.1.3). There exists a Blackwell optimal policy.

Lemma B.2 ( [94], Proposition 4.1.7). A Blackwell policy is optimal over all policies

in the average cost problem.
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Based on Lemma B.1, we can consider a Blackwell optimal policy u∗(n). Noting

that the Blackwell optimal policy is stationary, i.e., independent on the time index n,

we can drop the superscript (n) and write the optimal control as u∗. By Definition

3 and Lemma B.1, there exists β∗ ∈ (0, 1) such that u∗ is optimal for β−discounted

problems with β ∈ (β∗, 1). We next show that either u∗ is threshold-based control

as stated in Theorem 3.1, or we can create threshold-based control that is also a

Blackwell optimal policy.

Step 2: Introduction of some notations

Since Nr = 2, x(1) ∈ R4. With a little abuse of notation, we write Jβ as a function

of four variables, i.e.,

Jβ(x) = Jβ(s1, s2, c1, c2) (B.1)

where x = [ s1, s2, c1, c2 ]
T. We also introduce a function that represents the future

cost

J̃β(s1, s2) := E{Jβ(s1, s2, c1, c2)} =
∑

c1,c2∈{−1,0,1}
P{c(1)1 = c1, c

(1)
2 = c2}Jβ(s1, s2, c1, c2).

One can verify that

Jβ(s1, s2, c1, c2) = max{0, s1}+max{0, s2}+ βJ̃β(u
∗
β(s1, s2, c1, c2))

where u∗β denotes the optimal control policy for the β-discounted problem.1

Step 3: Connection to the “convexity” of J̃β

Note that for the β−discounted problem, for a state [ s1, s2, c1, c2 ]
T, if

Nr∑

i=1

max{0,−si − ci} > M

si + ci < 0 i = 1, 2

1Note that the optimal control policy for the β-discounted problem is stationary and does not
rely on the time index n. Similarly to (B.1), we write u∗β as a function of four variables with an
output of two variables.
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the optimal control is

[s̃1, s̃2]
T = argmin

[s̃1,s̃2]T∈F(s1,s2,c1,c2)

β E{Jβ(s̃1, s̃2, c1, c2)}

= argmin
[s̃1,s̃2]T∈F(s1,s2,c1,c2)

J̃β(s̃1, s̃2)

where F(s1, s2, c1, c2) is the feasible set, given by

F(s1, s2, c1, c2) :={[x, y]T ∈ Z
2 : x > s1 + c1, y > s2 + c2, x+ y > −M}.

Note that the feasible set has a physical meaning: a quantum node can discard

established entangled qubits, but cannot store entangled qubits beyond the size of

the entanglement memory.

In the remaining parts of the proof, we will show that J̃β has the following property

2J̃β(s1, s2) 6 J̃β(s1 + 1, s2 − 1) + J̃β(s1 − 1, s2 + 1) (B.2)

provided that s1 6 −1, s2 6 −1, and s1 + s2 = −M . The property (B.2) implies

that J̃β(s1,−M − s1) is discretely convex as a function of s1 for s1 ∈ K−M :0. One

can easily verify that if (B.2) holds, then either u∗β is threshold-based control or there

exists threshold-based control that achieves the same performance as u∗β (the latter

occurs only when J̃β(s1,−M − s1) first decreases, stays constant, and then increases

as a function of s1 when s1 ∈ K−M :0).

We will prove a stronger claim than (B.2) as follows:

Lemma B.3. There exists β∗ ∈ (0, 1) such that for β ∈ (β∗, 1),

J̃β(s1, s2 − 1)− J̃β(s1 − 1, s2) 6 J̃β(s1, s2 − 2)− J̃β(s1 − 1, s2 − 1) (B.3)

J̃β(s1 − 1, s2)− J̃β(s1, s2 − 1) 6 J̃β(s1 − 2, s2)− J̃β(s1 − 1, s2 − 1) (B.4)

provided that s1 6 1, s2 6 1, and s1 and s2 are valid numbers.2

2In this thesis, “valid numbers” are defined as numbers that lead to valid state inputs for the
function J̃β .
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If (B.3) and (B.4) hold, then adding these two equations gives

2J̃β(s1 − 1, s2 − 1) 6 J̃β(s1, s2 − 2) + J̃β(s1 − 2, s2)

for s1 6 1 and s2 6 1, which is stronger than (B.2).

Step 4: Value iteration of Jβ and J̃β

We consider the value iteration of Jβ and J̃β. In particular, consider

J
(0)
β (s1, s2, c1, c2) = max{0, s1}+max{0, s2}

and

J
(k+1)
β (s1, s2, c1, c2)

= max{0, s1}+max{0, s2}+ β min
u(s1,s2,c1,c2)∈F(s1,s2,c1,c2)

E{J (k)
β (u(s1, s2, c1, c2), c1, c2)}

= max{0, s1}+max{0, s2}+ βE{J (k)
β (uk(s1, s2, c1, c2), c1, c2)}

where uk denotes the policy that achieves the minimum in the first equality. Corre-

spondingly, consider

J̃
(0)
β (s1, s2) = E{J (0)

β (s1, s2, c1, c2)} = max{0, s1}+max{0, s2} (B.5)

and

J̃
(k)
β (s1, s2) = E{J (k)

β (s1, s2, c1, c2)}.

One can verify that the function J̃ (k)
β has the following iteration:

J̃
(k+1)
β (s1, s2) = max{0, s1}+max{0, s2}+ βE

{
J̃
(k)
β

(
uk(s1, s2, c1, c2)

)}
.

Value iteration shows that limk→∞ J
(k)
β = Jβ [94]; consequently, limk→∞ J̃

(k)
β = J̃β.
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Therefore, for proving Lemma B.3, it suffices to prove that for all k,

F (k)(s1, s2) 6 0, s1 6 Qt, s2 6 0

G(k)(s1, s2) 6 0, s1 6 0, s2 6 Qt

where

F (k)(s1, s2) :=
[
J̃
(k)
β (s1, s2 − 1)− J̃

(k)
β (s1 − 1, s2)

]

−
[
J̃
(k)
β (s1, s2 − 2)− J̃

(k)
β (s1 − 1, s2 − 1)

]

G(k)(s1, s2) :=
[
J̃
(k)
β (s1 − 1, s2)− J̃

(k)
β (s1, s2 − 1)

]

−
[
J̃
(k)
β (s1 − 2, s2)− J̃

(k)
β (s1 − 1, s2 − 1)

]
.

