
Learning to See the Physical World

by

Jiajun Wu

B.Eng., B.Ec., Tsinghua University (2014)
S.M., Massachusetts Institute of Technology (2016)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Signature redacted
A u th o r .

Department of Electrical Engineering and Computer Science
September 30, 2019

Signature redacted
C ertified by

William T. Freeman
Thomas and Gerd Perkins Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Signature redacted
C ertified by

L Joshua B. Tenenbaum
Professor of omputational Cognitive Science

Thesis Supervisor

Signature redacted
A ccepted by

MASSACHUSETTSINSTITUTE 'Lesil V Kolodziejski
OF TE_ HNOOGY- rofessor of Electrical Engineering and Computer Science

MAR hair, Department Committee on Graduate Students

I IRRARIFR

Learning to See the Physical World

by

Jiajun Wu

Submitted to the Department of Electrical Engineering and Computer Science
on September 30, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Human intelligence is beyond pattern recognition. From a single image, we are able
to explain what we see, reconstruct the scene in 3D, predict what's going to happen,
and plan our actions accordingly. Artificial intelligence, in particular deep learning,
still falls short in some preeminent aspects when compared with human intelligence,
despite its phenomenal development in the past decade: they in general tackle specific
problems, require large amounts of training data, and easily break when generalizing
to new tasks or environments.

In this dissertation, we study the problem of physical scene understanding-building
versatile, data-efficient, and generalizable machines that learn to see, reason about,
and interact with the physical world. The core idea is to exploit the generic, causal
structure behind the world, including knowledge from computer graphics, physics,
and language, in the form of approximate simulation engines, and to integrate them
with deep learning. Here, learning plays a multifaceted role: models may learn to
invert simulation engines for efficient inference; they may also learn to approximate or
augment simulation engines for more powerful forward simulation.

This dissertation consists of three parts, where we investigate the use of such a
hybrid model for perception, dynamics modeling, and cognitive reasoning, respectively.
In Part I, we use learning in conjunction with graphics engines to build an object-
centered scene representation for object shape, pose, and texture. In Part II, in
addition to graphics engines, we pair learning with physics engines to simultaneously
infer physical object properties. We also explore learning approximate simulation
engines for better flexibility and expressiveness. In Part III, we leverage and extend
the models introduced in Parts I and II for concept discovery and cognitive reasoning
by looping in a program execution engine. The enhanced models discover program-like
structures in objects and scenes and, in turn, exploit them for downstream tasks such
as visual question answering and scene manipulation.

Thesis Supervisor: William T. Freeman
Title: Thomas and Gerd Perkins Professor of Electrical Engineering and Computer
Science

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor of Computational Cognitive Science

Acknowledgments

My first and deepest thanks go to my advisors, Bill Freeman and Josh Tenenbaum.

Bill has always influenced me with his curiosity, passion, and persistence for science.

But what I have learned from Bill is much beyond science: most importantly, a unified,
consistent, powerful, and effective set of principles that guide you through all the hills

and valleys of life. Josh is the best advisor I can ever imagine. One can think of many

factors that make a good advisor: amazing depth and breadth of knowledge, original

and creative research ideas, encouraging, constructive, and insightful conversations,

extensive connections within and outside academia, strong support in job search, etc.

Magically, Josh has all those, to the best extent possible. Bill and Josh are the best

role models for me in both research and life. I wish, after I start advising students

myself, one day I would become half as good through decades of learning and practice.

I appreciate Leslie Kaelbling and Fei-Fei Li for serving on my thesis committee. I
have wanted to work with Leslie since I was her teaching assistant during my second

year of graduate school. I was glad that this later came true. Fei-Fei has long inspired

me through her contributions to computer vision, Al, and beyond. It is my honor to

have her on my committee, and I hope we will work more together at Stanford.

Many great minds have guided me and led me through this journey. Zhuowen Tu

introduced me into the world of AI and vision when I was a rising sophomore, and has

been my mentor and friend since then. Antonio Torralba mentored me throughout

my PhD. I have always been amazed by his insightful and creative thoughts. I was

fortunate enough to work with Josh McDermott, from whom I learned all I know

about human and machine auditory perception. In Summer 2016, I interned with

Pushmeet Kohli at Microsoft Research; this turned out to be the beginning of our

multi-year, fruitful collaborations. I also thank Liz Spelke, whom I got to know at the

beginning of my graduate study and eventually worked together when I am finishing
up. I wish I had started working with Liz earlier and I hope we will collaborate more

in the future.

I studied under Andrew Chi-Chih Yao and Jian Li at Tsinghua University, Yan Xu
and Eric Chang at Microsoft Research Asia, Kai Yu and Yinan Yu at Baidu Research,
and Yuandong Tian at Facebook Al Research. Polina Golland and Randall Davis
served on my research qualifying exam committee. I thank them for their patience,
kindness, and help.

Many colleagues have also played a mentorship role throughout my study. My
appreciation to them cannot be understated. Tianfan Xue demonstrated to me
the beauty of low-level vision as well as the importance of communication skills in

teamwork. In my first year, Joseph Lim connected me with my senior collaborators

and, since then, has been a strong supporter of my research career. Ilker Yildirim

i

introduced to me the field of Bayesian inference and human perception. Jun-Yan Zhu
brought me into my very first research projects at Tsinghua and Microsoft Research
Asia. I was excited that we were able to work together again since he came to MIT as
a postdoc: as we all know, life is like a cycle.

I deeply appreciate the guidance from my other senior mentors and colleagues,
especially Ted Adelson, Jeannette Bohg, Katie Bouman, Tali Dekel, Nima Fazeli,
Chelsea Finn, Chuang Gan, Nancy Kanwisher, Tejas Kulkarni, Sergey Levine, Wojciech
Matusik, Kevin Murphy, Andrew Owens, Daniel Ritchie, Alberto Rodriguez, Kevin
Smith, Shuran Song, Chen Sun, Tomer Ullman, Donglai Wei, Wenzhen Yuan, and
Yuke Zhu.

What makes academia so appealing is the unique opportunity it offers to work with
the most talented junior colleagues and students. Not surprisingly, many of them have
greatly shaped my research directions in general and contributed most significantly
to this dissertation in particular. I thank Michael Janner for teaching me inverse
graphics and Jiayuan Mao for teaching me program synthesis and natural language
processing, and I appreciate both of them for demonstrating to me how the very best
undergraduate students look like. I also thank Chengkai Zhang and Erika Lu for being
the best research engineers and for bearing with all my immaturity, especially in my
first few years at MIT. Zhoutong Zhang explained to me the connections among the
3D world we live in, the 2D images we see, and the ID sounds we hear; Yunzhu Li
showed me the challenges and importance of building good dynamics models; Xiuming
Zhang has been an all-time encouraging, supportive, and hard-working colleague in
the moonshot research projects we have worked on. Looking back, I realize how lucky
I am to have them as my collaborators.

The dissertation would not have been possible without my many other co-authors:
Anurag Ajay, Hector Basevi, Maria Bauza, Mario Belledonne, Michael Chang, Baian
Chen, Simon Du, Yilun Du, Kevin Ellis, Yasutaka Furukawa, Chi Han, Charles He,
Hao He, Harry Hsu, Yuanming Hu, Chang Huang, Haibin Huang, Zhengjia Huang,
Alina Kloss, Ales Leonardis, Qiujia Li, Quannan Li, Yikai Li, Zhulin Li, Bo Liu, Chen
Liu, Jiahua Liu, Jiancheng Liu, Yunchao Liu, Zhijian Liu, Sidi Lu, Andrew Luo,
Vinson Luo, Jerry Mei, Stefanie Mueller, Miquel Oller, Daniela Rus, Max Siegel, Amir
A. Soltani, Andrew Spielberg, Xingyuan Sun, Russ Tedrake, Yonglong Tian, James
Traer, Shaoxiong Wang, Yifan Wang, Yue Wang, Yunbo Wang, Yunyun Wang, Yichen
Wei, Zheng Wu, Zhenjia Xu, Shunyu Yao, Kexin Yi, Andy Zeng, Hongyi Zhang,
Renqiao Zhang, Yibiao Zhao, and David Zheng. I thank them for their contributions
and for everything they have taught me.

For five years, I have enjoyed the privilege of being part of the MIT Vision Group
and the Computational Cognitive Science (CoCoSci) Group. Kelsey Allen, Yusuf
Aytar, Chris Baker, David Bau, Guha Balakrishnan, Pete Battaglia, Randi Cabezas,

ii

Andres Campero, Lucy Chai, George Chen, Sholei Croom, Adrian Dalca, Julian

Jara Ettinger, Zoya Gavrilov, Tobias Gerstenberg, Luke Hewitt, Aditya Khosla, Max
Kleiman-Weiner, Eliza Kosoy, Dilip Krishnan, Shuang Li, Ruizhi Liao, Yen-Chen Lin,
Wei-Chiu Ma, Hossein Mohabi, Max Nye, Danielle Pace, Adria Recasens, Ardavan

Saeedi, Prafull Sharma, YiChang Shih, Julian Straub, Pedro Tsividis, Carl Vondrick,
Neal Wadhwa, Tongzhou Wang, Yu Wang, Yue Wang, Yang Wu, Jonas Wulff, Vickie

Ye, Hang Zhao, Bolei Zhou, and Daniel Zoran, among others, are wonderful labmates

from whom I learned so much.
I enjoyed spending time with my friends. Thanks to Tianren Liu, Chengtao Li,

Yue Guan, Xue Feng, Chiyuan Zhang, Zhengdong Zhang, Yu Zhang, Xiaoxue Wang,

Peng Wang, Tao Du, Xijia Zheng, Evan Pu, Guowei Zhang, David Qiu, Zi Wang, Dian

Yu, Heng Zuo, and many others, for all the games, parties, and hot pots. I also thank

Liwei Wang, Yin Li, Xiaodi Hou, Xiaolong Wang, Saining Xie, Angjoo Kanazawa,

Dinesh Jayaraman, Deepak Pathak, Yixin Zhu, Boqing Gong, and my friends since

college and high school, Chongxuan Li, Chao Du, Yining Wang, Yi Wu, Weihao Gao,

Linhao Jiang, and Zeyu Zhang, for all the conversations about research and life.

During my job search, I was extremely fortunate to have received guidance from

researchers in various institutions. In addition to those mentioned above, I especially

thank Kostas Daniilidis, Chenfanfu Jiang, Alyosha Efros, Jiantao Jiao, David Fouhey,
Yi Ma, Kris Kitani, Chris Atkeson, Abhinav Gupta, Katerina Fragkiadaki, Zack

Lipton, Srinivasa Narasimhan, Fei Fang, Noah Goodman, Ron Fedkiw, Bo Zhu, Chris

Manning, John Mitchell, Dan Yamins, Tengyu Ma, Qixing Huang, Hao Su, Tom

Griffiths, Sanjeev Arora, Jen Rexford, Jonathan Cohen, Karthik Narasimhan, Tom

Funkhouser, Danqi Chen, Jason Lee, Jim Dicarlo, Roger Levy, Justin Solomon, Phillip

Isola, Song Han, Xiaoou Tang, Sam Gershman, Ramin Zabih, Noah Snavely, Serge

Belongie, Kavita Bala, Yang Yuan, Ali Farhadi, Brian Curless, Dieter Fox, and Steve

Seitz, for their encouragement that helped me go through this stressful process.

The fantastic staff members in EECS, BCS, and CSAIL, especially Federico

Chiavazza, Janet Fischer, Maysoon Hamdiyyah, and Ellie Zucker, as well as The

Infrastructure Group (TIG) at CSAIL, especially Steve Ruggiero and Garrett Wollman,
have made my life at MIT much easier. I thank them for their assistance through

various stages of my PhD.

During my time at MIT, I have been funded by the Edwin S. Webster Fellowship,
industrial fellowships and scholarships from Facebook, Samsung, Nvidia, Adobe, and

Baidu, and research grants from NSF and the Toyota Research Institute. I appreciate

the support of all funding agencies.
Finally, I thank my parents, for their unconditional love.

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

R M,qw 5v mom OW, 0111,01P----- ?lp, IRPR"

To Lujun

Contents

1 Introduction
1.1 Approach: Integrating Learning with Simulation Engines

1.1.1 Perception: Learning with Graphics Engines . . .
1.1.2 Dynamics: Learning with Physics Engines
1.1.3 Reasoning: Learning with Program Executors . .

1.2 Dissertation Structure

I Perception: Learning with Graphics Engines

2 Learning with a Graphics Engine for Sparse Keypoints
2.1 Introduction .
2.2 Related work
2.3 M ethod

2.3.1 3D Skeleton Representation
2.3.2 3D Interpreter Networks . .
2.3.3 Training Strategy

2.4 Evaluation
2.4.1 2D Keypoint Estimation . .
2.4.2 3D Structure and Viewpoint

2.5 Applications
2.6 Discussion

Estimation

3 Learning with a Graphics Engine for Dense Object Shapes
3.1 Introduction .
3.2 Related Work .
3.3 D ataset: Pix3D .

3.3.1 Collecting Image-Shape Pairs
3.3.2 Image-Shape Alignment

3.4 Inverting a Graphics Engine by Modeling Surfaces
3.4.1 2.5D Sketch Estimation
3.4.2 3D Shape Estimation
3.4.3 Reprojection Consistency

3.5 Integrating 3D Shape Priors . 46
3.5.1 Learning Priors with 3D Generative Adversarial Networks .

vii

1
2
3
4
6
6

9

11
12
15
16
17
19
21
21
21
24
29
32

35
35
37
39
40
41
42
43
44
44

46

3.5.2 Integrating Priors into Reconstruction Models
3.6 Generalizable Reconstruction . 52

3.6.1 Single-View Depth Estimator 53
3.6.2 Spherical Map Inpainting Network 54
3.6.3 Voxel Refinement Network . 54
3.6.4 Technical Details . 55

3.7 Experim ents . 56
3.7.1 B aselines . 56
3.7.2 D ata . 57
3.7.3 M etrics . 57
3.7.4 Results on Depth Estimation 58
3.7.5 Reconstructing Novel Objects from Training Classes 59
3.7.6 Reconstructing Objects from Unseen Classes 59

3.8 A nalyses . 60
3.8.1 The Effect of Viewpoints on Generalization 60
3.8.2 Reconstructing Non-Rigid Shapes 61
3.8.3 Reconstructing Highly Regular Shapes 62

3.9 D iscussion . 62

4 Learning with a Graphics Engine for Multi-Object Scenes 63
4.1 Introduction . 64
4.2 Related Work . 66
4.3 Neural Scene De-rendering . 66

4.3.1 Generalized Encoding-Decoding Structure 66
4.3.2 Black-Box Optimization via REINFORCE 68
4.3.3 Network Structure . 69

4.4 Extension to Natural Scenes . 70
4.4.1 3D Scene De-rendering Networks 71
4.4.2 Implementation Details . 75

4.5 Experim ents . 75
4.5.1 3D-Aware Image Editing . 76
4.5.2 Evaluation on the geometric representation. 78

4.6 A pplications . 80
4.7 D iscussion . 82

II Dynamics: Learning with Physics Engines 83

5 Learning with a Physics Engine 85
5.1 Introduction . 85
5.2 The Physics 101 Dataset . 88

5.2.1 Scenarios . 88
5.2.2 Building Physics 101 . 89

5.3 Galileo: A Physical Object Model . 91
5.4 Sim ulations . 93

viii

49

5.5 Bootstrapping as Efficient Perception in Static Scenes 94
5.6 Experiments . 95

5.6.1 Outcome Prediction . 95
5.6.2 Mass Prediction . 97
5.6.3 "Will It Move" Prediction . 97

5.7 D iscussion . 98

6 Learning with an Integrated Physics + Graphics Engine 99
6.1 Introduction . 99
6.2 Related Work . 101
6.3 Visual De-animation . 102

6.3.1 Overview . 103
6.3.2 Physical Object and Scene Modeling 104
6.3.3 Physical Simulation and Prediction 104
6.3.4 Re-rendering with a Graphics Engine 105

6.4 Evaluation . 105
6.4.1 Billiard Tables: A Motivating Example 105
6.4.2 Billiard Tables: Transferring to Real Videos 107
6.4.3 The Blocks World . 108

6.5 Extension to Heterogeneous Objects 110
6.5.1 Problem Statement . 110
6.5.2 Approach . 112
6.5.3 Decomposing Block Towers 115

6.6 Object-Oriented Prediction and Planning 117
6.6.1 M odel . 118
6.6.2 Building Towers . 121

6.7 Discussion . 125

7 Learning Physics and Graphics Engines Themselves 127
7.1 Introduction . 128
7.2 Related Work . 130
7.3 Formulation . 131

7.3.1 Problem Definition . 132
7.3.2 An Illustrative Example . 133
7.3.3 Conditional Variational Autoencoder 134

7.4 Learning Visual Dynamics . 137
7.4.1 Layered Motion Representations and Cross Convolutional Nets 138
7.4.2 Network Structure . 139

7.5 Evaluations . 140
7.5.1 Movement of 2D Shapes . 140
7.5.2 Movement of Video Game Sprites 142
7.5.3 Movement in Real Videos Captured in the Wild 143

7.6 A nalyses . 145
7.6.1 Visualizing Learned Layers . 145
7.6.2 The Sparsity of the Latent Representation 146

ix

7.6.3 Varying the Size of the Latent Representation
7.6.4 Visualizing the Latent Representation
7.6.5 Handling Disocclusions

7.7 A pplications .
7.7.1 Zero-Shot Visual Analogy-Making
7.7.2 Extrapolation

7.8 Extending to Hierarchical Structure
7.8.1 Learning Parts, Structure, and Dynamics . . .
7.8.2 Experiments

7.9 D iscussion .

III Reasoning: Learning with Program Executors

8 Learning to Discover Concepts from Images and Language
8.1 Introduction .
8.2 Related W ork .
8.3 Neuro-Symbolic Visual Question Answering (NS-VQA) . . .

8.3.1 M odel Details .
8.3.2 Training Paradigm
8.3.3 Data-Efficient, Interpretable Reasoning

8.4 Neuro-Symbolic Concept Learner
8.4.1 M odel Details .
8.4.2 Training Paradigm

8.5 Experim ents .
8.5.1 Visual Concept Learning
8.5.2 Data-Efficient and Interpretable Visual Reasoning
8.5.3 Generalizing to New Attributes and Compositions
8.5.4 Generalizing to New Scenes and Questions
8.5.5 Generalizing to a New Program Domain
8.5.6 Generalizing to Natural Images and Language

8.6 D iscussion .

9 Learning to Organize Concepts into 3D Shape Programs
9.1 Introduction .
9.2 Related Work
9.3 3D Shape Programs
9.4 Inferring and Executing 3D Shape Programs . .

9.4.1 Program Generator
9.4.2 Neural Program Executor
9.4.3 Guided Adaptation

9.5 Experim ents .
9.5.1 Evaluation on Synthetic Data
9.5.2 Guided Adaptation on ShapeNet
9.5.3 Stability and Connectivity Measurement

x

. 148

. 149

. 149

. 150

. 150

. 151

. 151

. 153

. 155

. 157

159

161
162
163
165
166
167
168
170
171
173
174
174
175
177
178
179
180
181

183
. 183
. 185
. 186
. 187
. 188
. 189
. 190
. 191
. 191
. 191
. 194

9.5.4 Generalization on Other Shapes 195
9.5.5 Shape Completion and Smoothing by Programs 195

9.6 D iscussion . 196

10 Learning Scene Programs 199
10.1 Introduction . 199
10.2 Related Work . 201
10.3 Program Synthesis for Synthetic Scenes 202
10.4 Program-Guided Image Manipulators 205

10.4.1 Repeated Object Detection 205
10.4.2 Program Synthesizer . 205
10.4.3 Neural Painting Networks . 208

10.5 Experiments and Applications . 210
10.5.1 D ataset . 211
10.5.2 B aselines . 211
10.5.3 Inpainting . 212
10.5.4 Extrapolation . 213
10.5.5 Image Regularity Editing . 215
10.5.6 Attribute Regularity . 215

10.6 D iscussion . 216

11 Conclusion 217

A Data and Model Details for Generalizable Reconstruction 221
A.1 Data Preparation . 221
A.2 Model Details . 222

A.2.1 Single-View Depth Estimator 222
A.2.2 Spherical Map Inpainting Network 226
A.2.3 Voxel Refinement Network . 226

B Details and Results for Neuro-Symbolic Concept Learners 229
B.1 The CLEVR Domain-Specific Language 229
B.2 Semantic Parsing . 229
B.3 Program Execution . 233
B.4 Optimization of the Semantic Parser 234
B.5 Curriculum Learning Setup . 236
B.6 Ablation Study . 237

B.6.1 Semantic Parsing Accuracy 237
B.6.2 Impacts of the ImageNet Pre-training 238
B.6.3 Data Efficiency and Object-Based Representations 238

B.7 Extending to Other Scene and Language Domains 239
B.7.1 Minecraft Dataset . 239
B.7.2 VQS Dataset . 240

B.8 Visualization of Execution Traces and Visual Concepts 242

xi

C Details and Results for 3D Shape Programs
C.1 Defined Program s
C.2 Architecture Details .
C.3 Synthetic Templates vs. ShapeNet
C.4 Additional Results .

D Details and Results for Program-Guided Image Manipulators
D.1 Implementation Details

D.1.1 Repeated Object Detection
D.1.2 Adaptive Network Depth for PatchGAN
D.1.3 Extrapolation as Recurrent Inpainting .
D.1.4 Detailed Network Specifications and Training

D.2 Ablation Studies
D.2.1 With vs. Without Source Patches
D.2.2 With vs. Without Recurrent Inpainting . . .
D.2.3 With vs. Without Considering Attributes

D.3 More Experiments and Results
D .3.1 Inpainting
D.3.2 Extrapolation
D.3.3 Regularity Editing
D.3.4 Failure Cases
D.3.5 Baseline Finetuning

D.4 Detailed Generator Architecture

Parameters

xii

249
249
249
251
251

259
. 2 5 9

259
260
261
261
262
262
263
263
264
264
264
266
267
267
268

IMM111111NIM NIMMIN IFIRM ""Ri"

List of Figures

1-1 Physical scene understanding . 2
1-2 Learning to see shapes, texture, and physics 3
1-3 Physical models for future prediction and control 5

2-1 Problem setup: 3D skeleton recovery 12
2-2 Overview of 3D interpreter networks 13
2-3 Skeleton model and base shapes . 17
2-4 Architecture of 3D interpreter networks 19
2-5 Results on human keypoint estimation 22
2-6 Qualitative results on 2D keypoint estimation 23
2-7 Comparing with an analytical solution on synthetic heatmaps 25
2-8 Evaluating the training paradigm on chairs from the IKEA dataset 26
2-9 Evaluation on the IKEA dataset . 27
2-10 Qualitative results on the Keypoint-5, IKEA, and SUN databases . . 28
2-11 Car structure estimation on the PASCAL 3D+ dataset 29
2-12 Qualitative results on chairs using networks trained on sofas or beds . 29
2-13 More estimated 3D skeletons for chairs 30
2-14 More estimated 3D skeletons for sofas 30
2-15 Visualization of 3D reconstruction results 31
2-16 Retrieval results for sofas and chairs 31
2-17 Object graph visualization based on learned object representations . . 32

3-1 The task of generalizable single-image 3D reconstruction 38
3-2 The construction of Pix3D . 40
3-3 Sample images and shapes in Pix3D 43
3-4 The architecture of MarrNet . 44
3-5 Reprojection consistency between 2.5D sketches and 3D shape 45
3-6 The generator in 3D-GAN . 47
3-7 Shapes generated by 3D-GAN . 48
3-8 High-resolution shapes . 49
3-9 The architecture of ShapeHD . 49
3-10 Reconstruction results of ShapeHD on the PASCAL 3D+ dataset . . 50
3-11 Reconstruction results of ShapeHD on the Pix3D dataset 51
3-12 Our model for generalizable single-image 3D reconstruction 53
3-13 The generalization of our spherical inpainting module 54
3-14 Results on depth prediction . 58

xiii

3-15
3-16
3-17
3-18
3-19

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15

Sample videos from the Physics 101 dataset
Illustrations of the scenarios in the Physics 101 dataset
The set of objects used in the Physics 101 dataset
The Galileo model and the Physics 101 dataset
Sim ulation results .
Log-likelihood traces .
Mean errors in the number of pixels
Heat maps of future predictions
Accuracy on mass prediction and "will it move" prediction . .

The task of visual de-animation
The visual de-animation model
The three settings of our synthetic billiard videos
Qualitative results on the billiard videos
Sample results on web videos of billiard games
Results on the blocks dataset
Predicting hypothetical scenarios and engaging with the scene
Primitive decomposition and physical primitive decomposition
Challenges of inferring physical parameters
Overview of the PPD model
Results on the block dataset
Three paradigms of physical understanding tasks
Qualitative results on building towers using planning
Visualization of proposals and planning
Heatmaps showing sampled action scores

xiv

. . . 59

. . . 60

. . . 61

. . . 61

. . . 61

Reconstruction results of GenRe on the ShapeNet dataset . .
Reconstruction results of GenRe on the Pix3D dataset . . .
Reconstruction errors for different input viewpoints
Single-view completion of non-rigid shapes from depth maps
Single-view completion of primitives from depth maps

Holistic image understanding
Generalized encoding-decoding structure
An image and part of its scene XML
The role of an image-space loss
The neural scene de-rendering framework
Overview of 3D-SDN .
3D geometric inference in 3D-SDN
Re-projection loss and the role of free-form deformation . . .
Example user editing results on Virtual KITTI
Example user editing results on Cityscapes
Comparing 3D-SDN with pix2pixHD
Results on image captioning
Results on visual analogy-making

. 65

. 67

. 67

. 68

. 70

. 71

. 72

. 73

. 77

. 78

. 79

. 80

. 81

88
89
90
91
93
95
96
96
97

101
103
105
106
107
109
110

.. 111
112
113
115
118
122
123
124

6-16 02P2 being used to plan for the alternate goals

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8

The ill-posedness of future prediction
An illustrative example on future prediction
Architecture of our future prediction network
Results on the Shapes dataset
Evaluating the estimation motion distribution
Results on the Sprites dataset
Results on the Exercise dataset
Sampling results on the PennAction dataset
Visualization of learned layers
Statistics of latent vectors
Statistics of latent vectors using different values of A
Ablation study on the size of latent vectors
Visualizing the effect of varying individual dimensions . . .
Results on handling disocclusions
Results on visual analogy-making
Results on video sequence generation
Hierarchical motion decomposition
Overview of the PSD model
Results on segmentation and structure learning in Atari . .
Results on segmentation and structure learning of humans
Results on segmentation and structure learning of humans
grounds .

Human visual concept learning
Overview of The NS-VQA model
Data-efficiency, accuracy, and interpretability of NS-VQA
Qualitative results of NS-VQA on the CLEVR dataset .
The role of neuro-symbolic reasoning
Attributes as neural operators
The curriculum and the neuro-symbolic inference model . .
Sample data from the four splits
Demo from the VQS dataset
Concepts learned from the VQS dataset

A 3D shape can be represented by a program
Architecture of the 3D shape program generator
Architecture of the program executor
Overview of inference and execution
Inferred programs for ShapeNet chairs and tables
Results on ShapeNet objects from unseen categories
3D reconstruction results on the Pix3D dataset
The effect of individual dimensions in shape generation . .

10-1 Overview of the program-guided image manipulator (PG-IM) . 200

xv

. 129

. 132

. 138

. 141

. 142

. 142

. 144

. 144

. 145

. 146

. 148

. 148

. 149

. 150

. 150

. 151

. 152

. 153

. 155

. 156
with back-
. 156

. 163

. 165

. 169
. 169
. 171
. 171
. 173
. 178
. 180
. 180

. 184

. 188

. 190

. 190

. 193

. 195

. 195

. 196

. 124

10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9

B-1
B-2
B-3
B-4
B-5
B-6
B-7

C-1
C-2
C-3
C-4
C-5
C-6
C-7
C-8

D-1
D-2
D-3
D-4
D-5
D-6
D-7
D-8

Visual program synthesis for synthetic scenes
Illustrative programs inferred using our model
The three-step inference of an image program
Architecture of a neural painting network
Corrupted input images and inpainting results
Results on image extrapolation
Automated and semantic-aware irregularity exaggeration
Results on attribute reasoning

Sample data from the Minecraft dataset
An example image from the VQS dataset
Exemplar execution trace on the CLEVR dataset
Exemplar execution trace on the Minecraft dataset . . .
Exemplar execution trace on the VQS dataset
Concepts learned on the CLEVR dataset
Concepts learned on the Minecraft dataset

Templates and results on the ShapeNet dataset
Generated shapes and programs for ShapeNet chairs
Generated shapes and programs for ShapeNet chairs
Generated shapes and programs for ShapeNet tables
Generated shapes and programs for ShapeNet benches . . .
Generated shapes and programs for ShapeNet couches
Generated shapes and programs for ShapeNet cabinets . . .
Generated shapes and programs for ShapeNet beds

Inpainting with vs. without the source patches
Extrapolation with and without recurrent inpainting
Inpainting with vs. without considering object attributes
Additional inpainting results by PG-IM and the baselines
Additional extrapolation results by PG-IM and the baselines
Automated and semantic-aware irregularity exaggeration . .
A failure case for inpainting
Comparing with the finetuned GatedConv model

251
252
253
254
255
256
257
257

. 262

. 263

. 264

. 265

. 266

. 267

. 267

. 268

xvi

. 203

. 206

. 207

. 209

. 213

. 214

. 215

. 216

. 240

. 241

. 243

. 244

. 245

. 246

. 247

List of Tables

2.1 Keypoint estimation results on the CUB-200-2011 dataset 23
2.2 Keypoint estimation results on the Keypoint-5 dataset 24
2.3 Joint detection and pose estimation on the PASCAL 3D+ dataset . . 27

3.1 Reconstruction errors of ShapeHD on the PASCAL 3D+ dataset . . . 52
3.2 Reconstruction errors of ShapeHD on the Pix3D dataset 52
3.3 Reconstruction errors of GenRe on the ShapeNet dataset 58
3.4 Reconstruction errors of GenRe on the Pix3D dataset 60

4.1 Results on Virtual KITTI editing benchmark 78
4.2 Performance of 3D attributes prediction on Virtual KITTI 79

5.1 Errors on mass estimation . 95
5.2 Correlation between predictions . 97

6.1 Materials and their real-world density values 115
6.2 Results of physical parameter estimation on block towers 116
6.3 Accuracy (%) of block tower builds 123

7.1 Statistics of the motion vector . 146
7.2 Mean squared pixel error on analogy-making 150
7.3 Results of object segmentation on the human exercise dataset 157

8.1 Comparison with other frameworks on the CLEVR dataset 164
8.2 Quantitative results of NS-VQA on the CLEVR dataset 168
8.3 Diagnostic evaluation of visual concepts 175
8.4 Accuracy on visual question answering 176
8.5 Results on data efficiency . 177
8.6 Results on combinatorial generalization 178
8.7 Results on image-caption retrieval . 179
8.8 Results on the VQS dataset . 180

9.1 The domain specific language (DSL) for 3D shapes 187
9.2 Shape reconstruction results on ShapeNet 192
9.3 Measurement of stability and connectivity 194
9.4 Shape reconstruction results on unseen categories 194

10.1 The DSL for programs on synthetic scenes 203

xvii

10.2 The domain-specific language (DSL) for image regularities 206
10.3 Comparing with baselines for image inpainting 212

B.1 Operations in the DSL for the CLEVR dataset 230
B.2 Type system of the DSL for the CLEVR dataset 231
B.3 A step-by-step running example of the recursive parsing procedure . . 233
B.4 All operations in the DSL for the CLEVR dataset 235
B.5 Results on the Minecraft dataset . 240

C.1 The list of semantics and shapes . 250

xviii

Chapter 1

Introduction

Human intelligence is rich and flexible. From a quick glance, we effortlessly
recognize the 3D geometry and texture of objects within the scene, reason about
their relation, and when they move, track and predict their trajectories (Figure 1-1A).
Stacking blocks, picking up fruits-we also plan and interact with scenes and objects
in many ways.

The goal of the research presented in this dissertation is to build machines that see,
interact with, and reason about the physical world just like humans. This problem,
which we call physical scene understanding, involves three key topics that bridge
research in computer science, artificial intelligence (Al), robotics, cognitive science,
and neuroscience:

• Perception (Figure 1-iB): How can structured, physical object and scene
representations arise from raw, multi-modal sensory input (e.g., videos, sound,
tactile signals)?

" Physics (Figure 1-1C): How can we build dynamics models that quickly adapt
to complex, stochastic real-world scenarios, and how can they contribute to
planning and motor control? Modeling physical interactions helps robots to
build bridges from a single image and to play challenging games such as Jenga.

" Reasoning (Figure 1-1D): How can physical models integrate structured, often
symbolic, priors such as symmetry and repetition, and use them for commonsense
reasoning?

Physical scene understanding is challenging, because it requires a holistic inter-
pretation of scenes and objects, including their 3D geometry, physics, functionality,
and modes of interactions, beyond the scope of a single discipline such as computer
vision. Structured priors and representations of the physical world are essential: we
need proper representations and learning paradigms to build data-efficient, flexible,
and generalizable intelligent systems that understand physical scenes.

1

Reasoning A B r D

Physics

State Wt - State (t+1) ~-n'
Perception cf.)

Data t) Data (t+1)

Figure 1-1: Physical scene understanding involves perception, building physical object repre-
sentations from multi-modal data, (II) physical interaction, capturing scene dynamics for planning
and control, and (III) commonsense reasoning, understanding high-level structured priors in
objects and scenes.

Despite great advances in computer vision, deep learning, and other AI tools in the

past decade, areas where they are most successful, such as image classification, are still
about pattern recognition with abundant training data. We are still far from having
machines with human-level scene understanding: machines that can understand the
world as richly, as quickly, as flexibly, and as robustly as humans do.

In this dissertation, we integrate approaches to representation, inference, learning,
and generation that have not been combined before. We adopt new AI paradigms
that combine the power of deep networks for pattern recognition, simulation engines
for structure and generality, symbolic languages for knowledge representation and
abstraction, and causal and counterfactual reasoning in generative models for explain-
ability, imagination, and planning. Building upon it, we develop novel approaches for
key problems in perception, dynamics modeling, and cognitive reasoning.

1.1 Approach: Integrating Learning with Simulation Engines

My approach to constructing representations of the physical world is to integrate

bottom-up recognition models, deep networks, and efficient inference algorithms, with
top-down, structured graphical models, simulation engines, and probabilistic programs.

In my research, I develop and extend techniques in these areas (e.g., proposing new

deep networks and physical simulators); I further explore innovative ways to combine

them, building upon studies across vision, learning, graphics, and robotics. I believe

that only by exploiting knowledge from all these areas, may we build machines that

have human-like, physical understanding of complex, real-world scenes.

The approach presented in this dissertation is also highly interdisciplinary: we
build computational models with inspiration from human cognition, developmental

psychology, neuroscience, robotics, and computational linguistics; we also explore how

these models can in turn assist in solving tasks in these fields.

2

A B

Figure 1-2: Learning to see shapes, texture, and physics. A. Reconstructing 3D shapes from
a single color image via 2.5D sketches [Wu et al., 2017c, 2018b, Zhang et al., 2018b]. B. Generative
modeling of 3D shapes and 2D images via a disentangled representation for object geometry, viewpoint,
and texture [Wu et al., 2016c, Zhu et al., 2018b]. C. 3D-aware representations for objects and scenes
[Wu et al., 2017b, Yao et al., 2018]. D. Part-based object representations for its geometry and physics
[Liu et al., 2018b, Wu et al., 2016a, 2017a, 2015a].

1.1.1 Perception: Learning with Graphics Engines

Motivated by human perception-rich, complex, generalizable, learning much from
little-my research on perception has been centered on building structured, object-
based models to characterize the appearance and physics of daily objects. These
models integrate bottom-up deep recognition models with top-down simulation engines;
they learn by perceiving and explaining the physical world just like humans.

Seeing shapes and texture. Drawing inspiration from human perception and
computer graphics, I have built object appearance model that learns to perceive object
shape and texture from raw visual observations, and to synthesize new shapes and
images. The core object representation builds upon a coherent understanding of its
intrinsic properties such as shape, surface, and texture, and its extrinsic properties
such as pose.

