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Abstract

Understanding the electrostatic interactions of ions in the bulk and near electrified
surfaces has been a fundamental question in physics for over a century since the
"Poisson-Boltzmann" theory was first introduced. In this thesis, we study the bulk
properties of ionic fluids in two important cases where the "Poisson-Boltzmann" the-
ory fails: extreme confinement and strong ion-ion interactions.

We first ask how ions behave when confined to a long and narrow tube. Recent
advances in nanofabrication technology enabled us to make precise measurements in
extremely narrow nanopores and revealed critical gaps in our understanding. A strik-
ing result of constraining ions to reside along a line is the exponentially long screening
length that easily exceeds the macroscopic length of the pore, leading to electrone-
trality breakdown. Remarkably, this result has not been reported before, despite its
fundamental consequences for ion transport and electrokinetic phenomena. We build
a general theoretical framework for electroneutrality breakdown in nanopores and
show how it provides an elegant interpretation for the peculiar scaling observed in
experimental measurements of ionic conductance in carbon nanotubes.

Strong ion-ion correlations arise when the electrostatic interaction between neigh-
boring ions is comparable to or greater than their thermal energy. This is most pro-
nounced in ionic liquids, highly concentrated solvent-free electrolytes. While generally
the Poisson-Boltzmann theory predicts monotonically decaying correlation function,
ionic liquids have strong charge ordering and long-ranged charge oscillations. In this
work, we show that the charges in ionic liquids are forming the optimal structure that
minimizes the electrostatic energy, in the presence of strong positional distorter. We
develop an approximated minimization scheme based on the Goemans-Williamson
Max-Cut algorithm, adapted for a fully-connected graph with Coulombic interac-
tions. We demonstrate how the persistent layering structure exists due to partial
ordering, which is maximized in ionic solids but gradually disappears with added
solvent. Eventually, by adding solvent molecules or increasing the temperature, the
system departs from its ground state and a mean-field description is more suitable.

Finally, we study the regime of intermediate ionic strength using a non-local per-
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mittivity operator, which captures two important effects: ion-ion correlations and
solvent structure. Our approach is phenomenological and introduces a small number
of fitting parameters. We study the activity coefficients of bulk electrolytes in a wide
range of ionic solutions and find that our models capture well the experimental data.

Thesis Supervisor: Martin Z. Bazant
Title: E. G. Roos (1944) Professor and Executive Officer of Chemical Engineering
Professor of Mathematics

Thesis Supervisor: Mehran Kardar
Title: Francis Friedman Professor of Physics
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Chapter 1

Introduction

In 1923, in their seminal paper[61], simply called "The Theory of Electrolyte", Pe-

ter Debye and Ernest Hukel were the first to use the "Poisson-Boltzmann" (PB)

theory to study bulk properties of electrolytes. Many scientists have followed them

and proved the PB theory and its extensions to be invaluable for understanding the

ways ions interact with each other or with other charged objects. This thesis is our

small contribution to this century-long effort and focuses on extreme conditions of

confinement and strong correlations.

In their paper, Debye and Hu~kel sought to explain the experimentally measured

phenomenon of freezing point depression in electrolytes. When a salt is dissolved in

water, the freezing point of water is reduced. The freezing temperature decreases with

concentration until ion-ion interactions limit these effects. To study ion-ion correla-

tions, Debye and Huakel calculated thermodynamic properties of ions in solution in a

"mean-field" manner. The electrostatic potential (#) around an ion is determined by

ions in its vicinity in accordance with the Poisson equation: -eV2 # = p, where E is the

solvent dielectric constant, and p qicj is the charge density. The charge density

itself is given by the Boltzmann distribution, which leads to the Poisson-Boltzmann

(PB) equation:

EV2g = 2ec sinh(pe#), (1.1)

where # = 1/kBT is the inverse temperature.

21



The PB equation was first introduced by Gouy in 1910 [96] and later independently

by Chapman[53] to explain the screening of charged surfaces by electrolytes. The

ionic atmosphere in the bulk is essentially equivalent to the double layer structure

that ions form near the surface. When considering bulk properties, the amplitude

of the electrostatic potential, compared with thermal fluctuations, is usually small,

and the hyperbolic sinus function can be approximated well to linear order. This is

known as the Debye-Huckel (DH) approximation:

V2 g = A- 2g (1.2)

where AD 2ce2 /EkBT = 1/2B is the well known Debye screening length, and

1B = e 2 /47rekBT is the Bjerrum length. In their paper they describe this length as "the

most essential size of our theory", and this is indeed the single most important size

that characterizes the bulk properties of ionic solutions. Interestingly, the nonlinear

analysis of the PB equation was omitted from the paper for the sake of brevity.

The linear DH regime was able to accurately explain the experimental observa-

tions of the freezing point depression for a variety of salts and ionic strength, with

a single fitting parameter- the ionic size. This success was subsequently followed by

further investigations of thermodynamic properties, such as activity coefficient, os-

motic pressure, heat capacity, and more[61, 118, 107, 208, 48]. The PB equation is

not limited to bulk properties and is widely used in biological systems, where ions are

interacting with charges on the cell surface or other polyelectrolytes such as proteins

or DNA molecules [120, 188, 75, 12]. Finally, both the DH limit, as well as the full

nonlinear PB equation, is often used in the design and modeling of electrochemical

and energy storage devices[56, 120, 85, 82, 181].

1.1 Derivation of the PB Equation

We described the PB equation as a "mean-field" theory, derived self-consistently by

combining the Poisson equation and Boltzmann distributions. Let us now sketch a
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rigor derivation for the PB equation from a statistical mechanical perspective. This

will illustrate the approximations and limitations of the theory and will serve as

a starting point for our discussion on the extensions to the theory. We focus our

discussion here on symmetric monovalent binary solutions, but the derivation can

be extended for different valencies as well. Our derivation here is based on a field-

theoretic approach that offers a powerful way of extending the PB equation beyond

mean-field[205, 189, 160, 161, 5].

Let us consider a lattice with lattice a constant a, which roughly corresponds to

the size of the ions. We further assume that the solvent is described by a constant

dielectric background medium, and allow each lattice site to occupy a single ion,

negative or positive. The electrostatic energy of this system is given by a sum over

all the pairwise interactions. Working in the grand canonical ensemble, the valance

of each lattice site i can take three values zi = {-1, 0, 1}. The partition function is:

(,q f ,p(r)p(r') (1.3)

E=f S exp #p z - Jdr dr'
i zi=-1,,1 J

where p is the chemical potential, the charge density is p(r) = E zie6(r - r2 ), and

ri is the location of the ith lattice site. At this point it is not clear how a Poisson-

Boltzmann equation can pop out of this seemingly complicated partition function.

To achieve this, we use the Hubbard-Strantovic (HS) transformation[233, 117], and

write the partition function in terms of an auxiliary field <p that conjugates the charge

density field p. For a general pair-wise interaction v(r - r'), the HS transformation

can be viewed as a generalization of the Fourier transform of a multivariate Gaussian

to the continuum:

exp [Jdr Jdr'p(r)v(r - r')p(r') = 9t(r) exp [s(r)v 1 (r - r')<p(r) - ip(r)<p(r)]

(1.4)

For Coulomb interactions, the inverse interaction operator v-1(r - r') is proportional

to the Laplcae operator. The HS transformation allows us to decouple different lattice

sites, and explicitly calculate the summation in the partition function. Eventually,
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we get [39]:

9W exp (- dr |Vp 2 + I drln{1 + 2Acos [e3&(r)]}), (1.5)

where A = exp(#pt) is the fugacity. We now see that p is closely related to the elec-

trostatic potential. In the mean-field level, which is the saddle-point approximation

of the partition function, the auxiliary field equals p = -i#. The free energy at the

saddle point is:

F #-1 - 1_i
= - IB n 2 dr V#12 jdrln{1+2Acosh[e##(r)]}. (1.6)

kBT 2 a30

Minimizing the free energy with respect to #, and taking the dilute limit A -+ 0 we

obtain the PB equation (Eq. 1.1):

OF _A

= #EV 2 # - 2e#3- sinh [eo#(r)] = 0. (1.7)
8# a

1.2 Extensions to PB Theory

From the statistical mechanical derivation of the PB theory, the main limitations of

the PB theory are apparent. First, it is a theory of low packing fractions: the size

of the ions, compare to the ion-ion separations, has to be large. More importantly,

as a mean-field theory, it will only be applicable if fluctuations beyond mean fields

are negligible. The partition function allows us to systematically expand the theory

beyond mean-field. Taking the first-order correction, also known as a "one-loop"

expansion, we find that it can be negligible if the Bjerrum length, 1B, is small compared

to the average distance between ions[246]. Hence, a mixture of ions, immersed in a

dielectric continuum, and interacting only with electrostatic forces are described by

the PB theory only if both ca' < 1 and cl < 1.

An electrolyte, however, is not an ideal mixture of ions, nor does it always dilute

enough to justify the PB underlying assumptions. The solvent, dipole molecules

such as water, can interact with the ions. Ions themselves have different sizes and
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shapes, and ion-ion interactions at small distances are complicated and not strictly

electrostatic.

Different approaches have been suggested over the past century to handle the

limitations of the original theory. Let us briefly discuss some of the prominent ones:

1.2.1 Finite-size Effects

Perhaps the largest body of literature is devoted to including finite-size effects to the

Poisson-Boltzmann theory. The short-range interactions can either be modeled with

van-der Waals forces, a hard-sphere model or even a lattice model.

Primitive Models and Liquid State Theories

The "primitive models" of electrolytes are defined as ions interacting with a combi-

nation of hard-sphere repulsion in addition to the electrostatic interaction:

Irrjl_ r - rj > a
ui, (|ri - r r) > (1.8)

oo |ri - rj < a

A very useful technique of studying the local structure, or pair-correlation functions,

of hard sphere liquids is integral equation[1, 194, 197]. By postulating that the pair-

correlation function can be separated to "direct" and "total" correlations functions,

the pair correlation function is calculated from the Ornstein Zernike (OZ) equation[l].

Solving the OZ equations requires a closure- an assumption on how the direct corre-

lation function behaves. For the case of electrolytes, some simple closures have been

suggested, and showed good agreement with simulations [222, 44, 2241. While usually

a numerical scheme is required to solve the integral equations, the mean-spherical

approximation[150, 244] has an exact analytical solution.

Lattice Models

Liquid state theories can be very accurate, but they lack the simple and intuitive

picture that makes PB theory so popular. One way of extending the PB and still
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maintaining some finite size effects is to write the PB theory on a lattice[20, 40, 26,

130, 144]. In the derivation we presented in the previous section, we approximated the

exponent of the partition function to lowest order in the fugacity to obtain the regular

PB equation. Alternatively, we could have calculated directly the corresponding

mean-field equation and obtain:

2e csinh(e##q)
E 1I + 2ca3 sinh2( 3eg/2)

First introduced by Bikerman in 1942[26], and rediscovered many times since the

"modified PB" equation has a maximal density constraint that prevents unphysical

charge accumulations. It is especially useful when electrolytes are in contact with

large electrified surfaces, where screening charges form a compact layer. Interestingly,

within this approximation, one can obtain a closed-form formula for the differential

capacitance[40, 130, 144].

The main drawback of the lattice models is its failure to capture density waves at

high packing. Much like the standard PB equation, the solution of the electrostatic

potential is strictly decaying. This limitation leaves the lattice model applicable

only in the very dilute limit, away from charge oscillations and over-screening that

characterizes high concentrations.

1.2.2 Ion-ion Correlations

We can define "ion-ion correlations" as all the interactions that are not described

by the mean-field Poisson-Boltzmann theory. One example is the formation of ion-

pairs[28, 84, 6], ions that are so close, they form a stable pair (a dipole). ion-ion

correlations can also be short-lasting, but one consequence of it is the formation of

density oscillations. The solutions of the PB theory are always decaying, and higher-

order statistics is required to capture the oscillatory structures.

A rigor analysis of correlations beyond the mean-field can be carried out by a

systematic expansion of the partition function[189]. Alternatively, a phenomenologi-

cal approach to ion-ion correlations have recently been introduced by Bazant, Storey
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and Kornyshev (BSK[21]) who proposed a generalized mean-field theory, known as

the BSK equation:

(1 2 ,2,- 2ze c sinh(eco#)
E 1+2cassinh 2(3eg/2)'

where lc is a phenomenological correlation length. Note that the BSK equation cap-

tures finite-size effects as well. This simple way of accounting for correlations has been

widely used since it first appeared, and successfully explained a wide range of exper-

imental phenomena. Examples include electro-kinetics and transport[231, 151], the

electrical double layer structure and capacitance [21, 254], and electrophoresis[232].

Moreover, Molecular Dynamic simulations too showed good agreement with the BSK

predictions [125]

1.2.3 Ion-solvent Interactions

At the concentrated electrolyte limit, in addition to ion-ion correlations, we have

to consider ion-solvent interactions as well. Treating the solvent as a continuous

dielectric medium misses the important interplay between the dipoles and the ions.

The main consequence of this interplay is the lowering of the dielectric constant,

especially at high molalities, as noted by Huckel himself two years after the original

DH theory was introduced theory[118].

The PB equation can be extended to include simple point-like dipoles, generalizing

the electrolyte to a mixture of both ions and dipoles[3]. However, unlike ions, the

solvent molecules are highly concentrated and are strongly interacting[146, 141, 36,

227]. Therefore, while some aspects of solvent-salt interaction can be captured within

this framework, the complex local structures are usually beyond the reach of simple

theoretical descriptions.
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1.3 Electrolyte in Confinement

Our discussion was so far limited to cases where the electrolyte extends to all space.

Indeed, in many applications, this is a good approximation. The typical length-scales

of electrolytes (Bjerrum length, Debye length) are nanometric, while the size of a

typical system, biological or electrochemical, is much larger.

Yet, in one important case, this assumption breaks down: ionic channels. Bio-

logical ion channels can be as narrow as the size of single molecules[113]. Synthetic

channels, such as carbon nanotubes are fast approaching this limit[78, 115, 239]. Ion

exchange membranes, such as ones that are used for water filtration, have pores in

the nanometer scale as well[236]. Traditionally, modeling an electrolyte under such

extreme confinement has taken one of two routes [185]. On the one hand, a single-

file transport was described as a chemical reaction, where the channel is a transition

state for ions in the process of going from one reservoir to another. This is a popular

approach in ion channels that are limited to a handful of ions. A completely dif-

ferent picture utilizes the Poisson-Boltzmann theory, combined with Nernst-Planck

diffusion, to characterize the transport of ions through narrow channels. Without

explicitly accounting for the 1-d nature of the channels, this approach works best in

the "thin" double layer limit: if the size of the double layer is smaller than the size

of the channel.

In recent years there has been a growing interest in Single Digit Nanopores(SDNs):

pores with a diameter less than 10nm[78]. As this regime becomes accessible for pre-

cise measurements, the behavior of the SDNs is found to be strikingly different than

wider pores. Enhanced slip flow[248, 115], peculiar conductance curves[219], spa-

tial and temporal correlations[87] of ions are some unique characteristics of extreme

confinement that are not captured by classical continuum modeling.

1.3.1 A Phase Diagram for Confined Electrolyte

Three length-scales dominate the SDN regime: the radius of the channel (R), the

mean-ionic spacing (average distance to the nearest neighbor, r,,) and the Debye
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screening length (AD). Under extreme conditions, other lengths, such as the size of

the ions or the solvent, can play an important role. However, in typical experimental

setups, the pore is wide enough so they are safely ignored.

The PB theory works best in wide pores (R » AD) and dilute concentrations

(rnn « AD). In concentrated electrolytes, ion-ion correlations can lead to charge inver-

sion inside the channel and result in electroosmotic flow reversals and electrophoretic

mobility reversals[201, 25]. Confinement-induced effects lead to unusually strong cor-

relative transport modes, dramatically enhancing mechanisms such as electroosmotic

transport and ion concentration polarization[136, 30].

These different regimes are illustrated in Fig. 1-1 (published in Ref. [78]). We

consider a channel of radius R, connected to a reservoir with ionic concentration c.

The color of the plot corresponds to the amount of "ion-pairs", the percent of ions

that are separated by less than 1B, the classical definition of Bjerrum pairs. This

serves as a measure for the strength of ion-ion correlations. We assume that ions are

uniformly distributed inside the pore and that the nearest neighbor's distance follows

a Poisson point process.

The starting point of continuum models in the bottom right corner: the small

region where the PB assumptions are satisfied. The extensions described in the

previous section allow us to go in the up-word direction and predict the behavior of

moderately concentrated wide pores. However, there is a large region of the phase

diagram that remains uncharted territory. Can the PB theory serve as a good starting

point when ions are so close to each other? Are 3d equations valid when ions form

long Id chains?

1.4 What are We Still Missing?

The large interest in the Poisson-Boltzmann theory has led to countless extensions

and refinements of the theory. At the same time, technological advances in both fab-

rication technologies and computer hardware are now giving us new ways of studying

electrolytes. New experimental results require us to re-frame old ideas, and powerful
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molecular simulations give us a glimpse of the microscopic structure of materials.

It is remarkable that the Debye-Huckel equation, the linearized model of the non-

linear PB equation, has such a strong appeal despite its limitations. It demonstrates

the power of a simple theory to guide our physical intuition, which is often more useful

than providing the most accurate description of reality. Yet, inevitably, at some point,

the Debye-Huckel equation breaks down, and it is more instructive to have a different

picture in mind. Strong ion-ion correlations and extreme confinement pose such a

theoretical challenge: finding simple guiding principles that hold in those regimes. In

this thesis address this challenge in three different ways:

We begin (Chapters 2 and 3) by considering ionic channels as 1d electrolytes

interacting with a 3d Coulomb interactions. In contrast to 3d bulk electrolyte, we

find that an exponentially long screening length replaces the standard Debye length

("the most essential size of our theory"). When the screening length exceeds the

length of the pore, we find a surprising breakdown of global neutrality. We explore

the significant implications of the electroneutrality breakdown on the density profile

and transport properties of ionic channels in these chapters.

In Chapter 4 we study charge ordering in ionic liquids. The strong ion-ion inter-

actions in ionic liquids lead to long-range correlations that are not well understood

from a PB-like theory. Using molecular simulations, we show that the charge order-

ing follows a very simple principle: it exactly minimizes the electrostatic energy in

a system of disorder ionic positions. We demonstrate an intimate and overlooked

link between the ionic position and charge ordering and show that local positional

ordering is required to maintain long-ranged charge ordering.

Finally, in chapters 5 and 6 we show that phenomenological models can be valuable

for moderately correlated ions. We study the activity coefficients of highly concen-

trated ionic solutions in terms of a non-local dielectric constant. The properties of

the phenomenological permittivity allow us to retain closed-form approximated ex-

pression while capturing important effects such as ion-ion correlations and ion-solvent

interactions.
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Chapter 2

Breakdown of electroneutrality in

nanopores

Except for minor edits, the contents of this chapter have been submitted for publica-

tion and are currently under review[163].

2.1 Introduction

The transport of ions in extreme confinement has applications ranging from physiol-

ogy to chemical engineering[113, 66, 24, 111, 247, 243, 251, 134, 131, 176, 201, 216].

Whether we consider ions traveling through the protein channels in the cell membrane

or through pores in an ion-exchange membrane, the underlying physics shares many

similarities[192, 236]. A growing interest in ionic transport through nanopores has

emerged in recent years owing to nano-fabrication advances that enable us to study

pristine nano-channels at the single-channel level, such as carbon nanotubes, boron-

nitrite nanotubes or silicon nano-channels[154, 8, 223, 103, 60]. These experiments

have revealed that our understanding of even the basic physics is incomplete, and

important theoretical knowledge gaps still exists[78].

Classical theories of ion transport were inspired by the membrane technology

that was available at that time[229, 102, 77]. The complicated interplay of fluxes

and potential gradients (chemical, electrical, and pressure) was naturally modeled
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with continuum theories. The so-called "capillary-pore model," based on the Poisson-

Boltzmann (PB) equation for the charge distribution normal to the pore walls under

the local equilibrium assumption, with Navier-Stokes and Nernst-Planck equations

for the fluid flow and ionic flux, is a continuum linear response theory of transport in

charged cylinders[201], which is widely used in different electrochemical applications,

from electro-osmotic pumps to energy conversion devices[212, 252, 202, 135, 52, 250].

A competing school of thought, rooted in transition state theory[259], emerged in

the biophysical community. Experiments on ion channels show that when open, the

transport of the ions is best described by a discrete, single-file reaction model, where

ions are attached to specific binding in the channel by a chemical reaction[113, 111,

11, 66, 24, 213].

Evidently, a new theory is required for nanochannels with a pore diameter of less

than l0nm (single-digit nanopores, or SDNs[78]), in order to span between the two

limiting regimes, from discrete to continuum behavior. While the two traditional

pictures have some merit, neither can exactly capture experimentally measured con-

ductivity curves. Unusual scaling behavior of ionic conductance in carbon nanotubes

(CNTs), for example, was recently reported by Secchi et al[219] and was subsequently

interpreted with a Space-Charge continuum model[25]. The conductance of a narrow

CNT porin, in contrast, was fitted to a Michalis-Menten reaction model[2391, suitable

for a single-file transport mechanism.

In this work, we propose a new theoretical framework for electrolytes in nanopores,

consisting of confined ions with three-dimensional (3d) electric fields that extend

into the surrounding matrix. In the most interesting and relevant case of SDNs, we

construct a truly one-dimensional (1d) mean-field theory of ions confined to a long,

thin nanopore in a 3d matrix, in contrast to previous models of ion chains with id

Coulomb interactions [33-35]. Surprisingly, Id electrolytes exhibit several interesting

behaviors, most notable is the breakdown of global electroneutrality: a system can

have a net charge where the total charge of the ionic solution does not exactly cancel

out external charges. When the pore diameter is comparable to the spacing between

ions, the system essentially behaves like a Id correlated electrolyte. Ions are not
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necessarily restricted to transport in single-file, but the nature of the electrostatic

interactions resembles a id chain. Despite our interest in transport, this chapter will

only focus on the equilibrium properties of ion channels. The equilibrium properties

can in turn be used to understand transport properties of the nanotube.

Electroneutrality breakdown in nanopores has been observed in Monte-Carlo simu-

lations [228, 207, 170, 156, 157, 32, 31, 34], and was recently even measured experimentally[173].

However, it was not interpreted as a unique feature of the Id geometry. Instead, the

breakdown was assumed to occur due to an excess screening of charges outside of the

pore. This type of local breakdown of charge neutrality is not suited to most transport

problems, where the channel is surrounded by a constant dielectric medium.

Without charge neutrality, electric fields leak out of the confined region into the

outer substrate. We derive (section II) a mean-field theory of a confined electrolyte by

properly accounting for the outer region as well. We then focus on a 1d cylindrical ge-

ometry and consider three different models to illustrate how and why electroneutrality

is no longer maintained. First (section III), we present a general scaling argument

for the enhanced screening length in low dimensions. We show that Id systems have

an exponentially long screening length that can easily exceed the size of the system.

In the following (section IV), we consider a uniformly charged pore and solve a self-

consistent algebraic mean-field equation for the excess charge. Three length-scales

govern the accumulated charge: the Debye screening length (ion-ion interactions),

the Gouy-Chapman length (ion-wall interactions) and the pore diameter. Finally

(section V), we solve a full Id lattice mean-field equation and observe the emergence

of ion-ion correlations at high concentrations. The breakdown of electroneutrality has

profound implications on the transport of ions through nanochannels, and in section

VI we show that our model can account for the unusual scaling of conductance in

CNT.
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2.2 Mean-field Theory of Confined Electrolytes

Electroneutrality is often a hidden assumption of continuum models: it hides in the

boundary conditions for the Poisson-Boltzmann equation, where the electric fields

outside the electrolyte are assumed to vanish. According to Gauss's law, if there is

no electric flux emanating from the electrolyte in the pore, it has zero net charge.

