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ABSTRACT

This report studies the shortest route problem for networks that

are less than fully connected. Two algorithms are presented which

exploit the absence of arcs in solving the shortest route problem.

The first, which is designated the NXN algorithm, would tend to be

the more applicable to networks typically encountered in practice.

The second, which is an improvement on Hu's decomposition shortest

route algorithm, is more efficient for a small class of networks;

however, it generally requires less memory to hold the required

decomposition information in the computer than does the NXN algorithm.
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Section I Introduction

The problem of finding all the shortest routes in a directed network

has an extensive literature [3,9] due to the number of network

problems to which shortest route algorithms are applied. This paper

presents two new shortest route algorithms which can significantly reduce

the required computation time when the network is less than fully connected.

The first is based on original decomposition ideas and is called the node-

by-node decomposition (NXN) algorithm.$ The second is based on Hu's de-

composition algorithm [5,6,11] and is designated the improved Hu (IHU)

algorithm.

The shortest route problem is formulated as a shortest distance problem

where D = [dij] is a given matrix. The number dij represents the length

of the directed arc from node i to node j, and thus it is assumed di. = 0.

A path P from i to j is an ordered sequence i = ko,kl,..., k l,km j,
m

and the length of the path, L(P), is defined as L(P) = dk k If P
r=l r-l r

is any closed path, then it is assumed L(P) > 0 so that the shortest distance

problem is well defined. Then the problem is to find D* = [d] I where

d.j = min L(P) for P ranging over all paths from i to j. Knowing D* alone

does not specify the shortest routes, but is a well documented fact that

by appropriate bookkeeping as one calculates D*, the shortest routes can also

be established.

tAfter completion of this paper, the equivalence of the NXN algorithm with
previous work done at Network Analysis Corporation under ARPA Order No. 1523

[8] was discovered.



Typically D* is calculated as a series of refinements on D. Floyd's

algorithm [4] is cited for an N node network:

For every i E{1,2,...,N}, do step a:

a) For every j,k c{1,2,...,N}, do step b:

b) djk + min (djkl dji + dik)

where " -" means "is replaced by". The algorithm requires N3 additions

and N3 comparisons, and it is generally assumed additions and comparisons

take about the same amount of time so that one says Floyd's algorithms

requires 2N3 operations. At the conclusion of the algorithm D* has replaced

D. Proof of the algorithm is found elsewhere [6], but the interested reader

can easily convince himself that when i has been stepped from 1 though i
0

then the current value of djk is the minimal distance over all paths from

j to k under the condition that the intermediate nodes are elements of the

set {1,2,..., i }.

No algorithm which solves the shortest route algorithm could be any

simpler to encode, but there are a variety of faster algorithms in terms

of number of operations [7,10]. The standard against which the new

decomposition algorithms will be measured is Yen's implementation of

3 3
Dijkstra's algorithm [2,11] requiring --N operations. The algorithms

claiming even less operations are not significantly faster, theoretically,

for networks of the size for which computational experience is cited in

this paper; furthermore, some of the apparent gains of the theoretically

faster algorithms would be offset by their additional algorithmic complexity.
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Section II The NXN Algorithm

The NXN algorithm for solving the shortest route problem is actually

a special case of the following new 2N3 operation algorithm:

1) For every i£{1,2,...,N-2} in order, do step a:

a) For every j,kE{i+l,i+2,...,N}, do step b:

b) djk + min (djk,dji+dik)

2) For every i£{N-2,N-3,...,1} in order, do step a:

a) For every j,kc{i+l,i+2,...,N}, do steps b and c:

b) dij min (dik+dkj dij)

c) dji . min (djk+dkif d.i)
J1 jk~dkii

An intuitive proof of this algorithm will be helpful in understanding the

NXN algorithm. By inductive reasoning similar to that for Floyd's algo-

rithm, when step 1 has been completed for i=io, then djk (for j,k > io)

represents the conditional shortest j to k distance subject to all inter-

mediate nodes being elements of the set {1,2,...,i }. Consequently, when
o

step 1 has been completed, then the djk (for j,k > N-2) represent uncon-

ditional shortest distances d*.