My research covers various components of the appearance model. On bottom-up
recognition, I have developed a general pipeline for 3D shape reconstruction from a
single color image [Wu et al., 2017c, 2018a] via modeling intrinsic images-depth,
surface normals, and reflectance maps [Janner et al., 2017] (Figure 1-2A). My research
is inspired by the classic research on multi-stage human visual perception [Marr, 1982],
and has been extended to integrating learned priors of 3D shapes (i.e., 'what shapes
look like?') for more realistic 3D reconstructions [Wu et al., 2018b], and to tackling
cases where the object in the image is not from the training categories [Zhang et al.,
2018b].

Complementary to these bottom-up recognition models, I have also explored learn-
ing top-down graphics engines directly. I proposed 3D generative adversarial networks,
first applying generative-adversarial learning to 3D shapes for unconditional shape
synthesis [Wu et al., 2016c]. We have later extended the model as visual object

networks [Zhu et al., 2018b], which synthesize object shape and texture simultaneously,
enforcing various consistencies with a distributed representation for object shape,
2.5D sketches, viewpoint, and texture (Figure 1-2B). We have generalized our models
to scenes [Wu et al., 2017b, Yao et al., 2018], recovering structured scene represen-

3

tations that not only capture object shape and texture, but enable 3D-aware scene
manipulations (Figure 1-2C).

Seeing physics. Beyond object appearance, intuition of object physics assists

humans in scene understanding [Battaglia et al., 2013]. I have developed computational

models that learn to infer object physics directly from visual observations [Wu et al.,
2016a, 2015a]. My research on visual intuitive physics is the first in the computer
vision community, and has since then inspired many researchers to follow up on the

methods [Fragkiadaki et al., 2016, Mottaghi et al., 2016a].
The Galileo model [Wu et al., 2015a] marries a physics engine with deep recognition

nets to infer physical object properties (e.g., mass, friction). With an embedded
physical simulator, the Galileo model discovers physical properties simply by watching
objects move in unlabeled videos; it also predicts how they interact based on the
inferred physical properties. The model was tested on a real-world video dataset,
Physics 101 [Wu et al., 2016a], of 101 objects interacting in various physical events.

I have also worked on integrating geometry and physics perception (Figure 1-2D),
with two primary results as "physical primitive decomposition" (PPD) [Liu et al.,
2018b] and "visual de-animation" (VDA) [Wu et al., 2017a]. In PPD, we decompose an
object into parts with distinct geometry and physics, by learning to explain both the
object's appearance and its behaviors in physical events; in VDA, our model learns to
jointly infer physical world states and to simulate scene dynamics, integrating both a
physics engine and a graphics engine. Our recent work has extended these models to
complex indoor scenes, exploiting stability for more accurate 3D scene parsing [Du
et al., 2018].

Multi-modal perception. Humans see, hear, and feel, perceiving the world through
fusing multi-sensory signals. These signals play complementary roles: we see object

shape and texture through vision, hear their material through sound, and feel their
surface details through touch. In computer science, however, most recognition models
and simulation engines have primarily focused on visual data. Based on techniques
from the graphics community, I have been building generative audio-visual engines
and using them for cross-modal perception [Zhang et al., 2017b,c]: how much do we
know about objects from videos, and how much from audio? Beyond auditory signals,
our recent work has also explored integrating tactile signals with vision for better
shape perception and reconstruction [Wang et al., 2018b].

1.1.2 Dynamics: Learning with Physics Engines

Beyond learning object-centric models from raw observations by inverting simula-
tion engines, my research also includes learning to approximate simulation engines
(forward models) themselves. I have explored building physical models in various

4

Figure 1-3: Physical models for future prediction and control. A. Modeling visual dynamics

allows us to generate multiple possible future frames from a single image [Xu et al., 2019, Xue et al.,

2016]. B. We have developed a hybrid model that captures object-based dynamics by integrating

analytical models and neural nets. It assists the robot in accomplishing a highly underactuated task:

pushing the right disk to the target (green) by only interacting with the left disk [Ajay et al., 2019,

2018]. C. D. Particle-based dynamics models support controlling soft robots [Hu et al., 2019] and

manipulating deformable objects and liquids [Li et al., 2019b,c].

forms-image-based, object-based, and particle-based; analytical, neural, and hybrid-

and have demonstrated their power in challenging, highly underactuated control tasks

(Figure 1-3).

Compared with off-the-shelf simulators, a learned dynamics simulator flexibly

adapts to novel environments and captures the stochasticity in scene dynamics. Our

visual dynamics model demonstrates this in the pixel domain, where it learns to

synthesize multiple possible future frames from a single color image by automatically

discovering independent movable parts and their motion distributions [Xue et al.,

2016] (Figure 1-3A). We have later extended the model to additionally capture the

hierarchical structure among object parts [Xu et al., 2019].

Modeling dynamics directly in the pixel space is universal but challenging due

to the intricate interplay between physics and graphics; an alternative is to separate

perception from dynamics modeling, and learn dynamics from object states. Our

recent work along this line has shown that a model that learns to approximate object

dynamics can be useful for planning [Janner et al., 20191, generalize to scenarios where

only partial observations are available [Li et al., 2019c], and discover physical object

properties without supervision [Zheng et al., 2018]. We have further extended our

model to particle-based representations, so that it can characterize the dynamics of

soft robots [Hu et al., 2019] (Figure 1-3C) and of scenes with complex interactions

among rigid bodies, deformable shapes, and fluids [Li et al., 2019b] (Figure 1-3D).

We have also explored the idea of learning a hybrid dynamics model, augmenting

analytical physics engines with neural dynamics models [Ajay et al., 2018] (Figure 1-

3B). Such a hybrid system achieves the best of both worlds: it performs better, captures

uncertainty in data, learns efficiently from limited annotations, and generalizes to

novel shapes and materials.

These dynamics models can be used in various control tasks: they help to solve

highly underactuated control problems (pushing disk A, which in turn pushes disk

5

I

B to the target position) [Ajay et al., 2019], to control and co-design soft robots
[Hu et al., 2019], to manipulate fluids and rigid bodies on a Kuka robot [Li et al.,
2019b], and to interact and play games such as Jenga that involve complex frictional
micro-interactions [Fazeli et al., 2019].

1.1.3 Reasoning: Learning with Program Executors

The physical world is rich but structured: natural objects and scenes are composi-
tional (scene are made of objects which, in turn, are made of parts); they often have
program-like structure (objects are symmetric and made of evenly spaced repetitive
parts). I have been exploring ways to bridge structured, often symbolic, priors into
powerful deep recognition models. Beyond perception models that invert simulation
engines, and physical dynamics models that approximate simulation engines them-
selves, we move one step further to learn the representation priors these simulation
engines have-why they represent the world in the way they currently are.

A test of these neuro-symbolic representations is how well they support solving var-
ious reasoning tasks such as analogy making and question answering. Our recent work
demonstrated that, when combined with deep visual perception modules, a symbolic
reasoning system achieves impressive performance on visual reasoning benchmarks [Yi
et al., 2018], outperforming end-to-end trained neural models. We have also extended
it to jointly learn visual concepts (e.g., colors, shapes) and their correspondence with
words from natural supervision (question-answer pairs) via curriculum learning [Mao
et al., 2019a], without human annotations.

Beyond static images, we've integrated neuro-symbolic representations with learned
object-based dynamics models for temporal and casual reasoning on videos. On our
newly proposed video reasoning benchmark, our model performs significantly better
in answering all four types of questions: descriptive (e.g., 'what color'), explanatory
('what's responsible for'), predictive ('what will happen next'), and counterfactual
('what if').

Symbolic structure learning is closely coupled with program synthesis. In particular,
our recent work has made progress on the problem of inferring programs as a novel
representation for shapes [Tian et al., 2019] and scenes [Liu et al., 2019]. This marks
the start of our exploration in wiring highly structured, hierarchical priors into learning
representations for physical scene understanding.

1.2 Dissertation Structure

This dissertation consists of three parts, exploring the integration of machine
learning with simulation engines in three distinctive but deeply connected domains:
perception, dynamics modeling, and cognitive reasoning.

6

Part I is about perception-how we build vision systems by connecting learning with
graphics engines. We demonstrate the generality and flexibility of our approach by
working with multiple graphics engines of distinctive features.

In Chapter 2, we start with a simplified graphics engine that projects sparse 3D
keypoints into 2D, and present a learning system that infers 3D object skeleton from
a single image by inverting the engine. This chapter was previously published as Wu
et al. [2016b, 2018a].

In Chapter 3, we extend the model to work with dense 3D-to-2D projection, so
that the model learns to infer dense 3D object shape instead. This chapter is primarily
based on Zhang et al. [2018b] and also includes materials from Wu et al. [2016c, 2017c,
2018b], Sun et al. [2018b].

In Chapter 4, beyond single objects, we further extend the model to work with
graphics engines that handle multi-object scenes. This chapter is primarily based on
Wu et al. [2017b] and also includes materials from Yao et al. [2018].

Part II presents results on dynamics modeling-after seeing objects, the computa-
tional model should also be able to predict how they will move. The main approach is
to integrate learning with another type of simulators-physics engines.

In Chapter 5, we demonstrate how a learning system can infer physical object
properties, such as mass and friction, by having a physics engine in the loop. This
chapter is primarily based on Wu et al. [2015a] and also includes materials from Wu
et al. [2016a].

In Chapter 6, we revisit graphics engines-the subject of Part I, and present a
novel model that learns to see objects' visual and physical properties by working
with both physics and graphics engines. This chapter is primarily based on Wu et al.
[2017a] and also includes materials from Liu et al. [2018b1], Janner et al. [2019].

In Chapter 7, we present a model that learns not only to use simulators, but to
approximate graphics and physics engines themselves. Compared with off-the-shelf
simulators, learned models can bring additional features such as stochasticity. This
chapter is primarily based on Xue et al. [2019, 2016] and also includes materials from
Xu et al. [2019].

Part III includes contributions to high-level cognitive reasoning, where we integrate
learning with program -execution engines. We also draw connections to various models
introduced in Part I and Part II.

In Chapter 8, we introduce a neuro-symbolic reasoning model that simultaneously
learns visual concepts and words from minimally-annotated images and language.
Here, instead of learning to infer the attributes given by simulators, such as shape or
mass, we aim to discover attributes themselves. This chapter is primarily based on
Mao et al. [2019a] and also includes materials from Yi et al. [2018].

7

In Chapter 9, building upon entry-level visual concepts (e.g., a red cylinder), we
learn to compose them into complex object shapes. Our approach is based on what
we introduced in Part I and Part II: we use learning to simultaneously invert and
approximate a simulation engine, which, this time, is the shape program executor.
This chapter was previously published as Tian et al. [20191.

In Chapter 10, we further extend the model so that it learns not only to compose
primitives into object shapes, but to automatically discover program-like regularities in
natural images, and to exploit them for image manipulation. This chapter is primarily
based on Mao et al. [2019b] and also includes materials from Liu et al. [2019].

We conclude and discuss future directions in Chapter 11.

8

RIN, R 011

Part I

Perception: Learning with Graphics Engines

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

-MNF,pl"lp, R

Chapter 2

Learning with a Graphics Engine for Sparse Keypoints

We begin our journey by looking into the problem of 3D perception. Understanding
3D object structure from a single image is an important but challenging task in
computer vision, mostly due to the lack of 3D object annotations to real images.
Previous research tackled this problem by either searching for a 3D shape that best
explains 2D annotations, or training purely on synthetic data with ground truth 3D
information.

In this chapter, we propose 3D INterpreter Networks (3D-INN), an end-to-end
trainable framework that sequentially estimates 2D keypoint heatmaps and 3D object
skeletons and poses. Our system learns from both 2D-annotated real images and
synthetic 3D data. This is made possible mainly by two technical innovations. First,
heatmaps of 2D keypoints serve as an intermediate representation to connect real
and synthetic data. 3D-INN is trained on real images to estimate 2D keypoint
heatmaps from an input image; it then predicts 3D object structure from heatmaps
using knowledge learned from synthetic 3D shapes. By doing so, 3D-INN benefits
from the variation and abundance of synthetic 3D objects, without suffering from
the domain difference between real and synthesized images, often due to imperfect
rendering. Second, we incorporate a simplified graphics engine, a differentiable, 3D-to-
2D Projection Layer, mapping estimated 3D structure back to 2D. During training, it
ensures 3D-INN to predict 3D structure whose projection is consistent with the 2D
annotations to real images.

Experiments show that the proposed system performs well on both 2D keypoint
estimation and 3D structure recovery. We also demonstrate that the recovered 3D
information has wide vision applications, such as image retrieval.

This chapter was previously published as Wiu et al. [2016b, 2018a]. Tianfan Xue,
in particular, contributed significantly to the materials presented in this chapter.

11

Figure 2-1: Problem setup: 3D skeleton recovery. Given an image of a chair, we are interested
in its intrinsic properties such as its height, leg length, and seat width, and extrinsic properties such
as its pose.

2.1 Introduction

Deep networks have achieved impressive performance on image recognition [Rus-
sakovsky et al., 2015]. Nonetheless, for any visual system to parse objects in the real
world, it needs not only to assign category labels to objects, but also to interpret their
intra-class variation. Figure 2-1 shows an example: for a chair, we are interested in its
intrinsic properties such as its style, height, leg length, and seat width, and extrinsic
properties such as its pose.

Our goal is to recover these object properties from a single image by jointly
estimating the object's 3D wireframe and the viewpoint. We choose to use a single
image as input primarily for three reasons. First, this problem has great scientific
value: humans can easily recognize 3D structure from a single image, and we want
to build machines that replicate such an ability. Second, by starting with a single
image, instead of multi-view images or videos, our model can be directly applied to
images taken in the wild, e.g., from the web, and can cluster them based on their
structure or pose. This offers extensive practical usages: social media and e-commerce
companies can better understand and analyze user-uploaded data, and household
robots can efficiently interact with objects after modeling them in 3D. Third, using a
single image as input enables online inference: for moving objects like cars, the system
can reconstruct their geometry and viewpoint on the fly. This is crucial for real-time
applications such as autonomous driving.

We represent an object via a 3D skeleton [Torresani et al., 2003] (Figure 2-2c),
instead of a 3D mesh or a depth map [Dosovitskiy et al., 2015, Aubry et al., 2014,
Prasad et al., 2010, Kar et al., 2015, Su et al., 2014, Vicente et al., 2014, Huang et al.,
2015], because skeletons are simpler and preserve the structural properties that we are
interested in. We refer readers to Section 2.6 for detailed discussions on our design
choices. We assume that a 3D skeleton consists of keypoints and the connections

12

(Ill) Trained on real images

(e) Labeled 2D keypoints (d) Projection

(Pre-trained on (11) Pre-trained onlae
real images synthetic shapes

(a) Input image (b) Heatmaps of 2D keypoints (c) Estimated 3D skeleton

Figure 2-2: Overview of 3D INterpreter Networks (3D-INN). For an image (a) with a
category-level label (sofa), the system first estimates its 2D keypoint heatmaps (b), and then recovers
the 3D skeleton of the object (c). During training, through the projection layer (d), it also enforces
the consistency between annotated 2D keypoint locations (e) and projected 2D locations of estimated
3D keypoints.

between them, and manually pre-define the skeleton model for each object category

(e.g., chair, sofa, and car). Then, our task is to estimate 3D keypoint locations of an
object from a single RGB image.

The main challenge of single image 3D estimation is the difficulty in obtaining
training images with ground truth 3D structure, as manually annotating 3D object
structure in real images is labor-intensive and often inaccurate. Previous methods
tackled this problem mostly in two ways. One is to directly solve for a 3D skeleton
from estimated 2D keypoint locations by minimizing its reprojection error [Zhou
et al., 2015], without any 3D annotations. Most algorithms in this category do not
encode 3D shape priors within the model, and thus they are not robust to inaccurate
keypoint estimation, as shown in experiments in Section 2.4. The other is to train on
synthetically rendered images of 3D objects [Li et al., 2015, Su et al., 2015]; in synthetic
data, complete 3D structure is available. But the statistics of synthesized images
are often different from those of real images, due to changes in lighting, occlusion,
and shape details. This makes it hard for models trained only on synthetic data to
generalize well to real images.

In this chapter, we propose 3D INterpreter Networks (3D-INN), an end-to-end
trainable framework for 3D skeleton and viewpoint estimation. In contrast to prior art,
our model learns from both 2D-labeled real images and synthetic 3D objects. This is
made possible by two major innovations. First, we use heatmaps of 2D keypoints as an
intermediate representation to connect real and synthetic data. 3D-INN is trained on
real images to estimate 2D keypoint heatmaps from an input image (Figure 2-2-I); it
then learns from synthetic data to estimate 3D structure from heatmaps (Figure 2-2-II).
By doing so, 3D-INN benefits from the variations in abundant synthetic 3D objects,
without suffering from the domain difference between real and synthesized data.

Second, we introduce a Projection Layer, a rendering function that calculates

13

projected 2D keypoint positions given a 3D skeleton and camera parameters. We
attach it at the end of the framework (Figure 2-2d). This enables 3D-INN to predict
3D structural parameters that minimize errors in 2D on real images with keypoint
labels, without requiring 3D object annotations. Our training paradigm therefore
consists of three steps: we first train the keypoint estimation component (Figure 2-2-I)
on 2D-annotated real images; we then train the 3D interpreter (Figure 2-2-II) on
synthetic 3D data; we finally fine-tune the entire framework end-to-end with the
projection layer (Figure 2-2-III).

Both innovations are essential for the system to exploit the complementary richness
of real 2D data and synthetic 3D data. Without the heatmap representation and
synthetic 3D data, the system can still be trained on real images with 2D annota-
tions, using the projection layer. But it does not perform well: because of intrinsic
ambiguities in 2D-to-3D mapping, the algorithm recovers unnatural 3D geometries,
though their projections may perfectly align with 2D annotations, as explored in Lowe
[1987]. Synthetic 3D shapes help the network resolve this ambiguity by learning prior
knowledge of "plausible shapes". Without the projection layer, the system becomes
two separately trained networks: one trained on real images to estimate 2D keypoint
heatmaps, and the other trained on synthetic data to estimate 3D structure. As shown
in Section 2.4, the 3D predictions in this case are not as accurate due to the domain
adaptation issue.

Several experiments demonstrate the effectiveness of 3D-INN. First, the proposed
network achieves good performance on various keypoint localization datasets, including
FLIC [Sapp and Taskar, 2013] for human bodies, CUB-200-2011 [Wah et al., 20111 for
birds, and our new dataset, Keypoint-5, for furniture. We then evaluate our network
on IKEA [Lim et al., 2013], a dataset with ground truth 3D object structure and
viewpoints. We augmented the original IKEA dataset with additional 2D keypoint
labels. On 3D structure estimation, 3D-INN shows its advantage over an optimization-
based method [Zhou et al., 2015] when keypoint estimation is imperfect. On 3D
viewpoint estimation, it also performs better than the state of the art [Su et al., 2015].
We further evaluate 3D-INN, in combination with an object detection framework,
R-CNN [Girshick et al., 2014], on the PASCAL 3D+ benchmark [Xiang et al., 2014]
for joint detection and viewpoint estimation. 3D-INN also achieves results comparable
to the state of the art [Su et al., 2015, Tulsiani and Malik, 2015]. At last, we show
that 3D-INN has wide vision applications including 3D object retrieval.

Our contributions in this chapter are three-fold. First, we introduce 3D INterpreter
Networks (3D-INN); by incorporating 2D keypoint heatmaps to connect real and
synthetic worlds, we strengthen the generalization ability of the network. Second, we
propose a projection layer, so that 3D-INN can be trained to predict 3D structural
parameters using only 2D-annotated images. Third, our model achieves state-of-the-art

14

performance on the estimation of 2D keypoints, 3D structure, and viewpoint.

2.2 Related work

Single image 3D reconstruction. Previous 3D reconstruction methods mainly
modeled objects using either dense representations such as depth or meshes, or sparse
representations such as skeletons or pictorial structure. Depth- /mesh-based models
can recover detailed 3D object structure from a single image, either by adapting
existing 3D models from a database [Aubry et al., 2014, Satkin et al., 2012, Su et al.,
2014, Huang et al., 2015, Zeng et al., 2017, Wu et al., 2016c, Hu and Zhu, 2015, Bansal
and Russell, 2016, Shrivastava and Gupta, 2013, Choy et al., 20161, or by inferring
from its detected 2D silhouette [Kar et al., 2015, Soltani et al., 2017, Vicente et al.,
2014, Prasad et al., 2010, Wu et al., 2017c].

We choose to use a skeleton-based representation, exploiting the power of abstrac-
tion. The skeleton model can capture geometric changes of articulated objects [Torre-
sani et al., 2003, Yasin et al., 2016, Akhter and Black, 2015], like a human body or
the base of a swivel chair. Typically, researchers recovered a 3D skeleton from a single
image by minimizing its projection error on the 2D image plane [Lowe, 1987, Leclerc
and Fischler, 1992, Hejrati and Ramanan, 2014, Xue et al., 2012, Ramakrishna et al.,
2012, Zia et al., 2013]. Recent work in this line [Akhter and Black, 2015, Zhou et al.,
2015] demonstrated state-of-the-art performance. In contrast to them, we propose to
use neural networks to predict a 3D object skeleton from its 2D keypoints, which is
more robust to imperfect detection results and can be jointly learned with keypoint
estimators.

Our work also connects to the traditional field of vision as inverse graphics [Hinton
and Ghahramani, 1997, Kulkarni et al., 2015b] and analysis by synthesis [Yuille and
Kersten, 2006, Kulkarni et al., 2015a, Bever and Poeppel, 2010, Wu et al., 2015a], as
we use neural nets to decode latent 3D structure from images, and use a projection
layer for rendering. Their approaches often required supervision for the inferred
representations or made over-simplified assumptions of background and occlusion in
images. Our 3D-INN learns 3D representation without using 3D supervision, and
generalizes to real images well.

2D keypoint estimation. Another line of related work is 2D keypoint estimation.
During the past decade, researchers have made significant progress in estimating
keypoints on humans [Sapp and Taskar, 2013, Yang and Ramanan, 20111 and other
objects [Wah et al., 2011, Shih et al., 2015]. Recently, there have been several attempts
to apply convolutional neural networks to human keypoint estimation [Toshev and
Szegedy, 2014, Tompson et al., 2015, Carreira et al., 2016, Newell et al., 20161, which
all achieved significant improvement. 3D-INN uses 2D keypoints as an intermediate

15

representation, and aims to recover a 3D skeleton from them.

3D viewpoint estimation. 3D viewpoint estimation seeks to estimate the 3D
orientation of an object from a single image [Xiang et al., 2014]. Some previous

methods formulated it as a classification or regression problem, and aimed to directly

estimate the viewpoint from an image [Fidler et al., 2012, Su et al., 2015]. Others

proposed to estimate 3D viewpoint from detected 2D keypoints or edges in the

image [Zia et al., 2013, Lim et al., 2014, Tulsiani and Malik, 2015]. While the main

focus of our work is to estimate 3D object structure, our method can also predict the

corresponding 3D viewpoint.

Training with synthetic data. Synthetic data are often used to augment the

training set [Su et al., 2014, Shakhnarovich et al., 2003], especially when ground truth

labels of real images are hard to obtain. This technique has found wide applications

in computer vision. To name a few, Sun and Saenko [20141 and Zhou et al. [2016a]

combined real and synthetic data for object detection and matching, respectively.

Huang et al. [2015] analyzed the invariance of convolutional neural networks using

synthetic images. Dosovitskiy et al. [2015] trained a neural network for image synthesis

using synthetic images. McCormac et al. [2017] rendered images for indoor scene

understanding. Su et al. [2014] attempted to train a 3D viewpoint estimator on both

real and synthetic images.

We combine real 2D-annotated images and synthetic 3D data for training 3D-
INN to recover a 3D skeleton. We use heatmaps of 2D keypoints, instead of (often

imperfectly) rendered images, from synthetic 3D data, so that our algorithm has better

generalization ability as the effects of imperfect rendering are minimized. Yasin et al.

[2016] also proposed to use both 2D and 3D data for training, but they used keypoint

locations, instead of heatmaps, as the intermediate representation that connects 2D
and 3D. While their focus is on estimating human poses, we study the problem of

recovering the 3D structure of furniture and cars.

2.3 Method

We design a deep convolutional network to recover 3D object structure. The input

to the network is a single image with the object of interest at its center, which can

be obtained by state-of-the-art object detectors. The output of the network is a 3D
object skeleton, including its 2D keypoint locations, 3D structural parameters, and

3D pose (see Figure 2-4). In the following sections, we will describe our 3D skeleton

representation and camera model (Section 2.3.1), network design (Section 2.3.2), and
training strategy (Section 2.3.3).

16

B1 B2 B, B,

(a) Base shapes for chairs. B1 is the mean shape of chairs, and the others characterize possible
variations of the structure.

B1 B2 B 3 B4 B 5 B6 B7

(b) Base shapes for cars

Figure 2-3: Our skeleton model and base shapes for chairs (a) and cars (b)

2.3.1 3D Skeleton Representation

We use skeletons as our 3D object representation. A skeleton consists of a set of

keypoints as well as their connections. For each object category, we manually design a

3D skeleton characterizing its abstract 3D geometry.

There exist intrinsic ambiguities in recovering 3D keypoint locations from a single

2D image. We resolve this issue by assuming that objects can only have constrained

deformations [Torresani et al., 2003]. For example, chairs may have various leg lengths,

but for a single chair, its four legs are typically of equal length. We model these

constraints by formulating 3D keypoint locations as a weighted sum of a set of base

shapes [Kar et al., 20151. The first base shape is the mean shape of all objects within

the category, and the rest define possible deformations and intra-class variations.

Figure 2-3a shows our skeleton representation for chairs: the first is the mean shape of

chairs, the second controls how the back bends, and the last two are for legs. Figure 2-

3b shows base shapes for cars. The weight for each base shape determines how strong

the deformation is, and we denote these weights as the structural parameters of an

object.

Formally, let Y E R3xN be a matrix of 3D coordinates of all N keypoints. Our

assumption is that the 3D keypoint locations are a weighted sum of base shapes

Bk E R3xN or
K

Y = akBk, (2.1)
k=1

where {ak} is the set of structural parameters of this object, and K is the number of

base shapes.

Further, let X E R2
xN be the corresponding 2D coordinates. Then the relationship

17

between the observed 2D coordinates X and the structural parameters {ak} is

K

X = P(RY + T) = P(R E akBk + T), (2.2)
k=1

where R E R3 x 3 (rotation) and T E R3 (translation) are the external parameters of
the camera, and P E R3x4 is the camera projection matrix which we will discuss soon.

Therefore, to recover the 3D structural information of an object in a 2D image,
we only need to estimate its structural parameters ({ak}) and the external viewpoint

parameters (R, T, and f). We supply the detailed camera model below. In Section 2.3.2
and Section 2.3.3, we discuss how we design a neural network for this task, and how it

can be jointly trained with real 2D images and synthetic 3D objects.

Camera model. We use perspective projection in order to model the perspective
distortion in 2D images. We assume that the principal point is at the origin, all pixels
are square, and there is no axis skew. In this way, we only need to estimate the focal

length in the camera projection matrix P.

For the ease of inference in neural networks, we rewrite the normal perspective

projection as follows. Let xi E R2 be a column vector of the 2D coordinates of the
i-th keypoint and yi be the corresponding 3D coordinates to be recovered. We assume

that the camera center is at (0, 0, f) instead of the origin. The perspective projection
is written as (using projective coordinates):

f1O\
xif 0 0 0 Y

X = 0 f 0 0 (2.3)
2C + j

1 0 0 1 0 Y

001/

where f is the focal length, x and x2 are the x- and y-components of xi, and y', y2,

and y3 are x-, y-, and z-components of yi.

When f- -+0, Equation 2.3 converges to the formulation of parallel projection.
To see that, based on Equation 2.3, we get the Euclidean coordinates of the 2D
projection as (we abuse the notation of xi and x? for both Euclidean coordinates and
projective coordinates)

y _ yi
Y y3 +2f f- i 3 +' (2.4)

* ya + f f-1y3 +1

18

r --r ---------- -

2D Annotated Images Initial Heatmaps Refined Heatmaps 3D Synthetic Data 2D Coordinates

Projection Layer

Initial Keypoint Estimation Keypoint Refinement Reconstruction

(a) (b) (c) (d)
----------- Data or Supervision Network Connection

Figure 2-4: Architecture of 3D-INN. 3D-INN takes a single image as input and reconstructs
the detailed 3D structure of the object in the image (e.g., human, chair, etc.). The network is
trained independently for each category, and here we use chairs as an example. (a) Estimating
2D keypoint heatmaps with a multi-scale CNN. (b) Refining keypoint locations by considering the
structural constraints between keypoints. This is implicitly enforced with an information bottleneck
and yields cleaner heatmaps. (c) Recovered 3D structural and camera parameters {a, T, R, f}. (d)
The projection layer maps reconstructed 3D skeletons back to 2D keypoint coordinates.

Then when f - oo, we have

X1=
(2.5)

which is the formulation of parallel projection. Therefore, Equation 2.3 models the

perspective projection when f-' f 0 and models the parallel projection when f- = 0.

2.3.2 3D Interpreter Networks

Our network consists of three components: first, a keypoint estimator, which
localizes 2D keypoints of objects from 2D images by regressing their heatmaps (Figure 2-
4a and b, in blue); second, a 3D interpreter, which infers internal 3D structural and

viewpoint parameters from the heatmaps (Figure 2-4c, in red); third, a projection

layer, mapping 3D skeletons to 2D keypoint locations so that real 2D-annotated images

can be used as supervision (Figure 2-4d, in yellow).

Keypoint estimation. The keypoint estimation stage consists of two steps: initial

estimation (Figure 2-4a) and keypoint refinement (Figure 2-4b).

The network architecture for initial keypoint estimation is inspired by the pipeline

proposed by Tompson et al. [2014, 2015]. The network takes multi-scaled images

as input and estimates keypoint heatmaps. Specifically, we apply Local Contrast

Normalization (LCN) on each image, and then scale it to 320 x240, 160x120, and

19

80x60 as input to three separate scales of the network. The output is k heatmaps,
each with resolution 40x30, where k is the number of keypoints of the object in the
image.

At each scale, the network has three sets of 5x5 convolutional (with zero padding),
ReLU, and 2x2 pooling layers, followed by a 9x9 convolutional and ReLU layer. The
final outputs for the three scales are therefore images with resolution 40x30, 20x15,
and 10x7, respectively. We then upsample the outputs of the last two scales to ensure
they have the same resolution (40x30). The outputs from the three scales are later
summed up and sent to a Batch Normalization layer and three 1x 1 convolution layers,
whose goal is to regress target heatmaps. We found that Batch Normalization is
critical for convergence, while Spatial Dropout, proposed in Tompson et al. [2015],
does not affect performance.

The second step of keypoint estimation is keypoint refinement, whose goal is to
implicitly learn category-level structural constraints on keypoint locations after the
initial keypoint localization. The motivation is to exploit the contextual and structural
knowledge among keypoints (e.g., arms cannot be too far from the torso). We design a
mini-network which, like an autoencoder, has information bottleneck layers, enforcing
it to implicitly model the relationship among keypoints. Some previous papers have
also explored this idea to achieve better performance in object detection [Ren et al.,
2015] and face recognition [Taigman et al., 2015].

In the keypoint refinement network, we use three fully connected layers with widths
8,192, 4,096, and 8,192, respectively. After refinement, the heatmaps of keypoints are
much cleaner, as shown in Section 2.4.

3D interpreter. The goal of our 3D interpreter is to infer 3D structure and viewpoint
parameters, using estimated 2D heatmaps from earlier layers. While there are many
different ways of solving Equation 2.2, our deep learning approach has clear advantages.
First, traditional methods [Hejrati and Ramanan, 2012, Torresani et al., 2003] that
minimize the reprojection error consider only one keypoint hypothesis, and are therefore
not robust to noisy keypoint detection. In contrast, our framework uses soft heatmaps
of keypoint locations as input, as shown in Figure 2-4c, which is more robust when
some keypoints are invisible or incorrectly located. Second, our algorithm only requires
a single forward propagation during testing, making it more efficient than the most
previous optimization-base methods.

As discussed in Section 2.3.1, the set of 3D parameters we estimate is of S =

{, R, T, f}, with which we are able to recover the 3D object structure using Equa-
tion 2.2. In our implementation, the network predicts f- instead of f for better
numerical stability. As shown in Figure 2-4c, we use four fully connected layers as our
3D interpreter, with widths 2,048, 512, 128, and |SI, respectively. Spatial Transformer
Networks [Jaderberg et al., 2015] also explored the idea of learning rotation parameters

20

R with neural nets, but our network can also recover structural parameters {ai}.

Projection layer. The last component of the network is a projection layer (Figure 2-
4d). The projection layer takes estimated 3D parameters as input, and computes
projected 2D keypoint coordinates {Xi, Yi} using Equation 2.2. As all operations are
differentiable, the projection layer enables us to use 2D-annotated images as ground
truth, and to run back-propagation to update the entire network.

2.3.3 Training Strategy

A straightforward training strategy is to use real 2D images as input, and their 2D
keypoint locations as supervision for the output of the projection layer. Unfortunately,
experiments show that the network can hardly converge using this training scheme, due
to the high-dimensional search space and the ambiguity in the 3D to 2D projection.

We therefore adopt an alternative three-step training strategy: first, training
the keypoint estimator (Figure 2-4a and 2-4b) using real images with 2D keypoint
heatmaps as supervision; second, training the 3D interpreter (Figure 2-4c) using
synthetic 3D data as there are no ground truth 3D annotations available for real

images; and third, training the whole network using real 2D images with supervision
on the output of the projection layer at the end.

To generate synthetic 3D objects, for each object category, we first randomly sample
structural parameters {ai} and viewpoint parameters P, R and T. We calculate 3D
keypoint coordinates using Equation 2.2. To model deformations that cannot be
captured by base shapes, we add Gaussian perturbation to 3D keypoint locations
of each synthetic 3D object, whose variance is 1% of its diagonal length. Examples
of synthetic 3D shapes are shown in Figure 2-4c. In experiments, we do not render
synthesized shapes; we use heatmaps of keypoints, rather than rendered images, as
training input.

2.4 Evaluation

We evaluate our entire framework, 3D-INN, as well as each component within.
In this section, we present both qualitative and quantitative results on 2D keypoint
estimation (Section 2.4.1) and 3D structure and viewpoint recovery (Section 2.4.2).

2.4.1 2D Keypoint Estimation

Data. For 2D keypoint estimation, we evaluate our algorithm on three image datasets:
FLIC [Sapp and Taskar, 2013] for human bodies, CUB-200-2011 [Wah et al., 2011] for
birds, and a new dataset Keypoint-5 for furniture. Specifically, FLIC is a challenging
dataset containing 3,987 training images and 1,016 test images, each labeled with 10
keypoints of human bodies. The CUB-200-2011 dataset was originally proposed for

21

100 -

90

80 - - - - - - - - - -

70

601

50

40*

30

20

10

0 -.0 0..5 0.
Normalized distance

(a) PCK curves on the FLIC dataset

C)

0

100 _

-3D-INN
98 -- 3D-INN (w/o KR)

-Tompson et al. 15
96 -Tompson et al. '14

-Toshev et al.
94 - --Jain et al.

92 -- _ MODEC
-- Yang et al.

90 - -Sapp et a._

88 -

86-

84

82

80--- 0 4 0 0.18 0 2
0.1 0.12 0.14 0.16 0.18 0.2

Normalized distance

(b) A zoomed view of the dashed rectangle in (a)

2

Figure 2-5: Results on human keypoint estimation. (a) PCK curves on the FLIC dataset [Sapp
and Taskar, 2013]. 3D-INN performs consistently better than other methods. Without keypoint
refinement, it is comparable to Tompson et al. [2015]. (b) A zoomed view of the dashed rectangle in
(a).

fine-grained bird classification, but with labeled keypoints of bird parts. It has 5,994
images for training and 5,794 images for testing, each coming with up to 15 keypoints.