Electroneutrality relies on the nanometer-scale screening length, which guarantees

macroscopic charge fluctuations are negligible. A rigorous analysis requires us to

solve the Laplace equation outside the electrolyte, in addition to the PB equation

inside.

It is important to note that electroneutrality is not always assumed[171, 172,

173, 55, 216]. As a recent example, Colla et al[55] considered two charged plates

immersed in water, with free ions on both sides of each plate, and solved a density

functional theory (DFT) in the entire space. Since the screening is not symmetric,

especially when the screening length is large, the accumulated charge between the

plates can be small. The authors consider this as an example of a local breakdown

of electro-neutrality (LEC), and while it shares some similarities with our approach,

LEC is fundamentally different from the global electroneutrality breakdown which we

discuss, and is not a unique property of a Id geometry.

2.2.1 General Equations

Let us consider the PB equation for a symmetric binary monovalent electrolyte, fixed

at a chemical potential that is set by an external reservoir with ionic concentration

co, and confined to a small region in space (Q, see Fig. 2-1). We further assume that

the electrolyte is embedded in a constant dielectric medium with permittivity Ecut,

and the boundary is charged with a surface charge q,. The electrostatic potential (#)

is determined by a set of PB and Laplace equations:

Ein{ 2 in(r)= 2coesinh [e##in(r)] VrE (2.1)

E ou tV2 out (r) = 0 Vr Q.
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where e is the electron charge, ein and sOut are the dielectric constants in the solvent

and dielectric matrix, respectively, and # = 1/kBT is the inverse temperature and kB

is the Boltzmann constant. A similar approach was previously introduced to calculate

the effect of image charges on the ionic self energy in confinement[128], and to study

the transport of ions through porous media[216], but the resulting electroneutrality

breakdown was not emphasized. The boundary conditions for this system are:

[#Aut(r) - #in(r)]VrE Q

n(r) - [EinVin - EoutV#out(r)]vrnaQ

#OUt(r) 1,oo

= q,

= 0, (2.2)

where 8Q is the electrolyte boundary, and n is an outward unit vector normal to the

boundary.

A,

~jA

salt bridge

V2 in2 sinh eflpi

4S

EoutV2 ot 2

Figure 2-1: Sketch of a confined electrolyte, in chemical equilibrium with a distant external reservoir
(in the grand canonical ensemble), as indicated by an ideal "salt bridge," which does not otherwise
perturb the system. The governing equation in the inner region (Q) is the usual Poisson-Boltzmann
equation. The outer region has a fixed dielectric constant and is described by a Laplace equation.
The surface charge on the boundary layer (O) determines the jump in the normal component of

the electric field.
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Solving the set of PB/Laplace equations for a finite cylinder can only be done

numerically. In many cases, we will find that accounting for outer electric fields is

redundant, since the outer electric fields vanish. In other cases, dramatic differences

in the charge profile can be observed. In the the remaining sections of the paper,

we will present simplified models that permit analytical results, which will help us

explore the implication of Eq. 2.1. While some of the accuracy of the complete model

is lost, we will gain a much better physical understanding, as well as mathematically

convenient approximations.

2.2.2 Example of a Spherical Cavity

Let us start by considering the pedagogical example of a weakly charged spherical

cavity, which allows us to analytically observe the breakdown of charge neutrality.

Note that this example only illustrates how net neutrality is achieved, though it has

little practical use since spherical cavities will usually not be in chemical equilibrium

with the bulk. For weakly charged surfaces, the electrostatic potentials are weak

(e3# « 1), which allows us to linearize the PB equation (sinh(e3#) ~ e##). We

solve the combined PB/Laplace equations for a sphere of radius R in the linearized

Debye-Hiickel (DH) regime:

Asinh(KDr) r < R.

B r > R,

where nD -A 2coe2 3/c n is the inverse Debye screening length, and A and B

are coefficients determined by the boundary conditions (Eq. 2.2). The total charge

accumulated inside the spherical cavity, in the linear DH regime, reads:

Qin =-20e2
co   47rr2#(r)dr

0

1 tanh(KDR)

-41rR2 F DR

s seeu tanh(rDR)
Ein KD R
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For a pore much larger than the Debye length (rDR » 1), or equivalently in the

thin double-layer limit, the charge inside the sphere is equal and opposite to the total

surface charge (Qext = 47R2q,), regardless of any relative dielectric discontinuity. If

the size of the sphere is comparable with the screening length, only partial screening is

achieved. Further decreasing the size of the sphere leads to screening of only a small

fraction of the surface charge. If the medium has a lower dielectric constant, the

accumulated charge is even smaller. However, since we aim to understand the effect

of confining ions alone, in the absence of dielectric polarization effects, we restrict our

analysis hereafter to a constant permittivity everywhere.

It is not surprising that when the Debye length is much smaller than the size of

the spherical cavity, the electrolyte fully screens the surface charge. However, what

would happen if only some directions are restricted, as in the cases of nanoslits or

nanopores? Is it enough for only one dimension to be smaller than the Debye length

to break neutrality? To gain a better physical intuition to guide our expectations, let

us first revisit the meaning of the "screening length."

2.3 Screening Length for Ions Confined to Lower Di-

mensions

A central ion in an aqueous solution is surrounded by a screening cloud meaning that

ions in its vicinity tend to be of opposite charge. In three dimensions, we can find

an analytical expression for the shape of the screening cloud, achieved by solving

the linearized Poisson-Boltzmann equation. The density profile of screening ions

decays exponentially -with a characteristic length, the "Debye length" (AD). When

ions are restricted to different dimensionality, still interacting with a 1/r pair-wise

potential, there is no similarly tractable equation to determine the shape and size

of the screening cloud. We will show in the following sections, that an equivalent

screening length exists and plays an important role in the physics of lower dimension

electrolytes, but it formally requires a cumbersome derivation. Before we delve into a
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Figure 2-2: Electroneutrality breakdown for a spherical nanopore in equilibrium with an external
reservoir. The surface charge is not fully screened by the confined electrolyte, as electric fields extend
into the solid matrix (assumed here to have the same dielectric constant as the pore). Bottom: the
accumulated charge inside the sphere, relative to the total surface charge, as a function of the ratio
of the radius to the Debye length. Top: an illustration of the electric field intensity for different
Debye lengths. As the Debye length decreases, the electric fields are screened from the outer region

and are concentrated in a narrow region near the surface of the sphere.

40

I . . . . , , , I I I I , , , , , I I I , , , , I I I . , , , , , f I I I r I mr""

10 2

DR 51



more rigorous formalism, we first present a simple scaling argument for the screening

length that holds in any dimension.

The screening length, in essence, is the distance at which entropic and electrostatic

forces balance each other. The electrostatic force pulls the screening cloud closer to

the central ion, while entropy favors uniform charge distributions and pushes the

screening cloud away. If we consider a screening cloud of radius A, with N, ions

around a negatively charged univalent ion, the probability of each ion to have charge

+e equals pt 1/2 + 1/2N,. Maximal entropy is achieved if there is an equal prob-

ability for an ion to be positive or negative. By forcing the ions to screen the central

charge, the probability of positively charged ions slightly increases, and the entropy

is reduced. Note that the ions outside the screening cloud have equal probabilities

to have positive/ negative charge. The entropy associated with this screening cloud

equals (assuming N, -+ oc, which corresponds to the dilute limit):

N

S = -kB [p logp ± pTlogp]
i=1

- -NskB [(M+1 log
12Ns ) (2Ns

+ ( 1 +(N - N)kBog 2
2N8 2Ns

kB Nlog 2 - (2.5)
2Ns'

where N is the total number of ions in the system, both inside and outside the

screening cloud. The first term is constant (does not depend on Ns) and can be

ignored. Note that this is only the entropy associated with the possibility of each ion

to be positive or negative, and positional entropy is neglected. Relating the entropy

to the d-dimensional sphere volume[182], V = AdA/d, where Ad is the surface area

of a unit sphere, and average ionic pair concentration (2c = N/V), we find that the

entropy of ions inside the sphere is reduced by:

dkBAS = d (2.6)
4AdAd
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The electrostatic energy of a uniformly distributed screening cloud equals:

U = - e2 Ad r d 2 dr
47rEV Ja

e2 d, d > 1.
= -x (2.7)

47rEA, log A,ds 1

where a is the ion size, assumed to be much smaller than A,. Here, we make the critical

assumption of a 3d Coulomb potential decaying as 1/r, which effectively spills out of

the confining geometry, and neglect for now any dielectric response of the surrounding

matrix, which modifies the result but does not alter the basic scaling arguments (as

shown below).

Minimizing the free energy (F = U - TAS) with respect to A, , and ignoring the

numerical prefactors, yields the following scaling behavior for the screening length:

1
((clB) r-% d >1

A, ocC (2.8)

aexp( 8 ), d=1,

where 1B = e2/47FkBTE is the Bjerrum length. In three dimensions, we recover the

standard Debye screening: A, oc AD = (87rclBy1/2. In a nanoslit geometry of two

dimensions, the screening length is proportional to (clB)>'. Forcing ions to reside on a

two-dimensional plane reduces electrostatic interactions, and slightly increases the size

of the screening clouds. A much more dramatic effect is observed for one-dimensional

confinement in a long, thin nanopore, where the screening length is exponentially

large, as shown in Fig. 2-3.

If we consider our one-dimensional system to be a cylinder with radius R, length

L, and a 3d concentration (per volume) of co, the corresponding Id concentration (per

length) in the axial direction is cid = 7rR2co. In terms of these bulk properties, we

find that the dimensionless factor, c ldB = 7R2 c0lB, is related to the ratio of Debye

length to pore radius, which enters the exponential scaling of the screening length

in one dimension: A, oc a exp [(AD/R) 2 ]. For narrow pores in dilute electrolytes, the
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Debye length can easily be greater than the pore radius, which is the traditional limit

of "thick double layers" (AD » R), but in contrast to classical continuum models, we

predict that this results in an extremely large screening length, easily exceeding all

geometrical scales in the problem. In particular, when the screening length exceeds

the total length of the channel(A, » L), the central ion is no longer screened, and

electroneutrality breaks down.

(a) s OC (ClB)-1/ 2  (b)

A oc esB/l

Figure 2-3: Illustration of the standard Debye screening in 3d(a), and the extended screening length
of ld(b), according to Eq. 2.8.

2.4 Uniform Embedded Pore model

The scaling analysis of the previous section suggests that if we numerically solve

Eq. 2.1 in a long and narrow cylinder, we expect that overlapping double layers will

be accompanied by a net charge of the pore. With this intuition in mind, let us now

introduce a quantitative model of a uniformly charged pore embedded in a constant

dielectric medium. This "Uniform Embedded Pore" (UEP) model is closely related

to-the widely used "Uniform Potential" (UP) model[214, 226, 59, 241, 41, 131, 2011,

also known as Teorell-Meyers-Sievers theory [58, 237, 184], which takes advantage of

the narrow pore geometry to approximate a constant charge distribution in the radial

direction. This approximation is further adapted in the "Leaky membrane model",

which describes the concentration polarization in porous media, based on similar

microscopic assumptions[176, 253, 70]. While we make the same assumption about

the charge distribution within the pore, we recognize that the sourrounding dielectric
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matrix cannot be neglected. At first, to keep matters simple, we only consider the

case where the dielectric constants inside and outside of the pore are equal.

2.4.1 Derivation

The free energy functional of M ionic species immersed in a dielectric continuum with

permittivity e, assuming ideal mixing entropy, with thermal de Broglie wavelength

AT, reads:

F[{ci(r)}] = d 3r dr3 p(r)p(r')
2 jv jy 4rEr - r'|

M

+ kBT] d3 r c(r) [log (Ai(r)) - 1]

M

p(r) Z ezici(r) + pext, (2.9)

where ci(r) and zi are the concentration and valency of the i-th ionic species, respec-

tively, and pext is an external charge distribution. For a uniform ionic density we

write the free energy as a function of the mean ionic concentrations:

e2 M M3 3
F[{ci}] = zizcicj dar dr' 4 ,rr- r'|

i=1 j=1

+ d 3r Id3r'Pext(r)pext(r')
v Jv 41re r - r'

M+ ez ci d 3r da3r' pex (r)
v Jv 8,se~r - r'|1

± VkBT ci [log (A3c,) - 1] (2.10)

The "mean-interaction" integrals in the above equation describe the electrostatic en-

ergy associated with uniformly distributed charge inside a volume, V. They depend

only on the external charge and geometry, so it is convenient to define the following
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integrals:

1Bf3 [ 3,r 1

0 'B dr dr'
eYV IV V |r-r|

The free energy density is now simplified:

M ~M
#F[{cj}] ezj cj +

V = zici 2 e°xt
F -( 3=1 _ (2.12)

+ ci(log(A/\ )- )

where we neglect constant contributions to the free energy. The chemical potential is

the derivative of the free energy density with respect to concentration:

#pi = -yzi  ezjcj + PeO t + log (A3c,). (2.13)

The first term in the LHS of Eq. 2.13 describes the excess free energy due to electro-

static interactions, while the second term is the ideal gas entropy. If our system is

in chemical equilibrium with a bulk reservoir, the chemical potential will only have

the second term (3[ = log (A c )), with the bulk values of ionic concentrations.

Equating the chemical potential in Eq. 2.13 to the bulk value, we find the following

equation for the average ionic density, ci :

log (A3c) = 7Zi ezjCj + p + log (A3c2 )
(j=1

M

ci = cO exp 7zi (2.14)

The average charge density, p0 = E ezici, therefore, satisfies the following equa-
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tion:

M
p = 0ezic exp [-zi-y(pe t + p°)] , (2.15)

i=1

We can incorporate non-idealities to the system by adding an excess chemical poten-

tial to Eq. 2.13. If this were the case, the c9 would be replaced by the ionic activities,

rather than the concentrations.

The equation for the mean charge in the UEP model, Eq. 2.14, is written in

terms of the average charge density, po, which makes it easier to solve. To see its

relation with the set of PB/Laplace equations discussed in section II, we write Eq. 2.14

in terms of the electrostatic potential. Note that the term in the exponent is the

electrostatic potential, averaged over the volume of the electrolyte, and multiplied

by zje#. Furthermore, the Poisson equation relates charge density and electrostatic

potential, p0 = -EV 2 #$, and thus Eq. 2.14 becomes a partial differential equation:

M

EV 2 (r) - zic exp -zje##(r) . (2.16)
i=1

Hence, the uniform embedded pore model is an approximation of the standard PB

equation, where we replace the electrostatic potential with its volume average. The

complete set of equations for the potential in the UEP model includes in addition

the Laplace equation in the outer dielectric medium, and the boundary conditions of

Eq. 2.2. This set of equations is mathematically equivalent to Eq.2.14, as long as the

permittivity is everywhere the same.

Under electroneutrality the charge density, p0 , exactly cancels out the external

charge distribution, p°. A criterion for electroneutrality to be satisfied, for weakly

charged systems, is obtained by linearzing equation 2.14:

0

p = -P.xt (2.17)
1 + (ey EM z c)-1

Hence, the condition for electroneutrality is e-y Ei zc » 1. Using the definition
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Figure 2-4: Left: Phase diagram for electroneutrality, as a function of the Gouy-Chapman length
(AGC) which is related to the surface charge, and Debye screening length (AD), which is related to
the bulk ionic concentration. The color intensity indicates the ratio of total accumulated charge
inside a nanochannel to the surface charge and is obtained by solving Eq. 2.22. In electroneutral
systems, this ratio is 1. The dashed mark the transition to electroneutrality Eq. (2.25-2.26). Right:
illustration of the 4 regimes of the phase diagram. The blue circles mark the Debye screening length.

of -y (Eq. 2.11), we can write this condition in terms of the bulk Debye length-

A = 47rlB(ZM1 1 ):

/ d3 r dar' » 1 (2.18)

In typical 2 and 3 dimensional systems, this condition is satisfied if the characteristic

size of the system is larger then Debye length, but in Id we find a very different result.

2.4.2 Cylindrical Nanopore Geometry: a Phase Diagram

Our scaling argument (Eq. 2.8) suggests that electroneutrality breaks down for cylin-

drical nanopores if the Debye length is greater than the pore radius. We can now see

that this is a property of the cylindrical mean-interaction integral. Let us consider a

cylinder with radius R, length L, and a surface charge density q, (pext = q,6(r - R)).

The mean-interaction integrals, y, and pext, can be approximated to a good precision
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by considering a test charge located at the center of the pore:

17 apprx 1B fd 3 r d3r'A

B R fL/2 27rr drdz 27rR2 1B ( L
_ B ~ - log

e 0 -L/2 /r2 + 2 e 2R)

p O~apprx 1B d3 r dar'qo(r' - R).
xt -eyapprxV JV y \r\ jy

21rRLq, 2q,   (2.19)
V R

Interestingly, this approximation deviates by only a few percents from an accurate

numerical evaluation of the mean-interaction integrals. Based on this approximation,

the electroneutrality condition (eyaPPrx E zic? » 1) in nanopores can be expressed in

terms of the natural system length scales, in agreement with the scaling argument:

L» (2R) exp (2A) (2.20)
R 2

To extend the electroneutrality condition beyond weakly charged systems, the full

solution of Eq. 2.14 is required. For a monovalent binary electrolyte, Eq. 2.14 reads:

p0  = eco exp [--y(pe t + p°)] - eco exp [-y(pe2o + po)]

= -2eco sinh [7(pe'xt + p")]

~ -2eci sinh [ eapprx(oaPPrx + p0)] . (2.21)

We note that -. apprx has dimensions of inverse charge density, so it is instructive

to study the dimensionless charge density, p = yapprxpo. According to Eq. 2.19, a

dimensionless charge density with a value of 1 describes a system where the distance

between ions is proportional to the Bjerrum length. Hence, we expect strong ion-

ion interaction when the dimensionless charge density is large, while for weak charge

densities (; « 1), we expect weak electrostatic interactions, that would result in the

breakdown of electroneutrality.

In terms of the dimensionless charge density we obtain the following algebraic
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equation:

# = - sinh(pext + p), (2.22)

where the two parameters, and #iext, are related to two important length-scales of

the system, the Debye-length and the Gouy-Chapman length:

Next = apprxO~apprx _ 2R log L
AGC \2R

= 2ecoyapprx = (R) log ( ). (2.23)
2 AD 2R

The Gouy-Chapman length (AGC e/27rq,sB) characterizes the distance from a

charged surface at which its electrostatic and thermal energies are equal. If this dis-

tance is much smaller than the pore radius, the system is effectively three-dimensional,

and electroneutrality holds. As pore charge decreases, AGC becomes comparable

with the pore radius and the one-dimensional geometry is recovered. Our param-

eter space is therefore described by three length-scales: the Debye screening length,

Gouy-Chapman length, and the pore diameter. The breakdown of electroneutrality

into a disordered phase is further augmented by the aspect ratio of the system, which

effectively re-scales the pore diameter.

The solution to Eq. 2.22 can be written as p = -pext + f (ext), where fg(x)

x + (sinh(x). Approximated solutions can be found for highly and weakly charged

pores:

Pext

fi = fC(iext) - P-ext= - P+_ Ifext «<1
log -i pet. Next »>1

(2.24)

This solution is illustrated in Fig. 2-4 as a function of AGC and AD, for a pore with

dimensions R = 1nm and L = 100nm. We identify four different regimes, as shown

in the four panels of Fig. 2-4. At low surface charge (large AGO) and short screening
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lengths (thin double layer), the system can be described by the standard DH approx-

imation, and the electroneutrality assumption is valid. This theory also covers the

beginning thick double layer regime, where the double layers begin to overlap. For

high surface charges the linearized Poisson-Boltzmann equation is no longer valid. In

this strong coupling regime the full non-linear equation is required, but interestingly,

it also ensures the ions will completely screen any surface charge. Our solution, how-

ever, predicts a fourth regime, of low surface charge and small concentration. Under

these conditions, electroneutrality is broken, and external fields must be accounted

for.

Two theoretical curves mark the boundaries of the electroneutral phase. The

vertical line is derived from the weak charge approximation, as the Debye length at

half screening:

AD =R 2 log (2.25)
2R

The second curve mark the transition to electruneutrality due to high surface charge,

and is obtained by requaring half screening in the strong coupling limit of Eq. 2.24:

AD AGCR (/L (2.26)
2R

which asymptotes to a horizontal line at AGC ~ R as the concentration decreases.

Note that the transition to electroneutrality is slow, and spans roughly an order of

magnitude change in the parameters. Electroneutrality breakdown can thus play a

major role in the physics of nanopores.

The total ionic concentration inside the nanopore, depicted in Fig. 2-5, is related

to the pore charge by Donnan equilibrium:

ctot = V/(2co) 2 + (p0/e) 2 . (2.27)

In electroneutral systems the concentration reaches a plateau in the dilute limit,

where the only ions inside the channel balance the surface charge. Accounting for
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electroneutrality breakdown, however, significantly alters the behavior in the dilute

limit.

I _

100

10-2

10-4

100 102

AD[A]
Figure 2-5: The total ionic concentration in a nanotube, as a function of concentration for different

surface charges. Dashed lines show concentration calculated for electroneutral pores.

2.4.3 Sub-nanometer Nanopores: Dehydration and Images Forces

Ion specific effects have important consequences on the behavior of nanopores, espe-

cially in the sub-nanometer scale. In extremely narrow pores ions have to remove their

hydration shell, which creates a large energy barrier for entering the pore [73, 210].

Denoting this energetic cost for the ith specie by Ej, we generalize the self-consistent

equation for the mean charge distribution:

N

p0 = Sezic' exp [-#Ej - ziy(p° + p)
i=1

(2.28)
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In the monovalent case the pore-charge equation takes a similar form to Eq. (2.22),

with re-scaled coupling parameter ( and external charge pext:

2R L E+ - E_
pext= lo+

AGC 2 ) 2kBT

= 2 ( )log ( )exp ( E ). (2.29)
AD 2R 2kBT

Hence, the phase diagram (Fig. 2-4) remains similar, but skewed: the x-axis is rescaled

by the average Boltzmann weight, while the y-axis is shifted by dimensionless energy

difference. Any asymmetry in the dehydration energy will result in an excess charge

within the pore since the dehydration energy plays a similar role to that of the surface

charge.

Even though we incorporate in our model an energy barrier, it is important to

emphasize again that we are considering a model with a constant permittivity every-

where. The differences in self-energies are only one aspect of a dielectric mismatch,

that can change ion-ion and ion-wall interactions as well[129, 256, 257, 159, 38].

2.5 Mean-field Theory on a One-dimensional Lattice

In the next section we compare the UEP model with experimental data, and show

it can be used to interpret conductance curves. Before doing so, we would first like

to show quantitatively how electroneutrality breakdown is a fundamental property of

Id confinement, by considering a system of ions restricted to reside along a line. This

will also allow us to explore ion-ion correlations along the pore axis, and observe a

transition from order to disorder.

We study a lattice-gas model, and not a continuum model, for two reasons. First,

it will enable us to discuss packing constraints at the high concentration limit. A more

fundamental reason was hinted in section III: there is no equivalent continuum PB

model in Id. The scaling argument showed that the screening length depends on the

minimal distance between ions (a), and this will remain valid in the analysis here as

well. As a result, we cannot find a corresponding differential equation that describes
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the system in the continuum limit. Note that in contrast to many previous Id models

of electrolytes ([72, 158, 62]), the electrostatic interaction is three dimensional (1/r):

we study point-like ions along a line, and not parallel charged sheets.