Note than an arbitrary i to j path (for j > i) must be of the form

i,...,r,...,j where r is the first element in the path such that r > i;

and, if this path is the shortest path, then its length is d* +d*.. When
lr rj

performing step 2 for i = N-2, d*. is known and d* must be the same as
rJ ir
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the minimal dir conditional on all intermediate nodes being elements of

the set {1,2,...,N-3}; it follows that at the end of step 2 for i = N-2,

d.. = dt., and similarly dji = d*. for every jE{N-l,N}. Clearly, inductive
1] ij ]i Ij

reasoning shows that at the end of the algorithm D = D*.

The NXN algorithm will now be presented. However, in order to simplify

the discussion, it is assumed that all of the arcs are duplex, i.e. if d.i.<-
1J

then d.ji<. Define Ci, called the ith connection set, as follows: j6C. if
Ji 1

j > i and there exists a path P from i to j such that L(P) < - and every

intermediate node k satisfies k < i. Notice that the C. are functions of
1

topology only (implicitly assuming the length assigned to an arc is - if

and only if the arc does not exist in some sense).

In step 1 of the above algorithm, dji = C if jCi and dik = X if

kiCi. Furthermore, in step 2 of the above algorithm, dik = X and d = 

if kgCi. The corresponding operations are clearly unnecessary; the algo-

rithm obtained by deleting them is called the NXN algorithm:

1) For every iE{1,2,...,N-2} in order, do step a:

a) For every j,kECi, do step b:

b) djk + min (djk, dji+dik)

2) For every i£{N-2, N-3,...,1} in order, do step a:

a) For every js{i+l,i+2,...,N} and keCi, do steps b and c:

b) dij + min (dik+dkj, dij)

c) dji min (dj+d dji)
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A decomposition is defined as an ordering of the nodes. Since the

connection sets are a function of the decomposition, the number of

operations which the algorithm requires is also a function of the decom-

position, as will be demostrated in the following section.

In the case where some of the arcs are not duplex, two alternatives

are available. The first is to change the definition of Ci as follows:

jC. Ciif j > i and there exists a path P from i to j or from j to i such

that L(P) < - and every intermediate node k satisfies k < i. This approach

causes unnecessary operations for the algorithm. The alternative is to

define two connection sets for each node--one for the incoming connections

and one for the outgoing connections. In the latter case, one must alter

the NXN algorithm to incorporate the efficiencies of the additional connection

sets. The increased algorithmic complexity of the second approach and the

resultant additional computer steps must be weighed against the number of

unnecessary operations of the first approach for the problem at hand.
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Section III Decomposing the Network for the NXN Algorithm

This section is introduced via an example. Consider figures 1 and 2

in which the same network has been decomposed two ways. For the first,

C. = {i+l,N-l,N} when i{l1,2,...,N-3} and CN 2 {N-1,N}; the number of

operations for the NXN algorithm is calculated in a straightforward fashion

as:
N-3

Step 1, ( (2) (3) (3)) + (2) (2) (2)
i=l

N-3

Step 2, (C (2) (2) (3) (N-i)) + (2) (2) (2) (2)
i=l

which totals 6N +12N-66. By contrast, for the decomposition of figure 2,

Ci = {i+l,i+2,...,N} which is exactly the same as if the network was fully

connected, and it follows immediately that the NXN algorithm requires 2N3

operations. This example makes it clear that the choice of decomposition

can have a profound effect of the efficiency of the algorithm.

For an arbitrary network, finding the optimal decomposition in the

sense of minimizing the required number of operations for the NXN algorithm

is not a trivial problem and probably can only be solved by exhaustive

comparision. The method of choosing the decomposition for the examples

which are presented later in Section IV deviated only slightly from the

following heuristic procedure:
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J- 44

Figure 1. An N node network with an NXN decomposition
implied by the numbering of the nodes.