We also introduce a new dataset, Keypoint-5, which contains five categories: bed,
chair, sofa, swivel chair, and table. There are 1,000 to 2,000 images in each category,
where 80% are for training and 20% for testing. For each image, we asked three workers
on Amazon Mechanical Turk to label locations of a pre-defined category-specific set of
keypoints; we then, for each keypoint, used the median of the three labeled locations
as ground truth.

Metrics. To quantitatively evaluate the accuracy of estimated keypoints on FLIC
(human body), we use the standard Percentage of Correct Keypoints (PCK) measure
[Sapp and Taskar, 2013] to be consistent with previous methods [Sapp and Taskar,
2013, Tompson et al., 2014, 2015]. We use the evaluation toolkit and results of
competing methods released by Tompson et al. [2015]. On CUB-200-2011 (bird) and
the new Keypoint-5 (furniture) dataset, following the convention [Liu and Belhumeur,
2013, Shih et al., 2015], we evaluate results in Percentage of Correct Parts (PCP) and
Average Error (AE). PCP is defined as the percentage of keypoints localized within 1.5
times of the standard deviation of annotations. We use the evaluation code from [Liu

and Belhumeur, 2013] to ensure consistency. Average error is computed as the mean of
the distance, bounded by 5, between a predicted keypoint location and ground truth.

Results. For 2D keypoint detection, we only train the keypoint estimator in our
3D-INN (Figure 2-4a and 2-4b) using the training images in each dataset. Figure 2-5
shows the accuracy of keypoint estimation on the FLIC dataset. On this dataset,

22

0D

.2

El"'
After

Keypoint
Refinement

Figure 2-6: Qualitative results on 2D keypoint estimation from
color corresponds to a keypoint. The keypoint refinement step cleans up
more regulated predictions.

I.
a single image, where each
false positives and produces

Method PCP (%) Average Error

Poselets [Bourdev, 20111 27.47 2.89
Consensus [Belhumeur et al., 2013] 48.70 2.13
Exemplar [Liu and Belhumeur, 2013] 59.74 1.80
Mdshift [Shih et al., 20151 69.1 1.39
3D-INN (ours) 66.7 1.36

Human 84.72 1.00

Table 2.1: Keypoint estimation results on the CUB-200-2011 dataset, measured in PCP
(%) and AE. Our method is comparable to Mdshift [Shih et al., 2015] (better in AE but worse in
PCP), and better than all other algorithms.

we employ a fine-level network for post-processing, as suggested by Tompson et al.

[20151. Our method performs better than all previous methods [Sapp and Taskar,
2013, Tompson et al., 2014, 2015, Yang and Ramanan, 2011, Toshev and Szegedy,
2014] at all precisions. Moreover, the keypoint refinement step (Figure 2-4c) improves

results significantly (about 2% for a normalized distance > 0.15), without which our

framework has similar performance with Tompson et al. [2015]. Such improvement

is also demonstrated in Figure 2-6, where the heatmaps after refinement are far less

noisy.

The accuracy of keypoint estimation on CUB-200-201 dataset is listed in Table 2.1.

Our method is better than Lin and Belhumeur [2013] in both metrics, and is comparable

to the state-of-the-art [Shih et al., 2015]. Specifically, compared with Shih et al. [2015],
our model more precisely estimates the keypoint locations for correctly detected

parts (a lower AE), but misses more parts in the detection (a lower PCP). On our

23

KU

Before
Keypoint

Refinement

Images

Method Bed Chair Sofa Swivel Chair

PCP 3D-INN (ours) 77.4 87.7 77.4 78.5
Tompson et al. [2015] 76.2 85.3 76.9 69.2

AE 3D-INN (ours) 1.16 0.92 1.14 1.19
Tompson et al. [2015] 1.20 1.02 1.19 1.54

Table 2.2: Keypoint estimation results of 3D-INN and Tompson et al. [2015] on Keypoint-
5, measured in PCP (%) and AE. 3D-INN is consistently better in both measures. We retrained the
network in Tompson et al. [2015] on Keypoint-5.

Keypoint-5 dataset, our model achieves higher PCPs and lower AEs compared to
the state-of-the-art [Tompson et al., 2015] for all categories, as shown in Table 2.2.
These experiments in general demonstrate the effectiveness of our model on keypoint

detection.

2.4.2 3D Structure and Viewpoint Estimation

For 3D structural parameter estimation, we evaluate 3D-INN from three different
perspectives. First, we evaluate our 3D interpreter (Figure 2-4c alone) against the
optimization-based method [Zhou et al., 2015]. Second, we test our full pipeline on
the IKEA dataset [Lim et al., 2013], where ground truth 3D labels are available,
comparing with both baselines and the state-of-the-art. Third, we show qualitative
results on four datasets: Keypoint-5, IKEA, the SUN database [Xiao et al., 20101, and
PASCAL 3D+ [Xiang et al., 2014].

Comparing with an optimization-based method. First, we compare our 3D
interpreter (Figure 2-4c) with the state-of-the-art optimization-based method that
directly minimizes re-projection error (Equation 2.2) on the synthetic data. As most
optimization based methods only consider the parallel projection, while we model
perspective projection for real images, we extend the one by Zhou et al. [2015] as
follows: we first use their algorithm to get an initial guess of internal parameters and
viewpoints, and then apply a simple gradient descent method to refine it considering
perspective distortion.

We generate synthetic data for this experiment, using the scheme described in
Section 2.3.3. Each data point contains the 2D keypoint heatmaps of an object, and its
corresponding 3D keypoint locations and viewpoint, which we would like to estimate.
We also add different levels of salt-and-pepper noise to heatmaps to evaluate the
robustness of both methods. We generated 30,000 training and 1,000 testing cases.
Because the analytic solution only takes keypoint coordinates as input, we convert
heatmaps to coordinates using an argmax function.

For both methods, we evaluate their performance on both 3D structure recovery
and 3D viewpoint estimation. To evaluate the estimated 3D structure, we compare

24

.G 0.3 60
0.

0.2 -3D-INN 40 -3D-INN
-Zhou-perp -Zhou-perp

S0.1 20

0 0
0 1 2 3 0 1 2 3

Number of noisy detections added to each heatmap Number of noisy detections added to each heatmap

(a) Structure estimation (b) Viewpoint estimation

Figure 2-7: Plots comparing our method against an analytical solution on synthetic

heatmaps. (a) The accuracy of 3D structure estimation; (b) The accuracy of 3D viewpoint

estimation.

their accuracies on 3D keypoint estimation (Y in Section 2.3.1); for 3D viewpoint

estimation, we compute errors in azimuth angle, following previous work [Su et al.,

2015]. As the original algorithm by Zhou et al. [2015] was mainly designed for the

parallel projection and comparatively clean heatmaps, our 3D interpreter outperforms

it in the presence of noise and perspective distortion, as shown in Figure 2-7. Our

algorithm is also efficient, taking less than 50 milliseconds for each test image.

Evaluating the full pipeline. We now evaluate 3D-INN on estimating 3D structure

and 3D viewpoint. We use the IKEA dataset [Lim et al., 2013] for evaluation, as

it provides ground truth 3D mesh models and the associated viewpoints for testing

images. We manually label ground truth 3D keypoint locations on provided 3D meshes,
and calculate the root-mean-square error (RMSE) between estimated and ground

truth 3D keypoint locations.

As IKEA only has no more than 200 images per category, we instead train 3D-INN

on our Keypoint-5, as well as one million synthetic data points, using the strategy

described in Section 2.3.3. Note that, first, we are only using no more than 2,000 real

images per category for training and, second, we are testing the trained model on

different datasets, avoiding possible dataset biases [Torralba and Efros, 2011].

We first compare with a baseline method to evaluate our training paradigm: we

show quantitative comparisons between 3D-INN trained using our paradigm proposed

in Section 2.3.3, and the same network but only end-to-end trained with real images,
without having the two pre-training stages. We called it the scratch model.

As shown in the RMSE-Recall curve in Figure 2-8, 3D-INN performs much better

than scratch on both 3D structure and viewpoint estimation. The average recall of

3D-INN is about 20% higher than scratch in 3D structure estimation, and about 40%

higher in 3D pose estimation. This shows the effectiveness of the proposed training

paradigm.

25

100

90 ---

80

20 - ----

10 S

80 - -

70-

60 -

040
ci)
c.

3 0

20

10

0 . 02 0. .4 520 40 60 80 1000 0.1 0.2 0.3 0.4 0.520 4 60 8 10

RMSE of estimated 3D keypoints Azimuth angular error

(a) Structure estimation (b) Viewpoint estimation

Figure 2-8: Evaluation the training paradigm on chairs from the IKEA dataset [Lim et al.,
2013]. The network trained with our paradigm (3D-INN) is significantly better than the one trained
from scratch on both 3D structure (a) and viewpoint estimation (b).

We then compare our full model with the state-of-the-art methods. The left half of
Figure 2-9 shows RMSE-Recall curve of both our algorithm and the optimization-based
method described above (Zhou et al. [2015]-perp). The y-axis shows the recall - the
percentage of testing samples under a certain RMSE threshold. We test two versions

of our algorithm: with fine-tuning (3D-INN) and without fine-tuning (3D-INN w/o
FT). Both significantly outperform the optimization-based method [Zhou et al., 2015].
This is because the method from Zhou et al. [2015] was not designed to handle noisy
keypoint estimation and perspective distortions, while our 3D-INN can deal with them.
Also, fine-tuning improves the accuracy of keypoint estimation by about 5% under

the RMSE threshold 0.15.

Though we focus on recovering 3D object structure, as an extension, we also

evaluate 3D-INN on 3D viewpoint estimation. We compare it with the state-of-the-art
viewpoint estimation algorithm by Su et al. [2015]. The right half of Figure 2-9 shows
the results (recall) in azimuth angle. As shown in the table, 3D-INN outperforms
Su et al. [2015] by about 40% (relative), measured in average recall. This is mainly
because it is not straightforward for Su et al. [2015], mostly trained on (cropped)

synthesized images, to deal with the large number of heavily occluded objects in the

IKEA dataset.

Although our algorithm assumes a centered object in an input image, we can
apply it, in combination with an object detection algorithm, on images where object

locations are unknown. We evaluate the results of joint object detection and viewpoint
estimation on PASCAL 3D+ dataset [Xiang et al., 2014]. PASCAL 3D+ and Keypoint-

5 has two overlapping categories: chair and sofa, and we evaluate on both. We also
study an additional object category, car, for which 3D-INN is trained on 1,000 car

26

...........

...

------------ _J

.......

7 -------

__ f
D-INN

:-Scratch

__________________ 60
100 100 2 6

80 880

1 80.. 0

660
40 40

6- -- -3 -NN 6 20 -......
604-3D-INN I

20 -.-...4.-. Zhou-perp - -- - 3D-INN 30
20u -t 40203- l./F 20

T
0 201 -

0.2 0.4 0.6 0.8 1 0.1 0.15 0.2 0.25 20 40 60 80 100 10 20 30 40

RMSE of estimated 3D keypoints Azimuth angular error

Average recall (%) Average recall (%)

Method Bed Sofa Chair Avg.

3D-INN 88.64 88.03 87.84 88.03
3D-INN w/o FT 87.19 87.10 87.08 87.10
Zhou et al. [2015]-perp 52.31 58.02 60.76 58.46

Method Table Sofa Chair Avg.

3D-INN 55.02 64.65 63.46 60.30
3D-INN w/o FT 52.33 65.45 62.01 58.90
Su et al. [20151 52.73 35.65 37.69 43.34

(a) Structure estimation (b) Viewpoint estimation

Figure 2-9: Evaluation on the IKEA dataset [Lim et al., 2013]. (a) The accuracy of structure
estimation. RMSE-Recall curved is shown in the first row, and zoomed-views of the dashed rectangular
regions are shown on the right. The third row shows the average recall on all thresholds. (b) The
accuracy of viewpoint estimation.

Category VDPM DPM-VOC+VP RenderForCNN V&K 3D-INN (ours)

Chair 6.8 6.1 15.7 25.1 23.1
Sofa 5.1 11.8 18.6 43.8 45.8
Car 20.2 36.9 41.8 55.2 52.2

Table 2.3: Joint object detection and viewpoint estimation on the PASCAL 3D+ dataset
[Xiang et al., 2014]. Following previous work, we use Average Viewpoint Precision (AVP) as
our measure, which extends AP so that a true positive should have both a correct bounding box
and a correct viewpoint (here we use a 4-view quantization). Both 3D-INN and V&K [Tulsiani
and Malik, 2015] use R-CNN [Girshick et al., 2014] for object detection, precluding the influence
of object detectors. The others use their own detection algorithm. VDPM [Xiang et al., 2014] and
DPM-VOC+VP [Pepik et al., 2012] are trained on PASCAL VOC 2012, V&K [Tulsiani and Malik,
2015] is trained on PASCAL 3D+, RenderForCNN [Su et al., 2015] is trained on PASCAL VOC 2012,
together with synthetic 3D CAD models, and 3D-INN is trained on Keypoint-5.

images from ImageNet [Russakovsky et al., 2015] with 2D keypoint annotations.

Following Tulsiani and Malik [2015], we use non-occluded and non-truncated objects

for testing. We use the standard R-CNN [Girshick et al., 2014] for object detection,
and our 3D-INN for viewpoint estimation.

Table 2.3 shows that 3D-INN is comparable with Viewpoints and Keypoints (V&K

by Tulsiani and Malik [2015]), and outperforms other algorithms with a significant

margin. Both 3D-INN and V&K use R-CNN [Girshick et al., 2014] for object detection

(we use the R-CNN detection results provided by Tulsiani and Malik [2015]); this

rules out the influence of object detectors. Further, while all the other algorithms are

trained on either PASCAL VOC or PASCAL 3D+, ours is trained on Keypoint-5 or

ImageNet. This indicates our learned model transfers well across datasets, without

27

* r7 B = 7 -r.........................w........... fl...........................

....................

~t1
"U...................

Before After
Fine-tuning Fine-tuning

Input Before After
Fine-tuning Fine-tuning

Input

'4

Before After
Fine-tuning Fine-tuning

Failure cases

Figure 2-10: Qualitative results on Keypoint-5, IKEA, and SUN databases. For each
example, the first one is the input image, the second one is the reconstruct 3D skeleton using the
network before fine-tuning, and third one is using the network after fine-tuning. The last column
shows failure cases.

suffering much from the domain adaptation issue.

Qualitative results on benchmarks. We show qualitative results on Keypoint-5,
IKEA, the SUN database [Xiao et al., 2010], and the PASCAL 3D+ dataset [Xiang
et al., 2014] in Figure 2-10. When the image is clean and objects are not occluded,

28

4

Input

rp--i " F9

Figure 2-11: Car structure estimation on images from the PASCAL 3D+ dataset [Xiang et al.,
2014]

(a) Training: beds, Test: chairs (b) Training: sofas, Test: chairs

Figure 2-12: Qualitative results on chairs using networks trained on sofas or beds. In
most cases models provide reasonable output. Mistakes are often due to the difference between the
training and test sets, e.g., in the third example, the model trained on beds fails to estimate chairs
facing backward.

our algorithm can recover 3D object structure and viewpoint with high accuracy.
Fine-tuning further helps to improve the results (see chairs at row 1 column 1, and
row 4 column 1). Our algorithm is also robust to partial occlusion, demonstrated by
the IKEA bed at row 5 column 1. We show failure cases in the last column: one major
failure case is when the object is heavily cropped in the input image (the last column,
row 4 to 7), as the 3D object skeleton becomes hard to infer. Figure 2-11 shows more
results on car structure recovery.

When 3D-INN is used in combination with detection models, it needs to deal with
imperfect detection results. Here, we also evaluate 3D-INN on noisy input, specifically,
on images with an object from a different but similar category. Figure 2-12 shows the
recovered 3D structures of chairs using a model trained either on sofas or beds. In
most cases 3D-INN still provides reasonable output, and the mistakes are mostly due
to the difference between training and test sets, e.g., the model trained on beds does
not perform well on chairs facing backward, because there are almost no beds with a
similar viewpoint in the training set.

Figure 2-13 and Figure 2-14 include more results on chair and sofa images randomly
sampled from the test set of Keypoint-5.

2.5 Applications

The inferred latent parameters, as a compact and informative representation of ob-
jects in images, have wide applications. In this section, we demonstrate representative

29

M ~E~h
Ur~Er~~RTl

+

FH
Figure 2-13: Estimated 3D skeletons on more Keypoint-5 chair images. Images are randomly
sampled from the test set.

Figure 2-14: Estimated 3D skeletons on more Keypoint-5 sofa images. Images are randomly
sampled from the test set.

ones including 3D object rendering, image retrieval, and object graph visualization.

30

P1 91

T1

H -qwM fq M fp ;q

(A as 4

4i Mi F

M

IIr
Figure 2-15: Visualization of 3D reconstruction results. We render objects using Blender.

By FC7
feature a*uW By FC7

feature

By 3D-INN *kf U
structure

By 3D-INN
viewpoint

(a) Retrieval results of a sofa image

Query
image

By 3D-INN
structure

By 3D-INN I
viewpoint

(b) Retrieval results of a chair image

Figure 2-16: Retrieval results for a sofa (b) and a chair (b) in different feature spaces. 3D-INN
helps to retrieve objects with similar 3D structure or pictured in a similar viewpoint.

3D object rendering. Given an estimated 3D object structure, we can render it

in a 3D graphics engine like Blender, as shown in Figure 2-15.

Image retrieval. Using estimated 3D structural and viewpoint information, we can

retrieve images based on their 3D configurations. Figure 2-16 shows image retrieval

results using FC7 features from AlexNet [Krizhevsky et al., 2012] and using the 3D
structure and viewpoint learned by 3D-INN. Our retrieval database includes all testing

images of chairs and sofas in Keypoint-5. In each row, we sort the best matches of the

query image, measured by Euclidean distance in a specific feature space. We retrieve

images in two ways: by structure uses estimated internal structural parameters ({a}

31

Query
image

Figure 2-17: Object graph visualization based on learned object representations: we
visualize images using t-SNE [Van der Maaten and Hinton, 2008] on 3D viewpoints predicted by
3D-INN.

in Equation 2.2), and by viewpoint uses estimated external viewpoint parameters (R

in Equation 2.2).

Object graph. Similar to the retrieval task, we visualize all test images for chairs

in Keypoint-5 in Figure 2-17, using t-SNE [Van der Maaten and Hinton, 2008] on

estimated 3D viewpoints. Note the smooth transition from the chairs facing left to

those facing right.

2.6 Discussion

We have introduced 3D INterpreter Networks (3D-INN). From a single image,

our model recovers the 2D keypoints and 3D structure of a (possibly deformable)

object, as well as camera parameters. To achieve this goal, we used 3D skeletons as an

abstract 3D representation, incorporated a projection layer to the network for learning

3D parameters from 2D labels, and employed keypoint heatmaps to connect real

and synthetic data. Empirically, we showed that 3D-INN performs well on both 2D

keypoint estimation and 3D structure and viewpoint recovery, comparable to or better

than the state of the art. Further, various applications demonstrated the potential of

the skeleton representation learned by 3D-INN.

We choose to model objects via 3D skeletons and the corresponding 2D keypoints,

as opposed to other dense 3D representations such as voxels, meshes, and point clouds,
because skeletons offer unique advantages. First, given an RGB image, its sparse

2D annotations like keypoints are easier and more affordable to acquire, and can be

used as 2D supervision for 3D skeleton and viewpoint estimation; in comparison, it is

32

prohibitively challenging to obtain dense annotations like a depth map to constrain
3D reconstructions in voxels or meshes. Second, the employed base shapes carry rich
category-specific shape priors, with which 3D-INN can encode an object skeleton with
a few parameters. This feature is particularly useful on platforms with severe memory
and computational constraints, such as on autonomous cars and on mobile phones.

That being said, skeletons have their own limitations. The most significant is on
its generalization power: there are many real-world objects whose keypoints are hard
to define, such as trees, flowers, and deformable shapes like ropes; in those cases, there
lacks a straightforward way to apply 3D-INN to model these objects. Recent research
on 3D reconstruction via richer, generic intermediate representations like intrinsic
images [Barrow and Tenenbaum, 1978] suggests a potential solution to the problem,
though as discussed above it is much harder to obtain annotated intrinsic images,
compared to keypoints [Wu et al., 2017c].

We focus on single-view 3D reconstruction. As discussed in Section 2.1, requiring
only a single image as input has unique practical advantages, in addition to its
scientific value. First, our algorithm can be directly applied to cases where only
in-the-wild images are available, not multi-view images or videos. Second, taking a
single image as input enables online inference and therefore fits real-time applications;
in contrast, most multi-view reconstruction algorithms are offline. It is also possible
to our 3D-INN to use multi-view data when they are available [Kar et al., 2017], and
more generally, to integrate viewer-centered and object-centered representations in a
principled manner [Hinton, 1981].

3D-INN estimates the 3D skeleton and pose of an object from an RGB image, and
can therefore be applied to the enormous existing RGB data. But we are also aware
that depth sensors have recently become affordable to end users [Newcombe et al.,
2011], and large-scale RGB-D datasets are being built [Song et al., 2017, McCormac
et al., 2017]. Depth data help to resolve the ambiguity in the projection from 3D
shapes to 2D images, allow object structure prediction in metric scale, and enable
wide applications [Chen et al., 2012]. Hence, a promising future research topic would
be to extend the current framework to handle depth data, while enforcing the 2D-3D
differentiable consistencies in various forms [Tulsiani et al., 2017b, Wu et al., 2017c].
This will be our main focus in the next chapter.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

- --- I PF 11 mg!qlpmpwlll R'' - I I - loq go IF I . lwm-m ,- 11 1-,- ., , - - - - --

Chapter 3

Learning with a Graphics Engine

for Dense Object Shapes

In this chapter, we extend our model to produce dense 3D object shapes from a
single image, beyond 3D skeletons. From a single image, humans are able to perceive
the full 3D shape of an object by exploiting learned shape priors from everyday life, even
if we've never seen the object before. Contemporary single-image 3D reconstruction
algorithms aim to solve this task in a similar fashion, but often end up with priors
that are highly biased by training classes. Our goal is to build a shape reconstruction
model that generalizes.

Our main contribution in this chapter is an algorithm, Generalizable Reconstruction
(GenRe), designed to capture more generic, class-agnostic shape priors. Similar to
the 3D interpreter networks introduced in Chapter 2, we achieve this with two major
technical innovations. First, analogous to heatmaps, in GenRe we exploit multiple
intermediate representations, including 2.5D visible surfaces (depth and silhouette)
and spherical shape representations of both visible and non-visible surfaces. Second,
these representations, together with the final 3D voxel-based representations, are
combined in a principled manner that exploits the causal structure of how 3D shapes
give rise to 2D images, namely the 3D-to-2D projection. Experiments demonstrate
that GenRe performs well on single-view shape reconstruction, and generalizes to
diverse novel objects from categories not seen during training.

This chapter includes materials previously published as Wu et al. [2016c, 2017c,
2018b], Sun et al. [2018b], Zhang et al. [2018b]. Many collaborators, in particular
Zhoutong Zhang, Xiuming Zhang, Chengkai Zhang, Tianfan Xue, Yifan Wang, and
Xingyuan Sun, contributed significantly to the materials presented in this chapter.

3.1 Introduction

Humans can imagine an object's full 3D shape from just a single image, showing
only a fraction of the object's surface. This applies to common objects such as chairs,

35

but also to novel objects that we have never seen before. Vision researchers have long

argued that the key to this ability may be a sophisticated hierarchy of representations,
extending from images through surfaces to volumetric shape, which process different

aspects of shape in different representational formats [Marr, 19821. Here we explore

how these ideas can be integrated into state-of-the-art computer vision systems for

3D shape reconstruction.

Recently, computer vision and machine learning researchers have made impressive

progress on single-image 3D reconstruction by learning a parametric function f2DM3D,
implemented as deep neural networks, that maps a 2D image to its corresponding 3D
shape. Essentially, f2D,3D encodes shape priors ("what realistic shapes look like"), often

learned from large shape repositories such as ShapeNet [Chang et al., 20151. Because

the problem is well-known to be ill-posed-there exist many 3D explanations for any 2D

visual observation-modern systems have explored looping in various structures into

this learning process. For example, MarrNet [Wu et al., 2017c] uses intrinsic images

or 2.5D sketches [Marr, 1982] as an intermediate representation, and concatenates two

learned mappings for shape reconstruction: f2D-+3D = f2.5D,3D o f2D- 2.5D.

Many existing methods, however, ignore the fact that mapping a 2D image or a

2.5D sketch to a 3D shape involves complex, but deterministic geometric projections.

Simply using a neural network to approximate this projection, instead of modeling this

mapping explicitly, leads to inference models that are overparametrized (and hence

subject to overfitting training classes). It also misses valuable inductive biases that can

be wired in through such projections. Both factors contribute to poor generalization

to unseen classes.

Here we propose to disentangle geometric projections from shape reconstruction

to better generalize to unseen shape categories. Building upon the MarrNet frame-

work [Wu et al., 2017c), we further decompose f2.5D-M3D into a deterministic geometric

projection p from 2.5D to a partial 3D model, and a learnable completion c of the 3D
model. A straightforward version of this idea would be to perform shape completion

in the 3D voxel grid: f2.5D-+3D = C3D-+3D 0 P2.5D-M3D. However, shape completion in 3D
is challenging, as the manifold of plausible shapes is sparser in 3D than in 2D, and

empirically this fails to reconstruct shapes well.

Instead we perform completion based on spherical maps. Spherical maps are
surface representations defined on the UV coordinates of a unit sphere, where the

value at each coordinate is calculated as the minimal distance travelled from this point

to the 3D object surface along the sphere's radius. Such a representation combines
appealing features of 2D and 3D: spherical maps are a form of 2D images, on which
neural inpainting models work well; but they have a semantics that allows them to

be projected into 3D to recover full shape geometry. They essentially allow us to

complete non-visible object surfaces from visible ones, as a further intermediate step

36

to full 3D reconstruction. We now have f2.5D-+3D PS-+3D 0 Cg-s 0 P2.5D-+s, where S
stands for spherical maps.

Our full model, named Generalizable Reconstruction (GenRe), thus comprises
three cascaded, learnable modules connected by fixed geometric projections. First, a
single-view depth estimator predicts depth from a 2D image (f2D-+2.5D); the depth map
is then projected into a spherical map (P2.5D,s). Second, a spherical map inpainting
network inpaints the partial spherical map (cs-s); the inpainted spherical map is
then projected into 3D voxels (P2.5DM3D). Finally, we introduce an additional voxel
refinement network to refine the estimated 3D shape in voxel space. Our neural
modules only have to model object geometry for reconstruction, without having to
learn geometric projections. This enhances generalizability, along with several other
factors: during training, our modularized design forces each module of the network to
use features from the previous module, instead of directly memorizing shapes from the
training classes; also, each module only predicts outputs that are in the same domain
as its inputs (image-based or voxel-based), which leads to more regular mappings.

Our GenRe model achieves state-of-the-art performance on reconstructing shapes
both within and outside training classes. Figure 3-1 shows examples of our model
reconstructing a table and a bed from single images, after training only on cars, chairs,
and airplanes. We also present detailed analyses of how each component contributes
to the final prediction.

Our model can also be complemented with learned 3D shape priors. We show
that deep networks are also effective at capturing the prior distribution of possible 3D
shapes and, further, the learned 3D shape priors can be integrated with recognition
models for better performance on single-image 3D reconstruction.

In this chapter, we present four contributions. First, we emphasize the task of
generalizable single-image 3D shape reconstruction. Second, we propose to disentangle
geometric projections from shape reconstruction, and include spherical maps with
differentiable, deterministic projections in an integrated neural model. Third, we
demonstrate that it is possible to learn 3D shape priors with deep networks and,
further, the learned priors can assist in shape reconstruction; last, we show that
the resulting model achieves state-of-the-art performance on single-image 3D shape
reconstruction for objects within and outside training classes.

3.2 Related Work

Single-image 3D reconstruction. The problem of recovering the object shape
from a single image is challenging, as it requires both powerful recognition systems and
prior knowledge of plausible 3D shapes. Large CAD model repositories [Chang et al.,
2015] and deep networks have contributed to the significant progress in recent years,

37

Input (Novel Class) Our Reconstruction Input (Novel Class) Our Reconstruction

Figure 3-1: We study the task of generalizable single-image 3D reconstruction, aiming to
reconstruct the 3D shape of an object outside training classes. Here we show a table and a bed
reconstructed from single RGB images by our model trained on cars, chairs, and airplanes. Our
model learns to reconstruct objects outside the training classes.

mostly with voxel representations [Choy et al., 2016, Girdhar et al., 2016, Hsne et al.,
2017, Kar et al., 2015, Novotny et al., 2017, Rezende et al., 2016a, Tatarchenko et al.,
2016, Tulsiani et al., 2017b, Wu et al., 2016c, 2017c, 2018b, Zhu et al., 2018b, Yan et al.,
2016b]. Apart from voxels, some researchers have also studied reconstructing objects
in point clouds [Fan et al., 2017] or octave trees [Riegler et al., 2017, Tatarchenko
et al., 2017]. The shape priors learned in these approaches, however, are in general
only applicable to their training classes, with very limited generalization power for
reconstructing shapes from unseen categories. In contrast, our system exploits 2.5D
sketches and spherical representations for better generalization to objects outside
training classes.

Spherical projections. Spherical projections have been shown effective in 3D shape
retrieval [Esteves et al., 2018], classification [Cao et al., 2017], and finding possible
rotational as well as reflective symmetries [Kazhdan et al., 2004, 2002]. Recent
papers [Cohen et al., 2018, 2017] have studied differentiable, spherical convolution
on spherical projections, aiming to preserve rotational equivariance within a neural
network. These designs, however, perform convolution in the spectral domain with
limited frequency bands, causing aliasing and loss of high-frequency information. In
particular, convolution in the spectral domain is not suitable for shape reconstruction,
since the reconstruction quality highly depends on the high-frequency components. In
addition, the ringing effects caused by aliasing would introduce undesired artifacts.

2.5D sketch recovery. The origin of intrinsic image estimation dates back to the
early years of computer vision [Barrow and Tenenbaum, 1978]. Through the years,
researchers have explored recovering 2.5D sketches from texture, shading, or color
images [Barron and Malik, 2015, Bell et al., 2014, Horn and Brooks, 1989, Tappen
et al., 2003, Weiss, 2001, Zhang et al., 1999]. As handy depth sensors get mature [Izadi
et al., 2011], and larger-scale RGB-D datasets become available [McCormac et al., 2017,
Silberman et al., 2012, Song et al., 2017], many papers start to estimate depth [Chen
et al., 2016b, Eigen and Fergus, 2015], surface normals [Bansal and Russell, 2016,
Wang et al., 2015], and other intrinsic images [Janner et al., 2017, Shi et al., 2017] with
deep networks. Our method employs 2.5D estimation as a component, but focuses on

38

reconstructing shapes from unseen categories.

Zero- and few-shot recognition. In computer vision, abundant attempts have
been made to tackle the problem of few-shot recognition. We refer readers to the
review article {Xian et al., 2017] for a comprehensive list. A number of earlier papers
have explored sharing features across categories to recognize new objects from a few
examples [Bart and Ullman, 2005, Farhadi et al., 2009, Lampert et al., 2009, Torralba
et al., 2007]. More recently, many researchers have begun to study zero- or few-shot
recognition with deep networks [Akata et al., 2016, Antol et al., 2014, Hariharan
and Girshick, 2017, Wang et al., 2017, Wang and Hebert, 2016]. Especially, Peng
et al. [2015] explored the idea of learning to recognize novel 3D models via domain
adaptation.

While these proposed methods are for recognizing and categorizing images or
shapes, in this chapter we explore reconstructing the 3D shape of an object from
unseen classes. This problem has received little attention in the past, possibly due
to its considerable difficulty. A few imaging systems have attempted to recover 3D
shape from a single shot by making use of special cameras [Proesmans et al., 1996,
Sagawa et al., 2011]. Unlike them, we study 3D reconstruction from a single RGB
image. Very recently, researchers have begun to look at the generalization power of 3D
reconstruction algorithms [Shin et al., 2018, Jayaraman et al., 2018, Rock et al., 2015,
Funk and Liu, 2017]. Here we present a novel approach that makes use of spherical
representations for better generalization.

3.3 Dataset: Pix3D

A major challenge to building better reconstruction algorithms is the lack of
high-quality data. Existing datasets have various limitations for the task of single-
image 3D shape modeling: ShapeNet [Chang et al., 2015] is a large dataset for 3D
models, but does not come with real images; Pascal 3D+ [Xiang et al., 2014] and
ObjectNet3D [Xiang et al., 2016] have real images, but the image-shape alignment is
rough because the 3D models do not match the objects in images; IKEA [Lim et al.,
2013] has high-quality image-3D alignment, but it only contains 90 3D models and
759 images.

We desire a dataset that has all three merits-a large-scale dataset of real images
and ground-truth shapes with precise 2D-3D alignment. In this section, we introduce
our dataset, Pix3D, including 395 3D shapes of nine object categories and 10,169 real
images, capturing the exact object in diverse environments. Further, all image-shape
pairs have precise 3D annotations, giving pixel-level alignment between shapes and
their silhouettes in the images.

Figure 3-2 summarizes how we build Pix3D. We collect raw images from web

39

Data Source 1: Extending IKEA Image-Shape Pairs Final Pose Estimation

| Keypoint Levenberg-
+.... Labeling Marquardt I

Efficient PnP

Data Source 2: Scanning and
Taking Pictures Ourselves Image-Shape Pairs with Keypoints Initial Pose Estimation

Figure 3-2: The construction of Pix3D. We build the dataset in two steps. First, we collect
image-shape pairs by crawling web images of IKEA furniture as well as scanning objects and taking

pictures ourselves. Second, we align the shapes with their 2D silhouettes by minimizing the 2D
coordinates of the keypoints and their projected positions from 3D, using the Efficient PnP and the
Levenberg-Marquardt algorithm.

search engines and shapes from 3D repositories; we also take pictures and scan shapes
ourselves. Finally, we use labeled keypoints on both 2D images and 3D shapes to
align them.

3.3.1 Collecting Image-Shape Pairs

We obtain raw image-shape pairs in two ways. One is to crawl images of IKEA
furniture from the web and align them with CAD models provided in the IKEA
dataset [Lim et al., 2013]. The other is to directly scan 3D shapes and take pictures.

Extending IKEA. The IKEA dataset contains 219 high-quality 3D models of IKEA
furniture, but has only 759 images for 90 shapes. Therefore, we choose to keep the
3D shapes from IKEA dataset, but expand the set of 2D images using online image
search engines and crowdsourcing.

For each 3D shape, we first search for its corresponding 2D images through Google,
Bing, and Baidu, using its IKEA model name as the keyword. We obtain 104,220
images for the 219 shapes. We then use Amazon Mechanical Turk (AMT) to remove
irrelevant ones. For each image, we ask three AMT workers to label whether this
image matches the 3D shape or not. For images whose three responses differ, we ask
three additional workers and decide whether to keep them based on majority voting.
We end up with 14,600 images for the 219 IKEA shapes.

40

3D scan. We scan non-IKEA objects with a Structure Sensor* mounted on an iPad.
We choose to use the Structure Sensor because its mobility enables us to capture a
wide range of shapes.

The iPad RGB camera is synchronized with the depth sensor at 30 Hz, and
calibrated by the Scanner App provided by Occipital, Inc.t The resolution of RGB
frames is 2592x 1936, and the resolution of depth frames is 320 x240. For each object,
we take a short video and fuse the depth data to get its 3D mesh by using fusion
algorithm provided by Occipital, Inc. We also take 10-20 images for each scanned
object in front of various backgrounds from different viewpoints, making sure the
object is neither cropped nor occluded. In total, we have scanned 209 objects and
taken 2,313 images. Combining these with the IKEA shapes and images, we have 418
shapes and 16,913 images altogether.

3.3.2 Image-Shape Alignment

To align a 3D CAD model with its projection in a 2D image, we need to solve for
its 3D pose (translation and rotation), and the camera parameters used to capture
the image.