For mathematical convenience, we consider the free energy functional of a ld

periodic lattice model (a ring), with lattice spacing equal to the ionic size, a (see

Fig. 2-6). The ith site can be occupied by a positive ion, negative ion or a vacancy,

with probabilities pi, p- and 1 - p- - pt, respectively. The electrostatic energy, U,

is given by:

U = . .
87r aEli - J|

+ e(p -p)# ,xt (2.30)

where #q$t is an external electrostatic potential. We denote the dimensionless

average charge vector qi = (p+ - p-) and the dimensionless interaction matrix <Ii=

i - j -1, so the electrostatic energy reads:

2

U = 8 (qT<I6q) + eqText. (2.31)
87raE k

To calculate the free energy, we add the entropy of mixing:

S = -kB [pf log p + p log p7+

(1 - pt - p-)log(1 - pt - P-)] . (2.32)

If connected to a particle reservoir, the chemical potential is set externally and is

calculated by the functional derivative of the free energy density f = (U - TS)/a

with respect to concentration (c = A

p± = kBT log 4+ 2  + eext.
1 - p+ - p-) 47aE

(2.33)
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Figure 2-6: Solution of the iD-ring equation with uniform surface charge (Eq. 2.37). The solution,
q% = qo + qi(-1)i, has an average part (qo, left figure) that screens the external charge (Q) and an
oscillatory part (qi, right figure). Solutions are presented as a function of the bulk Debye length
(AD) and the Gouy-Chapman length (AGc). The dashed vertical line is the critical Debye length,

calculated by Eq. 2.39.

Rearranging the terms, we obtain the ld analog of the Bikerman model ([26, 40, 144,

130, 19]):

2A sinh [qi4q+ e+#°Oext
q = . ,(2.34)

1 + 2A cosh [<bq + e#4ext

where the fugacity A = e,8/' is proportional to the bulk reservoir ion activity.

The general form of the 1d ring equation is not very illuminating, and specific

examples are required to show how ion-ion correlations play an essential role in this

model. We study two systems: a charged homogeneous nanopore and the charge

distribution around a central ion. In the dilute limit, we recover the behavior de-

scribed in the previous section. As ionic concentration increases, the model naturally

predicts a transition to an ordered structure, including the short-range over-screening

phenomenon in intermediate concentrations.

2.5.1 A Uniformly Charged 1-d Nanopore

Let us assume we have a homogeneous charge density in our system: qj = q, #* =

4°ex. For periodic boundary conditions, a uniform charge distribution is an eigenvector

of the interaction matrix <I, where the. eigenvalue is twice the harmonic number HL/a.
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Figure 2-7: Charge distribution around a central ion and the resulting activity coefficient, for different
concentrations. (a-f) Charge distribution around a central ion for six different coupling strengths
(x). For weak coupling , the central ion is screened only by oppositely charged ions (e-f). As the
coupling increases, over screening and oscillations are observed. (g) Ionic activity in a nanopore,
based on the exact 1D solution for the mean field equation (Eq. 2.45, solid blue line) and the dilute

limit approximation (Eq. 2.46, dashed red line).
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For a long chain (L » a) the harmonic number can be expanded:

HLa ~log( -) + 7Euler + +... , (2.35)
a 2L

If the external potential is due to a uniform charge distribution on the pore walls (Q

per site), Eq. 2.34 becomes the following algebraic equation:

2A sinh 2LHL (q+ Q)
q = - . , (2.36)

1 + 2A cosh 2LBHL (q + Q)

In the dilute limit, this equation has a similar form to Eq. 2.22. As the external

charge increases, a maximal charge density of one charge per lattice site prevents an

unphysical accumulation of charges inside the pore.

Limiting the id-ring equation to only uniform distributions explicitly neglects

any ion-ion correlations. When ion-ion interactions are strong enough, the system

will form a crystal structure. In contrast to the 3-dimensional case, where the PB

equation cannot predict ordered structures, our Id model can be easily extended

to include the expected phase transition. To account for patterns of alternating

signs, we generalize our argument and replace the constant charge density with the

form: qi = qO + q1(-1)i. Both uniform charge density and an alternating pattern

are eigenvectors of the interaction matrix <I, where the eigenvalue of (-1)' equals

-2log 2. With this functional form we obtain a set of coupled non-linear algebraic

equations, for the average charge at even/odd locations:

2A sinh -2qi+ log(2) + 2+HL (qo + Q)
go -- q1 - _

- r
1 + 2Acosh 2qiLB log(2) + 2LBHL (qo + Q)

2A sinh 2qi log(2) + 2 HL (qo + Q)
go + qi =_

1 + 2A cosh -2qi g log(2) + 2LB HL (qo + Q)

(2.37)

Exploring the space of solutions of Eq. 2.37 is shown as a phase diagram in Fig. 2-6,
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for a = 5Aand L = 100A. As long as the ion-ion correlations are weak, we recover the

same behavior found in the continuum model, including electroneutrality breakdown

in the dilute limit. However, we find another breakdown of electroneutrality in the

high concentration limit. This is the oscillatory regime (qi > 0). Since qi + qo < 1,

an increase of oscillating term, qi, has to come at the expense of the average term,

qo, and electroneutrality is broken. With an increase of external charge, oscillations

are suppressed and electroneutrality is again favored. As shown in Fig. 2-6, the

order-disorder phase boundary only weakly depends on the surface charge and can

be evaluated analytically based on the Q = 0 limit. In this limit the average charge

is qo = 0, and the number of solutions is determined by a single algebraic equation:

2A sinh (2qi gB log 2)
q1

1 + 2A cosh (2qi g- log 2)

(2.38)

The RHS of Eq. (2.38) is monotonically increasing, starting from 0, and has a mono-

tonically decreasing slope. Hence, a second solution is available only if the slope at

qi = 0 is greater than 1, which leads to a critical fugacity of:

Ac- = a (2.39)
41B log 2 - 2a(

The results in Fig. 2-6 are displayed in terms of the standard 3d system parameters.

With a pore radius a, the surface charge density equals q, = Q/(27ra2 ). The bulk ionic

concentration is related to the fugacity c3D A/7a3 . The Gouy-Chapman length and

the Debye length are defined as usual.

2.5.2 Charge Distribution around a Central Ion

Bulk oscillations are maintained only for concentrations beyond a critical concentra-

tion, with persisting long-range order. Slightly below the critical density, we expect

temporary short ranged decaying oscillations, that will eventually be replaced by

monotonic decaying fluctuations in the dilute limit. We show how this behavior
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emerges with a standard Debye-Hiickel approach, by solving for the charge distribu-

tion around a central ion.

We take advantage of the periodic boundary conditions, and constrain the i = 0

site to have a charge Qe by adding a term ae 2/ae(qo - Q) to the free energy functional

(Eq. 2.31), where ae2 /aE is a Lagrange multiplier. The resulting mean-field equation

reads:

2A sinh [(§q + ak,o)

1 + 2A cosh a (4q + aoi,o) (2.40)

which we solve in the linear Debye-Hiickel regime:

qi =-a + X .. j,o, (2.41)

where the coupling parameter X =2AIB is defined as the ratio of ionic spacing (a/2A)a

and the Bjerrum length. By the translation symmetry of the matrix 5iX = 5|i-ji, we

find a closed-form expression in the discrete Fourier space:

qj= - f dw cos(wi) (2.42)
47r 2,   2log 2sin g| - x-12

where the normalization constant a is set such that qO = Q. Note that the solution

is only valid in the disordered phase, where x-1 > 2 log 2, which coincides with the

critical fugacity (Eq. 2.39) in uniformly charged nanopores if size effects are neglected

(a < lB). Fig. 2-7 shows charge density profiles for different concentration, illustrating

how Eq. 2.42 is able to capture both the dilute Coulomb gas limit and the onset of

long-range ordering, and predict the transition from screening, to over screening and

oscillations.

So far we assumed an infinitely long chain, that allowed us to get a closed-form

solution in Fourier space (Eq. 2.42). As a consequence, the electronutrality is guar-
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anteed, and the total charge along the pore accumulates to 0:

qj = a lim 0. (2.43)
U--+0 2 log 12 sin --

However, the decay rate is very slow, and the screening cloud extends many lattice

sites. If we look at 4(w) , the Fourier transform of qj, we find a steep increase near

W = 0, on its way to its maximal value at w = 7r. We evaluate its width by finding

the frequency at which 4(w) reaches half of its maximal height:

1 1/2 a
Aci = 4e 4A.

2log|Awl - X-1 2log2 - X -e
(2.44)

Invoking the uncertainty principle, we conclude that the width of the screening cloud

scales as e 4 AB, in agreement with our scaling analysis (Eq. 2.8) and the electroneu-

trality condition (Eq. 2.18).

Finally, we use our explicit solution of the screening cloud to evaluate the activity

coefficient. For this purpose, the electroneutrality breakdown plays only a minor role.

Ignoring the finite length of the system, the Debye-Hiickel activity coefficient can be

written as an integral expression:

exlB i B f log 2 sin1
a z 27ra J2 2log 12sin I - X

(2.45)

where p"x is the excess chemical potential. In dilute systems we can expand the

activity coefficient to lowest order in the coupling parameter X, and get:

ex,,272/2#°~ 232 A. (2.46)

The activity coefficient in confinement is much smaller than the bulk value. As ions

cross over to the nanopore, they effectively shed off their ionic screening cloud. For
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Figure 2-8: Conductance of a KCl solution as a function of concentration, inside CNT with varying
surface charge and radii, fitted according to our model (dashed lines). The experimental data
(circles) was adapted from [219], where the surface charge was controlled by changing the pH . (a)
- A 3.5nm wide pore, fitted barrier energy of 4.6kBT and 4 different surface charges, from bottom
to top: -3mC/m 2 (black), -1.6mC/m 2 (red), 3.4mC/m 2 (green), 5.2mC/m 2 (blue). (b) - A 10nm
wide pore, with only one surface charge: 12mC/m2 . (c) - A 14nm wide pore, with 3 different surface
charge, fitted to: 63mC/m 2 (black), 213mC/m 2 (red) and 417mC/m 2 (blue). (d)- A 34nm wide

pore, with fitted surface charge of: -7mC/m 2 (black), 55mC/m 2 (red) and 11OmC/m 2 (blue).

a nanopore of radius a, with bulk ionic concentration (c = A/ra3 ), the Id activity is

only a fraction of the bulk one:

P1D 2

p3D 24 AD'
(2.47)

where we used the standard Debye-Hiickel activity coefficient, #p 3D = lB/2AD-

As shown in Fig. 2-7, this approximation is only valid in the dilute limit. As

concentration increases, screening and over-screening dominates the electrostatic in-

teractions, and reduce the activity coefficient further.

2.6 Comparison with Experiments

2.6.1 Single Digit Nanopores

Our model predicts a non-trivial charge accumulation within the nanopore, due to

the breakdown of electroneutrality, which has a direct implication on the measured

conductivity of the pore. Assuming equal mobilities for all ions (!.D), the conductance
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of the pore is given by:

rR2

G = e2  F c, (2.48)
L

where the concentration, c, is related to the accumulated charge by Eq. 2.27. We

compare our results with conductance measurements in carbon nanotubes (CNT),

taken from Ref. [219]. It is important to note that the conductance behavior can

be explained by different models. The CNT data was originally assumed to have

a concentration-dependent surface charge and was later fitted by predicting the ad-

sorption of hydroxyl ions to CNT pore walls ([25]). Our goal is not to underestimate

the importance of a charge regulation mechanism, that can lead to concentration-

dependent surface charge by affecting the adsorption rate ([68]), but to suggest a

plausible alternative with a constant surface charge. We show that the id geometry

by itself can lead to the variety of conductance curves observed in experiments.

Fig. 2-8 shows the conductance curves for CNTs with varying pore size and surface

charge, as a function of KC1 concentration. The experimental data were fitted ac-

cording to Eq. 2.29, with three fitting parameters- the ionic mobility, surface charge,

and energy barrier.

For the larger pore sizes, shown in Fig. 2-8(b-d), the energy barrier for entering

the pore (E±) was neglected, and the fitted ionic mobilities were on the order of the

bulk mobility of KCl, and varied from 5 - 10 x 10-8m 2 /Vs, compared to the bulk

value of 7.62 x 10-8m 2 /Vs (see Fig. 2-10, bulk value of ionic mobility was taken from

[165]). This effectively only leaves one fitting parameter to determine the shape of the

curves- the surface charge. As surface charge increases, electroneutrality is maintained

especially for the larger pore radii. The curve approaches a constant in the dilute

limit (see top curves in figures 2-8c and 2-8d). However, for smaller surface charges,

the apparent decrease in conductance in the dilute limit is due to electroneutrality

breakdown.

In the narrow nanopore (Fig. 2-8a) the behavior is more complicated. First, a

small energy barrier of ~ 2kBT is needed to obtain the correct trend. This small
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energy barrier is expected due to a lower dielectric constant inside the nanopores,

related to the confinement of water. More importantly, the fitted mobility, in this

case, is significantly higher: 12 times higher than bulk value for the lower two surface

charges, and more.than a 100 times greater for the high surface charge (Fig. 2-10).

The large mobility in the high surface charge limit can be due to ion-ion correlations,

where the positive charges push each other to move faster. It can also be related to

enhanced water flow, due to an increased slip length [115, 248].

2.6.2 Sub-nanometer Channels

We conclude by applying our model to sub-nanometer channels, which is the rele-

vant limit for ion channels in nature. The most prominent example of a biological

nanochannel is the Gramicidin-A channel. With a pore diameter of about 4A, it is

truly a one-dimensional system. It is often described using Michaelis-Menten type

conductance: ions which travel through a channel that connects reservoirs A and B

are transitioning between three possible states ("A", "B" and "in channel"). This

framework is successful since it naturally ignores any charge neutrality constraints.

It predicts a linear dependence in dilute solutions and a saturation at high concentra-

tions, limited by the maximal occupancy of the pore. Despite its good agreement with

experimental data, it can only describe systems with a handful of ions. Continuum

models, on the other hand, which are much better suited to handle numerous ions,

cannot predict the dilute limit linear behavior as long as electroneutrality is assumed.

We consider two experimental datasets: a conductance measurement Gramicidin-

A channel (taken from [83]), and more recent conductance measurement in a CNT

porin experiment (taken from [239]). We fit the data according to Eq. 2.48 as be-

fore, with one important modification. As water molecules are excluded from these

channels, the dielectric constant is now much smaller and was chosen to be E = 5.

As shown in Fig. 2-9, our model is able to capture both neutral (linear conduc-

tance) and charged (Michalis-Menten conductance) sub-nanometer nanopore behav-

ior. The plateau at high concentrations is not predicted, as our model fails in the

concentrated regime. For higher concentrations, a more detailed picture of the (cou-
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Figure 2-9: Conductance of sub-nanometer pores as a function of ionic concentration. Main figure:
Conductance of a 3.5Awide CNT porin as a function of KCl concentration (filled squares), adapted
from [239] and fitted according to our model (dashed lines). The bottom curve (blue) has pH 3.5,
which corresponds to zero charge, while the upper (black) curve has pH 7.5, and is fitted to a surface
charge of 6mC/m 2. Inset: conductance in Gramicidin-A channel as a function of NaCl concentration
(filled squares, adapted from [83]) and its fit (dashed lines). The fitted surface charge is 13mC/m 2.
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pled) fluxes has to be accounted for and is beyond the scope of this thesis. As shown

by the lattice model (see Fig. 2-6), ion-ion correlations can lead to a decrease in the

total charge with increased concentration and eventually to an overall reduction in

conductance.

The predicted energy barriers for both experiments were similar (5kBT). This

energy is much smaller than the Born solvation energy in the vacuum, which might

imply that dehydration is not complete, and is compensated by the interactions of

ions with the pore walls. It is also smaller compared with energy barriers estimated by

Michalis-Mentan type theories, which are of the order of 10kBT{113]. We note, how-

ever, that in order to keep the model simple, we assumed a constant energy difference

between the pore and its surrounding. Entrance effects were smeared throughout the

system, so a smaller energy barrier is expected. A more careful derivation is required

to accurately separate the pore mouth contribution to transport.

Another interesting result is that the ionic mobility in GA is much lower compared

to bulk water, while the CNT porins have higher mobility. The biological channel

has fitted mobility of 5.7 x 10- 9m 2 /Vs which is an order of magnitude less than the

bulk ionic mobility (see Fig. 2-10). The CNTP fitted mobility is closer to bulk KCl

and equals 11 x 10- 9m2 /Vs and 50 x 10- 9 m 2 /Vs for the neutral and charged pores,

respectively. The reduced mobility compared to isolated ions in a solvent (water)

can be understood from the strong attraction of ions and the opposite fixed wall

charge and hence larger friction for relative motion. Our expression for conductance

is derived based on a normal Nernst-Einstein relation with uncoupled fluxes of each

ion. This is only valid for AAIJpseudo binary&Ai transport where each specie only

interacts with an abundant solvent. Generally, the Stefan-Maxwell picture has a

diffusion tensor with coupled fluxes between each pair of species [64, 15], and can

be extended to a "dusty gas model," if wall molecules are treated as a fixed specie

[76, 86].
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2.7 Conclusions

We have analyzed ions in a 1d electrolyte interacting with 3d electrostatic interac-

tions, which is the appropriate limit for single-digit nanopores. In 3d systems the

fluctuations around electroneutrality are limited only to the microscopic length-scale.

The strong Coloumbic cost of large-scale deviations is much greater than the thermal

energy. In contrast, when ions are forced to reside along a line, even macroscopically-

long charged chains can spontaneously form.

We first showed directly how the competition between electrostatic forces and

entropy determines the screening length. In three dimensions we recover the classical

Debye screening length, but in Id we find an exponentially large screening length.

We then developed two mean-field models and showed that when the screening length

exceeds the length of the system, electroneutrality is broken. We predicted a phase

diagram for the accumulated charge inside the pore, that depends on two length-

scales: the Debye screening length and the Gouy-Chapman length. If both length-

scales are larger than the pore diameter, the ions do not know about the 3d nature

of the system, and electroneutrality is broken.

In our efforts to provide analytical results with a clear physical meaning, we ne-

glected several important aspects of the problem. Most notably, our models fail

to account for the polarization charge induced by a discontinuity of the dielectric

constant. A large mismatch in the dielectric constant can alter ion-ion interactions

inside the pore[159, 38], and can lead, for example, to a Id Coulomb interactions in

short nanopores[256]. Molecular dynamics studies have shown that the interactions

with images forces are especially relevant for selectivity in ion channels [34, 33, 35].

Selectivity is also sensitive to the size of the ions, and a proper theory of confined

electrolytes must include finite size effects.

Within the uniform embedded pore model, we derived approximated but accu-

rate closed-form expressions for the expected charge and ionic concentration inside a

charged pore, and the resulting ionic conductance. With two fitting parameters, the

surface charge and ionic mobility, we were able to fit a wide range of conductance
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curves in narrow nanopores. We interpret the unusual scaling behavior observed as

a consequence of the breakdown of electroneutrality.

While transport measurements are an extremely useful tool for studying nanopores,

inferring the ionic concentrations is a difficult task. Ion-ion, ion-water and water-pore

interactions all play a role in the complicated transport phenomena. A more complete

description that explicitly accounts for water flow is required to correctly predict the

conductance. Moreover, the mobility of the ions may vary under confinement and

composition[74, 67], and the linear relation with concentration is only appropriate in

infinite dilution.

Another important aspect of ionic transport, especially relevant to short nanopores,

are entrance effects and access resistance. The transition from a microchannel to a

nano-channel adds additional resistance to the system, and the access resistance de-

creases with increasing concentration, which is an alternative explanation for the

scaling observed in the conductance, as argued in recent papers[101, 100]. The en-

trance effects are of even greater importance if charges are added to the pore mouth,

for example, to increase selectivity[57, 50, 99].

With current available data, we cannot rule out alternative explanations to de-

scribe the scaling and shape of the conductance curves. However, as concentration

decreases, our predictions deviate substantially from other models. For example, we

predict a linear conductivity in the very dilute limit, and not a plateau. Experiments

with a wider range of dilute concentrations are therefore needed to correctly identify

the key mechanism.

Added complexities are surely required to adequately describe the transport of

ions through nanopores. In the next chapter we relax some of our simplifying as-

sumptions and build a more general theory of transport. Yet, as extremely long and

narrow nanopores become technologically accessible, determining their net charge is

a crucial first step. In our quest to understand the physics of single-digit nanopores,

we highlight a simple but consequential observation on the nature of geometrical

confinement: it breaks charge neutrality.
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Chapter 3

Transport in nanopores

In the previous chapter, we concluded that the 1d nature of narrow channels has

profound implications on the transport properties of nanopores, especially in the

"Single Digit" regime. In particular, we found that due to exponentially long screening

length, the widely held assumption that charged nanopores are overall neutral is

broken. We derived an approximated algebraic equation for the overall charge in the

channel and used it in a linear model of conductance to illustrate how a peculiar

scaling behavior emerges under these conditions.

To simplify our model and obtain closed-form expressions, we neglected the charge

density profile inside the nanopore and assumed that charges are uniformly distributed

in a "Uniform Embedded Pore" (UEP) model. In this chapter, we go beyond the UEP

model and account for non-uniform charge density. This allows us to obtain a much

more accurate description of the conductivity, to couple it with the electro-osmotic

flow, and even consider a coupling between the fluxes of the anions and cations.

3.1 Equilibrium Density Profile: The Consequence

of Electroneutrality Breakdown

Let us first start by finding an exact solution for the density profile of ions inside a

channel. While this is going to be slightly cumbersome, it will allow us to estimate
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the validity of different approximated schemes. An ionic channel, connected in both

ends to a reservoir with a binary monovalent ionic solution with concentration co,

and embedded in a dielectric matrix is depicted in Fig. 3-1. Denoting the dielectric

constant inside the channel Ein and the permittivity of the outer matrix 6 ont, the

electrostatic potential (#) is described by a set of Laplace and Poisson-Boltzmann

equations (see discussion in the previous chapter):

Ein V2g(r) ={2eco sinh(e##) r < R, 0 < z < L, (3.1)
0 else,

where R is the radius of the channel, L its length and # = 1/kBT is the inverse

temperature. Assuming a fixed charge density q, on the channel walls, the boundary

conditions are:

[EoutOr Oout(R, z) - Ein r in(R, z) -q,(0 < z < L) (3.2)

Remarkably, despite numerous theoretical investigations of ionic channels, there

is currently no analysis of this simple and fundamental problem, to the best of our

knowledge. In many cases, this problem is oversimplified by disregarding the outer

dielectric matrix[25, 201, 102, 77, 212]. As shown in the previous chapter, this as-

sumption is only valid for either large charge densities or wide channels.

This set of PDEs can only be solved numerically, for example using software

such as COMSOL. Fig. 3-1(e-f) shows an example of such numerical simulation for a

nanopore configuration and the resulting electric field in a plane crossing the cylinder1 .

Note that there is a significant 'leakage' of the electric field into the dielectric matrix,

demonstrating the invalidity of the local electroneutrality assumption.

'This simulation was performed by Pedro J. de Souza and was adopted with permission
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3.1.1 An Exact Solution for Weakly Charged Cylinders

While generally, we are only able to find numerical solutions to the charge distribution

of ionic channels, we show here the solution for a weakly charged cylinder, in the form

of an infinite sum. Two key simplifications allow us to achieve an analytical result.

First, we are interested in the limit of weakly charged pores, allowing us to use

the Debye-Huckel approximation. Second, following [16], we also imposed that the

potential vanishes at the ends of the cylinder. The second assumption would limit

this solution to the small aspect ratio limit where end-effects are negligible.

The set of Debye-Huckel and Laplace equations, derived by linearizing Eq. 3.1,

are:

V 2 45n (r) = A 2 in(r) r < R
D Oi~r) < R(3.3)

V 2
0 ut (r) = 0 r > R,

where AD 2c6o 2 einkBT. The full set of boundary conditions in this geometry

read:

[#out (R, z) - din(R, z)] = 0

[kout,r#out (R, z) - in49r#i. (R, z)] = -q,(0 < z < L)

#out (r) = 0

O (R, z =0) = #ut(R, z =0) = 0

n(R, z = L) = #out(R, z = L) 0. (3.4)

Taking advantage of the azimuthal symmetry, we can write the inner and outer solu-

tions as an infinite sum:

00

#in(r, z) = A, sin(w,,z)Io( w2 + r2r)

n=1
00

q5ut (r) E ZB,sin(Wnz)Ko(Wnr), (3.5)
n=1
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where KD 1/AD is the inverse Debye length, Io(x) and Ko(x) are the 0 th order mod-

ified Bessel function of first and second kind, respetively, and wn = rn/L. Note that

we wrote the solution in a manner that satisfies the last three boundary conditions.