N- 4

Figure 2. The same N node network as in Figure 1 with
a distinct NXN decomposition.
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1) Label a node "1" such that the cardinality of C
is minimized. 1

2) For every i£{2,3,...,N} in order, do step a:

a) Given the nodes which have been labeled "1","2",...,
"i-l", label an unlabeled node "i" such that the
cardinality of Ci is minimized.

The effort in finding the decomposition via the above procedure is on

the same order as doing a shortest route computation via Floyd's algo-

rithm, and as a consequence computer time savings are realized only when

the NXN algorithm is iterated several times for the same topology.

There are a large number of networks such that the computation time

does not vary widely with the decomposition. Such networks could be termed

"locally connected" and have the property that the nodes to which there are

direct arcs from any given node are very likely to have direct arcs to one

another. In this case, the nodes could be numbered very rapidly by eye

with little degradation in efficiency (nodes must at some point in time

be assigned a number anyhow in order to communicate the topology to the

computer), and in the first shortest route computation the connection sets

could be established with very little effort. In fact, the only modification

to the NXN algorithm is an additional step which is included just before

step la:

aa) Initially Ci = 0; for jC{i+l,i+2,...,N}, do step bb:

bb) Include j in Ci if dij < A.

1The additional operations required by this step number2
The additional operations required by this step number -t which is quite

modest for the potential gains.
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Section IV The IHU Algorithm

The presentation of the IHU algorithm requires some additional defini-

tions. For this algorithm, a network decomposition is defined as a division

of the network's nodes into ordered subsets S1, S2,...PSk such that for

every ieSm and jESS, dij = X if jm-Yj > 1. Every node of the network

belongs to exactly one subset. The submatrix D S contains all the distances
i m

of arcs from elements of Si to elements of Sm and has dimension Isil x ISmi

(where ISj means the cardinality of set S). Evidently, D S has no finite
1 m

entries in the case li-mi > 1 (see figure 3).

Various matrix operations will be performed on the submatrices to gen-

erate the desired shortest distance matrix. Let D S.S DS mean DS

is replaced by the shortest distance matrix computed from the submatrix

DS S. Define A°B = [min(aim+bmj) ] and min(A,B) = [min(aij,bij)]. Also let

S1U S2 U...US = , and if m = k (where k is the number of ordered sets)

then 2m = k A 2. Define the conditional shortest distance submatrix,

D S.(m2), as the shortest distance submatrix under the restriction that

all the intermediate nodes on the respective conditional shortest routes

are members of 2 . In the case m = k, D* (S2) =D* (S) D*Si S.S. m S.S. S.S

Under the assumption that an allowable decomposition has been given,

the following algorithm generates all the shortest distances in the network

(the parenthetical equality to the right of each step is the claim of what

each step accomplishes):
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/ /7/' ~/7|D/BS7 S3 Ds4 S3/

/7/7/ I/
/7 s/ 3 53 S4S _ '

u / 3 T f o /t 3

Figure 3. The form of the D matrix for the IHU algorithm in

the case k = 5. If the decomposition is to be
acceptable, the shaded submatrices have no finite
entries prior to the algorithmic operations on
the D matrix.
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1) D1 1 ( (1) ))
1S 1 S1S 1 1

2) For every i{1l,2,...,k-l}in order, do steps a, b, c, and d:

a) D S D D (= D* (i ))
Si+l i i+lS i i i+lS i

b) D D (= D* (i))
SiSi+l i S i si+ SiSi+l

c) D S min (D S. Ds - D S
Si+1 +l S1+1i+l ii+l i +l i ii+l

Si+lSi+l i

d) D C s~~ c (= D* 
Si+lSi+l i+Sl Si+i+ lS i+1 i+l

3) For every iE{k,k-l,...,3,2} in order, do steps a, b, and c:

a) D D D*S (= D*
i i 1 iSi SiSi-1

b) D SD DS (=D*
S i S.S. SS Si-1 i iSi-1 ii i-1S i

C) D 4-min (D ,D D (=D* S
SiS Si-1i SiSi SiSii-1 iSi_ l

4) For every rC{2,3,...,k-1} in order, do step a:

a) For every i,je{l,2,...k} if ji-j -= r, do step b:

b) D SD D (=D )
S.S. s.S S S. S.S.

i i p pj 3

where p is an element of the set Q = {s+l,s+2,...,t-2,t-2} for s = min(i,j)

and t = max (i,j) such that Ispl < ISm | for every mCQ.

