
GNSS-Based Relative Navigation for LEO

Nanosatellite Laser Communications

by

Peter W. Grenfell

B.S., University of California Berkeley (2017)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

oMassachusetts Institute of Technology 2020. All rights reserved.

Signature redacted
A uthor .................... ..........

Department of Aeronautics and Astronautics
January 30, 2020

Signature redacted
C ertified by .. .. ............. ..............

(f Kerri Cahoy
Associate Professor of Aeronautics and Astronautics

/Thesis Supervisor

,Signature redacted
A ccepted by .................. .......

MASSACHUSETTS INSTITUTE Sertac KaramanOF TECHNOLOGY
Associate Professor, Aeronautics and Astronautics

MAR 12 2020 Chair, Graduate Program Committee

LIBRARIES





GNSS-Based Relative Navigation for LEO Nanosatellite Laser

Communications

by

Peter W. Grenfell

Submitted to the Department of Aeronautics and Astronautics
on January 30, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

The Size, Weight, and Power (SWaP) efficiency of laser communications make it a
good fit for development in concert with rising interest in small satellite mission con-
cepts. The CubeSat Laser Infrared CrossinK (CLICK) mission has the objective of
demonstrating the first Low-Earth orbit (LEO) nanosatellite crosslink. The need for
precise and accurate pointing with laser instruments motivates a formalized, system-
atic approach to fulfilling this need called Pointing, Acquisition, and Tracking (PAT).
The focus of this work is the initial Global Navigation Satellite System (GNSS) based
relative navigation pointing process for LEO crosslinks and downlinks.

In Chapter 2, the baseline CLICK pointing budgets are given for crosslink and
downlink relative navigation based body pointing. For crosslink, the 9 9 th percentile
angular relative navigation errors are 1367 prad & 76.58 prad for the minimum 25
km range and maximum 580 km range cases, respectively. The corresponding 99.7%
pointing losses are -0.278 dB & -0.182 dB, with margins of 1.222 dB & 1.318 dB rel-
ative to the -1.5 dB requirement. For downlink, the 9 9 th percentile angular relative
navigation error is 17.29 prad, with a corresponding 99.7% pointing loss of -0.189
dB and margin of 1.311 dB. The crosslink and downlink access durations are also
determined by simulation.

In Chapter 3, using Cowell's method with only an appropriate central body gravity
model, model-induced propagation error is maintained to less than 50 m for intervals
up to 90 minutes and less than 25 m for intervals up to 30 minutes. This corresponds
to crosslink 9 9 th percentile angular errors of less than 600 prad at 25 km and less
then 40 prad at 580 km. Earth-Centered-Inertial (ECI) to Earth-Centered-Earth-
Fixed (ECEF) transformations are discussed for ground station position prediction,
and even with the simplest transformation formulation, position error remained less
than 16 m. Model-induced error for all downlink cases had a 9 9 th percentile error of
less than 32 prad. The relative navigation error for crosslinks is analyzed for the base-
line CLICK configuration of directly propagating GPS fixes. For crosslinks across all
configurations, the 9 9 th percentile angular errors are less than -2000 pirad at 25 km
and less then ~200 pirad at 580 km, corresponding to 99.7% pointing losses less than
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-1.235 dB at 25 km and -0.427 dB at 580 km and corresponding margins greater
than 0.265 dB and 1.073 dB, respectively. For downlinks, the 9 9 th percentile error
across all cases is less than -45 purad, which corresponds to 99.7% pointing losses of
less than -0.434 dB with margins greater than 1.066 dB across all cases, including
simplified Earth rotation models.

In Chapter 4, Kalman filtering algorithms are explored to improve GNSS-based
orbit determination for relative navigation in LEO. Three different formulations of
the Extended Kalman Filter (EKF) correction and prediction subroutines are ex-
plored in depth: 1) the Conventional EKF (CEKF); 2) the Joseph Sequential EKF
(JSEKF); 3) the UD Sequential EKF (UDSEKF). Implementation and time complex-
ity differences are discussed for Runge-Kutta methods used to solve state prediction
problem and for matrix exponential methods used to approximate continuous-time
covariance prediction. The EKF for orbit determination using GNSS measurements
is formulated using the ECI position and velocity, a central body gravity model, and
nondimensionalization. The CEKF, JSEKF, and UDSEKF filter formulations are
evaluated on three metrics: efficiency as per analytical time complexity results, con-
sistency, and orbit determination accuracy. The overall ranking is 1) UDSEKF, 2)
CEKF, 3) JSEKF. With the addition of Kalman filtering, across all crosslink configu-
rations, the 9 9 th percentile angular errors are less than -1000 prad at 25 km and less
then ~100 prad at 580 km, and the 99.7% pointing losses are less than -0.623 dB
at 25 km and -0.421 dB at 580 km with corresponding margins greater than 0.877
dB and 1.079 dB, respectively. This corresponds to improvements of at least 50% for
the angular error across all cases. For the CLICK hardware configuration, filtering
has a significantly greater effect on pointing loss at shorter ranges. Applying filtering
for downlinks yields an improvement in the overall 9 9 th percentile error across all
cases by at least 22.2% to less than -35 prad. As anticipated from previous analysis,
filtering has a negligible impact on pointing loss for downlink due to the dominance
of mechanical and spacecraft errors in the CLICK downlink pointing budget. Fil-
tering had the greatest impact for short range crosslinks. Nevertheless, for future
missions with more stringent requirements, narrower beams, improved mechanical
errors, and/or significantly worse GPS measurement errors, filtering may also have
significant benefit for long range crosslinks and for downlinks.

Thesis Supervisor: Kerri Cahoy
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

A laser communications system operating in the visible or infrared spectrum (-533

nm, 780-980 nm, 1064 nm, 1550 nm) has several advantages that distinguishes it

from conventional radio frequency communications, which operate in the spectrum

between the Ultra-High Frequency (UHF) band (300 - 1000 MHz [11) up to the W

Band (75 - 100 GHz [11). These features include: 1) increased Size, Weight, and Power

(SWaP) efficiency; 2) improved data rate scalability due to a combination of SWaP

efficiency, increased bandwidth, and high carrier frequency; 3) less crowded frequency

bands with reduced regulatory burden from licensing; 4) improved link security; 5)

reduced risk of mutual interference (self-jamming) and jamming more generally; and

6) hybrid instrument capabilities combining communications with capabilities such

as ranging, spectrometry, and laser remote sensing [2, 3, 4]. Laser communications is

currently being pursued across the aerospace community for telecommunications and

earth observing satellites, both for commercial and defense applications as well as for

next generation data relays in space science and exploration applications.

This work focuses on laser communications (lasercom) for nanosatellites (- 10

kg). The nanosatellite class includes a popular modular design framework developed

by California Polytechnic Institute known as CubeSats [5]. These are characterized

as being made up of volume units (Us), where 1U is 10 cm x 10 cm x 10 cm. Common

nanosatellite form factors include 1U, 3U, and 6U.
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1.1 Review of Satellite Laser Communications Mis-

sions

A collection of specific uses of laser communications in satellite missions is given

in Table 1.1. Beginning in the 1980s with the Semiconductor laser Intersatellite

Link Experiment (SILEX) mission, there has been significant progress in recent

decades in developing laser communications for large satellites (~ 1000 kg class),

with a series of successful technology demonstrations in the 2010s by the European

Space Agency (ESA), National Aeronautics and Space Administration (NASA), and

Japanese Aerospace Exploration Agency (JAXA) as well as technology commercial-

ization. The SILEX, Optical Inter-orbit Communications Engineering Test Satellite

(OICETS), European Data Relay System (EDRS), and Laser Communications Relay

Demonstration (LCRD) missions have been focused on lasercom relays to Geosta-

tionary Earth Orbit (GEO), wherein a LEO satellite such as the International Space

Station (ISS) or an earth-observing satellite is able to uplink to a GEO satellite,

which then rapidly downlinks to the ground. Additional technology demonstrations

with large spacecraft have included a LEO-LEO intersatellite link (ISL) demonstrated

by the German Aerospace Center (DLR) Laser Communication Terminal (LCT) and

a downlink from NASA's Lunar Atmosphere Environment Explorer (LADEE) lu-

nar orbiting spacecraft to the ground. With the maturation of laser communica-

tions for large satellites has come the subsequent development of the technology

for microsatellites (~ 100 kg class) like 2014's Bispectral Infrared Optical System

(BiROS) and Space Optical Communications Research Advanced Technology Satel-

lite (SOCRATES). Both of these missions demonstrated direct downlinks from LEO

satellites to the ground. The SWaP efficiency and hybrid instrument capabilities of

lasercom terminals have motivated the extension of this technology to the nanosatel-

lites (- 10 kg class), which feature reduced costs compared to larger satellites [5].

Reduced costs make nanosatellites and microsatellites ideally suited for advanced

mission designs requiring a multitude of satellites, including large constellations cover-

ing the Earth, as well as clusters or swarms of satellites flying in formation to achieve
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an objective that would not be possible with a single large satellite, such as distributed

aperture sensing or increased resilience via spacecraft fractionation. Therefore, there

is significant motivation to improve the capabilities of small satellites, and the key

features of laser communications make it an ideal technology to significantly improve

the capabilities of this class of satellites, benefiting many applications both in the de-

mocratization of space as well as advanced mission concepts. The first nanosatellite

lasercom technology demonstration was NASA's Optical Communications and Sensor

Demonstration (OCSD), which completed downlinks from LEO to the ground. To

date, no nanosatellite lasercom ISLs have been demonstrated. However, one devel-

opment in ISLs for nanosatellites came when one of the OCSD satellites signalled to

a camera aboard another satellite using its wide angle laser [6]. The CubeSat Laser

Infrared CrosslinK (CLICK) nanosatellite mission will demonstrate a full-duplex in-

tersatellite crosslink in LEO in addition to downlinks [7].

In summary, the SWaP efficiency of laser communications make it a good fit

for development in concert with rising interest in small satellite mission concepts.

Nanosatellite LEO to ground downlinks have been demonstrated and improved per-

formance is expected with future downlink demonstrations. The CLICK B/C mission

has the objective of demonstrating the first nanosatellite crosslink. This mission was

the catalyst for this thesis research and will be referenced throughout as a motivating

example and case study in nanosatellite laser communications. The next section will

give an overview of the CLICK B/C mission.
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Table 1.1: Selection of Satellite Laser Communications Missions

Year

1985-2001
1985-2001
1993-2005
2002-2007

2012

2013

2014

2014

2015

2019

2019

2023
2020s

2020s

2020s

Aerocube

VSOTA: RISESAT

LCRD: STPSat-6

LCRD ILLUMA-T:
TBIRD

ISS

CLICK: A

CLICK: B/C

Host-
Partner
Orbits

Mission: Satellite(s)

SILEX: SPOT-4
SILEX: ARTEMIS
OICETS: OICETS
DLR-LCT: TerraSAR-
X, NFIRE
EDRS: Sentinel 1A, Al-
phasat
LLCD: LADEE

SOTA: SOCRATES

OSIRIS: BiROS

1.2 CLICK B/C Mission Overview

The motivation for this thesis research comes from the CubeSat Laser Infrared CrossLinK

(CLICK) nanosatellite laser communications demonstration mission. This mission is

composed of two phases. In the first phase, the CLICK A spacecraft will demonstrate

a low-Earth orbit (LEO) space to ground downlink with a compact, mobile optical

ground station called the Portable Telescope for Laser Communications (PorTeL).

The CLICK A terminal is described in detail in Payne et al. [21]. The PorTeL termi-

nal is described in detail in [22, 23]. In the second phase of the mission, the CLICK B
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LEO-GEO
GEO-LEO
LEO-GEO
LEO-LEO

LEO-GEO

Lunar-
Ground
LEO-
Ground
LEO-
Ground
LEO-
Ground

LEO-
Ground
GEO-LEO

LEO-GEO
LEO-
Ground
LEO-
Ground
LEO-LEO

OCSD:
A,B,C

Pm
(mW)

70
35
100
1000

5000

500

22

1000

6000,
2000,
2000
80

N/A

3000
1000

200

200

Data
Rate
(Mbps)
50
2
50
5625

2800

622

10

1000

5, 200,
200

0.1

311-
1244
1200
200000

10

20

OFWHM

(prad)

4
7
7
9

8

15

223

200

6109,
2618,
873
1300

15

16
130

1300

70

Ref.

[8]
[9, 10]
[9, 10]
[10, 11]

[10]

[12]

[13]

[8]

[6]

[14]

[15, 16]

[17]
[18, 191

[7, 20]
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& C spacecraft will demonstrate the first LEO communications crosslink between two

nanosatellites as well as downlinks to PorTeL [7]. The baseline crosslink ranges are

25 - 580 km, and the two spacecraft will be deployed in a co-orbital, string-of-pearls

configuration. This constitutes a crosslink type that may be required by formation

flying spacecraft and the planar building blocks of satellite constellations. Here we

will present a brief overview of the terminal architecture and concept of operations.

The CLICK B/C terminal optical hardware is shown in Figure 1-1. Background

1563 nm (CLICK B)
20 mm aperture

Transmit
200 mW, 1537 nm 0
(CLICK B)
120 prad 1/e

2

Beacon
250 mW, 976 nm
22 mrad 1/e2

Silicon 4
CMOS Beacon
Camera & Lens

Figure 1-1: CLICK B 'C Lasercomm Terminal

information on the hardware used in lasercom terminals can be found in Appendix

A.1. The communications design enables a full-duplex laser communications crosslink

and a simplex laser communications downlink. The communications laser is 200 mW

and near the 1550 nm wavelength, with one terminal transmitting at 1537 nm and the

other terminal transmitting at 1563 nm to enable spectral isolation of the transmit

(Tx) and receive (Rx) paths in both terminals to avoid self-jamming. The isolation

is accomplished via dichroic filter mounted at a 45 degree angle that acts as a fold

mirror for the transmit path while passing the receive signal.

The Tx & Rx paths share the same telescope aperture, with a micro-electro-

mechanical system (MEMS) fast steering mirror (FSM) placed at the output of the

telescope to enable steering of the transmit (Tx) beam via optical feedback. The

telescope itself is in a Keplerian beam expander configuration with a clear aperture

of 20 mm and a lateral magnification factor of 10.53x. The Tx collimator output

has a full-width half-maximum (FWHM) beam divergence of 750 prad and uses a
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single mode 1550 nm fiber. The telescope reduces this further to the final Tx FWHM

beam divergence of 71.2 trad (14.7 arcsec). There is a second optical source mounted

next to the telescope aperture. This is a 976 nm beacon laser operating at 250 mW

average power with a collimator output FWHM divergence of 13 mrad (0.75°). There

are three sensors. One, an InGaAs avalanche photodiode detector (APD) communi-

cations detector with an field of view (FOV) of 2.84 mrad (585 arcsec) that detects

the 1537 or 1563 nm signal. Two, a silicon quadrant p-intrinsic (PIN) photodiode

detector (quadcell) with a FOV of 6.28 mrad (0.360) that detects the 976 nm beacon

signal. Three, an mvBlueFOX MLC-205 camera equipped with a silicon complemen-

tary metal&A~oxide&A- semiconductor (CMOS) detector with an FOV of 182 mrad

(10.4°) that also senses the 976 nm beacon signal. With the FSM throw, the quad-

cell field of regard (FOR) is 12.92 mrad (0.74°). The camera acts as a wide field

of view acquisition and tracking sensor for body pointing. The quadeell acts as a

narrow field of view tracking sensor for fine beam steering. The B/C mission concept

Crosslink &

Differential Drag Ranging Tests Scheduled TT&C
PSG5 25- f km GSPse

Sw Passesnlnk

Initialization - Tests/ lSS0 n Comm Law Test• LMw High 976 Ma Laser

T-r~cUL/DL

Orbit: 400- 600 km circular End of Life
Inclination: > 40 deg perations

RFa Ground

Figure 1-2: Concept of operation for the CLICK-B/C mission.

of operations sketched in Figure 1-2 begins with launch and deployment of the two

spacecraft into a LEO orbit with an altitude between 400-600 km and inclination

greater than 40 degrees. After commissioning, the establishment of the relative range

for crosslink experiments begins. As the CLICK spacecraft are not equipped with
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propulsion systems, they utilize differential drag to begin drifting apart, with the 25

km range established after approximately 1 week and the 580 km range established

after an additional 2-3 weeks. The drag management is then used to reverse the drift

repeatedly and traverse this operations range for mission operations lasting from 6 -

12 months. Optical downlinks will also be conducted using a PorTeL optical ground

station located in the Boston, MA area. The two spacecraft are equipped with radios

that can uplink/downlink telemetry as well as provide crosslink access to ephemeris

data gathered by each spacecraft's Global Navigation Satellite System (GNSS) re-

ceiver, which use the U.S. Global Positioning Service (GPS). Both spacecraft body

point the payload apertures and fixed beacon laser.

The need for precise and accurate pointing with laser instruments motivates a

formalized, systematic approach to fulfilling this need called a Pointing, Acquisition,

and Tracking (PAT). For crosslink, relative navigation information derived from the

GPS measurements aboard both satellites provides the initial pointing information

for beacon acquisition on the beacon camera. The beacon camera data is used for

feedback to refine the body pointing. Upon secondary acquisition of the beacon on

the quadcell, the closed-loop fine tracking process begins, followed by the communi-

cations process. The baseline communications link duration is 10 minutes, with an

anticipated minimum data rate of 20 Mbps. Throughout communications, the coarse

spacecraft tracking and fine steering mirror tracking processes continue to maintain

the link.

The downlink process is somewhat different. The first stage involving navigation

is similar, except instead of the target position being estimated via orbit propagation,

it is estimated using an earth rotation model and ground station coordinates stored

from periodic TT&C uplinks. Furthermore, the spacecraft body pointing does not

employ feedback from the camera during downlink. Rather, the navigation solution

is used throughout, and the ground station's beacon is used only for fine pointing

feedback. While body pointing, the quadcell acquires the ground station's beacon

signal, enabling fine pointing & communications.

The focus of this thesis is the initial pointing process for these LEO crosslinks and

25



downlinks using GPS-based relative navigation. Additional discussion of the CLICK

B/C PAT sequence can be found in Appendix A.5, and additional details on the

CLICK B/C terminal design and development can be found in [7, 24, 20].

1.3 Thesis Overview

Chapter 1 summarized the history of satellite laser communications missions and in-

troduced the CLICK B/C nanosatellite lasercom mission, with a synopsis of its PAT

processes for establishing crosslinks and downlinks. The focus of this thesis is the

initial pointing process for these LEO crosslinks and downlinks using GPS-based rel-

ative navigation.

Chapter 2 will first give background on the concepts of laser beam geometry and

the laser link range equation. Then derivations will be given for the Rice/Rician

model of the total pointing error and the non-central chi-squared model of the point-

ing loss. These pointing models are then used in pointing budgets for the initial

relative navigation stages of the CLICK PAT processes for crosslinks and downlinks

to show that the pointing loss requirement of -1.5 dB or less is met. The crosslink

access will be evaluated using sun keep out for the beacon camera, and downlink

access will be evaluated using overpass durations and ranges.

Chapter 3 will discuss onboard GNSS-based relative navigation for establishing

LEO crosslinks and downlinks. Both the Cowell method for spacecraft state propaga-

tion and the ECI-ECEF transformations used for ground station position prediction

will be analyzed and simulated for errors incurred from incurred from simplifications.

This will be followed by a derivation of how GPS position & velocity fixes are gen-

erated and their noise properties. Noise analysis and simulations will be conducted

for GPS receivers in LEO and in the Continental U.S. (CONUS). Finally, the relative

navigation error for crosslinks and downlinks will be simulated by combining orbit

propagation with raw GPS fixes, which is the baseline configuration for CLICK. This

baseline configuration will be confirmed to meet CLICK's pointing requirements.

In Chapter 4, the Extended Kalman Filter (EKF) will be presented to improve
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GNSS-based orbit determination. Three different formulations of the correction and

prediction subroutines will be explored in depth: 1) the Conventional EKF (CEKF);

2) the Joseph Sequential EKF (JSEKF); 3) the UD Sequential EKF (UDSEKF).

Numerical integration methods for state prediction using fixed & variable step meth-

ods and for covariance prediction using the matrix exponential will be presented and

compared. The three formulations will be compared on the basis of their overall time

complexities, consistency, and orbit determination accuracy. Finally, results for im-

proved relative navigation via propagation with Kalman filtered GNSS measurements

for crosslinks and downlinks will be presented and discussed in the context of CLICK

and potential future missions.
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Chapter 2

Pointing Error Analysis

The starting point for any laser communications system are the link parameters, which

are captured in a systems engineering tool called the link budget. For each laser link,

including beacon links, a link budget is maintained for systems engineering purposes

to predict the performance to be verified and validated by the overall communications

system. A key element of this link analysis is the received power analysis, which

contains statistical models of random elements: these generally include power loss at

the receiver due to transmitter pointing error and, for uplinks & downlinks, losses due

to atmospheric effects. In this chapter, we review the standard statistical model for

pointing error and the associated systems engineering tool called the pointing budget,

which is used to predict the total pointing loss.

2.1 The Gaussian Beam

In this section, the aspects of the theory of wave optics relevant to link analysis

are reviewed. For in-depth background on scalar wave theory, reference Saleh &

Teich [25]. For our present analysis, we are interested in the intensity, I, pattern

of a laser beam. We assume that the transmitted beam is not truncated, nor is

it obscured in any way by obstacles in the path of propagation. For a treatment

of truncated, centrally obscured beam propagation, as would occur in a Schmidt-

Cassegrain telescope transmitter configuration, refer to Degnan & Klein [26]. An
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ideal laser beam is modeled as a Gaussian beam, which is in-between a plane wave

which is infinite in extent and has no spread and a spherical wave which spreads over

all of space. The 1/e 2 beam width is defined by the bounding surface representing the

W(Z)

WO '

1ez

Figure 2-1: Gaussian Beam 1/e2 beam width and divergence angle geometry.

boundary at which the wavefront intensity drops to 1/e2 ~ 13.5% of its peak value

on the optical axis. The minimum 1/e2 beamwidth is called the beam waist, with a

radius denoted wo. The 1/e2 full-width beam divergence angle, 01/e2 is defined with

reference to the linear asymptotes of the beam width. The Gaussian beam intensity

is parameterized in cylindrical-polar coordinates with respect to the optical axis as

follows [25].

I(r, z) = 1o WO) exp -2r2 (2.la)
( z) w2 (Z)

w(z) = woV 1 + (z/zo)2  (2.1b)

rw 2 4A
zo = - = 2 (2.1c)

A r1/e2

2 A 2
O1/e2 -FWHM (2.1d)

7rwo - ln(2 )

where Io = 2Po/(7rwo) is the reference intensity at the origin, P is the reference power,

w(z) is the 1/e2 beam radius, zo is called the Rayleigh range, and 9 FWHM is FWHM

beam divergence, which corresponds to an intensity of 50% of the on-axis value. These
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relations are used to generate the transmit gain and pointing loss equations in the

next section. See appendix A.2 for a derivation that relates the intensity equation

to the transmit gain and pointing loss. In this section, the Gaussian beam intensity

function was given with the definition of 1/e2 & FWHM beam divergences. The

next section will describe the laser range equation, which is used to compute received

power during a link.

2.2 The Laser Range Equation

The laser range equation is the equivalent of the radio range equation for optical

transmitters and receivers and takes the same mathematical form with different details

for the individual terms.

Prx = PxGtxGrxLpathLpgLop,txLopt,rxLatm (2.2)

where Prx is the power to the receiver sensor in Watts, Px is the power from the

laser source in Watts, Gtx is the transmitter gain, Grx is the receiver gain, Lpath is

the path loss, Lptg is the pointing loss, Lept,tx and Lopt,rx are the transmitter and

receiver optical implementation losses, and Latm is the atmospheric loss for uplinks

and downlinks. The gain and loss terms are all dimensionless. The loss terms are all

in the interval (0, 1], which in decibels (XdB = 1OLogiO(X)) is (-oo, 0] dB. Simple

equations can be given for some of the above terms as follows [3, 2]:

G x 32 (2.3a)
1/e 2

Grx (FDrx) 2  (2.3b)

Lpath = ( 4 A) (2.3c)
47rz

Lytg = exp - 8 ( 2(2.3d)
01/e2
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where Drx is the diameter of the receiver aperture and 0 is the spherical-polar point-

ing angle relative to the optical axis. Equations 2.3a & 2.3d are derived in Appendix

A.2. Ptx, Lept'tx, & Lopt,rx are parameters of the transmitting and receiving terminal

hardware. Latim is based on atmospheric modeling of absorption and scattering of

the laser wavelength and is a function of distance that the beam travels within the

atmosphere. A detailed discussion of atmospheric losses can be found in Hemmati

et al. [2], and a discussion of uplink atmospheric losses can be found in in Nguyen

[27]. For statistical modeling purposes, the terms in the range equation are random

variables. General statistical link modeling for communications performance analysis

is beyond the scope of this thesis. Methods for general statistical link modeling can

be found in Clements [28].

This section briefly presented the laser communications range equation and its

terms. Although a detailed link analysis is beyond the scope of this work, previous

CLICK mission analysis indicates that a reasonable pointing loss upper bound re-

quirement is -1.5 dB. This will be used as a point of comparison later on. In the

following section, statistical models of pointing error and loss will be discussed.

2.3 Statistical Modeling of the Pointing Error & Loss

A pointing direction can be mathematically specified by a unit vector (p), which

has two degrees of freedom. These degrees of freedom can be parameterized by two

angular coordinates (6w, 6,), which are typically azimuth and elevation respectively,

with 6 E (-7, 7] and sy E [-ir/2, r/2), although the coordinates chosen can vary.

This is illustrated in Figure 2-2, where the z-axis is the optical reference axis. We

model E8 and 8, as Gaussian distributed random variables: E ~ N(px, ax) &

89 ~ N(py, ay), where px & p,y represent the sum of bias error contributions and Oax

& %- represent the RMS of the standard deviations of the error contributions. As the

variables are bounded, the true distributions are also bounded; however, they are well

approximated by unbounded Gaussian distributions for small angles (see Appendix

A.3). The total angle (6) between the random pointing vector (p(E8, 9y)) and the
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Figure 2-2: Spherical geometry of p, 0,, and B.. The reference optical axis is the

z-axis.

optical axis (z) is determined by the spherical law of cosines:

cos(8) = cos(E8)cos(E8) + sin(E8)sin(E8)cos(7r/2) (2.4a)

= cos(E8)cos(E8) (2.4b)

And applying the small angle approximation for cos(x) = 1 - x2/2 + 0(x4) e ~~

8E)+ 62. Next, assuming rotational symmetry about the optical axis and taking

- = = o-,I it can be shown that E ~ Rice(v, o-), where v = f y+p and the

Rice/Rician cumulative distribution function (CDF) is [291:

P[E < ] = Fe(0) = 1- Qi, i)(2.5)
o- o-
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where Q, is a Marcum Q-Function [29]:

0°° x2 + a2)Qi (a, b) = x exp ( 2  -)Io (ax) dx (2.6)

where Io is the zeroth order modified Bessel function of the first kind [29]. Therefore,

the expression for pointing error given a reliability expressed as a probability po is

0 = Fj (po) (2.7)

where the inverse CDF of the Rice distribution is computed numerically. This equa-

tion can be used when evaluating a pointing budget for successful sensor acquisi-

tion, where the requirement is defined by the FOV or the FOR: 0 <O FOV/FOR/ 2

6 HFOV/HFOR.

Next, the equation for pointing loss is derived. From Equation 2.3d, the pointing

loss in decibels is

Lptg,dB = -80Logj 0 (e) ( 2 (2.8)
01/e2

Re-arranging this expression gives

Lptg,dB 1/e2 __ 2 _E_ E2  
(2.9)

80Logi0 (e)

Again, we assume rotational symmetry with regard to the axes with o = o- = o-y,

p Ax = ,y, & v = v/2p. Then dividing both sides of Equation 2.9 by .2, we define

the random variable A

Lptg,dB1 /e2 / 2 2
A =8OLog-(e)-2 = -,-x + (2.10)

Now, (82/o-) ~ N(p/o-, 1) and (Oy/o) ~ N(p/o, 1), which means A is distributed

as a non-central chi-squared distribution with 2 degrees of freedom: A ~ X2(v2 2),

with CDF [29]:

P[A < a = FA(a)= 1-Q (2.11)
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Now define Lptg,dB -Lptg,dB- Lptg,dB is a positive scaling of A, which means its

CDF is

P[Lptg,dB ] F(I) = P[CAA < 1] = P[A 1/cA] (2.12a)

=-Qi i , ) (2.12b)
( aC A

where (2.12c)

cA= 80Loglo(e) ( (2.12d)
01/e2

Hence, the the pointing loss in dB for a given reliability expressed as a probability pi

is

lptg,dB -I -F- 1 (pi) =-cAF-(p) (2.13)

which can be computed using numerical methods for the inverse CDF of the non-

central chi-squared distribution. An alternative model of the pointing error arises

when the mean error y is negligible, which yields the Rayleigh distribution: Rayleigh(u)

= Rice(O,u). See Appendix A.4 for details on this model and the corresponding point-

ing loss function.