To find An and B2, we plug in the expansion to the first two boundary conditions,

where the second boundary condition is expanded in a similar way:

[Eoutaroout (R, z) - einr(in(R, z)] -qs LnZ). (3.6)
nrodd

Clearly, for even n we have An = Bn = 0. For odd n, we obtain the following

equations for the expansion coefficients:

AnIo( 0 + r2R) = BnKo(WnR),

An win~ I +Ii( w + rR) = -BneoutwnK1(WnR) + .q 8

(3.7)

Finally, we get:

2q, I Ko(wnR) sin(wnz)Io( n + rDr)
#inI(r, Z) =

Lnodd n out VW + r Ko(WnR)Ii( ow + rDR) + EoutonIo( w + r R)K1 (WnR)

2q, 1 Ko(wnr) sin(Wnz)Io(oV + r2 R)
#cut (r, z) =

no n Eout \ , + K2 Ko(w)R)Ii( os D R) + &outwnIo( (w + rDR)K1(oR)

(3.8)

As shown in Fig. 3-1(b-d) there is a remarkable match between the numerical

COMSOL solutions and the analytical solution, which improves as the length of the

channel increases. Yet, even in very short channels our solution only slightly deviates

from the full numerical analysis.
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3.2 The "Electric Leakage" Boundary Condition

From a computational standpoint, the exact solution is much more tractable com-

pared with the numerical investigation of a 3D problem. Moreover, the exact solution

accuracy increases with increased aspect ratio, since end effects become negligible for

very long and narrow pores. This regime is most challenging for a numerical solver,

and analytical results are of value.

Yet, from a theoretical viewpoint, an infinite sum does not illuminate the physics

of the system. In this section, we explore new boundary conditions, that are much

more accurate compared with the local electroneutrality assumption, but it is just

as simple. For pedagogical reasons, let us start our discussion not with a channel (a

cylinder) but instead we return to the "toy model" of a spherical cavity presented in

the previous chapter.

3.2.1 The "Electric Leakage" Boundary Condition in a Spher-

ical Cavity

When ions are confined to a small region in space, separated by a charged surface from

an external dielectric matrix, the outer region can play an important role. Within

the mean-field approximation, one should account for both regions by solving a com-

bination of the Poisson-Boltzmann (PB) equation inside the confined electrolyte, and

the Laplace equation in the dielectric medium.

In some highly symmetric cases, however, we can simplify matters significantly by

replacing the Laplace equation with a boundary condition for the PB equation. In

a spherical cavity, the radial symmetry dictates that the outer electric electrostatic

potential has a simple form: # = Qtotai/47rEr, where Qtotai is the total charge enclosed

in a sphere of radius r. The radial component of the electric field in the outer region

is hence:

E, = -Or(r) Q tota . 0 (3.9)
47er2  r

Note that Eq. 3.9 only requires radial symmetry, and describes both the inner and
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outer regions of the sphere. Using the continuity of the potential at the surface, we

can relate the electrostatic potential and electric field inside as well. If we consider an

electrolyte confined to a sphere of radius R, with a dielectric constant ej,, separated

by a wall with surface charge q, from a dielectric matrix with permittivity sout we

find the following boundary condition to hold:

[Eout r9,#Oout (R, z) - EinOr,in(R, z)] =

[-out (R, z) - Ein8c,#in(R, z) =

-sout " (R, z) - 8inOrt,in(R, z)1 = qR

(3.10)

where we used the continuity of the electrostatic potential to get a Robin-type bound-

ary condition that does not require us to solve separately the outer region.

3.2.2 The "Electric Leakage" Boundary Condition in a Nanopore

A similar idea can be applied for a nanopore cylindrical geometry. In this case, we

use the azimuthal symmetry and convert the solution of the Laplace equation in

the dielectric matrix to a boundary condition inside the electrolyte. This "trick",

however, only works in the limit of small aspect ratios, which is the relevant limit

for long and narrow nanopores. As we know (see the previous chapter), a truly

infinite channel guarantees electroneutrality and vanishing electric fields outside. It

is, therefore, useful to find the lowest order correction in the aspect ratio. Since

the outer region satisfies the Laplace equation, and as long as we have azimuthal

symmetry, the electrostatic potential at the surface can be written as the following

sum:

ut( zB sin (n7r) KO (n7r , (3.11)
n=1
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Note that we are not limited to the linearized DH region as in in Appex. A. In the

limit L » R, the modified Bessel function is approximated to lowest order:

#out (R, z) =-EBu si

+ 0 2

+ (()

n (nr) (log (rurR)

log ,

where 'YEuler ~ 0.577 is Euler's constant. We note that to lowest order in log(L/R)

we find:
nrR irR\ (rR

log 2jr log 2r + log(n) f log 2L . (3.13)

which leads to the following approximation for the electrostatic potential:

#out(R)
00

rI~ ML/RE SBnsin(wnZ),
n=1

(3.14)

where ML/R is defined as:

ML/R =log (R) - 'YEuler. (3.15)

Our next step is to relate the derivative of the potential to the potential itself, which

will allow us to mask the solution as a boundary condition. Taking the first derivative

of the electrostatic potential we obtain:

00

orqOout (R, z) = - EBonwK1(wR) sin(wz).
n=1

(3.16)

Luckily, we find that to lowest order (KI(x) ~ 1/x) it is indeed proportional to the

electrostatic potential:

Orqut (R, z) ~ -5B sin(nz) _ 0 ut (R, z)
R ML/RR

(3.17)
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Finally, assuming a surface charge on the pore walls (q,), we get a new boundary

condition for nanopores:

(3.18)rOrin(R) =q s 6 out #in(R)
Ein Ein RML/R

In Fig. 3-1 we compare the solution of the Poisson-Boltzmann equation with this

new boundary condition to the full analytical solution (Eq. 3.8), as well as the ap-

proximated UEP model presented in the previous chapter (Eq. 2.17) and a numerical

COMSOL simulation. Note our comparison is for weakly charged pores, but the

"electric leakage" boundary condition applies more generally. Fixing the radius of

the pore to 5nm, we change the length of the pore from 20nm to 100nm. Interest-

ingly, our boundary conditions work well even for an aspect ratio as large as 1/4. We

further note that all approximated schemes work well in the dilute region. Moreover,

the UEP model actually underestimates the amount of neutrality breakdown.

(a) -- -apo

COMSOL 08 COMSOL MSOL

0.MOO 0. .

En

040

10- 10- 101 10 01 1 10 8 -2 1 2I d L

C 0

KDR KDR KDR

z=0

r=0

Figure 3-1: Electroneutrality breakdown in nanopores: simulations, exact analytical results and ap-
proximated schemes. (a) illustration of the nanopore configuration, a narrow channel connected to
two reservoirs, and surrounded by a dielectric matrix with different permittiivty. (b-d) Electroneu-
trality breakdown (ratio of ionic charge to surface charge) calculated for a pore with R = 5nm,
and L = 100nm (b), L = 50nm (c) and L = 20nm (d). Results are based on the UEP model
(2.14), dot-dash black line), solution of the PB equation with "electric leakage" boundary conditions
(3.18, dashed red line), exact solution (3.8, solid blue line) and COMSOL simulation (black X). (f)
An illustration of COMSOL simulation box. (e) A cross section of the electric field found by the

numerical simultion in the nanopore.
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Charge Regulation and Energy Barriers

We conclude this section by modifying the boundary conditions to include two ad-

ditional mechanisms that can potentially govern the number of ions in the channel:

charge regulation and energy barrier.

As shown in the previous chapter, asymmetry in the affinity of ions to the chan-

nel is indistinguishable from surface charge. It worth stressing that this is a direct

implication of electroneutrality breakdown, and has significant consequences for the

selectivity of the channel. Let us now incorporate this effect into the "electric leakage"

boundary condition. We introduce a uniform energy penalty for ions to be inside the

pore, denoted by Ei, leading to the following Poisson-Boltzmann equation:

EinV 2#(r) = eco exp(-#E+ + e##(r)) - eco exp(-#E_ - e##(r)). (3.19)

Defining an effective ionic concentration c* = co exp[-#(E++E_)/2], and denoting

the energy difference as A = E+ - E_, we can rewrite Eq. 3.19:

EinV2#(r) =2c* exp(#E_/2 - #E+/2 + e##(r)) - ec* exp(#E+/2 - #E_/2 - e##(r))

= 2ec* sinh [0 (e#(r) - . (3.20)
2_

Finally, by shifting the reference potential by #* = #-A/2e we obtain the standard

PB equation:

einV 2 #*(r) = 2ec* sinh(#*(r)). (3.21)

The important difference, other than the re-scaled concentration, is that #* on the

surface differs from the actual electrostatic potential. If electroneutrality is imposed,

this difference is insignificant, as the boundary conditions are only on the derivative of

the potential. However, in the more general case, we find the following, most general,

boundary condition:

Or~in(R) = q   sout (#in(R) + A/2e) (3.22)
Ein Ein RML/R
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Let us now extend the boundary condition to describe a surface of ionizable charges

rather than a fixed charge. For ionizable charges, the electrostatic potential at the

surface changed the chemical potential and the binding probability of ions to the

wall. This process is best described with a site-binding model, assuming the surface

has N possible ionizable sites, which leads to a Langmuir 1-pK adsorption isotherm

[25, 219, 240, 13]:
1

q = -eN (3.23)
1 + 1 0 pK-pH exp (-eO3(R))

where pH, is the pH of the bulk reservoir, and pK describe the affinity of ions to

the surface. Replacing q, in Eq. 3.22 yields the most general boundary conditions for

the Poisson-Boltzmann equation in nanopores:

1 -eN _out (#in(R) + A/2e)
S1 in1+ 10pK*-PH exp (-O(R)) Ein RML/R

where K* = K* + #A log 1 (e)/2 is a re-scaled association parameter.

3.2.3 Revisiting the Poisson-Boltzmann Equation

Equipped with the new boundary conditions, we can easily find numerical solutions

to describe the charge density profile in nanopores. In this section, we explore three

limiting cases where exact analytical solutions are available: the linear Debye-Huckel

(DH) approximation, one-component plasma, and uniform embedded pore.

The Debye-Huckel Approximation

In Section 2 we derived an exact analytical solution for the case of weak surface

charges, in the form of an infinite series. Let us now calculate the electrostatic

potential under the same conditions by solving the DH equation (Eq. 3.3) using the

"electric leakage" boundary conditions. Note that the "electric leakage" boundary

conditions do not depend on z, and our solution is only in the radial direction.

The most general solution for the DH with radial symmetry reads, that does not
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diverge at r = 0 reads:

0(r) = AIo(KDT), (3.25)

where A is a parameter to be found, 1a is the zeroth-order modified Bessel function

of the first kind. Setting the boundary condition of Eq. 3.18 we find:

ArD;DI(KDR) =q - A .0 1 t1o(KDR) (3.26)
'in Ein RML/R

Solving for A, we find that the electrostatic potetial equals:

q8R IoGNDTr)#(r) =0(~ 10( (3.27)
Ein KDRIl (DR) ±Er MLR

where er = eout/Ein is the relative permitivity between inner and outer regions. The

total charge inside the nanopore equals:

1
Qin = -Qex t 1 + '°Ut M-1 (KDR) (3.28)

Ein LR (KDR)11 (KDR)

One-component Plasma

A second interesting example to look at is the one-component plasma (OCP). Note we

are considering OCP in the grand-canonical ensemble, where the number of ions is not

known. Without allowing for electroneutrality to break, the number of counter-ions

is just fixed by the surface charge. In the grand-canonical framework, the OCP limit

is also the limit of large electrostatic fields (Ie##|o » 1) of the PB equation (Eq. 3.1):

I a 21 [rre##(r)] = Dee(r (3.29)
r Or 2

We are interested in finding the total charge that accumulates in the pore. Generally,

this charge can be smaller, greater or equal to the surface charge in its magnitude.

To find the charge, we only need to know the electric field on the surface. We start

by multiplying the two sides of Eq. 3.29 by r2&reB#(r), integrate from 0 to R and

79



using integration by parts:

JR a 2 fR
dr [rOre##(r)] - [ri9,4(r)] = KD ee#(r)e3O'(r)r2dr.

0 ar 2 l
1 RDic(R]2  

-(K'DR)2eq(R) 2 Re,8 0(r)
2)2 e##(R) j R e4(rdr, (3.30)

Inserting Eq. 3.29 to the second integral, we find the following relation between the

potential and its derivative at the surface of the pore:

I [are##O(R)]2  (IDR)2 ee##(R) _ K R re##(r)] dr
2 2 j 0 Or

-("CDR)
2 e e(R) - 2 [Rare/3O(R)] (3.31)

2

Together with the boundary condition (Eq. 3.18), we have set of two equations for the

electrostatic potential and its derivative at the surface. The electrostatic potential at

the surface is proportional to the total accumulated charge. The solution, in terms

of Qjn reads:

Qi W [ML/R (Kya"R) 2 exp 4,rsqBR em ML/R
2,ei e e ML R (3.32)

Qext 4 7xqlBR Ejn,
e EoutMI

where W is the Lambert W-function.

Re-deriving the Uniform Embedded Pore model

In the previous chapter we derived the UEP model by explicitly considering the free

energy of uniform pores, rather than starting from the usual PB equation. We now

conclude this section by showing the UEP model can be directly derived from the

PB equation with the "electric leakage" boundary conditions. We first replace the

potential in the RHS of the PB equation with its volume average, as was shown in

Eq. 2.16:

V 2 e##(r) A-2 sinh(e##(r)). (3.33)
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Note that the RHS in Eq. 3.33 is a constant, so the solution can be find by integrating

the equation twice:
ec0r2

0(,r) = 0(0) + sinh(e/#(r)) (3.34)
2Ein,

Taking the volume average on both side, we find an algebraic equation for q(r):

3 ecor2
0(r) = #(0) +3- - sinh(e##(r)) (3.35)

5 2 Ein

To find #(0), we use the boundary condition of Eq. 3.18. The potential and electric

field at the surface read:

((R) = (0) + "o R sinh(e3#(r))

(R) =ecR sinh(e##(r)). (3.36)
Ein

Together with the boundary conditions, we have a set of 4 equations with 4 uknowns

(#(0), #(R), &,#(R) and 0(r)). The solution given by the following self-consistent

equation for the average potential:

- Eu 2R

e#0 + oML/R(DR)
2 sinh(e#q) = (3.37)

Ein 2WAGC(

where AGC = e/2wqslB is the Gouy-Chapman length. This albebraic equation is

equivalent Eq. 2.22, that was written in terms of p = 2ec0 sinh(e#3).

3.3 Transport in Nanopores: Stefan-Maxwell Cou-

pled Fluxes

Equipped with a new boundary condition that accurately describes equilibrium charge

densities in pores, we can now revisit the transport of ions when a force (mechanical,

chemical or electrical) is applied. We follow the classical derivation of the Poisson-

Nernst-Planck equations[201], but include one additional component: coupling be-

tween the fluxes of the different species[27, 206, 15]. Similarly to the new boundary
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conditions presented in the previous section, this will result in a small change to the

formalism and a big impact on the predicted conductivity of narrow channels.

Qualitatively, incorporating the friction between the ionic species will serve as a

possible mechanism of the saturation of current with increased ionic concentration.

This is a well-known observation from biological ionic channels[83], but have been

observed in synthetic channels as well[239]. At very small concentrations, only one

ionic specie occupies the channel and can move freely. As concentration increases,

the channel becomes less selective, and the two streams are moving in the opposite

direction, limiting the overall flow.

3.3.1 Fickian vs Stephan-Maxwell Diffusion

In the previous chapter, we naively predicted that conductance is linear in concen-

tration. This bulk conductance expression is based on Fick's law of diffusion, which

is only suitable for dilute systems. When ions are confined to an extremely narrow

channel, the fluxes of the positive and negative charges are necessarily coupled, and

the appropriate framework is the Stefan-Maxwell's equations[166]:

c~Vu~ kBSc [cLc+ ( CC+(c+'7y-+ = B CC (vW - v+) + C-+(v_ - v+)
k++ _ TC c9c_ c_c+±

c_ = B CC (VW - v_) + C (v+ - v_)],c+ + c- + cW 9W_ 9£
(3.38)

where the 9Zw and q± are the water-ions and ion-ion diffusion coefficients, y± are the

chemical potential of the ions, c± are the local ionic concentrations, v± are the ionic

velocities and vw is the water velocity. Applying an electric field (Vt± =tevo),

we solve the SM equations and obtain the following ionic current. Note that we use

4 to denote the small perturbation to the equilibrium electrostatic potential d. We

assume here that this perturbation does not change the local density profile of the

ions, which is determined by solving the Poisson-Boltamznn equation, as discussed in
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the previous section. The ionic fluxes, j± = tec±v± read [15]:

ec vwC ci cT+w+-w- (c+ - c_) + cw+9±c+ CVO
cW (c_2m+ +c+9w- +c9£) kBT

c C c9w+9w (c+ - c_) - c9,_9±c_ eV#

cW (cm+ + c+-w- +c 9) kBT
(3.39)

wherecT = cw + c+c- is the total concentration. The total ionic current then equals:

jch(r) =PVw CT (gw+c+ + -9wc_) + + (c± - c) 2

cW 1 + (-9wc++ gw+c_)/9 #B
(3.40)

Let us now use the fact that the ionic concentration is Boltzmann distributed, c± =

co exp(-e,3#), to simplify the expression above. Note that any asymmetry in the

diffusion coefficient is similar to a change in the local potential:

§9W±c4 + -9 wc_ - co [9qw+ exp(e4) + 9w- exp(-e##)]

-2 9eq+qw-co cosh [eo# + log w

- 2coDo cosh(e##*)

where the Do = Q9e+gw- is the average diffusion coefficient, and #* =   +

#B log -9 is the effective electrostatic potential. Similarly, we define = -

#B log to describe the effective potential in the denominator of Eq. 3.40. Finally,

we get:

CT cosh e##* + 2X sinh 2 e3/ Vq
jch(r) pv - 2Dcc-

Cw 1 + xcosh e##** #
(3.42)

where the coupling parameter x is defined as:

Do
x = .± ' (3.43)

Note that as X -+ 0 we recover the usual Fickian diffusion which leads to a standard

conductivity that is linear with concentration. In the opposite limit, the conductivity

scales with the charge (squared) and is suppressed when we have an equal amount of

positive and negative charges.
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3.3.2 Electro-osmotic Flow: The Slip Length Approximation

To find the conductivity in the general case, we have to include the water flow as

well. The ionic current, as shown in equations 3.42, depends on the velocity of the

water. The velocity, in its turn, depends on the charge distribution. Since we are

only considering transport in uniform pressure and concentration, we did not present

the full linear electrokinetic theory. Nevertheless, we should keep in mind that we are

only focusing on a particular setting of the full problem. Following Ref. [2011, we use

non-compressible Navier-Stokes equations to describe the laminar water flow:

pV 2 u(x, r) - p(x,r)Vb(x, r) =0 (3.44)

V -u(x, r) = 0. (3.45)

Note that the pressure gradient term was omitted. Two simple approximations for

the boundary conditions of the water flow are either no-slip (see Ref. [201]) or a fixed

slip-length ([175, 49]). It has been reported that nanochannels exhibit enhanced slip

length[248, 1741, so we will choose here the later boundary condition, defined as:

1
Or v1 (x, r) r=R b I r=R (3.46)

where b is the slip length. A second boundary condition is that Or(x, r = 0) = 0. For

a uniform flow in the axial direction, Eq. 3.44 reads:

10 (vr )= - 2ecsinh[e (r)]   (3.47)
r Or Or y OX

The PB equation satisfies the radial component of the potential, #(r), so the NS

equations are simplified:

10 r =r .o (3.48)
r Or ( Or pror ( r ) z9
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Integrating once from 0 to r yields:

r O=(r) - (r .(r)) 00 (3.49)
Or p Or OX,

Integrating once more from r to R reads:

vf(r) - vt(R) - (#(r) - #) . (3.50)

Applying a slip-length boundary condition we find that the velocity field inside the

channel is proportional to the external electric field:

vw(r) - [#(r) + (bao,# - #)] -. (3.51)

Hence, the total ionic current equals:

jx (r) [2eco sinh e## [#(r) + (bo#w - #w )] + CTcODO cosh o* + 2Xxsinh _(x).
P CW#B 1 + X cosh e##** J

(3.52)

Hence, we obtain Ohm's law with the following conductance:

G = 47r rdr 2ecsinh eCC [(r) + (o#w - #w)] R cTcODO cosh e##* + 2X sinh2 e -o

o _ sP CWB 1 + x cosh e##**

(3.53)

We note that a similar expression appears in the literature for the limit of x - 0 or

b -+ 0.

3.4 Results

In the classical theory of ionic channels, a simple relation is observed between ionic

concentration and conductance. At low concentrations, the only charge carriers in the

channel are the screening ions, independent of reservoir ionic strength. As concen-

tration increases, the additional screening charges are negligible, leading to a linear

profile of conductance. The transition occurs at concentrations for which the Debye
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length and the ionic radius are comparable. This transition can be modeled using

the PB theory, but to a good approximation, it is sufficient to consider two types of

transport: bulk and surface.

The classical picture breaks down in long and narrow cylindrical pores. Solving

the general electrokinetic problem shows a very different qualitative picture, with

non-trivial scaling dependence in both low and high concentrations. In recent years

there has been a focus on two important mechanisms impacting the shape of the

conductance curves: charge regulations [219, 25, 201] and increased slip length [49,

175]. In this work, we present two additional physical phenomena that can play an

important role: electroneutrality breakdown and coupled fluxes.

No coupling Intermedlaite coupling Strong coupling
102 
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Figure 3-2: Effect of neutrality breakdown and coupled fluxes on nanopore conductance. Con-
ductance was calculated by Eq. 3.53 with no-slip condition, and by solving the PB equation with
boundary conditions from Eq. 3.18. (a) No coupling limit (X = 0). (b) Interrnediate copuling

(X = 10). (c) Strong coupling (X = 1000).

In the previous sections, we showed how these mechanisms can be simplified to fit

with the usual electrokinetic theory framework. We, therefore, proceed in the same

way: we first solve the PB equation with the general boundary condition (Eq. 3.24)

and then calculate the conductance using Eq. 3.53. The results are illustrated in

Fig. 3-2, for different relative dielectric constant and coupling constants. Without

coupled fluxes (X = 0) and with strong dielectric mismatch (sot » es), we recover

the classical behavior of saturation at the dilute limit. For more typical values of

dielectric mismatch, we get a significant decrease in the expected conductance. As we

increase the coupling parameter, the concentrated regime begins to show saturation.

For simplicity, we are at a constant surface charge regime (high pH), with zero slip-
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length (b = 0).

3.5 Discussion

The peculiar scaling relations observed in conductivity curves in extreme confinement

sparked the interest of the modeling community in recent years[219, 175, 25]. Ap-

plying classical Poisson-Nernst-Planck equations, coupled with Navier-Stokes and a

charge-regulation boundary condition, provides one possible explanation of this phe-

nomena. Yet, there is currently no direct evidence that such mechanism exists in

carbon nanotubes. In the previous chapter, we have shown that a simple algebraic

equation, based on the concept of electroneutrality breakdown, suffices to explain the

conductance curves.

We devoted this chapter to reformulate electroneutrality breakdown in the frame-

work of linear electrokinetic theory. The approximated boundary conditions we found

(Eq. 3.24) allows us to consider more complicated and realistic models and weigh the

effect of different physical phenomena. This chapter complements the more funda-

mental analysis we introduced earlier on the origins of electroneutrality breakdown,

and its emergence as a unique feature of Id physics.

The combination of the full conductance formula (Eq. 3.53) with the new boundary

condition is the main result of this chapter. We note, however, that we introduced

many parameters: energy barriers, the flux coupling constant and the slip length

are usually not known. Moreover, our boundary condition is very sensitive to the

dielectric constant of both the inner and outer regions, which are not always known.