A rigorous proof of the algorithm would be very lengthy and repetitious,

and the interested reader is referred to Hu's work [6] for exposition of a

similar proof. Steps 1 and 2 are bootstrapping successive diagonal and

first off-diagonal submatrices, so that at the end of step 2, DSkSk D*
Sk k SkSk

~~·113~ll~so---·rrrsl~rrrassk kk ~__ 



Step 3 is essentially a backwards form of step 2 and replaces the diagonal

and first off-diagonal submatrices with the respective unconditional shortest

distance submatrices. Step 4 is one method for finding the unconditional

shortest distance submatrices corresponding to decomposition sets which are

separated by at least one intermediate set. The ordering in step 4 allows

p to be any element of the set Q, and the particular choice of p minimizes

the number of operations.

If one assumes that the shortest distance calculations for submatrices

are done via Floyd's method (requiring 2p3 operations for a p x p submatrix)

and that the pseudo-multiplications are done in a straightforward manner

(requiring 2pqr operations to calculate A-B where A is dimension p x q and

B is q x r), then the number of operations required by the IHU algorithm is:

Step 1, 21Sl13

k=l

Step 2, 2 i~l (2ISi.xi Isii 2 + Isi Isi+l12 + 1Si+xl3)

Step 3, 2 . (21Si12 ISi_11 + ISi_-ll Sil)
i=2

Step 4, 2 Z ISi ISj I
i,j

such that li-jl > 1

The total number of operations is then

k-l k-l

2( i i usi l 3 - Isii3 + Isil Isjl Isp I)
i=l i=2 i,j

such that li-jl > 1
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One may compare the IHU algorithm to other versions of Hu's algorithm.

For any given decomposition, the IHU algorithm requires fewer operations

than the fastest version of Hu's algorithm known to the author, which is

that due to Yen [11]. For purposes of comparision, an example which

commonly appears in the literature [5,6,11] is presented. Let JSij = 6

for i even and ISij = t for i odd. Assume 6< t, and let k, the number of

k+l
sets, be odd. Define m = 2 . In this case, the new algorithm requires

3 2 2 2 2 2 32(mt3 + (m +5m-6)t2 6 + (2m 2+2m-6)t62 + (m2-4m+5)63) operations. Yen's

modification requires 2(mt3 + (m2+6m-7)t26 + (2m2+10m-20)t62 + (m2+6m-14)63).

The new algorithm is faster for the entire range of interest, i.e.

t > 6 > 1 and m > 2. As a particular case, let 6= t and m = 3; the IHU

algorithm requires 82t3 operations, Yen's modification requires 128t3

operations, and Floyd's algorithm requires 250t3 operations.
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Section V Decomposing the Network for the IHU Algorithm

Perhaps even more important than the numerical gains of the new algo-

rithm are the insights it provides into optimal decomposition of a network.

Assume that Floyd's method is used for shortest route computations on sub-

matrices, and that pseudo-multiplications are done by the straightforward

technique. It follows that for a given decomposition, if a further decom-

position exists by partitioning of existing sets, then the computation

time of the further decomposition is less than that of the given decomposition.

This "more the better" fact suggests a heuristically good decomposition

technique which can be performed by the computer or quickly guessed at by

eye. If the decomposition is to be done automatically by the computer,

however, it should probably be limited to those cases where many shortest

route computations for the same topology will be performed, as in column

generating linear programs. An algorithm for finding a good network decom-

position for the IHU algorithm is:

a) find two nodes, j and k, such that the minimal number

of arcs, d, connecting them is maximal over all pairs

of nodes; i.e. find the diameter of the network and an

associated pair of nodes;

b) construct d+l sets by letting S1 = { } and Si+l = {mlm{Q-0i}

and d < - or d < o for some reS }.
rm mr 1

This procedure was used to generate the IHU decomposition sets for the

examples of the next section, and the reader may want to look at the figures

associated with that section at this point.