The proof will be shown in the next step.

Step 5: Induction method to prove Lemma B.3

We use the induction method to prove the following claims simultaneously:

Lemma B.4. For all k, the following inequalities hold:

F (k)(s1, s2) 6 0, s1 6 Qt, s2 6 0 (B.6)

H(k)(s1, s2) 6 0, s1 6 Qt, s2 6 0 (B.7)

G(k)(s1, s2) 6 0, s1 6 0, s2 6 Qt (B.8)

I(k)(s1, s2) 6 0, s1 6 0, s2 6 Qt (B.9)

F (k)(s1, s2) 6 η(k)s2
, s1 6 Qt, s2 > 1 (B.10)

H(k)(s1, s2) 6 η(k)s2
, s1 6 Qt, s2 > 1 (B.11)

G(k)(s1, s2) 6 ζ (k)s1
, s1 > 1, s2 6 Qt (B.12)

I(k)(s1, s2) 6 ζ (k)s1 , s1 > 1, s2 6 Qt (B.13)

J̃
(k)
β (s1, s2)−J̃ (k)

β (s1, s2 − 1) 6 ν(k)s2
, s1 6 Qt, s2 > 1 (B.14)

J̃
(k)
β (s1, s2)−J̃ (k)

β (s1 − 1, s2) 6 υ(k)s1 , s1 > 1, s2 6 Qt (B.15)
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where

H(k)(s1, s2) :=
[
J̃
(k)
β (s1, s2 − 1)− J̃

(k)
β (s1, s2)

]

−
[
J̃
(k)
β (s1, s2 − 2)− J̃

(k)
β (s1, s2 − 1)

]

I(k)(s1, s2) :=
[
J̃
(k)
β (s1 − 1, s2)− J̃

(k)
β (s1, s2)

]

−
[
J̃
(k)
β (s1 − 2, s2)− J̃

(k)
β (s1 − 1, s2)

]
.

Moreover, η(k)i and ν(k)i are auxiliary sequences given by

η
(0)
i = η∗β(i), i ∈ K1:Qt

η
(k)
1 = −1 + β

[
p̃2η

(k−1)
2 + (1− p̃2 − q̃2)η

(k−1)
1

]

η
(k)
i = β

[
p̃2η

(k−1)
i+1 + (1− p̃2 − q̃2)η

(k−1)
i + q̃2η

(k−1)
i−1

]
, i ∈ K2:Qt−1

η
(k)
Qt

= β
[
p̃2ν

(k−1)
Qt

+ (1− p̃2 − q̃2)η
(k−1)
Qt

+ q̃2η
(k−1)
Qt−1

]

and

ν
(0)
i = ν∗β(i), i ∈ K1:Qt

ν
(k)
1 = 1 + β

[
p̃2ν

(k−1)
2 + (1− p̃2)ν

(k−1)
1

]

ν
(k)
i = 1 + β

[
p̃2ν

(k−1)
i+1 + (1− p̃2 − q̃2)ν

(k−1)
i + q̃2ν

(k−1)
i−1

]
, i ∈ K2:Qt

where p̃2 = P{c(1)2 = 1}, q̃2 = P{c(1)2 = −1}; η∗β(i) and ν∗β(i) are steady states of the

system above, i.e., η∗β(i) = limk→∞ η
(k)
i and ν∗β(i) = limk→∞ ν

(k)
i ;3 and ζ

(k)
i and υ

(k)
i

are obtained by replacing η, ν, p̃2, q̃2 with ζ , υ, p̃1, q̃1, respectively.

Proof. See Appendix B.2.

The completion of proving Lemma B.4 finishes the proof of Theorem 3.1.

3The expressions of η∗β(i) and ν∗β(i) will be explicitly given in Appendix B.2.
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B.2 A Proof of Lemma B.4

We first prove a lemma that will be used in the later proof.

Lemma B.5. There exists β∗ such that for any β ∈ (β∗, 1)

η∗β(1) ∈ (−1, 0)

η∗β(i) > 0, i 6= 0

ν∗β(i) > 0.

Proof. Denote Qt ×Qt matrices A and B as follows:

A =



1− p̃2 p̃2

q̃2 1− p̃2 − q̃2 p̃2

q̃2 1− p̃2 − q̃2 p̃2
. . .

q̃2 1− p̃2 − q̃2




and

B = A− q̃2E1,1.

Consider the vectors ν∗
β and η∗

β that represent steady states, i.e., [ν∗
β]i = ν∗β(i) and

[η∗
β]i = η∗β(i).

The steady states of ν(i)k and ν(i)k are given by

ν∗
β = (I − βA)−1

1

η∗
β = (I − βB)−1

(
− e1 + βp̃2EQt,Qt

ν∗
β

)
.

One can easily verify that I − βA and I − βB are invertible for β ∈ (0, 1].
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Note that for β = 1,

[ν∗
β ]i =

Qt∑

m=i

m−1∑

n=0

p̃n2 q̃
m−1−n
2

p̃m2
> 0. (B.16)

Moreover, for β = 1,

[η∗
β]i =

1
∑Qt

m=1 p̃
m
2 q̃

Qt−m
2

(
−

Qt−1∑

m=i−1

p̃Qt−1−m
2 q̃m2 +

∑Qt−1
m=0 p̃

m
2 q̃

Qt−1−m
2

p̃Qt−1
2

i−1∑

m=0

p̃Qt−1−m
2 q̃m2

)
.

It is straightforward to verify that

[η∗
β]1 = 0 and [η∗

β]i > 0, i > 1. (B.17)

Moreover,

∂η∗

∂β

∣∣∣∣
β=1

= (I −B)−1Bη∗
β + p2(I −B)−1EQt,Qt

ν∗
β

∣∣∣∣
β=1

.

Noticing that

(I −B)−1 =

∞∑

j=0

Bj

one can see that each element (I−B)−1 is positive. As a consequence, one can easily

derive that

∂[η∗]i
∂β

∣∣∣∣
β=1

> 0. (B.18)

Combining (B.16), (B.17), and (B.18), together with the continuity of η∗
β and ν∗

β as

functions of β, we arrive at the desired results.