In this section, the Rice/Rician model of the total pointing error and the non-

central chi-squared model of the pointing loss were derived based on Gaussian models

of the single-axis pointing errors. In the next section, these models will be applied to

the system's analysis tool called a pointing budget in the context of the CLICK B/C

mission.

35



2.4 Pointing Budgets

As part of systems analysis, pointing error statistics are estimated by considering the

end-to-end systems performance and how each subsystem adds error to the pointing

process. In preliminary design, these statistics can be estimated a priori using simpli-

fied models or past experience. In later project stages, the errors can be statistically

analyzed in detail using simulations and experimental test results. The pointing error

model is used to evaluate PAT performance with respect to two metrics: one, sensor

acquisition as per the FOV or FOR; and two, link loss for use in link budgets. Each

pointing budget element represents a single-axis Gaussian error component, with the

total single axis error being the sum of these Gaussian random variables:

N

8x (or y) = (2.14a)
i=1

N N

p = pi aao (2.14c)
i=1 i=1

In this section, the pointing budgets for CLICK B/C body pointing using GPS-based

relative navigation for LEO crosslink and downlink are given in Tables A.1 & 2.3,

respectively. Additional CLICK B/C pointing budgets can be found in Appendix

A.6.

2.4.1 Relative Navigation Error

For use in the pointing budgets, we use the relative navigation error data from Chap-

ter 3, with the crosslink corresponding to the second row of Tables 3.11 & 3.12

and the downlink corresponding to row 4 of Table 3.13. The crosslink data corre-

sponds to on-board propagation of unfiltered GPS position and velocity fixes with

a Host propagation interval of 1 minute and a Target propagation interval of 10

minutes. The downlink data corresponds to the same Host configuration with the

Target being generated via application of an Earth rotation model to the stored
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geodetic coordinates of the optical ground station. Chapter 3 will have a detailed

discussion of the relative navigation analysis for these results and the results for

other relative navigation configurations. The relative navigation two axis angle er-

ror (8) distribution for crosslink is shown in Figure 2-3. The Rice distribution

fit parameters for 25 km range are v = 19.512 prad (p = /v/ = 13.797 prad)

and - = 343.127 [prad. The Rice distribution fit parameters for 580 km range

are v= 0.00157 prad (p = v/, = 0.00112 prad) and - = 20.435 prad. The

Crosslink Navigation Angle Distribution: 25 krn Crosslink Navigation Angle Distribution: 580 krn
3000 4000

3500 -
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Navigation Angle Error (p rad) Navigation Angle Error (p rad)

Figure 2-3: Navigation error distributions for minimum and maximum CLICK
crosslink ranges using unfiltered GPS measurements corresponding to the second row
of Tables 3.11 & 3.12

relative navigation two axis angle error (8) distribution for downlink is shown in

Figure 2-4, and the Rice distribution fit parameters are v = 4.369 x 10~5 prad

(p = v//2 = 3.089 x 10-5 prad) and o = 2.674 prad. In this section, the Rice distri-

bution parameters were given for a particular configuration for crosslink & downlink

relative navigation. For crosslinks, GPS fixes were directly propagated with a Host

propagation interval of 1 minute and a target propagation interval of 10 minutes.

For downlink, the Host propagation interval was also 1 minute, with the target posi-

tion being measured using GPS and propagated with an IAU-00/06 B earth rotation

model. This is representative of conservative CLICK B/C operations. Kalman fil-

tering will not be applied in the CLICK mission for on-board relative navigation.

Specific details of these results and results for other relative navigation configurations

will be discussed in Chapter 3. Kalman filtering and its effects will be the subject of

Chapter 4.
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Figure 2-4: Navigation error distribution CLICK downlink using unfiltered GPS mea-
surements corresponding to the fourth row of Table 3.13

2.4.2 Point Ahead Error

The relative velocity of the spacecraft orthogonal to the direction of the beam axis

causes a pointing error due to the finite speed of light. This is called the point-ahead

error, and the formula is given below [3]:

OPA - rel,orth (2.15a)
C

Vrel,orth lVrel - (Vrel, P) = Wrei X P|| (2.15b)

Vrel = VT - VH (2.15c)

p = rrel/l|rrell (2.15d)

rrel = rT - rH (2.15e)

where 9 PA is the point ahead angle (rT, VT) are the position and velocity of the target,

(rH, VH) are the position and velocity of the host, p is pointing line of sight direction

vector, and c is the speed of light in vacuum. Some terminal designs implement an

independent FSM called a point-ahead mirror (PAM) to correct for this error based

on relative navigation data. Due to SWaP restrictions, the CLICK B/C terminals
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do not implement a PAM and will simply accept this error. The following sections

present simulation results for point-ahead error for CLICK crosslinks and downlinks.

LEO Intra-Orbit Point Ahead Error

Figure 2-5 summarizes the statistical results for 9 9 th percentile point-ahead angles

for intra-orbit crosslinks in LEO. The leader and follower satellites share the same

orbital elements except that they are separated by some inter-satellite range. The

point-ahead angle is well described by a power-law function of the range (d), which

is fit using least squares: 9PA,99 %(prad) = (7.249 x 10- 3 )(d(km))0 997. The point

ahead increases with increasing range, and the 9 9 th percentile point-ahead angle for

the minimum CLICK range of 25 km is 0.180 prad and for the maximum CLICK

range of 580 km is 4.175 prad. The distributions for 25 km and 580 km ranges

10 Point Ahead Angles for Intra-Orbit Crosslinks
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Figure 2-5: Logarithmic plot of 9 9 th percentile point-ahead angles over various intra-
orbit ranges (e.g., string of pearls configuration) for near circular (e = 0.005) LEO
orbits.

are shown below. The Rice distribution fit parameters for 25 km are v = 0.178 prad

(p = v/ = 0.126 prad) and o = 0.00132 prad. The Rice distribution fit parameters

for 580 km are v = 4.117 Arad (p = v2 = 2.911 prad) and o = 0.0313 prad. In

this section, the point ahead errors for LEO intra-orbit crosslink ranges between 0.1 &
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Crosslink Point Ahead Distribution: 25 km
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Figure 2-6: Point-ahead error distributions for minimum and maximum CLICK
crosslink ranges.

5000 km were given along with a power-law to describe how point ahead error grows

with increasing range. Additionally, the Rice distribution parameters for the CLICK

minimum and maximum ranges of 25 & 580 km. These distribution parameters will

be used in the pointing budget analysis later on.

LEO Downlink Point Ahead Error

Table 2.1 summarizes the point-ahead angle statistics for LEO downlinks for 9 differ-

ent orbits that span the LEO orbits of interest: 400 km, 500 km, & 600 km altitudes;

350 51.6°, & 82-83° inclination (sun-synchronous inclination is a function of the al-

titude). The orbits are propagated over 180 days using a J 2 propagator to cover all

possible RAAN values and hence all possible downlink geometries for each of the 9

orbits. What is apparent is that there is not a significant statistical difference between

the 9 9 th percentile point ahead angles for the different ground stations across the Con-

tinental U.S. (CONUS) and for the different orbits. The 9 9 th percentile point ahead

angle across all orbits and all ground station locations is 50.36 prad. The distribution

is shown in Figure 2-7, which is used to compute the result for the downlink pointing

budget (Table 2.3), and the Rice distribution fit parameters are v = 34.624 prad

(p = v/v/2 = 24.483 prad) and a = 9.859 prad. In this section, the point ahead er-

rors for downlinks from 9 different LEO orbits to 3 different ground locations across

CONUS were given. Notably, the point-ahead errors were similar across these cases,

Crosslink Point Ahead Distribution: 580 km



9 9 th percentile point ahead angles for CLICK-type LEO downlinks.Table 2.1:
Simulation over 180 days using J2 model (for orbital precession) from epoch Jan
01 2019 00:00:00.000 UTC. Reference geodetic coordinates (Latitude, Longitude):
Boston (42.360636°, - 71.0934180), Boulder (40.006891°, - 105.2649830), Los An-
geles (34.068851°, - 118.4446920).
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Figure 2-7: Distribution of point ahead angles for all 9 LEO orbits and all 3 ground
stations used in Table 2.1.

and the Rice distribution fit parameters for the point ahead errors aggregated across

all cases were given. These will be used in the sequel for pointing budget analysis.
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2.4.3 Crosslink Relative Navigation Body Pointing Budget

Table 2.2 gives the pointing loss budget for GNSS-based body pointing for crosslinks.

The pointing error budget terms include relative navigation error & point ahead error

discussed in the previous two sections. Additional error terms include assembly &

calibration, which is based on the residual knowledge error of the beacon laser axis

direction in the spacecraft body frame following assembly & calibration on the ground.

Additional details on this type of error can be found in [24]. The launch shift is due to

vibration of the payload during launch, which has the potential to shift the mounted

components within any assembly. Additional details on this type of error can be found

in [24, 30]. The thermoelastic deformation primarily comes from thermal gradients

and temperature fluctuations from solar heating and cooling cycles that naturally

occur on each orbit. This causes the structure to deform, and the major structure

of relevance here is the spacecraft structure defining the relative geometry between

the payload apertures and the spacecraft star tracker, which defines the spacecraft's

body frame. The magnitude of this effect for the CLICK B/C beacon was analyzed

in detail in Yenchesky et al. using finite element analysis [24]. Spacecraft body

pointing error is caused by residual attitude control error and mechanical vibrations

in the spacecraft structure induced by the attitude control actuator (a reaction wheel

system). The value used here comes from the system requirement levied on the

CLICK B/C spacecraft bus, which is provided by Blue Canyon Technologies. The

previous on-orbit performance of this spacecraft bus is described by Mason et al. for

the Min-XSS mission [31]. In this section, the pointing budget for crosslink relative

navigation based body pointing was given for the CLICK minimum & maximum

ranges of 25 & 580 km. The 99.7% total pointing errors were 1988.9 prad & 1609

prad, respectively. And the corresponding 99.7% pointing losses were -0.278 dB &

-0.182 dB, with corresponding margins of 1.222 dB & 1.318 dB compared to the

-1.5 dB required worst case pointing loss bound. Chapters 3 & 4 will focus on the

relative navigation error component of this budget and the corresponding downlink

budget in the next section. For the purposes of comparison, the results used for this
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Table 2.2: Pointing error budget for body pointing of crosslink beacon laser prior to
optical feedback using direct propagation of GPS measurements. See Section 2.4.1
for relative navigation. See Section 2.4.2 for point-ahead.

Budget Element 25 km range 580 km range
p (prad) o (prad) y (prad) o (prad)

Relative Navigation 13.80 343.1 0.001 20.44
Point Ahead 0.126 0.001 2.911 0.031
Assembly & Calibration 0.000 434.5 0.000 434.5
Launch Induced Shift 0.000 161.6 0.000 161.6
Thermal Deformation 0.000 16.16 0.000 16.16
Spacecraft Body Pointing 0.000 87.42 0.000 87.42
Total 13.92 583.3 2.912 472.2

01/e2 (prad) 22235
6 ptg (-trad, po = 0.997) 1988.9 1609.5
Lptg,dB (dB, pi = 0.997) -0.278 -0.182

case are regarded as the baseline with which other relative navigation configurations

will be compared. The main comparison metric will be the 9 9 th percentile angular

relative navigation error, which are 1367 prad & 76.58 prad for the 25 km and 580

km cases, respectively.

Furthermore, in order to be able to directly relate angular error percentiles that

will be generated in later sections for different relative navigation configurations to

pointing loss percentiles without needing bias error, the Rayleigh approximation is

useful (see Appendix A.4). For the crosslink relative navigation pointing budget, this

approximation of the pointing error and loss is accurate as v/o- < 0.03 in both cases.

Using only the total o value in both cases (583.3 prad and 472.2 trad) as the Rayleigh

parameter in Equation A.12 yields the same (within roundoff) 99.7% pointing losses

of -0.278 dB and -0.182 dB for 25 km and 580 km, respectively. This method will

be used in later sections to compare the pointing losses incurred by different relative

navigation errors (the Rayleigh parameter is computed from percentile data using

Equation A.8a).
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2.4.4 Downlink Relative Navigation Body Pointing Budget

The next pointing budget shown in Table 2.3 is for the downlink, with new parame-

ters for relative navigation and point ahead from the results given in previously. Also

note the change to the quadcell as the stage 2 sensor as explained previously, which

also changes the assembly & calibration error value. The other budget elements are

the same as in the crosslink case. In this section, the pointing budget for relative

Table 2.3: Pointing error budget for body pointing of downlink beacon laser using
direct propagation of GPS measurements. See Table 3.13 for relative navigation. See
Section 2.4.2 for point-ahead.

Budget Element p (prad) o (prad)
Relative Navigation 3 x 10-' 2.674
Point Ahead 24.483 9.859
Assembly & Calibration 0 443.5
Launch Induced Shift 0 161.6
Thermal Deformation 0 16.16
Spacecraft Body Pointing 0 87.42
Total 24.48 480.4
01/e2 (prad) 22253
6 ptg (prad, po = 0.997) 1639.7
Lptg,dB (dB, pi = 0.997) -0.189

navigation based body pointing for the CLICK B/C downlink was given. The 99.7%

total pointing error was 1639.7 prad. And the corresponding 99.7% pointing loss

was -0.189dB with a corresponding margin of 1.311 dB compared to the -1.5 dB

required worst case pointing loss bound. Again, for later comparison with other rel-

ative navigation configurations, the 9 9 th percentile angular relative navigation error

for this configuration is 17.29 prad. The next section will discuss the operational

availability of crosslinks and downlinks.

Again, the Rayleigh pointing model will be used in later sections to approximate

the Rice model to compare pointing losses for different relative navigation configu-

rations. For the downlink budget here, this approximation of the pointing error and

loss is still accurate despite the increased bias due to point ahead error: v/o = 0.07.

Using o = 480.4 prad in Equation A.12 again yields the same (within roundoff) 99.7%

pointing losses of -0.189 dB.
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2.5 Link Access Analysis

2.5.1 Crosslink Access Analysis

The CLICK crosslink is conducted between satellites sharing the same orbit but sep-

arated by ranges between 25 km and 580 km. Therefore, unlike downlinks, this type

of crosslink is geometrically possible at any time. However, as discussed previously,

the CLICK terminal utilizes a monocular camera as part of its PAT system, which

cannot operate when the Sun is within its keep-out zone. The CLICK camera is

equipped with a baffle that is design for 45° to 50° solar keep-out, half-angle. There-

fore, the crosslink access duration is computed with STK using the solar keep-out as

the determining factor. Additional keep-out angles are also analyzed for alternative

terminal designs. Note that a smaller keep out angle requires a longer baffle, which

means the minimum keep-out angle is limited by the volume requirement of the ter-

minal. The CLICK volume prevents a baffle with a keep out angle smaller than 45°.

Figure 2-8 shows the lower bound crosslink access durations for 99% of links (e.g. the

1st percentile). The CLICK baffle geometry access durations are at least 21 minutes

(99%), which meets the mission need of up to 15 minutes. Although the 3U spacecraft

volume precludes smaller keep-out angles, larger nanosatellites like 6U cubesats could

potentially have smaller keep out angles. Moreover, there is alternative approach to

mitigating stray light from the Sun and other environmental sources: modulate the

laser source and electronically bandpass filter the received signal. This is done on

CLICK for the fine pointing system with the quadcell via its FPGA interface. It is

possible to do this using a camera sensor; however, a custom FPGA implementation

must be implemented, which is not practical with the COTS CLICK camera. How-

ever, this may be useful in future terminal designs.

In this section, the crosslink access duration was analyzed based on solar keep out

constraints between 20° & 75° for three different orbital inclinations of near-circular

LEO orbits. The CLICK keep out constraint of 45° to 500 corresponded to an access

duration of at least 21 minutes for 99% of cases, which meets the mission requirement

of 15 minutes.
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Crosslink Access Determined By Sun-Keep Out
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Figure 2-8: Crosslink access durations as determined by various Sun keep-out angles.
The statistic plotted is the 1st percentile of the data aggregated, which means that
99% of the access intervals are greater than this value. The orbits computed are near-
circular (e = 0.005) at 500 km altitude over three different inclinations (the results
for 400 km and 600 km are not significantly different).

2.5.2 Downlink Access Analysis

Figure 2-9 is a comprehensive statistical analysis of downlink ranges from 9 different

LEO orbits aggregated over 3 different ground station locations across the continental

U.S. (CONUS). Each figure shows the percentile contours for all overpass data for

each orbit. The simulation is over a period of 180 days with a J2 propagator for orbital

precession to run the RAAN through 360° to capture all downlink geometries for each

orbit. The access interval limits are defined via geometric access in STK with a zero

minimum elevation angle for the ground station. Table 2.4 summarizes the median

overpass durations for each orbit. In practice, the OGS minimum elevation angle

will be vary depending on the obstacles in the surrounding area (e.g. mountains,

buildings, etc.), which means that the link durations will be further limited. For

example, a similar analysis using a minimum elevation angle of 15° yields a median

overpass duration for CONUS ground stations of 5.2 minutes. Figure 2-9 can be

used to look up the minimum and maximum range for arbitrary link durations. For
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CLICK, a downlink duration up to 1 minute will conservatively meet the science data

needs to validate the data rate objective of at least 10 Mbps. Table 2.5 summarizes

Table 2.4: Median (50th percentile) downlink durations (min) corresponding to Figure
2-9.

Orbit Duration
(min)

Boston

Duration
(min)

Denver

Duration
(min) LA

h, = 400 km, i = 35 ° 9.57 10.05 10.80
h, = 400 km, i = 51.6 ° 10.53 10.19 9.29
h, = 400 km, i = 82.8 ° 9.45 9.38 9.41
hP, = 500 km, i = 35 ° 11.01 11.41 12.20
h, = 500 km, i = 51.6 ° 11.94 11.64 10.79
h, = 500 km, i = 82.5 ° 10.18 11.17 10.37
h = 600 km, i = 35 ° 12.29 12.74 13.55
h, = 600 km, i = 51.6 ° 13.27 13.00 12.15
h, = 600 km, i = 82.0 ° 11.74 11.74 11.74

the median minimum ranges for each orbit (e.g. the minima of the 50% curves in

Figure 2-9). In this section, LEO downlink access analysis results were summarized

for 9 different orbits and 3 different ground stations across CONUS. The median

downlink durations for zero minimum ground station elevation angle were between

9.38 & 13.55 minutes for perigee altitudes between 400 & 600 km. A similar analysis

with a 15° minimu, ground station elevation angle yields a median downlink duration

of 5.2 minutes for a perigee altitude of 500 km. The median minimum downlink

ranges were between 995.9 km and 1630 km with the mid-range ISS inclination of

51.60 having the minimum ranges to CONUS. The Sun-Synchronous orbit inclinations

of 82-83° had the maximium ranges to CONUS.

Table 2.5: Median (50th percentile) minimum downlink ranges (km) corresponding to
Figure 2-9

Inclination (0)

35
51.6

82-83

Min. Range
(km, 50%),

hp = 400 km
1307.3
995.9
1310.6

Min. Range
(km, 50%),

hp = 500 km
1426.1
1066.7
1547.8

Min. Range
(km, 50%),

ht = 600 km
1532.7
1146.7
1630.0
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Figure 2-9: Percentiles of downlink overpass ranges for 9 different near circular (e
- 0.005) LEO orbits with given inclinations and initial altitudes. Reference geode-
tic coordinates (Latitude, Longitude): Boston (42.3606360, - 71.0934180), Boulder
(40.0068910, - 105.2649830), Los Angeles (34.0688510, - 118.444692°).
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2.6 Chapter 2 Summary

In Section 2.1, the Gaussian beam intensity function was given with the definition

of 1/e2 & FWHM beam divergences. Next in Section 2.2, the laser communica-

tions range equation and its terms were briefly presented, leading into Section 2.3's

derivations for the Rice/Rician model of the total pointing error and the non-central

chi-squared model of the pointing loss based on Gaussian models of the single-axis

pointing errors. Following this, in Section 2.4.1, the pointing error model was applied

to find distribution parameters for relative navigation for a particular configuration

for crosslink & downlink relative navigation corresponding to CLICK B/C operations.

Next, in Section 2.4.2, the pointing error model was also applied to find distribution

parameters for point ahead error crosslinks and downlinks, which is the error due to

the finite speed of light and the relative motion of the two terminals. Notably, the

crosslink point ahead errors increased as a power law of the range, and the downlink

point-ahead errors were similar across altitudes of 400-600 km, inclinations of 350 to

830, and three different CONUS ground stations from Southern California to Mas-

sachusetts.

Following this, in Section 2.4.3, these distribution parameters as well as parame-

ters for other error terms were used in pointing budgets for CLICK B/C body pointing

using GPS-based relative navigation for LEO crosslink and downlink. The pointing

budget for crosslink relative navigation based body pointing was given in in Table

A.1 for the CLICK minimum & maximum ranges of 25 & 580 km. The 99.7% total

pointing errors were 1988.9 prad & 1609 prad, respectively. And the corresponding

99.7% pointing losses were -0.278 dB & -0.182 dB, with corresponding margins of

1.222 dB & 1.318 dB compared to the -1.5 dB required worst case pointing loss

bound. Chapters 3 & 4 will focus on the relative navigation error component of this

budget and the corresponding downlink budget in the next section. For the purposes

of comparison, the results used for this case are regarded as the baseline with which

other relative navigation configurations will be compared. The main comparison met-

ric will be the 9 9 th percentile angular relative navigation error, which are 1367 prad
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& 76.58 purad for the 25 km and 580 km cases, respectively.

Next, in Section 2.4.4, the pointing budget for relative navigation based body

pointing for the CLICK B/C downlink was given in Table 2.3. The 99.7% total

pointing error was 1639.7 prad. And the corresponding 99.7% pointing loss was -

0.189 dB with a corresponding margin of 1.311 dB compared to the -1.5 dB required

worst case pointing loss bound. Again, for later comparison with other relative nav-

igation configurations, the 9 9 th percentile angular relative navigation error for this

configuration is 17.29 trad.

Finally, link access analyses for crosslink and downlink were given in Sections

2.5.1 & 2.5.2, respectively. The crosslink access duration was analyzed based on solar

keep out constraints between 20° & 750 for three different orbital inclinations of near-

circular LEO orbits. The CLICK keep out constraint of 45° to 50° corresponded to

an access duration of at least 21 minutes for 99% of cases, which meets the mission

requirement of 15 minutes. The LEO downlink access analysis results were summa-

rized for 9 different orbits and 3 different ground stations across CONUS. The median

downlink durations for zero minimum ground station elevation angle were between

9.38 & 13.55 minutes for perigee altitudes between 400 & 600 km. A similar analysis

with a 15° minimu, ground station elevation angle yields a median downlink dura-

tion of 5.2 minutes for a perigee altitude of 500 km. The median minimum downlink

ranges were between 995.9 km and 1630 km with the mid-range ISS inclination of

51.6° having the minimum ranges to CONUS. The Sun-Synchronous orbit inclina-

tions of 82-83° had the maximium ranges to CONUS.

The next chapter will proceed with a detailed discussion and analysis of orbit

propagation and GPS-based orbit determination for relative navigation. This will in-

clude the CLICK B/C configuration used here as well as other possible configurations

for comparison and reference during future mission development.
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Chapter 3

GNSS-Based Relative Navigation in

LEO

Relative navigation is accomplished via kinematic knowledge of the terminal's host

satellite as well as the target terminal, be it another satellite or a ground station.

Satellite navigation requires orbit determination and propagation, which has a long

history in spacecraft engineering. Onboard satellite orbit determination in LEO com-

monly utilizes a global navigation satellite system (GNSS) receiver, which enables

orbit determination without additional sensors. The US Global Positioning System

(GPS) is one of the GNSS constellations in place and the one being utilized in this

work. GPS measurements are used to generate an orbit state and epoch that is then

propagated forward in time using a propagation algorithm. A block diagram that de-

scribes the relative navigation configuration for this chapter and chapter 4 is shown

in Figure 3-1.

The analysis considered here derives from the baseline mission operation for the

CLICK satellites, which is a cross link between two satellites which are roughly in the

same LEO near-circular orbit at altitudes from 400-600 km separated by ranges from

25 km to 580 km. The orbit determination measurements are taken from onboard

GPS receivers. The epoch and state is communicated between the satellites and some

interval of time passes before they are used. The receiving terminal propagates the

orbit forward prior to using the orbit state data for an acquisition attitude manuever.
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Relative Navigation for Body Pointing

EKF (Optional) Convert Absolute States to
Pointing Vector & Attitude

Initialization Commands To ADCS
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Figure 3-1: Block Diagram of Relative Navigation for Body Pointing Configuration

The smallest time interval that can be expected involves the direct RF transfer of the

epoch and state information between the satellites. The time interval before use in

this case can be on the order of seconds; however, operations are simplified and power

usage is reduced if the acceptable delay can be increased to minutes or more. Other

methods of orbit data communications include indirect methods such as over satellite

communications networks like Globalstar with delays of seconds to a few minutes

[32] and over ground networks with delays of tens of minutes or more. Hence, the

potential propagation interval range considered here is over a range of 3 orders of

magnitude from 100 - 103 seconds.

If an Extended Kalman Filter (EKF) is used, it runs aboard each spacecraft and

processes only the spacecraft's own GPS measurements (the Host measurements) to

generate state estimates. These estimates are then transferred from the Host to the

Target spacecraft, and the Target spacecraft simply propagates them forward. There-

fore, each spacecraft is only running one EKF algorithm with a state dimension of 6

with a maximum sampling interval corresponding to the maximum Host propagation

interval. The implementation of an EKF for onboard orbit determination will be the

subject of Chapter 4.

The motivating example is navigation for nanosatellites in LEO using on-board
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GPS measurement data for the purposes of line of sight determination for crosslinks

and downlinks. The line of sight is specified by the unit direction vector from the

host to the target, which we will refer to as the pointing vector:

rT - rH (3.1)

||rT - r H1

where rT is the target position vector and rH is the host satellite's position vector.