-21-

Section VI Some Examples Using the IHU and NXN Algorithms

In this section several examples are given which provide insight into

the classes of networks for which the NXN and IHU algorithms can sub-

stantially reduce shortest route computation time. Although no examples

are presented for which the IHU algorithm is faster than the NXN algo-

rithm, they do exist. Such networks form a rather small and special class

of networks, and typically may be decomposed in such a manner as to be a

variation on the following theme: ISil for i odd is large compared to ISil

for i even, and if jeSi and ksSi then j and k are very likely to have direct

arcs to one another.

The first example is an old version of the ARPA net which is shown in

figure 4. In that figure, the NXN decomposition is defined by the numbering

of the nodes, and the IHU decomposition is defined by the partitioning of

the nodes with broken lines. This network lends itself to NXN decomposition

due to the high number of nodes which have arcs directly to only two other

nodes--a fact which keeps the cardinality of connection sets very low.

The second example is the 47 node symmetric network shown in figure 5.

This network is not "locally connected" to a very high degree, but still

the NXN algorithm is (perhaps surprisingly) efficient.
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The final example is the 64 node network displayed in figure 6. The

density of arcs is perhaps greater here than in the other examples, but a

high degree of local connectivity promotes the efficiency of the NXN

algorithm.

Efficiency is measured with Yen's implementation of Dijkstra's algo-

rithm as the standard. Theoretical efficiency refers to the relative

savings in the number of operations required to perform a shortest route

computation. The computation times for the IBM 370-168 to execute the

Fortran programs of various algorithms were noted, and relative savings

are referred to as the measured efficiency. The comparisions of the

various algorithms in performing shortest route calculations on the three

sample networks are summarized in table 1. The Fortran programs were

complied by the IBM G1 compiler; and each algorithm not only computed the

shortest distance matrix, but also computed a routing matrix which specified

the next node from each node on the shortest route to any other node.
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2 r3 a 4" I0
,. c

2 Z4O2

X~/I I-2 -

Figure 4. The topology of ARPA network (at one stage of its
evolution) with decomposition information.
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332 ~8

and = 13,27,l6,l9,45,35,1,24} 36. 35

44

77

38 19 .31 18

Figure 5. A 47 node symmetric network (nodes are connected
to first and seventh nearest neighbors by arcs). NXN
decomposition is indicated by node labeling. IHU decom-
position sets: S = {1}, S = {21,47,28,39}, · S = {34,
40,30,26,2,4,s,8 s =1417,18,29,22,23,42,4 32,25,
36,43}' S = {46,33,~5,37,31,38,44,3,6,7,9,29,11,12},
and S =13,27,16,19,45,35,10,2 4}.
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Figure 6. A 64 node network with decomposition information.
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ARPA 47 node 64 node
network network network
of figure of figure of figure
4 5 6

Number of
operations 27040 154630 393216operations

Dijkstra's Theoretical
1.00 1.00 1.00shortest efficiency

route
algroute luComputation

time (seconds) .090 .450 1.115

Measured
Mieasured 1.00 1.00 1.00efficiency

Number of
Numbera of 6948 83880 124722operations

Ioritm HTheoretical
algorithm

efficiency 3.89 1.84 3.15

Computation
time (seconds) .020 .195 .290time (seconds)

Measured
Measured 4.50 2.31 3.84efficiency

Number of
operations 2828 28608 42416operations

NXN
algohNXN mTheoretical
algorithm

efficiency 9.56 5.41 9.27

Computation
time (seconds) .015 .115 .165

Measured
efficiency 6.00 3.91 6.76efficiency

Table 1. Comparative performance of three different shortest
route algorithms on the three sample networks.
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Appendix

Section IA Introduction

This appendix describes and lists the program which provided the

computational experience cited in this paper. The program of section VIIA

reads the topology of the network, finds a decomposition for the IHU and

NXN algorithms, solves a sample shortest route problem via each algorithm

and the Dijkstra algorithm in order to compare computation times, and

calculates the number of operations required by each. Typically, an

application of these programs requires at most two of the listed subroutines--

one to decompose the network and one to calculate all the shortest routes.