We use a keypoint-based method inspired by Lim et al. [20131. Denote the keypoints'
2D coordinates as X2D = X1i, X2 , •- , xn} and their corresponding 3D coordinates
as X3D = {X1, X 2, - - - , Xn}. We solve for camera parameters and 3D poses that

minimize the reprojection error of the keypoints. Specifically, we want to find the
projection matrix P that minimizes

£(P; X3D, X2D) Projp (Xi) - xill, (3.1)
22

where Projp(-) is the projection function.

Under the central projection assumption (zero-skew, square pixel, and the optical
center is at the center of the frame), we have P = K[R|T], where K is the camera
intrinsic matrix; R E R3x 3 and T E R3 represent the object's 3D rotation and 3D
translation, respectively. We know

f 0 w12
K = 0 f h/2 ,(3.2)

0 0 1

where f is the focal length, and w and h are the width and height of the image.
Therefore, there are altogether seven parameters to be estimated: rotations 0, 4, 4',

*https: //structure.io

thttps://occipital. com

41

translations x, y, z, and focal length f (Rotation matrix R is determined by 0, #, and

).
To solve Equation 3.1, we first calculate a rough 3D pose using the Efficient PnP

algorithm [Lepetit et al., 2009] and then refine it using the Levenberg-Marquardt
algorithm [Levenberg, 1944, larquardt, 1963], as shown in Figure 3-2. Details of each
step are described below.

Efficient PnP. Perspective-n-Point (PnP) is the problem of estimating the pose of
a calibrated camera given paired 3D points and 2D projections. The Efficient PnP
(EPnP) algorithm solves the problem using virtual control points [Levenberg, 1944].
Because EPnP does not estimate the focal length, we enumerate the focal length f
from 300 to 2,000 with a step size of 10, solve for the 3D pose with each f, and choose
the one with the minimum projection error.

The Levenberg-Marquardt algorithm (LMA). We take the output of EPnP
with 50 random disturbances as the initial states, and run LMA on each of them.
Finally, we choose the solution with the minimum projection error.

Implementation details. For each 3D shape, we manually label its 3D keypoints.
The number of keypoints ranges from 8 to 24. For each image, we ask three AMT
workers to label if each keypoint is visible on the image, and if so, where it is. We
only consider visible keypoints during the optimization.

The 2D keypoint annotations are noisy, which severely hurts the performance of
the optimization algorithm. We try two methods to increase its robustness. The first
is to use RANSAC. The second is to use only a subset of 2D keypoint annotations.
For each image, denote C = {c1 c2, c3} as its three sets of human annotations. We

then enumerate the seven nonempty subsets C C C; for each keypoint, we compute
the median of its 2D coordinates in Ck. We apply our optimization algorithm on every
subset Ck, and keep the output with the minimum projection error. After that, we let
three AMT workers choose, for each image, which of the two methods offers better
alignment, or neither performs well. At the same time, we also collect attributes (i.e.,
truncation, occlusion) for each image. Finally, we fine-tune the annotations ourselves
using the GUI offered in ObjectNet3D [Xiang et al., 2016]. Altogether there are 395
3D shapes and 10,069 images. Sample 2D-3D pairs are shown in Figure 3-3.

3.4 Inverting a Graphics Engine by Modeling Surfaces

In this section we introduce MarrNet, a single-image 3D shape reconstruction
algorithm using depth maps as an intermediate representation. As mentioned in
Section 3.1, MarrNet is the basis of GenRe, the main algorithm of the chapter.

MarrNet contains three parts: first, a 2.5D sketch estimator, which predicts the
depth, surface normal, and silhouette images of the object (Figure 3-4a); second,

42

3D Shape Image Alignment 3D Shape Image Alignment 3D Shape Image Alignment

Figure 3-3: Sample images and shapes in Pix3D. From left to right: 3D shapes, 2D images,
and 2D-3D alignment. Rows 1-2 show some chairs we scanned, rows 3-4 show a few IKEA objects,
and rows 5-6 show some objects of other categories we scanned.

a 3D shape estimator, which infers 3D object shape using a voxel representation

(Figure 3-4b); third, a reprojection consistency function, enforcing the alignment

between the estimated 3D structure and inferred 2.5D sketches (Figure 3-4c).

3.4.1 2.5D Sketch Estimation

The first component of MarrNet (Figure 3-4a) takes a 2D RGB image as input,

and predicts its 2.5D sketch: surface normal, depth, and silhouette. The goal of the

2.5D sketch estimation step is to distill intrinsic object properties from input images,
while discarding properties that are non-essential for the task of 3D reconstruction,
such as object texture and lighting.

We use an encoder-decoder network architecture for 2.5D sketch estimation. Our

encoder is a ResNet-18 [He et al., 2016], encoding a 256x256 RGB image into

512 feature maps of size 8x8. The decoder contains four sets of 5x5 transposed

convolutional and ReLU layers, followed by four sets of 1 x1 convolutional and ReLU

43

2D Image

2.5D Sketches

(c) Reprojection Consistency

normal

3D 2

(a) 2.5D Sketch Estimation silho..uete (b) 3D Shape Estimation Nr

Shape

al Ball

Figure 3-4: Our model (MarrNet) has three major components: (a) 2.5D sketch estimation,
(b) 3D shape estimation, and (c) a loss function for reprojection consistency. MarrNet first recovers
object normal, depth, and silhouette images from an RGB image. It then regresses the 3D shape
from the 2.5D sketches. In both steps, it uses an encoding-decoding network. It finally employs a
reprojection consistency loss to ensure the estimated 3D shape aligns with the 2.5D sketches. The
entire framework can be trained end-to-end.

layers. It outputs the corresponding depth, surface normal, and silhouette images,
also at the resolution of 256x256.

3.4.2 3D Shape Estimation

The second part of our framework (Figure 3-4b) infers 3D object shape from
estimated 2.5D sketches. Here, the network focuses on learning the shape prior that
explains input well. As it takes only surface normal and depth images as input, it can
be trained on synthetic data, without suffering from the domain adaption problem: it

is straightforward to render nearly perfect 2.5D sketches, but much harder to render
realistic images.

The network architecture is inspired by the TL network [Girdhar et al., 2016],
and the 3D-VAE-GAN [Wu et al., 2016c], again with an encoding-decoding style. It
takes a normal image and a depth image as input (both masked by the estimated

silhouette), maps them to a 200-dim vector via five sets of convolutional, ReLU, and
pooling layers, followed by two fully connected layers. The detailed encoder structure

can be found in Girdhar et al. [2016]. The vector then goes through a decoder, which
consists of five transposed convolutional and ReLU layers to output a 128 x 128 x128
voxel-based reconstruction of the input. The detailed decoder structure can be found

in Wu et al. [2016c].

3.4.3 Reprojection Consistency

There have been some attempts to enforce the consistency between estimated 3D

shape and 2D representations in a neural network [Yan et al., 2016b, Rezende et al.,

2016a, Wu et al., 2016c, Tulsiani et al., 2017b]. Here, we explore novel ways to include

44

rT1 MZ TIZ Z
z 4 Z 0 n=

Voxels that should be 1 for 9: Voxels that should be 0 for Voxels that should be 1 for reprojected
reprojected depth consistency iK- reprojected depth consistency surface normal consistency

Figure 3-5: Reprojection consistency between 2.5D sketches and 3D shape. Left and middle:

the criteria for depths and silhouettes; right: the criterion for surface normals. See Section 3.4.3 for

details.

a reprojection consistency loss between the predicted 3D shape and the estimated

2.5D sketch, consisting of a depth reprojection loss and a surface normal reprojection

loss.

We use v,,z to represent the value at position (x, y, z) in a 3D voxel grid, assuming

that v,y,z E [0, 1], Vx, y, z. We use dx,y to denote the estimated depth at position

(x, y), and nx,y = (na, nb, nc) to denote the estimated surface normal. We assume

orthographic projection in this work.

Depths. The projected depth loss tries to guarantee that the voxel with depth

Vx,y,d, should be 1, and all voxels in front of it should be 0. This ensures that the

estimated 3D shape matches the estimated depth values.

As illustrated in Figure 3-5a, we define projected depth loss as follows:

oV2y~z z < dx,y

Ldepth(X, y, Z) - (1 - x,z 2 : (3.3)

0, z > dx,y

The gradients are

DLdepth (X, y, z) r , z < d

= 2(ox,y,z - 1), z = dxy. (3.4)

0, z > dx,y

When dx,y = oo, our depth criterion reduces to a special case - the silhouette

criterion. As shown in Figure 3-5b, for a line that has no intersection with the shape,
all voxels in it should be 0.

Surface normals. As vectors nx = (0, -nc, nb) and ny = (-nc, 0, na) are orthogonal

to the normal vector nx,y = (na, nb, nc), we can normalize them to obtain two vectors,

45

n= (0, -1, nb/nc) and n'= (-1, 0, na/nc), both on the estimated surface plane

at (x, y, z). The projected surface normal loss tries to guarantee that the voxels at

(x, y, z) ± n' and (x, y, z) ± n+y should be 1 to match the estimated surface normals.
These constraints only apply when the target voxels are inside the estimated silhouette.

As shown in Figure 3-5c, let z = dx,,, the projected surface normal loss is defined
as

Lnormai(x y, z) = - + (1 -ex,Y+,z) +

(1 -x,Y,z+n + i - ox+i,y,z- . (3.5)

Then the gradients along the x direction are

&Lnormai(X, y, z) 2 - and Lnorma y, Z)-
=9x1YZ 2a ox1 c~~ -vx 1 n e+, e-a-1

Bo-i nc ~ "cBo+,Y,z-ne"

(3.6)
The gradients along the y direction are similar.

3.5 Integrating 3D Shape Priors

In this section, we introduce algorithms that learn 3D shape priors-the underlying
distribution of 3D shapes. The learned shape priors can be used to synthesize new
shapes; they can also be integrated into models such as MarrNet for better results on
shape reconstruction.

3.5.1 Learning Priors with 3D Generative Adversarial Networks

As proposed in Goodfellow et al. [2014], the Generative Adversarial Network (GAN)
consists of a generator and a discriminator, where the discriminator tries to classify
real objects and objects synthesized by the generator, and the generator attempts to
confuse the discriminator. Here, we introduce 3D Generative Adversarial Networks
(3D-GAN), leveraging GANs for 3D shape generation. The generator G in 3D-GAN
maps a 200-dimensional latent vector z, randomly sampled from a probabilistic latent
space, to a 64 x 64 x 64 cube, representing an object G(z) in 3D voxel space. The
discriminator D outputs a confidence value D(x) of whether a 3D object input x is
real or synthetic.

Following Goodfellow et al. [2014], we use binary cross entropy as the classification
loss, and present our overall adversarial loss function as

L3D-GAN = log D(x) + log(1 - D(G(z))), (3.7)

where x is a real object in a 64 x 64 x 64 space, and z is a randomly sampled noise

46

512 x4x4
256x8x8x8 128x16x16x161 64x32x32 x32

Z G(z) in 3D Voxel Space
64x64x64

Figure 3-6: The generator in 3D-GAN. The discriminator mostly mirrors the generator.

vector from a distribution p(z). In this work, each dimension of z is an i.i.d. uniform

distribution over [0, 1].

Network structure. Inspired by Radford et al. [2016], we design an all- convolutional

neural network to generate 3D objects. As shown in Figure 3-6, the generator consists

of five volumetric transposed convolutional layers with kernel size 4 x 4 x 4 and stride

2, with batch normalization and ReLU layers added in between and a sigmoid layer at

the end. The discriminator basically mirrors the generator, except that it uses Leaky

ReLU [Maas et al., 2013] instead of ReLU layers. There are no pooling or linear layers

in our network.

Training details. A straightforward training procedure is to update both the gen-

erator and the discriminator in every batch. However, the discriminator usually learns

much faster than the generator, possibly because generating objects in a 3D voxel space

is more difficult than differentiating between real and synthetic objects [Goodfellow

et al., 2014, Radford et al., 2016]. It then becomes hard for the generator to extract

signals for improvement from a discriminator that is way ahead, as all examples it

generated would be correctly identified as synthetic with high confidence. Therefore,

to keep the training of both networks in pace, we employ an adaptive training strategy:

for each batch, the discriminator only gets updated if its accuracy in the last batch is

not higher than 80%. We observe this helps to stabilize the training and to produce

better results. We set the learning rate of G to 0.0025, D to 10', and use a batch

size of 100. We use ADAM [Kingma and Ba, 2015] for optimization, with # = 0.5.

Results on 3D shape generation. Figure 3-7 shows 3D) objects generated by our

3D-GAN. For this experiment, we train one 3D-GAN for each object category. For

generation, we sample 200-dimensional vectors following an i.i.d. uniform distribution

over [0, 1], and render the largest connected component of each generated object. We

compare 3D-GAN with Wu et al. [2015b], the state-of-the-art in 3D object synthesis

from a probabilistic space, and with a volumetric autoencoder, whose variants have

been employed by multiple recent methods [Girdhar et al., 2016, Sharma et al., 2016].

47

Our results (64 x 64 x 64)

Gun * -.- Mq

Chair

Car

Sofa

TablemT

.

Objects generated by Wu et al. [2015b] (30 x 30 x 30)

Table Car S

Objects generated by a volumetric autoencoder (64 x 64 x 64)

Chair Table Sofa

Figure 3-7: Shapes generated by 3D-GAN from vectors, without a reference image/shape.
We show, for the last two shapes in each row, the nearest neighbor retrieved from the training
set. We see that the generated shapes are similar, but not identical, to examples in the training
set. For comparison, we show shapes generated by the previous state-of-the-art [Wu et al., 2015b]
(results supplied by the authors). We also show shapes generated by autoencoders trained on a single
category, with latent vectors sampled from empirical distribution. See text for details.

Because an autoencoder does not restrict the distribution of its latent representation,
we compute the empirical distribution po(z) of the latent vector z of all training

examples, fit a Gaussian distribution go to po, and sample from go. Our algorithm

produces 3D objects with much higher quality and more fine-grained details.

Compared with previous methods, our 3D-GAN can synthesize high-resolution 3D
objects with detailed geometries. Figure 3-8 shows both high-res voxels and down-

sampled low-res voxels for comparison. Note that it is relatively easy to synthesize a

low-res object, but is much harder to obtain a high-res one due to the rapid growth of
3D space. However, object details are only revealed in high resolution.

A natural concern to our generative model is whether it is simply memorizing

objects from training data. To demonstrate that the network can generalize beyond
the training set, we compare synthesized objects with their nearest neighbor in the

48

NN

Z; A

410 "

10

High-res Low-res High-res Low-res High-res Low-res High-res Low-res

Figure 3-8: High-resolution shapes. We present each shape at high resolution (64 x 64 x 64)
on the left and at low resolution (down-sampled to 16 x 16 x 16) on the right. While humans can
perceive object structure at a relatively low resolution, fine details and variations only appear in
high-res objects.

(a) Voxel (b) Naturalness
It 4.

Image Depth Shape

(I) 2.5D Sketch Estimation (II) 3D Shape Completion (III) Shape Naturalness

Figure 3-9: ShapeHD contains three components: (I) a 2.5D sketch estimator that predicts
depth, surface normal and silhouette images from a single image; (II) a 3D shape completion
module that regresses 3D shapes from silhouette-masked depth and surface normal images; (III)
an adversarially pretrained convolutional net that serves as the naturalness loss function. While
fine-tuning the 3D shape completion net, we use two losses: a supervised loss on the output shape,
and a naturalness loss offered by the pretrained discriminator.

training set. Since the retrieval objects based on P distance in the voxel space are

visually very different from the queries, we use the output of the last convolutional layer

in our discriminator (with a 2x pooling) as features for retrieval instead. Figure 3-7

shows that generated objects are similar, but not identical, to the nearest examples in

the training set.

3.5.2 Integrating Priors into Reconstruction Models

We now present ShapeHD, a single-image 3D reconstruction model that extends

MarrNet by incorporating shape priors learned by 3D-GAN.

ShapeHD consists of three components: a 2.5D sketch estimator and a 3D shape

estimator that jointly predict a 3D shape from an RGB image via 2.5D sketches

(Figure 3-9-I and Figure 3-9-I, inspired by MarrNet Wu et al. [2017c]), and a deep

naturalness model that penalizes the shape estimator if the predicted shape is unnatural

(Figure 3-9-Ill). Models trained with a supervised reconstruction loss alone often

generate blurry mean shapes. Our learned naturalness model helps to avoid this issue.

49

-I

Input ShapeHD alterative

-

ml
I

Input

Figure 3-10: Reconstruction results of ShapeHD on PASCAL 3D+ [Xiang et al., 2014]. From
left to right: input, two views of reconstructions from ShapeHlD, and reconstructions by the best
alternative in Table 3.1. Assisted by the learned naturalness losses, ShapeHD recovers accurate 3D
shapes with fine details.

We pre-train a 3D generative adversarial network [Wu et al., 2016c] to determine
whether a shape is realistic. Its generator synthesizes a 3D shape from a randomly
sampled vector, and its discriminator distinguishes generated shapes from real ones.
Therefore, the discriminator has the ability to model the real shape distribution and
can be used as a naturalness loss for the shape completion network. The generator is
not involved in our later training process. Following 3D-GAN, we use 5 transposed
convolutional layers with batch normalization and ReLU for the generator, and 5
convolutional layers with leaky ReLU for the discriminator.

Due to the high dimensionality of 3D shapes (128x128x128), training a GAN
becomes highly unstable. To deal with this issue, we follow Gulrajani et al. [2017]
and use the Wasserstein GAN loss with a gradient penalty to train our adversarial
generative network. Specifically,

LWGAN = IE [D(z)] - E [D(x)] + A E [(||v. D(i)||2 -- 1)2],
x~P9 x~Pr x~ P

(3.8)

where D is the discriminator, P and P, are distributions of generated shapes and
real shapes, respectively. The last term is the gradient penalty from Gulrajani et al.
[2017]. During training, the discriminator attempts to minimize the overall loss LWGAN

50

ShapeHD aBest
ShapeHD alternative

(a) Input (b) AtlasNet (c) DRC (3D) (d) ShapeHD (e) GT

Figure 3-11: Reconstruction results of ShapeHD on Pix3D {Sun et al., 2018b]. For each input
image, we show reconstructions by AtlasNet, DRC, our ShapeHD, and ground truth. Our ShapeHD

reconstructs complete 3D shapes with fine details that resemble the ground truth.

while the generator attempts to maximize the loss via the first term in Equation 3.8,

so we can define our naturalness loss as Lnaturai = - E [D(z)], where Pc are the
~Pc_

reconstructed shapes from our completion network.

Results on shape reconstruction. We evaluate on two real datasets, PASCAL

3D+ [Xiang et al., 2014] and Pix3D [Sun et al., 2018b]. Here, we train our model on

synthetic ShapeNet renderings and use the pre-trained models released by the authors

as baselines. All methods take ground truth 3D shapes as supervision during training.

As shown in Figures 3-10 and 3-11, ShapeHD works well, inferring a reasonable

shape even in the presence of strong self-occlusions. In particular, in Figure 3-10, we

compare our reconstructions with the best-performing alternatives (DRC on chairs

and airplanes, and AtlasNet on cars). In addition to preserving details, our model

captures the shape variations of the objects, while the competitors produce similar

reconstructions across instances.

Quantitatively, Tables 3.1 and 3.2 suggest that ShapeHD performs significantly

better than the other methods in almost all metrics. The only exception is the CD

on PASCAL 3D+ cars, where OGN performs the best. However, as PASCAL 3D+

only has around 10 CAD models for each object category as ground truth 3D shapes,

the ground truth labels and the scores can be inaccurate, failing to reflect human

perception [Tulsiani et al., 2017b].

51

Methods CD
chair car plane avg

40-

2~ 0 -m -3D-R2N2 [Choy et al., 2016] 0.238 0.305 0.305 0.284 20

DRC (3D) [Tulsiani et al., 2017b] 0.158 0.099 0.112 0.122
OGN [Tatarchenko et al., 2017] - 0.087 - -ShapeHD (ours) 0.137 0.129 0.0940.119 0 1 2 3 4 5 6 7 8 9 10

Users (of 10) that prefer ours

(a) CDs on PASCAL 3D+ [Xiang et al., 2014] (b) Human Study results

Table 3.1: Reconstruction errors of ShapeHD on the PASCAL 3D+ dataset [Xiang et al.,
20141. (a) We compare our ShapeHD with 3D-R2N2, DRC, and OGN. PSGN and AtlasNet are
not evaluated, because they require object masks as additional input, but PASCAL 3D+ has only
inaccurate masks. (b) In the behavioral study, most users prefer our constructions on most images.
Overall, our reconstructions are preferred 64.5% of the time to OGN's.

3D-R2N2 DRC (3D) PSGN* AtlasNet* ShapeHD

IoU (323) 0.136 0.265 - - 0.284
IoU (1283) 0.089 0.185 - - 0.205

CD 0.239 0.160 0.199 0.126 0.123

Table 3.2: Reconstruction errors of ShapeHD on the Pix3D dataset [Sun et al., 2018b]. All
methods were trained with full 3D supervision on rendered images of ShapeNet objects. *While
3D-R2N2, DRC, and ShapeHD take a single image as input, PSGN and AtlasNet additionally require
the ground truth mask as input. Also, PSGN and AtlasNet generate surface point clouds without
guaranteeing watertight meshes and therefore cannot be evaluated in IoU.

We therefore conduct an additional user study, where we show an input image and
its two reconstructions (from ShapeHD and from OGN, each in two views) to users on
Amazon Mechanical Turk, and ask them to choose the shape that looks closer to the
object in the image. For each image, we collect 10 responses from "Masters" (workers
who have demonstrated excellence across a wide range of HITs). Table 3.1b suggests
that on most images, most users prefer our reconstruction to OGN's. In general, our
reconstructions are preferred 64.5% of the time.

3.6 Generalizable Reconstruction

In this section, we present our main contribution of this chapter, Generalizable
Reconstruction (GenRe), a single-image 3D reconstruction algorithm that generalizes
to unseen classes. As discussed earlier, single-image reconstruction algorithms learn
a parametric function f2D,3D that maps a 2D image to a 3D shape. We tackle the
problem of generalization by regularizing f2D-3D. The key regularization we impose is
to factorize f2D-- 3D into geometric projections and learnable reconstruction modules.

Our GenRe model consists of three learnable modules, connected by geometric

52

Geometric Projection
.. __ Network Module

7 a ,

RGB Image Depth Partial Inpainted ProjectedVoxels Final 3D Shape

Spherical Map Spherical Map

Figure 3-12: Our model for generalizable single-image 3D reconstruction (GenRe) has

three components: (a) a depth estimator that predicts depth in the original view from a single RGB

image, (b) a spherical inpainting network that inpaints a partial, single-view spherical map, and (c) a

voxel refinement network that integrates two backprojected 3D shapes (from the inpainted spherical

map and from depth) to produce the final output.

projections as shown in Figure 3-12. As in MarrNet and ShapeHD, the first module is

a single-view depth estimator f2D,2.5D (Figure 3-12a), taking a color image as input

and estimates its depth map. As the depth map can be interpreted as the visible

surface of the object, the reconstruction problem becomes predicting the object's

complete surface given this partial estimate.

As 3D surfaces are hard to parametrize efficiently, we use spherical maps as

a surrogate representation. A geometric projection module (p2.5D-+S) converts the

estimated depth map into a spherical map, referred to as the partial spherical map. It

is then passed to the spherical map inpainting network (cses, Figure 3-12b) to predict

an inpainted spherical map, representing the object's complete surface. Another

projection module (pS,3D) projects the inpainted spherical map back to the voxel

space.

As spherical maps only capture the outermost surface toward the sphere, they

cannot handle self-occlusion along the sphere's radius. We use a voxel refinement

module (Figure 3-12c) to tackle this problem. It takes two 3D shapes as input, one

projected from the inpainted spherical map and the other from the estimated depth

map, and outputs a final 3D shape.

3.6.1 Single-View Depth Estimator

The first component of our network predicts a depth map from an image with

a clean background. Using depth as an intermediate representation facilitates the

reconstruction process by distilling essential geometric information from the input

image [Wu et al., 2017c].

Further, depth estimation is a class-agnostic task: shapes from different classes

often share common geometric structure, despite distinct visual appearances. Take

beds and cabinets as examples. Although they are of different anatomy in general,

both have perpendicular planes and hence similar patches in their depth images. We

demonstrate this both qualitatively and quantitatively in Section 3.7.4.

53

RGB Input Inpainted Ground Truth RGB Input Inpainted Ground Truth

Figure 3-13: Examples of our spherical inpainting module generalizing to new classes.
Trained on chairs, cars, and planes, the module completes the partially visible leg of the table (red
boxes) and the unseen cabinet bottom (purple boxes) from partial spherical maps projected from
ground-truth depth.

3.6.2 Spherical Map Inpainting Network

With spherical maps, we cast the problem of 3D surface completion into 2D
spherical map inpainting. Empirically we observe that networks trained to inpaint
spherical maps generalize well to new shape classes (Figure 3-13). Also, compared

with voxels, spherical maps are more efficient to process, as 3D surfaces are sparse in
nature; quantitatively, as we demonstrate in Section 3.7.5 and Section 3.7.6, using
spherical maps results in better performance.

As spherical maps are signals on the unit sphere, it is tempting to use network

architectures based on spherical convolution [Cohen et al., 2018]. They are however not
suitable for our task of shape reconstruction. This is because spherical convolution is
conducted in the spectral domain. Every conversion to and from the spectral domain
requires capping the maximum frequency, causing extra aliasing and information
loss. For tasks such as recognition, the information loss may be negligible compared
with the advantage of rotational invariance offered by spherical convolution. But for
reconstruction, the loss leads to blurred output with only low-frequency components.
We empirically find that standard convolution works much better than spherical
convolution under our setup.

3.6.3 Voxel Refinement Network

Although an inpainted spherical map provides a projection of an object's surface
onto the unit sphere, the surface information is lost when self-occlusion occurs. We use
a refinement network that operates in the voxel space to recover the lost information.
This module takes two voxelized shapes as input, one projected from the estimated
depth map and the other from the inpainted spherical map, and predicts the final
shape. As the occluded regions can be recovered from local neighboring regions, this
network only needs to capture local shape priors and is therefore class-agnostic. As
shown in the experiments, when provided with ground-truth depth and spherical maps,

54

this module performs consistently well across training and unseen classes.

3.6.4 Technical Details

Single-view depth estimator. Following Wu et al. [2017c], we use an encoder-
decoder network for depth estimation. Our encoder is a ResNet-18 [He et al., 20161,
encoding a 256x256 RGB image into 512 feature maps of size lx1. The decoder is
a mirrored version of the encoder, replacing all convolution layers with transposed
convolution layers. In addition, we adopt the U-Net structure [Ronneberger et al., 2015]
and feed the intermediate outputs of each block of the encoder to the corresponding
block of the decoder. The decoder outputs the depth map in the original view at the
resolution of 256x256. We use an 2 loss between predicted and target images.

Spherical map inpainting network. The spherical map inpainting network has
a similar architecture as the single-view depth estimator. To reduce the gap between
standard and spherical convolutions, we use periodic padding to both inputs and
training targets in the longitude dimension, making the network aware of the periodic
nature of spherical maps.

Voxel refinement network. Our voxel refinement network takes as input voxels
projected from the estimated, original-view depth and from the inpainted spherical
map, and recovers the final shape in voxel space. Specifically, the encoder takes as
input a two-channel 128x 128x 128 voxel grid (one for coarse shape estimation and the
other for surface estimation), and outputs a 320-D latent vector. In decoding, each
layer takes an extra input directly from the corresponding level of the encoder.

Geometric projections. We make use of three geometric projections: a depth to
spherical map projection, a depth map to voxel projection, and a spherical map to
voxel projection. For the depth to spherical map projection, we first convert depth into
3D point clouds using camera parameters, and then turn them into surfaces with the
marching cubes algorithm [Lewiner et al., 2003]. Then, the spherical representation is
generated by casting rays from each UV coordinate on the unit sphere to the sphere's
center. This process is not differentiable. To project depth or spherical maps into
voxels, we first convert them into 3D point clouds. Then, a grid of voxels is initialized,
where the value of each voxel is determined by the average distance between all the
points inside it to its center. Then, for all the voxels that contain points, we negate
its value and add it by 1. This projection process is fully differentiable.

Training. We train our network with viewer-centered 3D supervision, where the 3D
shape is rotated to match the object's pose in the input image. This is in contrast to
object-centered approaches, where the 3D supervision is always in a predefined pose
regardless of the object's pose in the input image. Object-centered approaches are

55

less suitable for reconstructing shapes from new categories, as predefined poses are
unlikely to generalize across categories.

We first train the 2.5D sketch estimator with RGB images and their corresponding
depth images, all rendered with ShapeNet [Chang et al., 20151 objects (see Section 3.7.2
and Appendix A for details). We then train the spherical map inpainting network
with single-view (partial) spherical maps and the ground-truth full spherical maps as
supervision. Finally, we train the voxel refinement network on coarse shapes predicted
by the inpainting network as well as 3D surfaces backprojected from the estimated
2.5D sketches, with the corresponding ground-truth shapes as supervision. We then
jointly fine-tune the spherical inpainting module and the voxel refinement module
with both 3D shape and 2D spherical map supervision.

3.7 Experiments

3.7.1 Baselines

We organize baselines based on the shape representation they use.

Voxels. Voxels are arguably the most common representation for 3D shapes in the
deep learning era due to their amenability to 3D convolution. For this representation,
we consider DRC [Tulsiani et al., 2017b] and MarrNet [Wu et al., 2017c] as baselines.
Our model uses 1283 voxels of [0, 1] occupancy.

Mesh and point clouds. Considering the cubic complexity of the voxel represen-
tation, recent papers have explored meshes [Groueix et al., 2018, Yao et al., 2018] and
point clouds [Fan et al., 2017] in the context of neural networks. In this work, we
consider AtlasNet [Groueix et al., 2018] as a baseline.

Multi-view maps. Another way of representing 3D shapes is to use a set of multi-
view depth images [Soltani et al., 2017, Shin et al., 2018, Jayaraman et al., 2018]. We
compare with the model from Shin et al. [2018] in this regime.

Spherical maps. As introduced in Section 3.1, one can also represent 3D shapes
as spherical maps. We include two baselines with spherical maps: first, a one-step
baseline that predicts final spherical maps directly from RGB images (GenRe-1step);
second, a two-step baseline that first predicts single-view spherical maps from RGB
images and then inpaints them (GenRe-2step). Both baselines use the aforementioned
U-ResNet image-to-image network architecture.

To provide justification for using spherical maps, we provide a baseline (3D
Completion) that directly performs 3D shape completion in voxel space. This baseline
first predicts depth from an input image; it then projects the depth map into the voxel
space. A completion module takes the projected voxels as input and predicts the final
result.

56

To provide a performance upper bound for our spherical inpainting and voxel
refinement networks (b and c in Figure 3-12), we also include the results when our
model has access to ground-truth depth in the original view (GenRe-Oracle) and to
ground-truth full spherical maps (GenRe-SphOracle).

3.7.2 Data

We use ShapeNet [Chang et al., 2015] renderings for network training and test-
ing. Specifically, we render each object in 20 random views. In addition to RGB
images, we also render their corresponding ground-truth depth maps. We use Mit-
suba [Jakob, 2010], a physically-based rendering engine, for all our renderings. Please
see Appendix A for details on data generation and augmentation.

For all models, we train them on the three largest ShapeNet classes (cars, chairs,
and airplanes), and test them on the next 10 largest classes: bench, vessel, rifle, sofa,
table, phone, cabinet, speaker, lamp, and display. Besides ShapeNet renderings, we
also test these models, trained only on synthetic data, on real images from Pix3D [Sun
et al., 2018b], a dataset of real images and the ground-truth shape of every pictured
object. In Section 3.8, we also test our model on non-rigid shapes such as humans
and horses [Bronstein et al., 2008] and on highly regular shape primitives.

3.7.3 Metrics

Because neither depth maps nor spherical maps provide information inside shapes,
our model predicts only surface voxels that are not guaranteed watertight. Conse-
quently, intersection over union (IoU) cannot be used as an evaluation metric. We
hence evaluate reconstruction quality using Chamfer distance (CD) [Barrow et al.,
19771, defined as

CD(S 1 ,S 2) = 1 in| |X-yl l2+ Ymin| |- Y12, (3.9)
|S1| Xc,YCS2 |S CS xCS1

where Si and S2 are sets of points sampled from surfaces of the 3D shape pair. For
models that output voxels, including DRC and our GenRe model, we sweep voxel
thresholds from 0.3 to 0.7 with a step size of 0.05 for isosurfaces, compute CD with
1,024 points sampled from all isosurfaces, and report the best average CD for each
object class.

Shin et al. [2018] reported that object-centered supervision produces better recon-
structions for objects from the training classes, whereas viewer-centered supervision
is advantaged in generalizing to novel classes. Therefore, for DRC and AtlasNet, we
train each network with both types of supervision. Note that AtlasNet, when trained
with viewer-centered supervision, tends to produce unstable predictions that render
CD meaningless. Hence, we only present CD for the object-centered AtlasNet.

57

Input Prediction Ground Truth

(0.14 Non-mzeroa lyb~e:
02 Training Novel Test

C0 Casses Classes 0

4-0

0.02

P/feCar Chair::Bench Vessel F/fle Sofa 7
*abIe PhonteCabin ePeakerLaM"Oisplay,

TetClasses Sorted in Decreasing Similarity to Training Classes

Figure 3-14: Results on depth prediction. Left: Our single-view depth estimator, trained on
cars, chairs, and airplanes, generalizes to novel classes: buses, trains, and tables. Right: As the novel
test class gets increasingly dissimilar to the training classes (left to right), depth prediction does not
show statistically significant degradation (p > 0.05).

Models Seen Unseen

Bch Vsl Rfl Sfa Tbl Phn Cbn Spk Lmp Dsp Avg

Object- DRC .072 .112 .100 .104 .108 .133 .199 .168 .164 .145 .188 .142
Centered AtlasNet .059 .102 .092 .088 .098 .130 .146 .149 .158 .131 .173 .127

DRC .092 .120 .109 .121 .107 .129 .132 .142 .141 .131 .156 .129
MarrNet .070 .107 .094 .125 .090 .122 .117 .125 .123 .144 .149 .120
Multi-View .065 .092 .092 .102 .085 .105 .110 .119 .117 .142 .142 .111

Viewer- 3D Completion .076 .102 .099 .121 .095 .109 .122 .131 .126 .138 .141 .118
Vewter- GenRe-1step .063 .104 .093 .114 .084 .108 .121 .128 .124 .126 .151 .115
Centered GenRe-2step .061 .098 .094 .117 .084 .102 .115 .125 .125 .118 .118 .110

GenRe (Ours) .064 .089 .092 .112 .082 .096 .107 .116 .115 .124 .130 .106

GenRe-Oracle .045 .050 .048 .031 .059 .057 .054 .076 .077 .060 .060 .057
GenRe-SphOracle .034 .032 .030 .021 .044 .038 .037 .044 .045 .031 .040 .036

Table 3.3: Reconstruction errors (in CD) of the training classes and 10 novel classes
from ShapeNet, ordered from the most to the least similar to the training classes. We compare
with DRC [Tulsiani et al., 2017b], AtlasNet [Groueix et al., 2018], MarrNet [Wu et al., 2017c], and
Multi-View representations [Shin et al., 20181. Our model is viewer-centered by design, but achieves
performance on par with the object-centered state of the art (AtlasNet) in reconstructing the seen
classes. As for generalization to novel classes, our model outperforms the state of the art across 9
out of the 10 classes.

3.7.4 Results on Depth Estimation

We show qualitative and quantitative results on depth estimation quality across

categories. As shown in Figure 3-14, our depth estimator learns effectively the concept

of near and far, generalizes well to unseen categories, and does not show statistically

significant deterioration as the novel test class gets increasingly dissimilar to the

training classes, laying the foundation for the generalization power of our approach.

Formally, the dissimilarity from test class Ctest to training classes Ctin is defined as

(1/|Ctest|) Zxectst minyectrain CD(x, y).

58

3
1

4 01914,*f

5 10

Input Best Baseline GenRe (Ours) Ground Truth Input Best Baseline GenRe (Ours) Ground Truth

Figure 3-15: Single-image 3D reconstructions of objects within and beyond training
classes. Each row from left to right: the input image, two views from the best-performing baseline
for each testing object (1-4, 6-9: AtlasNet; 5, 10: Shin et al. [2018]), two views of our GenRe
predictions, and the ground truth. All models are trained on the same dataset of cars, chairs, and
airplanes.