Lemma B.6. The functions J̃ (k)
β (s1, ·) and J̃

(k)
β (·, s2) are increasing functions for all

valid s1 and s2.

The proof of such monotonicity is omitted.
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We now prove Lemma B.4 by induction. The base case can be easily verified with

the initial values (B.5). We next consider the induction step. Suppose (B.7) to (B.15)

hold for the case k, we next consider the case k+1. Note that adding (B.6) and (B.8)

as well as adding (B.10) and (B.12) give

2J̃
(k)
β (s1 − 1, s2 − 1) 6 J̃

(k)
β (s1, s2 − 2) + J̃

(k)
β (s1 − 2, s2) (B.19)

for s1 6 1 and s2 6 1.

For brevity, we only show the proof of (B.7) and (B.14) for the case k + 1. The

other cases can be proved similarly.

For (B.7), we first show that for c1, c2 ∈ {−1, 0, 1} and s1 6 Qt, s2 6 0,

2J̃
(k)
β

(
uk(s1, s2 − 1, c1, c2)

)
6 J̃

(k)
β

(
uk(s1, s2 − 2, c1, c2)

)
+ J̃

(k)
β

(
uk(s1, s2, c1, c2)

)
.

(B.20)

Note that max{0,−s1} + max{0,−(s2 − 2)} 6 M , we have max{0,−(s1 + c1)} +

max{0,−(s2 − 1 + c2)} 6M + 1.

If max{0,−(s1 + c1)}+max{0,−(s2 − 1 + c2)} 6M , then

J̃
(k)
β

(
uk(s1, s2 − 1, c1, c2)

)
− J̃

(k)
β

(
uk(s1, s2, c1, c2)

)

= J̃
(k)
β (Qm, s2 − 1 + c2)− J̃

(k)
β (Qm, s2 + c2)

6 min
{
J̃
(k)
β (Qm,max{s2 − 2 + c2,−M}),

J̃
(k)
β (s1 + c1 + 1, s2 + c2 − 2), J̃

(k)
β (s1 + c1, s2 + c2 − 1)

}

− J̃
(k)
β (Qm, s2 − 1 + c2) (B.21)

= J̃
(k)
β

(
uk(s1, s2 − 2, c1, c2)

)
− J̃

(k)
β

(
uk(s1, s2 − 1, c1, c2)

)

where Qm := min{Qt, s1 + c1}. The equalities are due to the definition of uk and the

assumption that max{0,−(s1 + c1)} +max{0,−(s2 − 1 + c2)} 6 M . The inequality

can be verified using (B.6) and (B.7) for the case k and Lemma B.6. For example, if
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J̃
(k)
β (s1+ c1+1, s2+ c2− 2) achieves the minimum in (B.21), then s1+ c1+1 6 0 and

J̃
(k)
β (Qm, s2 − 1 + c2)− J̃

(k)
β (Qm, s2 + c2)

= J̃
(k)
β (s1 + c1, s2 − 1 + c2)− J̃

(k)
β (s1 + c1, s2 + c2)

6 J̃
(k)
β (s1 + c1 + 1, s2 − 1 + c2)− J̃

(k)
β (s1 + c1, s2 + c2)

6 J̃
(k)
β (s1 + c1 + 1, s2 + c2 − 2)−J̃ (k)

β (s1 + c1, s2− 1 + c2)

= J̃
(k)
β (s1 + c1 + 1, s2 + c2 − 2)− J̃

(k)
β (Qm, s2 − 1 + c2)

where the first inequality is because of Lemma B.6 and the second inequality is because

of (B.6). If the minimum in (B.21) is achieved by other terms, the discussions are

similar.

If max{0,−(s1+ c1)}+max{0,−(s2−1+ c2)} =M +1, then c1 = −1 and s1 6 0.

One can verify that −s1 > M . As a consequence, then c2 = −1, s2 + c2 − 1 < 0, and

J̃
(k)
β (uk(s1, s2 − 1, c1, c2))− J̃

(k)
β (uk(s1, s2, c1, c2))

6 min
{
J̃
(k)
β (s1 − 1, s2 − 1), J̃

(k)
β (s1, s2 − 2), J̃

(k)
β (s1 + 1, s2 − 3)

}

−min
{
J̃
(k)
β (s1, s2 − 2), J̃

(k)
β (s1 − 1, s2 − 1)

}

= J̃
(k)
β (uk(s1, s2 − 2, c1, c2)− J̃

(k)
β (uk(s1, s2 − 1, c1, c2))

where the inequality can be verified by discussing all the cases and using (B.19),

(B.20), and (B.7) for the case k, as well as Lemma B.6. This proves (B.20).
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We now prove (B.7).

H(k+1)(s1, s2)

=
[
J̃
(k+1)
β (s1, s2 − 1)− J̃

(k+1)
β (s1, s2)

]
−

[
J̃
(k+1)
β (s1, s2 − 2)− J̃

(k+1)
β (s1, s2 − 1)

]

= 2max{0, s2 − 1} −max{0, s2} −max{0, s2 − 2}+ 2E
{
J̃
(k)
β

(
uk(s1, s2 − 1, c1, c2)

)}

− E

{
J̃
(k)
β

(
uk(s1, s2 − 2, c1, c2)

)}
− E

{
J̃
(k)
β

(
uk(s1, s2, c1, c2)

)}

6 β
∑

c1,c2∈{−1,0,+1}
P{c(1)1 = c1, c

(1)
2 = c2} ×

[
J
(k)
β

(
uk(s1, s2 − 1, c1, c2)

)

− J
(k)
β

(
uk(s1, s2, c1, c2)

)
− J

(k)
β

(
uk(s1, s2 − 2, c1, c2)

)
+ J

(k)
β

(
uk(s1, s2 − 1, c1, c2)

)]

6 0

where the inequality is due to 2max{0, s2 − 1} − max{0, s2} − max{0, s2 − 2} 6 0

and (B.20). This proves (B.7) for the case k + 1.