The initial acquisition objective is to point the boresight of the laser terminal along

the pointing vector for a specified period of time. Computing these pointing vectors

is done by estimating the host and target positions over this interval, which is done

as follows. The first step is to process the GPS measurement data into an estimate

of the host and target states: xH(tH) and XT(tT). The next step is to propagate

the host and target states from the estimate times tH & tT through the Host and

Target measurement intervals AtH & AtT to the next anticipated measurement times.

The predicted positions at intermediate times (t) are used to determine the relative

navigation attitude commands for body pointing.

This process can be completed using two algorithms: 1) the measurement data

processing algorithm & 2) the propagation algorithm. This chapter will first analyze

the state propagation algorithm in depth. The later sections will discuss how GPS

position & velocity fixes are generated and their noise properties. Finally, these

algorithms will be combined to estimate the relative navigation error by directly

propagating GPS fixes. In Chapter 4, extended Kalman filtering algorithms will

be explored to reduce the state estimation error contributed by GPS measurement

noise. It should be noted that state propagation is an essential subroutine for Kalman

filtering, so this chapter sets the groundwork for Chapter 4's discussion of Kalman

filtering algorithms.
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3.1 State Propagation Background

For CLICK, both satellites are in similar low-Earth orbits, so the same orbit propaga-

tion algorithm is used for each of them. In the case of a laser downlink only, the host

is a satellite and, in this application, the target is a ground station that is fixed with

respect to the Earth's surface for the duration of the link. The ground target state

propagation problem is thus equivalent to an Earth rotation model. The background

and approaches for orbit propagation and Earth rotation modeling will be discussed

in detail in the following two sections.

3.1.1 Orbit Propagation Background

Orbit propagation is an initial value problem (IVP): it is the problem of determining

the state of a satellite at some future time, x(to + At), given the state of the satellite

at some initial time, x(to), by integrating the equations of state. The equations of

state are defined as follows:

x = =(3.2)
-g r + a,

where ap is the total perturbation acceleration, which is added to the Kepler two

body gravitational term. The units used are km, km/s, and km/s 2 unless other-

wise specified. Cowell's method for orbit propagation is direct numerical integration

of eq. (3.2) given an initial state [33]. There are also other methods. For example,

Encke's method integrates the deviations from a reference analytically determined or-

bit. Analytical methods can also be used alone. The simplest analytical propagator is

the Kepler propagator, which solves the reduced two-body problem [331. More com-

plex analytical methods include the commonly used Simplified General Perturbations

4 (SGP4) propagator, which relies on state and model parameter estimates gener-

ated by JSpOC, called Two-Line Elements (TLEs) [33]. Although SGP4 is a fairly

high accuracy analytic method, the position uncertainty of TLEs for nanosatellites

can be on the order of 1-10 km or more, even with batch least squares differential
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correction processing [34]. This would yield relative navigation angular errors for

crosslinks of tens of degrees for the CLICK minimum range of 25 km, which would

lead to unacceptable beacon pointing losses and sensor field of view coverage even

ignoring the additional error incurred by propagation over the time delay of waiting

for TLE data to be uplinked from the ground to the spacecraft. Furthermore, the

reliance on uplinked TLEs from the ground for space terminals is undesirable for the

development of this technology into the future, where increased levels of autonomy

are essential for the practical operation of satellite swarms and constellations. Due to

these issues and the availability of GNSS receivers for use in nanosatellites, the use

of TLEs for onboard navigation was discarded during CLICK mission design, and it

is not considered further in this work. However, this level of positioning error can

potentially be acceptable for significantly longer range crosslinks of thousands of km

or for uplinks & downlinks. It should also be noted that the PorTeL optical ground

station uses an extended Kalman filter to correct TLEs for use with orbit prediction

for uplinks [22].

In practice, reference "truth" orbits are generated via numerical methods using

complex force models. Therefore, this work considers analytical propation algorithms

more generally to be in the purview of propagator algorithm optimization. Analytical

methods may be used to reduce computational costs at the potential cost of accuracy

if propagation algorithm performance optimization is deemed necessary given the

available processor hardware resources. For reference, in the discussion of different

Kalman filter implementations, the computational costs of some standard numeri-

cal integration algorithms will be discussed in Chapter 4. However, a more general

discussion of algorithmic optimization approaches for particular hardware implemen-

tations, including the application of analytical methods, is beyond the scope of this

work, and interested readers are referred to the literature, such as Vallado [33].

Perturbation Accelerations

The Cowell method uses two-body gravitational acceleration plus a perturbation ac-

celeration. The perturbation acceleration is computed via the sum of additional forces
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being considered beyond Keplerian two-body gravity. In Earth orbit, these generally

can include aspherical Earth gravity terms, atmospheric drag, solar radiation pres-

sure, third body perturbations, tides, earth radiation pressure, relativistic effects, and

thrusting maneuvers. The general perturbing acceleration is:

N

ap= Raspherical - adrag + a 3 ,i + aSRP ± aother (3.3)

where aaspherical is the acceleration due to central body effects beyond two-body grav-

ity, adrag is the acceleration due to atmospheric drag, a3 ,i are the accelerations due

to third body gravity, aSRP is the acceleration due to solar radiation pressure, and

aother are any additional accelerations such as Earth radiation pressure. Each of these

perturbing accelerations are discussed in the following sections.

Central Body Gravity Perturbations

The Kepler two-body acceleration simplifies the gravitational field by assuming the

central body, which is the Earth in LEO, is a perfect sphere, which makes the central

body gravitational potential (U) equivalent to that generated by a point of the same

mass as the Earth. There are thus perturbing accelerations to this approximate form

due to Earth's asphericity. The central body acceleration is given as the position

gradient of the central body gravitational potential:

acentral body = atwo - bo dy + aaspherical (34)
Or

The general gravitational potential is given as an infinite spherical harmonic series,

where the coefficients are determined by the exact mass distribution of the central
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body. The general central body potential used is [33]:

U = UO + U1 + U2  (3.5a)

Uo - P (3.5b)
r

00

U1 = J R P,o[sin(#)] (3.5c)
rr

i2

U2 = - I::jj(R e P[sin(#)] (Ci,jcos(jA) + Si,jsin(jA)) (3.5d)
i=2 j=1

where Uo is the two-body spherical potential, U1 is the perturbing potential due to

zonal harmonics characterized by the coefficients Ji, U2 is the perturbing potential

due to sectoral and tesseral harmonics characterized by the coefficients Cjj & S,,

# and A are the satellite latitude & longitude, with r - ||r|H, and P,j[z] are the

associated Legendre polynomials defined in general by the following expression [33]:

(1 - 92)J/2 di~j
Pi,i [1] = 2i!j dz+j (x 2 - i)i (3.6)

An order m by degree n (m x n) gravity field model truncates the sum for U1 and

the primary sum for U2 to the first m terms and the secondary sum for U2 to the first

n ; m terms. The simplest aspherical gravity model is the 2 x 0 model also referred

to simply as J2. This accounts for the primary oblateness of the Earth, which is by

far the dominant effect, with J2 being about 2 to 3 orders of magnitude larger than

the next harmonics (see table 3.1). The corresponding perturbing acceleration given

in the Earth-Centered-Earth-Fixed (ECEF) frame is [33]:

-1 -5 () X_

afEF 2 ( 1 - ) y (3.7)

,3 -5 (z)) Z

where rECEF = y, Z]T is the satellite position in the ECEF frame. Expressions for

higher order gravity model acceleration components are documented in the literature
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(see Vallado [33]).

Atmospheric Drag

Atmospheric drag is a perturbing force that is especially prominent in LEO. The

satellite can be simply modeled via a flat plate approximation given by the following

expression in the Earth-Centered-Inertial (ECI) frame [331:

a 1 CDAc p vCIII V (3.8a)

VECI VECI _ W CI x r ECI(.b

where CD is the coefficient of drag (~ 2.2 [33]), Ac is the effective cross-sectional ram

area, m is the satellite mass, p is the atmospheric density, Vre1 is the velocity of the

fluid relative to the effective flat plate cross-sectional area. The given approximation

for the relative fluid velocity models atmosphere as simply co-rotating with the Earth,

ignoring local effects like winds. Accurately determining the drag acceleration param-

eters is generally very challenging. The cross-sectional area requires knowledge of the

satellite attitude. The coefficient of drag is a function of the satellite geometry and

the atmospheric composition. The atmospheric density at high altitudes is a function

of solar flux and geomagnetic activity, both of which are very difficult to predict. The

solar flux activity at a wavelength of 10.7 cm, F1 0 7 , is monitored by the National

Oceanic & Atmospheric Administration (NOAA), and 27-day forecasts are reported

daily. The geomagnetic planetary index, K,, and the corresponding daily planetary

amplitude, AP, are also reported in the daily 27-day forecast by NOAA. This data is

used in time-varying atmospheric models like Jacchia-Roberts and NRLMSISE-2000,

which are more accurate than table lookup models like the U.S. Standard Atmosphere

1976, although they run slower [33]. The COSPAR International Reference Atmo-

sphere (CIRA) 1972 has moderate accuracy and efficiency, mixing table lookup with

some free variables [331.
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Third Body Perturbations

The gravity from other solar system bodies can also be taken into account. The

dominant third body gravitational fields in Earth orbit are due to the Sun and the

Moon. Let P3 be the gravitational parameter of the third body, and let r3 be the

position of the third body relative to the Earth. Then each third body acceleration

has the following form [33]:

a3 = A3 r3 - r )3 r3 3 (3.9)
| Ira - r|| ||r3l

Solar Radiation Pressure

The photons that make up solar irradiance carry momentum that can be transferred

to objects they interact with. This effect is called solar radiation pressure and is

modeled via a flat plate approximation as follows [33]:

aSp pASRP (" -) [ CR,d + 2CR,s(s - ii)) n^ + (1 - CR,s)SI (3.10a)
m 3

s r -r (3.1Ob)

where CR,d is the coefficient of reflectivity for diffuse reflection, CR,, is the coefficient of

reflectivity for specular reflection, CR, is the coefficient of reflectivity for absorption,

AsRp is the effective sunlit surface area (m2 ), p is the solar radiation pressure (Pa),

re is the position of the sun relative to the Earth (km), and n is the unit normal

vector to the illuminated surface. The sunlit surface area requires knowledge of the

satellite attitude. And the solar radiation pressure is generally time varying, with a

nontrivial dependency on the Earth's shadow.

Other Perturbing Accelerations

Additional perturbation forces include Earth solid & ocean tides, radiation pres-

sure from Earth's albedo and infrared emissions, relativistic effects, and manuevering

thrust. Earth solid tides are deformations of the Earth's shape primarily due to the
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gravitational attraction of the moon. Both Earth solid and ocean tides are accounted

for via corrections to the aspheric gravitational potential coefficients. Earth radiation

pressure is defined similarly to solar radiation pressure. Earth radiation pressure is

of similar magnitude to ocean tides at LEO altitudes near 500 km [33]. Relativistic

effects are corrections to Newtonian gravity using Einstein's theory of General Rela-

tivity. Relativistic effects are on the order of centimeters per orbit for a typical Earth

satellite in a near-circular orbit [35]. As will be seen in Section 3.2, this should also

be treated like tides and therefore only included in high accuracy "truth" models. As

the CLICK spacecraft are not equipped with propulsion, the effects of maneuvering

thrust are not considered further.

Numerical Comparison of Perturbing Accelerations in LEO

The purpose of this propagator study is for on-board operational use with nanosatel-

lites in,LEO, which necessitates a minimal force model for practical implementation.

Hence, this section details a numerical comparison of perturbing accelerations in

LEO to identify which perturbation sources should be included for further study and

which can be safely ignored. The perturbing accelerations are computed using AGI's

Systems Tool Kit (STK) via the High Precision Orbit Propagator (HPOP), which

supports a wide variety of force models for comparison. The integrator used is a

Runge-Kutta-Fehlberg 7(8) variable step method with a step size between 10- and 1

second, an error tolerance of 10-13, and 7 th order Lagrange interpolation. The simula-

tions were run for 2 hours from epoch, and the average magnitudes of the perturbing

accelerations for initial altitudes between 400 and 600 km are shown in table 3.1. In

all cases, the dominant perturbation is the Earth's J2 acceleration by two orders of

magnitude. Following this, the aspheric gravity terms up to degree 21 dominate other

acceleration sources. It should be noted that the effects from non-conservative forces,

drag and SRP, can have a significant effect distinct from the effects of the conserva-

tive forces over sufficient time intervals. Eventually, drag causes LEO satellites to lose

sufficient energy to de-orbit. Furthermore, drag is actually taken advantage of by the

CLICK mission for ranging using differential drag. At 500 km, solar radiation pressure
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and drag are similar in average magnitude, with SRP acceleration being greater than

drag acceleration at higher altitudes and smaller at lower altitudes. Third body per-

turbations are of similar magnitude to solar radiation pressure, with the Moon having

about 3 times the effect of the Sun. Solid tides have a slightly greater effect than

Lunar third body effects. Finally, ocean tides are the minimal acceleration at 400 and

500 km. Drag is the minimal acceleration at 600 km, although it should be noted that

due to orbital decay, the effect due to drag compounds over time. Taking these results

as guidance, the force model simplifications will be 1) eliminate tides, 2) eliminate

third body perturbations, 3) eliminate SRP, 4 & 5) substitute simplified atmospheric

models for NRLMSISE00, 6) eliminate drag, 7-9) truncate central body gravity to

lower order square models, 10) use a J2 model, and 11) use a two-body model. The

next section will assess the position error incurred by these simplifications for various

propagation intervals of interest for nanosatellite laser communications missions.
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Table 3.1: Average magnitude (km/s2 ) over 2 hours of various perturbing accelera-
tions from epoch Jan 01 2019 00:00:00.000 UTC and initial states (a, e, i, Q, WP, M) =
(6812.2-7013.2km, 0.005, 51.6°, 2200, 00, 0'). h, is the initial altitude at perigee. Drag
and SRP area are both 0.1624 m2 , which is an upper estimate for a 3U nanosatellite
with double deployed solar panels mounted on opposite corners of the central struc-
ture. CD= 2.2 [331, 0 R 2.0 [33], Daily Fi0 .7cm= 69 [36], 81 Day Avg. Fi0 .7cm= 69.47
[361, Daily K, = 2 1361.

Perturbation
Two Body
Central Body: J2 (2 x 0)
Central Body: 2 x 1 & 2 x 2
Central Body: 3 x 0 to 3 x 3
Central Body: 4 x 0 to 4 x 4
Central Body: 5 x 0 to 5 x 5
Central Body: 6 x 0 to 10 x 10
Central Body: 11 x 0 to 21 x 21
Central Body: 22 x 0 to 70 x 70
Drag: CIRA 1972
Drag: Jacchia-Roberts
Drag: NRLMSISE-2000
Drag: Std. Atm. 1976
TBP: Moon
TBP: Sun
SRP
Solid Tides
Ocean Tides

hp = 400 km
8.60
1.29
1.65
2.61
4.00
2.09
4.81
7.16
1.21
9.52
9.66
8.06
4.16
8.74
3.03
3.17
1.54
1.26

I0-3
1i0-5
10-7
10-7
10-7
1o-7
10-7
10-8
10-11
10-10
10-10

10-10

10-9
10-10
10-10
10-10

10-9
10-10

hp = 500 km

8.40 x 10-1
1.21
1.54
2.34
3.62
1.88
4.22
5.74
7.75
1.34
1.36
1.19
7.72
8.92
3.10
3.25
1.44
1.17

10-5
10-7
10-7
10-7
1o-7
10-7
10-8

10-9
10-10

10-10

10-10
10-10
10-10
10-10

10-10

10-9
10- 10

hp = 600 km
8.10
1.13
1.45
2.10
3.29
1.70
3.71
4.61
5.34
6.11
6.13
6.03
1.84
9.13
3.16
3.35
1.34
1.09

10-3
10-5
1o-7
i0-7
10-7
10-7
1o-7
10-8
10-9

10-11

10-11
10-11
10-10

10-10
10-10
10-10

10-9
10-10

3.2 Comparison of Force Models

Although in principle all known perturbations could be included in the force model

for propagation, in practice the computational overhead for force model evaluation

dominates run times. This makes selection of a simplified force model with sufficient

accuracy for the application at hand an essential part of designing any orbit propa-

gation algorithm. Therefore, we will here examine the errors introduced by various

simplifications of the force model for various propagation intervals in the time regime

relevant for this study.

The reference "truth" orbit will be generated via STK's High Precision Orbit

Propagator (HPOP) with a force model including 1) EGM-08 100 x 100 Earth gravity

model with secular variations, permanent solid tides, and ocean tides; 2) Drag using
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the NRLMSISE00 atmospheric density model; 3) solar radiation pressure; 4) luni-

solar and planetary (Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune) third

body perturbations. The numerical integration method is Runge-Kutta-Fehlberg 7(8)

with a maximum step size of 10 seconds for intervals less then 24 hours and 60 seconds

for the 24 hour interval, an error tolerance of 1013, and 7th-order Lagrange interpo-

lation. The epoch is January 1, 2019 00:00:00.000, and all intervals are propagated

sequentially 30 times using the truth orbit to find the initial state for each interval.

The first simplification is to remove central body gravity tides and secular vari-

ations. Next, third body perturbations are removed, followed by solar radiation

pressure. The simpler time-varying Harris-Priester and static 1976 Standard Atmo-

sphere density models are tested before eliminating drag entirely. Finally, the central

body gravity field is progressively truncated towards the two-body model by order of

magnitude of the gravity field coefficients. The truncation roughly follows order of

magnitude trends in the unnormalized EGM-08 zonal coefficients.

The comparison metric is the 9 9 th percentile of the L2-norm of the position error

over all 30 intervals propagated over 9 different low-Earth, near-circular orbits com-

prised of the combinations of the following initial state parameters: 400 km, 500 km,

or 600 km altitudes at perigee; 0.005 eccentricity; 350, 51.6° ISS, or sun-synchronous

inclination (82° - 830 depending on the altitude); -120° RAAN, 0° argument of

perigee, and 0° mean anomaly. Figure 3-2 shows the results for this comparison.

The relevant propagation intervals selected cover the likely regimes for application

to satellite lasercom links. For downlinks and crosslinks, if the GPS information is

recorded and processed in real time, a one minute interval is a conservative upper

bound for propagation of the host orbit. For crosslinks with a direct RF exchange

of GPS information, the messaging delay would be included in the 1 minute interval:

a 700 bit message containing an epoch and initial state in double-precision floating

point along with any necessary headers has a transfer time less than 1 second given

a data rate on the order of 1 kbps. Similarly, if a crosslink utilized a satellite com-

munications network like Globalstar, the messaging delay could be also included in

the 1 minute interval: for the same message with a 72 bps worst-case data rate; the
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Figure 3-2: Propagation Error Statistics for Force Model Simplifications

system would have a transfer time less than ten seconds [32]. If the GPS measurement

process is duty cycled to save power or if the desired receiver performance is intermit-

tent (e.g. CanX-2 [37] & Aalto-1 [38]), the necessary propagation interval for both

the crosslink and downlink cases could extend to the order of 10 minutes if we still

assume satellite-to-satellite communications in the crosslink case. The propagation

interval could be further increased for crosslinks if no satellite-to-satellite communi-

cations capability is implemented and the system relies on ground stations. For a

network of ground stations with global coverage (e.g. KSAT [39]), one to a handful

of relays could be consistently achieved per orbit [39], which is represented in this

analysis by propagation times of 30 & 90 minutes. Finally, for a single ground station

in the Continental United States, STK access geometry analysis yields an overpass

waiting time of approximately 360 minutes averaged over the 9 orbits and over the

3 ground stations in Table 3.4 (for a simulation period of 180 days using a J2 force

model). This time is used as the estimate for the co-planar crosslink relay using a

single ground station.
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These estimates are here used simply to downselect to a few force models for

further, more detailed analysis that can directly simulate initial acquisition angular

error from navigation. For this purpose, a simple order of magnitude position error

requirement is sufficient. With regard to the beacon 1/e2 divergence angle of about

22.1 mrad, this is taken to be 1 mrad (- 5% of O1/,2) to have sufficient margin re-

maining for measurement error. This angle roughly corresponds to 25 m for the 25

km range crosslink, which is used because it is the worst case geometry and there-

fore guarantees that the selected force models will also be sufficient for longer range

crosslinks and downlinks. The solid black line illustrates the 25 m position error in

Figure 3-2.

For downlink and crosslink host orbit propagation, we are interested in the 1 and

10 min intervals, and J2 is judged as sufficient. For crosslink target orbit propagation

in the 1 and 10 min interval range, 4 x 4 central body gravity is sufficient. For the

crosslink target orbit propagation in the 30 min range, more terms in the central

body field are needed, such as a 14 x 14 model. Once at least one full orbit (- 90

min) is propagated, a high-fidelity central body model is necessary, and drag effects

become noticeable. It should be noted that using the 1976 Standard Atmosphere

static density model is worse than simply ignoring drag entirely in all cases. Using

a simplified time-varying density model like Harris-Priester is feasible for the 90 min

interval. However, it is undesirable to incur the additional operational complexity of

needing space weather data on-board as well as estimates of the Target spacecraft's

attitude for computing its ram area. For simplicity therefore, the - 50 m position

error for the 100 x 100 central body gravity model without drag is judged as sufficient

for the 90 minute target interval case. For multi-orbit intervals, high-fidelity model-

ing of the atmospheric density is necessary, and additional contributions from solar

radiation pressure and third-body effects should be taken into account. A force model

of this level of fidelity would be difficult to implement for on-board software in prac-

tice due to its high computational cost and the need for accurate space weather and

target attitude data. Therefore, propagation over an interval of one or more orbits

during a ground relay would be done on the ground while waiting to upload to the
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spacecraft. However, this work is mainly interested in relative navigation algorithms

for use onboard the spacecraft that enable greater levels of autonomy; therefore, the

360 minute target interval case will not be considered further.

In summary, to achieve a position propagation accuracy of - 25 m for crosslinks,

the models chosen for further analysis are J2 for At = 1 minute, 4 x 4 for At= 10

minutes, 14 x 14 for At = 30 minutes, and 100 x 100 for At = 90 minutes. For

downlink, the 1 & 10 minute interval cases using the same respective models will be

analyzed.

3.3 Propagation Error for Crosslinks

Tables 3.2 and 3.3 summarize the simulation results of model-induced errors for

crosslinks at the CLICK boundary ranges of 25 km and 580 km, respectively. The

absolute position errors for the Host and Target satellites are given, along with the

relative range and angle errors. The angle errors are the key results for pointing anal-

ysis. The truth model is as described in Section 3.2, and the Host & Target models

under evaluation along with the propagation intervals (AtH & AtH) are listed. The

initial altitude of the Target spacecraft is set to 1 km below that of the Host to include

an offset due to differential drag ranging. The simulation duration is set to include

30 Target propagation intervals, with the number of Host propagation intervals being

enough to fill the simulation period. This means, for example, that for the 10 minute

target interval simulations, the simulation duration is 300 minutes, so there are 300

host intervals for the 1 minute host interval case and only 30 host intervals for the

10 minute host interval case. This is why the host position error statistic changes

between cases even if the host interval is the same.

As noted in Section 3.2, the allocation for navigation error ( 9 9 th percentile) is on

the order of 1 mrad angle error (approx. 25 m position error). The results agree

with the predicted performance: all cases have a 9 9 th percentile model-induced error

of less than 0.6 mrad. The case that is representative of CLICK B/C operations is

the 1 minute host and 10 minute target interval case (row 2 in both tables). With
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respect to the reference total error case discussed in Chapter 2 that also includes

GPS measurement error, the model error therefore accounts for 588/1367 = 43% of

the total error in the 25 km case and 36.3/76.58 = 47.4% of the total error in the

580 km case. Moreover, all configurations other than the reference configuration have

reduced angle error, which indicates that these configurations may also be feasible

alternatives. This will be discussed further when GPS measurement error is added in

Section 3.8. In summary, the results show that using only an appropriate central

Table 3.2: Error magnitudes (9 9 th percentile) for model-induced propagation error for
CLICK short range (25 km) LEO crosslink for various propagation configurations.

AtH AtT Host Target Host Pos. Target Range Angle
(min) (min) Model Model Err. (m) Pos. Err. Err. (m) Err.

(M) (prad)
1 1 J2 J2 0.580 0.578 0.252 22.32
1 10 J2 4 x 4 0.642 22.08 9.142 588.0
10 10 4 x 4 4 x 4 23.24 23.32 7.828 529.6
10 30 4 x 4 14 x 14 20.74 19.09 13.31 479.3
10 90 4 x 4 100 x 100 19.86 47.40 13.22 324.9

Table 3.3: Error magnitudes ( 9 9 th percentile) for model-induced propagation error for
CLICK long range (580 km) LEO crosslink for various propagation configurations.

AtH AtT Host Target Host Pos. Target Range Angle
(min) (min) Model Model Err. (m) Pos. Err. Err. (m) Err.

(m) (prad)
1 1 J2 J2 0.567 0.520 0.253 0.847
1 10 J2 4 x 4 0.605 21.76 8.353 36.34
10 10 4 x 4 4 x 4 23.24 23.05 8.026 32.94
10 30 4 x 4 14 x 14 20.74 19.97 13.40 37.02
10 90 4 x 4 100 x 100 19.86 47.37 13.27 31.20

body gravity model, model-induced propagation error can be maintained less than 50

m for intervals up to 90 minutes and less than 25 m for intervals up to 30 minutes.

This corresponds to 9 9 th percentile angular errors of less than 600 prad at 25 km and

less then 40 prad at 580 km. For the baseline case, the model error accounts for 43%

of the total error at 25 km case and 47.4% of the total error at 580 km. Moreover, all

configurations other than the reference configuration have reduced angle error, which
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means that they are all potentially feasible options for crosslinks similar to CLICK.

The next section will explore the Earth rotation model used for Target position pre-

diction in downlinks as background for the analysis of the model-induced error for

downlinks.

3.4 Earth Rotation Models

An Earth Centered Inertial (ECI) frame is a psuedoinertial frame with respect to the

stars (taken to be fixed). An Earth Centered Earth Fixed (ECEF) frame is a non-

inertial frame that rotates with the Earth. The International Astronomical Union

(IAU) defines commonly used versions of these frames and how to transform between

them. In the IAU nomenclature, the ECI frame is the Geocentric Celestial Refer-

ence Frame (GCRF), and the ECEF frame is the International Terrestrial Reference

Frame (ITRF). The current definition follows the IAU-2000/2006 resolutions, which

re-defined the transformation in terms of the Celestial Intermediate Origin (CIO),

with three new parameters (X, Y, s) defining precession and nutation. The previous

definition was IAU-1976/FK5 (J2000.0), which uses the IAU 1976 precession theory

and the IAU 1980 nutation theory [33]. It should be noted for reference that the

U.S. WGS-84 ECEF frame used by GPS agrees with the ITRF to the cm level, which

means that they are considered to be interchangeable in this work [33]. In general,

the transformation of a position, velocity, or acceleration vector are defined as follows

[33]:

rGCRF = P(t)N(t)R(t)rTIRS (3.11a)

VGCRF = P(t)N(t)R(t)(vTIRS + X TIRS

aGCRF = P(t)N(t)R(t)(aTIRS + 2wD x vTIRS - we x (we x rTIRS)) (3.11c)

rTIRS = W(t)rITRFI VTIRS = W(t)vITRF ,TIRS = W(t)aITRF (3.11d)

we = [0, 0, 7.292115146706979 x 10 5 (rad/s)(1 - LOD/86400)]T (3.1le)
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where P accounts for precession, N accounts for nutation, R accounts for sidereal

rotation, and W accounts for polar-motion, which relates the ITRF to the Terres-

trial Intermediate Reference System (TIRS). Length of Day (LOD) is the difference

between the observed mean solar day and 86,400 SI seconds. Additional information

on time systems can be found in Appendix A.7.