3.7.5 Reconstructing Novel Objects from Training Classes

We present results on generalizing to novel objects from the training classes. All
models are trained on cars, chairs, and airplanes, and tested on unseen objects from

the same three categories.

As shown in Table 3.3, our GenRe model is the best-performing viewer-centered

model. It also outperforms most object-centered models except AtlasNet. GenRe's

preformance is impressive given that object-centered models tend to perform much

better on objects from seen classes [Shin et al., 2018]. This is because object-centered

models, by exploiting the concept of canonical views, actually solve an easier problem.
The performance drop from object-centered DRC to viewer-centered DRC supports this

empirically. However, for objects from unseen classes, the concept of canonical views

is no longer well-defined. As we will see in Section 3.7.6, this hurts the generalization

power of object-centered methods.

3.7.6 Reconstructing Objects from Unseen Classes

We study how our approach enables generalization to novel shape classes that were

not seen during training.

Synthetic renderings. We use the 10 largest ShapeNet classes other than chairs,
cars, and airplanes as our test set. Table 3.3 shows that our model consistently

outperforms the state of the art, except for the class of rifles, in which AtlasNet
performs the best. Qualitatively, our model produces reconstructions that are much

more consistent with input images, as shown in Figure 3-15. In particular, on unseen
classes, our results still attain good consistency with the input images, while the
competitors either lack structural details present in the input (e.g., 5) or retrieve
shapes from the training classes (e.g., 4, 6, 7, 8, 9).

59

AtlasNet Shin et al. GenRe

Chair .080 .089 .093

Bed .114 .106 .113
Bookcase .140 .109 .101
Desk .126 .121 .109
Sofa .095 .088 .083
Table .134 .124 .116
Wardrobe .121 .116 .109

Table 3.4: Reconstruction errors (in
CD) for seen (chairs) and unseen
classes (the rest) on real Pix3D im-
ages. GenRe outperforms baselines across
all unseen classes except beds. For chairs,
object-centered AtlasNet performs the best
by leveraging the canonical view.

Input Best Baseline GenRe (Ours) Ground Truth

Figure 3-16: Reconstructions on real images from
Pix3D by GenRe and AtlasNet or Shin et al. [2018]. All
models are trained on cars, chairs, and airplanes.

Comparing our model with its variants, we find that the two-step approaches

(GenRe-2step and GenRe) outperform the one-step approach across all novel categories.
This empirically supports the advantage of our two-step modeling strategy that
disentangles geometric projections from shape reconstruction.

Real images. We further compare how our model, AtlasNet, and Shin et al. [2018]
perform on real images from Pix3D. Here, all models are trained on ShapeNet cars,
chairs, and airplanes, and tested on real images of beds, bookcases, desks, sofas, tables,
and wardrobes.

Quantitatively, Table 3.4 shows that our model outperforms the two competitors
across all novel classes except beds, for which the model by Shin et al. 120181 performs
the best. For chairs, one of the training classes, the object-centered AtlasNet leverages
the canonical view and outperforms the two viewer-centered approaches. Qualitatively,
our reconstructions preserve the details present in the input (e.g., the hollow structures
in the second row of Figure 3-16).

3.8 Analyses

3.8.1 The Effect of Viewpoints on Generalization

The generic viewpoint assumption states that the observer is not in a special position

relative to the object [Freeman, 1994]. This makes us wonder if the "accidentalness"
of the viewpoint affects the quality of reconstructions.

As a quantitative analysis, we test our model trained on ShapeNet chairs, cars, and
airplanes on 100 randomly sampled ShapeNet tables, each rendered in 200 different
views sampled uniformly on a sphere. We then compute, for each of the 200 views,
the median CD of the 100 reconstructions. Finally, in Figure 3-17, we visualize these

60

Azimuth 0 27r

0 .157

Accidental Views

* .076

Generic Views w Elevation # =r Error (#, 0)

Figure 3-17: Reconstruction errors (CD) for different input viewpoints. The vertical
(horizontal) axis represents elevation (azimuth). Accidental views (blue box) lead to large errors,
while generic views (green box) result in smaller errors. Errors are computed for 100 tables; these
particular tables are for visualization purposes only.

Input GenRe (Ours) Ground Truth

Figure 3-18: Single-view completion of non-
rigid shapes from depth maps by our model
trained on cars, chairs, and airplanes.

Input GenRe (Ours) Ground Truth

Figure 3-19: Single-view completion of
primitives from depth maps by our model
trained on cars, chairs, and airplanes.

median CDs as a heatmap over an elevation-azimuth view grid. As the heatmap shows,
our model makes better predictions when the input view is generic than when it is

accidental, consistent with our intuition.

3.8.2 Reconstructing Non-Rigid Shapes

We probe the generalization limit of our model by testing it with unseen non-rigid

shapes, such as horses and humans. As the focus is mainly on the spherical map

inpainting network (Figure 3-12b) and the voxel refinement network (Figure 3-12c), we

assume our model has access to the ground-truth single-view depth (i.e., GenRe-Oracle)

in this experiment. As demonstrated in Figure 3-18, our model not only retains the

visible details in the original view, but also completes the unseen surfaces using the

generic shape priors learned from rigid objects (cars, chairs, and airplanes).

61

3.8.3 Reconstructing Highly Regular Shapes

We further explore whether our model captures global shape attributes by testing
it on highly regular shapes that can be parametrized by only a few attributes (such as

cones and cubes). Similar to Section 3.8.2, the model has only seen cars, chairs, and

airplanes during training, and we assume our model has access to the ground-truth
single-view depth (i.e., GenRe-Oracle).

As Figure 3-19 shows, although our model hallucinates the unseen parts of these

shape primitives, it fails to exploit global shape symmetry to produce correct predic-

tions. This is not surprising given that our network design does not explicitly model

such regularity. A possible future direction is to incorporate priors that facilitate

learning high-level concepts such as symmetry.

3.9 Discussion

In this chapter, we have studied the problem of generalizable single-image 3D
reconstruction. We exploit various image and shape representations, including 2.5D
sketches, spherical maps, and voxels. We have proposed GenRe, a novel viewer-
centered model that integrates these representations for generalizable, high-quality

3D shape reconstruction, as well as its precursors such as MarrNet, 3D-GAN, and
ShapeHD. Experiments demonstrate that GenRe achieves state-of-the-art performance
on shape reconstruction for both seen and unseen classes. We hope our system will

inspire future research along this challenging but rewarding research direction.

62

Chapter 4

Learning with a Graphics Engine

for Multi-Object Scenes

In Chapter 2 and Chapter 3, we have explored how learning can be integrated
with graphics engines for reconstructing sparse and dense 3D object representations.
Those methods, however, still focus on images of a single object and work with
simplified graphics engines. In this chapter, we study the problem of holistic scene
understanding. We would like to obtain a compact, expressive, and interpretable
representation of scenes that encodes information such as the number of objects and
their categories, poses, positions, etc. Such a representation would allow us to reason
about and even reconstruct or manipulate elements of the scene. While, prior work
has used encoder-decoder based neural architectures to learn image representations,
representations obtained in this way are typically uninterpretable, or only explain a
single object in the scene.

Our main contribution in this chapter is a new approach to learn an interpretable,
distributed representation of scenes. Our approach combines deep learning with
a general, deterministic rendering function as the decoder, mapping a naturally
structured and disentangled scene description, which we named scene XML, to an
image. By doing so, the learned encoder is forced to perform the inverse of the
rendering operation (a.k.a. de-rendering) to transform an input image to the structured
scene XML that the decoder used to produce the image. We use a object proposal-
based encoder that is trained by minimizing both the supervised prediction and the
unsupervised reconstruction errors. We further develop an extension of the model to
build 3D-aware representations for natural scenes. Experiments demonstrate that our
approach works well on scene de-rendering, and our learned representation can be
easily adapted for a wide range of applications like image editing, inpainting, visual
analogy-making, and image captioning.

This chapter includes materials previously published as Wu et al. [2017b], Yao
et al. [2018]. Shunyu Yao and Harry Hsu contributed significantly to the materials
presented in this chapter.

63

4.1 Introduction

What properties are desirable in an image representation for visual understanding?
We argue that the representation needs to be compact, expressive, and interpretable.
Compactness makes it possible to store and exploit large amounts of data. Expres-
siveness allows it to capture the variations in the number, category, appearance, and
pose of objects in an image. Lastly, an interpretable and disentangled representation
enables us to reason about and even reconstruct or manipulate elements of an image.

Image representations learned by neural networks are often compact and expressive,
but are hard to interpret. Recently, researchers studied how to obtain interpretable
representations [Chen et al., 2016c, Kulkarni et al., 2015b, Yang et al., 2015]. They
mostly employed an encoding-decoding framework, using neural nets for both inference
and approximate rendering. However, these methods typically assume each input image
contains only a single, centered object in front of a clean background. Consequently,
they are not robust and powerful enough for practical applications, where we often
see images with an indefinite number of objects, heavy occlusions, and a cluttered
background.

In contrast to neural decoders like the ones used in Denton et al. [20151, Kulkarni
et al. [2015b], the deterministic rendering functions used in graphics engines naturally
take a structured and disentangled input to generate images. From this perspective,
if we assume a given image is rendered by a generic graphics engine, we can aim to
recover the structured representation required by renderer to reconstruct the exact
image (a.k.a. de-rendering). By learning an image representation this way, we achieve
interpretability for free, and we will also be able to use the representation in a range
of applications like image editing.

This image de-rendering problem, as shown in Figure 4-1, is however very chal-
lenging for multiple reasons. First, as we are no longer assuming a localized object,
and the number of objects in an image is unknown, our representation should be
extensible to an arbitrary number of objects in different positions. This cannot be
achieved in a straightforward way with traditional convolutional networks that learn
image representations of a fixed dimension. Previous approaches explored the use
of recurrent networks like LSTM [Hochreiter and Schmidhuber, 1997] in these cases.
However, for a scene with many objects, it is counterintuitive and often ambiguous
to manually define a sequential ordering over them. In this work, we instead draw
inspiration from research in bottom-up visual recognition and propose a framework
based on object proposals.

Second, we want the encoded representation to be generalizable to various graphics
engines, though they may require very different input. We therefore design a unified
structured language, named scene XML, which can be easily translated to inputs

64

I

<objects>
<balloon: right>

De-render <bench: yellow>

<tree: right>
<boy: stand happy>

Render <girl: sit sad>

</objects>

<objects>
De-render <pig: left close>

<villager: left>
<tree: tall right>

Render </objects>

Figure 4-1: Our goal is to interpret an image in a holistic way. Assuming an image is rendered

by a graphics engine on an indefinite length input, we aim to recover the input so that the the exact

image can be reconstructed and manipulated. Here we show a simplified version of the XML we use.

that renderers can take. We evaluate our framework on two datasets with different

rendering engines: the virtual Kitti dataset [Gaidon et al., 2016] and the Cityscapes

dataset [Cordts et al., 2016].

Third, the space of encoded representations and the space of images do not share

the same metric: a pair of close latent representations may correspond to images

with significantly different visual appearance, and vice versa. Thus, learning a direct

mapping from images to labeled representations does not guarantee good performance

in reconstruction. In this chapter, we explore the possibility of having loss functions in

both spaces within an end-to-end neural net framework. This is technically nontrivial

because graphics engines are often not differentiable, with few exceptions [Loper

and Black, 20141. To overcome this problem, we use the multi-sample REINFORCE

algorithm [Williams, 19921 for optimization.

Our contributions in this chapter are three-fold: first, we propose a new problem

formulation, scene de-rendering, aiming to interpret a scene and the objects inside

holistically by incorporating a graphics engine and a structured representation; sec-

ond, we design a novel end-to-end framework for scene de-rendering, which involves

optimization in both the latent representation space and the image space; third,

we demonstrate the effectiveness of our framework by showing how it performs on

synthetic and real scenes, and how it enables multiple applications.

65

4.2 Related Work

Our work is closely related to research on learning an interpretable representation
with a neural network [Hinton et al., 1995, Kulkarni et al., 2015b, Yang et al., 2015,
Chen et al., 2016c, Wu et al., 2016b]. Kulkarni et al. [2015b] proposed a convolutional
inverse graphics network. Taking an image of a face, the network learns to infer its
properties like pose and lighting. Yang et al. [2015] explored learning disentangled

representations of pose and content from chair images. Chen et al. [2016c] proposed to
learn disentangled representation without direct supervision. While all these methods

dealt with images of a single object (chair, face, or digit), we study the problem of
general scene de-rendering with an indefinite number of objects and possibly heavy
occlusions.

Another line of related research is on sequential generative models for image
recognition or synthesis [Huang and Murphy, 2015, Gregor et al., 2015, Eslaimi et al.,
2016, Rezende et al., 20161), Ba et al., 20151, which typically involve recurrent networks
like LSTM [Hochreiter and Schmidliuber, 1997]. Many of them also trained a network
as an approximate renderer simultaneously. In contrast, we explicitly model a graphics
engine in the framework, and let neural nets focus on inverse graphics. The use of
a real renderer provides us with an interpretable representation for free, and also
generates images of higher quality.

Our framework also relates to the field of generative models with data-driven
proposals [Yuille and Kersten, 2006, Zhu and Mumford, 2007, Tu and Zhu, 2002,
Kulkarni et al., 2015a, Wu et al., 2015a, Jampani et al., 2015], as we are incorporating
a graphics engine as a black-box synthesizer. However, our focus is still on using a
feedforward model for bottom-up recognition and inference. Please see Bever and
Poeppel [2010] for a nice review of analysis-by-synthesis methods.

4.3 Neural Scene De-rendering

We now present our analysis and approach to the scene de-rendering problem. We
begin with a high-level abstraction of our method as a generalized encoding-decoding
structure; we then discuss optimization and implementation details.

4.3.1 Generalized Encoding-Decoding Structure

Autoencoder. Traditionally autoencoder have neural networks as both the encoder
and the decoder, as shown in Figure 4-2a. The goal of the network is to encode input
into a compact representation (the bottleneck layer) and then to reconstruct the input.
The latent vector learned this way can be viewed as an informative representation of
the input.

66

fGraphicsEngine

(a) A standard autoencoder (b) A generalized autoencoder

Figure 4-2: Generalized encoding-decoding structure. Different from a standard autoencoder

(a), our generalized structure (b) uses a graphics engine as the decoder, which by nature takes an

interpretable and disentangled representation as input, and renders a high quality image.

<object>
<category>triangle</category>
<size>1.5</size>
<color>blue</color>
<position>1.5,2,1</position>
<yaw>0</yaw>

</object>
<object>

Figure 4-3: An image and part of its scene XML, encoding the background and the category,
appearance, position, and pose of objects in the image.

Rendering engine as a generalized decoder. The latent representation of a

standard autoencoder is neither disentangled nor interpretable, making it hard to

generalize to other tasks. Here, we propose a generalized encoding-decoding structure,

where we use a graphics engine as our decoder, as shown in Figure 4-2b. Unlike a

neural decoder, a graphics engine in its nature requires a structured and interpretable

image representation as input for rendering. In this way, the generalized autoencoder

naturally learns to encode the image into an interpretable image representation.

The generalized structure needs to achieve two goals: first, minimizing the super-

vised prediction error on the inverted representations of input images; and second,

minimizing the unsupervised reconstruction error on the rendered images. In Sec-

tion 4.3.2, we explore how to integrate and balance both goals for better performance.

Scene XML. We want our framework to be independent of the graphics engine

involved. To be specific, we hope to connect our encoder to a meta-renderer that

translates learned representations to input that a specific graphics engine could take.

To do this, we design a cross-platform structured image representation, named Scene

XML, as the output of the encoder. Our goal is to design scene XML in a way that

requires minimal effort to connect it to various graphics engines.

Our current design is in essence an object-centered representation. It starts with

67

(f If =0) (ifn=)

Figure 4-4: The role of image-space loss: a small change in the latent space (e.g., the depth of
cloud) may lead to significant difference in rendered images. It is hence important to consider losses
in both spaces.

some brief description of background, similar to the <head> tag in HTML. Then
for each object, we track its category, appearance (size and color), position in 3D
space ({x, y, z}), and pose (yaw, pitch, roll). In the future, we plan to also include its
physical properties, and to model its actual 3D shape instead of using categories with
fixed geometry as an abstraction. Figure 4-3 shows a sample image and part of its
corresponding scene XML.

For each input image, our framework learns to interpret it in scene XML, and then
translates the XML to the structured input that a graphics engine could take.

4.3.2 Black-Box Optimization via REINFORCE

As discussed in Section 4.1, visually similar images might have very different
latent representations; also, two similar points in the representation space could
lead to, after rendering, images with drastically different appearance. We show an
example in Figure 4-4. With a small change in the value of a single dimension in the
representation, here the depth of the cloud, the rendered images look totally different.
Therefore, during training, we would like to minimize both the prediction error after
the inference/encoding step, and the reconstruction error after the synthesis/rendering
step.

This is, however, not practically straightforward as graphics engines are typically
not differentiable, making it hard to back-propagate the gradients. Inspired by
Rezende et al. [2016a], Ba et al. [2015], Jayaraman and Grauman [2016], we formulate
this as a reinforcement learning problem, and adopt a multi-sample REINFORCE
paradigm [Mnih and Rezende, 2016, Williams, 1992] to address this issue.

Specifically, instead of having a deterministic prediction, we have a stochastic
layer at the end of our encoder, where our final prediction can be sampled from
certain distributions (e.g., Gaussian for position and pose, multinomial for category).
We obtain multiple samples from an input, and for each sample, we compute its
reconstruction error after rendering. We use the negative log error as reward r of the
sample, with its variance reduced by a baseline computed from the other samples.

68

The REINFORCE algorithm then allows us to calculate gradients on these stochastic

layers and to back-propagate them to all layers before, via

Aw = a(r - b)e, (4.1)

where w are the parameters of the distributions we are sampling from, a is the

learning rate, b is the reinforcement baseline computed from other samples, and e is

the distribution-dependent characteristic eligibility. Please refer to Mnih and Rezende

[2016], Williams [1992] for more details.

REINFORCE as weight balancing. The mapping from latent representations

to images is highly discontinuous. For each dimension in the latent representation, its

impact on the rendered image changes as we move over the manifold. It is intractable

to model the exact correlation; however, from a different perspective, the use of a

graphics engine and the reinforcement learning (RL) framework implicitly guides

the recognition network to balance the weights of each dimension under different

circumstances.

Semi-supervised curriculum learning. The RL formulation also opens up the

possibility for unsupervised learning: we can attempt to minimize the reconstruction

error directly, and hopefully the network learns the disentangled representation required

by the graphics engine automatically. We unfortunately observe that this is infeasible

in practice. One reason for this failure is the large search space arising from the

parametrization of the encoder. To address this, we employ a curriculum based

approach where we initialize the training by using both reconstruction error and the

label prediction loss on a small number of labeled images. Thereafter, we fine-tune

the model with only unlabeled data, relying on the reconstruction error. We observe

that the reinforcement learning framework can help to reduce the supervision required

for training the encoder through curriculum learning [Bengio et al., 2009]. This

semi-supervised learning setting could be useful in practice, where labeled data are

often scarce.

4.3.3 Network Structure

Based on the generalized encoding-decoding structure, our framework has a neural

encoder and a graphics engine as a generalized decoder. We show an overview of our

model in Figure 4-5. We now describe our encoder in detail.
Our encoder has two components: a proposal generator for producing proposals

that potentially contain objects, and an object interpreter for discriminating whether
there is an object in each proposal, and if so, what its attributes are.

Our proposal generator (Figure 4-5-I) produces segment proposals instead of bound-
ing boxes. This is because heavily occluded objects cannot be correctly interpreted

69

(b) Segment proposals (c) Inference Applications

-iImaRe
editing:

Captionin g: The b oy is..

T Inpainting, analogy-making, ...

---.....g Interpretin Rendering
segments proposals images

(a) Input image (1 I)()(d) Rendered image

Figure 4-5: Our neural scene de-rendering framework consists of three component. Given an
input image, it first generates a number of segment proposals (Stage I). It then tries to interpret if
there is an object in the each proposal, and if so what its properties are (Stage II). Eventually, these
inference results are integrated and sent to a graphics engine for rendering, so that the original image
can be reconstructed (Stage III). We have supervision on both the latent representation space and
the image space. Also note that the latent representations have wide applications including image
editing, captioning, etc.

from box proposals. Also, during reconstruction, it would also be preferable for the
model to incorrectly interpret the box proposal of the sun to be cloud, only because
the cloud occupies a larger area in the box. In contrast, segment proposals do not
suffer from this issue.

For the proposal generator, we use the network structure from an instance segmen-
tation method, MNC [Dai et al., 2016]. It is a cascaded model where the network
first learns both feature maps and coordinates of box instances (regions of interests,
or Rol), and sends them through a Rol pooling layer to extract features of boxes. It
then predicts masks of candidate objects within each box.

The object interpreter (Figure 4-5-II) takes a segment proposal (masked image)
as input, and predicts whether there is an object in the segment. If the network
believes an object exists, it also predicts its properties required by our scene XML.
For each segment, we consider objects in the image that have an IoU over 0.3 with
the segment, and select the one with the maximum IoU as ground truth for training
the object interpreter. At the end, we apply non-maximal suppression (NMS) over
the interpretations of all segments, and send it to the decoder (a graphics engine) for
rendering (Figure 4-5-III).

4.4 Extension to Natural Scenes

The idea of integrating an off-the-shelf graphics engine with neural networks is
powerful, but also limits its application to natural scenes, where the scene representa-
tion can be prohibitively high-dimensional. In this section, we present an extension

70

M

Textural Renderer

Figure 4-6: Overview of 3D-SDN. The de-renderer (encoder) consists of a semantic-, a textural-

and a geometric branch. The textural renderer and geometric renderer then learn to reconstruct the

original image from the representations obtained by the encoder modules.

to the original model that allows it to generalize to natural scenes via a combination

of classic and neural graphics engines. We name our model 3D Scene De-rendering

Networks (3D-SDN).

4.4.1 3D Scene De-rendering Networks

3D-SDN also has an encoder-decoder framework. As shown in Figure 4-6, it first

de-renders (encodes) an image into disentangled representations for semantic, textural,
and geometric information. Then, a renderer (decoder) reconstructs the image from

the representation.

The semantic de-renderer learns to produce the semantic segmentation (e.g. trees,
sky, road) of the input image. The 3D geometric de-renderer detects and segments

objects (cars and vans) from image, and infers the geometry and 3D pose for each

object with a differentiable shape renderer. After inference, the geometric renderer

computes an instance map, a pose map, and normal maps for objects in the scene for

the textural branch. The textural de-renderer first fuses the semantic map generated

by the semantic branch and the instance map generated by the geometric branch into

an instance-level semantic label map, and learns to encode the color and texture of

each instance (object or background semantic class) into a texture code. Finally, the

textural renderer combines the instance-wise label map (from the textural de-renderer),
textural codes (from the textural de-renderer), and 3D information (instance, normal,
and pose maps from the geometric branch) to reconstruct the input image.

3D geometric inference. Figure 4-7 shows the 3D geometric inference module for

the 3D-SDN. We first segment object instances with Mask-RCNN [He et al., 2017].

For each object, we infer its 3D mesh model and other attributes from its masked

image patch and bounding box.

We describe a 3D object with a mesh M, its scale s E R3 , rotation q E R4 as

71

Distribution . Mesh
Model

Bounding Box

Scale

Rotation V

Translation c

MakdFIFD coeff icients o

mage

L
Figure 4-7: 3D geometric inference in 3D-SDN. Given a masked object image and its bounding
box, the geometric branch of the 3D-SDN predicts the object's mesh model, scale, rotation, translation,
and the free-form deformation (FFD) coefficients. We then compute 3D information (instance map,
normal maps, and pose map) using a differentiable renderer [Kato et al., 2018].

an unit quaternion, and translation t E R3. For most real-world scenarios such as
road scenes, objects often lie on the ground. Therefore, the quaternion has only one
rotational degree of freedom: i.e., q E R.

As shown in Figure 4-7, given an object's masked image and estimated bounding
box, the geometric de-renderer learns to predict the mesh M by first selecting a
mesh from eight candidate shapes, and then applying a Free-Form Deformation
(FFD) [Sederberg and Parry, 1986] with inferred grid point coordinates <. It also
predicts the scale, rotation, and translation of the 3D object. Below we describe the
training objective for the network.

The geometric de-renderer directly predicts the values of scale s and rotation q.
For translation t, it instead predicts the object's distance to the camera t and the
image-plane 2D coordinates of the object's 3D center, denoted as X3D, Y3D). Given the
intrinsic camera matrix, we can calculate t from t and [z3D, Y3D]. We parametrize t in
the log-space [Eigen et al., 2014]. As determining t from the image patch of the object
is under-constrained, our model predicts a normalized distance - = tvw, where

[w, h] is the width and height of the bounding box. This reparameterization improves
results as shown in later experiments. For [X3D, Y3D], we follow the prior work [Ren
et al., 2015] and predict the offset e = [(X3D - X2D I, (Y3D - Y2D)/hW relative to the

estimated bounding box center [IX2D, Y2D]. The 3D attribute prediction loss for scale,
rotation, and translation can be calculated as

£prea =log'5 - log s|1 + (1 - (q. q) 2) + | + (log ~ log)2,

where ~ denotes the predicted attributes.
We also use a reprojection loss to ensure the 2D rendering of the predicted shape

fits its silhouette S [Yan et al., 2016b, Rezende et al., 2016a, Wu et al., 2016b, 2017c].
Figure 4-8a and Figure 4-8b show an example. Note that for mesh selection and

72

Mask-RCNN

3D Information
Instance Map
Normal Map

Pose Map
Downsampling

Upsampling

ROl Pooling

Fully Connected

•••--+ REINFORCE

(a) w/o re-projection (b) w/ re-projection (c) Single CAD w/o FFD (d) Multiple CADs w/ FFD

Figure 4-8: (a)(b) Re-projection consistency loss: Object silhouettes rendered without and
with re-projection consistency loss. (c)(d) Multiple CAD models and free form deformation
(FFD): In (c), a generic car model without FFD fails to represent the input vans. In (d), our model
learns to choose the best-fitting mesh from eight candidate meshes and allows FFD. As a result, we
can reconstruct the silhouettes more precisely.

deformation, the reprojection loss is the only training signal, as we do not have a

ground truth mesh model.
We use a differentiable renderer [Kato et al., 2018] to render the 2D silhouette of

a 3D mesh M, according to the FFD coefficients < and the object's scale, rotation
and translation r = {s, q, t}: S RenderSilhouette(FFDO(M), f). We then calculate

the reprojection loss as £reproj = 5 - S . We ignore the region occluded by other

objects. The full loss function for the geometric branch is thus Lpred + AreprojLreproj,

where A controls the relative importance of two terms.

We choose the mesh M from a set of eight meshes to minimize the reprojection

loss. As the model selection process is non-differentiable, we formulate the model

selection as a reinforcement learning problem and adopt a multi-sample REINFORCE

paradigm [Williams, 1992] to address the issue. The network predicts a multinomial

distribution over the mesh models. We use the negative reprojection loss as the reward.

We experimented with a single mesh without FFD in Figure 4-8c. Figure 4-8d shows

a significant improvement when the geometric branch learns to select from multiple

candidate meshes and allows flexible deformation.

Semantic and textural inference. The semantic branch of the 3D-SDN uses a

semantic segmentation model DRN [Yu et al., 2017, Zhou et al., 2017b] to obtain an

semantic map of the input image. The textural branch of the 3D-SDN first obtains an

instance-wise semantic label map L by combining the semantic map generated by the

semantic branch and the instance map generated by the geometric branch, resolving

any conflict in favor of the instance map [Kirillov et al., 2019]. Built on recent work
on multimodal image-to-image translation [Zhu et al., 2017a, Wang et al., 2018c], our

textural branch encodes the texture of each instance into a low dimensional latent

code, so that the textural renderer can later reconstruct the appearance of the original

instance from the code. By 'instance' we mean a background semantic class (e.g., road,
sky) or a foreground object (e.g., car, van). Later, we combine the object textural

code with the estimated 3D information to better reconstruct objects.

Formally speaking, given an image I and its instance label map L, we want to

73

obtain a feature embedding z such that (L, z) can later reconstruct 1. We formulate
the textural branch of the 3D-SDN under a conditional adversarial learning framework
with three networks (G, D, E): a textural de-renderer E : (L, 1) -+ z, a texture renderer
G : (L, z) -+ I and a discriminator D : (L, 1) -+ [0,1] are trained jointly with the

following objectives.

To increase the photorealism of generated images, we use a standard conditional
GAN loss [Goodfellow et al., 2014, Mirza and Osindero, 2014, Isola et al., 20171 as

£GAN(G, D, E) = EL,1 [log (D(L, I)) + log (I - D(L I))], (4.3)

where I= G(L, E(L, 1)) is the reconstructed image, and we denote EL,1 'E(L,I)~Pdata(L,1)

for simplicity. To stabilize the training, we follow the prior work [Wang et al., 2018c]
and use both discriminator feature matching loss [Wang et al., 2018c, Larsen et al.,
2016] and perceptual loss [Dosovitskiy and Brox, 2016, Johnson et al., 2016a], both of
which aim to match the statistics of intermediate features between generated and real
images:

£FM(G, D, E) = EL,1 F(')(1) - FC(I + E 1 D(2)(I) - D(') (i) ,

(4.4)
where F(denotes the i-th layer of a pre-trained VGG network [Simonyan and
Zisserman, 2015] with Ni elements. Similarly, for our our discriminator D, D2
denotes the i-th layer with Mi elements. TF and TD denote the number of layers
in network F and D. We fix the network F during our training. Finally, we use a
pixel-wise image reconstruction loss as:

£Recon(G, E) = EL,I - 1 (4.5)

The final training objective is a minimax game between (G, E) and D:

min (max (£GAN(G, D, E)) + AFMFM(G, D, E) + AReconLRecon(G, E)), (4.6)
(G,E) \ D

where AFM and ARecon control the relative importance of each term.

We observe that the textural de-renderer often learns not only texture but also
object poses. To further decouple these two factors, we concatenate the inferred 3D
information (i.e., pose map and normal map) from the geometric branch to the texture
code map z and feed both of them to the textural renderer G. Also, we reduce the
dimension of the texture code so that the code can focus on texture as the 3D geometry
and pose are already provided. These two modifications help encode textural features

74

that are independent of the object geometry. It also resolves ambiguity in object
poses: e.g., cars share similar silhouettes when facing forward or backward. Therefore,
our renderer can synthesize an object under different 3D poses. (See Figure 4-9b and
Figure 4-11b for example).

4.4.2 Implementation Details

Semantic branch. Our semantic branch adopts Dilated Residual Networks (DRN)
for semantic segmentation [Yu et al., 2017, Zhou et al., 2017b]. We train the network
for 25 epochs.

Geometric branch. We use Mask-RCNN for object proposal generation [He et al.,
2017]. For object meshes, we choose eight CAD models from ShapeNet [Chang et al.,
2015] including cars, vans, and buses. Given an object proposal, we predict its scale,
rotation, translation, 43 FFD grid point coefficients, and an 8-dimensional distribution
across candidate meshes with a ResNet-18 network [He et al., 2016]. The translation
t can be recovered using the estimated offset e, the normalized distance logT, and
the ground truth focal length of the image. They are then fed to a differentiable
renderer [Kato et al., 2018] to render the instance map and normal map.

We empirically set Areproj = 0.1. We first train the network with Lpred using

Adam [Kingma and Ba, 2015] with a learning rate of 10-3 for 256 epochs and then
fine-tune the model with Lpred - Areproj reproj and REINFORCE with a learning rate
of 10-4 for another 64 epochs.

Textural branch. We first train the semantic branch and the geometric branch
separately and then train the textural branch using the input from the above two
branches. We use the same architecture as in Wang et al. [2018c]. We use two discrim-
inators of different scales and one generator. We use the VGG network [Simonyan
and Zisserman, 2015] as the feature extractor F for loss AFM (Eqn. 4.4). We set the
dimension of the texture code as 5. We quantize the object's rotation into 24 bins
with one-hot encoding and fill each rendered silhouette of the object with its rotation
encoding, yielding a pose map of the input image. Then we concatenate the pose
map, the predicted object normal map, the texture code map z, the semantic label
map, and the instance boundary map together, and feed them to the neural textural
renderer to reconstruct the input image. We set AFM = 5 and ARecon =10, and train
the textural branch for 60 epochs on Virtual KITTI and 100 epochs on Cityscapes.

4.5 Experiments

We report our results in two parts. First, we present how the 3D-SDN enables
3D-aware image editing. For quantitative comparison, we compile a Virtual KITTI
image editing benchmark to contrast 3D-SDNs and baselines without 3D knowledge.

75

Second, we analyze our design choices and evaluate the accuracy of representations
obtained by different variants.

We conduct experiments on two street scene datasets: Virtual KITTI [Gaidon
et al., 20161 and Cityscapes [Cordts et al., 2016]. Virtual KITTI serves as a proxy
to the KITTI dataset [Geiger et al., 2012]. The dataset contains five virtual worlds,
each rendered under ten different conditions, leading to a sum of 21,260 images. For
each world, we use either the first or the last 80% consecutive frames for training
and the rest for testing. For object-wise evaluations, we use objects with more than
256 visible pixels, a < 70% occlusion ratio, and a < 70% truncation ratio, following
the ratios defined in Gaidon et al. [2016]. In our experiments, we downscale Virtual
KITTI images to 624 x 192 and Cityscapes images to 512 x 256.

We have also built the Virtual KITTI Image Editing Benchmark, allowing us to
evaluate image editing algorithms systematically. The benchmark contains 92 pairs of
images in the test set with the camera either stationary or almost still. For each pair,
we formulate the edit with object-wise operations. Each operation is parametrized

by a starting position (x3D, Y3D), an ending position (Xg, y3D) (both are object's 3D

center in image plane), a zoom-in factor p, and a rotation Ary with respect to the
y-axis of the camera coordinate system.

The Cityscapes dataset contains 2,975 training images with pixel-level semantic
segmentation and instance segmentation ground truth, but with no 3D annotations,
making the geometric inference more challenging. Therefore, given each image, we
first predict 3D attributes with our geometric branch pre-trained on Virtual KITTI
dataset; we then optimize both attributes and mesh parameters 7r and <$ by minimizing
the reprojection loss Lreproj. We use the Adam solver [Kingma and Ba, 2015] with a
learning rate of 0.03 for 16 iterations.

4.5.1 3D-Aware Image Editing

The semantic, geometric, and textural disentanglement provides an expressive 3D
image manipulation scheme. We can modify the 3D attributes of an object to translate,
scale, or rotate it in the 3D world, while keeping the consistent visual appearance.
We can also change the appearance of the object or the background by modifying the
texture code alone.

Methods. We compare our 3D-SDNs with the following two baselines:

" 2D: Given the source and target positions, the naive 2D baseline only applies
the 2D translation and scaling, discarding the Ary rotation.

" 2D+: The 2D+ baseline includes the 2D operations above and rotates the 2D
silhouette (instead of the 3D shape) along the y-axis according to the rotation
Ary in the benchmark.

76

Edited images

(a)

(c)

(d)

Figure 4-9: Example user editing results on Virtual KITTI. (a) We move a car closer to the
camera, keeping the same texture. (b) We can synthesize the same car with different 3D poses. The
same texture code is used for different poses. (c) We modify the appearance of the input red car
using new texture codes. Note that its geometry and pose stay the same. We can also change the
environment by editing the background texture codes. (d) We can inpaint occluded regions and
remove objects.

Metrics. The pixel-level distance might not be a meaningful similarity metric, as two

visually similar images may have a large L1/L2 distance {Isola et al., 2017]. Instead,

we adopt the Learned Perceptual Image Patch Similarity (LPIPS) metric [Zhang et al.,
2018a], which is designed to match the human perception. LPIPS ranges from 0 to 1,
with 0 being the most similar. We apply LPIPS on (1) the full image, (2) all edited

objects, and (3) the largest edited object.

Besides, we conduct a human study, where we show the target image as well as

the edited results from two different methods: 3D-SDN vs. 2D and 3D-SDN vs. 2D+.