The currently available data cannot be used to determine the dominating effect for

the conductance of single-digit nanopores and more carefully crafted experiments are

required.
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Chapter 4

Spin-Glass Charge Ordering in Ionic

Liquids

Except for minor edits, the contents of this chapter have been published in [164].

4.1 Introduction

In recent years, room temperature ionic liquids (RTIL) have emerged as promising

electrolytes for synthetic chemistry and electrochemical energy storage[82, 132, 218,

88, 221]. In the absence of solvent molecules, strong electrostatic interactions limit the

applicability of classical mean-field approximations, such as the ubiquitous Poisson-

Boltzmann (PB) theory [61] for dilute solutions. Extensions are available for steric

effects [20, 40, 26, 130, 144], short ranged ion-ion forces [63, 242, 95, 95, 4, 90], ion-

solvent interactions [3, 94] and Gaussian perturbations beyond mean-field [190], but

no theory can fully describe the solvent-free limit of RTIL.

At electrified interfaces, ionic liquids share similarities with dilute electrolytes, and

some aspects can be described by modified continuum models. Direct surface force

measurements reveal a diffuse electric double layer (EDL) structure, akin to that of a

dilute aqueous solution[92], although the extent of this analogy is debated[153]. Nev-

ertheless, there have been some successful applications of mean-field continuum mod-

els to RTIL[144, 79, 82]. Additionally, strong electrostatic correlations, which induce
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charge ordering and oscillations[81], can be captured surprisingly well by higher-order

PB type equations [211, 109, 21, 167, 91, 29, 651.

Strong charge correlations imply a non-local dielectric response, similar to that of

polar solvents[139, 112]. Bazant, Storey, and Kornyshev (BSK) extended the PB free

energy functional to include both correlations and crowding effects and introduced

the concept of a dielectric permittivity operator to approximate the non-local ionic

polarization[21]. The BSK framework was subsequently used to describe a wide vari-

ety of structural [155, 254, 186, 169] and dynamical [151, 9, 126, 125, 232] properties

of ionic liquids and concentrated electrolytes. Continuum models continue to extend

their predictive power to capture aspects of both long-range under-screening and

over-screening[200, 225, 152, 95, 90], yet they remain incomplete in their description

of complex many-body correlation effects. Other phenomena, such as charge-driven

3D structures of the double layer[122, 121, 209, 145], are not well explained with a

mean-field approach, and coarse-grained charge profiles generally obscure correlated

nano-structures[238, 45, 14].

In this chapter, we use molecular dynamics (MD) simulations to reveal an es-

sential and overlooked mechanism that determines the charge profile in ionic liq-

uids: geometrical frustration. Given the network of neighboring ionic positions in

a symmetric binary mixture, we show that the charge distribution corresponds to

the ground state of an effective spin-glass Hamiltonian [71]. We propose a mini-

mization scheme based on a modified Goemans-Williamson (GW) algorithm[93] and

perform spin-glass reconstructions of MD simulations of four materials:- 1-Ethyl-

3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI), a commonly

studied aprotic RTIL[195, 149, 180, 2201, protic RTIL trimethylammonium-triflate

(TMA-OTF), molten sodium chloride and so-called "water-in-salt " electrolytes (WiSE),

recently introduced for Li-ion batteries [235, 234, 181]. Finally, we consider turbu-

lence in bacterial suspensions [69] and illustrate how spin-glass ordering emerges in

any strongly interacting anti-ferromagnetic disordered system.
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4.2 Theory

The partition function of ionic liquids (neglecting non-idealities) can be written as a

sum over all spatial configurations ({ri}) and valencies (zi):

Z = J dri [ exp -lB irzizrj
i=1 {fzi} i~hj

J drZ,[{r}], (4.1)

where 1B = 3e2 /e is the Bjerrum length, e the elementary charge, # (kBT)- 1 the

inverse temperature, and E the dielectric constant of the medium. Z, is a reduced

partition function that depends on the ionic positions. We emphasize that Eq. 4.1

is purposely simplified, excluding any non-electrostatic physics, such as asymmetric

molecular shapes/sizes /interactions, which are vital in inducing positional disorder

in the fluid[199, 198]. We may exclude such effects, because once the positions are

given, as in this framework, non-electrostatic physics play only a minor role in charge

ordering.

The reduced partition function is similar to a spin-glass, with the following Hamil-

tonian:

H Jjj zizj, where Jg= .B (4.2)
2 .~ . ri - rj I

In the dilute limit (lB -+ 0) the Debye-Huckel mean-field approximation becomes

valid, at rather small salt concentrations (< 100mM) for aqueous solutions (lB e 7A).

In the opposite limit (lB -+ oo) relevant for ionic liquids, when the Bjerrum length is

large compared to the ionic spacing, temperature induced charge fluctuations around

the ground state are negligible, and the charge distribution is better approximated

by minimizing the Coulomb energy.

Minimizing a spin-glass Hamiltonian is a well-known NP-complete problem [89]

that cannot be solved exactly. The difficulty lies in the "Ising-like" constraint on the

charges: zi = i1, which can be expressed efficiently via a matrix, Zjj = zizj. By
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Spin glass reconstruction of ionic liquids

1. Perform MD simulation

3 Build connectivity network

2. Extract ion positions

4. Reconstruct ions identities

Figure 4-1: Illustration of the reconstruction procedure. 1 - the input is a full MD simulation of the
ionic liquids. 2- The first step is to take a single snapshot, calculate the position of each molecule

(as an average over its atomic positions), and delete the molecule identity. 3- Based on molecular
positions, we construct a connectivity network, by connecting each molecule to its nearest neighbors.
4- Minimizing the spin-glass Hamiltonian for the network yields identities for the molecules, marked

by orange and blue in the figure. The minimization is carried for each snapshot separately.
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construction, the rank of Z equals 1, and its diagonal is Zii = 1. The Hamiltonian, in

terms of Z, is simply Tr(ZJ). Relaxing the constraint on the rank of Z, and letting

it take a full rank, greatly simplifies the problem, and allows for a polynomial time

solution. This is the celebrated Goemans-Williamson (GW) max-cut algorithm [93].

In the context of spin-glasses, the GW algorithm can be interpreted as letting the

spins rotate in an N-dimensional space, where N is the total number of spins in the

system [51].

The GW algorithm steps are as follows: 1) Minimize Tr(ZJ) subject to Zii = 1;

2) find the Cholesky decomposition of Z (Z = SST); and 3) choose a plane in the

N dimensional space, and assign the ith Ising spin a sign (charge) according to the

side of the plane where the N dimensional spin Sik lies. To solve the minimization

problem, we use CVX, a package for specifying and solving convex programs [98, 97].

The GW algorithm can be applied to any pair-wise interaction, and interestingly,

we find that fully connected systems yield poor results. Instead, a dramatic im-

provement is achieved by considering an effective Hamiltonian with only short-range

interactions, such as the following (empirical) interaction between an ion and its nthe

nearest neighbor:

eff e- n=1... 5 (4.3)
0 n > 5.

Due to screening, ion-ion interactions are thus limited to only a handful of nearest

neighbor pairs. We further update the results of the GW algorithm according to a

"local electro-neutrality" condition, until convergence:

zi = -sign ( zgIB 1 (4.4)
(i ri - rjl|

Finally, the algorithm is accelerated by selecting the bisecting plane perpendicular to

the first principal component of S.
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4.3 Results

Let us now apply the modified GW algorithm to test our main hypothesis-i.e., the

charge distribution is determined by the ground state of a spin-glass Hamiltonian,

given the positional configuration. A useful starting point is to examine systems in

complete disorder, by simulating hard-sphere liquids with different packing fractions

(see appendix A for a detailed description of the simulations.). Fig. 4-2(b) shows the

charge distribution around a central ion in the ground state. We notice an interesting

trade-off between the distance of closest approach and over-screening. When ions are

free to approach each other, it is almost always favorable for the nearest neighbor

to be of opposite charge, regardless of other ions in the environment. Neighbors

further away are much less correlated. As ionic radii increase, ions tend to be more

evenly spaced and screening is shared by several neighbors; a longer ranged oscillatory

structure emerges.

4.3.1 Ionic Liquids

Ionic liquids display a much longer correlation length. Data from scattering experi-

ments, as well as MD simulations, reveal complicated nano-structures [238, 14, 90, 91]

with oscillations that span many neighbors. We simulate an EMIM-TFSI ionic liquid

to study these structures (see Appx. A information for simulation details). As illus-

trated in Fig. 4-1, the Hamiltonian is constructed from ionic positions extracted from

MD simulation snapshots. The minimization scheme is carried separately for each

snapshot, and the results shown are averaged over all snapshots. Despite the com-

plexity of the full atomistic MD simulations, the spin-glass model actually captures

all the necessary physics: ionic valency almost exactly minimizes the Coulomb inter-

actions. No other non-electrostatic ingredient is needed to recover the charge-density

long ranged correlations.

Figure. 4-2(c-d) compares results from MD simulations to the spin-glass recon-

struction process. In bulk simulations, we recover the exact charge of almost 98% of

the ions. Consequently, the predicted charge distribution is almost indistinguishable
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Figure 4-2: Order vs. Frustration in Ionic Liquids. Top- examples of 2D Ising model, with different

degree of order. Red lines mark connections between parallel spins. The more ordered the system
(right), more connections are satisfied. Bottom- examples of 3D spin-glass with Coulomb interac-
tion. (b)- Charge distribution round a central ion in a Random hard sphere model, for different

packing fractions (<b), ranging from 0 to 0.2 in steps of 0.02. (inset: cumulative charge distribution.
Over-screening is defined as the maximum of this curve). (c) - Charge distribution around a central
TFSJ ion in EMIM-TFSJ, based on MD simulation (black line) and the spin-glass reconstruction

(dashed red) (inset: a snapshot from the MD simulation). (d) - EMJM-TFSJ charge density near a
weakly charged surface (.O1C/m 2 ), based on MD simulation (black line) and spin-glass reconstruc-

tion (dashed red) (inset: a snapshot from the MD simulation).
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from the simulated one (Fig. 4-2c). This exceptional match hints towards a unique

ground state, and a high degree of order in the ionic positions. The reconstructed

double-layer structure (Fig. 4-2d) fits reasonably well the simulated EDL, despite

completely neglecting the interaction with the electrode. For weak surface charges,

this interaction is only a secondary effect, but will have to be considered as electrode

charge increases. A weakly charge electrode also exhibits a dramatic over-screening.

The first layer can have a charge that is up to 15 (!) times greater than the electrode

charge. For comparison, BSK predicts an over-screening of only a few percent, which

is more realistic for larger surface charges.

The spin-glass ground state aims to create long-ranged structures of alternating

signs. Given the chance, a true long-range charge order would appear. Yet, this

requires a high degree of order in the ionic positions. Even slight deviations from

a perfect crystal structure lead to geometric frustrations: the pattern of alternating

signs has to be broken in some direction (See Fig. 4-2(a) for illustration). The posi-

tional disorder can be traced back to the particular size and shape of the ions[199, 198].

Simple ions favor positional ordering and form ionic solids at room temperature, or

long-ranged ordered liquids beyond the melting point, which are well captured by

the spin-glass model (see below). This coupling of density and charge ordering have

been extensively studied in the context of solid-liquid phase transition[106, 17, 196].

Conversely, in complete disorder correlations are limited to few neighbors only (Fig. 4-

2(b)). In Ionic-liquids, and especially near charged surfaces, partial disorder facilitates

the large correlation lengths (Fig. 4-2(c-d)).

The order (or disorder) in ionic positions can take different forms: from short-

ranged ion clusters to hydrogen-bond (H-bond) networks and micelle-like morpholo-

gies [110]. In some protic (H-bonding) ionic liquids, for example, complex nano-

structures may be formed by the interplay of Coulomb forces and strong H-bond

interactions[I10]. However, this type of behavior is not just unique to protic RTIL's.

For example, aprotic [Camim][PF6 ] ionic liquids tend to break into polar and nonpo-

lar nano-regions[47]. In both cases, non-electrostatic forces play an important role in

determining the type of bulk nanostructures. We cannot rule out that these mecha-
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nisms affect charge ordering as well, but to demonstrate the generality of our method,

we performed an additional simulation of trimethylammonium-triflate or TMA-OTF.

TMA-OTf is an example of a protic ionic liquid, where H-bonds play a major role.

Protic and aprotic ionic liquids are the two main classifications of ionic liquids, and

EMIM-TFSI is an example of the latter. The reconstruction results are shown in

Fig. 4-5: despite the formation of H-bonds, once the positions are known the charge

ordering exactly followed the spin-glass minimization.

4.3.2 Water-in-Salt Electrolyte

Let us now examine MD simulations of LiTFSI 'Water-in-Salt' Electrolyte (WiSE)

at varying concentrations of salt. WiSE's have emerged as promising candidates

to replace organic electrolytes in Lithium-ion Batteries [235, 234, 181]. They exhibit

much shorter correlation lengths, even when the solvent concentration is small (Fig. 4-

3). For moderate to high salt concentrations (> 5mol/Kg), where ionic spacing is

small compared to the Bjerrum length, our spin-glass framework is applicable.

Due to in large part to ion size asymmetry, the spin-glass reconstruction only

semi-quantitatively matches the simulations. The high molality limit (21m) is best

reproduced by the minimization process, with about 80% of ionic charges recovered.

Similarly to RTIL, the hidden positional order stands behind this unique and easily

accessible ground state. With increasing water content (21m -± 7m), the order

gradually disappears, and we are only able to capture the general structure of the

screening cloud. Upon decreasing ionic concentration further (7m and especially 2m),

thermal fluctuations become predominant and the spin-glass model breaks down. Yet,

traditional mean-field models are unsuitable for that regime as well, and ion-specific

effects determine the correlation function.

When ionic positions are disordered, the charge distribution matches the random

hard-sphere model (dashed blue lines in Fig. 4-3). Similarities are even more pro-

nounced when only considering ordering relative to neighbor-number. The spin-glass

reconstruction scheme captures the general charge ordering structure, but not the fine

details. The precise location of the nearest neighbor, for example, is determined by
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Figure 4-3: LiTFSI in Water- from concentrated electrolyte to WiSE: Charge distribution around
a central TFSI ion is shown for different molality (1 mol/kg solvent = im), from 2m to 21m.
Each graph is plotted with an offset of le/nm. Results from MD simulation (solid black line) are
compared with random hard-sphere toy model (dashed-dot blue) and the spin-glass reconstruction
(dashed red). Snapshots are shown from the LiTFSI MD simulation for 2m(bottom), 7m(middle)

and 21m (top). The hard sphere diameter equals 4.12A.
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van der Waals interactions rather than electrostatics. Hence, the charge distribution

around a central ion is expected to depend on the simulated system. Conversely, the

average charge as a function of the neighbor number, which depends on the topology

of the network, has a more universal behavior. Fig. 4-4 shows the first 10 neighbors

for both random-hard sphere model and aqueous LiTFSI simulation, for similar wa-

ter content as in Fig. 4-3. A reasonable match is observed, especially in moderate

concentrations (7 - 15m) where disorder is strongest.
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Figure 4-4: Screening cloud around a central TFSI ion is shown for different molality (1 mol/kg
solvent = 1m), from 2m to 21m. Results from MD simulation (right blue bars) are compared with

random hard-sphere toy model (left red bars). The hard sphere diameter equals 4.12A.

The reason for this high degree of disorder, compared with the RTIL, is twofold.

First, there is a large positional entropy associated with small lithium ions, which

is costly to suppress. Second, the solvent molecules weaken the electrostatic in-

teractions. Maintaining a positional order is therefore unfavorable, and the WiSE

resembles a hard-sphere liquid.

4.3.3 Molten Salts

The origin of disorder in high-temperature molten salts is the increased temperature.

Due to their structure, simple salts form ionic-solids at room temperature and keep

a high degree of order even after their melting point. Molten salts have been exten-
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sively studied by restrictive primitive models (charged hard-spheres), and their charge

distribution is well described by integral equations methods[106]. We performed an

MD simulation for a NaCl-like molten salt at a temperature of 1500K. The simula-

tion was performed using the same protocol as for the EMIM-TFSI, TMA-OTF, and

LiTFSI electrolytes. Our reconstruction scheme exactly reproduced the charge dis-

tribution around a central ion (Fig. 4). This excellent match is even better than the

one found for ionic liquids or water-in-salts and exemplifies how positional ordering

of the molten salts generates an easily accessible ground-state for the corresponding

spin-glass Hamiltonian.

The success of our reconstruction scheme in capturing charge ordering for the

variety of ionic systems displayed above demonstrates the potential of our method to

apply to other ionic liquid systems, as well.

4.3.4 Turbulence in Bacterial Suspensions

Our analysis is not restricted to ionic liquids or Coloumbic system. Disordered sys-

tems with strong anti-ferromagnetic interactions are expected to show similar be-

havior. We demonstrate the generality of the spin-glass reconstruction scheme, by

considering turbulence in bacterial suspensions. A bacterial colony of Bacillus subtilis

self-organizes into collective movement, and forms vortices under confinement[69]. To

minimize drag forces and reduce friction adjacent vortices prefer to rotate in opposite

directions. The details of this interaction follow complicated hydrodynamic equa-

tions, but as long as the anti-ferromagnetic interaction is strong, "spin" ordering is

expected to dominate the emerging structure. We study the system with an effective

spin-glass Hamiltonian, where the vortex directionality plays the role of spin, and the

positions of the vortices cores are extracted from simulations. We use simulation data

of swimming bacteria, adapted from [69]. 23 core positional were extracted manually

from a snapshot image the simulated flow field (Fig. 4-6-a).

We arbitrarily choose the same form of local interactions as the effective RTIL

Hamiltonian (Eq. 4) but restrict connectivity only to vortices that are in physical

contact via Delaunay triangulation. The minimization process was carried out using
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Figure 4-5: Charge distribution around a central ion in a NaCl-type molten salt and TMA-OTF.
Right- comparison of spin-glass reconstruction (dashed red line) vs MD simulation results (solid
black line) for a molten salt. Left - testing the reconstruction scheme on a protic ionic liquid,
TMA-OTF (dashed red line) with MD simulation results (solid black line). The difference in both
cases is less than 1%, as shown in the top figures. The small difference is due to the fact that an

overwhelming majority of ions were identified correctly.

the modified GW algorithm, omitting the last stage of requiring electro-neutrality.

Out of the 23 vortices, the directionality of 19 of them was reconstructed correctly

(Fig. 4-6-b). To illustrate the reconstructed vorticity (Fig. 4-6-c), we superimpose a

Lamb-Oseen (Gaussian) vortex at each core location, with angular velocity Q(r) oc

[1 - exp[-(r/rm)2]] /r 2, and a radius of rm = 25pim. The nice qualitative match

illustrates the universality of our approach. The emerging structures in disordered

anti-ferromagnetic systems are governed by the geometry and are insensitive to details

of their physical origin.
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Figure 4-6: Applying spin-glass reconstruction for swimming bacteria. (a)- snapshot of simulated

flow field (adapted from [69] with permission) . (b)- A vortex network constructed by extracting
the vortices centers as nodes. The sign of each node, clockwise (red) or counter-clockwise (blue)

rotation, was derived from minimizing spin-glass Hamiltonian and matches 19 out of the 23 nodes

of the simulation. (c)- Illustration of the reconstructed flow field, based on a superposition of
independent LambAA;Oseen vortices

4.4 Discussion

The spin-glass model is a strong-coupling theory. It simplifies the complex interactions

in ionic liquids and Water-in-Salt electrolytes to a minimization of a Hamiltonian with

only local interactions (though corrections for electroneutrality are required).

The correlation length is governed by geometric frustrations and increases with

positional order. Such structures would emerge in any binary liquid with strong "anti-

ferromagnetic" interactions and are not limited to Coulomb forces. Other examples

include 2d vortex patterns that arise in super-fluids or bacterial turbulence[2, 2491 .

This is markedly different from the typical Debye-Huckel behavior, where electrostatic

attraction competes with entropic "repulsion".

Interestingly, the positional order may not be apparent at first sight, and does not

significantly affect the density-density pair correlation function. Nevertheless, as we

show via the minimization process, long-range charge ordering is a manifestation of

the hidden positional ordering. The ionic positions, as disordered as they may seem,

carry all the information about the ionic identities. It is not surprising that charge and

density ordering are coupled: ionic positions are determined by the charges and vice

versa. However, our analysis offers a new way to understand the charge distribution
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in the bulk, and reveals its intimate link to the positional configurations.

For solvent-free ionic liquids, the ground-state of the spin-glass Hamiltonian is

easily accessible, and correlations are long-ranged. This might be the onset of a

true long-range order in ionic-crystals. Room temperature ionic-crystals have much

stronger interactions due to their small size, but we speculate that a similar regime

of hidden positional order must exist, and play a role in the thermodynamics of

melting. As solvent content increases, the energy landscape becomes more rugged,

yet the system is still described well by its ground-state, and non-idealities are safely

neglected. Eventually, in the moderately concentrated electrolyte regime (< 7m),

thermal fluctuations, as well as ion and solvent specific effects are dominating, and

the spin-glass approach is no longer valid.

While further exploration is needed to determine the generality of our approach,

we have shown it to work well for 4 classes of Coloumbic liquids: priotic ILs, a-

priotic ILs, molten salts and Water-in-Salt electrolytes. In each case the positional

ordering was different, but the charge ordering was shown to be uniquely determined

via spin-glass minimization. We note, however, that we only focus on the nanometer

length-scale, which is suitable for atomistic simulations. Longer range phenomena,

such as extremely long-ranged charge correlations, are beyond the scope of this work.

Interestingly, we were not able to observe under-screening [200], despite its emergence

in the relevant length-scales.

Another important limitation of our model is that it is inherently symmetric in

size and shape. In many cases, it is the asymmetry of the ions that favors disordered

structures and make them good ionic liquids in the first place. Remarkably, even

in extremely asymmetric cases like LiTFSI, the spin-glass Hamiltonian qualitatively

captures correctly the charge distribution. This is in part due to a universal behavior

of complete disordered, which does not depend on the details of the materials.

Though we do not offer here a general theory of ionic liquids and concentrated

electrolytes, we believe our observations highlight the important physics. The close

interplay between the positional configurations and charge ordering, which plays an

important role in long-range ordering near phase transitions, is observed to be sig-
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nificant even in partial or complete disorder. Geometric frustrations and positional

ordering determine the correlations lengths, and might be considered as some of the

underlying microscopic driving forces to include for accurate continuum models.

4.A MD Simulation Details

In this study, we performed all-atom classical MD simulations using LAMMPS [204].

We performed a set of simulations for two different systems: one set for a neat ionic liq-

uid (IL), EMIM-TFSI and another for the Water-in-Salt Electrolyte (WiSE), LiTFSI

(at varying concentrations). EMIM-TFSI was simulated in both full periodic geome-

tries in order to study bulk-like properties, as well as nano-slit (slab) geometries in

order to study the electrical double layer. For the nano-slit geometry, we prescribe

a constant surface charge density of +0.1 C/m2 at two electrodes that sandwich the

ionic liquid. LiTFSI electrolyte was simulated in fully-periodic geometries each set of

simulations at molal concentrations of 2m, 7m, 10m, 12m, 15m, and 21m.

Simulation Details: For EMIM-TFSI in the periodic geometries, we performed

simulations containing 300 ion pairs. For the aqueous LiTFSI systems we performed

simulations containing 1000 water molecules and enough ion pairs to make 2m, 7m,

10m, 12m, 15m, and 21m solutions. The simulations were performed at fixed tem-

perature (300 K) and pressure (1 bar), with Nose-Hoover thermostat and barostat

until the density of the fluid relaxed to a constant, which required 12 ns, with 1 fs

time steps. Next, we switched to constant volume simulation box still with a fixed

temperature of 300 K, again using the Nose-Hoover thermostat, and equilibrate for

an additional 6 ns. Finally, production runs were performed for an additional 6 ns.

The initial configurations for all simulations were generated using the open-source

software, PACKMOL [179]. MD simulations were visualized using the open-source

software, VMD [119].