The sidereal rotation about the Earth's axis R is defined using the Earth rotation

angle 0ERA as [331:

cos(OERA) -sin(OERA) 0

R = sin(ERA) cOS(OERA) 0 (3-12)

0 0 1

The precession and nutation of the Earth's axis PN is defined as 1331:

1 - aX 2 -aXY XY cos(s) sin(s) 0

PN = -aXY 1 - aY 2  Y -sin(s) cos(s) 0 (3.13)

-I- - a(X 2 + Yr2) 0 0 1

Lastly, the ITRF to TIRS transformation W is defined as [33]:

cos(s') -sin(s') 0 cos(xp) 0 -sin(xp) 1 0 0

W - sin(s') cos(s') 0 0 1 0 0 cos(yp) sin(yp)

0 0 1 sin(x,) 0 cos(xp) 0 -sin(yp) cos(yp)J

(3.14)

where (xp, y,) are polar motion displacements along the 00 & 90°W longitude merid-

ians, respectively. These are published daily by the International Earth Rotation

Service (IERS) as part of the Earth Orientation Parameter (EOP) sets, which also

include CIO offsets (dX, dY) and LOD [33, 40]. The daily published data can also

be found aggregated with timing offsets AAT & AUT1 at [41].
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The X series is defined as [33]:

4 Nx,j

X Cx,j + Ax,jsin(ax,i) + Bx,jcos(ax,) T T (3.15a)
j=0 i=1

with Nx,j E {1306, 253, 36, 4, 1} (3.15b)

X = X +dX (3.15c)

The Y series is defined as [33]:

4 Nyj

= (Cy, + 1IIAyjsin(ayij) + Byjcos(aey,) T T (3.16a)
j=0 i=1

with Nyj E {962, 277, 30,5, 11 (3.16b)

Y=Y+dY (3.16c)

(3.16d)

And the remaining parameters, 0 ERA and s' are defined as [331:

XY 4 N,,

s= + csj + Asjsin(a5S,) + Bs'icos(as,4) T T (3.17a)
2 j=0 i=1T

with Nj E {33, 3, 25,4, 11 (3.17b)

a 1 + (1 + 1 (3.17c)
2 8

OERA = 27r(0.779057273264 + 1.00273781191135448(JDuTi - 2451545.0)) (3.17d)

s' = -0.0000 4 7"TTT (3.17e)

where ax,, ay,3 and as,j are unique linear combinations of the Delaunay arguments,

each of which is expressed as a fourth order polynomial in TTT (see [33] for exact

expressions). The coefficients for the (ax,4, ay,), as,) linear combinations and for

the (X, Y, s) series are tabulated and can be found online at [42]. 0 ERA is the Earth

Rotation Angle and s' is the Terrestrial Intermediate Origin (TIO) locator, which

accounts for polar wobble.

70



Numerical Comparison of ECEF-ECI Transformations

The IAU-2000/2006 transformation has three versions (A, B, and C) and from high-

est to lowest computational cost, they are C, A, B [33]. The baseline for comparison

is the C version. The IAU-00/06 A and B versions in addition to the IAU-76/FK5

method are included in the comparison. The IAU-2000/2006 transformation algo-

rithm can also be simplified by eliminating Earth Orientation Parameters (EOPs) &

the s parameter and truncating to only a few terms in the X & Y series. Reducing

the number of EOP also reduces the amount of uplink telemetry data required to run

the algorithm on-board. The simplified methods chosen for analysis here are based

on a study done by Bradley and are [401:

e Set s, dX, dY, x,, yp, AUT1 to zero, truncate X, Y series to 4 terms.

* Set s, dX, dY, xp, y, to zero, include AUT1, truncate X, Y series to 4 terms.

* Set s, dX, dY to zero, include xP, yp, AUTI, truncate X, Y series to 15 terms.

The X, Y series are ordered from the largest term to the smallest term, so a 4-term

truncation means setting No = 4 & Ni = N2  N3= N4 = 0. Note that the series

should be added in reverse order starting with the smallest terms to mitigate numer-

ical rounding errors. The comparison was performed using STK for GCRF ground

position reference data. This was converted to ITRF data using the IAU-2000/2006

C method for a common reference before being converted back into GCRF data to

compare the various reduced cost methods relative to IAU-00/06 C. The software

was implemented in MATLAB via an adaptation of open-source software published

by Vallado [43]. The results are summarized in Table 3.4. The simplified models are

listed in order of increasing accuracy. For the most part, this corresponds to increas-

ing computational cost; however, the IAU-76/FK5 model actually outperformed the

IAU-00/06 A model, though the difference is on the order of millimeters, which is not

significant for our purposes. More significant performance degradation came when

truncating the X & Y series to only a few terms and eliminating the s parameter &

EOP parameters. However, even with the simplest 4-term, no EOP model, position
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Table 3.4: 9 9 th percentile position error magnitude (m) for ECEF to ECI transfor-
mation implementations relative to full-accuracy IAU-2000/2006 method. Simula-
tion over 7 days with 10 min sampling time from epoch Jan 01 2019 00:00:00.000
UTC. Reference geodetic coordinates (Latitude, Longitude): Boston (42.3606360, -
71.093418°), Boulder (40.006891°, - 105.264983°), Los Angeles (34.0688510, -
118.444692°).

ITRF to GCRF Method 3D RMS 3D RMS 3D RMS
Position Position Position

Error (m), Error (m), Error (m),
Boston Boulder Los Angeles

4-term X,Y Only 14.110 14.561 15.632
4-term X,Y & AUT1 9.800 9.053 8.105
15-term X,Y & x,, y, AUT1 1.184 1.179 1.175
IAU-00/06 B & All EOP 0.0227 0.0226 0.0223
IAU-00/06 A & All EOP 0.0181 0.0181 0.0180
IAU-76/FK5 & All EOP 0.0039 0.0038 0.0038

error remained less than 16 m, which corresponds to about 9-16 prad of angular error

for the median downlink ranges of about 1000-1700 km from the analysis in Table

2.5. The baseline model will be IAU-00/06 B with all EOPs. For further reference, a

detailed study of ECEF-ECI transformation simplification approaches can be found

in Bradley [40].

ECI-ECEF Acceleration Transforms for Orbit Propagation

Aspherical central body gravity accelerations are typically computed in the ECEF

frame and converted to ECI for propagation. In this work, the high-accuracy Earth

rotation model in STK's HPOP is used; however, in practice it is possible to optimize

performance by using a simplified Earth rotation model. Bradley gives an analysis of

the effects of truncating Earth rotation models for orbit propagation. For a 400 km

LEO orbit, the simplest truncated model, the 4-term X,Y series with no EOPs has

0.2 mm position error for At = 1 minute, 4.6 cm error for At = 15 minutes, and 2.9 m

for At = 6 hours {40]. Comparing against the results in Section 3.3, this effect is not

significant (~ 0.03%) relative to force model errors for 1 minute propagation intervals,

so truncation may be effectively used in these cases to reduce computational costs.

Taking the 15 minute error as relevant to the 10 & 30 minute propagation, the effect
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is also insignificant (- 0.2%) relative to force model errors. Taking the 6 hour error as

relevant for 90 minute propagation, the effect will be - 6% of the force model position

errors, with additional angular error of ~ 30% over 25 km. In summary, for intervals

on the order of 15 minutes or less, a truncated ECI-ECEF model is not considered

to impact satellite orbit prediction significantly for relative navigation purposes and

is a feasible option for reducing computational costs. It should also be noted that an

alternative approach to performance optimization is to avoid transformation of the

central body acceleration by propagating the orbit state in the ECEF frame. Bradley

gives an analysis of the errors for this configuration [40].

3.5 Propagation Error for Downlinks

Table 3.5 summarizes the simulation results of model-induced errors for downlinks to

ground station locations located on the east coast, midwest, and west coast of the

Continental U.S. (CONUS) at higher, mid, and lower latitudes. The access data is

aggregated over all three locations for statistical analysis. The STK simulation has

the same 9 orbit types, epoch, and truth model as the previous crosslink (Sec. 3.3)

and force model analysis simulations (Sec. 3.2). The propagation intervals are limited

to 1 and 10 minutes (see Sec. Sec. 3.2), as there is no ephemeris transfer necessary

during the link: the ground station is assumed fixed with its ECEF coordinates stored

on-board the spacecraft. Updates to the stored coordinates are possible during pe-

riodic TT&C contacts with the mission operations center. The minimum elevation

angle for access is set to 00. The three truncated ECI-ECEF transforms (see Sec. 3.4)

are included, in addition to IAU-00/06B (all the IAU models have near-zero error

contribution, so it is redundant to include all of them), and lastly a case without any

ECI-ECEF transform error as a control comparison.

What is immediately clear in Table 3.5 is that the IAU-00/06 B transform with

all EOP has essentially negligible error contribution. Moreover, for short (~ 1 min)

intervals, even a simple J 2 model has near-negligible (sub-arcsec) angular error con-

tribution for terminals similar to CLICK. For longer intervals, the propagation error
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becomes more noticeable but is still in the range tens of microradians. Lastly, the

15-term X,Y & x, y,, AUT1 ECI-ECEF transformation error is on the order of short

interval J2 model error. Hence, it could potentially be used as a sufficiently accurate,

lower computational cost alternative to the IAU-00/06 B transform (15 terms as op-

posed to 77). The baseline case with a 1 minute host interval and IAU-00/06 B (row

Table 3.5: Error magnitudes ( 9 9 th percentile) for model-induced error for LEO down-
link to CONUS for various propagation & ECI-ECEF transform configurations. Refer-
ence geodetic coordinates (Latitude, Longitude): Boston (42.360636°, - 71.0934180),
Boulder (40.0068910, - 105.264983°), Los Angeles (34.068851°, - 118.4446920).

AtH Host ECI-ECEF Transform Host Target Range Angle
(min) Model Pos. Pos. Err. Err.

Err. Err. (m) (prad)

(m) (m)
1 J2 4-term X,Y Only 0.478 18.04 17.80 28.77
1 J2 4-term X,Y & AUT1 0.478 7.963 7.812 12.39
1 J2 15-term X,Y & x,, yp, AUT1 0.478 0.866 0.789 1.198
1 J2 IAU-00/06 B & All EOP 0.478 0.015 0.015 0.338
1 J2 None 0.478 0.000 0.010 0.334
10 4 x 4 4-term X,Y Only 24.56 18.14 18.02 31.11
10 4 x 4 4-term X,Y & AUT1 24.56 7.959 7.871 19.97
10 4 x 4 15-term X,Y & Yp, AUT1 24.56 0.935 7.991 15.55
10 4 x 4 IAU-00/06 B & All EOP 24.56 0.015 7.565 15.78
10 4 x 4 None 24.56 0.000 7.576 15.78

4) has an error of 0.338 grad. With respect to the reference total error in the baseline

case, the model error accounts for 0.338/17.29 = 2.0% of the total error (see Table

3.13). As would be expected, as the Earth rotation model is simplified, the model

error fraction of the total error increases. For example, for the 1 minute host interval

and 4-term series without EOPs, the model error accounts for 28.77/33.90 = 85%

of the total error. All cases have a 9 9 th percentile model-induced error of less than

32 grad, which is on the order of the point-ahead error (50.36 grad). This indicates

the feasibility of using configurations other than the baseline, which will be discussed

further when GPS measurement error is added in Section 3.8. The following sections

will discuss the GPS measurement process and the associated errors.
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3.6 GPS Measurements

The Global Positioning System (GPS) was developed under the NAVSTAR satellite

program and is operated by the U.S. Department of Defense (DoD) [44]. As of January

2020, the GPS constellation consists of 31 operational GPS satellites [45] located

in near-circular Medium Earth Orbits (MEOs) with radii of 26,560 km and orbital

periods of approximately 12 hours [44]. Each GPS satellite continuously broadcasts

the GPS message, including data needed to compute user position, velocity, and

clock errors. The transmission frequencies are designated as LI (1575.42 MHz) and

L2 (1227.6 MHz) [44]. Additional technical implementation details are published by

the DoD 1461. This section will describe a typical approach used to compute the user

position and velocity from the GPS measurement observables. The corresponding

position and velocity uncertainty will also be derived as a function of the so-called

dilution of precision (DOP) and the noise associated with the observables.

3.6.1 User Position

The position measurement observables are the psuedoranges (pa) to each GPS satellite

in view [47]:

pa = dc, + c6t, + w p (3.18a)

Acat = |r, - rX = v/(zc - z.) 2 + (ya -- y)2 ± (zc -a (3.18b)

a E {1, ... , NGps} (3.18c)

where p, is the measured psuedorange from the user to GPS satellite a, dc is the

corresponding true range, r, are the GPS satellite positions, ru is the user position,

At = tu - ts is the difference in the true receive time and transmission time, 6tu is the

user clock error, and w, is the measurement error, which has variance oaRE (URE:

User Range Error). The transmission time and the GPS satellite position data are

contained in the GPS message. Note that the GPS satellite position data is given in

the WGS84 ECEF reference frame, so the position estimate will also be with respect
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to this frame unless a conversion is also computed. As noted in Section 3.4, the ITRF

corresponds to the WGS84 frame to cm-level accuracy; so for the purposes of this

work, these two frames are considered to be interchangeable.

The simplest position estimation method directly solves for the the unknown vari-

ables xT = [xe, Yu, zU, c6tu] at a particular time using a set of measurements from at

least 4 GPS satellites in view (NGPS > 4). This is a set of nonlinear equations that

can be linearized and solved via Gauss-Newton least squares iteration. It should be

noted that although more complex position estimation algorithms using filtering can

be used, the same linearization of the measurement equation (H The iteration step

is defined as [48]:

Xk+1 = Xk - (H [ Hk)-'H T Ayk, k = 0,1, 2, ... , n (3.19)

where n is the final iteration count dictated by a stopping tolerance criterion |AXk =

|Xk+1 - Xk|| < E and/or iteration count limit. The measurement residual AYk and

the measurement Jacobian Hk are {48]:

AYk = [/ 31(Xk) P1, ... , a(Xk) -pa, ... , PNGps (Xk) PNGPST (3.20a)

Hk = [hi(xk), ... , ha(xk), ..., hNGPS(xk)]T  (3.20b)

ha(xk) = 0'Z(Xk) = [-P(Xk),1] (3.20c)

Pca(Xk) = (r. - i.(xk))/da(xk) (3.20d)

- [xCa - Xu,k, Ye, - Yu,k, Za - Zu,klf/da(Xk) (3.20e)

pO = d0 (xk) + C6 tu,k (3.20f)

d0 (xk) = /(Xa - Xu,k) 2 + (ya - Yu,k) 2 + (z0 - zu,k) 2 (3.20g)
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where pe, are the estimated direction vectors to the GPS satellites in view. We can

solve for the error covariance of the position estimate E[AxAx T ] as follows [44]:

E[AxAx"] E[(HTH)-HTayZyT H(HT H)-']

= (HT H)-'HTE[AyAyT]H(HT H)-1

(3.21a)

(3.21b)

The pseudorange measurement residual covariance E[AyAyT] is assumed uncorre-

lated (e.g. diagonal) [44], and the algorithm error is assumed negligible relative to

the measurement error w,:

E[AyAy|= E[wpwp]INGPSxNGPS =URE NGPSxNGPS (3.22)

Substituting Equation 3.22 into Equation 3.21b yields:

E[AxAx T ] = OREG

G = (HT H)-'

(3.23a)

(3.23b)

where G is the dilution of precision (DOP) matrix, which yields the various dimen-

sionless DOP scalars [44]:

Geometric DOP: GDOP = tr(G) = 1Gu + G22 + G3 3 + G 44

Position DOP: PDOP = fGu + G 2 2 + G 33

Horizontal DOP: HDOP = Gu + G 22

Vertical DOP: VDOP = C

Time DOP: TDOP = C
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Therefore, given the URE variance and the dilution of precision scalars, the user po-

sition error standard deviations can be easily estimated using the following formulae:

11 = URE (3.25a)

oYu = C 22 CURE (3.25b)

UzU = /7 J (3.25c)

Cru = o + g2 + U = PDOP CURE (3.25d)

It should be noted that the values in G and the corresponding position component

standard deviations are dependent on the reference frame used. The RMS posi-

tion standard deviation (9r.) is invariant. A standard co-moving reference frame for

terrestrial receivers is North-East-Down (NED), hence the reason why the first two

components of the main diagonal of G are termed horizontal, with the third being

termed vertical. A corresponding co-moving reference frame for space-based receivers

is Vehicle Vertical Local Horizontal (VVLH), which is defined by the orbit's in-track,

cross-track, and nadir directions.

3.6.2 User Velocity

User velocity can be measured in two ways: one, the user position data can be numer-

ically differentiated; or two, the Doppler-shifts (Af0 ) induced by the relative motion

between the receiver and the GPS satellites in view can be measured. The modern re-

ceivers that will be referenced in later sections can actually be set to use either method

depending on the latency properties desired: the Doppler derived velocity has lower

latency than the position data derived velocity in these receivers [49]. Regardless of

the method used, the same method for estimating velocity uncertainty using DOP

and URRE can be applied for analysis, with the URRE potentially being different

depending on the method selected for computation. First, the relationship between

Doppler-shift and pseudorange rate will be given. In practice, the psuedorange rates

could either be found via via Doppler measurements or numerical differentiation.
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Then the uncertainty analysis will utilize psuedorange rate as the observable to show

how the velocity uncertainty is related to the URRE via the same DOP values used

for position error analysis.

The Doppler-shift is defined as follows [50]:

A fa= fR,a - faT,a a (3.26a)
c

fR,= fa(1 + 6) (3.26b)

fT,a = fo + 6 fT, (3.26c)

da = (Va - vU) - Pa (3.26d)

where dc are the true range rates, va are the velocities of the GPS satellites, v. is the

user velocity, fR,0 is the true received frequency, f,, is the measured received frequency,

fT,0 is the corrected transmit frequency, fo is the nominal transmit frequency (e.g.

LI).

The psuedorange rate is defined by differentiation of Equation 3.18a:

pa = dc + c6it + w (3.27)

where 6i, is the user clock drift rate, and w is the measurement error with variance

URRE (URRE: User Range Rate Error). To relate pseudorange rate to Doppler-shift,

Equations 3.26a-3.26b can be combined as follows:

f (1 + a) - fT,a = fT'da   (3.28a)
c

-c(f. - fr,a) fZ cois (3.28b)
fT,0  fT,0

The right-hand-side can be simplified since, numerically, f0 /fT,, ~ 1 [501. This leads

to the following relation between the Doppler-shift measurement variables and the

psuedorange rate variables:

- -C(fo - fT C)do + c6it - f f') (3.29)
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Therefore, the psuedorange rate obtained via differentiation of the position variables

is mathematically equivalent to that obtained via Doppler measurements, although

as previously noted they may have latency and URRE differences depending on the

receiver.

For velocity estimation, the vector of unknowns is xT = [, y , coia]. The

algorithm is still Gauss-Newton least squares iteration using Equation 3.19 with new

variables defined as follows:

yk [P1(Xk) P1, -,P (Xk) -a,-,pNGPs (Xk) - NGPS(3.30a)

Hk= [hi(xk), ... ,ha(xk), ... hNGPS(Xk)I T  (3.30b)

ha(xkXk) [-a (xk),1] (3.30c)

It is important to note the use of the same H matrix as for position estimation. The

velocity error covariance is derived similarly to the position error covariance, treating

the-pseudorange rate errors between GPS satellites as uncorrelated:

E[AxAxT] = JURREG (3.31)

And since H is the same as before, G is also the same matrix as before, which means

that the same DOPs can be used to estimate the velocity standard deviations given

the URRE variance using the following formulae:

11 = URRE (3.32a)

\ G 22 =URRE (3.32b)

V G 33 =URRE (3.32c)

av = ? + a + o? = PDOP JURRE (3.32d)
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3.7 GPS Measurement Error Estimates

This section will derive expressions for the position and velocity uncertainties associ-

ated with GPS measurements and then use simulation to estimate these uncertainties

for LEO satellites and CONUS ground stations for later use in relative navigation

analysis.

Parkinson et al. give six classes of GPS measurement errors: GPS ephemeris

data, GPS satellite clock, ionosphere, troposphere, multipath, and receiver [511. GPS

ephemeris data error is due to error growth in the on-board ephemeris between up-

dates from the ground [51]. GPS satellite clock error is due to drift in the on-board

atomic clocks between ground contacts [51]. Note that prior to being discontinued

in May 1, 2000, an artificial error called Selective Availability (SA) was intentionally

added to the transmitted satellite clock data [51, 44]. The GPS signals do not travel

at the vacuum speed of light when passing through the atmosphere, which leads to

the ionospheric and tropospheric errors. Note that LEO satellites with an altitude of

less than 1000 km are still within the ionosphere; however, they are above the tropo-

sphere. Furthermore, GPS receivers correct for atmospheric effects, so it is important

for the correction software to be modified for use in LEO to avoid introducing error

by correcting for nonexistent tropospheric error [37]. Multipath errors are causes

by spurious GPS signals that are reflected from nearby surfaces onto the receiver,

a phenomenon which is dependent on GPS antenna placement and the environment

[51]. Finally, receiver errors include code tracking loop errors, interchannel bias, and

microprocessor precision [51].

One approach to estimating URE and URRE is to make an error budget with

estimates for each of the above sources of error [51]. Clearly, the error estimates are

dependent on the receiver design details, and a detailed analysis of GPS receiver hard-

ware implementation is beyond the scope of this work. For the interested reader, the

Aalto-1 CubeSat GPS receiver design and testing is discussed in depth in Leppinen

[38]. For additional reference, the U.S. DoD provides accuracy standards. For exam-

ple, the Standard Positioning Service (SPS) Signal In Space (SIS) single-frequency
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C/A-code accuracy standard is URE < 12.8 m & URRE < 0.006 m/s 95% global

average during normal operations at any Age of Data (AOD), and the 98% global

availability standard is PDOP < 6 [46].

For another point of reference, the CanX-2 CubeSat was launched in 2008 into a

635 km altitude Sun-synchronous orbit, and it delivered flight results for the NovAtel

OEM4-G2 receiver that are summarized by Kahr et al. [37]. One caveat to these

results is that this is an older receiver variant with a quoted Li horizontal RMS posi-

tion accuracy of 2.16 m (1-a) and a LI RMS velocity accuracy of 0.03 m/s (1-U) [52].

Moreover, the CanX-2 mission experienced operational and hardware difficulties that

led to worse receiver performance than anticipated from ground testing, with large

error variation between tests. With all channels released, the CanX-2 CubeSat re-

ceiver had 3D RMS position errors of 10.8 m to 30.2 m and 3D RMS velocity errors

of 0.11 m/s to 0.34 m/s [37]. Systematic biases were noted in these results including

unnecessary tropospheric error correction, leading to about -17 m radial position

bias error, and timing bias in Doppler measurements, leading to about -0.05 m/s

radial velocity bias error [37].

For this work, specifications provided by NovAtel, a popular COTS GPS receiver

manufacturer, are used as the starting point. A series of recent receivers as of this

writing are the OEM615, OEM719, OEM729, and OEM7600 all of which have a

quoted Li horizontal RMS position accuracy of 1.5 m (1-a) and a Li RMS veloc-

ity accuracy of 0.03 m/s (1-u) [53, 54, 55, 56]. NovAtel does not provide URE or

URRE data; however, the specifications are said to be based on ground tests con-

ducted on the roof of one of the NovAtel buildings for a period of 24 hours [57].

To estimate the dilution of precision metrics expected in this type of test, an STK

simulation was run at epoch 01/01/2019 00:00:00.000 for a period of 30 days with

a maximum step size of 1 min, and the direction vectors were computed to visible

GPS satellites from the estimated NovAtel ground test coordinates (51.1502950, -

114.030733°). The estimated HDOP is 1.273 (9 5th percentile), and the estimated

PDOP is 3.499 (9 5th percentile). Therefore, uURE = (1.5 m)/(-vfHDOP) ~ 0.83 m,

and UURRE =(0.03 m/s)/(V"3PDOP) ~ 0.005 m/s. As expected, this performance is
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consistent with DoD accuracy standards. These values are used in the following and

in Sections 4.7 and 4.8 for psuedorange and psuedorange rate errors.

To estimate the corresponding position and velocity errors, another dilution of

precision simulation was carried out in STK for receivers in LEO orbits. These values

are used in Sections 3.8 & 3.9. The simulation parameters were as follows: J2 propaga-

tion from the epoch 01/01/2019 00:00:00.000 for a period of 30 days with a maximum

step size of 1 minute from 9 different LEO initial conditions of 400, 500, or 600 km

altitude, 0.005 eccentricity, 350, 51.6°, or sun-synchronous inclination (82° - 83° de-

pending on the altitude), -120° RAAN, and 00 argument of perigee. Three different

antenna pointing orientations were considered: orbit normal or anti-normal, radial,

or canted 450 in-between the normal and radial directions. The VVLH DOP data

distributions are shown in Figure 3-3. The statistics are summarized in Table 3.6.
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Figure 3-3:
receivers.

VVLH DOP distributions for 400-600 km near-circular LEO satellite

An important take-away is that the orientation of the receiver has a noticeable effect

on the cross-track DOP. The worst orientation is orbit normal pointing with an ap-
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proximately 5.4x higher DOP than for radial pointing. The corresponding increase

in PDOP is approximately 1.4x. Using Equations 3.25a-3.25d and 3.32a-3.32d, the

Table 3.6: DOP 9 5th percentile statistics for 400-600 km near-circular LEO satellite
receivers using J2 propagation from the epoch 01/01/2019 00:00:00.000 for a period
of 30 days.

Orientation In-Track Cross-Track Nadir PDOP
DOP DOP DOP

(Anti-)Normal 1.78 6.92 4.09 8.11
Radially Canted 450 1.30 4.17 4.41 6.36
Radial 1.11 1.27 5.31 5.71

results in Table 3.6 are translated into position error estimates (Table 3.7) and veloc-

ity error estimates (Table 3.8). The same orientation effects are again present, as this

a simple scaling of the DOP results. Lastly, similar statistics must be computed

Table 3.7: Estimated (1-o) position errors for 400-600 km near-circular LEO satellite
receivers from the epoch 01/01/2019 00:00:00.000 for a period of 30 days.

Orientation In-Track Cross-Track Nadir 3D-RMS

(m) (m) (m) (m)
(Anti-)Normal 1.48 5.77 3.41 6.75
Radially Canted 45° 1.08 3.47 3.67 5.29
Radial 0.92 1.06 4.42 4.75

Table 3.8: Estimated (1-o) velocity errors for 400-600 km near-circular LEO satellite
receivers from the epoch 01/01/2019 00:00:00.000 for a period of 30 days.