We ask 120 human subjects on Amazon Mechanical Turk which edited result looks

closer to the target. For better visualization, we highlight the largest edited object in

red. We then compute, between a pair of methods, how often one method is preferred,

across all test images.

Results. Figure 4-9 and Figure 4-10 show qualitative results on Virtual KITTI

and Cityscapes, respectively. By modifying semantic, geometric, and texture codes,
our editing interface enables a wide range of scene manipulation applications. Fig-

ure 4-11 shows a direct comparison to a state-of-the-art 2D manipulation method

pix2pixHD [Wang et al., 2018c]. Quantitatively, Table 4.la shows that our 3D-SDN

77

Oriainal imaae

Original image

(a)

(b)

(c)

(d)

Figure 4-10: Example user editing results on Cityscapes. (a) We niove two cars closer to the
camera. (b) We rotate the car with differeit angles. (c) We recover a tiny and occluded car an(1
iniove it closer. Our inodel can synthesize the occluded regioni as well as view the occllde(car froin
the side. (d) We niove a simiall car cl(ser andl then change its locationis.

3D-SDN (ours) 21) 21)

LPIPS (whole) 0.1280 0.1316 0.1317
LPIPS (all) 0.1444 0.1782 0.1799
LPIPS (largest) 0.1461 0.1795 0.1813

(a) Perception similarity scores

2D 2D

3D-SDN (ours) 76.88% 74.28%

(b) Huniiian study results

Table 4.1: Results on Virtual KITTI editing benchmark. (a) \Ve evahate the perceptual
similarity I[Zhng 0t .. 201i8aj on the whole image (whole). all edited regionls (all) of the image, and
the largest edited region (largest) of the image., respectively. Lower scores are better. (b) Human
subjects coumpare our mletho(l against two baselines. The percentage shows how often they prefer
3D-SDNs to the baselines. Our milethod outperforms previous 2D approaches consistently.

outp-erforlins both baselines by a large iargin regar(ling LPIPS. Table 1.lb shows that

a niajority ()f the lunan subjects perfer our results to 2D baselines.

4.5.2 Evaluation on the geometric representation.

Methods. We adopt nultiple strategies to iinprove the estination of 3D attributes.

As an ablation stud,v we cornpare the full 3D-SDN. which is first triune(l using £pred

tlen fine-ttitled uSirg +pred t Arj Ireproj, with its four variants:

s W 0 £repro: wve only use the 3D attriibute prediction loss £pred.

9 w o quaternion constraint: we use the full rotation space characterized by a unit

(uaternion q E RI". instead of limiting to JR.

78

Edited images

Original image 3D-SDN (ours) pix2pixHD

(a)

(b)

Figure 4-11: Comparing 3D-SDN (ours) and pix2pixHD [Wang et al., 2018c]. (a) We success-
fully recover the mask of an occluded car and move it closer to the camera while pix2pixHD fails.
(b) We rotate the car from back to front. With the texture code encoded from the back view and a
frontal pose, our model can remove the tail lights, while pix2pixHD cannot, given the same instance
map.

Orient. sim. Distance (x10- 2) Scale Reproj. error (x10- 3)

Mousavian et al. [2017] 0.976 4.41 0.391 9.80

w/o £reproj 0.980 3.76 0.372 9.54
w/o quaternion constraint 0.970 4.59 0.403 7.58
w/o normalized distance r 0.979 4.27 0.420 6.42
w/o MultiCAD and FFD 0.984 3.37 0.464 4.60
3D-SDN (ours) 0.987 3.87 0.382 3.37

Table 4.2: Performance of 3D attributes prediction on Virtual KITTI. We compare our full
model with its four variants. Our full model performs the best regarding most metrics. Our model
obtains much lower reprojection error. Refer to the text for details about our metrics.

* w/o normalized distance r: we predict the original distance t in log space rather

than the normalized distance T.

* w/o MultiCAD and FFD: we use a single CAD model without free-form defor-

mation (FFD).

We also compare with a 3D bounding box estimation method [Mousavian et al., 2017],
which first infers the object's 2D bounding box and pose from input and then searches

for its 3D bounding box.

Metrics. We use different metrics for different quantities. For rotation, we compute

the orientation similarity (1 + cos 0)/2 [Geiger et al., 2012], where 9 is the geodesic
distance between the predicted and the ground truth rotations; for distance, we adopt

an absolute logarithm error |log t - log t; and for scale, we adopt the Euclidean

distance ||s - 112. In addition, we compute the per-pixel reprojection error between

projected 2D silhouettes and ground truth segmentation masks.

79

Raw (LSTM) jenny gets in the sandbox

NSD (LSTM) jenny and mike both are both playing
while the football sits in the sandbox

Raw (NN) mike and jenny tired of playing frisbee
decide to fly Jenny's new kite instead.

jenny and mike are having fun in the
NSD (NN) sandbox unaware of the storm that's

coming their way

Raw (LSTM) a picnic table while a snake and mike
on it

NSD (LSTM) jenny is angry by a snake while she
and mike are running towards the park

Raw (NN) a sad mike is hitting a baseball to an
angry Jenny.

NSD (NN) jenny is scared of a snake at their
campsite but mike wants to go catch it.

Figure 4-12: Results on image captioning. Both LSTM and the nearest neighbor method work
better using the de-rendered representations, compared to using raw pixels.

Results. Table 4.2 shows that our full model has significantly smaller 2D repro-

jection error than other variants. All of the proposed components contribute to the

performance.

4.6 Applications

Our learned representation has extensive applications due to its expressiveness and

interpretability. Here, we present qualitative results of image captioning and visual

analogy-making on the Abstract Scene dataset [Zitnick and Parikh, 2013] and the

Minecraft dataset [Wu et al., 2017b]. In Chapter 8 and Chapter 10, we will see more

advanced development of our model for these tasks.

Image captioning. We explore to describe images from our inferred latent rep-

resentation instead of end-to-end learning. First, as the representation carries full

knowledge of the original image, we obtain some basic descriptions for free, e.g., there

is a happy boy at bottom-right, facing to the left.

For captions involving high-level semantic understanding, we can build another

model to map latent representations to captions. We consider two pilot studies. First,
we train a seq2seq model [Sutskever et al., 2014] that reads an image representation,

and directly generates a caption. Its core is a 256-dim LSTM. We compare with

a CNN+LSTM model that reads a raw image and generates a caption. We train

both models on the Abstract Scene dataset, sampling 90% captions and using the

corresponding images for training, and the rest for testing.

Alternatively, for a test image, we may find the training image which has the

80

Query B Prediction B'

Figure 4-13: Results on visual analogy-making. Given a pair of reference images and a query,
our framework can make analogies based on the position and pose of an object (top), and on the
number of objects (bottom). See text for details.

minimum distance in the representation space, and transfer its caption. We compare

with caption transfer from the nearest neighbor in pixel space.

Figure 4-12 shows qualitative results, where both LSTM and nearest neighbor

perform better on our distributed representations, compared with on raw pixels. In

Chapter 8, we will see more advanced development of our scene understanding model

on visual question answering and concept learning.

Visual analogy-making. Visual analogy-making [Reed et al., 20151, or visal-

ogy [Sadeghi et al., 2015], is an emerging research topic in Al and vision. A typical

setting is to give a system a pair of images A and A' and an additional source image

B, and ask for an analogy B'. While previous methods looked into learning analogies

between objects, we study the problem of making scene analogies involving multiple

objects.

We consider a principled formulation for this seemingly ambiguous problem. Given

two image representations ZA and ZAr, we consider their minimum edit distance - the

minimum number of operations required to derive ZA, from ZA. We then apply these

operations on ZB to get an analogy ZB'. The operations we consider are changing

the pose, position, and category of an object, duplicating or removing an object, and

swapping two objects.

Learning an expressive, interpretable, and disentangled representation could be a

well-fit solution to this problem. We show results of depth first search (depth capped

at 3) on top of the representations reconstructed by our scene de-rendering framework

in Figure 4-13. It successfully makes analogies with respect not only to the position

and pose of an object, but also to the number of objects in the image. In Chapter 10,
we will see extensions of our model that captures the regularity and program-like

81

Reference A Reference A'

structure in scenes for image editing, extrapolation, and analogy-making.

4.7 Discussion

It has been popular to use neural networks for both inference and synthesis in
image understanding. Research in this direction is fruitful and inspiring; however,
current neural approximate renderers are still unready for practical use. In contrast,
graphics engines have been rather mature, especially for virtual environments [Gaidon
et al., 2016, Zhu et al., 2017b]. We feel it could be a promising direction to incorporate

a black-box graphics engine into a generalized encoding-decoding structure. Based

on this observation, in this chapter we have proposed a neural scene de-rendering
framework for image representation learning and reconstruction, extending the shape
reconstruction models introduced in the first two chapters. Results proved that our

method performed well, and the learned representation has wide applications in a
diverse set of vision tasks.

82

Part II

Dynamics: Learning with Physics Engines

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

Chapter 5

Learning with a Physics Engine

Humans demonstrate remarkable abilities to predict physical events in dynamic

scenes, and to infer the physical properties of objects from static images. In Part II
of this dissertation, we describe our efforts on building computational models that
see 'physics' from visual input via a combination of deep learning with graphics and
physics engines.

In this chapter, we propose a model for perceiving physical object properties
from videos and images. At the core of our generative model is a 3D physics engine,
operating on an object-based representation of physical properties, including mass,
position, 3D shape, and friction. We can infer these latent properties using relatively

brief runs of MCMC, which drive simulations in the physics engine to fit key features
of visual observations. We further explore directly mapping visual inputs to physical

properties, inverting a part of the generative process using deep learning.

We name our model Galileo, and evaluate it on a video dataset named Physics 101
of simple yet physically rich scenarios. Results show that Galileo is able to infer the
physical properties of objects and predict the outcome of a variety of physical events,
with an accuracy comparable to human subjects.

This chapter includes materials previously published as Wu et al. [2015a, 2016a].
Ilker Yildirim and Joseph Lim contributed significantly to the materials presented in
this chapter.

5.1 Introduction

Our visual system is designed to perceive a physical world that is full of dynamic
content. Consider yourself watching a Rube Goldberg machine unfold: as the kinetic
energy moves through the machine, you may see objects sliding down ramps, colliding
with each other, rolling, entering other objects, falling-many kinds of physical
interactions between objects of different masses, materials and other physical properties.
How does our visual system recover so much content from the dynamic physical world?

What is the role of experience in interpreting a novel dynamical scene?

85

Recent behavioral and computational studies of human physical scene understand-
ing push forward an account that people's judgments are best explained as probabilistic
simulations of a realistic, but mental, physics engine [Battaglia et al., 2013, Sanborn
et al., 2013]. Specifically, these studies suggest that the brain carries detailed but noisy
knowledge of the physical attributes of objects and the laws of physical interactions
between objects (i.e., Newtonian mechanics). To understand a physical scene, and
more crucially, to predict the future dynamical evolution of a scene, the brain relies
on simulations from this mental physics engine.

Even though the probabilistic simulation account is very appealing, there are
missing practical and conceptual leaps. First, as a practical matter, the probabilistic
simulation approach is shown to work only with synthetically generated stimuli: either
in 2D worlds, or in 3D worlds but each object is constrained to be a block and the
joint inference of the mass and friction coefficient is not handled [Battaglia et al.,
2013]. Second, as a conceptual matter, previous research rarely clarifies how a mental
physics engine could take advantage of previous experience of the agent [Ullman et al.,
2017]. It is the case that humans have a life long experience with dynamical scenes,
and a fuller account of human physical scene understanding should address it.

Here, we build on the idea that humans utilize a realistic physics engine as part of
a generative model to interpret real-world physical scenes. The first component of
our generative model is the physical object representations, where each object is a
rigid body and represented not only by its 3D geometric shape (or volume) and its
position in space, but also by its mass and its friction. All of these object attributes
are treated as latent variables in the model, and are approximated or estimated on
the basis of the visual input.

The second part is a fully-fledged realistic physics engine-in this chapter, specifi-
cally the Bullet physics engine [Coumans, 2010]. The physics engine takes a scene
setup as input (e.g., specification of each of the physical objects in the scene, which
constitutes a hypothesis in our generative model), and physically simulates it forward
in time, generating simulated velocity profiles and positions for each object.

The third part is the likelihood function. We evaluate the observed real-world
videos with respect to the model's hypotheses using the velocity vectors of objects in
the scene. We use a standard tracking algorithm to map the videos to the velocity
space.

Now, given a video as observation to the model, physical scene understanding in
the model corresponds to inverting the generative model by probabilistic inference to
recover the underlying physical object properties in the scene. We name our model
Galileo in honor of the scientist as well as his well-known ramp experiment, which we
also explore in this chapter.

For evaluation, we build a video dataset named Physics 101 to evaluate our model

86

and humans on real-world data. From Physics 101, we sample 150 videos of different
objects with a range of materials and masses over a simple yet physically rich scenario:
an object sliding down an inclined surface, and potentially collide with another object
on the ground. Note that in the fields of computer vision and robotics, there have
been studies on predicting physical interactions or inferring 3D properties of objects
for various purposes including 3D reasoning [Jia et al., 2015, Zheng et al., 2015]
and tracking [Schulman et al., 2013]. However, none of them focused on learning

physical properties directly, and nor they have incorporated a physics engine with
representation learning.

Based on the estimates we derived from visual input with a physics engine, a
natural extension is to generate or synthesize training data for any automatic learning
systems by bootstrapping from the videos already collected, and labeling them with
estimates of Galileo. This is a self-supervised learning algorithm for inferring generic
physical properties, and relates to the wake/sleep phases in Helmholtz machines
[Dayan et al., 1995], and to the cognitive development of infants. Extensive studies
suggest that infants either are born with or can learn quickly physical knowledge about
objects when they are very young, even before they acquire more advanced high-level
knowledge like semantic categories of objects [Carey, 2009, Baillargeon, 2004]. Young
babies are sensitive to physics of objects mainly from the motion of foreground objects
from background [Baillargeon, 2004]; in other words, they learn by watching videos of
moving objects. But later in life, and clearly in adulthood, we can perceive physical
attributes in just static scenes without any motion.

Here, building upon the idea of Helmholtz machines [Dayan et al., 1995], our
approach suggests one potential computational path to the development of the ability
to perceive physical content in static scenes. Following recent work [Yildirim et al.,
2018a], we train a recognition model (i.e., sleep cycle) that is in the form of a deep
convolutional network, where the training data is generated in a self-supervised manner
by the generative model itself (i.e., wake cycle: real-world videos observed by our
model and the resulting physical inferences).

We make four contributions in this chapter. First, we build Physics 101, a dataset
of diverse physical events for evaluating physical scene understanding models. Second,
we propose Galileo, a novel model for estimating physical properties of objects from
visual inputs by incorporating the feedback of a physics engine in the loop. We
demonstrate that it achieves encouraging performance on a real-world video dataset.
Third, we train a deep learning based recognition model that leads to efficient inference
in the generative model, and enables the generative model to predict future dynamical
evolution of static scenes (e.g., how would that scene unfold in time). Last, we test our
model and compare it to humans on a variety of physical judgment tasks. Our results
indicate that humans are quite successful in these tasks, and our model closely matches

87

Figure 5-1: Sample videos from the Physics 101 dataset. Our data are taken by four sensors
(3 RGB and 1 depth camera).

humans in performance, but also consistently makes similar errors as humans do,
providing further evidence in favor of the probabilistic simulation account of human
physical scene understanding.

5.2 The Physics 101 Dataset

The AI and vision community has made much progress through its datasets, and
there are datasets of objects, attributes, materials, and scene categories. Here, we
introduce a new type of dataset-one that captures physical interactions of objects.
The dataset consists of four different scenarios, for each of which plenty of intriguing
questions may be asked. For example, in the ramp scenario, will the object on the
ramp move, and if so and two objects collide, which of them will move next and how
far?

5.2.1 Scenarios

We seek to learn physical properties of objects by observing videos. To this end,
we build a dataset by recording videos of moving objects. We pick an introductory
setup with four different scenarios, which are illustrated in Figures 5-1 and 5-2. We
then introduce each scenario in detail.

Ramp. We put an object on an inclined surface, and the object may either slide
down or keep static, due to gravity and friction. This seemingly straightforward
scenario already involves understanding many physical object properties including
material, coefficient of friction, mass, and velocity. Figure 5-2a analyzes the physics

88

GB GA GB GA GB

I. Initial setup II. Sliding III. Colliding IV. Final outcome

(a) The ramp scenario. Several physical properties will determine if object A will move, if it will
reach to object B, and how far each object will move. Here, N, R, and G indicate a normal force, a
friction force, and a gravity force, respectively.

I. Initial II. Final I. Initial II. Colliding III. Bouncing I. Floating II. Sunk

(b) The spring scenario (c) The fall scenario (d) The liquid scenario

Figure 5-2: Illustrations of the scenarios in the Physics 101 dataset

behind our setup.

In this scenario, the observable descriptive physical properties are the velocities of

the objects, and the distances both objects traveled. The latent properties directly

involved are coefficient of friction and mass.

Spring. We hang objects on a spring, and gravity on the object will stretch the

spring. Here the observable descriptive physical property is length that the spring

gets stretched, and the latent properties are the mass of the object and the elasticity

of the spring.

Fall. We drop objects in the air, and they freely fall onto various surfaces. Here the

observable descriptive physical properties are the the bounce heights of the object,
and the latent properties are the coefficient of restitution of the object and the surface.

Liquid. We drop objects into some liquid, and they may float or sink at various

speeds. In this scenario, the observable descriptive physical property is the velocity of

the sinking object (0 if it floats), and the latent properties are the densities of the

object and the liquid.

5.2.2 Building Physics 101

The outcomes of various physical events depend on multiple factors of objects,
such as materials (density and friction coefficient), sizes and shapes (volume), and

slopes of ramps (gravity), elasticities of springs, etc. We collect our dataset while

varying all these conditions. Figure 5-3 shows the entire collection of our 101 objects,

and the following are more details about our variations:

89

Ptastin

Dough

Foam Plastic Medao
Toy Coin

Wooden Pbaslne
Slope (Rrng

HollowRub
Rubber 1#4%JM Rbe

Card (a te gan
board T y m o m i t

Mena s ii.Woode
Poe We use Pole springs with dfen stiffness.

Porcelain "

Figure 5-3: The set of objects used in the Physics 101 dataset. We vary object material,
color, shape, and size, together with external conditions such as the slope of a surface or the stiffness
of a string. Videos recording the motions of these objects interacting with target objects will be used
to train our algorithm.

Material. Our 101 objects are made of 15 different materials: cardboard, dough,
foam, hollow rubber, hollow wood, metal coin, pole, and block, plastic doll, ring, and
toy, porcelain, rubber, wooden block, and wooden pole.

Appearance. For each material, we have 4 to 12 objects of different sizes and colors.

Slope (ramp). We also vary the angle a between the inclined surface and the
ground (to vary the gravity force). We set a = 100 and 20 i for each object.

Target (ramp). We have two different target objects-a cardboard and a foam
box. They are made of different materials, thus having different friction coefficients
and densities.

Spring. We use two springs with different stiffness.

Surface (fall). We drop objects onto five different surfaces: foam, glass, metal,
wooden table, and woolen rug. These materials have different coefficients of restitution.

We also measure the physical properties of these objects. We record the mass and
volume of each object. For each setup, we record their actions for 3-10 trials. We
measure multiple times because some external factors, e.g., orientations of objects
and rough planes, may lead to different outcomes. Having more than one trial per
condition increases the diversity of our dataset by making it cover more possible
outcomes.

Finally, we record each trial from three different viewpoints: side, top-down, and
upper-top. For the first two, we take data with DSLR cameras, and for the upper-top
view, we use a Kinect V2 to record both RG13 and depth maps. We have 4,352 trials
in total. Given we captured videos in three RG13 maps and one depth map, there are
17,408 video clips altogether. These video clips constitute the Physics 101 dataset.

In this chapter, we focus on the ramp scenario. The observed outcome of these
scenarios are physical values which help to describe the scenario, such as the velocity

90

N. 0, 0.

(a) Snapshots of the Physics 101 dataset

R N

Gb

Figure 5-4: The Galileo model and the Physics 101 dataset. Our model formalizes a hypothesis
space of physical object representations, where each object is defined by its mass, friction coefficient,
3D shape, and a positional offset w.r.t. an origin. To model videos, we draw exactly two objects from
that hypothesis space into the physics engine. The simulations from the physics engine are compared
to observations in the velocity space, a much "nicer" space than pixels.

and moving distance of objects. Causally underlying these observations are the latent
physical properties of objects such as the material, density, mass and friction coefficient.
As shown in Section 5.3, our Galileo model intends to model the causal generative
relationship between these observed and unobserved variables.

5.3 Galileo: A Physical Object Model

The gist of our model (Figure 5-4b) can be summarized as probabilistically in-
verting a physics engine in order to recover unobserved physical properties of objects.
We collectively refer to the unobserved latent variables of an object as its physical
representation T. For each object i, T consists of its mass mi, friction coefficient ki,
3D shape Vi, and position offset pi w.r.t. an origin in 3D space.

We place uniform priors over the mass and the friction coefficient for each object:
mi ~ Uniform(O.001, 1) and ki ~ Uniform(O, 1), respectively. For 3D shape Vi, we

have four variables: a shape type ti, and the scaling factors for three dimensions

xi, yi, zi. We simplify the possible shape space in our model by constraining each
shape type ti to be one of the three with equal probability: a box, a cylinder, and a
torus. Note that applying scaling differently on each dimension to these three basic

91

Physical object i
-Mass (in)
-Friction coefficient (k)

- 3D shape (S)
- Position offset (x)

Draw two
7 physical objects

3D Physics engine

Simulated velocities(va, ,V82)

Likelihood function

Observed velocities (vo1 , V02)

(Tracvking algorithm o d

(b) Overview of the Galileo model

shapes results in a large space of shapes*. The scaling factors are chosen to be uniform

over the range of values to capture the extent of different shapes in the dataset.

Remember that our scenario consists of an object on the ramp and another on the

ground (Figure 5-4a). The position offset, pi, for each object is uniform over the set
{0, ±1, ±2, ... , ±5}. This indicates that for the object on the ramp, its position can

be perturbed along the ramp (i.e., in 2D) at most 5 units upwards or downwards from

its starting position, which is 30 units upwards on the ramp from the ground.

The next component of our generative model is a fully-fledged realistic physics

engine that we denote as p. Specifically we use the Bullet physics engine [Coumans,
2010] following the earlier related work. The physics engine takes a specification of

each of the physical objects in the scene within the basic ramp setting as input, and

simulates it forward in time, generating simulated velocity vectors for each object in
the scene, vs, and vs2 respectively-among other physical properties such as position,
rendered image of each simulation step, etc.

In light of initial qualitative analysis, we use velocity vectors as our feature
representation in evaluating the hypothesis generated by the model against data. We
employ a standard tracking algorithm (the KLT point tracker [Tomasi and Kanade,
1991]) to "lift" the visual observations to the velocity space. That is, for each video, we
first run the tracking algorithm, and we obtain velocities by simply using the center
locations of each of the tracked moving objects between frames. This gives us the
velocity vectors for the object on the ramp and the object on the ground, v,, and

vo2 , respectively. Note that we could replace the KLT tracker with state-of-the-art
tracking algorithms for more complicated scenarios.

Given a pair of observed velocity vectors, v,, and vo 2, the recovery of the physical
object representations T and T2 for the two objects via physics-based simulation can
be formalized as:

P(T1 , T2 1vOl, v0 2, p(-)) c P(vO1 , v0 2 |vI, VS 2) • P(vS1 , VS2 T1 , T2 , p(-)) • P(T1 , T2). (5.1)

where we define the likelihood function as P(vOI, v0 2 S1V8 2) = N(volv, E), where vo

is the concatenated vector of vo,0 v0 2 , and v, is the concatenated vector of vsJ, vS2. The

dimensionality of vo and vs are kept the same for a video by adjusting the number of
simulation steps we use to obtain vo according to the length of the video. But from
video to video, the length of these vectors may vary. In all of our simulations, we fix
E to 0.05, which is the only free parameter in our model. Experiments show that the
value of E does not change our results significantly.

*For shape type box, xi, yi, and zi could all be different values; for shape type torus, we constrained
the scaling factors such that xi = zi; and for shape type cylinder, we constrained the scaling factors
such that yi = zi.

92

|| 1 1

-I -- v

on -

0 t

(a) (b) (C) (d) (e) (f)

Figure 5-5: Simulation results. Each row represents one video in the data: (a) the first frame of
the video, (b) the last frame of the video, (c) the first frame of the simulated scene generated by
Bullet, (d) the last frame of the simulated scene, (e) the estimated object with larger mass, (f) the
estimated object with larger friction coefficient.

Tracking as recognition. The posterior distribution in Equation 5.1 is intractable.
In order to alleviate the burden of posterior inference, we use the output of our
recognition model to predict and fix some of the latent variables in the model.

Specifically, we determine the Vi, or {ti, xi, yi Zi}, using the output of the tracking
algorithm, and fix these variables without further sampling them. Furthermore, we fix
values of pis also on the basis of the output of the tracking algorithm.

Inference. Once we initialize and fix the latent variables using the tracking algorithm
as our recognition model, we then perform single-site Metropolis Hasting updates on
the remaining four latent variables, Mi, M 2, ki and k2. At each MCMC sweep, we
propose a new value for one of these random variables, where the proposal distribution
is Uniform(-0.05, 0.05). In order to help with mixing, we also use a broader proposal

distribution, Uniform(-0.5, 0.5) at every 20 MCMC sweeps.

5.4 Simulations

For each video, as mentioned earlier, we use the tracking algorithm to initialize and

fix the shapes of the objects, Si and S2 , and the position offsets, p1 and P2. We also
obtain the velocity vector for each object using the tracking algorithm. We determine

the length of the physics engine simulation by the length of the observed video-that

is, the simulation runs until it outputs a velocity vector for each object that is as long
as the input velocity vector from the tracking algorithm.

We sample 150 videos from the Physics 101 dataset, uniformly distributed across

different object categories. We perform 16 MCMC simulations for a single video,
each of which was 75 MCMC sweeps long. We report the results with the highest
log-likelihood score across the 16 chains (i.e., the MAP estimate).

In Figure 5-5, we illustrate the results for three individual videos. Every two frame

93

of the top row shows the first and the last frame of a video, and the bottom row images
show the corresponding frames from our model's simulations with the MAP estimate.
We quantify different aspects of our model in the following behavioral experiments,
where we compare our model against human subjects' judgments. Furthermore, we
use the inferences made by our model here on the 150 videos to train a recognition
model to arrive at physical object perception in static scenes with the model.

Importantly, note that our model can generalize across a broad range of tasks
beyond the ramp scenario. For example, once we infer the coefficient friction of an
object, we can make a prediction on whether it will slide down a ramp with a different
slope by doing simulation. We test some of the generalizations in Section 5.6.

5.5 Bootstrapping as Efficient Perception in Static Scenes

Based on the estimates we derived from the visual input with a physics engine, we
bootstrap from the videos already collected, by labeling them with estimates of Galileo.
This is a self-supervised learning algorithm for inferring generic physical properties.
As discussed in Section 5.1, this formulation is also related to the wake/sleep phases
in Helmholtz machines, and to the cognitive development of infants.

Here we focus on two physical properties: mass and friction coefficient. To do
this, we first estimate these physical properties using the method described in earlier
sections. Then, we train LeNet [LeCun et al., 1998], a widely used deep neural network
for small-scale datasets, using image patches cropped from videos based on the output
of the tracker as data, and estimated physical properties as labels. The trained model
can then be used to predict these physical properties of objects based on purely visual
cues, even though they might have never appeared in the training set.

We also measure masses of all objects in the dataset, which makes it possible for
us to quantitatively evaluate the predictions of the deep network. We choose one
object per material as our test cases, use all data of those objects as test data, and the
others as training data. We compare our model with a baseline, which always outputs
a uniform estimate calculated by averaging the masses of all objects in the test data,
and with an oracle algorithm, which is a LeNet trained using the same training data,
but has access to the ground truth masses of training objects as labels. Apparently,
the performance of the oracle model can be viewed as an upper bound of our Galileo
system.

Table 5.1 compares the performance of Galileo, the oracle algorithm, and the
baseline. We can observe that Galileo is much better than baseline, although there is
still some space for improvement.

Because we trained LeNet using static images to predict physical object properties
such as friction and mass ratios, we can use it to recognize those attributes in a quick

94

RL

- initialization with recognition model - random initialization

Mass
Methods MSE Correlation

Oracle 0.042 0.71
Galileo 0.052 0.44
Uniform 0.081 0

Oe+00 -

o 1e+05 -

o3-2e+05 -

0 20 40 60
Table 5.1: Mean squared errors of or- Number of MCMC sweeps
acle estimation, our estimation, and
uniform estimations of mass on a log- Figure 5-6: The log-likelihood traces of several
normalized scale, and the correlations between chains with and without recognition-model (LeNet)
estimations and ground truths based initializations

bottom-up pass at the very first frame of the video. To the extent that the trained
LeNet is accurate, if we initialize the MCMC chains with these bottom-up predictions,
we expect to see an overall boost in our log-likelihood traces. We test by running
several chains with and without LeNet-based initializations. Results can be seen in

Figure 5-6. Despite the fact that LeNet is not achieving perfect performance by itself,
we indeed get a boost in speed and quality in the inference.

5.6 Experiments

In this section, we conduct experiments from multiple perspectives to evaluate our
model. Specifically, we use the model to predict how far objects will move after the
collision; whether the object will remain stable in a different scene; and which of the
two objects is heavier based on observations of collisions. For every experiment, we
also conduct behavioral experiments on Amazon Mechanical Turk so that we may
compare the performance of human and machine on these tasks.

5.6.1 Outcome Prediction

In the outcome prediction experiment, our goal is to measure and compare how
well human and machines can predict the moving distance of an object if only part
of the video can be observed. Specifically, for behavioral experiments on Amazon

Mechanical Turk, we first provide users four full videos of objects made of a certain

material, which contain complete collisions. In this way, users may infer the physical
properties associated with that material in their mind. We select a different object,
but made of the same material, show users a video of the object, but only to the

moment of collision. We finally ask users to label where they believe the target object

95

250 an
*Galileo

(fl *Uniform
-li200 - - -
X

150 -

2 100 ------ - - - ---- ------- ----- - ---- --- - ---
210

50

Figure 5-7: Mean errors in the number of pixels of human predictions, Galileo outputs, and
a uniform estimate calculated by averaging ground truth ending points over all test cases. As the
error patterns are similar for both target objects (foam and cardboard), the errors here are averaged
across target objects for each material.

Figure 5-8: Heat maps of user predictions, Galileo outputs (orange crosses), and ground truths
(white crosses)

(either cardboard or foam) will be after the collision, i.e., how far the target will move.
We tested 30 users per case.

Given a partial video, for Galileo to generate predicted destinations, we first run it
to fit the part of the video to derive our estimate of its friction coefficient. We then
estimate its density by averaging the density values we derived from other objects with
that material by observing collisions that they are involved. We further estimate the
density (mass) and friction coefficient of the target object by averaging our estimates
from other collisions. We now have all required information for the model to predict
the ending point of the target after the collision. Note that the information available
to Galileo is exactly the same as that available to humans.

We compare three kinds of predictions: human feedback, Galileo output, and, as
a baseline, a uniform estimate calculated by averaging ground truth ending points
over all test cases. Figure 5-7 shows the Euclidean distance in pixels between each of
them and the ground truth. We can see that human predictions are much better than
the uniform estimate, but still far from perfect. Galileo performs similar to human

in the average on this task. Figure 5-8 shows, for some test cases, heat maps of user

predictions, Galileo outputs (orange crosses), and ground truths (white crosses). The

96

iHuman
MGalileo

0.8-

0.6-

0.4-

0.2-

0-
Mass "Will it move"

Figure 5-9: Average accuracy of human pre-

Mass Spearman's Coefficient

Human vs Galileo 0.51
Human vs Truth 0.68
Galileo vs Truth 0.52

"Will it move" Pearson's Coefficient

Human vs Galileo 0.56
Human vs Truth 0.42
Galileo vs Truth 0.20

Table 5.2: Correlations between pairs of out-
dictions and Galileo outputs on the tasks puts in the mass prediction experiment (in Spear-
of mass prediction and "will it move" pre- man's coefficient) and in the "will it move" predic-
diction. Error bars indicate standard deviations tion experiment (in Pearson's coefficient)
of human accuracies.

error correlation between human and POM is 0.70. The correlation analysis for the
uniform model is not useful because the correlation is a constant independent of the
uniform prediction value.

5.6.2 Mass Prediction

The second experiment is to predict which of two objects is heavier, after observing
a video of a collision of them. For this task, we also randomly choose 50 objects, we
test each of them on 50 users. For Galileo, we can directly obtain its guess based on
the estimates of the masses of the objects.

Figure 5-9 demonstrates that human and our model achieve about the same
accuracy on this task. We also calculate correlations between different outputs. Here
for correlation analysis, we use the ratio of the masses of the two objects estimated
by Galileo as its predictor. Human responses are aggregated for each trial to get the
proportion of people making each decision. As the relation is highly nonlinear, we
calculate Spearman's coefficients. From Table 5.2, we notice that human responses,
machine outputs, and ground truths are all positively correlated.

5.6.3 "Will It Move" Prediction

Our third experiment is to predict whether a certain object will move in a different
scene, after observing one of its collisions. On Amazon Mechanical Turk, we show
users a video containing a collision of two objects. In this video, the angle between the
inclined surface and the ground is 20 degrees. We then show users the first frame of a
10-degree video of the same object, and ask them to predict whether the object will
slide down the surface in this case. We randomly choose 50 objects for the experiment,

97

and divide them into lists of 10 objects per user, and get each of the item tested on
50 users overall.

For Galileo, it is straightforward to predict the stability of an object in the 10-
degree case using estimates from the 20-degree video. Interestingly, both humans and
the model are at chance on this task (Figure 5-9), and their responses are reasonably
correlated (Table 5.2). Again, here we aggregate human responses for each trial to
get the proportion of people making each decision. Moreover, both subjects and the
model show a bias toward saying "it will move." Future controlled experimentation
and simulations will investigate what underlies this correspondence.

5.7 Discussion

The Galileo model, together with the Physics 101 dataset, accomplishes three goals:
first, it shows that a generative vision system with physical object representations and

a realistic 3D physics engine at its core can efficiently deal with constrained real-world
data when proper recognition models and feature spaces are used. Second, it shows
that humans' intuitions about physical outcomes are often accurate, and our model
largely captures these intuitions-but crucially, humans and the model make similar
errors. Lastly, the experience of the model, that is, the inferences it makes on the
basis of dynamical visual scenes, can be used to train a deep learning model, which
leads to more efficient inference and to the ability to see physical properties in the
static images. Our study points toward an account of human vision with generative
physical knowledge at its core, and various recognition models as helpers to induce
efficient inference.

98

Chapter 6

Learning with an Integrated

Physics + Graphics Engine

In this chapter, building upon the models introduced in previous chapters, we
present a paradigm for understanding physical scenes, including both object appearance
and physics, all without human annotations. At the core of our system is a physical
world representation that is first recovered by a learned perception module, and then

utilized by physics and graphics engines. During training, the perception module and
the simulation engines learn by visual de-animation-interpreting and reconstructing

the visual information stream. During testing, the system first recovers the physical
world state, and then uses the simulators for reasoning and future prediction.

Even more so than forward simulation, inverting a physics or graphics engine is a
computationally hard problem; we overcome this challenge by using a convolutional
inversion network. Our system quickly recognizes the physical world state from
appearance and motion cues, and has the flexibility to incorporate both differentiable
and non-differentiable physics and graphics engines. We evaluate our system on both
synthetic and real datasets involving multiple physical scenes, and demonstrate that

our system performs well on both physical state estimation and reasoning problems.

We further show that our model can be extended to multi-part objects, where

each part has distinct physical properties. Finally, we use the learned model in robot
planning and manipulation, so that the system not only understands scenes, but also
interact with them.

This chapter includes materials previously published as Wu et al. [2017a], Liu et al.
[2018b], Janner et al. [2019]. Erika Lu, Zhijian Liu, and Michael Janner contributed
significantly to the materials presented in this chapter.