Proof of (B.14) for the case k + 1:

We first show that

J̃
(k)
β

(
uk(s1, 1, c1,−1)

)
− J̃

(k)
β (uk(s1, 0, c1,−1)) 6 ν

(k)
1 (B.22)

If s1 + c1 6 −M , then

J̃
(k)
β

(
uk(s1, 1, c1,−1)

)
− J̃

(k)
β

(
uk(s1, 0, c1,−1)

)

= J̃
(k)
β (−M, 0)−min

{
J̃
(k)
β (−M, 0), J̃

(k)
β (−M + 1,−1)

}

6 J̃
(k)
β (−M, 1)− J̃

(k)
β (−M, 0)

6 ν
(k)
1

where the first inequality is due to F (k)(−M +1, 1) 6 0 from (B.10) and Lemma B.6,

and the second inequality is due to (B.14).
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If s1 + c1 > −M , then

J̃
(k)
β

(
uk(s1, 1, c1,−1)

)
− J̃

(k)
β

(
uk(s1, 0, c1,−1)

)

= J̃
(k)
β (Qm, 0)− J̃

(k)
β (Qm,−1)

6 J̃
(k)
β (Qm, 1)− J̃

(k)
β (Qm, 0)

6 ν
(k)
1

where the first inequality is due to (B.11) and the second inequality is due to (B.14).

Hence, we have proved (B.22).

Next, for s2 = 1, we prove (B.14) for the case k + 1:

J̃
(k+1)
β (s1, 1)− J̃

(k+1)
β (s1, 0)

= 1 + β
∑

c1,c2∈{−1,0,+1}
P{c(1)1 = c1, c

(1)
2 = c2} ×

[
J̃
(k)
β

(
uk(s1, 1, c1, c2)

)

− J̃
(k)
β

(
uk(s1, 0, c1, c2)

)]

= 1 + β
∑

c1∈{−1,0,+1},c2=1

p̃2

[
J̃
(k)
β

(
Qm, 2

)
− J̃

(k)
β

(
Qm, 1

)]

+ β
∑

c1∈{−1,0,+1},c2=0

(1− p̃2 − q̃2)
[
J̃
(k)
β

(
Qm, 1)− J̃

(k)
β

(
Qm, 0

)]

+ β
∑

c1∈{−1,0,+1},c2=−1

q̃2

[
J̃
(k)
β

(
Qm, 0)− J̃

(k)
β

(
Qm,−1

)]

6 1 + βp̃2ν
(k)
2 + β(1− p̃2 − q̃2)ν

(k)
1 + βq̃2ν

(k)
1

= 1 + βp̃2ν
(k)
2 + β(1− p̃2)ν

(k)
1

= ν
(k+1)
1

where the inequality is due to (B.14) for the case k and (B.22).
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Next, for s2 > 1, we prove (B.14) for the case k + 1:

J̃
(k+1)
β (s1, s2)− J̃

(k+1)
β (s1, s2 − 1)

= 1 + β
∑

c1,c2∈{−1,0,1}
P{c(1)1 = c1, c

(1)
2 = c2} ×

[
J̃
(k)
β

(
uk(s1, s2, c1, c2)

)

− J̃
(k)
β

(
uk(s1, s2 − 1, c1, c2)

)]

= 1 + β
∑

c1∈{−1,0,+1},c2=1

p̃2

[
J̃
(k)
β

(
Qm, s2 + 1

)
− J̃

(k)
β

(
Qm, s2

)]

+ β
∑

c1∈{−1,0,+1},c2=0

(1− p̃2 − q̃2)
[
J̃
(k)
β

(
Qm, s2)− J̃

(k)
β

(
Qm, s2 − 1

)]

+ β
∑

c1∈{−1,0,+1},c2=−1

q̃2

[
J̃
(k)
β

(
Qm, s2 − 1)− J̃

(k)
β

(
Qm, s2 − 2

)]

6 1 + βp̃2ν
(k)
s2+1 + β(1− p̃2 − q̃2)ν

(k)
s2

+ βq2ν
(k)
s2−1

= ν(k+1)
s2

We then finish the proof of (B.14) for the case k + 1.
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Appendix C

Proofs of the Results in Chapter 4

C.1 Proof of Theorem 4.1

Consider the RED protocol π∗ that achieves the optimal entanglement rate. Let

Fi:ki:j (τ) and F
k:j
i:j (τ) denote the number of entangled qubit pairs (EQPs) Ξi:k and Ξk:j

used for distributing Ξi:j after τ time slots, respectively; let hijkij (τ) denote the number

of EQPs Ξi:j distributed by entanglement swapping that consumes Ξi:k and Ξk:j after

τ time slots. If (i, j) ∈ E , let Pi:j(τ) denote the number of EQPs Ξi:j generated in

Phase I after τ time slots. At the time slot T , since the number of EQPs Ξi:j is

nonnegative, we have

1E(i, j)pi:j(T ) +
∑

k∈N\{i,j}
h
ijk
ij (T ) >

∑

k∈N\{i,j}
(Fi:ji:k(T ) + F

i:j
k:j(T )).

Taking the expectation on both sides and dividing them by T , we have

1E(i, j)pi:j+
1

T

∑

k∈N\{i,j}
E
{
h
ijk
ij (T )

}
>

1

T

∑

k∈N\{i,j}

(
E
{
F
i:j
i:k(T )

}
+ E

{
F
i:j
k:j(T )

})
.
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Note that the success probability for distributing Ξi:j with Ξi:k and Ξk:j is qk, and

Fi:ki:j (T ) = F
k:j
i:j (T ). Hence,

E
{
h
ijk
ij (T )

}
= qk

E
{
Fi:ki:j (T )

}
+ E

{
F
k:j
i:j (T )

}

2

and we have

1E(i, j)pi:j +
∑

k∈N\{i,j}
qk
E
{
Fi:ki:j (T )

}
+ E

{
F
k:j
i:j (T )

}

2T

>
1

T

∑

k∈N\{i,j}

(
E
{
F
i:j
i:k(T )

}
+ E

{
F
i:j
k:j(T )

})
. (C.1)

Let

f i:ki:j =
1

T
E{Fi:ki:j (T )}.

Evidently, f i:ki:j satisfies the definition of the eflow. Moreover, {f i:ki:j : i, j, k ∈ N}
defined above satisfies the constraint (4.2) using (C.1). One can also easily verify that

{f i:ki:j : i, j, k ∈ N} satisfies the constraints (4.3)-(4.4). Therefore, {f i:ki:j : i, j, k ∈ N}
is a feasible solution of P.