The decomposition subroutine needs to be called only one time for any given

topology since a new set of data cards are punched by the decomposition sub-

routines which record the appropriate decomposition information. In this

appendix, a hybrid notation will be employed which is a combination of

that used in the body of this report and that used in the Fortran programs.

The definitions of all Fortran terms are given in the comment cards at the

beginning of the program listing that is found in section VIIA.
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Section IIA Bookkeeping for Shortest Routes

The algorithms which are listed not only find the shortest distances

between every pair of nodes in the network, but they also record the

shortest routes. The method which is used for this purpose is establishing

a "next node" matrix where NX(I,J) is the next node on the shortest path

from node I to node J. Initially, NX(I,J) = J for every existing arc

(I,J), and every time the operation, dij 1 min (dij, dik+dkj is performed

such that dik+dkj is the distinct minimum, then the algorithm makes the

replacement NX(I,J) + NX(I,K). For the remainder of this appendix, the

algorithms are discussed only in terms of the shortest distance problem.
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Section IIIA The Main Program

The main program reads in the topology, assigns arc numbers and

provides the control for its specific purpose, i.e. to compare the

various algorithms. In figure 7, an example network is presented. Table

2 lists the data cards which communicate the topology of the network to

the program. The first card is a header which provides the name of the

network and the values for NN, MIHU, MNXN, MAXPRI and NFORBD. The second

card says that node "1" has "2" outgoing arcs which terminate on nodes

"12" and "3". There is one such card for each node in succession.
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Figure 7. An Example Network With Seven Nodes And
Thirteen Arcs.
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7 NODE, 13 ARC EXAMPLE NT 7 2 2 7 0

1 2 2 3

2 2 1 4

3 2 4 5

4 1 5

5 2 6 7

6 2 1 7

7 2 2 6

Table 2. Topology Cards For The Network
of Figure 7
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Section IVA Subroutine DIJKST

Subroutine DIJKST is an implementation of Dijkstra's algorithm sug-

gested by Yen [12]. The algorithm can be floated to perform the operation,

in the case that if j is a node number such that
DSiSi iDsis i

min k < j < max k, then jeS.. When the call to the subroutine DIJKST is
kcS. kcS.

1 1
made, for this case, then NB = min k and NF = max k. If the operation,

kES. kES.
D + D*, is to be performed via Dijstra's algorithm, then NB = 1 and

NF = NN.
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Section VA Subroutines DECIHU and IHU

Subroutine DECIHU decomposes the network for the IHU algorithm which

is implementated in subroutine IHU. The method of decomposition is that

of Section V. Figure 8 shows the network as decomposed by DECIHU with

the new node numbers as printed out. Table 3 shows the cards punched by

DECIHU which record the decomposition information and describe the topology

in terms of the new node numbers. Again, the first card is a header with

the title of the network, a "1" which says the cards were punched by DECIHU

and a "3" which is the number of IHU sets. The second card says that node

"1" has "2" outgoing arcs, is a member of set number "1" (the next two

zeros have no significance), and the outgoing nodes are to nodes "2" and

"3"; and so forth. The ninth card is a header for NTWIXT which starts

on the next card. From them, NTWIXT(l,l) = "O", NTWIXT(1,2) = "0",

NTWIXT(1,3) = "2", NTWIXT(2,1) = "0", etc. The information on these cards

define the variables found in the common block IHUSTF, and these values

are given in Table 4.