6.1 Introduction

Inspired by human abilities, we wish to develop machine systems that understand

scenes. Scene understanding has multiple defining characteristics which break down

99

broadly into two features. First, human scene understanding is rich. Scene under-
standing is physical, predictive, and causal: rather than simply knowing what is where,
one can also predict what may happen next, or what actions one can take, based on
the physics afforded by the objects, their properties, and relations. These predictions,
hypotheticals, and counterfactuals are probabilistic, integrating uncertainty as to what
is more or less likely to occur. Second, human scene understanding is fast. Most of
the computation has to happen in a single, feedforward, bottom-up pass.

There have been many systems proposed recently to tackle these challenges, but
existing systems have architectural features that allow them to address one of these

features but not the other. Typical approaches based on inverting graphics engines
and physics simulators [Kulkarni et al., 2015b] achieve richness at the expense of speed.
Conversely, neural networks such as PhysNet [Lerer et al., 2016] are fast, but their
ability to generalize to rich physical predictions is limited.

We propose a new approach to combine the best of both. Our overall framework
for representation is based on graphics and physics engines, where graphics is run
in reverse to build the initial physical scene representation, and physics is then run
forward to imagine what will happen next or what can be done. Graphics can also
be run in the forward direction to visualize the outputs of the physics simulation as
images of what we expect to see in the future, or under different viewing conditions.
Rather than use traditional, often slow inverse graphics methods [Kulkarni et al.,
2015b], we learn to invert the graphics engine efficiently using convolutional nets.
Specifically, we use deep learning to train recognition models on the objects in our
world for object detection, structure and viewpoint estimation, and physical property
estimation. Bootstrapping from these predictions, we then infer the remaining scene
properties through inference via forward simulation of the physics engine.

Without human supervision, our system learns by visual de-animation: interpreting
and reconstructing visual input. We show the problem formulation in Figure 6-1. The
simulation and rendering engines in the framework force the perception module to
extract physical world states that best explain the data. As the physical world states
are inputs to physics and graphics engines, we simultaneously obtain an interpretable,
disentangled, and compact physical scene representation.

Our framework is flexible and adaptable to a number of graphics and physics
engines. We present model variants that use neural, differentiable physics engines
[Chang et al., 2017], and variants that use traditional physics engines, which are more
mature but non-differentiable [Coumans, 2010]. We also explore various graphics
engines operating at different levels, ranging from mid-level cues such as object velocity,
to pixel-level rendering of images.

We demonstrate our system on real and synthetic datasets across multiple domains:
synthetic billiard videos [Fragkiadaki et al., 2016], in which balls have varied physical

100

physical world

14 t t40

visual data

physical world

0 0 0
0 -4.-

0 00) 00

14 14

visual data

Figure 6-1: Visual de-animation-we would like to recover the physical world representation
behind the visual input, and combine it with generative physics simulation and rendering engines.

properties, real billiard videos from the web, and real images of block towers from

Facebook AI Research [Lerer et al., 2016].

Later in the chapter, we also present extensions to our model that handle multi-

part objects, where each part has distinct physical properties. Finally, we present

applications of our model in robot planning and manipulation.

Our contributions in this chapter are four-fold. First, we introduce the problem

of visual de-animation-learning rich scene representations without supervision by

interpreting and reconstructing visual input. Second, we propose a novel generative

pipeline for physical scene understanding, and demonstrate its flexibility by incorpo-

rating various graphics and physics engines. Third, we show that our system performs

well across multiple scenarios on both synthetic and constrained real videos, including

those involving heterogeneous objects. Last, we present extensions of our model that

can be deployed on real robots for planning and manipulation.

6.2 Related Work

Physical scene understanding has attracted increasing attention in recent years

[Gupta et al., 2010, Jia et al., 2015, Lerer et al., 2016, Zheng et al., 2015, Battaglia

et al., 2013, Mottaghi et al., 2016b, Fragkiadaki et al., 2016, Battaglia et al., 2016,
Mottaghi et al., 2016a, Chang et al., 2017, Agrawal et al., 2016, Pinto et al., 2016, Finn

et al., 2016, Hamrick et al., 2017, Ehrhardt et al., 2019, Shao et al., 2014, Zhang et al.,

2016]. Researchers have attempted to go beyond the traditional goals of high-level

computer vision, inferring "what is where", to capture the physics needed to predict

the immediate future of dynamic scenes, and to infer the actions an agent should

take to achieve a goal. Most of these efforts do not attempt to learn physical object

representations from raw observations. Some systems emphasize learning from pixels

101

but without an explicitly object-based representation [Lerer et al., 2016, Fragkiadaki
et al., 2016, Agrawal et al., 2016, Pinto et al., 2016, Li et al., 2017b], which makes
generalization challenging. Others learn a flexible model of the dynamics of object
interactions, but assume a decomposition of the scene into physical objects and their
properties rather than learning directly from images [Chang et al., 2017, Battaglia
et al., 20161.

There have been some models that aim to estimate physical object properties [Wu
et al., 2016a, 2015a, Denil et al., 2017]. The Galileo model we just introduced in
Chapter 5 explored an analysis-by-synthesis approach that is easily generalizable, but
less efficient. Their framework also lacked a perception module. Denil et al. [2017]
instead proposed a reinforcement learning approach. These approaches, however,
assumed strong priors of the scene and approximated object shapes with primitives.
Wu et al. [2016a] used a feed-forward network for physical property estimation without
assuming prior knowledge of the environment, but the constrained setup did not allow
interactions between multiple objects. By incorporating physics and graphics engines,
our approach can jointly learn the perception module and physical model, optionally
in a Helmholtz machine style [Hinton et al., 1995], and recover an explicit physical
object representation in a range of scenarios.

Another line of related work is on future state prediction in either image pixels [Xue
et al., 2016, Mathieu et al., 2016] or object trajectories [Kitani et al., 2017, Walker
et al., 2015]. Our model builds upon and extends these ideas by jointly modeling an
approximate physics engine and a perceptual module, with wide applications including,
but not limited to, future prediction.

Our model also connects to the area of "vision as inverse graphics" [Zhu and
Mumford, 2007, Yuille and Kersten, 2006, Bai et al., 2012]. Unlike traditional analysis-
by-synthesis approaches, recent methods explored using deep neural networks to
efficiently explain an object [Kulkarni et al., 2015a, Rezende et al., 2016a], or a scene
with multiple objects [Ba et al., 2015, Huang and Murphy, 2015, Eslami et al., 2016].
In particular, in Chapter 4 we have proposed "scene de-rendering", building an object-
based, structured representation from a static image. In this chapter, we develop a
model that incorporates inverse graphics with simulation engines for physical scene
understanding and scene dynamics modeling.

6.3 Visual De-animation

Our visual de-animation (VDA) model consists of an efficient inverse graphics
component to build the initial physical world representation from visual input, a
physics engine for physical reasoning of the scene, and a graphics engine for rendering
videos. We show the framework in Figure 6-2. In this section, we first present an

102

I MR. I .. I "

object Physica (b) Physical world (II) Physics engine (simulation)
orpslbject state representation

[Ph4T ysic.al....
p() ppcance CoeSo (st- III) Graphics engine (rendering)

(I) Perception module

7 [4 (d) Likelihood ~I2i
(a) Input (e) Output

Figure 6-2: Our visual de-animation (VDA) model contains three major components: a
convolutional perception module (I), a physics engine (II), and a graphics engine (III). The perception
module efficiently inverts the graphics engine by inferring the physical object state for each segment
proposal in input (a), and combines them to obtain a physical world representation (b). The
generative physics and graphics engines then run forward to reconstruct the visual data (e). See
Section 6.3 for details.

overview of the system, and then describe each component in detail.

6.3.1 Overview

The first component of our system is an approximate inverse graphics module for

physical object and scene understanding, as shown in Figure 6-2-I. Specifically, the

system sequentially computes object proposals, recognizes objects and estimates their

physical state, and recovers the scene layout.
The second component of our system is a physics engine, which uses the physical

scene representation recovered by the inverse graphics module to simulate future

dynamics of the environment (Figure 6-2-I). Our system adapts to both neural,
differentiable simulators, which can be jointly trained with the perception module, and

rigid-body, non-differentiable simulators, which can be incorporated using methods

such as REINFORCE [Williams, 1992].
The third component of our framework is a graphics engine (Figure 6-2-Ill), which

takes the scene representations from the physics engine and re-renders the video at

various levels (e.g. optical flow, raw pixel). The graphics engine may need additional
appearance cues such as object shape or color (Figure 6-2c). Here, we approximate

them using simple heuristics, as they are not a focus of our model. There is a tradeoff

between various rendering levels: while pixel-level reconstruction captures details of

the scene, rendering at a more abstract level (e.g. silhouettes) may better generalize.

We then use a likelihood function (Figure 6-2d) to evaluate the difference between

synthesized and observed signals, and compute gradients or rewards for differentiable

and non-differentiable systems, respectively.

103

Our model combines efficient and powerful deep networks for recognition with rich
simulation engines for forward prediction. This provides us two major advantages
over existing methods: first, simulation engines take an interpretable representation of
the physical world, and can thus easily generalize and supply rich physical predictions;
second, the model learns by explaining the observations-it can be trained in a
self-supervised manner without requiring human annotations.

6.3.2 Physical Object and Scene Modeling

We now discuss each component in detail, starting with the perception module.

Object proposal generation. Given one or a few frames (Figure 6-2a), we first

generate a number of object proposals. The masked images are then used as input to
the following stages of the pipeline.

Physical object state estimation. For each segment proposal, we use a convolu-
tional network to recognize the physical state of the object, which consists of intrinsic
properties such as shape, mass, and friction, as well as extrinsic properties such as 3D
position and pose. The input to the network is the masked image of the proposal, and

the output is an interpretable vector for its physical state.

Physical world reconstruction. Given objects' physical states, we first apply non-

maximum suppression to remove object duplicates, and then reconstruct the physical
world according to object states. The physical world representation (Figure 6-2b) will
be employed by the physics and graphics engines for simulation and rendering.

6.3.3 Physical Simulation and Prediction

The two types of physics engines we explore in this chapter include a neural,
differentiable physics engine and a standard rigid-body simulation engine.

Neural physics engines. The neural physics engine is an extension of the recent
work from Chang et al. [2017], which simulates scene dynamics by taking object
mass, position, and velocity. We extend their framework to model object friction in
our experiments on billiard table videos. Though basic, the neural physics engine
is differentiable, and thus can be end-to-end trained with our perception module to
explain videos. Please refer to Chang et al. [2017] for details of the neural physics
engine.

Rigid body simulation engines. There exist rather mature, rigid-body physics
simulation engines, e.g. Bullet [Coumans, 2010]. Such physics engines are much more
powerful, but non-differentiable. In our experiments on block towers, we used a
non-differentiable simulator with multi-sample REINFORCE [Rezende et al., 2016a,
Mnih and Rezende, 2016] for joint training.

104

(a) shared appearance, (b) varied appearance, (c) shared appearance,
shared physics varied physics varied physics

Figure 6-3: The three settings of our synthetic billiard videos: (a) balls have the same
appearance and physical properties, where the system learns to discover them and simulate the
dynamics; (b) balls have the same appearance but different physics, and the system learns their

physics from motion; (c) balls have varied appearance and physics, and the system learns to associate
appearance cues with underlying object states, even from a single image.

6.3.4 Re-rendering with a Graphics Engine

In this work, we consider two graphics engines operating at different levels: for the
billiard table scenario, we use a renderer that takes the output of a physics engine

and generates pixel-level rendering; for block towers, we use one that computes only

object silhouettes.

6.4 Evaluation

We evaluate variants of our frameworks on videos of billiard tables and block

towers. We also test how models trained on synthetic data generalize to real cases.

6.4.1 Billiard Tables: A Motivating Example

We begin with synthetic billiard videos to explore end-to-end learning of the

perceptual module along with differentiable simulation engines. We explore how our

framework learns the physical object state (position, velocity, mass, and friction) from

its appearance and/or motion.

Data. For the billiard table scenario, we generate data using the released code from

Fragkiadaki et al. [2016]. We updated the code to allow balls of different mass and
friction. We used the billiard table scenario as an initial exploration of whether our

models can learn to associate visual object appearance and motion with physical

properties. As shown in Figure 6-3, we generated three subsets, in which balls may

have shared or differing appearance (color), and physical properties. For each case,
we generated 9,000 videos for training and 200 for testing.

(I) Shared appearance and physics (Figure 6-Sa): balls all have the same appearance

and the same physical properties. This basic setup evaluates whether we can jointly
learn an object (ball) discoverer and a physics engine for scene dynamics.

(II) Varied appearance and physics (Figure 6-3b): balls can be of three different

masses (light, medium, heavy), and two different friction coefficients. Each of the six

105

Input (red) 0 g
and g S

ground truth

Reconstruction *
and prediction * eg

Input (red) * *
and

ground truth g]e

Reconstruction S 7
and prediction i

Frame t-2 Frame t Frame t+2 Frame t+5 Frame t+10 Frame t-2 Frame t Frame t+2 Frame t+5 Frame t+ 10

Figure 6-4: Qualitative results on the billiard videos, comparing ground truth videos with
our predictions. We show two of three input frames (in red) due to space constraints. Left: balls
share appearance and physics (I), where our framework learns to discover objects and simulate scene
dynamics. Top right: balls have different appearance and physics (II), where our model learns to
associate appearance with physics and simulate collisions. It learns that the green ball should move
further than the heavier blue ball after the collision. Bottom right: balls share appearance but have
different frictions (III), where our model learns to associate motion with friction. It realizes from
three input frames that the right-most ball in the first frame has a large friction coefficient and will
stop before the other balls.

possible combinations is associated with a unique color (appearance). In this setup,
the scene de-rendering component should be able to associate object appearance with
its physical properties, even from a single image.

(III) Shared appearance, varied physics (Figure 6-3c): balls have the same ap-
pearance, but have one of two different friction coefficients. Here, the perceptual
component should be able to associate object motion with its corresponding friction
coefficients, from just a few input images.

Setup. For this task, the physical state of an object is its intrinsic properties,
including mass m and friction f, and its extrinsic properties, including 2D position

{x, y} and velocity v. Our system takes three 256x256 RGB frames I1, 12,13 as
input. It first obtains flow fields from 11 to I2 and from 12 to 13 by a pre-trained
spatial pyramid network (SPyNet) [Ranjan and Black, 2017]. It then generates object
proposals by applying color filters on input images.

Our perceptual model is a ResNet-18 [He et al., 2016], which takes as input three
masked RGB frames and two masked flow images of each object proposal, and recovers
the object's physical state. We use a differentiable, neural physics engine with object
intrinsic properties as parameters; at each step, it predicts objects' extrinsic properties
(position {x, y} and velocity v) in the next frame, based on their current estimates.
We employ a graphics engine that renders original images from the predicted positions,
where the color of the balls is set as the mean color of the input object proposal. The
likelihood function compares, at a pixel level, these rendered images and observations.

106

Video

VDA • •
(ours)

Figure 6-5: Sample results on web videos of real billiard games and computer games
with realistic rendering. Left: our method correctly estimates the trajectories of multiple objects.
Right: our framework correctly predicts the two collisions (white vs. red, white vs. blue), despite the
motion blur in the input, though it underestimates the velocity of the red ball after the collision. Note
that the billiard table is a chaotic system, and highly accurate long-term prediction is intractable.

It is straightforward to compute the gradient of object position from rendered RGB
images and ground truth. Thus, this simple graphics engine is also differentiable,
making our system end-to-end trainable.

Our training paradigm consists of two steps. First, we pre-train the perception
module and the neural physics engine separately on synthetic data, where ground
truth is available. The second step is end-to-end fine-tuning without annotations.
We observe that the framework does not converge well without pre-training, possibly
due to the multiple hypotheses that can explain a scene (e.g., we can only observe
relative, not absolute masses from collisions). We train our framework using SGD,
with a learning rate of 0.001 and a momentum of 0.9. We implement our framework
in Torch7 [Collobert et al., 2011]. During testing, the perception module is run in
reverse to recover object physical states, and the learned physics engine is then run in
forward for future prediction.

Results. Our formulation recovers a rich representation of the scene. With the
generative models, we show results in scene reconstruction and future prediction. On
scene reconstruction, given input frames, our model can reconstruct the images based
on inferred physical states. We show qualitative results in Figure 6-4. On future
prediction, with the learned neural simulation engine, our system is able to predict
future events based on physical world states. We show qualitative results in Figure 6-4.
Our model achieves good performance in reconstructing the scene, understanding
object physics, and predicting scene dynamics.

6.4.2 Billiard Tables: Transferring to Real Videos

Data. We also collected videos from YouTube, segmenting them into two-second
clips. Some videos are from real billiard competitions, and the others are from
computer games with realistic rendering. We use it as an out-of-sample test set for
evaluating the model's generalization ability.

107

Setup and results. Our setup is the same as that in Section 6.4.1, except that we
now re-train the perceptual model on the synthetic data of varied physics, but with
flow images as input instead of RGB images. Flow images abstract away appearance
changes (color, lighting, etc.), allowing the model to generalize better to real data.
We show qualitative results of reconstruction and future prediction in Figure 6-5 by
rendering our inferred representation using the graphics software, Blender.

6.4.3 The Blocks World

We now look into a different scenario-block towers. In this experiment, we
demonstrate the applicability of our model to explain and reason from a static image,
instead of a video. We focus on the reasoning of object states in the 3D world, instead
of physical properties such as mass. We also explore how our framework performs
with non-differentiable simulation engines, and how physics signals (e.g., stability)
could help in physical reasoning, even when given only a static image.

Data. Lerer et al. [2016] built a dataset of 492 images of real block towers, with
ground truth stability values. Each image may contain 2, 3, or 4 blocks of red, blue,
yellow, or green color. Though the blocks are the same size, their sizes in each 2D
image differ due to 3D-to-2D perspective transformation. Objects are made of the
same material and thus have identical mass and friction.

Setup. Here, the physical state of an object (block) consists of its 3D position

{x, y, z} and 3D rotation (roll, pitch, yaw, each quantized into 20 bins). Our perceptual
model is again a ResNet-18 [He et al., 2016], which takes block silhouettes generated
by simple color filters as input, and recovers the object's physical state. For this
task, we implement an efficient, non-differentiable, rigid body simulator, to predict
whether the blocks are stable. We also implement a graphics engine to render object
silhouettes for reconstructing the input. Our likelihood function consists of two terms:
MSE between rendered silhouettes and observations, and the binary cross-entropy
between the predicted stability and the ground truth stability.

Our training paradigm resembles the classic wake-sleep algorithm [Hinton et al.,
1995]: first, generate 10,000 training images using the simulation engines; second, train
the perception module on synthetic data with ground truth physical states; third,
end-to-end fine-tuning of the perceptual module by explaining an additional 100,000
synthetic images without annotations of physical states, but with binary annotations
of stability. We use multi-sample REINFORCE [Rezende et al., 2016a, Mnih and
Rezende, 2016] with 16 samples per input, assuming each position parameter is from a
Gaussian distribution and each rotation parameter is from a multinomial distribution
(quantized into 20 bins). We observe that the training paradigm helps the framework
converge. The other setting is the same as that in Section 6.4.1.

108

Video

VDA
(ours)

PhysNet

Video

VDA
(ours)

PhysNet

(a) Reconstruction and prediction given a single
frame (marked in red). From top to bottom: ground
truth, our results, results from Lerer et al. [2016].

Video

VDA
(ours)

Methods # Blocks Mean
2 3 4

Chance 50 50 50 50
Humans 67 62 62 64

PhysNet 66 66 73 68
GoogLeNet 70 70 70 70

VDA (init) 73 74 72 73
VDA (joint) 75 76 73 75
VDA (full) 76 76 74 75

(b) Accuracy (%) of stability prediction on
the blocks dataset

Methods 2 3 4 Mean

PhysNet 56 68 70 65
GoogLeNet 70 67 71 69

VDA (init) 74 74 67 72
VDA (joint) 75 77 70 74
VDA (full) 76 76 72 75

(c) Accuracy (%) of stability prediction when
trained on synthetic towers of 2 and 4 blocks,
and tested on all block tower sizes.

(d) Our reconstruction and prediction results given a single frame (marked in red)

Figure 6-6: Results on the blocks dataset [Lerer et al., 20161. For quantitative results (b), we
compare three variants of our visual de-animation (VDA) model: perceptual module trained without
fine-tuning (init), joint fine-tuning with REINFORCE (joint), and full model considering stability
constraint (full). We also compare with PhysNet [Lerer et al., 2016] and GoogLeNet [Szegedy et al.,
20151.

Results. We show results on two tasks: scene reconstruction and stability prediction.

For each task, we compare three variants of our algorithm: the initial system has
its perception module trained without fine-tuning; an intermediate system has joint

end-to-end fine-tuning, but without considering the physics constraint; and the full

system considers both reconstruction and physical stability during fine-tuning.

109

1

Input VDA What if? Input Future Stabilizing force

Figure 6-7: Predicting hypothetical scenarios and actively engaging with the scene. Left:
predictions of the outcome of forces applied to two stable towers. Right: multiple ways to stabilize
two unstable towers.

We show qualitative results on scene reconstruction in Figures 6-6a and 6-6d, where

we also demonstrate future prediction results by exporting our inferred physical states

into Blender. We show quantitative results on stability prediction in Table 6-6b, where

we compare our models with PhysNet [Lerer et al., 2016] and GoogleNet [Szegedy
et al., 2015]. All given a static image as test input, our algorithms achieve higher

prediction accuracy (75% vs. 70%) efficiently (<10 milliseconds per image).

Our framework also generalizes well. We test out-of-sample generalization ability,

where we train our model on 2- and 4-block towers, but test it on all tower sizes.

We show results in Table 6-6c. Further, in Figure 6-7, we show examples where

our physical scene representation combined with a physics engine can easily make

conditional predictions, answering "What happens if..."-type questions. Specifically,
we show frame prediction of external forces on stable block towers, as well as ways

that an agent can stabilize currently unstable towers, with the help of rich simulation

engines.

6.5 Extension to Heterogeneous Objects

Many daily objects such as hammers consist of multiple parts, each with distinct

physical properties. In this section, we extend our model to further decompose objects

into parts. We call this problem Physical Primitive Decomposition (PPD).

6.5.1 Problem Statement

Both primitive decomposition and physical primitive decomposition attempt to

approximate an object with primitives. We highlight their difference in Figure 6-8.

Primitive decomposition. As formulated in Tulsiani et al. [2017a] and Zou et al.

[2017], primitive decomposition aims to decompose an object 0 into a set of simple

transformed primitives x = {Xk} so that these primitives can accurately approximate

110

Geometry

tGeometry
Physics

Objective Objective

(a) Primitive decomposition (b) Physical primitive decomposition

Figure 6-8: Primitive decomposition (a) and physical primitive decomposition (b) Both
tasks attempt to convert an object into a set of primitives yet with different purposes: the former
problem targets at shape reconstruction, while the latter one aims to recover both geometric and
physical properties.

its geometry shape. This task can be seen as to minimize

£G (x) =DS (S(U xk), S(O)), (6.1)
k

where S(-) denotes the geometry shape (i.e. point cloud), and Ds(., -) denotes the

distance metric between shapes.

Physical primitive decomposition. In order to understand the functionality of

object parts, we require the decomposed primitives x = {Xk} to also approximate the

physical behavior of object 0. To this end, we extend the previous objective function

with an additional physics term:

LP(x) = DT ((UXk), Tp(O)), (6.2)
pP

where T(-) denotes the trajectory after physics interaction p, DT(-, -) denotes the

distance metric between trajectories (i.e. mean squared error), and P denotes a

predefined set of physics interactions. Therefore, the task of physical primitive

decomposition is to minimize an overall objective function constraining both geometry

and physics: £(x) = £G (X) 'w -p(x), where w is a weighting factor.

Primitive-based representation. We design a structured primitive-based object

representation, which describes an object by listing all of its primitives with different

attributes. For each primitive Xk, we record its size xk = (sr, sy, sz), position in 3D

space xT = (px, py, pz), rotation in quaternion form zR = (q., qx, qy, qz). Apart from

these geometry information, we also track its physical properties: density 4.
In our object representation, the shape parameters, x, x T and 4R, are vectors

of continuous real values, whereas the density parameter x is a discrete value. We

discretize the density values into ND = 100 slots, so that estimating density becomes

a ND-way classification. Discretization helps to deal with multi-modal density values.

Figure 6-9a shows that two parts with similar visual appearance may have very

111

(a) Above: Aluminum and Wood; (b) Above: Wood and Iron;
Below: Iron and Wood. Below: Two Coppers.

Figure 6-9: Challenges of inferring physical parameters from visual and physical obser-
vations: objects with different physical parameters might have (a) similar visual appearance or (b)
similar physics trajectory.

different physical parameters. In such cases, regression with an £2 loss will encourage

the model to predict the mean value of possible densities; in contrast, discretization

allows it to give high probabilities to every possible density. We then figure out which

candidate value is optimal from the trajectories.

6.5.2 Approach

Inferring physical parameters from solely visual or physical observation is highly

challenging. This is because two objects with different physical parameters might

have similar visual appearance (Figure 6-9a) or have similar physics trajectories

(Figure 6-9b). Therefore, our model takes both types of observations as input:

1. Visual Observation. We take a voxelized shape and an image as our input

because they can provide us with valuable visual information. Voxels help

us recover object geometry, and images contain texture information of object

materials. Note that, even with voxels as input, it is still highly nontrivial to

infer geometric parameters: the model needs to learn to segment 3D parts within

the object-an unsolved problem by itself [Tulsiani et al., 2017a].

2. Physics Observation. In order to explain the physical behavior of an object,
we also need to observe its response after some physics interactions. In this work,

we choose to use 3D object trajectories rather than RGB (or RGB-D) videos.

Its abstractness enables the model to transfer better from synthetic to real data,

because synthetic and real videos can be starkly different; in contrast, itaAZs

easy to generate synthetic 3D trajectories that look realistic.

Specifically, as shown in Figure 6-10 our network takes a voxel V, an image I,
and NT object trajectories T = {Tk} as input. V is a 3D binary voxelized grid, I is

a single RGB image, and T consists of several object trajectories Tk, each of which

112

Voxel

1
Image

Trajectory

Voxel Encoder

-+ CNN

:

Image Encoder

CNN

Trajectory
Encoder

RNN

Differences between Trajectories

Figure 6-10: Overview of our Physical Primitive Decomposition (PPD) model

records the response to one specific physics interaction. Trajectory Tk is a sequence of

3D object pose (px,Py,Pz, qw, qx, qy, qz), where (px,py,Pz) denotes the object's center

position and quaternion (qw, qx, qv, qz) denotes its rotation at each time step.

After receiving the inputs, our network encodes voxel, image and trajectory with

separate encoders, and sequentially predicts primitives using a recurrent primitive

generator. For each primitive, the network predicts its geometry shape (i.e., scale,
translation and rotation) and physical property (i.e., density).

For input voxel V, we employ a 3D volumetric convolutional network to encode

the 3D shape information into a voxel feature fv.

For input image I, we pass it into the ResNet-18 [He et al., 2016] encoder to obtain

an image feature fr. We refer the readers to He et al. [2016] for details.

For input trajectories T, we encode each trajectory Tk into a low-dimensional

feature vector hk with a separate bi-directional recurrent neural network. Specifically,

we feed the trajectory sequence, T, and also the same trajectory sequence in reverse

order, Tjeverse, into two encoding RNNs, to obtain two final hidden states: hk =

encoder(Tk) and h- = encode'(Teverse). We take [h'; h'] as the feature vector hk.

Finally, we concatenate the features of each trajectory, {hk I k = 1, 2, ... , NT}, and

project it into a low-dimensional trajectory feature fT with a fully-connected layer.

We concatenate the voxel feature fv, image feature f, and trajectory feature

fT together as f = [fv; fi; fT], and map it to a low-dimensional feature f using a

fully-connected layer. We predict the set of physical primitives {Xk} sequentially by a

113

Primitive Generator

RNN --RNN -- RNN

End Token

Sampling Physical Parameters

Sample 1 Sample 2 Sample N

Simulation via a Physics Engine

--------- ------------------------------ I

9
a -

recurrent generator.

At each time step k, we feed the previous generated primitive Xk_1 and the feature
vector f in as input, and we receive one hidden vector hk as output. Then, we compute
the new primitive Xk = (4, I, X, x) as

4 softmax(WD x hk+ bD), x = sigmoid(Ws x h+ + bs) x Cs,

o = tanh(WTx hk X - WRxhk bR (6.3)
k k max(|WR X hk± bRI12, C)'

where Cs and CT are scaling factors, and c = 1012 is a small constant for numerical
stability. Equation 6.3 guarantees that x4 is in the range of [0, Cs], xT is in the range of

[-CT, CT], and ||xR| 2 is 1 (if ignoring c), which ensures that Xk will always be a valid

primitive. In our experiments, we set Cs = CT = 0.5, since we normalize all objects
so that they can fit in unit cubes. Also note that, 4 is an (ND + 2)-dimensional
vector, where the first ND dimensions indicate different density values and the last
two indicate the "start token" and "end token".

Sampling and simulating with a physics engine. During testing time, we treat
the predicted 4f as a multinomial distribution, and we sample multiple possible
predictions from it. For each sample, we use its physical parameters to simulate the
trajectory with a physics engine. Finally, we select the one whose simulated trajectory
is closest to the observed trajectory.

An alternative way to incorporate physics engine is to directly optimize our
model over it. As most physics engines are not differentiable, we employ REIN-
FORCE [Williams, 1992] for optimization. Empirically, we observe that this reinforce-
ment learning-based method performs worse than sampling-based methods, possibly
due to the large variance of the approximate gradient signals.

Simulating with a physics engine requires we know the force during testing. Such
an assumption is essential to ensure the problem is well-posed: without knowing the
force, we can only infer the relative part density, but not the actual values. Note
that in many real-world applications such as robot manipulation, the external force is
indeed available.

Loss functions. Let x = (x 1, x 2 , ... , Xn) and i = (£1, 2, ... , m) be the predicted

and ground-truth physical primitives, respectively. Our loss function consists of two
terms, geometry loss £G and physics loss £D.

£G Sx, P - (*XS - iSfl1 ± WT 'X+ - 1 + WR ' O - 1 , (6.4)
k

£p(x,)= - Z (i) . log XD (i), (6.5)
k i

114

*94*0
49:9 999i 9

Sample block towers (a) Input (b) Texture (c) Physics (d) Both (e) Answer

Lower densities Higher densities

Figure 6-11: Results on the block dataset. Left: sample objects in our block towers dataset.
Right: qualitative results of our model with different combinations of observations as input.

Material Wood Brick Stone Ceramic Metal

Density [1, 10] [11, 20] [21, 30] [31, 60] [21, 35] U [71, 100]

Table 6.1: Materials and their real-world density values (unit: x 102 - kg/m3). Objects made
of similar materials (different types of metals) may have different physical properties, while different
materials (i.e., stone and metal) may have same physical properties.

where ws, WT and WR are weighting factors, which are set to l's because xs XT and

xR are of the same magnitude (10-1) in our datasets. Integrating Equation 6.4 and

Equation 6.5, we define the overall loss function as L(x, z) = £G(X,) + W * P(X, ,
where w is set to ensure that £G and £P are of the same magnitude.

6.5.3 Decomposing Block Towers

We build the block towers by stacking variable number of blocks (2-5 in our

experiments) together. We first sample the size of each block and then compute

the center position of blocks from bottom to top. For the kth block, we denote

the size as (Wk, hk, d), and its center (zk, Yk, Zk) is sampled and computed by Xk ~

f(Xk1, wk/4), Yk ~ NA(yk_1, hk_1/4), and Zk = Zk_1+ (dk_1+ dk)/2, where NA(pL, o-)

is a normal distribution with mean y and standard deviation o. We illustrate some

constructed block towers in Figure 6-11. We perform the exact voxelization with grid

size of 32 x 32 x 32 by binvox, a 3D mesh voxelizer [Nooruddin and Turk, 2003].

Materials. In our experiments, we use five different materials, and follow their

real-world densities with minor modifications. The materials and the ranges of their

densities are listed in Table 6.1. For each block in the block towers, we first assign

it to one of the five materials, and then uniformly sample its density from possible

values of its material. We generate 8 configurations for each block tower.

115

Observations Density Trajectory
Methods Acrc

Texture Physics Accuracy RMSE MAE
Top 1 Top 5 Top 10

Frequent - - 2.0 9.7 13.4 25.4 74.4
Nearest - + 1.9 7.9 12.4 41.1 91.0
Oracle + - 6.9 35.7 72.0 18.5 51.3

PPD (no trajectory) + - 7.2 35.2 69.5 19.0 51.7
PPD (no image) - + 7.1 31.0 50.8 16.7 36.4
PPD (no voxels) + + 15.9 56.3 82.4 10.3 29.9

PPD (RGB-D) + + 11.6 50.5 79.5 12.8 30.2
PPD (full) + + 16.1 56.4 82.5 9.9 21.0
PPD (full)+Sample + + 18.2 59.7 84.0 8.8 13.9

Table 6.2: Quantitative results of physical parameter estimation on block towers. Combin-
ing appearance with physics does help our model to achieve better estimation on physical parameters,
and our model performs significantly better than all other baselines.

Textures. We obtain the textures for materials by cropping the center portion of

images from the MINC dataset [Bell et al., 2015]. We show sample images rendered
with material textures in Figure 6-11. Since we render the textures only with respect
to the material, the images rendered do not provide any information about density.

Physics interactions. We place the block towers at the origin and perform four

physics interactions to obtain the object trajectories (NT = 4). In detail, we exert a
force with the magnitude of 10' on the block tower from four pre-defined positions
{(t1, -1, ±1)}. We simulate each physics interaction for 256 time steps using the
Bullet Physics Engine [Couians, 20101. To ensure simulation accuracy, we set the
time step for simulation to 1/300s.

Metrics. We evaluate the performance of shape reconstruction by the F1 score
between the prediction and ground truth: each primitive in prediction is labeled as
a true positive if its intersection over union (IoU) with a ground-truth primitive is
greater than 0.5. For physics estimation, we employ two types of metrics, i) density
measures: top-k accuracy (k E {1, 5, 10}) and root-mean-square error (RMSE) and ii)
trajectory measure: mean-absolute error (MAE) between simulated trajectory (using
predicted the physical parameters) and ground-truth trajectory.

Methods. We evaluate our model with different combinations of observations as
input: i) texture only (i.e., no trajectory, by setting fT = 0), ii) physics only (i.e.,
no image, by setting f1 = 0), iii) both texture and physics but without the voxelized
shape, iv) both texture and physics but with replacing the 3D trajectory with a raw

depth video, v) full data in our original setup (image, voxels, and trajectory). We
also compare our model with several baselines: i) predicting the most frequent density

116

in the training set (Frequent), ii) nearest neighbor retrieval from the training set
(Nearest), and iii) knowing the ground-truth material and guessing within its density
value range (Oracle). While all these baselines assume perfect shape reconstruction,
our model learns to decompose the shape.

Results. For the shape reconstruction, our model achieves 97.5 in terms of F1 score.
For the physics estimation, we present quantitative results of our model with different
observations as input in Table 6.2. We compare our model with an oracle that infers
material properties from appearance while assuming ground-truth reconstruction.
It gives upper-bound performance of methods that rely on only appearance cues.
Experiments suggest that appearance alone is not sufficient for density estimation.
From Table 6.2, we observe that combining appearance with physics performs well
on physical parameter estimation, because the object trajectories can provide crucial
additional information about the density distribution (i.e., moment of inertia). Also,
all input modalities and sampling contribute to the model's final performance.

6.6 Object-Oriented Prediction and Planning

In this section, we explore how our visual de-animation framework can be de-
ployed in robot planning and manipulation. We describe an extension of our model,
named Object-Oriented Prediction and Planning (02P2), for learning object-based
representations suitable for planning in physical reasoning tasks.

As opposed to much prior work on object-factorized scene representations, including
the de-animation models described in previous sections, we no longer supervise the
content of the object representations directly by way of labeled attributes (such as
position, velocity, or orientation). Instead, we assume access only to segments or
region proposals for individual video frames. Since we do not have labels for the object
representations, we must have a means for converting back and forth between images
and object representations for training. 02P2 consists of three components, which are
trained jointly:

" A perception module that maps from an image to an object encoding. The
perception module is applied to each object segment independently.