Note that

T∑

τ=1

gπ
∗

s:t(τ) = T · 1E(s, t)ps:t(T ) +
∑

k∈N\{s,t}
hstkst (T )

and hence

1

T

T∑

τ=1

E{gπ∗

s:t(τ)} = 1E(s, t)E{ps:t(T )}+
1

T

∑

k∈N\{s,t}
E{hstkst (T )}

= 1E(s, t)ps:t +
1

T

∑

k∈N\{s,t}
qk
E
{
Fs:ks:t (T )

}
+ E

{
Fk:ts:t(T )

}

2

= 1E(s, t)ps:t +
∑

k∈N\{s,t}
qk
f s:ks:t + fk:ts:t

2
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which is exactly the objective function of P. Let λ∗ denote the optimal value for P.

Since λ∗ is the upper bound for the objective function that corresponds to a feasible

solution, we have

1

T

T∑

τ=1

E{gπ∗

s:t(τ)} 6 λ∗

for all T and π∗. Taking the lim inf over T on the left side, we arrive at the desired

result.

C.2 Proof of Proposition 4.1

Consider the optimal solution {f i:ki:j : i, j, k ∈ N} such that the graph G corresponding

to {f i:ki:j : i, j, k ∈ N} has the minimum number of edges. If the graph G has no

directed cycles, the proof is finished. Otherwise, we will find another optimal solution

of P and the corresponding graph of the new solution has fewer edges compared to

{f i:ki:j : i, j, k ∈ N}. This will lead to a contradiction and finish the proof.

Consider one of the directed cycles in G as in Fig. C-1, consisting of nodes ex2l−1:x2l,

l ∈ K1:K , where K is the number of nodes in the cycle. For notational conve-

nience, let x1 = x2K+1 and x2 = x2K+2. Note that the structure of entanglement

swapping requires that Card({x2l−1, x2l} ∩ {x2l+1, x2l+2}) = 1 and Card({y2l−1, y2l} ∩
{x2l+1, x2l+2}) = 1, where y2l−1 and y2l are shown in Fig. C-1. From the definition of

the edge, we have that fx2l−1:x2l
x2l+1:x2l+2 > 0, l ∈ K1:K .

Consider a number δ:

δ = min
{
fx2l−1:x2l
x2l+1:x2l+2

, l ∈ K1:K

}
. (C.2)
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...

ex1:x2

ex3:x4
ex5:x6

ex7:x8

ey1:y2 ey3:y4

ey5:y6

fy1:y2

x3:x4

fx1:x2

x3:x4

Figure C-1: One of the directed cycles in G.

Evidently δ > 0. We construct a solution of P as follows:

f̃x2l−1:x2l
x2l+1:x2l+2

= fx2l−1:x2l
x2l+1:x2l+2

− δ, l ∈ K1:K

f̃ y2l−1:y2l
x2l+1:x2l+2

= f y2l−1:y2l
x2l+1:x2l+2

− δ, l ∈ K1:K

f̃ i:ji:k = f i:ji:k , for other eflows.

We next show {f̃ i:ki:j : i, j, k ∈ N} is an optimal solution of P. Regarding the

constraint (4.2), if {i, j} = {x2l−1, x2l},

pi:j1E(i, j) +
∑

k∈N\{i,j}
qk
f̃ i:ki:j + f̃k:ji:j

2

= 1E(i, j)pi:j − δ · q{x2l−3,x2l−2}∩{x2l−1,x2l}

+
∑

k∈N\{i,j}
qk
f i:ki:j + fk:ji:j

2

> −δ · q{x2l−3,x2l−2}∩{x2l−1,x2l} +
∑

k∈N\{i,j}
(f i:ji:k + f i:jk:j)

> −δ +
∑

k∈N\{i,j}
(f i:ji:k + f i:jk:j)

=
∑

k∈N\{i,j}
(f̃ i:ji:k + f̃ i:jk:j)
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..
.

..
.

e1:2

e1:x1

e2:x1

e1:x2

e2:x2

e1:xM
e2:xM

e2:y1

e1:y1

e2:y2

e1:y2

e1:yN
e2:yN

Figure C-2: Children of the non-isolated enode e1:2.

where the first inequality is because {f i:ki:j : i, j, k ∈ N} satisfies the constraint (4.2)

and the second inequality is because qk 6 1 for all k ∈ N . If {i, j} = {y2l−1, y2l},

pi:j1E(i, j) +
∑

k∈N\{i,j}
qk
f̃ i:ki:j + f̃k:ji:j

2

= 1E(i, j)pi:j +
∑

k∈N\{i,j}
qk
f i:ki:j + fk:ji:j

2

> −δ +
∑

k∈N\{i,j}
(f i:ji:k + f i:jk:j)

=
∑

k∈N\{i,j}
(f̃ i:ji:k + f̃ i:jk:j)

where the inequality is because {f i:ki:j : i, j, k ∈ N} satisfies the constraint (4.2) and

the fact δ > 0. If {i, j} 6= {x2l−1, x2l} and {i, j} 6= {y2l−1, y2l}, then the constraint

(4.2) trivially holds. Regarding the constraint (4.3), since fx2l−1x2l
x2l+1x2l+2 = f

y2l−1y2l
x2l+1x2l+2 > 0

and δ is selected according to (C.2), the constraint (4.3) holds.

The constraint (4.4) also trivially holds since f s:ti:j = 0 and the enode es:t does not
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belong to the set {ex2l−1:x2l, ey2l−1:y2l, l ∈ K1:K}. Using the same argument, one can

show that the value of the objective function remains unchanged if f i:ki:j is replaced

with f̃ i:ki:j . This proves that {f̃ i:ki:j : i, j, k ∈ N} is an optimal solution of P.

One can easily find that replacing {f i:ki:j : i, j, k ∈ N} with {f̃ i:ki:j : i, j, k ∈ N}
does not add additional edges in the corresponding graphs. Moreover, due to (C.2),

at least one of the elements in
{
f̃
x2l−1:x2l
x2l+1:x2l+2

, l ∈ K1:K

}
is zero. Consequently, the

graph corresponding to the optimal solution {f̃ i:ki:j : i, j, k ∈ N} has fewer edges than

that corresponding to {f i:ki:j : i, j, k ∈ N}. This gives the desired contradiction that

{f i:ki:j : i, j, k ∈ N} has the minimum number of edges and finishes the proof.