Orientation In-Track Cross-Track Nadir 3D-RMS

(m/s) (m/s) (m/s) (m/s)
(Anti-)Normal 0.008 0.034 0.020 0.040
Radially Canted 450 0.006 0.020 0.021 0.031
Radial 0.005 0.006 0.026 0.028

for the optical ground station: the ground station is assumed to be equipped with a

GPS receiver, and the raw measurements of the ground station position coordinates

from this receiver are stored and optionally processed by the satellite operator and

periodically uploaded to the spacecraft. For simulation, the specifications for a low-

cost COTS GPS receiver similar to that used by the CLICK-PorTeL optical ground
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station [22] are used: 2.5 m horizontal RMS position error [58], with an estimated

HDOP of 2.067 (9 5 th percentile) and OURE = (2.5 m)/(v'2HDOP) ~ 1.21 m. The

receiver antenna is fixed and zenith pointing. The dilution of precision terms are

computed for the aggregate data of the three CONUS ground stations used previ-

ously (Secs. 3.4 & 3.5), with the distribution shown in Figure 3-4 and summarized

in Tables 3.9 & 3.10.
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Table 3.9:

North-East-Down (NED) DOP distributions for ground stations in

DOP 9 5th percentile statistics for ground stations in CONUS from the

epoch 01/01/2019 00:00:00.000 for a period of 30 days.

Orientation

Zenith

North
DOP

1 1.37 |

East
DOP
1.54

Down
DOP
4.58

PDOP

5.36

Table 3.10: Estimated (1-o-) position errors for ground stations in CONUS from the

epoch 01/01/2019 00:00:00.000 for a period of 30 days.

Orientation

Zenith

North (m)

1.66 |

East (m) Down (m)

1.86 1 5.54 1

used to model the spacecraft GPS receiver are UURE= 0.83 m and %URRE= 0.005
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(m)
6.48
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m/s. Using DOP error analysis for a LEO satellite, the position and velocity errors

were estimated for antennas oriented in the (anti-)normal direction, radial direction,

or canted at 450 between the normal and radial directions. It was found that the

cross-track DOP increased as the antenna is oriented away from the radial direction,

with a 1.4x increase in PDOP for (anti-)normal pointing relative to radial pointing.

For the purposes of further analysis, the worst case (anti-)normal pointing is assumed,

with a PDOP of 8.11 and corresponding 3D RMS position error of 6.75 m and 3D

RMS velocity error of 0.040 m/s. In the following simulations, the VVLH error com-

ponents for this antenna configuration as listed in Tables 3.7 & 3.8 are added to the

true VVLH position components. The optical ground station is also equipped with

GPS receiver with different specifications: oURE = 1.21 m. The DOP values were

computed for the same three CONUS ground station locations as previous analyses

(Section 3.5), with the aggregated PDOP = 5.36 and corresponding 3D RMS position

error of 6.48 m.

3.8 Propagation of GPS Measurements for Crosslinks

Tables 3.11 and 3.12 summarize the simulation results of direct propagation of GPS

fixes for crosslinks at the CLICK boundary ranges of 25 & 580 km, respectively. The

simulation implementation is similar to that of Section 3.3, with the difference being

the introduction of random noise to the initial condition as per the estimated GPS

measurement errors in Tables 3.7 & 3.8. The worst-case antenna pointing configura-

tion (orbit (anti-)normal) is used for the DOP values, and unbiased Gaussian white

noise (N(0, o)) is added component-wise to the initial conditions for each propagation

interval.

These results are the complete relative navigation error comprised of GPS mea-

surement error and model error. One trend that is apparent in these results is the

compounding position error effect as the interval size grows due to the displacements

in the initial conditions created by the GPS error. The target position error grows

consistently from -5 m to -340 m as the target interval increases despite the si-
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multaneously improving force models, which taken alone had an error growth of only

~0.5 m to -50 m (Sec. 3.3).

As previously discussed, the case that is representative of CLICK B/C operations

is the 1 minute host and 10 minute target interval case (row 2 in both tables). These

configurations define the CLICK baseline for relative navigation during crosslink and

were used in Chapter 2's pointing budgets. For this configuration, GPS error accounts

for 57% of the total error in the 25 km case and 52.6% of the total error in the 580

km case. Although the GPS and model errors are roughly even for this configuration,

for the other configurations the GPS error is significantly greater than the model

error. For the symmetric 1 minute interval case at 25 km, the GPS error accounts

for 97.3% of the total error; and, for the 90 minute target interval case at 25 km,

the GPS error accounts for 82.3% of the total error. This indicates that the relative

navigation system performance can be improved even further by post-processing GPS

measurements using a tool like a Kalman filter, which will be the subject of Chapter

4. Across all cases, the results show that using only an appropriate central body

Table 3.11: Error magnitudes ( 9 9 th percentile) for direct propagation of GPS mea-
surements for CLICK short range (25 km) LEO crosslink for various propagation
configurations.

AtH AtT Host Target Host Pos. Target Range Angle
(min) (min) Model Model Err. (m) Pos. Err. Err. (m) Err.

(m) (prad)
1 1 J2 J2 15.43 15.00 5.111 843.8
1 10 J2 4 x 4 16.04 47.13 18.00 1367
10 10 4 x 4 4 x 4 46.05 45.70 21.54 1524
10 30 4 x 4 14 x 14 45.67 108.4 79.69 1851
10 90 4 x 4 100 x 100 45.90 335.6 288.5 1832

gravity model to directly propagate GPS position & velocity fixes, the position error

can be maintained less than -340 m for intervals up to 90 minutes and less than

~50 m for intervals up to 10 minutes. This corresponds to 9 9 th percentile angular

errors of less than ~2000 prad at 25 km and less then -200 prad at 580 km. Us-

ing the Rayleigh approximation for the pointing error and including the other error

budget terms in Table 2.2, the 99.7% pointing loss is therefore less than - -1.235
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Table 3.12: Error magnitudes ( 9 9 th percentile) for direct propagation of GPS mea-
surements for CLICK long range (580 km) LEO crosslink for various propagation
configurations.

AtH AtT Host Target Host Pos. Target Range Angle
(min) (min) Model Model Err. (m) Pos. Err. Err. (m) Err.

(m) (prad)
1 1 J2 J2 16.42 15.71 4.756 36.20
1 10 J2 4 x 4 15.53 43.08 15.81 76.58
10 10 4 x 4 4 x 4 43.42 48.17 20.45 98.96
10 30 4 x 4 14 x 14 46.69 110.9 77.09 150.4
10 90 4 x 4 100 x 100 47.46 337.7 279.3 136.7

dB at 25 km and ~ -0.427 dB at 580 km. The corresponding margins compared

to the reference requirement of -1.5 dB are greater than 0.265 dB and 1.073 dB,

respectively. Given these results, not only is direct propagation of GPS fixes without

additonal processing sufficient for CLICK crosslink relative navigation, but any of

alternative relative navigation configurations analyzed here are also sufficient. There-

fore, given the CLICK beacon geometry and crosslink ranges along with a modern,

high-precision GPS receiver similar to what is used in this analysis, the maximum

acceptable target interval duration is only limited by fidelity of the on-board force

model. However, given the practical challenges and risks associated with modifying

the COTS navigation software is used for CLICK, the upper limit of 10 minutes for

the target interval will be maintained for the CLICK mission.

Future missions with hardware and ranges similar to CLICK could potentially

increase operational flexibility and further reduce GPS receiver & inter-satellite com-

munications power requirements by further extending the target interval and imple-

menting corresponding force models of equal or higher fidelity than those recom-

mended here. Moreover, future missions may also have stricter pointing requirements

if shorter ranges or a narrower beacon are necessary. For example, given a FWHM

beacon divergence half that of CLICK (0.375°), the anticipated upper bound point-

ing losses increase to -4.941 dB at 25 km and -1.708 dB at 580 km, which do not

meet the desired pointing loss of -1.5 dB. In this case, assuming additional beacon

power is not available to compensate (+238 mW avg. power), further accuracy would
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be needed, and processing of GPS measurements would be a software-only solution.

This will be explored in detail in Chapter 4.

In summary, the addition of GPS measurement error causes relative navigation

error to increase and compound over longer intervals despite improved force models.

Nevertheless, using only aspherical gravity force models, the navigation error can be

maintained to less than ~340 m over intervals of 90 minutes and less than -50 m for

intervals less than 10 minutes. Across all configurations, the 9 9 th percentile angular

errors were less than -2000 prad at 25 km and less then -200 prad at 580 km, cor-

responding to 99.7% pointing losses less than -1.235 dB at 25 km and -0.427 dB at

580 km and corresponding margins greater than 0.265 dB and 1.073 dB, respectively.

Therefore, given sufficient force modeling for intervals up to 90 minutes, unprocessed

GPS measurements can be used with the CLICK hardware, and sufficient pointing

accuracy can be maintained, which is the plan for CLICK. However, for future mis-

sions with worse GPS hardware performance and/or stricter pointing requirements

like reduced minimum range or beacon divergence, GPS measurement processing is

recommended, which will be the subject of Chapter 4.

3.9 Propagation of GPS Measurements for

Downlinks

For downlinks, there are GPS measurement error contributions for both the satellite

position and the ground station position. The GPS measurement errors discussed

in Section 3.10 are directly added to the satellite propagator initial conditions and

to the stored ground station coordinates without any statistical processing to reduce

noise. The results are summarized in Table 3.13. The baseline CLICK mission case

is row 4 of Table 3.13, which was used for the error analysis in Chapter 2.

These results are the complete relative navigation error comprised of GPS mea-

surement error and model error. One clear take-away is that the Earth rotation model

error is insignificant compared to the ground station GPS error if the 3D RMS po-
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sition error is on the order of 1 m or less, which is the case for all models of equal

or higher fidelity to the 15-term model with select EOPs (1.18 m 3D RMS position

error). For example, the baseline case for 1 minute intervals with the IAU-00/06 B

model has a target model error of 0.015 m, which only accounts for 0.1% of the target

error when GPS error is added. This causes the GPS noise to dominate the error in

these cases, and the distinction between these models and a perfect transformation to

disappear in the navigation statistics. This means that the 15-term model with select

EOPs could be used instead of baseline the IAU-00/06 B model for computational cost

savings without any impact on relative navigation performance. Furthermore, the

Table 3.13: Error magnitudes ( 9 9 th percentile) for for direct propagation of GPS
measurements for LEO downlink to CONUS for various propagation & ECI-ECEF
transform configurations. Reference geodetic coordinates (Latitude, Longitude):
Boston (42.360636°, - 71.093418°), Boulder (40.006891°, - 105.264983°), Los An-
geles (34.068851°, - 118.444692°).

AtH Host ECI-ECEF Transform Host Target Range Angle
(min) Model Pos. Pos. Err. Err.

Err. Err. (m) (prad)

(m) (m)
1 J2 4-term X,Y Only 14.61 23.41 22.07 33.90
1 J2 4-term X,Y & AUT1 14.61 16.84 14.69 22.22
1 J2 15-term X,Y & xI,, y,, AUT1 14.61 14.47 10.98 16.36
1 J2 IAU-00/06 B & All EOP 14.61 14.58 11.13 17.29
1 J2 None 14.61 15.34 10.90 17.31
10 4 x 4 4-term X,Y Only 46.34 23.53 32.03 43.43
10 4 x 4 4-term X,Y & AUT1 46.34 16.36 29.56 35.35
10 4 x 4 15-term X,Y& X, y,, AUT1 46.34 14.33 28.37 29.86
10 4 x 4 IAU-00/06 B & All EOP 46.34 14.35 26.55 32.44
10 4 x 4 None 46.34 14.24 27.64 31.14

overall 9 9th percentile error across all cases is less than ~45 prad, which corresponds

to 99.7% pointing losses of less than -0.434 dB with margins greater than 1.066 dB

across all cases. This means that any of the relative navigation configurations ana-

lyzed here could be used, and the pointing requirement would still be met. Moreover,

computational cost savings could be realized by using the simple 4-term Earth rota-

tion model without EOPs. This also would reduce operational overhead, as EOPs are

data that is uploaded from the ground. Again, due to the COTS nature of the CLICK
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navigation software, the baseline case will be used for the CLICK mission; however,

future missions could benefit from these software modifications. Finally, although

GPS measurement processing could reduce the relative navigation error, the down-

link pointing budget is currently dominated by the assembly & calibration error term,

which means that to see benefits from measurement processing, the opto-mechanical

design for assembly & calibration would need to be improved first. Assuming this

would be the case for future missions with more stringent requirements, GPS mea-

surement processing could again be useful for performance improvement.

In summary, the overall 9 9 th percentile error across all cases is less than -45

prad, which corresponds to 99.7% pointing losses of less than -0.434 dB with mar-

gins greater than 1.066 dB across all cases, which means that the pointing requirement

is met for any of the relative navigation configurations analyzed, and cost savings can

be had by simplifying the Earth rotation model to a 4-term X, Y series without EOPs.

Furthermore, assuming the assembly & calibration error can be reduced for future

missions, GPS measurement processing would improve performance, which will be

the subject of the next chapter.
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3.10 Chapter 3 Summary

This chapter first analyzed the state propagation algorithm in depth, followed by a

discussion on how GPS position & velocity fixes are generated and their noise proper-

ties, before finally combining these two ideas to estimate the relative navigation error

by directly propagating GPS fixes, which is the baseline configuration for CLICK.

Section 3.1 defined Cowell's method for orbit propagation, which uses two-body

gravitational acceleration plus a perturbation acceleration. The perturbation acceler-

ation is computed via the sum of additional forces being considered beyond Keplerian

two-body gravity. In Earth orbit, these generally can include aspherical Earth grav-

ity terms, atmospheric drag, solar radiation pressure, third body perturbations, tides,

earth radiation pressure, relativistic effects, and thrusting maneuvers.

Next, in Section 3.1.1, the magnitudes of perturbing accelerations were compared,

and the sequence of force model simplifications for comparison was determined to be

1) eliminate tides, 2) eliminate third body perturbations, 3) eliminate SRP, 4 & 5)

substitute simplified atmospheric models for NRLMSISE00, 6) eliminate drag, 7-9)

truncate central body gravity to lower order square models, 10) use a J2 model, and

11) use a two-body model.

These simplified force models were analyzed for position propagation accuracy in

Section 3.2. To achieve a position propagation accuracy of - 25 m for crosslinks,

the simplified models chosen were J2 for At = 1 minute, 4 x 4 for At = 10 minutes,

14 x 14 for At = 30 minutes, and 100 x 100 for At = 90 minutes. The same respective

models are chosen for the 1 & 10 minute intervals used for downlink.

Next, the error induced by using these simplified models for crosslinks was assessed

in Section 3.3. Using only the appropriate central body gravity model, model-induced

propagation error was maintained less than 50 m for intervals up to 90 minutes and

less than 25 m for intervals up to 30 minutes. This corresponded to 9 9 th percentile

angular errors of less than 600 prad at 25 km and less then 40 prad at 580 km.

Prior to relative navigation analysis for downlinks, ECI-ECEF transformations

were discussed, and the position errors incurred by using simplified models with re-
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duced computational costs were compared in Section 3.4 for 3 CONUS ground station

locations. Even with the simplest 4-term X, Y series without EOPs, position error re-

mained less than 16 m, which corresponds to about 9-16 prad of angular error for the

median downlink ranges of about 1000-1700 km. Moreover, ECI-ECEF transforma-

tions are used in orbit propagation for the aspheric gravity perturbation accelerations,

and for intervals on the order of 15 minutes or less, a truncated ECI-ECEF model is

not considered to impact satellite orbit prediction significantly for relative navigation

purposes and is therefore also a feasible option for reducing computational costs for

the host position prediction.

Next, in Section 3.5 these models were compared for relative navigation in com-

bination with the orbit propagation models. All cases had a 9 9 th percentile model-

induced error of less than 32 prad, which is on the order of the point-ahead error

(50.36 prad).

Proceeding to the incorporation of GPS error, section 3.6 derived the position and

velocity uncertainty as a function of the DOP parameters and the URE & URRE.

Section gave the GPE error metrics used for further analysis. For this analysis, the

specified spacecraft GPS receiver was determined to have gURE= 0.83 m and UURRE

= 0.005 m/s. For a LEO satellite, it was found that the cross-track DOP increased

as the antenna is oriented away from the radial direction, with a 1.4x increase in

PDOP for (anti-)normal pointing relative to radial pointing. For the purposes of

further analysis, the worst case (anti-)normal pointing was assumed, with a PDOP

of 8.11, corresponding 3D RMS position error of 6.75 m, and 3D RMS velocity error

of 0.040 m/s. The optical ground station is also equipped with GPS receiver with

different specifications: 9URE =1.21 m. The DOP analysis aggregated over the same

3 CONUS ground stations yielded PDOP = 5.36 and a 3D RMS position error of

6.48 m.

Section 3.8 analyzed the baseline relative navigation error for crosslinks by com-

bining orbit propagation with raw GPS fixes. With the GPS specifications provided,

the navigation error was maintained to less than ~340 m over intervals of 90 min-

utes and less than -50 m for intervals less than 10 minutes by using only aspherical
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gravity force models to directly propagate GPS fixes without processing. Across all

configurations, the 9 9 th percentile angular errors were less than -2000 prad at 25 km

and less then ~200 prad at 580 km, corresponding to 99.7% pointing losses less than

-1.235 dB at 25 km and -0.427 dB at 580 km and corresponding margins greater

than 0.265 dB and 1.073 dB, respectively. Therefore, given sufficient force modeling

for intervals up to 90 minutes, unprocessed GPS measurements can be used with the

CLICK hardware, and sufficient pointing accuracy can be maintained, which is the

plan for CLICK. For future missions with worse GPS hardware performance and/or

stricter pointing requirements like reduced minimum range or beacon divergence, GPS

measurement processing is recommended.

Similar analysis was carried out for downlinks in Section 3.9. The overall 9 9 th

percentile error across all cases was less than -45 prad, which corresponds to 99.7%

pointing losses of less than -0.434 dB with margins greater than 1.066 dB across

all cases. This means that the pointing requirement is met for any of the relative

navigation configurations analyzed, and computational cost savings can be had by

simplifying the Earth rotation model to a 4-term X, Y series without EOPs. Further-

more, assuming the assembly & calibration error can be reduced for future missions

and/or assuming significantly poorer GPS performance, GPS measurement processing

could also improve performance for downlink relative navigation. GPS measurement

processing for improved relative navigation performance will be the subject of the

next chapter.
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Chapter 4

Kalman Filtering for GNSS-Based

Relative Navigation

The Kalman Filter [59] is a widely used framework for the estimation of the state

of a dynamical system when given noisy measurements [47, 60, 61]. The Extended

Kalman Filter (EKF) uses linearization to extend the linear Kalman filter to the

nonlinear case. The EKF can be separated into two main subroutines: correction and

prediction. There are three EKF formulations that will be studied for this application:

1) the Conventional EKF (CEKF); 2) the Joseph Sequential EKF (JSEKF); 3) the UD

Sequential EKF (UDSEKF). These three formulations are compared on three metrics:

the time complexity of implementation, the filter consistency, and accuracy for orbit

determination using GPS measurements. The best performer is analyzed further, and

its orbit determination uncertainties are used for a full relative navigation analysis to

compare against the unfiltered results from Chapter 3.

4.1 The Extended Kalman Filter

The Extended Kalman Filter (EKF) can be formulated in continuous time, discrete

time, or as a hybrid continuous-discrete system. For orbit determination, the dynam-

ics are formulated in continuous time, and the GNSS measurements are discrete. The
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general continuous-discrete system of this type is defined as follows [601:

k(t) = f(x(t), u(t), t) + G(t)w,(t) (4.1a)

Yk = h(xk) + Wyk (4.1b)

where Yk = y(tk) C R" is the measurement, wyk ~ N(O E R", Rk) is the measure-

ment noise modeled as an unbiased Gaussian process, x E Rn is the state of the plant,

wx(t) ~ N(O E RP, Q(t)) is the process noise, and u E R' is the control input to the

plant (if the estimator is part of a control loop). In general, the continuous-discrete

EKF is analytically formulated as follows [601:

0(to) = -0, Po = E[i(to)T(to)] (4.2a)

Kk= P,7HkT(HkP, H + Rk) -1  (4.2b)

Oh
Hk = (x-) (4.2c)

Ox

Xk = i_ + Kk(yk - h(x-)) (4.2d)

Pk= (I - KkHk)P- (4.2e)

k(t) = f(k(t), u(t), t) (4.2f)

P(t) = F(t)P(t) + P(t)FT (t) + G(t)Q(t)GT (t) (4.2g)

F(t) = 1f(x (t), u (t),I t) (4.2h)

where -= E[x yi, ... , yi_1] is the a priori state estimate, i- = E[x y1,...,yk)isthe

a posteriori state estimate, R = R - x is the state estimate error, P- E[i-i-T]

is the a priori error covariance, P= E[4i+iT] is the a posteriori error covariance,

and Kk E R"'X" is the Kalman gain. Equation 4.2a is the filter initialization step.

Equations 4.2b-4.2e are called the correction or measurement-update step, which

generates the a posteriori estimates. Equations 4.2f-4.2h give the state and covariance

dynamics, which are the basis for the prediction or time-update step that generates

the a priori estimates. These steps can be organized at a high level into the structure

given in Algorithm 1.

96



Algorithm 1 Extended Kalman Filter Algorithm Structure

[X,P initialize()
while online do

return [*, Pkf] =correction(xk, P7, Yk)

[±1 P+-,] = prediction(kg, Pk+)
end while

The initialization step can use measurements or previous filtered data, and dif-

ferent initialization strategies such as batch processing, one-point initialization, two-

point differencing can be tried depending on the available information [471. In this

study, for orbit determination using GNSS measurements, we simply use the GPS fix

at the epoch of the sampling interval and plug in estimated measurement uncertain-

ties to a diagonal initial covariance matrix. There are also alternative formulations

to the covariance filter formulation given here called information filters, which prop-

agate the the inverse of the covariance matrix, called the information matrix. This

formulation does not require an initialization step; however, it is typically more ex-

pensive than covariance filtering unless the measurement dimension is much larger

than the state dimension [60]. The correction and prediction subroutine details for a

covariance filter formulation will be the topics of the following sections.

In summary, the EKF is used for estimation problems with nonlinear dynamics

and/or measurements and can be formulated in continuous time, discrete time, or

as a hybrid of both. There are three main steps: filter initialization, correction, and

prediction. There are various initialization strategies depending on the available data.

For orbit determination, we will use single GPS fixes for state initialization and es-

timated measurement uncertainties for covariance initialization. The correction and

prediction algorithms will be detailed in the following sections.
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4.2 The Correction Step

4.2.1 Conventional Correction

Following the nomenclature in Verhaegen et al., we will call the standard imple-

mentation of Equations 4.2b-4.2e the Conventional Extended Kalman Filter (CEKF)

correction, which is defined in Algorithm 2 [62, 63]. The expression for algorithmic

Algorithm 2 Conventional Extended Kalman Filter Correction [62, 63]

Given -, Pg, yk, Rk
Hk - a(xk

Ck - HkP7
Sk = CkH + Rk
Kk = CkS'

Pk = P - - K Ck
Pk+= 0.5(Pk + P )
^= + - + Kk yk - h(x-))
return x,- P
Complexity: O(m 3 + (2m + 2)n 2 + 2m2n + mn + m + n + pjh (n) + ph (n))

complexity is given as a function of the state and measurement dimensions, where

Ph((n) and pih(n) are the polynomial complexities to evaluate h and its Jacobian ma-

trix, respectively. We assume that the measurement covariance Rk is computed offline

and treat it as constant. Importantly, the covariance update, Pk = PE - KkCk, is

subject to numerical errors that can cause the covariance matrix to become indef-

inite, leading the filter to diverge [62]. This is addressed in Algorithm 2 by brute

force symmetrization (P = (P + PT)/2) of the conventional covariance update. An

alternative approach is the so-called Joseph form of the covariance update, shown in

Equations 4.3a and 4.3b following the mechanization given in [64]:

P = PP - KkCk (4.3a)

Pk = (P - (PH')KTK) + (KkRk)KkT (4.3b)

However, this approach to stability causes the CEKF algorithm complexity to change

from that given in Algorithm 2 to O(m3+(4m+3)n2+4m2 ±n+mn+m+n+pjh(n)+
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Ph (n)), which has larger coefficients for the n2 and m2n terms. A different approach to

maintaining stability is to reformulate the covariance matrix via factorization, which

will be the subject of Section 4.2.3. The computational cost of the correction step can

be reduced by eliminating the matrix inversion that generates an O(m 3 ) complexity

term. This is accomplished by taking advantage of an alternative formulation known

as sequential measurement processing.

In this section, the Conventional EKF (CEKF) correction algorithm was defined,

with a time complexity that includes a O(m 3 ) term due a matrix inverse step. Fur-

thermore, the standard covariance update step is numerically unstable, and two sta-

bilization approaches were given: brute force symmetrization of the covariance matrix

and the Joseph form of the covariance update. The next section will discuss sequential

measurement processing, which eliminates the 0(m3 ) matrix inverse.

4.2.2 Joseph Sequential Measurement Processing

The concept of sequential processing comes from treating the measurement vector

as a combination of independent scalar measurements. In general, the measurement

covariance will not be diagonal; however, as it is symmetric positive definite, it can

be diagonalized in general via an orthogonal similarity transformation: R = TDRTT ,

y = Tz, H = T. In many cases, this diagonalization can be computed offline.

We next parse the measurement data by the individual components of z: zk =
T

(zk) 0 , aka = rowQ(7 k), and rk,, = (DR,k)a,,, where a E {1,...,m}. The idea of

sequential processing is to loop over these scalar measurement components, applying

the Kalman correction iteratively at each step; however, at each step the scalar form

of the update equations can be used, replacing matrix inversion with simple division.

A proof of equivalence of this formulation and the conventional formulation can be

found in Kettner et al., which takes advantage of linearity and the equivalence of

the covariance and information forms of the update equations 163]. The sequential

processing algorithm for the Joseph form Kalman update is given in Algorithm 3

following Thornton [64]. For simplicity, it is assumed that the measurement covariance

diagonalization is computed offline. For memory efficiency, the diagonal elements
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of DR,k are stored in a vector rk. The measurement linearity is essential for the

state update in this implementation, so Hk is used to approximate the measurement

estimate y = h(kj-) ~ Hkkj. It should be noted that for some applications with

highly nonlinear measurements, this may cause unacceptable errors. The O(m2r)

term in the complexity comes from the change of basis transformation applied to the

measurement Jacobian. Hence, if the measurement is already linear, then this form

of the update has complexity with no powers of m greater than 2.

Algorithm 3 Joseph Sequential Extended Kalman Filter Correction [641

Given , P- zk, rk,T

p~p- k- )
k 5xk (k k

Na~ = xk
Pk+ = P - i7 =k
for a = 1, ... ,m do

a = (Itk,[a,l:n])T
c = Pk a
k = c/(aTc + rk,a)
P = Pk -- kcT

Pk= (P - (Pa)kT) + rk,a(kkT )
k k

end for
return x^ P
Complexity: O(7mn2 + m 2n + 5mn + 3m + pjh ())

In summary, sequential measurement processing treats vector measurements as

sequences of scalar measurements, enabling the use of a series of scalar division cor-

rection steps instead of using matrix inverse. This eliminates the O(m 3) term due to

matrix inversion, and the remaining complexity terms have powers of m less than 2.

4.2.3 UD Sequential Measurement Processing

Matrix factorizations offer memory & processing efficiency while retaining stability.