Subroutine IHU is a straightforward implementation of the IHU algorithm

as presented in Section IV. The operations, DS S. + DS.S . are performed

via subroutine DIJKST.
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J 4 

Figure 8. Node Renumbering and Partitioning by
Subroutine DECIHU for the Network of
Figure 7.
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7 NODE, 13 ARC EXAMPLE NT 7 1 3

1 2 1 0 0 2 3

22 2 0 0 1 6

3 2 2 0 0 6 5

4 2 2 0 0 1 7

5 2 3 0 0 4 7

6 1 3 0 0 5

7 2 3 0 0 2 4

NTWIXT FOR 7- NODE,13 ARC EXAMPLE NT

00 2 0 0 0 3 0 0

Table 3. Cards punched by subroutine DECIHU which relate
the IHU decomposition information and the topology
in terms of the new node numbers for the network
of Figure 7.
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Nl(l) = 1 N1(2) = 2 Nl(3) = 5

N2(1) = 1 N2(2) = 4 N2(3) = 7

NTWIXT(1,l) = 0 NTWIXT(2,2) = 0 NTWIXT(1,3) = 2

NTWIXT(2,1) = 0 NTWIXT(2,2) = 0 NTWIXT(2,3) = 0

NTWIXT(3,1) = 3' NTWIXT(3,2) = 0 NTWIXT(3,3) = 0

NS = 3

Table 4. Values of the variables in labeled common

block IHUSTF which may be deduced from cards
in Table 3 for the network of Figure 8.
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Section VIA Subroutines DECNXN and NXN

Subroutine NXN is a general implementation of the NXN algorithm for

the case in which all the arcs in the network are not necesarily duplex.

Two connection sets are established for each node--one for outgoing con-

nections and one for incoming connections. Define CI as the outgoing

connection set, i.e. jeCC if there exists a path P from i to j such that
1

C(P) < - and every intermediate node k satisfies k < i. Similarly,

define C. as the ith incoming connection set. The NXN algorithm takes

this form:

1) For every i£{1,2,...,NN-2} in order, do step a:

a) For every j£ CI and k£ C?, do step b:
1 1

b) djk + min (djk, dji+dik)

2) For every iC{NN-2,NN-3,...,1} in order, do stepa:

a) For every jc{i+l, i+2,...,NN}, do steps b and c:

b) For every mCC., dij + min (dim. +dmj dij)
1 1J in 1j

c) For every kOCI, dji min (dji, d djk+dki )1 ji i jk ki

The method DECNXU uses for decomposing the network is given in Section

III with the alteration that nodes are chosen in order to sucessively

minimize ICoi + ICI|. For the network of Figure 7, the new node number-i '

ing which implies the decomposition is shown in Figure 9. The cards

punched by DECNXN which contain topology information in terms of new node

numbers and the decomposition information are shown in Table 5.
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The interpretation of the cards is now more difficult but should be

clear by the program in Table 6 which reads in the cards of Table 5, sets

up arc numbers, and prepares the decomposition information for DECNXN.

One feature of the program not yet discussed is that of NFORBD which

is an input variable. If a network is "locally connected" except for a

few nodes, they should be numbered last and suppressed from being assigned

new node numbers which are low by establishing NFORBD as the cardinality

of the set of such nodes.
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4

Figure 9;.- The topology of Figure 7 with new node numbers
as assigned by DECNXN
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7 NODE, 13 ARC EXAMPLE NT 7 2

1 2 3 2 32 3 2 5 3

2 1 2 1 3 5 5 4 3

3 2 2 2 3 4 1 5 4 6

4 2 2 1 3 3 2 5 6 7

5 2 1 2 267 6 7

6 2 10 0 3 7

7 2 10 0 4 6

Table 5. Cards punched by subroutine DECNXN for

the network of Figure 7 which contain decom-
position information for the NXN algorithm
and topology information in terms of the new

node numbers.
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Section VIIA Program Listing

The program of this section provided the computational results of

this paper. The program is generously commented and should be transparent

when studied along with this appendix. In general, clarity was sacrificed

for speed only in the subroutines DIJKST, NXN, and IHU.
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