In the nano-slit geometry, we simulated the system at constant volume and tem-

perature, filling a 33x33x200 A 3 simulation box, with two 33x33x33 A3 electrodes,

composed of Lennard-Jones Spheres made to resemble gold in an FCC lattice. The
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electrodes sandwich the electrolyte fluid, which is filled in the box at densities de-

termined from the periodic simulations. The box contained 528 ion pairs and 4096

gold atoms. Surface charges were applied by placing partial charges on the first

atomic layer (128 atoms) of gold, according to the specified surface charge density of

±0.01 C/m2 . Equilibration runs of about 12 ns were performed initially with no ap-

plied potential/ charge, with 1 fs time steps. Then the surface charge was stepped up

from zero, allowing for 12 ns of equilibration and 6 ns of production at the +0.01 C/rm 2

electrode surface charge.

Force Field Details: For all ionic species, we employed the CL&P force field,

which was developed for ionic liquids, with same functional form as the OPLSAA force

field[46]. For water, we employed the spc/e force field[23]. Interatomic interactions are

determined using Lorentz-Berthelot mixing rules. Finally, for nano-slit simulations,

we require force fields for the gold electrode. We did not explicitly model the dynamics

of the electrode, omitting the need for a gold-gold force field. The gold was made

to interact with the fluid mainly via Coulomb interactions, as the surface layer of

gold atoms are charged according to the prescribed surface charge density. We also

include Lennard-Jones interactions, which were made to be the same no matter what

atom is interacting with gold (LJ well depth: E = 0.001eV, LJ radius: o- = 3A). We

made the Lennard-Jones parameters constant for all species so that conclusions from

the simulations that are not specific to the choice of the electrode material. Long

range electrostatic interactions were computed using the Particle-Particle Particle-

Mesh (PPPM) solver (with a cut-off length of 12 A), which maps particle charge to

a 3D mesh for the periodic simulations and a 2D mesh in the transverse direction for

the nano-slit simulation{114].

To demonstrate the generality of our approach to disordered fluids, we performed

an MD simulations for an NaCl-like molten salt at a temperature of 1500K, and

trimethylammonium-OTf at room temperature. The simulations were performed us-

ing the same protocol as for the EMIM-TFSI RTIL and LiTFSI Water-in-Salt elec-

trolyte. The force field parameters for trimethylammonium-OTf, were obtained from

the CL&P force field, just as for the EMIM-TFSI system [46]. The force field param-
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eters for the NaCl-like molten salt are given below in table 4.1.

Charge (e) o-, e, kJ/mol
Na+ +1 3.33 0.0116
C1~ -1 3.65 0.8300

Table 4.1: Force Field Parameters used for model molten salt (representative of NaCl).
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Chapter 5

Activity Coefficients: Correlations

and finite size effect in a BSK model

The activity coefficients of concentrated aqueous solutions play an important role

in different biological and electrochemical systems[191], and indeed, many models

to describe the ionic activity have been proposed over the years. In the original

Debye and Huckel paper from 1923[611, the activity coefficient was calculated based

on a linearized version of the Poisson-Boltzmann (PB) equation. This resulted in the

well-known Debye-Huckel (DH) equation:

lny = -- ,lFzaVY' (5.1)
1 + Bar/

where -y is the activity coefficient, za are the valencies of the ions, I = E_, ciz2 is the

ionic strength, c± are the ionic concentrations, a is an effective ionic radius, and A and

B are constant values. The DH equation works well for very dilute electrolytes, but

fails to even qualitatively capture the activity behavior at higher concentrations. In

a following work[118], Huckel added an important term for the activity: the change

in self energy due to variations in the dielectric constant. Experiments measuring

the static dielectric constant of ionic solutions were not available at the time, so the

proposed model treated the dielectric constant as a fitting parameter. Assuming the

dielectric constant of water, EW, is decreased proportionally to the ionic concentration
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c (e E,, - 6c), the correction to the Debye-Huckel equation is a simple linear term

in concentration. Remarkably, fitting this model to existing activity data actually

estimated the dielectric decrement pretty close to measured values, an observation

first noted by Hasted et al[1081 in their paper on the dielectric properties of ionic

solutions.

A linear correction for the Debye-Huckel equation also emerges when considering

short-range repulsive forces, via a virial expansion. The virial expansion offers a

systematic way to include even higher order terms in concentration. First suggested by

Guggenheim[104], and further developed by Pitzer[2031, accounting for the second and

third virial coefficients leads to a very powerful description of the activity. The Pitzer

formula, which is essentially the regular Debye-Huckel with corrections to second

order in the concentration, is in excellent experimental agreement for hundreds of

compounds[133]:

In- = -Az+z 1  + - ln(1 + bW )

s~- 
I s bas_

+ 4m ( +8s (BMx + ±B x) + 6m 2  + s+z+CMx, (5.2)
s++s_ 2 s ++s-

where m is the molality, BMX, BMX and CMx are parameters related to the second

and third virial coefficient. To achieve its high accuracy, the Pitzer model hence

requires several fitting parameters: the virial coefficients are not derived from first

principles, and the ionic radii are an empirical parameters as well. Closely related

models were subsequently derived by Bromley[42], Meissner[148] and Chen[54].

While the Pitzer formula is very useful, it only gives a vague interpretation for the

physics of aqueous solutions. Other microscopical models have been developed in the

past half a century. Many of them are of the integral equations type, and are based

on different closures for the Orenstein-Zernik equation. The Hyper-Netted Chain

approximation (HNC) and the Mean Spherical Approximations (MSA) are examples

for a microscopic derivations of the activity coefficient[222, 44, 224]. Assuming a hard-

sphere repulsion in addition to the coulombic attraction, the integral equation theories
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give an approximated way to calculate the pair correlation function between any two

ions. Usually numerical methods are required to solve the integral equations. The

activity is expressed in terms of the correlation function, without a simple closed-form

formula. Another drawback of the integral equation model is that they too require

some fitting parameters.

Can we get rid of all the fitting parameters, and have a consistent theory that is

described only in terms of physically sound variables? A purely microscopical descrip-

tion might not be the best starting point for such an attempt. Important microscopic

details, such as the interplay of ions and dipoles, are difficult to account for and are

usually omitted. This limits the predictive power of such theories, and is compen-

sated by extra fitting parameters. On the other hand, a purely phenomenological

description, such as the virial expansion, naturally generates more free parameters

than we can handle. A middle ground can be found in modified Poisson-Boltzmann

theories that have been proposed in recent years.

Replacing the Coulomb pair-potential with a more general pair-wise interaction,

allows us to overcome some of the limitation of the Poisson-Boltzmann equation, with-

out loosing the simplicity and physical intuition of the theory. In 2006, Santangelo[211]

added to the long-range Coulomb interaction a short distance term, to account for

the ion-ion interactions in one-component plasma. Bazant et al[18] noted on the im-

portance of such correlation term to Ionic solutions. Eventually, Bazant, Storey and

Kornyshev (BSK) introduced a modified PB equation[21] with a 4 th order correla-

tion term on a lattice model. The BSK framework was subsequently implemented

to describe a variety of physical phenomena in both ionic liquids and concentrated

electrolytes systems. Examples include electro-kinetics and transport[231, 151], the

electrical double layer structure and capacitance [21, 254], and electrophoresis[232].

Moreover, Molecular Dynamic simulations too showed good agreement with the BSK

predictions [125].

Recentrly, Liu and Eisenberg derived the activity coefficient by numerically solving

the BSK equation. Taking the correlation length to be the ionic size, they view the

higher order terms as a form of non-local dielectric property of the solvent. A different
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approach was taken by Schlumpberger et al[215]. Viewing the BSK as primarily

stemming from ion-ion correlations, the correlation length was related to the Bjerrum

length. A closed form analytical formula was obtained by solving for the BSK equation

around a charged sphere. The formula was proven to describe well experimental data

for several compounds, with a single fitting parameter. All other parameters of the

model were taken from the literature: including the the dielectric decrement term,

first suggested by Huckel.

In this work we remain the BSK framework, but extend upon Schlumpberger work

in several ways. After shortly reviewing the BSK model (Section I), we explicitly in-

corporate non-local electrostatics, showing that finite size effects naturally lead to a

correlation length proportional to a2/A, where a is the ionic size, and A is the Debye

screening length (Section II). We then derive the activity coefficients by solving the

BSK equation in Fourier space for a charged sphere immersed in an ionic solution and

obtain simple analytical expressions. In this way we avoid the question of choosing a

boundary conditions, and get the correct limiting behavior for small ionic radii (Sec-

tion III). In Section IV we examine our model on a much wider range of experimental

data than the previously done, and find that the correlation effect present is stronger

than would be expected just from finite-size considerations. We conclude (section V)

by taking a closer look at the correlation length. Using the experimental data, we de-

rive an empirical relation between the correlation length and the ionic concentration,

and relate it to microscopic parameters of the system.

5.1 Model

The BSK equation is a phenomenological equation which successfully captures the

correlations between ions in a solution, and produces qualitatively correct behaviors

in high concentrated electrolytes or ionic liquids. Following [21] we start with a

Ginsberg-Landau type free energy, restricted only by the rotation/ inversion symmetry

of the system. Assuming we have a mixture of N different ionic species immersed in

a dielectric continuum of permittivity e, the free energy functional reads:
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G =Jdr g + peq# -- [v#2 +llv2 }

N

where ciq(r) is the local equilibrium (bulk) ionic concentration of the ith specie,

0(r) is the electrostatic potential, peq(r) is the charge density in the system and

lc is a phenomenological constant of the theory. The overall all charge density of

point like ions with charge qi equals Peg Eq qiciq(r) + pf(r), where pf(r) is a fixed

charged distribution. We note that in the original BSK equation crowding effects were

also considered by placing the ions on a lattice [39, 21]. The lattice model prevents

the accumulation of charges around charged surfaces, but can be neglected for the

calculation of bulk properties, such as the activity coefficient.

We relate the local ionic concentration, ci (r), to the overall concentrations, c'(r),

by looking at the chemical potential of the different species in the system:

Pi ~ G =c(r) kBT log(CZq) + Wc = kB Iog(ceq) + qio(r)

ceq(r) exp(pui - #qj#(r)) co exp(-qj##(r)), (5.4)

where # is the inverse temperature. Equating the functional derivative with respect

#(r) to zero, leads to a generalized PB equation, also known as the BSK equation:

=-EV 2 #(r) + ElV 4#(r) - c exp(-#qj#(r)) - pf = 0 (5.5)

Linearazing Eq. 5.5, and assuming electroneutrality, E c qj = 0, we get the familiar

DH equation, with an extra 4 th order term:

V 2 #(r) - lV4#O(r) - A2 #O(r) = -, (5.6)

where A = [E/# E(c/ q 2)]1/2 is the Debye screening length.
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5.2 Origins of the 4th Order Term: Correlation Vs.

Screening

We started our discussion in the previous section with the assumption that a 4th order

term is needed to improve the Poisson-Boltzmann equation. This term is associated

with a new length-scale, denoted by lc. There are three typical length-scales we relate

to the bulk: the ion size, the ion-ion distance and the Bejurrum length, 1B, the length

at which the electrostatic energy is comparable with the thermal one. The Deybe

screening length emerges as a combination of the Bjerrum length and the ion-ion

distance. The correlation length is a phenomenological term, so it is not clear to

how to relate it to the other physical parameters. Bazant et al [18] assumed a direct

proportionality to the Bjurren length, while Schlumpberger [215] argued it should be

the harmonic mean of lB and the average distance between ions. Liu and Eisenberg,

also working in the BSK framework, assumed it is exactly proportional to the ionic

radius [168]. In Section VI we compare the different choices with experimental data,

but first let us introduce an analytic contribution a 4th order term that we can account

for exactly: non-local electrostatic interactions.

Finite-size non-local screening effects induce a complicated dielectric response

E(k). A general formula for the dielectric function incorporating the non-local ef-

fects was previously derived to account both water molecules inner structure and as

an ion size effect [142, 36]. Moreover, as recently argued, one can think of a more

general formalism in which the correlations between the ions are expressed as an ef-

fective 'dressed ions' with more complicated structure [137]. In all cases the dielectric

constant becomes a specially dependent function, E(r - r'j), or equivalently in Fourier

space, E(k). In the following section we show how such behavior plays out in the BSK

equation.

For point-like charges the overall charge density is peq(r) = EZ qici(r). More

generally, we can associate each ion with an internal charge distribution pi(r). In

that case, the overall charge density is given by the convolution of the local ionic
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density and the internal charge distribution:

p(r) = pf + dr'p (r' - r)ce"(r). (5.7)

Consequently, the chemical potential (Eq. 5.4) is modified:

6 [p(r)#$(r)]_
1-t = kBT log(ci) - 6 [& )&)] = kBT log(ci") - dr'p(r' - r)#(r)

6Cr' (r)

ceq(r) = co exp [-#f dr'pi(r' - r)#(r) (5.8)

The total charge density (Eq. 5.7) then reads:

p(r) pf + co dr'p (r' - r) exp [-of dr/p(r' - r")#(r") , (5.9)

leading to a non-local BSK equation:

-c [l (V 2) 2 _ V 2 ] #(r) = cJdr'p(r' - r') exp -# dr"pi(r" - r)#(r) (5.10)

The non-local interactions are manifested through the integral over the finite vol-

ume of the internal charge distribution. Taking the size of the ions to be small but

finite, we can Taylor expand the integral and take only the first components. To make

things even simpler, we first linearize Eq. 5.10 to first order in 0(r), and epand in the

Fourier space:

e (l k4 + k2 ) #(k) + #S(k)#(k) = pf (k).
2

S(k) = o c drpi(r) exp(ik - r) ,(.1

where S(k) is a structure factor. The 0 th order in k of S(k) vanishes due to electro-

neutrality. Expanding S(k) to fourth order we recover the regular BSK equation, with

modified correlation length and dielectric constant. The dielectric constant we are

considering is the one measured by experiments, so it already accounts for any finite-
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size dependence. To estimate the effect of non-local interactions, we can focus only

on the 4th order term.

For hard sphere models of ionis with radii a2 and total charge qj, the internal

charge distribution is a constant 3q2/47ra . The structure factor then reads

S(k) = c 4 3f dr exp(ik r) = c 3 di(k) 2
4 a a2 0 k

~ c ir2dr 1 - (kr) 2  O (kr 2 1 0
ai 0  6 120} 10 -(a~2 (

Gathering terms up to 4th we find the regular BSK equation with new effective

dielectric constant and correlation length:

e -e - (ajqi)2c'
5 2

31 (a2 )
2100 A

where (a2) is an average ionic size, weighted by ionic charges and concentrations.

Assuming the ith ion has valency zi (qi = zie), and a stoichiometric coefficient si, the

average ionic size equals

S si z2a 41/2

(a2) i 2 . (5.14)
Eis si zi

The finite size contribute both for the dielectric decrement as well as the cor-

relation length. However, both effects are rather small. The dielectric decrement

in mainly related to interactions between the water (dipole) molecules and the salt

ions. Eventually, we use empirical data to estimate the water permittivity, and any

finite-size contributions to the dielectric constant will thus be taken into account.

For typical experimental values (a ~ IA, A ~ 3A) the correction term is roughly

the order of ~ 0.1. As we describe in Section V, activity experiments suggests lc

should be an order of magnitude greater. Hence, we can also neglect the finite-size

contribution for the 4 th order term. Note that the prefactors are a result of the par-
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ticular charge distribution we choose, but the functional behavior (linear decrement

of the permittivity, and a2/A dependance of the correlation length) will remain for

more realistic charge distributions.

5.3 Activity: Charged Shell in BSK Model

Following recent works ([215, 168]), we derive the activity coefficient based on the

linearized BSK equation. One problem that naturally arises when using a 4th order

model is how to choose the proper boundary conditions. As shown in [2151, the solu-

tions are very sensitive to the choice of the boundary conditions. We circumvent this

problem by solving the BSK equation for a sphere immersed in a dielectric continuum,

where the BSK equations holds on both sides of the sphere.

First, let us solve linearized BSK equation (Eq. 5.6) around the ith ion:

(1 - l2V 2 )V 2 g0(r) - A--2g(r) = pf (r) (5.15)

Holding the ith type ion fixed we express the fixed charge distributing, pf, using

the Dirac 6-function in spherical coordinates:

- a~)= qi(r - a2 )
pf (r) = z4e63(ir - aa) = qi 2 . (5.16)

47ra?

In Fourier space Eq. (5.15) becomes an algebraic equation. The Fourier transform

for the sphere is pf(k) = zie sin(kaj)/(27r3 kaj), leading to the following solution:

zie sin(kaj)
rz (k)2 + 1k4 + )(5.17)

We recall that the excess chemical potential of the ith ionic specie is given by the

electrostatic energy of the ion, and is related to the overall charge density p(r) =

Z3 qici(r):

pexcess c (r) dr (5.18)
2 47rEr
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In the linearized regime expand Eq. 5.4 to find that ci(r) ~ cj(1 + zje##), and

along with the electro-neutrality and spherical symmetry of the problem we write the

excess potential in terms of the Debye screening length:

excess zi(zijz)2e 3 #(r)dr = 8A r#(r)dr. (5.19)i 2 E fj 47rEr -87r A2 J

In Fourier space the integration over the radial coordinate r is replaced with

integral over the radial k coordinate:

pexcess =   j (k)dk. (5.20)

Plugging in our solution for the BSK equation yields:

excess _ (z,e) 2  °° sin(kaj) dk
4r2e(A) J kaj lk4 + k2 + k-2  (5.21)

There are three length-scales in the problem: the Debye screening length, the

correlation length and the ionic radius. Defining 6c = lc/A and ai = al/A we find a

modification for the classical Debye-Huckel activity:

excess _ (zie)2  °° sin(kaj) dk
4,r 2eA J0 kai J k4 + k2 + 1

The integral in Eq. 5.22 can be evaluated in the complex plane, though it easier

to identify the roles of the ionic radius and correlation length directly from the above

integral form. Both effectively limit the boundaries of the integration, and reduce

the overall all magnitude of the excess chemical potential. The term sin(kaj)/ka!e

limits the integration to k < 1/a, as expected from the effect of finite radius. On

the ohter hand, the term 6ck4 starts to dominate for values of k comparable to 6,

again effectively trimming the integration.
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The analytical result, obtained from evaluating the integral, yields:

excess (zie) 2  (e- 1- 1)b2 - (e-ab2 - (5.23)
47r[(Alc)2 ab2b2(b2 - b) _

where bi,2 = 1 i 1 - 4 (x)11/2 are the solutions of the characteristic equa-

tion. For l, < (2A) both solutions are purely real, while higher correlation length

generates oscillations in the electric potential. For small inoic radii we can expand

Eq. (5.23) to second order:

~excess _ (zie)2 1 - a 2/(66) (5.24)
87rA 1+-26

It is useful to express the new activity coefficient as the original DH formula, with

an effective screening length:

A[(e- abi - 1)b 2 _ (e -ab2 _ 1)2- -1
Aeff A ab 2 i ( - bf A 1 + 26 [1 + a /(66)] . (5.25)

Note that the radius is required to be small compare to both lc and A. In the

limit of Ic, a « A, we get Aeff -± A + 1, which is different from the Debye-Huckel2'

thoery by a factor of 1/2. This factors comes from allowing charges to be present

inside the shell, leading to a larger charge overall. In the opposite limit, if 1c is very

large (1c » A), the effective screening length scales as vA.

5.3.1 Returning to the Boundary Condition Problem

The fourth order BSK model poses a difficult question on the nature of the boundary

conditions. Different choices lead to very different results. Solving BSK equation in

all space, including the inside the particle, was our way to circumvent this difficulty.

However, this is not physical, and effectively yields an additional charge inside the ion.

A more realistic model would set the BSK equation only outside of the particle and set-

ting the boundary condition according to Gauss law (h - D(r) |a = q,). The BSK is

a 4th order equation, so an extra boundary condition is required. Schlumpberger[215]
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showed that by choosing the boundary condition that sets the first derivative of the

potential to zero, we get the following formula for the activity:

excess _ zie 2  -1 1
87Ecrl2(b2 - b ) bi(bia + 1) b2 (b 2a + 1)

which corresponds to a different effective Debye screening length:

Aeff = A 2 (5.27)
A bi (bi a + 1) b2(b2a + 1)]

On the face of it, Eq. 5.27 looks very different from the effective screening length

predicted by our model in Eq. 5.25. However, expanding Eq. 5.27 in small ionic radii,

we find they are quite similar:

Zeff A V1 + 25 [1 - a2/6] (5.28)

To lowest order, the effective screening length is exactly what we would expect

for a point like particle. Note that this is a result of choosing the right boundary

conditions. Different boundary conditions would not yield this expected result, and

are thus less physical (for this problem). The next order is different by a pre-factor

of 1/6, but still share the same functional dependence. It turns out that in the high

concentration regime of our interest, the second order correction is quite small. For

typical values (a - 1A, 1, le a 3 Aand A d 3A) it contributes to less than 10% of the

effective screening length.

To conclude, finding the activity in the Fourier space had two advantages: First,

we were able to easily extract the correct small-ion limit of the activity, which turns

out to be a good approximation for high concentrations. Moreover, it sets an addi-

tional constraint on the boundary conditions required for solving the real-space BSK

equation. The main drawback of this method is in its limitation to small radii: for

large ions, or highly concentrated electrolytes the effect of size is important. Our

model is thus limited for small ions only, and other models (such as Schlumpberger's

model) might describe more accurately salt-in-solvent or ionic liquids for example.

118



This reasoning is applicable for any fixed charge distributions, and holds for other

geometries, as in Santangelo one-component plasma model [211]. If the surface is of

constant potential, we can neglect correlation effects on the surface, in which case

the Gauss law becomes Et - V# = q8, and the third derivative should go to zero. A

more general approach was previously described by Bazant [18], by arguing that for a

metal, the Stern layer can be modeled as a thin dielectric layer with uniform electric

field, which leads, again, to the vanishing of the third derivative.

5.4 Comparing Results with Experiments

Two key modifications for the activity formula are required before comparing Eq. 5.23

to experimental data: adding the Born energy contribution, as well as accounting for

the decrement in the dielectric constant. The excess chemical potential then reads:

(ze) (ze)2 (1 1'
'x = kBTn-yi = (Z+e) 2  (Zi 2 - - , (5.29)8 7reoecAeff 87reoa Ec Ew

where Aeff is defined in Eq. 5.25, and is a function of the correlation length 1c, em is

the water permittivity, Ec is the dielectric constant at concentration c. For a binary

solution with stoichiometric coefficients s+ and s_ solution, the activity coefficients

equals:

71=(7"s+7"-)1/(s++S-). (5.30)

We compare Eq. 5.30 to an experimental data fitted to Bromley formula [42]. Permit-

tivity data was taken from [108], [105] and [258]. In order to evaluate the dielectric

constant for concentrations that were not explicitly measured in the permittivity

experiments, the data was fitted according to Zuber empirical formula [258]:

EC = ".(5.31)
1- ac

Values for densities and ionic radii were taken from the literature as well ([193] and

[177] respectively). Following [18], we assume the correlation length proportional to
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the Bjerrum length:

ic = #BB, (5.32)

leaving the only parameter in the model to be the # factor.

We tested our model on 47 solutions, and were able to produce a reasonable

fit for 44 of them. Fig. 5-1 shows the results for a random subset, including 6 1:1

solutions, one 1:2, one 2:2 and finally one 1:3 solution. In addition to the Eq. 5.30,

the activity coefficients according to the classical Debye-Huckel equation, including

the Born correction, are presented for comparison. To test the predictive power of our

theory, we fit each graph in two ways: by using the entire range of concentrations, and

by extrapolating high concentrations from relatively low ones (smaller than 1.5M). In

most cases the limited data underestimates the activity coefficient by a small amount,

resulting in larger errors. However, it seems that even with partial information, we

are able capture the trend in many of the solutions we examined, and in some cases

to a very good precision.