The symmetric positive definite nature of the error covariance matrix P leads to

Cholesky factorizations of the following two forms:

P = SST (4.4a)

P=UDUT (4.4b)
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where S = UDI/2 is the so-called square root of P, U is a unit, upper triangular matrix

(ones on the main diagonal), and D is diagonal. Two covariance filter formulations

that use Equation 4.4a are the Potter Square Root Filter and the Carlson Square

Root Filter, where the Carlson form is an improved version of the Potter form [64].
The covariance filter formulation that uses Equation 4.4b is the Thornton-Bierman

UD filter [65]. The UD filter with sequential processing has been shown to be the

most efficient filter of these three [65, 64, 66]. Hence, the Potter and Carlson filters

are not considered further. Furthermore, algorithms that use Cholesky matrix factors

of P only need to store its n(n + 1)/2 degrees of freedom instead of its n2 entries,

which is a memory savings of 50(1 - 1/n)%. For orbit determination with n = 6, the

memory savings is 41.6%.

The UD filter sequential processing update is shown in Algorithm 4, following the

formulation in Gerald & Bierman [65]. The matrix factorization process for P is not

part of the UD filter, as only the matrix factors are used throughout. The use of

linearized scalar measurement updates is similar to Algorithm 3 and carries the same

complexity benefit of eliminating matrix inverses. The diagonal elements of Dk are

stored in a vector dk. The memory improvement over storing P can be gained by

storing the off-diagonal elements of U in a vector of length n(n - 1)/2. For clarity,

the matrix form of U is given in Algorithm 4, and for simplicity the dense matrix

form is also used in the simulation implementation.

In summary, Cholesky factorization of the covariance matrix leads to the Pot-

ter square root filter, Carlson square root filter, and Thornton-Bierman UD filter

formulations of the correction algorithm. Of these three, the Thornton-Bierman UD

formulation is the most efficient. Furthermore, not only do Cholesky factorization for-

mulations guarantee stability, but they also save on memory usage by 50(1 - 1/n)%.

The next section will explore the prediction algorithms for the EKF.
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Algorithm 4 UD Sequential Extended Kalman Filter Correction [651

Given k-, U, , d-,zk, rk,T

Hk = T T O(x-)
Uk+ =U-, d+=d-, 4 = -
for a = 1, ... , m do

a = ( k,[a,1:n] ) T

f =+ Ula
vi =difi, i = 1..,n

-1 rk,a -+ vifi
d+1 = d+rk,,«/1

bi = v1
U = Uk
for j 2,...,n do

73.=7 -1 + fV
d~7 =dg_1g

Pj =d

pi -f31Y3/- 1
for i = 1,...,j-1 do

U+i = Ujj + bipj
bi = bi + Uj

end for
end for
:9+ = X + b((z,, - ari) X.

end for
return -f U, dk' k
Complexity: O(m2n + 3mn 2 + (3/2)n 2 + 3mn - n/2 + pi, (n)) [65]

4.3 The Prediction Step

The state prediction step 4k -± X-1 can be formulated as an initial value problem

(IVP) in the ordinary differential equation for the state dynamics (Equation 4.2f). The

family of Runge-Kutta methods are popular for solving IVPs and will be discussed in

Section 4.3.1. The covariance prediction step Pk+ -+ Pa-j can also be formulated as

an IVP in a matrix ordinary differential equation (Equation 4.2g); however, solving

this matrix IVP is computationally expensive and the alternative approach that will

be used here takes advantage of matrix exponential methods, which will be discussed

in Section 4.3.2.
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4.3.1 State Prediction by Runge-Kutta Methods

There is a vast literature on methods for solving initial value problems, and the

selection of an optimal method is problem-dependent. These methods can either

use a fixed integration step size or a variable step size. We will first look at a 4 th

order fixed-step Runge-Kutta method (RK4) following the treatment in Burden &

Faires [67]. We will also discuss variable step methods like the Runge-Kutta-Fehlberg

(RKF) 4(5) and 7(8) methods and the Dormand-Prince (DP) 5(4) method, which is

the algorithm used by MATLAB's ode45 [68]. The IVP is formulated as an explicit

nonlinear system of first order ordinary differential equations:

t E [tk, tk+1] (4.5a)

X(tk) = i U(tk) - Uk (4.5b)

X(t) = f (R(t), u(t), t) (4.5c)

ik+1 = JZ(tk+1) (.d

An accuracy metric by which ODE solvers can commonly be judged is local truncation

error, which is the accuracy at a given time step relative to the exact solution at the

previous time step. It is generally a function of the step-size, denoted by h, and

a pth order truncation error T =O(hP). Both Runge-Kutta methods and Taylor

methods of order p are characterized by pth order truncation error; however, Runge-

Kutta methods do not require evaluation of derivatives of f, rather using repeated

evaluation of f [67]. RK4 is given in Algorithm 5. RK4 has 4 stages and thus

has a leading complexity term of O(N(4 npg(n, r))), where pg(n, r) is the polynomial

complexity to evaluate g, and N is the number of time steps in the interval [tk, tk+1].

Variable step size Runge-Kutta methods have a local error control capability,

where the local error is estimated online. The step size is reduced when the algorithm

local error is high, which indicates strong nonlinearity, and the step size can be

increased otherwise to improve performance. In order to estimate the local error, the

algorithm computes a pth-order solution, W, and a (p + 1)st-order solution, wv. The

103



Algorithm 5 4th Order Runge-Kutta Method for State Prediction [67]

Given [tk, tk+1], N, I(tk) = k, u(t) for all sample points
Let g ( X(t),I t) =- f ( X(t), u (t), t)
h = (tk+1 - tk)/N, t = tk

for j = 1,...,N do
ki = hg(c, t)
k2= hg(k + ki/2, t + h/2)
k3= hg(k + k2/2, t + h/2)
k4= hg(k + k3, t+ h)
x = ± + (ki + 2k2 + 2k3 + k4)/6
t = tk+ ih

end for
return k(tk+1)

Complexity: O(N(4 npg (n, r) + 5n2 + 14n + 2))

step size h is then adjusted by a factor q defined by an inequality of the following

form [67]:

q < c -h 1/ (4.6a)
|wV - w|

where c is a tolerance on the local truncation error, and c is a constant. For ex-

ample, RKF 4(5) uses 4th and 5th order estimates to estimate the local error, with

n = 4, c = (1/2)1/4 [67]. A method which makes further improvements is the DP 5(4)

method, which is the current algorithm used in ode45 (it previously used an RKF 4(5)

method) [69, 68]. Both RKF 4(5) & DP 5(4) have 6 unique stages; therefore, ignoring

the additional arithmetic beyond function evaluation steps, the complexity for RKF

4(5) and DP 5(4) is therefore about O(N(6npg(n, r))) [68]. RKF 7(8) uses 7th and

8th order estimates with 13 stages for a leading complexity term of O(N(13npg(n, r)))

[40]. It should be noted that the leading complexity terms of higher order methods

will only be smaller than lower order methods if the number of steps taken (N) is

significantly smaller. Nevertheless, for a given accuracy, higher-order, variable step

methods are typically more efficient than lower-order, fixed-step methods [67]. The

analysis in Bradley indicates that this trend holds for orbit propagation [40]. The

default integrator used for orbit propagation throughout this work is RKF 7(8) with
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a tolerance of 10-13, which is the default used by STK's HPOP.

In summary, state prediction consists in solving an IVP, which is commonly ac-

complished using the Runge-Kutta family of methods. Differences between methods

include the order of the truncation error and the use of either fixed or variable step

sizes. The leading complexity terms are characterized by the number of stages, which

include function evaluation steps. For comparison these are O(N(4npg(n, r))) for

RK4, O(N(6npg(n, r))) for RKF 4(5) & DP 5(4), and O(N(13npg(n, r))) for RKF

7(8). For a given accuracy, higher-order, variable step methods typically need to take

far fewer steps N than lower-order, fixed-step methods, meaning that they are more

efficient. The default integrator used for orbit propagation throughout this work is

RKF 7(8). In the next section, covariance prediction will be discussed.

4.3.2 Covariance Prediction

The covariance prediction step must estimate a solution to Equation 4.7, a differential

Lyapunov equation that is the simplified form of the differential Riccati equation that

describes the full prediction-correction dynamics of the covariance [61].

P(t) = F(t)P(t) + P(t)FT (t) + G(t)Q(t)GT (t) (4.7)

However, integrating Equation 4.7 can can be quite costly, with the equivalent state

dimension being the number of degrees of freedom of P, which is n(n+1)/2. For Equa-

tion 4.2g, this leads to an RK4 complexity of O((N/4)(5n 4 + 22n 3 - 7n 2 - 20n + 8)),

which is potentially the most expensive algorithm so far. However, the matrices

involved can be approximated by constant matrices, which enables an alternative ap-

proach that converts the continuous equation to a discrete equation using the matrix

exponential.

Following the treatment in [61], we define the transformation A = PR. Plugging

this into Equation 4.7 yields the following 2n x 2n first order, Hamiltonian system
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[61]:

T1FT 0 y _ y(.a

A = -GQGT F ][ ]A (4.8a)

The state transition matrix for this system between time steps is XI(tk+1, tk) =

eF(tk+l-tk) = erAt, which leads to the discrete form of Equation 4.8a [61]:

l(tk±1 r Trn7 A11(tk)1 (4.9a)

with solution: (4.9b)

P(tk+l) - (iFin + 'WAAP(tk)) (WI'7 + WIJAP(tk)- 1  (4.9c)

where Wf AA = ), Wf = '-T, and W7 =0. Simplifying Equation 4.9c yields [61]:

Pk= kPk + Wk (4.10a)

= eFAt(4.1b)

where Equation 4.10a is equivalent to the prediction equation for the fully discrete

time EKF, 4)k is the state transition matrix, and Wk = AnT is the discretized

form of the noise covariance. Equation 4.10b defines the relationship between the

linearized dynamics and the discrete state transition matrix, which depends on the

computation of a matrix exponential.

In summary, the solution to the continuous dynamics Lyapunov differential equa-

tion for the covariance can approximated by the standard discrete time covariance

prediction by using the matrix exponential. Algorithms for computing the matrix

exponential will be the subject of the following.

The Matrix Exponential

There are many ways to compute a matrix exponential, 19 of which are described

in the classic paper by Moler & Van Loan [70]. The most obvious approach is a
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truncated Taylor series approximation:

N

eA ~ 1k keATk(A) -ZAk (4.11a)
k=0

Another common approximation is the Pade approximant, which is defined as follows

[70]:

e Rpq(A) = Q- 1 (A)Pq(A) (4.12a)

p (p =q-j)! Ai   
(4.12b)Qpq(A) !(p + (p - q)!

Ppq(A) =q!(p+q-j)! (-A)'   (4.12c)
_ j( p+ q)!(q -j)!

The problem with this either of these series approaches is that by themselves, they do

not take into account how ill-conditioning of the problem can lead to large forward

error [70]:

t t(A+E) _ etA (4.13a)
0 M lietAll

#(t) < t ||E|| exp [t(p(A) - a(A) + ||Ell)] (4.13b)

#(t) A i' (t, A) (4.13c)

where E is a matrix perturbation, p(A) is the log norm of A (e.g. the maximum

eigenvalue of (A + AH)/2), a(A) is the maximum real eigenvalue component in the

spectrum of A, and K(t, A) is the condition number of the problem. Importantly,

r,(A, t) > t |A l, with equality if the matrix A is normal (e.g. AAH - AHA 0),

which includes Hermitian, skew-Hermitian, and unitary matrices. Hence, the matrix

exponential is well conditioned if A is normal with a small L2-norm [701. Therefore,

both Taylor and Pade series approaches may fail in the general case.

An approach that remedies this is the scaling and squaring method, which utilizes

the identity eA = (eA/) with -= 2i to reduce the norm of the matrix argument [70].
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Either of the above approximations may be used, Tk(A/2i) 2j or R4q(A/2j) 2j, where

the diagonal Pade approximant (p = q) is used to maximize efficiency. According

to Moler & Van Loan, with 10-2 < ||All < 103, the scaling and squaring method

is generally more efficient when using the diagonal Pade approximant instead of the

Taylor approximant [70]. For example, if ||All = 1, 5 < 10-9, requires a 6th order

Taylor series with 3 scaling and squaring steps versus a 4th order Pade series with

only 1 scaling and squaring step.

Therefore, for the general problem, we will use the scaling and squaring Pade

approximant method that is used by MATLAB's expm, which is further described

by Higham et al. [71, 72]. It is possible to specialize this algorithm to reduce costs in

special cases where the necessary scaling and series orders are known. Furthermore,

the algorithm is optimized for IEEE double precision floats and therefore can be

modified for reduced precision representations. These modifications are not explored

in this work. Importantly, the maximum cost of the algorithm for a M x M matrix

is O([29/3 + log2 (||A l /6 13 )]M 3 ), where ||AIll > 013 ~ 5.37192. For example, if

AlII = 10, the cost is O(10.56M 3 ). If |All   613, the cost will be lower, and

the various expressions for the complexity as a function of ||AlI1 can be found in

Higham et al. [72]. The best and worst case complexity expressions are given in

Algorithm 6, along with the complexity of the other arithmetic operations involved

in the covariance prediction step.

Algorithm 6 Matrix Exponential for Covariance Prediction [61, 71, 72]

Given at =tk+1 - tk, P+ Fk, W = GkQkGT (computed offline)

= [-FT0
W Fk

I = expm(FrAt)
1 '(n+1):2n,(n+1):2n

W = W(n+l): 2 n,l:n@T
P 4p+41+

Pk+1 = k gr+W
return P +1
Complexity (Best-Case expm): 0((8/3)(2n)3)
Complexity (Worst-Case expm): O([(29/3 + log2 (11FAt|| 1 /013))1(2n)3)
Complexity (Other): 0(3n3 + n2)
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The baseline implementation of the covariance prediction step is shown in Algo-

rithm 6 (note that M = 2n). As discussed above, the matrix exponential can be

modified for improved performance in special cases. More generally, approaches that

take advantage of the block lower triangular, Hamiltonian matrix structure of F may

enable further efficiency improvements but are outside the scope of this work [73, 74,

75].

In summary, there are many methods for computing the matrix exponential; how-

ever, one of the top performing algorithms is the scaling and squaring Pade approx-

imant method used by MATLAB's expm. The complexity of this algorithm is a

function of the Li-norm of the argument to the matrix exponential (||FAt|| 1), which

in the best case reduces to O(24.3n3 ). It is possible to improve the performance of

this algorithm by taking advantage of the block lower triangular, Hamiltonian ma-

trix structure of F. The next section will modify Algorithm 6 for the UD covariance

formulation case.

4.3.3 Prediction for the UD Factorization

In order to efficiently utilize the matrix factorizations in Section 4.2.3, the prediction

step should not require recombination into P followed by re-factorization, which would

be a direct implementation of Algorithm 6, with an additional O(7n3 /3). Instead,

an approach developed in parallel with Algorithm 4 can be utilized. The treatment

here follows Thornton & Bierman [76]. The starting point is the discrete dynamics,

treating the linearized dynamics matrices as constant over the interval: Xk+1 = 4 kXk+

TkwXk. The covariance prediction is Pk+1 = 4PkT +4 TkQkTT. The covariance

factor prediction can then be formulated in terms of the UD factorization [76]:

W = [(DkUk | TI ] (4.14a)

_D+ 0
D= k (4.14b)

0 QkJ

Pk+1= WDW T (4.14c)
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The matrices <bk and Tk can be computed with a continuous to discrete transformation

via the matrix exponential [771. The factors UJ+1 & D+ 1 can be computed via

a modified weighted Gram-Schmidt orthogonalization of the rows of W, where the

weighting Gram matrix is D 1781. The UD covariance prediction step is thus given

in Algorithm 7. In summary, the covariance prediction step must be modified for

Algorithm 7 UD Prediction via expm and Modified Weighted Gram-Schmidt [76,
77, 78]

Given At = tk+1 - tk, Ukj, d, Fk, Gk E RnxP, qk = diag(Qk) (or of the diagonal-
ization of Qk computed offline)

= [Fk Gk E R(n+p)x(n+)
0,xn 0,x,I

E = expm(QAt)
= 1:n,1:n

T 1:n,(n+1):(n+p)
W = [4U , T] (row-cat)
dl = [d+ ; q] (col-cat)

Modified Weighted Gram-Schmidt:
Let < u, v >a= E_+1 uidivi
Let W = WT (column vector data)
for j = n,(n-1),...,1 do

dk+1dj =< Wj , W-j >a
for i = 1,..,(j-1) do

U _+1'd =< W,i, W-j >a /d-+1
W:,i = Wi U _+l'i W.'

end for
end for
return U+ 1, dI+ 1
Complexity (Best-Case expm): O((8/3)(n + p)3 )
Complexity (Worst-Case expm): O([(29/3 + log2 (|Q|At||1 /0 13 ))](n + p)3 )
Complexity (MWGS): O((3/2)(n + p) 3 + (5/2)(n + p)2 - 2(n + p))

the UD factorization to avoid incurring the costs of online factorization. This is

accomplished by a similar discretization of the continous linearized dynamics via the

matrix exponential followed by a modified weighted Gram-Schmidt process that is

used to predict the a priori UD terms. The next section will formulate the EKF for

the orbit determination problem with GNSS measurements.
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4.4 Stochastic Dynamical System for Orbit Deter-

mination Using GNSS Measurements

In this study's implementation of the EKF for orbit determination, the state vector is

x = [r; v] = [x, y, z, v, vY, VZ]T. The coordinate system is Cartesian Earth-Centered

Inertial (ECI). This is the minimal state needed; however, additional parameters may

need to be appended to the state if force models are used that include parameters to

be estimated like the drag coefficient [79], noise models are used that are not Gaussian

white noise processes [47], or out-of-sequence measurements are encountered [80].

Following the analysis in Section 3.2, only central body gravity is included in the

dynamics model, and the GNSS position and velocity fixes as per Section 3.6 are

used. An alternative formulation that directly processes psuedorange measurements

is explored by Bar-Shalom et al. [47].

i = v (4.15a)

= acentral body + Wx (4.15b)

Yk - + Wyk (4.15c)

where m = n = 6, p = 3. The process noise model follows the same Cowell method

discussed Section 3.1.1, which in this case treats all effects beyond a central-body

gravity model as disturbance accelerations. The linearization and noise covariance

matrices are as follows:

03x3 13x3 03x31
F acentral body , G = Q= llax3 (4.16a)

a 1a 03x3 [13x3

H =16 x6, R [= X3  03x3 (4.16b)
0 3x3 (7V'x3

where the noise covariances are treated as uncorrelated. As gravity is independent

of velocity, the velocity gradient of the acceleration vanishes. The expression for the

111



position gradient is given in Appendix A.8. The position and velocity noise variances

that will be used are the orbit (anti-)normal receiver oriented results from Section

3.10. The position and velocity noise are treated as Gaussian white noise processes.

Some authors use a combination of Gaussian white noise and Gauss-Markov noise in

the position/URE measurement model [47]. As noted before, this requires auxiliary

state parameters to estimate the Gauss-Markov noise value in order to reduce the

problem back to the Gaussian white noise case. See Bar Shalom et al. for further

details on Kalman filtering with Gauss-Markov noise models [47]. The process noise

(c%) magnitude is estimated by simply summing the unmodeled acceleration statistics

from Section 3.1.1. For central body gravity models, these estimates are 1.4 x 10-5

km/s2 for two-body, 1.4 x 10-6 km/s2 for J2 , 6.8 x 10- km/s2 for 4 x 4, 6.8 x 10-8

km/s 2 for 10 x 10, 1.1 x 108 km/s2 for 21 x 21, and 3.2 x 10- km/s2 for 70 x 70.

These are order of magnitude estimates, and they are sufficient for this work. Vallado

describes more sophisticated methods for process noise estimation to fine tune filters

in practice [33].

Additionally, it is preferable to nondimensionalize rather than use SI or similar

units because the problem is badly scaled in typical units. For instance, let the state

be x = [ 6 871,0,0,0,4,5]T in km & km/s. Given p ~ 3.986 x 105 km 3 /s2 as using

a two-body central body gravity model, ri(F) =lFfl IF- | ~ 8.1 x 105. There-

fore, the problem is nondimensionalized according to the following rules: t - t/T,

T = VL 3 /pe, L = Re= 6378.137 km, ye = 3.9860044418 x 105 km 3 /s2, r - r/L,

and similar rules for the other unit combinations. With this nondimensionalization,

the dynamics model parameters Re -- 1 and y -- 1, where Re is the equatorial radius

of the Earth, and ye is the gravitational parameter for the Earth [33]. With nondi-

mensionalization, i,(F) ~ 63, which is an improvement of 3 orders of magnitude.

In summary, the EKF for orbit determination using GPS measurements is formu-

lated here using the minimal state consisting of the ECI position and velocity, uses

a central body gravity model including two-body and aspheric terms appropriate for

the propagation interval, and uses GPS position and velocity fixes as discrete-time

measurements. The process noise magnitude is estimated via the perturbing accel-
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eration analysis of Section 3.1.1, and the GPS receiver orbit (anti-)normal receiver

oriented measurement noise from Section 3.10 will be used. Lastly, the problem is

ill-conditioned in typical units, so the state is nondimensionalized using the Earth's

radius R, and its gravitational parameter pe. The next section will compare the three

EKF formulations described previously, CEKF, JSEKF, & UDSEKF, on the metrics

of efficiency, consistency, and orbit determination accuracy.

4.5 Filter Comparison

This section will rank the CEKF, JSEKF, and UDSEKF filter formulations on three

metrics: efficiency as per analytical time complexity results given previously for each

of the subroutines, a statistical hypothesis test for consistency, and 3D-RMS position

& velocity estimation errors for orbit determination.

4.5.1 Efficiency

For comparison, the operation counts per step are tabulated for each of the three

algorithms along with their in Table 4.1. For simplicity, a two-body dynamics model

with RK4 integration and At = 1 second is used for this comparison (Algorithm 5).

Higher order gravity models will be more costly for a given integration method. Also,

as previously discussed, higher-order, variable-step integrators can be more efficient

than fixed-step integration, requiring fewer steps (N) for the same level of accuracy.

For two-body dynamics, pg(n, r) = pf(n) = (3/2)n + 2 = 11. Furthermore, for

Algorithm 6, |1'zAt||1 - 1.43 x 10-2, and for Algorithm 7, |QAt|| 1 ~ 1.24 x 10-2.

Although these matrices are not normal, they do have norms less than 03 . 1.49 x

10-2, which means that expm is likely to function near minimal computational load

in this case: a 3rd order Pade approximant with no scaling or squaring steps, so the

best-case complexity for Algorithm 6 is used: O((8/3)M 3 ). The table estimate uses

this best-case for expm with M = 2n = 12 for 6 and M = n+p = 9 for 7. Note that

slower GPS sampling results in larger At values, which increases computational cost

for covariance prediction due to the larger matrix-norm values.
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Table 4.1: Operation Counts for CEKF, JSEKF, & UDSEKF for a two-body dynamics
model using RK4 integration with At = 1.

CEKF FLOP Count JSEKF FLOP Count UD- FLOP Count
SEKF

Algo. 5 0(530N) Algo. 5 0(530N) Algo. 5 0(530N)
Algo. 6 0(5292) Algo. 6 0(5292) Algo. 7 0(1944)
Algo. 2 0(1200) Algo. 3 0(1926) Algo. 4 0(1023)
Total 0(530N + 6456) Total 0(530N + 7218) Total 0(530N + 2967)

For the CEKF or the JSEKF with N < 10 and for the UDSEKF with N < 3,

the most costly step is covariance prediction (Algorithms 6 and 7); otherwise, the

most costly step is state prediction (Algorithm 5). One way to reduce the operation

count for covariance prediction would be to pick a fixed truncation matrix exponential

method such as 3rd order Pade approximant without scaling and squaring and expand

the block triangular argument matrices, which would lead to a direct computation of

the state transition matrix via <D = eFAt, 0(576), along with additional operations

by analytic formulae to compute the remaining output [75]. This is not analyzed in

this work, but is a good example of how the implementation details of the algorithm

depend closely on the problem details for full optimization. Given the implementation

described, the ranking of the algorithms from most efficient to least efficient is 1)

UDSEKF, 2) CEKF, 3) JSEKF.

4.5.2 Filter Consistency

Filter consistency is defined as the state error obeying its design assumption: that it is

zero-mean Gaussian distributed. This is formulated as a x 2 hypothesis test following

the approach in Bar-Shalom et al. [47]. The consistency check can be simplified

to a check on a single scalar metric called the Normalized Estimation Error Squared

(NEES), which is defined by the quadratic form in the a posteriori information matrix:

=k T Xk+- -. The hypothesis test supports consistency if the average NEES Ek E

[ri, r2], where r1 = (1/Nmc)F7((1 -a)/2, nNmc), r2 = (1/Nmc)F7'((1+a)/2, nNmc),

F.- is the inverse CDF for the x2 distribution, Nmc is the number of Monte-Carlo

runs, and a is the confidence parameter (set to 0.99 for 99% confidence) [47]. Note
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that if the filter is perfect, then E[ek) = n (the state dimension). For the simulated

implementation, n = 6 and the chi-squared 99% bounds are [ri, r2] = [4.50, 7.75].

Filter Consistency Check: CEKF and JSEKF

9 -

8 -_

7 -

6D -

Z 5 -

< 4 -

3 -

2 -

1 -Avg. NEES
------- Chi-Sq. 99% Bound

0 ' ' '
0 10 20 30 40 50 60 70 80 90
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Figure 4-1: Average NEES timeseries for 30-run Monte-Carlo simulation of CEKF
and JSEKF for 1 second measurement sampling with a two-body force model. Average
for t E [50, 100] is 5.11.

The time behaviors of the average NEES are shown in Figures 4-1 and 4-2. The

result for the CEKF and JSEKF was identical, and the UDSEKF performed with

slightly higher average NEES values. To characterize the settled behavior, it is aver-

aged over the interval t E [50, 100] seconds, and the resulting average NEES values

are as follows: CEKF 5.11; JSEKF 5.11; UDSEKF 6.85. This result shows that upon

settling, all three filter implementations pass the x 2 hypothesis test on average, with

a deviation of the time-average from the ideal value of 0.89 for CEKF & JSEKF

and a slightly smaller deviation of 0.85 for the UDSEKF. Therefore, on the metric of

consistency, the three filters score equally.
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Filter Consistency Check: UDSEKF
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Figure 4-2: Average NEES timeseries for 30-run Monte-Carlo simulation of UDSEKF
for 1 second measurement sampling with a two-body force model. NEES time-average
of averages for t c [50, 100] is 6.85.

4.5.3 Orbit Determination Accuracy

The final metric for comparison is filter accuracy when applied to the orbit determi-

nation problem using GPS measurements. For simplicity, this comparison is limited

to a single orbit case with a 1 second sampling time (T,) and a two-body force model.

More detailed analysis with other sampling intervals, force models, and orbits will be

done in later sections with the best performing filter. The orbit used here is at a 500

km altitude and 51.6° inclination, with other initial elements the same as previous

simulations (Sec. 3.10). For each filter, there are 30 simulation trials with each trial

being 100T, = 100 seconds. For error analysis, a settling time must be selected to

parse the results. Figure 4-3 shows the position and velocity error convergence for

an example sampling interval using the UDSEKF. Figure 4-4 shows the filter's esti-

mate of the error covariance for position and velocity where &r =+ P2 + P3

and &, = P + P5 + P6 . It can be seen here that the filter convergence occurs

within the first 50 samples, which in this case corresponds to 50 seconds. Hence, the

latter-half of the trial intervals are used to aggregate data for statistical analysis of
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Example Position Error Timeseries for T = 1 sec
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Figure 4-3: Measurement data interval processing example result for position and

velocity error. Uses the UDSEKF for 1 second measurement sampling with a two-

body force model.

Table 4.2: Estimated RMS position and velocity errors for the CEKF, JSEKF, &
UDSEKF implementations for a 500 km altitude and 51.6° inclination near-circular
low-Earth orbit will T, = 1 second.