C.3 Proof of Proposition 4.2

Consider the optimal solution {f̊ i:ki:j }i,j,k∈N that has the minimum number of edges.

Proposition 4.1 shows that the associated graph is acyclic. We will prove that this

optimal solution is efficient by contradiction.

Suppose there exists a non-isolated enode e1:2 in G that is not an ancestor of

es:t. Consider the children of e1:2, denoted as e1:x1 , e1:x2, . . . , e1:xM , e2:y1, e2:y2 , . . . , e2:yN

shown in Fig. C-2. We construct a solution {f̃ i:ki:j : i, j, k ∈ N} as follows:

f̃ i:ki:j =






0, if ei:k is a descendant of e1:2;

0 if ei:j is a descendant of e1:2;

0, if ei:j = e1:2;

f i:ki:j , otherwise.

Evidently, the graph G̃ corresponding to {f̃ i:ki:j : i, j, k ∈ N} can be obtained from

G by removing some edges so that the enode e1:2 does not have descendants in G̃. We

next show that {f̃ i:ki:j : i, j, k ∈ N} is an optimal solution of P. One can find that

the constraints (4.2)-(4.4) trivially hold. Regarding the objective function, consider

f s:ks:t for some k ∈ N . If f s:ks:t > 0, then es:t is a descendant of es:k. Since es:t is

not a descendant of e1:2, es:k is not a descendant of e1:2. Consequently, f̃ s:ks:t = f s:ks:t .
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If f s:ks:t = 0, then f̃ s:ks:t = f s:ks:t trivially. This shows that f̃ s:ks:t = f s:ks:t for all k ∈ N .

Similarly, f̃k:ts:t = fk:ts:t for all k ∈ N . As a result,

∑

k∈N\{s,t}
qk
f̃ s:ks:t + f̃k:ts:t

2
=

∑

k∈N\{s,t}
qk
f s:ks:t + fk:ts:t

2

showing that {f̃ i:ki:j : i, j, k ∈ N} is the optimal solution of P. However, the graph G̃
corresponding to {f̃ i:ki:j : i, j, k ∈ N} has fewer edges than G, leading to the desired

contradiction.

C.4 Proof of Theorem 4.2

The proof of Proposition 4.1 and Proposition 4.2 shows that we can construct an

optimal solution of P, denoted as {f i:ki:j : i, j, k ∈ N}, such that the graph G
corresponding to {f i:ki:j : i, j, k ∈ N} is acyclic and efficient. We will show that

given {f i:ki:j : i, j, k ∈ N}, we can provide an optimal solution of Ps, denoted as

{f̃ i:ki:j : i, j, k ∈ N} and {ũi:j : (i, j) ∈ E}.
We will start from the solution {f̃ i:ki:j : i, j, k ∈ N} and {ũi:j : (i, j) ∈ E}, where

f̃ i:ki:j = f i:ji:k , ∀i, j, k and ũi:j = 1, ∀i, j. Evidently, the solution {f̃ i:ki:j : i, j, k ∈ N}
satisfies the constraints (4.2)-(4.4), but {f̃ i:ki:j : i, j, k ∈ N} and {ũi:j : (i, j) ∈ E}
may not satisfy the constraints in Ps. We next update each of the enodes. Here,

for an enode ei:j , updating ei:j means updating the incoming eflow of ei:j f̃ i:ki:j , k ∈
N \{i, j} and determining ũi:j. After updating an enode, we will make sure that three

requirements are satisfied: 1) conditions (4.5)-(4.8) hold for all the updated enodes;

2) conditions (4.2)-(4.4) hold for all the nodes; and 3) the value of the objective

function remains unchanged. In this way, after updating all the enodes, we will

obtain a solution of Ps with the same optimal value of P.

We first update isolated enodes. If ei:j is an isolated enode in G, then we set

f̃ i:ji:k = f̃ i:jk:j = f̃ i:ki:j = f̃k:ji:j = 0 and ũi:j = 0. Note that such an update satisfies the three

requirements in the previous paragraph.

We then update the ancestors of es:t. Since G is acyclic, we can determine a
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topological ordering of G starting from es:t and update the nodes with the order. For

an enode ei:j , since the condition (4.2) holds as required, we have

pi:j1E(i, j) +
∑

k∈N\{i,j}
qk
f̃ i:ki:j + f̃k:ji:j

2

>
∑

k∈N\{i,j}
(f̃ i:ji:k + f̃ i:jk:j), i, j ∈ N .

We then determine ũi:j and update the incoming flow f̃ i:ki:j and f̃k:ji:j as follows:

̺i:j →
∑

k∈N\{i,j}(f̃
i:j
i:k + f̃ i:jk:j)

1E(i, j)pi:j +
∑

k∈N\{i,j} qk(f̃
i:k
i:j + f̃k:ji:j )/2

ũi:j → ̺i:j , f̃ i:ki:j → ̺i:j f̃
i:k
i:j , f̃k:ji:j → ̺i:j f̃

k:j
i:j .

One can easily verify that such an update satisfies the three requirements. This

finishes the proof.

C.5 Proof of Proposition 4.3

We show that

h(N) > g(N) (C.3)

for all N ∈ N+ by induction. The base case with N = 1 can be easily verified since

h(1) > 1. For the induction step, suppose (C.3) holds for N = 1, 2, . . . , N1. We next

show that (C.3) holds for N = N1 + 1.