The average values of lc remain quite close, at least for the 1 : 1 ionic solution, with

an overall average correlation length around 3. This value is similar to the suggested

correlation length in Liu and Eisenberg model [168], that claimed the correlation

length should roughly be twice the ionic radius. In the next section we examine more

closly the behavior of the correlation length with concnetration.

5.4.1 Temperature Dependence

It is interesting to examine the temperature dependence of the correlation length. The

available permittivity data for a wide range of temperature is rather scarce, and we

could only find data for potassium iodide [138] and soldium choloride [108]. Though

we don't have any available activity data for KI or NaCl in different temperatures, we

use Meissner Formula [183] to extrapolate the 25C data. The results suggests that the

correaltion length is increasing with temperature, as shown in Table. 1. This is some-

what counter intuitive from the microscopic prospective. Naively, we would expect

interactions to decrease with temperature, in the same way the Bjerrum length does.

120



Table 5.1:

salt #81 STD 2

1:1 Electrolytes
CsBr 0.14 1.43
CsCl 0.18 1.36
CsF 0.81 5.82
CsI 0.08 1.66
CsNO3 0 20.25
KBr 0.23 0.58
KCl 0.21 0.96
KC104 0 26.98
KF 0.39 0.33
KI 0.31 1.09
KNO3 -0.09 18.67
KOH 0.23 0.67
LiBr 0.23 3.38
LiCi 0.21 1.11
LiClO4 0.33 13.44
LiI 0.41 12.14

1. 8 is related to the correlation lengt

2. x10- 3 .

Correlation length and Fitting

salt #
LiOH -0.03
MgSO4 0.33
NaBr 0.28
NaCl 0.19
NaCl 0.13
NaClO4 0.13
NaF 0.07
NaI 0.35
NaNO3 0.04
RbBr 0.18
RbCl 0.19
RbF 0.43
RbI 0.18
1:2 Electrolytes
BaCl2 0.69
BaI2 7.23
BaNO32 0.06

h by Eq. 5.32.

Errors

STD
31.9
1.3
0.67
1.23
0.27
0.62
1.43
3.44
0.77
1.13
1.11
0.99
0.96

25.04
434.52
2.57

salt
CaBr2
CaNO32
Mg(N03)2
MgBr2
MgCl2
MgI2
1:3 Electrolytes
LiCl3
2:2 Electrolytes
Li2SO4
Na2SO4
Rb2SO4
2:3 Electrolytes
A12(SO4)3

Table 5.2: Correlation length as a function of temperatures

Salt Temperature[C] lc[]
NaCl 1.5 1.3
NaCl 25 1.91
KI 25 3.02
KI 40 3.6
KI 50 4.49

Even the non-local contribution to the correlation length decreases with temperature,

since it is inversely proportional to the Debye screening length that increases. This

is another example for the difficulty to simply relate the phenomenological constant

lc to microscopic variables.

5.4.2 Nitrate, Solfate and Hydroxoide: Adding Short-Range

Interactions

Compared to the original Debye-Huckel equation, the measured activity coefficient is

usually higher then predicted. Two effects that contribute to higher chemical potential

were discussed in the previous sections: correlations leading to a 4th order term in

the BSK equation, and the Born energy. Both effects makes it less favorable for the

system to add an extra charged particle. For the majority of substances we indeed
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#3
0.53
0.27
0.15
-0.19
-0.13
0.36

1.61

0.18
0.2
0.39

0.51

STD
15.74
3.14
13.04
119.54
154.27
660.6

162.85

4.92
3.12
1.61

0.25



see a rise in the activity coefficient, but for several classes of electrolytes the activity

remain low. In these materials a stronger effect is present, and one simple way of

accounting for it is by including short range interactions, and explicitly make it

favorable for new ions to join the party.

Adding specific interactions contributes to the overall chemical potential in two

ways: directly, with a linear dependence in concentration, and indirectly, by changing

the Poisson-Botlzmann equation. A simple free-energy short-range interaction term

reads:

AG = dr ,ci(r)cj (r), (5.33)
ii

where aij are the interaction parameters between the i and jth species. The direct

contribution is given by:

Apexcess,direct Zoia c (r). (5.34)

In Appendix. 1 we derive the indirect contribution, and find it is comparable in

strength to the direct one. Generally, incorporating specific interactions lead to a

change in the Debye screening length:

A = :J+Aijc~ij-/ (5.35)
.. EkBT

where I is the unit matrix, and A is a matrix whose elements are related to

the interaction parameters: Aij = #cij. For a binary solution there are, in prin-

ciple, 3 additional fitting parameters. However, since much of the behavior is al-

ready captured, we consider only a weak interaction between the two different species

(all = a22 = 0). In this limit, for s+ : s- stoichiometry and concentration co, the

resulting screening length reads:

- 2 , e 2co(siz + s2z 2) 2a 12S1Z1A ~1_0 E 11 - zi - z 2 #co (5.36)
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Fig. 5-3 shows results for 6 solutions that were not properly described by the BSK

model. It is clear that introducing the extra fitting allows for an almost exact fit.

Results are shown compared to both DH equation and the BSK.

From the given data we can not properly distinguish between different types of

interactions. Even solvent-solute interactions can lead to changes in the activity:

Eq. 5.35 is in general true, even for neutral (solvent) species. In this case, there is no

direct contribution for the chemical potential (the solvent concentration is constant),

but the indirect one can be important.

5.5 A closer Look at the Correlation Length

In the previous section we showed that the BSK equation produces a reasonable agree-

ment with experimental data, using a single free parameter. Moreover, we showed

that in many cases, we are able to successfully extrapolate the activity of high concen-

tration based on low concentration data. We would like now to address the question

first raised in Section II: how does the correlation length depends on concentration?

We can view Eq. 5.30 as an equation for lc(c): assuming the activity model is

correct, we find the correlation length as a function of concentration. Fig. 5-2 shows

the calculated correlation length length for the different solutions displayed in the

previous section. We first note that, as expected, the correlation length goes to 0

in the dilute limit. The transition between the dilute regime to the correlated one

happens for concentrations in which the distance between the ions is comparable with

the Bjerrum length.

For most compounds, the correlation length is slowly increasing across a wide

range of concentrations. This behavior resembles the Bjerrum length, which slowly

increases as the dielectric constant decreases. By choosing a suitable # to multiply the

Bjurrum length, the estimated correlation length, marked in lashed line in Fig. 5-2,

fits many of the salts. It is interesting to note that a single parameter catches both

the mean correlation length and the slope.

Other plausible relations for the correlation length do not work so well. The 'finite-

123



size' contribution, which goes as 1/A, overestimates the concentration dependence. A

the constant model underestimates it. Moreover, to the best of our ability, we were

not able to correlate the different i's to any other microscopic parameter of the

system, including the ionic size.

There are two obvious drawbacks to the suggested form. First, it is only appli-

cable for large concentrations. In the dilute limit the Bjerrum length is a constant

(about 7A), and does not vanishe. However, even for large concentrations, there are

many cases where it fails. The sulfate solutions for example exhibits a decrease in

the empirical correlation length, while other high valance solutions (such as LaCl 3 )

depends more strongly on the concentration. Nevertheless, it is still surprising that

the BSK equation along with a simple assumption on the correlation length, is able

to fit well many of solutions, even if not all.

5.6 Conclusions

We derived the activity coefficient of an aqueous solutions based on the BSK equation,

and showed it was able to match a wide range of experimental data with only single

fitting parameter: the correlation length. This was achieved by linearizing the BSK

equation, and solving it for charged sphere immersed in a solution. Another key

ingredient was to take into account the Born energy associated with the decrement

of the dielectric constant with the increase of concentrations.

Without explicit solving the complicated differential equation, we used the Fourier

space analysis to obtain a simple formula for the activity coefficient. In the limit of

small ionic radius, it reduced to renormalization of the Debye screening by a factor of

1l + 2lc/A. Corrections that take into account the the finite size of the ions increase

the effective screening length even further.

The origins of the correlations length have also been discussed. In general, a BSK-

like equation can be a result of ion-ion interactions beyond mean field, or a finite-size

effect associated with non-local electrostatic interactions. We derived a BSK equation

stemming from non-local electrostatics, and noticed that the correlation length is too

124



small to account for the large effect seen in experiments.

Finally, we tried to estimate the correct concentration dependence of the cor-

relation length. With several plausible suggestion from the literature in mind, we

extracted an empirical function based on activity experiments. For most compounds

we observed a nearly constant behavior, with a small increase for high concentrations.

A natural candidate to describe this behavior is the Bjerrum length, which was first

suggested by Bazant et al in Ref. [18].

There are several extension one can consider to improve upon the the model

presented. The maximal concentration we considered was of 5M, but even in lower

concentrations we found two effects to be significant: the concentration dependence of

the dielectric constant and ion-ion correlations. In the ionic liquid regime we expect

these effect to be more pronounced, adding to other effects that were neglected in our

derivation. In particular, as the screening length decreases, the ionic radii becomes the

most relevant length scale, making a lattice or hard sphere considerations important.

Nevertheless, even in relatively low concentrations, it is instructive to have a

simple model that relates known physical parameters to the activity coefficients. In

the emerging field of Li-air batteries, for example, the solubility of the intermediate

species involved is important for the battery's capacity[127, 43, 7]. A recent paper

by Schutter et al [217] suggested a way to screen compounds to find ones with good

solvation properties by using several descriptors: solvation energy, kPa, viscosity and

HOMO levels. Computational methods, such as DFT are used to estimate these

parameters, but they should apply mainly to the dilute limit. Our model can shed

light on higher concentrations.

5.A Modified BSK: Short-Range Interaction

In section V we argued that the BSK model is not a sufficient description for some

materials, for which specific short-range interactions play an important role. A simple

yet powerful way to exted the BSK equation, is to add contact interaction terms to

the free energy functional (Eq. 5.3):

125



G Jdr g+ P# - V#|2+ 12V2012 +Zaiici(r)ci(r)

N

g =kT [ci(r) log (ci(r)) - ci(r) (5.37)

where aij is the interaction between the it" and Jth ionic species. We derive the

relation between the local ionic concentration, c (r), and the bulk concentrations,

c9(r) the same as before, but now we find that c9(r) is expressed in an implicit form:

JG
Pi 6c(r) = kB log(ci) + qi q(r) + aij cj (r)

ci(r) = exp(#p/ - #qi#(r) - # 5ai c(r))

= coexp --qi##(r) - # a a(cj - c9(r)) , (5.38)

Define 6ci(r) = ci - c?(r) as the deviation from bulk concentrations, we expand

Eq. 5.38 to first order in a and # to get a set of linear equations:

6ci(r) = -qicO##(r) - c?/# aiocj(r).

ii6ci(r) =-O# (I +A)ijcj gy, (5.39)

where I is the unit matrix, and A is: Ai =#ciaij. We note that for weak

potentials, the first order approximation is justified even for strong interactions and

large concentrations, as long as the deviations from the bulk concentrations are small

enough.

The overall charge density is then given by:

p(r) = qici(r) = Eqici(r) = -## (I+ A)-'c gig. (5.40)
i i3
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The charge density is still linear in #, so the BSK equation remains exact, with a

new definition of A:

A = J+ A)-%cqjqq 1 -1/2 (5.41)
. i' EkBT

In a binary solution with stoichiometry S+ : S- and concentration co, the screening

length reads:

-2 e2
C   1 + Oa1 1 Cos1  /3a1 2cosi   s 1z 1

E 1 Z2] [ c 12 cos2  1 + #Oa 22 cos 2  s2z2

1 + f&a 2 2 cos2  -8a 1 2cos 1 s1 1

Oe2 co Z1 Z 2 I - Oa 12cos 2  1 + 3a11cos1 s2z2

E (1 + #a cosi)(1 I+ #a22cos2) - (/3a1 2co) 2 s1s 2

e2cO s2 zj(1 + 3ar cosi) + siz (1 + #3a22 cos2 ) - 20coa1 2 ziz2 sis 2 )
E (1 + #3au cosi)(1 + #Oa 22cos 2) - (#a12co) 2s1s 2

/e2co siz + 2Z2 + #cosis 2 (auz2 + a 22 zI - 2a12z 2z2 ) (5.42)
1 ± co(slCll + s2a 22 ) ± (3co) 2(a11 a 22 - aZ 2)

To leading order in a:

_2 /e 2 co(siz2 + s2 z2)A ~ (1 +# co)

sis2 (an z2 + a22z - 2a 12z 2z 2 )
2 2 -sian1 - s2ae22. (5.43)

siz + s2 z 2

If we consider only interactions between the different species, that is a11  a 22 = 0,

we get a simple expression for (:

-2a 12 Si Z1  (5.44)
z1 - Z2

For the 1 : 1 solutions ( is equal to the strength of the interaction, a12 . There,

thereform, a correction for the screening length that is proportional to Ao3a12co. The

chemical potential, in turn, will change by the order of e2/(vareAo)#a 12co. We hence

conclude that the contribution from this indirect effect on the activity is comparable
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to the direct contribution discussed in section V:

Aexcess, indirect excess, direct (0.2 /A) (.excess, direct. (5.45)
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Figure 5-1: Activity coefficients for different aqueous solutions. Green lines are fitted according to
Eq. 5.30 with le as a fitting parameter, the solid lue lines are according to Born approximation,
the dashed green lines are based on our model, with lc fitted to data < 1.5M, and the dash-dot
black lines show the reuslt of our model, fitted for the whole range. The black dots are based on

experimental data fitted to Bromley formula [42]
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Figure 5-2: Activity coefficients for different aqueous solutions. Green lines are fitted according to
Eq. 5.30 with usual definition of A, the dash-dot black lines incorporate direct specific interaction
term with A defined by Eq. 5.36. The black dots are based on experimental data fitted to Bromley

formula [421, and the blue line is according to classic DH approximation
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Chapter 6

Ionic activity in concentrated

electrolytes: solvent structure effect

revisited

Except for minor edits, the contents of this chapter have been submitted for publica-

tion and are currently under review[162].

6.1 Introduction

The activity coefficients of concentrated aqueous solutions play an important role

in different biological and electrochemical systems[191], and indeed, many models to

describe the ionic activity have been proposed over the years. In the original Debye

and Hukel (DH) paper from 1923[61], the activity coefficient was calculated based

on a linearized version of the Poisson-Boltzmann (PB) equation. This resulted in the

well-known DH equation, which for symmetric binary electrolytes reads:

ln-y = - A,z+zJV'7 (6.1)
1 + Bav/l

where -y is the activity coefficient, z± are the valencies of the ions, I = ciz? is

the ionic strength, c± are the ionic concentrations and a is an effective distance of
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closest approach, roughly equal to the ionic diameter. A and B are constant values

that depend on the temperature (kBT), the dielectric constant of the medium (E) and

the unit charge (e):

87re2  e 2B
B = A-= (6.2)

ekBT' 2EkBT(

The DH equation works well for very dilute electrolytes but fails to even qualitatively

capture the activity behavior at higher concentrations. In a following work[1181,

Huckel added an important term for the activity: the change in self-energy due to

variations in the dielectric constant. Experiments measuring the static dielectric con-

stant of ionic solutions were not available at the time, so the proposed model treated

the dielectric constant as a fitting parameter. Assuming the dielectric constant of bulk

water, EBulk, is decreased proportionally to the ionic concentration c (e ~ eBulk - 6c),

the correction to the DH equation is a simple linear term in concentration. Re-

markably, fitting this model to existing activity data actually estimated the dielectric

decrement close to measured values, an observation first noted by Hasted et al[108]

in their paper on the dielectric properties of ionic solutions.

A linear correction for the DH equation also emerges when considering short-

range repulsive forces, via a virial expansion. The virial expansion offers a system-

atic way to include even higher order terms in concentration. First suggested by

Guggenheim[104], and further developed by Pitzer[203, accounting for the second

and third virial coefficients leads to a very powerful description of the activity. The

Pitzer formula, which is essentially the regular Debye-Huckel with corrections to sec-

ond order in the concentration, is in excellent experimental agreement for hundreds

of compounds[1331.To achieve its high accuracy, the Pitzer model hence requires sev-

eral fitting parameters: the virial coefficients are not derived from first principles,

and the ionic radii are an empirical parameters as well. Closely related models were

subsequently derived by Bromley[42], Meissner[148] and Chen[54].

In the past half a century many more models have been developed on the basis of

integral equation approach to statistical theory of fluids, adapted for charged fluids.

The Hyper-Netted Chain approximation (HNC) and the Mean Spherical Approxima-
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tions (MSA) are examples for microscopic derivations of the activity coefficient[222,

44, 224]. Assuming a hard-sphere repulsion in addition to the Coulombic attraction,

the integral equation theories give an approximated way to calculate the pair correla-

tion function between any two ions. Usually, numerical methods are required to solve

the integral equations. The activity is expressed in terms of the correlation function,

without a simple closed-form formula. Another drawback of the integral equation

model is that they too require some fitting parameters.

Not going into a comparison of these different approaches, we only stress that

they where all derived for the primitive model of the solvent. Ions interact there via

Coulomb law like they would if the solvent was a dielectric continuum, with a macro-

scopic dielectric constant. At the same time we know from molecular simulations that

in polar solvents, water, in particular, the potential of mean-force between the ions

exhibit decaying oscillations with the periodicity of the order of the diameter of the

solvent molecules, with signatures of overscreening effect, and only at long distances

it would approach the macroscopic Coulomb interactions, as a limiting law. How

this fact would reveal itself in thermodynamics of electrolytes? One way to answer

this question would be to incorporate the effects of the molecular structure of the

solvent via replacing the Coulomb pair interaction potential in the above-mentioned

approaches with the correspondingly modified ones. Alternatively, one could incor-

porate the differences from the primitive Coulomb into the short-range part of the

interaction potential. Such short-range part would then extend few times farther

than the average diameter of ions. In order to justify such efforts, we will do here

something yet simpler: We will combine the Debye-Hueckel approach with a nonlocal

electrostatic description of the solvent. Although such approach will not take into

account complex correlations in a concentrated electrolyte, it will be a step towards

connecting the correlations of the bound charge density of the solvent subsystem

('molecular correlations) and the ion-ion correlations in the electrolyte plasma. Such

an approach will work as an interpolation. Following this root, we will result in

a closed-form expression which as we will see will describe the behavior of activity

coefficients very well.
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Such an approach has been, actually, proposed and tried long ago [116, 146]. We

revisit it below, showing that for the updated approximation of the form of nonlo-

cal dielectric function of a pure solvent that qualitatively reproduces the simulation

results for water [36, 37] we can obtain very reasonable results for the activity coeffi-

cients and explore certain trends in their dependence on electrolyte concentration.

6.2 Model

Our goal is to build a phenomenological description of the dielectric function of ionic

solutions, that accounts for both the solvent molecules and the ions and would enable

us to calculate the ionic activity coefficient. In a constant dielectric medium (the

so-called "primitive" model), one can derive the dielectric response directly from the

Poisson-Boltzmann equation. However, a constant dielectric medium is an approxi-

mation suitable for large ion-ion separations. At shorter separations, the molecular

ordering of the water gives rise to a complicated dielectric response. Empirical for-

mulae for the dielectric function have been suggested in the literature[146, 141], in

relation with computer simulation results [36] and experimental data[227]. We will

now show how we extend the pure-water empirical dielectric response for ionic solu-

tions, by building an interpolated function that satisfies the limiting behaviors.

Within linear nonlocal electrostatics, electrical induction and electric field are

related by nonlocal constitutive relation: Da(r) = E f drE,p (r - r') Ep (r'), where

E.0 (r - r') is the nonlocal dielectric tensor. In the macroscopic electrostatics sep (r - r') =

E6,36 (r - r') which reduces the constitutive relation to the common D(r) = EE(r).

All information about the correlations of the bound charge density in the medium are

contained in the form of the tensor e8 (r - r'). Referring the reader to Ref.[140] for

details, we mention that in homogeneous and isotropic media, electrostatic equations

will be conveniently expressed through the Fourier transform of this tensor ?ap(k),

and more precisely through its longitudinal component F1 (k) = Z * E(k), often

called simply ?(k) . Long wave-length limit (small k) recovers macroscopic behaviour,

large k , probes short range correlations. For instance, speaking about pure solvent
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k - 27r/d , where d is diameter of water molecule, would characterize the molecular

packing effects. For much larger, ?(k) will approach short range dielectric constant

due to electronic polarizability of the molecules. We denote the corresponding dielec-

tric constant in that limit E,.

In the long wavelength limit, the Poisson-Boltzmann equation for a binary mono-

valent solution reads:

EBulk V2(r) = 87ec sinh eoo(r)] - 47rpet (r), (6.3)

where c is the bulk ionic concentration, 0 = 1/kBT is the inverse temperature and

Pext is an external charge distribution. In the linear (Debye-Huckel) regime, the PB

equation is a second order differential equation, or an algebraic equation in Fourier

space:

EBulkk 2 2 q(k) = 47rext(k). (6.4)
1 EBulkk2

Comparing Eq. 6.4 to the Poisson equation, we can immediately write the dielectric

response of ionic solutions in the limit of large wavelengths:

Ec,bulk(k) = EBulk [i (kD)21  (6.5)

where AD = (87rce 2 fl/EBulk 1 / 2 is the Debye screening length. The divergence at small

wave-numbers corresponds to the screening of the potential at distances larger than

the Debye screening length. At smaller distances the screening effect is negligible, and

dielectric response is only influenced by the water. This will remain true even if we

consider a more complicated expression for the water dielectric response, rather than

EBulk. Hence, we can write a simple interpolated formula for the dielectric response

by replacing EBulk with the full E,(k):

sc(k) = 5w(k) I + k22] (6.6)
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This approach is similar to interpolation implemented in Refs.[140, 143] in terms of

the limiting cases covered, but its form is slightly different, reflecting stronger coupling

between the solvent structure and the ionic screening. Note that this interpolated

response satisfies both the long and short wavelength limits. In the long-wavelength

,(k) - c+ iBulk and we recover Eq. 6.5. In the short-wavelength, the ionic contribution

is neglected as we recover the pure-water response.

By design, the interpolated formula is expected to work well if there is a separation

of length-scales, and the Debye length is much larger than the molecular size of the

solvent. In this limit, however, the predicted ionic activity will coincide with classical

Debye-Huckel theory. Interesting physics emerges as we increase the concentration,

and enter a regime where both ions and water molecules play a major role.

Within the linear approximation, this interpolation formula for the dielectric con-

stant provides all the necessary information required to derive the activity coefficient.

Let us now, following Ref.17 (first time derived in [1161), use the charging process

to evaluate the activity of ions, by considering a spherical particle immersed in a

dielectric medium. By slowly turning on the charge, the energy is determined by the

potential on the surface of the ion:

U = dq#q(r = a), (6.7)

where #q(r) is the electrostatic potential around a charged particle with charge q, and

a is the effective radius of the sphere, related to the distance of closest approach to

the ion. A simple way of estimating the electrostatic potential is by letting water to

permeate the ion, and solving the Poisson equation in k-space:

q(r) dk 47rqp(k)e ik.r =2 ' [ sin(kr) qfi(k)

d (27r)3 Ec(k) Vr 0 kr Ec(k)'

where fi(k) is the Fourier transform of the charge distribution, called also an ionic

form-factor:

p(k) = drp(r)e-k.r. (6.9)
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Following Ref. [146], we use a smeared charge distribution, defined as follows:

(k) 1 qa sin ka

Sa2 + T2 (2 -e- ) k (1±+ 72k2)

(2 cos ka - e-a/7)

S (1+ 2k2)2

(6.10)

where Tj is the smearing parameter, which describes the width of the ionic charge

shell; for q -± 0 the form-factor reduces to the Aschcroft form: p(k) sin(ka)/ka.