EKF Type 3D-RMS Noise 3D-RMS Noise
Position Reduction Velocity Reduction

Error (m) Error (m)

CEKF 0.425 15.9 x 0.019 2.1 x
JSEKF 0.425 15.9 x 0.019 2.1 x
UDSEKF 0.394 17.1 x 0.011 3.6 x

the settled filter behavior. Table 4.2 gives the 3D RMS position and velocity errors

for each of the three filter formulations. The noise reduction is computed relative to

the raw GPS 3D RMS position and velocity errors from Section 3.10: 6.75 m and

0.040 m/s, respectively. The CEKF and JSEKF perform equally, and the UDSEKF

is the best performer. Therefore, on the basis of orbit determination accuracy, the

ranking is 1) UDSEKF and 2) CEKF & JSEKF.

In summary, on the first metric of efficiency, the ranking of the algorithms is 1)
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Example Filter Estimated RMS Position Error Covariance Timeseries
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Figure 4-4: Measurement data interval processing example result for estimated po-
sition and velocity error covariance (RMS of respective diagonal elements of the a
posteriori estimated error covariance matrix). Uses the UDSEKF for 1 second mea-
surement sampling with a two-body force model.

UDSEKF, 2) CEKF, 3) JSEKF. On the metric of consistency, the three filters score

equally. Lastly, on the metric of orbit determination accuracy, the ranking is 1) UD-

SEKF and 2) CEKF & JSEKF. Therefore, the overall ranking is 1) UDSEKF, 2)

CEKF, 3) JSEKF. Hence, the UDSEKF is the best performing formulation overall,

and it is therefore selected for further analysis.
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4.6 Error Estimates for Kalman Filtered GPS

Measurements

As per the discussion in Section 3.2, the maximum sampling interval is the maximum

Host propagation interval, which is 10 minutes. Table 4.3 summarizes the position

and velocity estimation error results for the UDSEKF applied to three different mea-

surement sampling periods with appropriate force models.

Table 4.3: Estimated RMS position and velocity errors for filtered GPS measurements
with different measurement sampling intervals (T) and corresponding force models.

TS EKF 3D-RMS Noise 3D-RMS Noise
Model Position Reduction Velocity Reduction

Error (m) Error (m)

1 sec 2-Body 0.425 15.9x 0.019 2.1x
1 min J2 1.615 4.2x 0.017 2.4x
10 min 14 x 14 2.982 2.3x 0.012 3.3x

Note that the 10 min interval uses a 14 x 14 model for filtering, which is higher

order than the propagation model used previously. This is because it was found that

the 4 x 4 model was introducing sufficient prediction error that the filtered state

errors were still similar in magnitude to the unfiltered state errors. Again, even for

measurement intervals up to 10 minutes, the position and velocity estimation errors

are reduced by at least a factor of 2 and up to a factor of 16 for position error in the

1 second sampling case. As the interval increases, the propagation error causes the

position error to increase, though interestingly the velocity error slightly decreases. It

should also be noted that the matrix exponential approach to covariance prediction

assumes a relatively short propagation interval, which could also be a contributor

to the increase in position error. If the interval is extended further, a multi-step

correction could be used to reduce the At value could be used, or the matrix IVP

could be solved at the cost of efficiency.

In summary, applying the UDSEKF to sampling intervals (T,) from 1 second up

to 10 minutes yields improvements in the 3D-RMS position and velocity errors of at

least 2x relative to unfiltered GPS fixes. These filtered uncertainties will be used for
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relative navigation analysis in the next sections analogous to that of Sections 3.8 &

3.9 to compare using filtering for orbit determination against using raw GPS fixes.

4.7 Propagation of Kalman Filtered GPS

Measurements for LEO Crosslinks

Tables 4.4 and 4.5 summarize the results of propagating GPS measurements that have

been processed using an EKF as per Section 4.6. The simulations are identical to

those in Section 3.8, except that the position and velocity noise variances have been

replaced with the results from Table 4.3. Specifically, the EKF variances are selected

to match the Host interval, which in this case matches the GPS measurement sample

time. In practice, for even higher performance, the sampling time could be reduced to

1 second if necessary. However, even with a relatively slow sampling time of 1 minute,

filtering reduces the Host position error by about 4.5x from 15.4 m down to 3.4 m.

For the baseline 25 km scenario with a Host interval of 1 minute and a Target interval

of 10 minutes (row 2 of Table 4.4), the angular error reduced by about 2x from 1367

prad for unfiltered GPS measurements to 685.1 prad. More generally, the angular

error reduction of at least 2x was true across most scenarios. Note that although the

EKF error estimates for the 10 minute sampling interval used a 14 x 14 force model,

the propagation error estimates here use a 4 x 4 force model for consistency with the

presentation of previous propagation error results.

Table 4.4: Error magnitudes ( 9 9 th percentile) for propagation of Kalman filtered GPS
measurements for CLICK short range (25 km) LEO crosslink for various propagation
configurations.

AtH AtT Host Target Host Pos. Target Range Angle
(min) (min) Model Model Err. (m) Pos. Err. Err. (m) Err.

(m) (prad)
1 1 J2 J2 3.357 3.461 3.032 166.2
1 10 J2 4 x 4 3.453 25.84 13.26 685.1

10 10 4 x 4 4 x 4 26.53 25.08 12.40 615.5
10 30 4 x 4 14 x 14 23.20 48.48 34.55 792.5
10 90 4 x 4 100 x 100 23.33 274.6 234.5 856.2
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Table 4.5: Error magnitudes ( 9 9 th percentile) for propagation of Kalman filtered GPS
measurements for CLICK long range (580 km) LEO crosslink for various propagation
configurations.

AtH AtT Host Target Host Pos. Target Range Angle
(min) (min) Model Model Err. (m) Pos. Err. Err. (m) Err.

(m) (pirad)
1 1 J2 J2 3.237 3.439 3.070 7.771
1 10 J2  4 x 4 3.487 26.72 13.10 43.38

10 10 4 x 4 4 x 4 26.67 25.77 12.23 38.67
10 30 4 x 4 14 x 14 23.93 53.83 38.26 71.84
10 90 4 x 4 100 x 100 22.90 251.6 217.2 90.55

The compounding position error effect as the interval size grows is still present;

however, with a reduced magnitude: the target position error grows consistently from

~3 m to -275 m as the target interval increases, which is a reduction of 40% and

20%, respectively. For the baseline configuration, GPS error contribution was reduced

from 57% to only 14.1% of the total error in the 25 km case and from 52.6% to 16.2%

of the total error in the 580 km case. For the symmetric 1 minute interval case at 25

km, the GPS error contribution was reduced from 97.3% to 86.6% of the total error;

and, for the 90 minute target interval case at 25 km, the GPS error contribution was

reduced from 82.3% to 62.1% of the total error.

Across all cases, the results show that using an appropriate central body gravity

model to propagate filtered GPS measurements, the position error can be maintained

less than ~275 m for intervals up to 90 minutes and less than -26 m for intervals

up to 10 minutes. This corresponds to 9 9 th percentile angular errors of less than

~1000 prad at 25 km and less then -100 prad at 580 km, which is a 50% or greater

improvement from the unfiltered case. Using the Rayleigh approximation for the

pointing error and including the other error budget terms in Table 2.2, the 99.7%

pointing loss is therefore less than ~ -0.623 dB at 25 km and - -0.421 dB at 580

km. The corresponding margins compared to the reference requirement of -1.5 dB

are greater than 0.877 dB and 1.079 dB, respectively. This is an improvement of 0.607

dB for the 25 km case and only 0.006 dB for the 580 km case. The reason for the

negligible pointing loss improvement in the 580 km case is that the other error budget

121



terms dominate the pointing error in that case, with the assembly & calibration error

being several times larger than the relative navigation error even without filtering.

Therefore, for the CLICK terminal, filtering at short ranges has a significant pointing

loss improvement of about 49%; however, filtering at long ranges has a negligible

impact of only about 1%. As discussed previously, the losses using unfiltered GPS

measurements are sufficient for CLICK, so filtering will not be used onboard for the

mission, although the results in this section could be verified by post-processing on the

ground. Nevertheless, for future missions with potentially narrower beacons, better

assembly & calibration error, or significantly worse GPS measurement errors filtering

may be more beneficial. For example, if the beacon divergence is halved and the

mechanical errors due to assembly, calibration, & launch-shifts are improved by a

factor of 10, then the losses at 25 km are improved by filtering from -3.34 dB to

-0.892 dB (73.2%), and those at 580 km are improved from -0.108 dB to -0.084

dB (22.2%). Despite this, at long ranges, the unfiltered GPS approach would still

have positive margin, so filtering would only be needed for long ranges if the GPS

error increased significantly due to significantly poorer receiver performance due to

hardware faults.

In summary, with the addition of Kalman filtering, the navigation error can be

maintained to less than ~275 m over intervals of 90 minutes and less than -26 m

for intervals less than 10 minutes, with improvements relative to unfiltered results

of 19% and 48% respectively. Across all configurations, the 9 9 th percentile angular

errors were less than ~1000 prad at 25 km and less then -100 purad at 580 km,

corresponding to 99.7% pointing losses less than -0.623 dB at 25 km and -0.421 dB at

580 km and corresponding margins greater than 0.877 dB and 1.079 dB, respectively.

This corresponds to improvements of at least 50% for the angular error across all

cases and improvements of 49% for the pointing loss at 25 km and about 1% at 580

km. Therefore, for the CLICK hardware configuration, filtering has a significantly

greater effect on pointing loss at shorter ranges due to the dominance of error terms

other than relative navigation in the 580 km crosslink pointing budget. Nevertheless,

for future missions with potentially narrower beacons, improved mechanical errors,
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and/or significantly worse GPS measurement errors, filtering may have greater impact

at long ranges. Moreover, despite the performance improvement from filtering at short

ranges, simply propagating the raw GPS fixes is sufficient to meet the requirements

of the CLICK mission, so the application of filtering to relative navigation will not

be tested on orbit during the CLICK mission, although post-processing telemetry

on the ground could validate the results of this analysis. Nevertheless, the need to

continue to reduce SWaP and improve performance could necessitate filtering for

future missions.

4.8 Propagation of Kalman Filtered GPS

Measurements for LEO Downlinks

Table 4.6 summarizes the results for propagation of Kalman filtered GPS measure-

ments for LEO downlinks. Note that in this case, only the Host GPS measurements

were filtered, although even higher performance could be acheived by statistical pro-

cessing of the ground station GPS measurements as well. This could be done by

simply averaging them for fixed ground stations rather than using a Kalman filter.

For mobile platforms like vehicles, a filter employing a stochastic dynamic model like

a white noise acceleration model could potentially be used, which are typically used in

target-tracking scenarios where a physics-based target dynamics model is unavailable

[47]. Nevertheless, the performance did improve in all scenarios by filtering even just

the Host measurements. For example, with the 1 minute interval and the IAU-00/06

B model, the angular error was reduced by 1.5x from 17.29 prad to 11.20 prad. For

the 10 minute interval with the IAU-00/06 B model, the angular error was reduced

by 1.7x from 32.44 [trad to 18.88 prad.

As the ground station GPS measurements were not filtered, the Target position

errors were left unchanged in this simulation. The overall 9 9 th percentile error across

all cases is less than -35 prad (improvement of 22.2%), which corresponds to 99.7%

pointing losses of less than -0.434 dB with margins greater than 1.066 dB across
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Table 4.6: Error magnitudes ( 9 9 th percentile) for propagation of Kalman filtered
GPS measurements for LEO downlink to CONUS for various propagation & ECI-
ECEF transform configurations. Reference geodetic coordinates (Latitude, Longi-
tude): Boston (42.360636°, - 71.0934180), Boulder (40.0068910, - 105.264983°),
Los Angeles (34.068851°, - 118.444692°).

AtH Host ECI-ECEF Transform Host Target Range Angle
(min) Model Pos. Pos. Err. Err.

Err. Err. (m) (prad)

(m) (m)
1 J2  4-term X,Y Only 3.657 23.24 19.94 30.74
1 J2  4-term X,Y & AUT1 3.657 16.18 11.22 16.46
1 J2  15-term X,Y & x,, yp, AUT1 3.657 14.66 5.926 10.72
1 J2  IAU-00/06 B & All EOP 3.657 14.31 6.480 11.20
1 J2  None 3.657 14.93 6.679 11.68

10 4 x 4 4-term X,Y Only 27.04 24.12 21.16 33.45
10 4 x 4 4-term X,Y & AUT1 27.04 16.03 13.04 22.26
10 4 x 4 15-term X,Y & X,, y,, AUT1 27.04 13.69 12.07 19.37
10 4 x 4 IAU-00/06 B & All EOP 27.04 14.47 12.66 18.88
10 4 x 4 None 27.04 14.93 12.21 20.95

all cases. As predicted in Chapter 3, the impact on pointing loss from filtering the

spacecraft GPS measurements is negligible because the downlink pointing budget is

currently dominated by the mechanical error terms. Moreover, even the spacecraft

body pointing error is greater than the relative navigation error, so for filtering to be

useful for improving downlink pointing losses, not only would the terminal hardware

performance need to increase with a narrower beam and better mechanical errors,

but the beacon would likely need to be actively pointed with a mirror. This could

be the case if the terminal eliminates the additional wide-angle beacon laser and uses

a narrow laser for both communications and PAT, which would be beneficial from a

terminal design standpoint, as it would reduce the power and volume requirements.

Assuming this would be the case for future missions with more stringent requirements,

GPS measurement processing could then be useful for performance improvement.

In summary, by filtering the spacecraft GPS measurements, the overall 9 9 th per-

centile error across all cases was improved by at least 22.2% to less than -35 [rad,

which corresponds to 99.7% pointing losses of less than -0.434 dB with margins

greater than 1.066 dB across all cases. This means that, as anticipated from previ-
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ous analysis, filtering had a negligible impact on pointing loss for downlink due to

the dominance of mechanical and spacecraft errors in the downlink pointing budget.

Nevertheless, for future missions with more stringent requirements and higher perfor-

mance terminal designs, GPS measurement processing could be useful for performance

improvement for downlinks as well as crosslinks.
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4.9 Chapter 4 Summary

The Extended Kalman Filter (EKF) is used for estimation problems with nonlinear

dynamics and/or measurements and can be formulated in continuous time, discrete

time, or as a hybrid of both. There are three main steps: filter initialization, cor-

rection, and prediction. There are various initialization strategies depending on the

available data. For orbit determination analysis, single GPS fixes were used for state

initialization, and estimated measurement uncertainties were used for covariance ini-

tialization. Three different formulations of the EKF subroutines were explored in

depth: 1) the Conventional EKF (CEKF); 2) the Joseph Sequential EKF (JSEKF);

3) the UD Sequential EKF (UDSEKF).

In Section 4.2.1, the Conventional EKF (CEKF) correction algorithm was de-

fined, with a time complexity that includes a O(m3 ) term due a matrix inverse step.

Two numerical stabilization approaches were given: brute force symmetrization of

the covariance matrix and the Joseph form update. Next, in Section 4.2.2, sequential

measurement processing was introduced to eliminate the matrix inverse step in the

conventional correction. This treats vector measurements as sequences of scalar mea-

surements, enabling the use of a series of scalar division correction steps instead of

using matrix inverse. An alternative approach to guarantee numerical stabilization is

to take advantage of the Cholesky factorization of the covariance matrix, which was

introduced in Section 4.2.3. This led to the Thornton-Bierman UD formulation of

the EKF. Moreover, Cholesky factorization formulations save on memory usage by

50(1 - 1/n)%.

Section 4.3.1 described some Runge-Kutta methods for solving the state predic-

tion initial value problem (IVP). Differences between methods include the order of

the truncation error and the use of either fixed or variable step sizes. The leading

complexity terms are O(N(4npg(n, r))) for RK4, O(N(6npg(n, r))) for RKF 4(5) &

DP 5(4), and O(N(13npg(n, r))) for RKF 7(8). For a given accuracy, higher-order,

variable step methods typically need to take far fewer steps N than lower-order, fixed-

step methods, meaning that they are more efficient.
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For covariance prediction, Section 4.3.2 showed that the solution to the continuous

dynamics Lyapunov matrix differential equation can approximated by the standard

discrete time covariance prediction by using the matrix exponential. Section 4.3.2

showed how one of the top performing matrix exponential algorithms is the scaling

and squaring Pade approximant method used by MATLAB's expm, which has a com-

plexity that is a function of the Li-norm of the M x M matrix argument, which in

the best case reduces to O((8/3)M 3). Next, Section 4.3.3 showed how the covariance

prediction step is modified for the UD factorization via a similar discretization step

via the matrix exponential followed by a modified weighted Gram-Schmidt process

for UD prediction.

The EKF for orbit determination using GNSS measurements was formulated in

Section 4.4 using the minimal state consisting of the ECI position and velocity, a

central body gravity model, and GPS position and velocity fixes. The process noise

magnitude was estimated via the perturbing acceleration analysis of Section 3.1.1,

and the GPS receiver orbit (anti-)normal receiver oriented measurement noise from

Section 3.10 was used. The improvement of the problem conditioning via nondimen-

sionalization was also discussed.

Following this, Section 4.5 evaluated the CEKF, JSEKF, and UDSEKF filter for-

mulations on three metrics: efficiency as per analytical time complexity results given

previously for each of the subroutines, a statistical hypothesis test for consistency,

and 3D-RMS position & velocity estimation errors for orbit determination. The over-

all ranking was 1) UDSEKF, 2) CEKF, 3) JSEKF. Furthermore, Section 4.6 showed

that applying the UDSEKF to sampling intervals (T,) from 1 second up to 10 min-

utes yields improvements in the 3D-RMS position and velocity errors of at least 2x

relative to unfiltered GPS fixes.

Section 4.7 demonstrated that with the addition of Kalman filtering, the naviga-

tion error can be maintained to less than ~275 m over intervals of 90 minutes and

less than -26 m for intervals less than 10 minutes, with improvements relative to

unfiltered results of 19% and 48% respectively. Across all configurations, the 9 9 th

percentile angular errors were less than ~1000 prad at 25 km and less then ~100
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trad at 580 km, corresponding to 99.7% pointing losses less than -0.623 dB at 25

km and -0.421 dB at 580 km and corresponding margins greater than 0.877 dB and

1.079 dB, respectively. This corresponded to improvements of at least 50% for the

angular error across all cases and improvements of 49% for the pointing loss at 25

km and about 1% at 580 km. Therefore, for the CLICK hardware configuration,

filtering has a significantly greater effect on pointing loss at shorter ranges due to

the dominance of error terms other than relative navigation in the CLICK 580 km

crosslink pointing budget. Nevertheless, for future missions with potentially narrower

beacons, improved mechanical errors, and/or significantly worse GPS measurement

errors, filtering may have greater impact at long ranges.

Finally, Section 4.8 applied filtering to the spacecraft GPS measurements for down-

links, which led to the improvement of the overall 9 9 th percentile error across all cases

by at least 22.2% to less than -35 prad. This corresponds to 99.7% pointing losses

of less than -0.434 dB with margins greater than 1.066 dB across all cases. As an-

ticipated from previous analysis, filtering had a negligible impact on pointing loss for

downlink due to the dominance of mechanical and spacecraft errors in the CLICK

downlink pointing budget. Nevertheless, for future missions with more stringent re-

quirements and higher performance terminal designs, GPS measurement processing

could be useful for performance improvement for downlinks as well as crosslinks.
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Chapter 5

Conclusion

5.1 Thesis Summary

Chapter 1

The SWaP efficiency of laser communications make it a good fite for development

in concert with rising interest in small satellite mission concepts. Nanosatellite LEO

to ground downlinks have been demonstrated and improved performance is expected

with furture downlink demonstrations. The CLICK B/C mission has the objective of

demonstrating the first nanosatellite crosslink. This mission was the catalyst for this

thesis research and will be referenced throughout as a motivating example and case

study in nanosatellite laser communications.

The need for precise and accurate pointing with laser instruments motivates a

formalized, systematic approach to fulfilling this need called Pointing, Acquisition,

and Tracking (PAT). The PAT process for the CLICK crosslink begins with relative

navigation information derived from the GPS measurements aboard both satellites

provides the initial pointing information for beacon acquisition on the camera. The

camera data is used for feedback to refine the body pointing followed by a fine point-

ing process using the terminal's fast steering mirror. Throughout the 10 minute

communications link, the coarse spacecraft tracking and fine steering mirror tracking

processes continue to maintain the link. The downlink PAT process begins with a
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similar relative navigation process, although the ground station target position is esti-

mated using an earth rotation model and stored coordinates. The navigation solution

is used throughout for body pointing, and the ground station's beacon is used only

for fine pointing. The focus of this thesis is the initial pointing process for these LEO

crosslinks and downlinks using GPS-based relative navigation.

Chapter 2

First, the Gaussian beam intensity along with the 1/e 2 & FWHM beam divergences

were defined. Next, the laser communications range equation was presented, leading

into derivations for the Rice/Rician model of the total pointing error and the non-

central chi-squared model of the pointing loss. The pointing error models were applied

to find model parameters for the baseline CLICK configuration relative navigation

error and for the point ahead error for crosslinks and downlinks. The crosslink point

ahead errors increased as a power law of the range, and the downlink point-ahead

errors were similar across LEO orbits and CONUS ground stations.

Next, the baseline pointing budgets for crosslink relative navigation based body

pointing were given for the CLICK minimum & maximum ranges of 25 & 580 km. The

9 9 th percentile angular relative navigation errors were 1367 prad & 76.58 prad for the

25 km and 580 km cases, respectively. The corresponding 99.7% pointing losses were

-0.278 dB & -0.182 dB, with margins of 1.222 dB & 1.318 dB relative to the -1.5 dB

required worst case pointing loss bound. The pointing budget for relative navigation

based body pointing for the CLICK B/C downlink was then given, which had a

9 9 th percentile angular relative navigation error of 17.29 prad and a corresponding

99.7% pointing loss of -0.189 dB with a margin of 1.311 dB compared to the -1.5 dB

requirement.

The crosslink access duration was analyzed based on solar keep out constraints

between 20° & 750 for near-circular LEO orbits. The CLICK keep out constraint

of 45° to 500 corresponded to an access duration of at least 21 minutes for 99% of

cases, which meets the mission requirement of 15 minutes. The median LEO downlink

durations to CONUS ground stations were between 9.38 & 13.55 minutes for perigee
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altitudes between 400 & 600 km and zero minimum ground station elevation angle.

The median minimum downlink ranges were between 995.9 km and 1630 km, with

the mid-range ISS inclination of 51.6° having the minimum ranges.

Chapter 3

This chapter first analyzed the state propagation algorithm in depth, followed by

a discussion on how GPS position & velocity fixes are generated and their noise

properties, before finally combining these two ideas to estimate the relative naviga-

tion error by directly propagating GPS fixes, which is the baseline configuration for

CLICK. Cowell's method is used in this work for LEO propagation, which numeri-

cally integrates a two-body gravitational acceleration plus a perturbation acceleration

computed via the sum of additional forces that can generally include aspherical Earth

gravity terms, atmospheric drag, solar radiation pressure, third body perturbations,

tides, earth radiation pressure, relativistic effects, and thrusting maneuvers. The

magnitudes of these perturbing accelerations were compared, and a sequence of force

model simplifications for comparison was determined prior to position propagation ac-

curacy analysis. To achieve a position propagation accuracy of - 25 m for crosslinks,

the simplified models chosen were J2 for At = 1 minute, 4 x 4 for At = 10 minutes,

14 x 14 for At = 30 minutes, and 100 x 100 for At = 90 minutes. The same respective

models are chosen for the 1 & 10 minute intervals used for downlink. Using only the

appropriate central body gravity model, model-induced propagation error was main-

tained less than 50 m for intervals up to 90 minutes and less than 25 m for intervals

up to 30 minutes. This corresponded to 9 9 th percentile angular errors of less than

600 prad at 25 km and less then 40 parad at 580 km.

Prior to relative navigation analysis for downlinks, ECI-ECEF transformations

were discussed, and the position errors incurred by using simplified models with re-

duced computational costs were compared for CONUS ground station locations. Even

with the simplest 4-term X, Y series without EOPs, position error remained less than

16 m. These models were compared for relative navigation in combination with the

orbit propagation models. All cases had a 9 9 th percentile model-induced error of less
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than 32 prad, which is on the order of the point-ahead error (50.36 prad).

Proceeding to the incorporation of GPS error, the position and velocity uncer-

tainties were derived as a function of the DOP parameters and the URE & URRE.

For this analysis, the specified spacecraft GPS receiver was determined to have UURE

= 0.83 m and CURRE =0.005 m/s. For a LEO satellite, it was found that the cross-

track DOP increased as the antenna is oriented away from the radial direction, with

a 1.4x increase in PDOP for (anti-)normal 'pointing relative to radial pointing. For

the purposes of further analysis, the worst case (anti-)normal pointing was assumed,

with a PDOP of 8.11, corresponding 3D RMS position error of 6.75 m, and 3D RMS

velocity error of 0.040 m/s. The optical ground station is also equipped with GPS

receiver with different parameters: UURE = 1.21 m, PDOP = 5.36, and a 3D-RMS

position error of 6.48 m.

The relative navigation error for crosslinks was analyzed by combining orbit prop-

agation with raw GPS fixes. The navigation error was maintained to less than -340

m over intervals of 90 minutes and less than ~50 m for intervals less than 10 minutes.

Across all configurations, the 9 9 th percentile angular errors were less than ~2000 prad

at 25 km and less then ~200 Arad at 580 km, corresponding to 99.7% pointing losses

less than -1.235 dB at 25 km and -0.427 dB at 580 km and corresponding margins

greater than 0.265 dB and 1.073 dB, respectively. Therefore, given sufficient force

modeling for intervals up to 90 minutes, unprocessed GPS measurements can be used

with the CLICK hardware, and sufficient pointing accuracy can be maintained, which

is the plan for CLICK.

Similar analysis was carried out for downlinks, and the 9 9 th percentile error across

all cases was less than ~45 prad, which corresponds to 99.7% pointing losses of less

than -0.434 dB with margins greater than 1.066 dB across all cases. This means

that the pointing requirement is met for any of the relative navigation configurations

analyzed, and computational cost savings can be had by simplifying the Earth rotation

model to a 4-term X, Y series without EOPs.
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Chapter 4

The Extended Kalman Filter (EKF) is used for estimation problems with nonlinear

dynamics and/or measurements. There are three main steps: filter initialization, cor-

rection, and prediction. There are various initialization strategies depending on the

available data. For orbit determination analysis, single GPS fixes were used for state

initialization, and estimated measurement uncertainties were used for covariance ini-

tialization. Three different formulations of the correction and prediction subroutines

were explored in depth: 1) the Conventional EKF (CEKF); 2) the Joseph Sequential

EKF (JSEKF); 3) the UD Sequential EKF (UDSEKF).

The CEKF correction algorithm was defined, which has a time complexity that

includes a 0(m 3 ) term due a matrix inverse step. Two numerical stabilization ap-

proaches were given: brute force symmetrization of the covariance matrix and the

Joseph form update. Next, sequential measurement processing was introduced to

eliminate the matrix inverse step in the conventional correction, which led to the

JSEKF formulation. An alternative approach to guarantee numerical stabilization is

to take advantage of the UDUT Cholesky factorization of the covariance matrix, which

led to the UDSEKF formulation. Moreover, Cholesky factorization formulations save

on memory usage by 50(1 - 1/n)%.