Evidently, the EQP Ξ0:N1+1 is distributed based on entanglement swapping be-

tween EQPs Ξ0:a and Ξa:N1+1 for some a ∈ K1:N1
. Let xa denote the fraction of the

EQPs Ξ0:N1+1 that is distributed based on entanglement swapping between Ξ0:a and

Ξa:N1+1. For a fixed a, we consider the expected numbers of crude entanglements

required to distribute one EQP Ξ0:a and one EQP Ξa:N1+1. These two numbers can
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be lower-bounded by h(a) and h(N1 + 1− a). Then

h(N1 + 1) >
1

q

∑

a∈K1:N1

xa

[
h(a) + h(N1 + 1− a)

]

>
1

q

∑

a∈K1:N1

xa

[
g(a) + g(N1 + 1− a)

]

>
1

q

∑

a∈K1:N1

xa · q · g(N1 + 1)

=
∑

a∈K1:N1

xag(N1 + 1)

= g(N1 + 1)

where the first inequality has been explained, the second inequality is because of the

induction hypothesis, the third inequality is because of Lemma C.1 below, and the

second equality is because
∑

a∈K1:N1
xa = 1. This completes the proof for (C.3) for all

N ∈ N+.

Lemma C.1. For K, M ∈ N+,

g(K) + g(M)

q
> g(K +M). (C.4)

Proof. See Appendix C.6.

C.6 Proof of Lemma C.1

Without loss of generality, we assumeK 6M . We prove (C.4) in three cases: K =M ;

K =M − 1; and K 6M − 2.

Case 1: K =M .
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Let k = ⌈log2K⌉ − 1. Then

g(K) + g(M)

q
=

2

q
· g(K)

=
2

q
· 2(K − 2k) + (2k+1 −K)q

qk+1

=
2(2K − 2k+1) + (2k+2 − 2K)q

qk+2

= g(2K)

= g(K +M)

where the fourth equality is because k = ⌈log2 2K⌉ − 2. Therefore, the inequality

(C.4) holds.

Case 2: K =M − 1.

Let k = ⌈log2K⌉ − 1. We discuss two subcases: K = 2k+1 and K < 2k+1. If

K = 2k+1, then

g(K) + g(M)

q
=

2(K − 2k) + (2k+1 −K)q

qk+2

+
2(K + 1− 2k+1) + (2k+2 −K − 1)q

qk+3

=
2k+1

qk+2
+

2 + (2k+1 − 1)q

qk+3

=
2 + (2k+2 − 1)q

qk+3

=
2(2K + 1− 2k+2) + (2k+3 − 2K − 1)q

qk+3

= g(2K + 1)

= g(K +M)

where the first equality is because k + 1 = ⌈log2M⌉ − 1 and the fifth equality is
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because k + 2 = ⌈log2 (K +M)⌉ − 1. If K < 2k+1, then

g(K) + g(M)

q
=

2(K − 2k) + (2k+1 −K)q

qk+2

+
2(K + 1− 2k) + (2k+1 −K − 1)q

qk+2

=
2(2K + 1− 2k+1) + (2k+2 − 2K − 1)q

qk+2

= g(2K + 1)

= g(K +M)

where the third equality is because k + 1 = ⌈log2 (K +M)⌉ − 1. Therefore, the

inequality (C.4) holds.

Case 3: K 6M − 2.

Note that

g(K + 1)− g(K) =
2− q

q⌈log2 (K+1)⌉

6
2− q

q⌈log2M⌉ = g(M)− g(M − 1) (C.5)

where the equalities can be verified by some calculation, and the inequality is because

K + 1 6M and 2− q > 0. The inequality (C.5) implies

g(K) + g(M) > g(K + 1) + g(M − 1).

Similarly, we have

g(K + 1) + g(M − 1) > g(K + 2) + g(M − 2)
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provided that K +1 6 (M − 1)− 2. Such a process can be repeated and we will have

g(K) + g(M) >




2g

(
K +M

2

)
if K +M ∈ Ze

g

(
K +M − 1

2

)
+ g

(
K +M + 1

2

)
if K +M ∈ Zo.

The results from Case 1 and Case 2 show that

q · g(K +M) =





2g

(
K +M

2

)
if K +M ∈ Ze

g

(
K +M − 1

2

)
+ g

(
K +M + 1

2

)
if K +M ∈ Zo.

Combining the results above, we have that the inequality (C.4) holds in Case 3.

C.7 Proof of Theorem 4.3

In the homogeneous repeater chain, the expected number of available crude entan-

glements generated across N quantum channels is at most pN per time slot. As a

consequence, the expected number of available crude entanglements generated across

N quantum channels is at most pNT after T time slots. Moreover, by definition of

h(·), it requires h(N) crude entanglements on average to obtain one EQP between

nodes s and t. Therefore, the expected number of EQPs between s and t is at most

pNT/h(N) after T time slots. This implies for any protocol π,

λπ = lim inf
T→∞

1

T

T∑

τ=1

E{gπs:t(τ)}

6 lim inf
T→∞

1

T
· pNT
h(N)

=
Np

h(N)
.
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Together with Proposition 4.3, we have the upper bound of the EDR for any protocol:

λπ 6
Np

g(N)
=

Npqn+1

2(N − 2n) + q(2n+1 −N)
.

Note that I̊(s, t) in Remark 6 coincides with the upper bound above. Therefore,

{f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} is the optimal solution of Ps, and this upper

bound is indeed the maximum EDR because of Theorem 4.2.

C.8 Proof of Proposition 4.4

We next show that

ho(N) > go(N) (C.6)

he(N) > ge(N) (C.7)

for all N ∈ N+ by induction. The base case with N = 1 can be easily verified since

ho(1) > 1, he(1) > 0. For the induction step, suppose (C.6) and (C.7) hold for

N = 1, 2, . . . , N1. We next show that (C.6) and (C.7) hold for N = N1 + 1.