Combining Eqs. (6.7) and (6.8) we obtain:

u = jdkp) sin(ak)
Tr j ec (k) ak

(6.11)

The excess chemical potential of moving an ion for bulk water to ionic solution with

concentration c, is given by (in units of thermal energy, kBT):

In-y = # [u(c)-u(c= 0)]

1B dksin(ak) c(k) _e=0(k)'

7rJ0 (ak) 2 L5c (k) Eo (k)J
(6.12)

where 1B e2 is the vacuum Bjerrum length. Using the interpolated formula for

Ec(k) (Eq. 6.6), we can write the chemical potential in terms of the water dielectric

constant and relate it to the Debye Huckel limiting law:

ln -y _ 2 °° dk sin(ak) Eb1uik (k)

In7DH 77 0 AD ak fw(k) k2 +A: 2 )
(6.13)

where ln y is the classical Debye activity formula (in the limit of a -+ 0):

In-y DH _ _ B
2 E bulkAD

Finally, we need to suggest a model for the solvent dielectric function.

(6.14)

So far we

have only specified the limits it must hold: it equals bulk values (E ~ 80) at small
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wave-vectors and some small value e, at large ones. It is instructive to introduce a

weighting function f(k), that equals 1 at the large wavelength limit, and 0 for short

wavelengths, so we can write a general dielectric function as:

= [(4-1 + (+ejl - (.)-1) f(k)]   . (6.15)

A simple f(k) that satisfies the corrects limits is a Lorentzian shape:

_ 1
f (k) - . (6.16)

1 + k2 A 2

The Lorentzian shape captures some effects of solvent structure at long wave-length,

implying that water molecules are correlated, and their correlation is exponentially

decreasing with a decay length A. But it misses to correctly describe the short

range behaviour: molecular dynamics simulations of water molecule reveal a much

more complicated structures with k-dependence reflecting resonance effects of over-

screening [36, 147, 80]. In the spirit of work 1146] we could account for over-screening

by the following formula for f(k):

(1 + (A2Q2 ))2

f (k) = (+ AQ)2(6.17)
(1 + (kA - QA) 2 )(1 + (kA + QA) 2 ) (

where A describes the correlation length as before, and Q = 27r/d, is the wavelength

for oscillations, which is determined by the molecular size of water. In this work,

however, we propose a more general form to better describe the permittivity in the

intermediate wave-numbers range:

a (1 - a)(1 + (A 2Q 2 )) 2

(1 + A2 k 2 ) 2 (1 + (kA - QA) 2 )(1 + (kA + QA) 2 )-
(6.18)

It mimics the basic features of the response function as found in [36], approved by

experimental data ([227]). Our hybrid model is illustrated in Fig. 6-1 by looking at the

response function x(k) = 1/E, - 1/f.(k). The large peak around k = 3-1 is related
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to overscreening and will lead to oscillations with a period just below the molecular

diameter. The hybrid model corrects the longer range behavior of the overscreening

model, where the dielectric function is expected to be slightly reduced, similar to the

Lorentizian model as obtained in Ref. [36].

101

100

10-1

10-2

10-1 100
k[A']

Figure 6-1: The response function x(k) as a function of wavelength, for three models of dielectric
functions: simple Loretntizan model, over-screening model and a hybrid model.

6.3 Results

Let us now calculate the activity coefficient for a typical ionic solution, for concentra-

tions ranging from the very dilute to moderately concentrated, using Eq. 6.12. The

parameters for the water dielectric response that we adopt here are summarized in

Table. 1. Most of them were determined according to previous studies of pure water,
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parameter I symbol value

Short wavelength permittivity e, 2
Solvent bulk permittivity EBulk 80
Solvent oscillation wavelength Q 27 -
Solvent correlation length A 5
Weight parameter a 0.03

Table 6.1: Parameters for our hybrid model of pure-water dielectric response (Eq. 6.18).

however the hybrid-model weighting function a was fitted to experimental activity

data.

To better understand the activity coefficient, we first examine the potential profile

around a spherical ion. Fig. 6-2 shows the potential for increasing ionic concentrations,

compared with standard DH approximation (Fig. 6-2 inset). The results are based

on a distance of closest approach (ionic diameter, a) of 3.5A, and exemplify how the

non-local permittivity completely changes the potential profile and leads to a non-

linear concentration dependence. In the dilute limit, the ionic screening is manifested

either by a stronger exponential decay in classical DH screened potential or reduced

amplitude of the decaying oscillations in the case of the non-local dielectric function.

However, as we increase the concentration, the DH screening cloud gets narrower, and

the potential is strongly screened. In contrast, the oscillating structure, predicted by

the non-local dielectric model, persists even in high molalities.

From the charging process, we know that the activity is related to the potential

on the surface of the charged ion. Two competing effects determine this potential

for non-local dielectrics. For small ionic concentrations, the potential is lowered, as

a result of the interaction with the screening cloud. This change allows us to recover

the DH limiting law, as expected. We note, however, that in contrast to a constant-

dielectric picture, the potential itself is negative, and increases in magnitude. As the

ionic concentration increases, the amplitude of the oscillations is reduced, which leads

to an opposite trend: the screening of the oscillations results in a smaller magnitude

potential, i.e., it becomes less negative.

The resulting activity profiles are shown in Fig. 6-3, for three ionic diameters

(a = 2A, 3 and 4A). For comparison, three experimental measurements of activity
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Figure 6-2: The dimensionless electrostatic potential, ep4(r), around a spherical ion, for ionic
concentrations 1mM, 10mM, 100mM, O.5M and 2.5M, based on a the non-local dielectric function
described by Eq. 6.6. Parameters of the non-local function are given in Table. 1. The ionic diameter
used is 3.5A. Right inset- the dimensionless electrostatic potential in a constant dielectric medium.
Left inset- the dimensionless electrostatic potential profile near the surface of the sphere. At larger
distances fro the ion, as well as at any distances for the case of constant permittivity, the potential
decreases with electrolyte concentration, but in the vicinity of the ion the effect is non-monotonic.

coefficients are shown as well. The experimental data were taken from ref [42] and

corresponds to three monovalent ionic solutions: KCl, NaCl, and LiCl, representing

three different cation sizes. Qualitatively we see that our model is able to capture

the correct trend, including the increased activity at high concentrations, as well as

some size dependence of the activity coefficient. The bare cation diameters for the

potassium, chloride and lithium are 1.4A, 1.94Aand 2.82A, respectively, which are

only slightly lower than the values we consider here. Hence, while we are not claim-

ing this is a complete model, we show that with reasonable parameters, the water

structure alone can explain much of the overall shape of the activity vs concentra-
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tion for different ions, without resorting to correlations or concentration-dependent

permittivity.

Theory

2A

=3A

=4

1 2
c[M]

3 40

Experiment

- -- ~Lig)-

NaQ

- f - KC-

1 2
c[M]

3 4

Figure 6-3: Activity coefficients as a function of ionic concentrations. Left- The activity coefficient
for monovalent binary solutions, based on the non-local permittivity model, Eq. 6.12. Three different
activity curves are shown, corresponding to three ionic diameters (from bottom to top): 4A, 3Aand
2A. The parameters of the pure water dielectric function are summarized in Table. 1, and the
smearing parameter was taken to be r7 = 0.5A. Left- Experimental data of activity coefficients for

three ionic solutions (from bottom to top): KCl, NaCl and LiCl. Data is taken from [42].

6.4 Discussion

The match between the experimental activity coefficient and our model illustrates the

importance of the local water structure on ionic activity. Our theory supports the

original argument of Huckel himself, as well as several recent papers, that differences in

the solvaiton energy play a central role in determining the activity coefficient. In fact,

it is the main source of increasing activity at moderate salt concentrations, reversing

the decreasing trend of DH theory for screening at low concentration, even before ion-

ion correlations become important at high concentrations. Yet, the interplay between

solvent molecules and ions is usually either ignored altogether or artificially added

as an additional contribution, based on a concentration-dependent bulk dielectric

constant. It is therefor significant that we use independently validated dielectric

144

0.4

0.2 -

0

-0.2

-0.4

-0.6
0

0.4

0.2

0

-0.2

-0.4

-0.6



response of the solvent.

It is important to note that we neglected several other important effects that

are known to play a role in determining the activity coefficient. First, our dielectric

function is based on a linearization of the Poisson-Boltzmann equation and, thus,

non-linear effects in the polarization of ionic atmosphere are neglected. Moreover,

extensions to the PB equation, such as ones that account for finite size ions[18, 40,

26, 130, 144], are not considered. Size and packing constraints will rapidly increase

the activity coefficient when the packing fraction becomes significant. Theories of

primitive models in a constant dielectric medium, supported by Monte-Carlo simula-

tions, have shown that both size effects and non-linear contribution can be significant

[48]. Another necessary contribution to the activity comes from ion-ion correlations

and is especially pronounced at high concentrations. Such contributions can naturally

fit into a non-local dielectric response framework by introducing a correlation length,

IC, describing the lowest order correction to the bulk dielectric constant as results of

ion-ion interactions: E(k) -Bulk (r ± c~k 2)[21]. Interestingly, ion-ion correlations has

an opposite compared with water-related correlations, as the second order expansion

of the pure water permittivity is negative (and proportional to A, as expected).

Last but not least, the effects of the electric field of ions on water structure have

been neglected, as well as disturbance of the structure by their mere presence, which

was both shown to be potentially important [147, 801. Indeed, the detailed studies of

Ref. [80], based on integral equation approach to the description of molecular corre-

lations in water and molecular dynamic simulations, reveals a complicated dielectric

response, with a strong non-linear component at high electric fields and sensitivity

to the polarity of the ions. These limitations, as well as other non-electrostatic inter-

actions that were omitted, limit the adequacy of our model. It is therefore expected

that with virtually no ion-specific fitting parameters, apart from the effective 'diam-

eter' of the closest approach, our model would only predict the correct trends, and

not exact values. Our formula for the dielectric response, Eq. 6.6, is only a first step

in the right direction. It is the simplest form that recovers the correct behaviors in

both the very short and very long wavelength limits. To improve the results, and get
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a quantitative agreement with experiments, more elaborate models are required.
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Chapter 7

Future prospects

In this thesis, we reported several new results on the behavior of electrolytes in

extreme conditions. At the end of each chapter, we discussed the limitations and

simplifying assumptions of our models, and possible ways of extending the theory

presented. In this chapter, we would like to briefly outline four concrete examples of

possible extensions, with preliminary results.

7.1 Linear Electrokinetics of Concentrated Multicom-

ponent Systems in Nanopores

In chapters 2 and 3 we considered the transport of ions through a small channel and

saw how extreme confinement leads to a surprising breakdown of electroneutrality.

We restricted our discussion to a channel that connects to reservoirs with equal ionic

concentrations and focused on the equilibrium properties of the channel. While this

approach allowed us to consider some experimental setups, in the general case we

have to include pressure and chemical gradients as well[201]. A natural extension of

the theory presented is to build a general linear theory of electrokinetics.

The derivation is similar to the one presented in Chapter 3, where we followed

Ref. [201]. One surprising consequence of electroneutrality breakdown is that we find

a non-zero charge profile in the channel even without any surface charge. In Fig. 7-1
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we have an example of the concentration profile of an uncharged pore under both

concentration gradient and applied electric field[123].

Concentration 1 Conrcentration 2
10 10

-(Anion)
0.8

8

0.6 6 0.6 6

0.4 4 A 4

2

0 0. 0A 0.2 0.4 1. .

Figure 7-1: Charge density in uncharged pores. The concentration profile of anions and cations in
a pore connecting reservoirs with different concentrations (1mM and 10mM)

7.2 Electroneutrality Breakdown for Interacting Pores

The theories of nanopores and membranes are usually interchangeable. A meinbraine

is often thought of as a simple collection of pores. This is, however, an over-simplified

picture. If the surface charge of the pores is not fully screened, the net charge of each

pore can be very high, which gives rise to strong pore-pore coupling. A collection of

pores has a very different behavior compared with the single pore case.

Interestingly, membranes maintain electroneutrality much better than single chan-

nels. While breaking electroneutrality can be favorable for a one-dimensional narrow

channel, ions in a membrane occupy a 3d volume and hence are expected to fully

screen external charges, especially in dense membranes. The transition from the Id

structure to 3d structure depends on the ratio of the pore length (L) to pore sepa-

ration (1). This can either be studied using numerical solver (such as COMSOL) or

by generalizing the "electric leakage" boundary condition we found in Chapter 33.18.

Following the same derivation, but requiring the electric fields to vanish at half the

distance between pores, we find the following boundary condition to hold[124]:

1q#in _ q8 _ 
8 out #in ML/R = (2L + K1 ( )

Or En EL RML/R log - ( ±
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In Fig. 7-2 we compare this approximation with the full numerical solution and find

an excellent match. Note that this condition is identical in its form to the "electric

leakage" boundary condition, with a different ML/R coefficient.

7.3 Validating Electroneutrality Breakdown: Exper-

iments and Simulations

The conductance of nanochannels is determined by the number of charge carriers

that reside inside the channels. Experiments show that there is a peculiar scaling

relation between the concentrations of ions in the bulk and the conductivity[219].

In Chapter 2 we argued that electroneutrality breakdown is a potential mechanism

for such curves. However, this required several fitting parameters, and we could not

definitively rule out other interpretations.

A promising way to directly measure the effect of electroneutrality breakdown

exploits the pore-pore interactions in membranes, as described in the previous section.

Our theory predicts that the behavior of a dense membrane is markedly different from

a diluted one. By carefully choosing the parameters of the membrane, a conductance

experiment can be used to verify our theory our predictions with essentially no other

known competing interpretations. A promising candidate that can be controlled to

high precision is Anodic Aluminum Oxide (AAO) membranes where the spacing of

the channels can be designed[245, 22], as shown in Fig. 7-2.

Our predictions can also be directly observed in molecular dynamics simulations

(Fig. 7-2). In the left panel of Fig. 7-2 we see the results of a small simulation,

clearly showing electroneutrality breakdown. These preliminary results fit well with

our predictions but still require some fitting.

7.4 The Hidden Order of Ionic Liquids

In Chapter 4 we found that the charge configuration in ionic liquids maximizes the

charge ordering, given positional configuration. In some cases this created long-ranged
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Figure 7-2: Proposed validation of electroneutrality breakdown in experiment and simulation. (a)
An illustration of molecular dynamics simulation to test the breakdown of electroneutrality. (b)
The net charge of the membrane changes with surface charge in agreement without theory. (c-d)
Examples of AAO membranes with different pore density, figures are courtesy of the Elimelech
group at Yale. (e-f) Numerical and analytical results of electroneutrality breakdown as a function

of pore-pore separation.

structures EMIM-TFSI ionic liquid), but for aqueous LiTFSI the ordering was short-

ranged. We attributed this behavior to a "hidden" positional ordering that existed

in ionic liquids but was missing in LiTFSI. In the lack of positional order, we showed

that geometric frustrations limit the correlation to a handful of neighbors. We coined

it a "hidden" order, because the standard way of quantifying positional order, via the

pair-correlation function, did not show any apparent structure.

An interesting extension of this work is to quantify and directly observe the po-

sitional ordering. While radial distribution functions are not a good starting point,

other measures can be more successful. Particularly, the orientational order parame-

ter in 2d and ring statistics have promising potential.
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7.4.1 Orientiational Order in 2D

The melting of a 2-dimensional ionic crystal into an ionic liquid can be characterized

by the orientational order parameter[187]:

4 Z exp(4iam,n) , (7.1)
n m

where N is the number of ions in the system, and am,n is the angle between rm,n and

the x-axis, and the summation is on 4 nearest neighbors. If the system is completely

ordered, all bond angles are 7r/4, and b4 = 1. As disorder increases, the angles

become more random. At complete disorder, the value of 0 4 , for 4 nearest neighbors

is around 0.4. Note that this is a local measure of positional order that is useful.

Increasing the number of nearest neighbors in the summation will reduce the value

of the order parameter to 0 in complete disorder.

We performed a small Monte-Carlo simulation of melting in 2D, to see if there is a

correlation between the electrostatic ground state configuration and the value of $4.

Starting from a square lattice and increasing the temperature, we measured for each

simulation both the order parameter and the amount of over-screening. Preliminary

results are shown in fig. 7-3(b), where we see that for a large range of temperatures

charge ordering perfectly follows the orientational order parameter. As the tempera-

ture increase, the system is completely disordered, and the charge configuration is no

longer optimal.

7.4.2 Ring Statistics in 3D

While 04 is a useful order parameter in 2d, ordering in 3d the ordering is more subtle.

The generalized orientational order parameter[230] do not explain charge ordering in

a significant way, at least to the best of our efforts. Alas, a different measure is

required. One particularly useful measure is called "ring statistics", and was first

introduced in the context of amorphous silicon[178, 255, 10]. In a solid, where all

atoms are connected by chemical bonds and form a graph, a ring is the shortest path
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from an atom back to itself. In crystal silicon, for example, all atoms have a ring of

size 12, while amorphous silicon has smaller rings of size 8 and 10.

The concept of a ring naturally captures geometric frustrations, which occur for

any ring of an uneven number. We applied this measure to simulation data and

calculated the ratio of 3-rings to 4-rings. Our graph was defined by connected each ion

to its two nearest neighbors, and the results are shown in Fig. 7-2(a). The transition

from complete disorder, to ionic crystal, matches the charge ordering pattern.

(a) 3D: Ring Statistics

Many 3-rings,
which leads to
frustration

All rings are
4-rings

I.,--
Random 2M LiTFSI 7M LiTFSI 15M LiTFSI 21M LiTFSI EMIM-TFSi ionic crystal

(b) 2D: orientational order

i PB-n-ginss

........... oescreening (s ulaon)
-- overscreening (spin glass)

0-3 102 101 10 101

Figure 7-3: The hidden order in ionic liqauids. (a) The ratio of 3-rings to 4-rings for different systems
with increasing degree of charge ordering. (b) 2d example: the orientational order parameter V/) 4 as

a function of temperature in a MC simulation of melting.
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Chapter 8

Concluding Remarks

In this thesis, we looked at the two regimes where classical "Poisson-Boltzmann" the-

ory fails: strong correlations and extreme confinement. A common theme throughout

this work is our attempt of finding basic guiding principles to explain complicated

behaviors. This allowed us in Chapter 2 to discover the surprising "electroneutrality

breakdown" in nanopores, offer a startling interpretation for the long-ranged charge

ordering in ionic liquids in Chapter 4, and incorporate complex ion-solvent interac-

tions in Chapter 6. We intentionally sought the simplest model that was able to

explain an interesting feature or capture an intriguing phenomenon. Yet, it also lim-

its the predictive power of our results, and further exploration and development are

required.

We started by examining nanopores and the behavior of ions confined to long

and narrow channels. Comparing the scaling of entropy and the electrostatic interac-

tions in the pore, we found that the screening length in the axial direction increases

exponentially with the mean ionic separation. When the screening length exceeds

the physical length of the pore, the pore is only partially screened and gains a net

charge. We then derived an algebraic mean-field equation for the accumulated charge

in nanopores, under the assumption of uniformly charged pores, and used it to fit

experimental data of ionic conductance. The breakdown of electroneutrality played

a key role in the dilute limit, since it captures the decrease in the number of mobile

ions, as seen in the experiment.
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In the following Chapter, we relaxed the uniform pore assumption and adapted

the standard Poisson-Boltzmann equation to account for neutrality breakdown. We

did so by constructing an approximated Robin-type boundary condition that enables

for electric fields to spill into the outer dielectric matrix. Once we obtained exact

charge profiles, we were able to calculate a general expression for the conductance and

consider two additional effects: electroosmotic flow and a Stefan-Maxwell coupling

between ionic fluxes.

We neglected in our analysis many important physical mechanisms, including

entrance and edge effects, ion-ion correlations, specific ion-pore interactions, and de-

hydration. While our theory is far from complete, we expect our qualitative argument

to hold in the general case: Electric fields leak out of narrow pores. This effect should

be incorporated regardless of the specific model one wishes to use, and our approxi-

mated boundary condition offers an especially convenient way of extending different

models.

In Chapter 4 we considered the regime of strong ion-ion interactions by utilizing

Molecular Dynamics (MD) simulations of ionic liquids. We found that the seem-

ingly complicated patterns of charge ordering obey a basic rule: it is the optimal

configuration of charges in presence of positional disorder. For a given positional

configuration, ionic liquids try to extend their charge ordering as much as possi-

ble, creating the longest possible patterns of alternating signs. However, in order to

maintain a long-ranged structure, ions have to be placed in a way that prevents geo-

metric frustrations. Ionic crystals, with NaCl or CsCl structures, are examples of such

frustration-free structures. In the liquid phase, however, frustrations are abundant,

and charge oscillations are therefore limited.

To prove that ions are in their optimal charge configuration, we performed an

atomistic MD simulation and optimized each positional configuration for best charge

distribution. This artificial decoupling of positions and charges might make the reader

might feel uncomfortable. The positions are, after all, determined by the interaction

between charges. Admittedly, this is the main drawback of our approach, which has

limited predictive power. Nevertheless, it allowed us to reveal several interesting
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observations that shed new light on the behavior of ionic liquids.

Most importantly, we now identify an underlying partial partial positional order-

ing in ionic liquids that manifests itself in long-ranged oscillations. This ordering

is much less pronounced in concentrated LiTFSI aqueous solution, where the strong

disorder limits the correlation range to a handful of neighboring ions. Second, we can

definitively attribute the observed charge ordering to the bare electrostatic interac-

tions, as our theory neglects all other complexities of the full simulations. Finally,

we demonstrated that when an ionic liquid is placed near an electrified surface, it

creates an ordered layering structure, which explains the observed "over-screening"

phenomenon.

These observations fundamentally differ from the standard interpretations of charge

ordering. It is tempting to describe decaying oscillations (in ionic liquids or other-

wise), as a solution of linear partial differential equations (PDEs). Qualitatively,

linear PDEs predict a similar behavior. Furthermore, by considering additional phys-

ical processes, such as non-local electrostatics or specific interactions, we do obtain

high order PDEs within the mean-field approximation. Yet, a linear mean-field the-

ory has a key flaw: it neglects the ordering of ionic positions. Our analysis shows

that long-range charge oscillations require an underlying positional order that reliefs

geometric frustrations; it is impossible to have more than a few oscillations otherwise.

Giving up continuum modeling, however, may not be necessary. One takeaway

from our analysis is that we should rethink the way we build coarse-grained models

in ionic liquids. In the dilute limit, charge ordering characterizes the competition

between entropic forces and electrostatic interactions and determines the thermody-

namic properties of the system. Conversely, in ionic liquids, charge ordering only

represents the underlying positional order. It is therefore might be instructive to

devise a continuum theory that directly addresses this order parameter.

The final two chapters of the thesis focus on ion-ion and ion-solvent correlations

in concentrated electrolytes. This intermediate range of electrostatic interactions

requires modifications beyond Poisson-Boltzmann, but does not exhibit the long-

ranged charge ordering of ionic liquids. We showed that a non-local permittivity
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operator is a powerful tool in incorporating complex behavior, with only handful of

phenomenological parameters. We studied in these chapters the activity coefficient

of an ionic solution, and in particular its departure from the Debye-Huckel theory.

In Chapter 5 we used a 4-th order extension of the Poisson-Boltzmann theory,

known as the BSK theory. With essentially just one fitting parameter, related to the

correlation length, we were able to fit a wide range of ionic solutions with remark-

able accuracy. In Chapter 6, we revisited the role of the solvent structure on the

activity coefficients by introducing an interpolated formula for the non-local dielec-

tric function. At high concentrations the ordering of the water molecules contributes

significantly to the activity coefficients and can not be neglected (in Chapter 5 we cir-

cumvent this problem by artificially adding the Born solvation term). The non-local

dielectric function is motivated motivated by microscopic models, but not directly

derived from first principles. We 'engineered' a form that satisfies important limiting

behaviors and symmetry requirements, but one that is also tractable computationally

as well. This is the main drawback of this approach: it is a good way of introducing

new effects and examining their qualitative consequences, but its accuracy is limited.

In the penultimate chapter of the thesis we briefly sketched four specific examples

of possible extensions to the thesis. It is our hope, however, that this thesis leaves the

reader with more questions than answers. We have just begun to explore the extreme

regimes of confinement and correlations and the ways it forces us to depart ways with

the classical Poisson-Boltzmann theory.
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