The state prediction initial value problem (IVP) can be solved by Runge-Kutta

methods. Differences between these methods include the order of the truncation error

and the use of either fixed or variable step sizes. For a given accuracy, higher-order,

variable step methods typically need to take far fewer steps than lower-order, fixed-

step methods, meaning that they are more efficient.

For covariance prediction, the solution to the continuous dynamics Lyapunov ma-

trix differential equation can approximated by the standard discrete time covariance

prediction by using the matrix exponential. One of the top performing matrix ex-

ponential algorithms is the scaling and squaring Pade approximant method used by

MATLAB's expm, which has a complexity that is a function of the Li-norm of the

M x M matrix argument, which in the best case reduces to 0((8/3)M 3 ). For the
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UDSEKF, the covariance prediction step is modified via a similar matrix exponential

discretization step via followed by a modified weighted Gram-Schmidt process.

The EKF for orbit determination using GNSS measurements was formulated using

the minimal state consisting of the ECI position and velocity, a central body gravity

model, GPS position and velocity fixes, and nondimensionalization. The process noise

magnitude was estimated via perturbing acceleration analysis, and the GPS receiver

orbit (anti-)normal receiver oriented measurement noise was used.

The CEKF, JSEKF, and UDSEKF filter formulations were evaluated on three

metrics: efficiency as per analytical time complexity results given previously for each

of the subroutines, a statistical hypothesis test for consistency, and 3D-RMS position

& velocity estimation errors for orbit determination. The overall ranking was 1)

UDSEKF, 2) CEKF, 3) JSEKF. Applying the UDSEKF to sampling intervals (T,)

from 1 second up to 10 minutes yields improvements in the 3D-RMS position and

velocity errors of at least 2x relative to unfiltered GPS fixes.

Moreover, with the addition of Kalman filtering, the navigation error can be main-

tained to less than -275 m over intervals of 90 minutes and less than ~26 m for inter-

vals less than 10 minutes, with improvements relative to unfiltered results of 19% and

48% respectively. Across all configurations, the 9 9 th percentile angular errors were

less than ~1000 prad at 25 km and less then -100 prad at 580 km, corresponding

to 99.7% pointing losses less than -0.623 dB at 25 km and -0.421 dB at 580 km

and corresponding margins greater than 0.877 dB and 1.079 dB, respectively. This

corresponded to improvements of at least 50% for the angular error across all cases

and improvements of 49% for the pointing loss at 25 km and about 1% at 580 km.

Therefore, for the CLICK hardware configuration, filtering has a significantly greater

effect on pointing loss at shorter ranges due to the dominance of error terms other

than relative navigation in the CLICK 580 km crosslink pointing budget. Never-

theless, for future missions with potentially narrower beacons, improved mechanical

errors, and/or significantly worse GPS measurement errors, filtering may have greater

impact at long ranges.

Applying filtering to the spacecraft GPS measurements for downlinks led to the
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improvement of the overall 9 9 th percentile error across all cases by at least 22.2% to

less than ~35 prad. This corresponds to 99.7% pointing losses of less than -0.434

dB with margins greater than 1.066 dB across all cases. As anticipated from previ-

ous analysis, filtering had a negligible impact on pointing loss for downlink due to

the dominance of mechanical and spacecraft errors in the CLICK downlink point-

ing budget. Nevertheless, for future missions with more stringent requirements and

higher performance terminal designs, GPS measurement processing could be useful

for performance improvement for downlinks as well as crosslinks.

5.2 Thesis Contributions

" Detailed review of laser communications missions including the CubeSat Laser

Infrared CrosslinK (CLICK) mission to demonstrate the first LEO nanosatellite

laser communications crosslink as well as downlinks.

* Derivations of Rice statistical model lasercom pointing error and non-central

chi-squared model for pointing loss. Simulated model parameters for relative

navigation and point ahead errors.

" Pointing budgets for initial relative navigation PAT stages of CLICK crosslinks

and downlinks.

" CLICK LEO crosslink access analysis based on solar keep-out constraints and

LEO-to-CONUS downlink access analysis based on overpass duration and ranges.

• Recommendations for Cowell propagation force models for LEO satellites with

propagation intervals from 1 to 90 minutes.

* Cowell propagation error analysis for relative navigation in LEO for crosslinks

and downlinks in addition to recommendations for Earth rotation model sim-

plifications for downlinks.

* GPS error analysis for LEO satellites and CONUS ground stations including

review of contemporary hardware and DOP simulations.
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* Relative navigation simulations for LEO crosslinks and downlinks using Cowell

propagation of raw GPS position and velocity fixes, which is the CLICK base-

line. Demonstrated that this CLICK baseline relative navigation configuration

meets its pointing requirements. Recommendations for force models and Earth

rotation models for alternative relative navigation configurations.

• Review of EKF algorithms for orbit determination using GNSS measurements.

Detailed discussion and comparison of three different formulations: CEKF,

JSEKF, UDSEKF. Detailed time complexity results for all three formulations

in addition to consistency and orbit determination accuracy results. UDSEKF

is recommended as the best performer of the three for application to orbit de-

termination.

" Relative navigation simulations for LEO crosslinks and downlinks using Cowell

propagation of Kalman filtered GPS fixes. Confirmation of CLICK baseline

configuration and recommendations for future missions.

5.3 Future Work

" Verification of the results of chapters 3 & 4 with Ground and on-orbit test

results for the CLICK mission.

" Further analysis of propagation approaches for intervals longer than 90 min-

utes that could be encountered when using ground stations to relay satellite

ephemeris information for crosslinks.

" Hardware testing for verification of the URE, URRE, and DOP results for the

GPS receiver hardware discussed in Chapter 3.

" Take advantage of the lower block triangular, Hamiltonian structure of matrix

arguments to the matrix exponential to reduce the computational cost of the

covariance update algorithms described in chapter 4.
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" Extend results in chapters 3 & 4 to other link types between and among other

orbits including LEO, MEO, & GEO. Note that it is still possible to use GNSS

signals in MEO and GEO by directly filtering the psuedorange measurements.

" Extend results in chapter 4 with auxiliary state parameters for Gauss-Markov

position noise in GPS measurements, estimating drag to incorporate drag into

the dynamics model, and/or out-of-sequence measurements.

• Extend results in chapter 4 using other nonlinear estimation methods: Un-

scented Kalman Filtering (UKF), particle filtering (PF), or ensemble Kalman

filtering (EnKF).

" Relative position measurements have been shown to be sufficient to estimate

the absolute orbit of a spacecraft for most orbits due to asymmetries in the

dynamic models [81]. Application of this method would enable autonomous

navigation for groups of satellites equipped with lasercom terminals in GEO,

deep space, and in GNSS-denied situations in LEO & MEO. It would be ben-

eficial to leverage the types of analysis in this work to extend previous results

[82] on GNSS-independent navigation using range and/or angles measurements

from laser communications crosslinks.
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Appendix A

Appendices

A.1 Background on Lasercom PAT Hardware

This section gives a brief introduction to the hardware used in lasercom terminals for

PAT. The most common form of large field of regard (FOR) or coarse beam pointing

used in ground systems and aboard large satellites are two-axis gimbals, which can

provide greater than hemispherical (27r sr) coverage. To the author's knowledge as of

this writing, gimballed optical terminal technology, which is essentially based around

reflecting ground telescope designs, currently does not exist that can fullfill the SWaP

requirements of a nanosatellite such as a 3U or 6U CubeSat. Therefore, the nanosatel-

lite laser communications payloads cited in Table 1.1 (e.g. OCSD, TBIRD, CLICK)

all use terminals that are fixed with respect to the spacecraft structure. One of the

resulting beam actuation concepts for PAT is static beam body pointing. This is the

concept used by TBIRD, OCSD A, B, & C, VSOTA, and OSIRIS. The spacecraft

bus uses its onboard attitude determination and control system (ADCS) to achieve

the beam pointing requirements of the terminal.

Although nanosatellite ADCS has improved dramatically in recent years [311, the

addition of fine (or Vernier) beam steering stages can improve pointing performance

well beyond the state of the art in ADCS and/or relax the requirements levied upon

the ADCS. There are additional benefits to further steering stages that terminals de-

ployed on large spacecraft take advantage of to help achieve microradian-level point-
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ing. One, beam steering can be used to actively compensate for structural vibrations

induced by ADCS that include reaction wheels. Two, for sufficiently high relative

velocities, a pointing control system is subject to point-ahead error, as described in

Section 2.4.2. This error can be on the order of tens of microradians for links between

satellites in different orbital planes or between terminals at significantly different al-

titudes, including space-ground links (see results in Section 2.4.2). A beam steering

stage called a Point-Ahead Mirror (PAM) is used to compensate for this error, typi-

cally in open-loop, via ephemeris tracking software [3]. There are several approaches

to Vernier beam steering. Fine (or fast) steering mirror (FSM) devices include single-

axis galvonometer devices, two-axis voice coil devices, piezo-electric devices, Micro-

Electro-Mechanical system (MEMS) actuators [3]. There are also nonreflective ap-

proaches that include nematic liquid crystals, acousto-optic beam deflectors, tunable

liquid lenses, and phased-array emitters [3, 83]. Fine steering mirror devices are the

most mature technology as of this writing. The CLICK A & B/C payloads are the

only nanosatellite lasercom terminals known to the author that use fine beam steer-

ing. They take advantage of a low-SWaP Mirrorcle MEMS fine steering mirror to

accomplish this within the constraints of a 1.2U and 1.5U terminal, respectively.

Closed-loop optical feedback for fine pointing or body pointing requires accurate

beam position detection sensors, which also come in several forms. The laser wave-

length drives the sensor material selection, with design wavelengths below about 1000

nm using silicon devices and design wavelengths above this using InGaAs or InGaAsP

devices [3]. The fundamental detector components include p-intrinsic (PIN) photo-

diodes, avalanche photodiodes (APDs), charge-coupled devices (CCDs), and charge

injection devices (CIDs) (which include Complementary Metal-Oxide Semiconductor

(CMOS) detectors) [3]. Single photodiode devices can be used for communications

receivers. Arrays of photodiodes, the most common of which is the 2 x 2 quadrant

photodiode, can be used for acquisition, tracking, and/or communication. CCDs and

CIDs can be used for acquisition and/or tracking and are commonly found in cameras,

which can have thousands to millions of sensors to form each picture element (pixel).

Due to the higher sensor density of CCDs and CIDs compared to photodiodes, these
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types of devices can have higher spatial resolution and reduced background noise per

sensor element, which is useful for wide field of view (WFOV) acquisition sensors

that naturally receive more background optical noise than narrow FOV tracking or

communication sensors [3]. In deep space applications, lasercom terminal cameras

can have a dual-use to gather attitude information by imaging celestial targets like

stars or the Earth (e.g. function as a star tracker or Earth sensor).

Like optical sensors, different optical sources can fulfill the roles of acquisition,

tracking, communications, or a combination of the three. Optical sources that only

fulfill PAT roles are called beacons and are typically operated at a different wavelength

than the communications source to enable spectral isolation of the communications

and tracking paths to avoid self-jamming [3]. Other forms of isolation include tim-

ing and polarization [3]. To fulfill an acquisition role, the beacon source typically

has a larger beam divergence angle to cover a larger initial uncertainty area. The

beam may also be scanned over the initial uncertainty area via coarse and/or fine

beam steering. Also like sensors, there are multiple types of lasers depending on the

desired wavelength, power, and modulation characteristics. The most common laser

sources used for communications in free-space is semiconductor InGaAsP 1550 nm [2].

Other semiconductor sources include GaAlAs 780-890 nm, InGaAs 890-980 nm, and

InGaAsP 1300 nm can be used [3]. Solid state sources include neodymium yttrium

aluminum garnet (Nd:YAG) 1064 nm, neodymium lithium flouride (Nd:YLF) 1047

or 1053 nm, and neodymium yttrium aluminum phosphate (Nd:YAP) 1080 nm.

A.2 Gain and Pointing Loss of a Gaussian Beam

The range equation models the on-axis intensity as an equivalent isotropic source

with the equivalent isotropic on-axis intensity given by [84]:

Fiso P G (A.1)
47rz 2
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Setting Fio = 1(0, z), we can solve for GTn. To simplify equation 2.la at inter-satellite

link ranges, we assume z >> zo. For example, the Rayleigh range (zo) of a 70.8purad

FWHM, 1550nm laser communications beam is 13.7cm. A series approximation for

the beam radius can be made [25]:

-W1 z2 +0 (A.2a)
w(z) 1 + (z/zo) 2  z z

I(r, z) ~ Io e - 2  zo (A.2b)

Therefore, making substitutions for zo and 10,

p1 87W2
I(0, z) = 4r z (A.3a)

4irZ2 A2

87rw2 32
G ik ° 2 (A.3b)

1/e2

The pointing loss accounts for the off-axis intensity term:

(2
Lptg(r, z) = exp -2 zo r (A.4)

WO Z)

The substitution of the spherical-polar angle 0 via the paraxial (small-angle) rela-

tion r = zO, re-parameterizes this equation in terms of the off-axis pointing angle.

Furthermore, substitutions can be made that substitute the divergence angle for the

beam waist and Rayleigh range using equations 2.1c and 2.1d:

Lptg(O)=exp (-2 (70)) (A.5a)

= exp (-8 (0/01/)2) (A.5b)

A.3 The Gaussian Distribution on the Sphere

In Chapter 2, the random pointing vector is described by its azimuth and elevation

angles, E & E8, respectively. Where 02 ~ N(p, o-2) & 8y ~ N(py,oy). It may
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be observed that the domains of these angles are finite, with 8) c (-7r, 7r] & 8, C

[-7r/2, r/2], in apparent contradiction of the infinite domain of the standard normal

distribution. What will be seen here is that the infinite domain normal distribution

closely approximates the bounded domain case, and is mathematically simpler to

work with, hence its use. A truncated Gaussian distribution can be described in

general for the bounded random variable X C (a, b) using the CDF and PDF shown

in the equations below [29]:

Fx(x) = 0, x < a (A.6a)

Fx(x) ,)a)) x (a, b] (A.6b)
4)(b) - 4D(a)

Fx(x) = 1, x > b (A.6c)

exp (x -- p)2)f(x) = exp -X ,X E (a, b] (A.6d)
v/"27ror(((b) - (D(a)) 2a2

f(x) =0, x < a, x > b (A.6e)

1 p a- x
with 1(x) = erfc /I (A.6f)

2 (V/2or

In the case of azimuth, 8x E (p - 7r, p + 7r], where the bound has been shifted to

be centered around the mean to avoid main lobe truncation in the case of large p.

Similarly, for elevation ey c [p -7r/2, p+7r/2]. In practice, [pL +3 << 7r/2 (typically

a few degrees, 0(10-1) mrad, in the worst cases), which means that the problem of

main lobe truncation would not be likely encountered regardless. More importantly,

for these practical so-called small-angle or paraxial cases, the truncated distribution is

well approximated by an infinite domain normal distribution with significant deviation

only arising when |pl + 3a is on the order of the bound, which in this case is either

7r in the case of azimuth or 7r/2 in the case of elevation.

A.4 The Rayleigh Pointing Error & Loss Model

A distribution that is closely related to the Rice distribution is called the Rayleigh dis-

tribution, which is equivalent to a zero-bias Rice distribution: Rice(0, o) = Rayleigh(a).
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It is also important to note the following approximate relationship for v/o << 1 [29]:

1-Q1 , 6N= 10- / - exp ( 2a2) (~)2) (A.7)

which means that for small bias relative to variance, the distribution is well-approximated

by a Rayleigh distribution, which has CDF and PDF as follows [29]:

P[E < 0] = 1 - exp 2 2 ) (A.8a)

0 02
PE (0) = exp (A.8b)

The negative of the pointing loss in decibels is

Lptg,dB = -Lptg,dB = 80Loglo(e) ( ) 2
01/e 2

(A.9)

Taking the error angle e to be Rayleigh distributed results in an exponentially dis-

tributed pointing loss.

(1
8e Rayleigh(o-) -> Lptg,dB ~- Exponential 16Lg 0 e ) (A.10)

with the CDF

P[Lptg,dB p l] P= 1 - 10 160,2 (A.11)

The pointing loss percentile can therefore be expressed as follows for a given reliability

level, expressed either as a general probability pi or as a number of nines e.g. 3 nines

is p, = 0.999.

(A.12)
160a2  160a 2

1 = 62 LogiO(1 - pi) =- 2  ng
1/e 2 1/e 2

Re-arranging this expression gives the standard deviation of the pointing error needed

for a given loss, reliability level, and beam divergence.

o - =1/e2 =6HWHM
160n9 20n9ln(2)

(A. 13)
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A.5 Background on PAT Sequences

In a simplex link from a transmitting terminal to a receiving terminal, the acquisition

is achieved when the receiver terminal detects the transmitter terminal's signal and is

able to lock on to its location. There are two criteria to be met: one, the transmitted

signal is within the field of view of the receiver sensor; two, the transmitter is pointing

its beam with sufficiently small angular deviation from the line of sight between the

two terminals for the link to close.

There are two basic approaches to achieving these criteria, classified by Casey et

al. as staring or scanning [3]. Staring the terminals means estimating the pointing

direction of the target and pointing the receiver field of view or the laser beam at

it: the target is the centroid of the uncertainty region, which is the pair of estimated

mean pointing angles. Given sufficiently accurate pointing knowledge, the uncertainty

region will be sufficiently enclosed within the pointing requirements of the receiver

FOV and the transmitter beam, and the two criteria will be met with sufficiently

high reliability. For instance, if the 95th percentile uncertainty region is within both

requirements, the link will have an acquisition reliability of 0.952 = 90.25%, assuming

each pointing task is an independent random variable. This type of acquisition is

classed by by Casey et al. as stare-stare [3].

For a duplex link, what changes is the pointing requirement on each terminal.

Typically, the laser beam has a narrower pointing requirement than the receiver field

of view. This means that while for a simplex link, the pair of requirements is receiver

FOV and laser beam; for a duplex link, the pair of requirements is given by each

laser beam, with the FOV requirement being met by the beam requirement (given a

co-aligned terminal beam and receiver design).

Scanning can be thought of as supplementary to staring, with the scan beginning

at the best target estimate location and proceeding in a spiral or raster pattern from

there out to a radius sufficient to encompass the uncertainty region to the desired

reliability. Either the receiver and/or the transmitter may scan depending on the

requirements of each. An example scanning operational approach is classed by Casey
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et al. as scan-stare: the receiver stares in the estimated target direction, and the

transmitter scans its beam over the uncertainty region of the receiver. When the

receiver detects the transmitter beam, it responds with its own laser transmitter

(this scanning approach requires a duplex link) by pointing it in the direction of

the received signal. The transmitter then detects the response signal and narrows

its scan onto the newly updated target direction. When this process converges, the

terminals continue into tracking operations. The time of acquisition in any scan is

directly related to the size of the uncertainty region, with smaller uncertainty regions

corresponding to faster acquisitions. Hence, even for the scanned approach, the prior

pointing knowledge is an important element of system performance.

Stages 1 and 2 of PAT for the CLICK B/C crosslink design are referred to "coarse"

and "fine", respectively. As this is a two stage system, there are generally four

phases of PAT operations: coarse acquisition, coarse tracking, fine acquisition, and

fine tracking. Further details on the optical design and fine pointing design can be

found in [7, 20, 21, 24]. Coarse acquisition is a stare-stare approach, which uses the

beacon laser and beacon camera elements. Both the beacon laser and receiver are

fixed with respect to the spacecraft and are actuated via the spacecraft body pointing

capability realized by its attitude determination and control system (ADCS). The

prior pointing knowledge that each spacecraft uses to estimate the target direction is

provided via orbit determination of the target and host spacecraft using position and

velocity measurements taken by each spacecraft's onboard Global Navigation Satellite

System (GNSS) receiver. The orbit epoch information (time and orbital elements)

is then transferred to the other spacecraft over a radio crosslink. Upon receipt, the

orbit epoch is propagated and used to generate an attitude command (or command

sequence) for the ADCS, which re-orients the spacecraft in the direction of the target

attitude (and attitude rate). The beacon FWHM beamwidth is 0.75 degrees, and

the camera FOV is 10 degrees. They are co-aligned such that the factor determining

acquisition is the beacon beamwidth.

The fine steering mirror (FSM) actuates the incoming and outgoing beam, at the

same time actuating FOV cone of the quadcell to co-align the transmitted signal with
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the received signal. The signal received by the quadcell is the beacon signal, which

is already being received by the camera from the previous step. The static FOV of

the quadcell is 0.36°. If the signal is not being immediately received by the quadcell,

the FSM can adjust based on the camera signal and then spiral scan from there if

necessary. The FOR of the quadcell is limited by the max steering angle of the FSM,

which is +/- 2 degree optical in each axis, corresponding to +/- 0.19 degrees outside

the telescope. This leads to a quadcell FOR of 0.740. Once the beacon is acquired on

the quadcell, fine tracking can commence.
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A.6 Additional CLICK B/C Pointing Budgets

A.6.1 Body Pointing Feedback for Crosslinks

Once the beacon signal is acquired, tracking begins where the beacon camera is used

to correct the spacecraft attitude as well as provide a priori information for acquisition

of the fine stage. The contributions to beacon tracking error are similar to acquisition

and include pointing direction measurement error from the camera composed of the

noise equivalent angle (NEA) and the calibration of the imaging process for feedback,

body pointing jitter and attitude control error, point ahead error, and a the residual

error from measuring the misalignment of the optical axes of the beacon laser and the

camera lens. Further details on assembly & calibration can be found in [24, 30]. The

body pointing is the same as previously discussed. The NEA is computed from link

budget analysis using a model of the beacon camera sensor. The camera feedback

calibration residual is based on hardware test results using a checkerboard reference

object to calibrate the beacon camera. These are combined in the pointing budget

given in Table A.1. The beacon pointing requirement of -1.5 dB is met with margin

of 1.48 dB.

Table A.1: Pointing error budget for body pointing of crosslink beacon laser with
optical feedback from a monocular camera.

Budget Element 25 km range 580 km range
t (prad) - (prad) y (prad) - (prad)

Point Ahead 0.126 0.001 2.911 0.031
Assembly & Calibration 0.000 80.80 0.000 80.80
Camera Feedback Calibra- 0.000 3.26 0.000 3.26
tion
Camera Feedback NEA 0.000 69.13 0.000 69.13
Spacecraft Body Pointing 0.000 87.42 0.000 87.42
Total 0.126 137.7 2.911 137.7
01/e2 (prad) 22235
9 ptg (prad, po = 0.997) 469.3 469.5
Lptg,dB (dB, pi = 0.997) -0.0155 -0.0155
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A.6.2 Fine Pointing

The contributors to fine acquisition error are pointing direction measurement error,

point ahead error, FSM pointing error, FSM-to-camera calibration error, sensor jitter,

and mechanical misalignments in the quadcell optical train. The pointing direction

measurement error is the same as that in coarse tracking. The FSM pointing error

is a result of open-loop control instabilility. The FSM-to-camera calibration error is

a the residual error in the calibration between the FSM actuation command and the

pointing direction measurement, which is done on the ground. The sensor jitter is

the same as the beam jitter from before; however, now the structural vibrations affect

the sensor. The mechanical misalignments are similarly generated as before: residual

calibration error, launch shifts, and on-orbit thermoelastic deformation. Additional

details on mechanical and thermoelastic errors can be found in [24, 30]. The Reaction

Wheel (RW) jitter value is based on flight results for the ASTERIA Cubesat [85].

The FSM control residual is based on optical bench hardware test results [7]. The

quadcell NEA value is based on Zemax analysis, and further details can be found in

[30]. Combining these results, the pointing budgets for fine pointing for crosslinks

and downlinks are given in Tables A.2 and A.3.

Table A.2: Fine pointing error budget for the transmit communications laser for LEO
crosslinks.

Budget Element 25 km range 580 km range
p (prad) o (prad) y (prad) o (prad)

Point Ahead 0.126 0.001 2.911 0.031
Optical Calibration 0.00 4.47 0.00 4.47
Thermoelastic 0.00 5.40 0.00 5.40
RW Jitter 0.00 1.62 0.00 1.62
FSM Control Residual 0.00 3.33 0.00 3.33
Quadcell NEA 0.00 1.83 0.00 1.83
Total 0.126 8.14 2.911 8.14
01/,2 (trad) 120.96
Optg (prad, po = 0.997) 27.7 29.3
Lptg,dB (dB, pi = 0.997) -1.83 -2.04

The fine pointing crosslink requirement of -3 dB is met with margins of 1.17 dB

and 0.96 dB for ranges of 25 km and 580 km, respectively. For downlink fine pointing,
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Table A.3: Fine pointing error budget for the transmit communications laser for LEO
downlink.

Budget Element p (prad) o (prad)
Point Ahead 24.48 9.86
Optical Calibration 0.00 4.47
Thermoelastic 0.00 5.40
RW Jitter 0.00 1.62
FSM Control Residual 0.00 3.33
Quadeell NEA 0.00 1.83
Total 24.48 12.78
01/e2 (prad) 120.96

ptg (purad, po = 0.997) 71.4
Lptg,dB (dB, pi = 0.997) -12.1

a point-ahead mirror was not included in the design to meet volume requirements;

therefore, the point-ahead error dominates the loss, leading to a 99.7% pointing loss

of -12.1 dB. Although this is significantly more than all other pointing budgets,

link budget analysis has shown that the receiver gain of the 30 cm aperture optical

ground station is sufficiently high to enable to link to close with sufficient margin

and for sufficient durations to complete the 10 Mbps science data collection needs

(necessary link duration less than 1 minute). For future terminal designs, a point

ahead mirror is recommended to improve downlink communications performance.

A.7 Time Systems

All rotations are dependent on the current time, which makes timing knowledge es-

sential for accurate transformations. Accurate timing can be maintained via periodic

corrections of a local clock, which is subject to bias errors, using GPS measurements.

There are several relevant time systems: Universal Time (UT) in the UTI variant

(there are also UTO and UT2 variants of UT), Coordinated Universal Time (UTC),

International Atomic Time (TAI), and Terrestrial (Dynamical) Time (TT). These are
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related as follows [33].

UT1 = UTC + AUT1

TAI =UTC + AAT = GPS + 19s

TT = TAI + 32.184s

(A.14a)

(A.14b)

(A.14c)

where AUTi & AAT are offset values that are updated and published daily (see 141]

for aggregated data). Lastly, the Julian Date (JD) represents the current date and

time measured in days relative to January 1, 4713 B.C.E. 12:00:00.000. This may

be converted to centuries relative to a more recent epoch to reduce the number of

significant digits needed e.g. T = (JD - 2, 451, 545.0)/36, 525 centuries past J2000.0

[33].

A.8 Central Body Gravity Model Gradient

The central body gravity potential U and acceleration aaspherical are defined in Section

3.1.1. The acceleration gradient (Hessian of the potential) is then:

Oaaspherical _ 02U

Or Or2

-_(O2 U(r)
Or2

( 2U(r)

Br2

-O
2Uo(r)

Or2

-2U(r)

Or2
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(A. 15a)

(A.15b)

(A.15c)

(A.15d)

(A.15e)

(A.15f)

(A.15g)OU1+2 02r OUi+ 2 0 2 A



where x, = (r, A, #) are the spherical coordinates in which Ui+2 = U1 + U2 is defined.

The two-body Hessian term is:

O2 Uo(r) p13X3 3 (A.16)
0r2 ||r|| |Irl

Expressions for the higher order Jacobian and Hessians in terms 2 & 3 of Equation

A.15e are documented in Vallado [33].
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