Evidently, the EQP Ξ0:N1+1 is distributed based on entanglement swapping be-

tween EQPs Ξ0:a and Ξa:N1+1 for some a ∈ K1:N1
. Let xa denote the fraction of

EQPs Ξ0:N1+1 that is distributed based on entanglement swapping between Ξ0:a and

Ξa:N1+1. For a fixed a, we consider the expected numbers of odd crude entanglements

required to distribute one entangled pair Ξ0:a and one EQP Ξa:N1+1. If a ∈ Zo, these

two numbers can be lower-bounded by ho(a) and he(N1+1−a), respectively; if a ∈ Ze,

these two numbers can be lower-bounded by ho(a) and ho(N1 + 1 − a), respectively.
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Then

ho(N1 + 1) >
1

q

∑

a∈K1:N1
∩Zo

xa

[
ho(a) + he(N1 + 1− a)

]

+
1

q

∑

a∈K1:N1
∩Ze

xa

[
ho(a) + ho(N1 + 1− a)

]

>
1

q

∑

a∈K1:N1
∩Zo

xa

[
go(a) + ge(N1 + 1− a)

]

+
1

q

∑

a∈K1:N1
∩Ze

xa

[
go(a) + go(N1 + 1− a)

]

>
1

q

∑

a∈K1:N1
∩Zo

xa · q · go(N1 + 1)

+
1

q

∑

a∈K1:N1
∩Ze

xa · q · go(N1 + 1)

=
∑

a∈K1:N1

xago(N1 + 1)

= go(N1 + 1) (C.8)

where the first inequality has been explained, the second inequality is because of the

induction hypothesis, the third inequality is because of (C.10) and (C.12) in Lemma
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C.2 below, and the last equality is because
∑

a∈K1:N1
xa = 1. Similarly,

he(N1 + 1) =
1

q

∑

a∈K1:N1
∩Zo

xa

[
he(a) + ho(N1 + 1− a)

]

+
1

q

∑

a∈K1:N1
∩Ze

xa

[
he(a) + he(N1 + 1− a)

]

>
1

q

∑

a∈K1:N1
∩Zo

xa

[
ge(a) + go(N1 + 1− a)

]

+
1

q

∑

a∈K1:N1
∩Ze

xa

[
ge(a) + ge(N1 + 1− a)

]

>
1

q

∑

a∈K1:N1
∩Zo

xa · q · ge(N1 + 1)

+
1

q

∑

a∈K1:N1
∩Ze

xa · q · ge(N1 + 1)

=
∑

a∈K1:N1

xage(N1 + 1)

= ge(N1 + 1). (C.9)

Equations (C.8) and (C.9) complete the proof for (C.6) and (C.7) for all N ∈ N+.

Lemma C.2. For K,M ∈ N+. If K ∈ Ze, then

go(K) + go(M)

q
> go(K +M) (C.10)

ge(K) + ge(M)

q
> ge(K +M). (C.11)

If K ∈ Zo, then

go(K) + ge(M)

q
> go(K +M) (C.12)

ge(K) + go(M)

q
> ge(K +M). (C.13)

Sketch of the Proof. See Appendix C.9.
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C.9 Sketch of the Proof of Lemma C.2

We only prove the first inequality (C.10) and the proof for the remaining inequalities

is similar.

Recall that K ∈ Ze. We prove (C.10) in three cases: M ∈ Ze; M ∈ Zo and

K >M − 1; and M ∈ Zo and K < M − 1.

Case 1: M ∈ Ze.

Since K ∈ Ze and M ∈ Ze, K +M ∈ Ze. Then

go(K) + go(M)

q
=
g(K) + g(M)

2q

>
g(K +M)

2
= go(K +M)

where the equalities are due to the definition of g(·) in (4.16), and the inequality is

due to Lemma C.1.

Case 2: M ∈ Zo and K >M − 1.

We have that

go(K) + go(M)

q

=
go(K) + go(M + 1)

q
+
q − 1

qm+2

> go(K +M + 1) +
q − 1

qm+2

= go(K +M) +
1− q

q⌈log2 (K+M)⌉ +
q − 1

qm+2

> go(K +M)

where m = ⌈log2M⌉ − 1. The equalities are due to the expression of go(·) and the

fact that M +1 ∈ Ze and M +K ∈ Zo; the first inequality is due to the proof in Case

1; and the last inequality is because

⌈log2(K +M)⌉ > ⌈log2(2M − 1)⌉ = ⌈log2(2M)⌉ = m+ 2.
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Case 3: M ∈ Zo and K < M − 1.

Since K ∈ Ze and M ∈ Zo, we have K 6M − 3.

go(K + 2)− go(K)

=
2− q

2q⌈log2(K+2)⌉ +
2− q

2q⌈log2(K+1)⌉

6
2− q

q⌈log2(K+2)⌉

6
2− q

q⌈log2(M−1)⌉

=
2− q

q⌈log2(M−2)⌉

6
1

q⌈log2M⌉ +
1− q

q⌈log2(M−2)⌉

= go(M)− go(M − 2) (C.14)

where the equalities can be verified by some calculation, and the second inequality is

because K 6M − 3 and 2− q > 0. The inequality (C.14) implies

go(M) + go(K) > go(M − 2) + go(K + 2).

Similarly, we have

go(M − 2) + go(K + 2) > go(M − 4) + go(K + 4)

provided that K +2 6 (M − 2)− 3. Such a process can be repeated and we will have

go(M) + go(K) > go

(
K +M − 1

2

)
+ go

(
K +M + 1

2

)
.

Since M ∈ Zo and K ∈ Ze, one of (K +M ± 1)/2 is odd and the other is even; their

difference is no more than 1. The result from Case 2 shows that

go

(
K +M − 1

2

)
+ go

(
K +M + 1

2

)
> q · go(K +M).
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Combining the results above, we have that the inequality (C.10) holds in Case 3.

C.10 Proof of Theorem 4.4

In the homogeneous repeater chain, the expected number of the available even crude

entanglements generated across N quantum channels is at most p(N − 1)/2 per time

slot. As a consequence, the expected number of available even crude entanglements

generated across N quantum channels is at most p(N − 1)T/2 after T time slots.

Moreover, by definition of he(·), it requires he(·) even crude entanglements on average

to obtain one entangled pair shared between nodes s and t. Therefore, the expected

number of entangled qubit pairs shared between s and t is at most (N−1)T/(2he(N))

after T time slots. This implies for any protocol π,

λπ = lim inf
T→∞

1

T

T∑

τ=1

E{gπs:t(τ)}

6 lim inf
T→∞

1

T
· T (N − 1)p

2he(N)
=

(N − 1)p

2he(N)
.

Together with Proposition 4.4, we have an upper bound of the EDR for any protocol:

λπ 6
(N − 1)p

2ge(N)
=

(N − 1)pqn+1

2(N − 2n) + (2n+1 −N − 1)q
.

Note that I̊(s, t) in Remark 7 coincides with the upper bound above. Therefore,

{f̊ i:ki:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} is the optimal solution of Ps, and this upper

bound is indeed the maximum EDR because of Theorem 4.2.
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