• A physics module to predict the time evolution of a set of objects. We formulate
the engine as a sum of binary object interactions plus a unary transition function.

• A rendering engine that produces an image prediction from a variable number
of objects. We first predict an image and single-channel heatmap for each object.
We then combine all of the object images according to the weights in their
heatmaps at every pixel location to produce a single composite image.

117

Physics sm mm

nRendering
a) No object factorization g

/Perception

t I14

b) Object property supervision c) 02P2: Object factorization without object property supervision

Figure 6-12: We divide physical understanding tasks into three distinct paradigms. (a)

The first approach makes the fewest assumptions, posing prediction tasks as an instance of image-

to-image translation. (b) The second uses ground-truth labels of object properties to supervise a

learning algorithm that can map to the space of a traditional or learned physics engine. (c) 02P2,

like (b), employs an object factorization and the functional structure of a physics engine, but like

(a), does not assume access to supervision of object properties. Without object-level supervision, we

must jointly learn a perception function to map from images to objects, a physics engine to simulate

a collection of objects, and a rendering engine to map a set of objects back to a single composite

image prediction. In all three approaches, we highlight the key supervision in orange.

6.6.1 Model

A high-level overview of the model is shown in Figure 6-12c. Below, we give details

for the design of each component and their subsequent use in a model-based planning

setting.

Perception module. The perception module is a four-layer convolutional encoder

that maps an image observation to object representation vectors 0 = {ok}k=1...N.

We assume access to a segmentation of the input image S = {Sk}k=1...N and apply

the encoder individually to each segment. The perception module is not supervised

directly to predict semantically meaningful properties such as position or orientation;

instead, its outputs are used by the physics and rendering modules to make image

predictions. In this way, the perception module must be trained jointly with the other

modules.

Physics module. The physics module predicts the effects of simulating a collection

of object representations 0 forward in time. As in Chang et al. [20171, Watters et al.

[2017], we consider the interactions of all pairs of object vectors. The physics engine

contains two learned subcomponents: a unary transition function ftrans applied to each

118

object representation independently, and a binary interaction function finteract applied
to all pairs of object representations. Letting 0 =f {k}k=1...N denote the output of the
physics predictor, the kth object is given by Ok = ftrans(Ok) + Zj:Ak finteract (Ok, Oj) + Ok,

where both ftrans and finteract are instantiated as two-layer MLPs.

Much prior work has focused on learning to model physical interactions as an end
goal. In contrast, we rely on physics predictions only insofar as they affect action
planning. To that end, it is more important to know the resultant effects of an action
than to make predictions at a fixed time interval. We therefore only need to make
a single prediction, 0 = fphysics(O), to estimate the steady-state configuration of

objects as a result of simulating physics indefinitely. This simplification avoids the
complications of long-horizon sequential prediction while retaining the information
relevant to planning under physical laws and constraints.

Rendering engine. Because our only supervision occurs at the pixel level, to train
our model we learn to map all object-vector predictions back to images. A challenge
here lies in designing a function which constructs a single image from an entire
collection of objects. The learned renderer consists of two networks, both instantiated
as convolutional decoders. The first network predicts an image independently for each
input object vector. Composing these images into a single reconstruction amounts
to selecting which object is visible at every pixel location. In a traditional graphics
engine, this would be accomplished by calculating a depth pass at each location and
rendering the nearest object.

To incorporate this structure into our learned renderer, we use the second decoder
network to produce a single-channel heatmap for each object. The composite scene
image is a weighted average of all of the object-specific renderings, where the weights
come from the negative of the predicted heatmaps. In effect, objects with lower
heatmap predictions at a given pixel location will be more visible than objects with
higher heatmap values. This encourages lower heatmap values for nearer objects.
Although this structure is reminiscent of a depth pass in a traditional renderer, the
comparison should not be taken literally; the model is only supervised by composite
images and no true depth maps are provided during training.

Learning object representations. We train the perception, physics, and rendering
modules jointly on an image reconstruction and prediction task. Our training data
consists of image pairs (I, Ii) depicting a collection of objects on a platform before
and after a new object has been dropped. (Io shows one object mid-air, as if being
held in place before being released.) We assume access to a segmentation So for the
initial image Io.

Given the observed segmented image So, we predict object representations using
the perception module 0= fpercept(So) and their time-evolution using the physics

119

module 0 = fphysics(O). The rendering engine then predicts an image from each of
the object representations: Io = frender(O), I1 = frender(O).

We compare each image prediction It to its ground-truth counterpart using both

£2 distance and a perceptual loss £VGG. As in Johnson et al. 12016a], we use £2
distance in the feature space of a pre-trained VGG network [Simonyan and Zisserman,
2015] as a perceptual loss function. The perception module is supervised by the

reconstruction of Io, the physics engine is supervised by the reconstruction of 11, and

the rendering engine is supervised by the reconstruction of both images. Specifi-
cally, £percept (.) = £2 (0, o) + LVGG (O, -o), 1 2physics H- 2 122(1, 11) + LVGG (1, 11), and

£render(-) = Lpercept () + £physics(-)•

Planning with learned models. We now describe the use of our perception,
physics, and rendering modules, with the goal of building a block tower to match
an observed image. Here, matching a tower does not refer simply to producing an

image from the rendering engine that looks like the observation. Instead, we consider

the scenario where the model must output a sequence of actions to construct the

configuration.

This setting is much more challenging because there is an implicit sequential

ordering to building such a tower. For example, the bottom cubes must be placed
before the topmost triangle. 02P2 was trained solely on a pixel-prediction task, in

which it was never shown such valid action orderings (or any actions at all). However,
these orderings are essentially constraints on the physical stability of intermediate
towers, and should be derivable from a model with sufficient understanding of physical
interactions.

Although we train a rendering function as part of our model, we guide the plan-
ning procedure for constructing towers solely through errors in the learned object

representation space. The planning procedure can be described at a high level in four

components:

1. The perception module encodes the segmented goal image into a set of object

representations Ogoa.

2. We sample actions of the form (shape, position, orientation, color), where shape

is categorical and describes the type of block, and the remainder of the action
space is continuous and describes the block's appearance and where it should be
dropped.

3. We evaluate the samples by likewise encoding them as object vectors and
comparing them with Ogoal. We view action sample am as an image segment sm

(analogous to observing a block held in place before dropping it) and use the
perception module to produce object vectors 0 '. Because the actions selected

120

should produce a stable tower, we run these object representations through the
physics engine to yield O" before comparing with Ogoal. The cost is the £2
distance between the object 0 E O' corresponding to the most recent action
and the goal object in 0gOa that minimizes this distance.

4. Using the action sampler and evaluation metric, we select the sampled action
that minimizes £2 distance. We then execute that action in MuJoCo [Todorov
et al., 2012]. We continue this procedure, iteratively re-planning and executing
actions, until there are as many actions in the executed sequence as there are
objects in the goal image. In the simplest case, the distribution from which
actions are sampled may be uniform. Alternatively, the cross-entropy method
(CEM) [Rubinstein and Kroese, 20041 may be used, repeating the sampling loop
multiple times and fitting a Gaussian distribution to the lowest-cost samples. In
practice, we used CEM starting from a uniform distribution with five iterations,
1000 samples per iteration, and used the top 10% of samples to fit the subsequent
iteration's sampling distribution.

6.6.2 Building Towers

After training 02P2 on the random configurations of blocks, we fixed its parameters
and employed the planning procedure to build tower configurations observed in images.
We also evaluated the following models as comparisons:

" No physics is an ablation of our model that does not run the learned physics
engine, but instead simply sets 0 = 0.

• Stochastic adversarial video prediction (SAVP), a block-box video prediction
model which does not employ an object factorization [Lee et al., 2018]. The cost
function of samples is evaluated directly on pixels. The sampling-based planning
routine is otherwise the same as in ours.

• Oracle (pixels) uses the MuJoCo simulator to evaluate samples instead of
our learned physics and graphics engines. The cost of a block configuration is
evaluated directly in pixel space using £2 distance.

• Oracle (objects) also uses MuJoCo, but has access to segmentation masks
on input images while evaluating the cost of proposals. Constraining proposed
actions to account for only a single object in the observation resolves some of
the inherent difficulties of using pixel-wise loss functions.

Qualitative results of all models are shown in Figure 6-13 and a quantitative
evaluation is shown in Table 6.3. We evaluated tower stacking success by greedily
matching the built configuration to the ground-truth state of the goal tower, and

121

Goal No physics SAVP 02P2 Oracle Oracle
(ours) (pixels) (objects)

Task 1

Task 2

Task 3

Task 4

Figure 6-13: Qualitative results on building towers using planning. Given an image of the
goal tower, we can use the learned object representations and predictive model in 02P2 for guiding a
planner to place blocks in the world and recreate the configuration. We compare with an ablation, an
object-agnostic video prediction model, and two 'oracles' with access to the ground-truth simulator.

comparing the maximum object error (defined on its position, identity, and color) to

a predetermined threshold. Although the threshold is arbitrary in the sense that it

can be chosen low enough such that all builds are incorrect, the relative ordering of

the models is robust to changes in this value. All objects must be of the correct shape

for a built tower to be considered correct, meaning that our third row prediction in

Figure 6-13 was incorrect because a green cube was mistaken for a green rectangular

cuboid.

While SAVP made accurate predictions on the training data, it did not generalize

well to these more complicated configurations with more objects per frame. As such,
its stacking success was low. Physics simulation was crucial to our model, as our

No-physics ablation failed to stack any towers correctly. We explored the role of

physics simulation in the stacking task in Section 6.6.2. The 'oracle' model with access

to the ground-truth physics simulator was hampered when making comparisons in

pixel space. A common failure mode of this model was to drop a single large block on

the first step to cover the visual area of multiple smaller blocks in the goal image. This

scenario was depicted by the blue rectangular cuboid in the first row of Figure 6-13 in

122

No physics SAVP Ours Oracle (pixels) Oracle (objects)

0 24 76 71 92

Table 6.3: Accuracy (%) of block tower builds by our approach and the four comparison
models. Our model outperforms Oracle (pixels) despite not having the ground-truth simulator by
virtue of a more appropriate object-factorized objective to guide the planning procedure.

Goal Scored action locations
a)

b)
Selected action (before Dhvsics)

Result

Predicted locations (after physics)
c)

Figure 6-14: Visualization of proposals and planning. (a) Visualization of scored locations for
dropping an object at each timestep. Because 02P2 simulates physics before selecting an action,
it is able to plan a sequence of stable actions. (b) The selected block and drop position from the
scored samples, outlined in white. (c) The prediction from our physics model of the result of running
physics on the selected block.

the Oracle (pixels) column.

The importance of understanding physics. Figure 6-14 depicts the entire plan-

ning and execution procedure for 02P2 on a pyramid of six blocks. At each step, we

visualize the process by which our model selects an action by showing a heatmap of

scores (negative MSE) for each action sample according to the sample's (x, y) position

(Figure 6-14a). Although the model is never trained to produce valid action decisions,
the planning procedure selects a physically stable sequence of actions. For example,

at the first timestep, the model scores three x-locations highly, corresponding to the

three blocks at the bottom of the pyramid. It correctly determines that the height at

which it releases a block at any of these locations does not particularly matter, since

the block will drop to the correct height after running the physics engine. Figure 6-14b

shows the selected action at each step, and Figure 6-14c shows the model's predictions

about the configuration after releasing the sampled block.

123

Goal 02P2 No physics
Scored locations First action Execution Scored locations First action Execution

Figure 6-15: Heatmaps showing sampled action scores for the initial action given a goal
block tower. 02P2's scores reflect that the objects resting directly on the platform must be dropped
first, and that they may be dropped from any height because they will fall to the ground. The
No-physics ablation, on the other hand, does not implicitly represent that the blocks need to be
dropped in a stable sequence of actions because it does not predict the blocks moving after being
released.

Maximize height Make block stable

a) b)

Figure 6-16: 02P2 being used to plan for the alternate goals of (a) maximizing the height of
a tower and (b) making an observed block stable by use of any other blocks.

Similar heatmaps of scored samples are shown for the No-physics ablation of our
model in Figure 6-15. Because this ablation does not simulate the effect of dropping
a block, its highly-scored action samples correspond almost exactly to the actual
locations of the objects in the goal image. Further, without physics simulation it does
not implicitly select for stable action sequences; there is nothing to prevent the model
from selecting the topmost block of the tower as the first action.

Planning for alternate goals. By implicitly learning the underlying physics of a

domain, our model can be used for various tasks besides matching towers. In Figure 6-
16a, we show our model's representations being used to plan a sequence of actions to
maximize the height of a tower. There is no observation for this task, and the action
scores are calculated based on the highest non-zero pixels after rendering samples
with the learned renderer. In Figure 6-16b, we consider a similar sampling procedure
as in the tower-matching experiments, except here only a single unstable block is
shown. Matching a free-floating block requires planning with 02P2 for multiple steps
at once.

124

6.7 Discussion

In this chapter, we have proposed to combine efficient, bottom-up, neural perception
modules with rich, generalizable simulation engines for physical scene understanding.
Our framework is flexible and can incorporate various graphics and physics engines.
It performs well across multiple synthetic and real scenarios, reconstructing the scene
and making future predictions accurately and efficiently.

We have also discussed how our model can be extended to handle multi-part
objects with a non-uniform density distribution, and explored how our model can be
adapted for robot planning and manipulation. We expect our framework to have wider
applications in the future, due to the rapid development of scene description languages,
3D reconstruction methods, simulation engines, and virtual environments.

125

THIS PAGE INTENTIONALLY LEFT BLANK

126

r" - lip 7K- T IMP Im INIMM "W" 1 , I I

Chapter 7

Learning Physics and Graphics Engines Themselves

In previous chapters, we have seen how the integration of deep learning and
simulation engines enables efficient inference of object appearance and physics. In
this chapter, we explore a novel use of learning systems: we build deep networks to
approximate simulation engines themselves. These learned, data-augmented simulators
come with features that are typically missing in their traditional counterparts, such as
stochasticity and differentiability.

The problem we look into is synthesizing multiple plausible future frames from a
single image. Such a multi-modal prediction problem is easy for humans, but traditional
methods have mostly tackled this problem in a deterministic or non-parametric way.
In this chapter, we propose to use learning to model future frames in a probabilistic
manner. Our probabilistic model enables synthesizing many possible future frames
from a single input image.

To synthesize realistic movement of objects, we propose a novel network structure,
Cross Convolutional Networks, encoding image and motion information as feature
maps and convolutional kernels, respectively. In experiments, our model performs well
on synthetic data, such as 2D shapes and animated game sprites, and on real-world
video frames. We present analyses of the learned network representations, showing
it is implicitly learning a compact encoding of object appearance and motion. We
also demonstrate a few of its applications, including visual analogy-making and video
extrapolation. Finally, we present an extension of the model that not only discovers
a compact, layered representation of objects, but the hierarchical structure among
them.

This chapter includes materials previously published as Xue et al. [2019, 2016], Xu
et al. [2019]. Tianfan Xue, Zhijian Liu, and Zhenjia Xu contributed significantly to
the materials presented in this chapter.

127

7.1 Introduction

From just a single snapshot, humans are often able to imagine multiple possible
ways that the scene can change over time. For instance, due to the pose of the girl in

Figure 7-1, most would predict that her arms are stationary but her leg is moving.
However, the exact motion is often unpredictable due to an intrinsic ambiguity. Is the
girl's leg moving up or down? How large is the movement?

In this chapter, we aim to depict the conditional distribution of future frames
given a single observed image. We name the problem visual dynamics, as it involves
understanding how visual content relates to dynamic motions. We propose to tackle
this problem using a probabilistic, content-aware motion prediction model that learns
this distribution without using annotations. Sampling from this model allows us to
visualize the many possible ways that an input image is likely to change over time.

The visual dynamics problem is in contrast to two traditional ways to model
motion. The first is to assume object motion is deterministic, and to learn the direct
mapping from an image's visual appearance to its motion [Mathieu et al., 2016,
Walker et al., 2014]. These methods are more likely to produce accurate results when
there is little ambiguity in object motion (e.g., when long-range videos are available).
For single image future prediction, however, the results are unlikely to align with
reality. The second way to model motion is to derive its prior distribution, which is
invariant to image content [Fleet et al., 2000, Weiss and Adelson, 1998]. Understanding
motion priors, like understanding image priors [Roth and Black, 2005], is a problem
of fundamental scientific interest. However, as the motion we observe in real life is
strongly correlated with visual content, methods ignoring visual signals do not work
well on future frame prediction.

Modeling content-aware motion distributions is highly challenging mostly for two
reasons. First, it involves modeling the correlation between motion and image content;
to predict plausible future motion, the model must be able to relate visual content
to semantic knowledge (e.g., object parts) in order to generate reasonable motions.
Second, natural images lie on a high dimensional manifold that is difficult to describe
precisely. Despite recent progresses on applying deep learning methods for image
synthesis [Radford et al., 2016], building a generative model for real images is far from
being solved.

We tackle the first problem using a novel convolutional neural network. During
training, the network observes a set of consecutive image pairs from videos, and
automatically infers the relationship between them without any supervision. During
testing, the network then predicts the conditional distribution, P(JII), of future RGB
images J (Figure 7-1b) given an RGB input image I that was not in the training
set (Figure 7-la). Using this distribution, the network is able to synthesize multiple

128

A Conditional Distribution of Future Frames

(a) An Input Image (b) A Probabilistic Model (c) Desired Output Samples

Figure 7-1: Predicting the movement of an object from a single snapshot is often am-
biguous. For instance, is the girl's leg in (a) moving up or down? We propose a probabilistic,
content-aware motion prediction model (b) that learns the conditional distribution of future frames,
and produces a probable set of future frames (c). This schematic illustrates the idea behind our
method, but does not show actual results produced by our model.

different image samples corresponding to possible future frames for the input image

(Figure 7-1c).

We use a conditional variational autoencoder to model the complex conditional

distribution of future frames {Kingma and Welling, 2014, Yan et al., 2016a]. This

allows us to approximate a sample, J, from the distribution of future images by
using a trainable function J = f(I, z). The argument z is a sample from a simple

(e.g., Gaussian) distribution, which introduces randomness into the sampling of J.
This formulation makes the problem of learning the distribution more tractable than

explicitly modeling the distribution.

To synthesize complex movement of objects, we proposed a novel layer-based

synthesis network. The network splits an image into multiple segments and then

uses a layered model to predict how each segment moves. This is a much easier task

than modeling the motion of an entire image. Note that here we call each layer of

an image as a segment to avoid confusion with convolutional layers. This layered

prediction model synthesizes motion using a novel cross-convolutional layer. Unlike
in standard convolutional layers, the values of the kernels are image-dependent, as

different images may have different motions. Our model has several advantages. First,
avoiding blurry outputs, the model does not directly synthesize the output image, but

instead transforms pixels in the input frame based on sampled motion parameters.
Second, the model only samples the movement of each layer, instead of all the pixels

or a dense flow field. Because the motion of each layer lies on a lower-dimension
manifold, its distribution is easier to model and the network can sample more diverse

and realistic motions.

We test the proposed model on four datasets. Given an RGB input image, the

algorithm can correctly model the distribution of possible future frames, and generate

different samples that cover a variety of realistic motions. Our system significantly

outperforms baselines in quantitative evaluation, and our results are in general preferred

129

by humans in user studies.

We present analyses to reveal the knowledge captured by our model: the cross
convolutional network is able to discover semantically meaningful parts that have
coherent motion patterns in an unsupervised fashion; and the latent representation
z in the variational autoencoder is in essence a compact, interpretable encoding of
object motion, as visualized in Section 7.6. Our model has wide applications: we
demonstrate that it can be applied to visual analogy-making and video extrapolation
straightforwardly, with good qualitative and quantitative performance. We also show
that our model can be extended to discover not only object parts, but the hierarchical
structure among them.

7.2 Related Work

Motion priors. Research studying the human visual system and motion priors
provides evidence for low-level statistics of object motion. The pioneering work by
Weiss and Adelson [1998] found that the human visual system prefers slow and smooth
motion fields. Later, Lu and Yuille [2006] found that humans make similar motion
predictions as a Bayesian ideal observer. Roth and Black [2005] analyzed the response
of spatial filters applied to optical flow fields. Fleet et al. [2000] also found that a
local motion field can be represented by a linear combination of a small number of
bases. All these methods focused on the distribution of a motion field itself without
considering any image information. On the contrary, our context-aware model captures
the relationship between an observed image and its motion field.

These prior methods focused on modeling the distribution of an image's motion
field using low-level statistics without any additional information. In real life, however,
the distribution of motion fields is not independent of image content. For example,
given an image of a car in front of a building, many would predict that the car is
moving and the building is fixed. Thus, rather than modeling a motion prior as a
context-free distribution, we propose to model the conditional motion distribution of
future frames given an input image by incorporating a series of low- and high-level
visual cues.

Motion or future prediction. Given an observed image or a short video sequence,
models have been proposed to predict a future motion field [Liu et al., 2011, Pintea
et al., 2014, Xue et al., 2014, Walker et al., 2015, 2016], future trajectories of objects
[Walker et al., 2014, Wu et al., 2015a, 2017a, Zheng et al., 2018, Wu et al., 2016a], or
a future visual representation Vondrick et al. [2016a]. However, unlike in our proposed
model, most of these methods use a deterministic prediction model [Pintea et al., 2014,
Vondrick et al., 2016a], which cannot model the uncertainty of the future.

Concurrently, Walker et al. [2016] identified the intrinsic ambiguity in deterministic

130

prediction, and has proposed a probabilistic prediction framework. Our model is also
probabilistic, but it directly predicts the pixel values rather than motion fields or
image features.

Parametric image synthesis. Early work in parametric image synthesis mostly
focused on texture synthesis using hand-crafted features [Portilla and Simoncelli, 2000].
More recently, image synthesis algorithms have begun to produce impressive results by
training variants of neural network structures to produce novel images [Gregor et al.,
2015, Xie et al., 2017, 2016, Zhou et al., 2016b]. Generative adversarial networks

[Goodfellow et al., 2014, Denton et al., 2015, Radford et al., 2016] and variational
autoencoders [Kingma and Welling, 2014, Yan et al., 2016a] have been used to model
and sample from natural image distributions. Our proposed algorithm is also based on
the variational autoencoder, but unlike previous methods, we also model the temporal
consistency between frames.

Video synthesis. Techniques that exploit the periodic structure of motion in videos
have also been successful at generating novel frames from an input sequence. Sch6dl
et al. [20001 proposed to shuffle frames from an existing video to generate a temporally
consistent, looping image sequence. This idea was later used in video inpainting
[Wexler et al., 2004], and was extended to generate cinemagraphs [Joshi et al., 2012]
and seamlessly looping videos containing a variety of objects with different motion
patterns [Agarwala et al., 2005, Liao et al., 20131. While these techniques are able to
generate high-resolution and realistic-looking videos, they are often applicable only to
videos with periodic motions, and they require a reference video as input. In contrast,
we build an image generation model that does not require a reference video during
testing.

Recently, several neural network architectures have been proposed to synthesize a
new frame from observed frames. They infer the future motion either from multiple
previous frames [Srivastava et al., 2015, Mathieu et al., 2016], user-supplied action
labels [Oh et al., 2015, Finn et al., 20161, or directly model the joint distribution of
all frames without conditioning on the input [Vondrick et al., 2016b]. In contrast to
these approaches, our network takes a single frame as input and learns the conditional
distribution of future frames without any supervision.

7.3 Formulation

In this section, we first present a rigorous definition for the visual dynamics problem.
Using a toy example, we then discuss three approaches to this problem, and show how
the approach we take in our proposed model is more suitable for the task than the
other two. We further present how our approach could be realized with a conditional
variational autoencoder.

131

p(vjz) p(zII,v) z --

-,
P(UI,Z)

(a) Ground truth (b) Deterministic (d) Probabilistic
motion distribution motion prediction frame prediction

Figure 7-2: An illustrative example on future prediction. Imagine a world composed of
circles that move mostly vertically and squares that move mostly horizontally (a). We consider
three different models (b-d) to learn the mapping from an image to a motion field. The first row
shows graphical models, the second row shows corresponding network structures, and the third
row shows estimated motion distributions. The deterministic motion prediction structure shown
in (b) attempts to learn a one-to-one mapping from appearance to motion, but is unable to model
multiple possible motions of an object, and tends to predict a mean motion for each object (the
third row of (b)). The content-agnostic motion prior structure shown in (c) is able to capture a
low-dimensional representation of motion, but is unable to leverage cues from image appearance for
motion prediction. Therefore, it can only recovers the joint distribution of all objects (third row of
(c)). The content-aware probabilistic motion predictor (d) brings together the advantages of models
of (b) and (c) and uses appearance cues along with motion modeling to predict a motion field from a
single input image. Therefore, the estimated motion distribution is very close to the ground truth

(compare the last row and (a) and (d)).

7.3.1 Problem Definition

In this section, we describe how to sample future frames from a current observation

image. Here we focus on next frame synthesis; given an RGB image I observed at
time t, our goal is to model the conditional distribution of possible frames observed at

time t + 1.

Formally, let {(I(1), J()), ... ,(I(n), j(n))} be the set of image pairs in the training

set, where I) and J) are images observed at two consecutive time steps. Using

this data, our task is to model the distribution po(JII) of all possible next frames J
for a new, previously unseen test image I, and then to sample new images from this
distribution (0 is the set of model parameters). In practice, we choose not to directly

predict the next frame, but instead to predict the difference image v = J - I between
the observed frame I and the future frame J (also known as the Eulerian motion).
The task is then to learn the conditional distribution po(vlI) from a set of training
pairs {(IP), v), . . , ("), V("))}.

132

7.3.2 An Illustrative Example

To understand how to design a model to best characterize the conditional dis-
tribution of object motion, consider a simple toy world that only consists of cir-
cles and squares. Circles mostly move vertically, while squares mostly move hor-
izontally. As shown in Figure 7-2a, the ground truth distribution of a circle is

(vt, v) - N((0, 0), (0.2, 1)) and the distribution of a square is N((0, 0), (1, 0.2)), where
N(7, 6) is a Gaussian distribution with mean equals to ' and diagonal variation
equal to 9'. Using this toy model, we discuss how each of the three models shown in
Figure 7-2b-d is able to infer the underlying motion.

Approach I: Deterministic motion prediction. In this structure, the model
tries to find a deterministic relationship between the input image I and object motion
v (Figure 7-2b). In our toy world, I E {circle, square} is simply the binary label of
each possible object and v is a 2D motion vector*.

In order to evaluate this model, we generate a toy training set which consists of
160,000 samples as follows. For each sample, we first randomly generate the object
label I with equal probabilities of being circles or squares, and then sample the 2D
motion vector of the object based on its label. The model is trained by minimizing
the reconstruction error E |v1) - f(I(0)| on this toy training set. The two other
models we will soon introduce are also trained on this toy dataset.t

One drawback of this deterministic model is that it cannot capture the multiple
possible motions that a shape can have. Essentially, the model can only learn the
average motion of each object, I. The third row of Figure 7-2b shows the estimated
motion of both circles (the red cross) and squares (the green cross). Since the both
circles and squares have zero-mean, symmetric motion distributions, this method
predicts a nearly static motion field for each input image.

Approach II: Motion priors. A simple way to model the multiple possible motions
of future frames is to use a variational autoencoder [Kingnia and Welling, 2014], as
shown in Figure 7-2c. This model contains a latent representation, z that encodes the
intrinsic dimensionality of the motion fields. The network that learns this intrinsic
representation z consists of two parts: an encoder network f that maps the motion field
v to an intrinsic representation z (the gray network in Figure 7-2c, which corresponds
to p(zlv)), and a decoder network g that maps the intrinsic representation z to the
motion field v (the yellow network, which corresponds to p(vlz)). During training, the
network learns the latent representation z by minimizing the reconstruction error on
the training set K |V() - g(f(vW))||.

*Although in practice we choose v to be the RGB intensity difference between consecutive frames
(v = I - J), for this toy example we define v as the 2D motion vector.

tThe last row of Figure 7-2 shows actual predictions by our model trained on this dataset.

133

A shortcoming of this model is that the network does not see the input image
when predicting the motion field. Therefore, it can only learn a joint distribution
of both objects, as illustrated the third row of Figure 7-2c. Thus, during test time,
the model is not be able to disambiguate between the specific motion distribution of
circles and squares.

Approach III: Probabilistic frame prediction. We combine the deterministic
motion prediction structure (approach I) with a motion prior (approach II), to model
the uncertainty in a motion field and the correlation between motion and image content.

We extend the decoder in (2) to take two inputs, the intrinsic motion representation z

and an image I (see the yellow network in Figure 7-2d, which corresponds to p(vlI, z)).
Therefore, instead of solely being able to model a joint distribution of motion v, it is
now able to learn a conditional distribution of motion given the input image I.

In this toy example, since squares and circles move primarily in one (although
different) direction, the intrinsic motion representation z only records the magnitude
of motion along their major and minor directions. Combining the intrinsic motion
representation with the direction of motion inferred from the image content, the model
can correctly model the distribution of motion. Figure 7-2d shows that the inferred
motion distribution of each object is quite similar to the ground truth distribution.

7.3.3 Conditional Variational Autoencoder

In this section, we will formally derive the training objective of our model, following
the similar derivations [Kingma and Welling, 2014, Kingma et al., 2014, Yan et al.,
2016a]. Consider the following generative process that samples a future frame condi-
tioned on an observed image, I. First, the algorithm samples the hidden variable z

from a prior distribution pz(z); we assume pz(z) is a multivariate Gaussian distribution
where each dimension is i.i.d. with zero-mean and unit-variance. Then, given a value
of z, the algorithm samples the intensity difference image v from the conditional
distribution po(vlI, z). The final image, J = I + v, is then returned as output.

A variational upper-bound. In the training stage, the algorithm attempts to
maximize the log-likelihood of the conditional marginal distribution E log p(v() I().
Assuming I and z are independent, the marginal distribution is expanded as

log jp(v(| JIMi, z)pz(z)dz. (7.1)

Directly maximizing this marginal distribution is hard, thus we instead maximize
its variational upper bound [Kingma and Welling, 2014]. Each term in the marginal

134

distribution is upper-bounded by

£(0, 0, v IIN) - DKL (#zIv M (i)) pz (z))

+i-i ~Z[log((o z'0, I>)] , (7.2)
1=1

where DKL is the KL-divergence, q,(zjv , I)) is the variational distribution that
approximates the posterior p(zlv('), ji), and z(', are samples from the variational
distribution. Recall that z and I) are independent, so that pz(zlI()) = pz(z). Please

see the end of the section for detailed derivation of Equation 7.2. For simplicity,
we refer to the conditional data distribution, po(-), as the generative model, and the
variational distribution, q(.), as the recognition model.

In practice, we always choose L = 1. Therefore, the upper bound of the KL-
divergence can be simplified as

-DKL M (i)) pz(z)) + log pO(V) o z, -i). (7.3)

If the assumption that I and z are independent does not hold, we can convert
a latent variable that depends on I to one that does not, without affecting the
expressiveness of our generative model, as suggested by Kingma et al. [2014], Sohn
et al. [2015].

Distribution reparametrization. We assume Gaussian distributions for both
the generative model and recognition modelt, where the mean and variance of the
distributions are functions specified by neural networks, that is§

Po(v z(' , I)) = A(v(; fmnea(z'), I)), 2 1), (7.4)

94(zd'0|v N,M IM) = NV(zau'; gm..n(voi, 1i)), g.~a(vM, I0))), (7.5)

where NA(; a, b) is a Gaussian distribution with mean a and variance b. fme,an is a
function that predicts the mean of the generative model, defined by the generative
network (the yellow network in Figure 7-2d). gmean and gvar are functions that predict

the mean and variance of the recognition model, respectively, defined by the recognition
network (the gray network in Figure 7-2d). Here we assume that all dimensions of the
generative model have the same variance o 2 , where o is a hand-tuned hyperparameter.

1A complex distribution can be approximated as a function of a simple distribution, such as a
Gaussian. This is referred to as the reparameterization trick [Kingma and Welling, 20141.

Here the bold I denotes an identity matrix, whereas the normal-font I denotes the observed
image.

135

The objective function. Plugging Equation 7.4 and Equation 7.5 in to Equa-

tion 7.2, for L = 1 (only use one sample for each training iteration) we obtain the

objective function that we minimize for each sample:

DKL(qp(z v, I)) |pz(z)) + AlIv() - fmean(Z(), I)I|, (7.6)

where z(') is sampled from the distribution defined by Equation 7.5, and A is a constant.

During training, we use stochastic gradient descent to minimize the variational lower

bound defined in Equation 7.6.

Verification of Equation 7.2 and Equation 7.6 We now formally derive how

we obtain the training objective function in Equation 7.2, following similar derivations

in [Kingma and Welling, 2014, Kingma et al., 2014, Yan et al., 2016a]. As mentioned

in Section 7.3.3, the generative process that samples a difference image v from a

0-parametrized model, conditioned on an observed image I, consists of two steps.

First, the algorithm samples the hidden variable z from a prior distribution pz(z).
Then, given a value of z, the algorithm samples the intensity difference image v from

the conditional distribution po(vII, z). This process is also described in the graphical

model in Figure 7-2d.

Given a set of training pairs {I), v0)}, the algorithm maximizes the log-likelihood

of the conditional marginal distribution during training

logp(v2|1 (i)). (7.7)

Recall that I and z are independent as shown in the graphical model in Figure 7-2.

Therefore, based on the Bayes' theorem, we have

p (v MI2) = pzWzpo(v) IIM Iz). (7.8)

It is hard to directly maximize the marginal distribution in Equation 7.7. We therefore

maximize its variational upper-bound instead, as proposed by Kingma and Welling

[Kingma and Welling, 2014]. Let q,(zvO), I(0) be the variational distribution that

approximates the posterior p(zlv('), IM). Then each term in the marginal distribution

is upper bounded as

logp(v|IM)

= Eq, [logp(vI) j,i)]

pz(z)po(v(i), z)
= E logT

136

Eqlog q#(Z I()] + Eq log p(zK(i),W)+ Eq,[logpo(VMI 2)]

= - DKL ((Iv M I(i))Ipz(z)) + DKL(qo(zIv j(i)) IP(ZIV (i)))

+ Eq,[logpo(VI z)]

> - DKL(q(zvM) JPz(Z)) + Eq4 log pO(V M)I Z)

= £(0, #, vNI) (7.9)

The first KL-divergence term in Equation 7.9 has an analytic form [Kingma and
Welling, 2014]. To make the second term tractable, we approximate the variational
distribution, q#(zIx(2), j(i)) by its empirical distribution. We have

£ (0, #, U I M)
L

- DKL 9(qz(z~v j 1i (Z))+ L 3logpv(U) Z(l),
1=1

=-DKL(q0,(ZJV)I ())pz)) - 2rL IIV i - fmean (Z (i), I(i))f + C, (7.10)
1=1

where z(, are samples from the variational distribution q(z|v(), j(I)) and C is a
constant. Equation 7.10 is the variation lower bound that our network minimizes
during training.

In practice, we simply generate one sample of z(, at each iteration (thus L = 1) of
stochastic gradient descent, and different samples are used for different iterations. By
defining A = 1/(2a2) and taking the negative of the right-hand side of Equation 7.10,
we get the objective function to minimize in training (Equation 7.6):

DKL(qo (z Iv M(i)) Pz(Z)) ± AIv (' - fmean(Z j(i)) . (7-11)

We will describe in Section 7.4 the neural networks that define the generative
function fnean and recognition functiong ,an and gar.

7.4 Learning Visual Dynamics

We present an end-to-end trainable neural network structure, defining the generative
function frnean and recognition functions gm,,., and gvar. Once trained, these functions

can be used in conjunction with an input image to sample future frames. We first
describe our newly proposed cross convolutional layer, which naturally characterizes a
layered motion representation [Wang and Adelson, 1993]. We then explain our network
structure and demonstrate how we integrate the cross convolutional layer into the
network for future frame synthesis.

137

(a) Motion encoder Zmean (b) Kernel decoder

Difference N(zm 0 zv)
image v ~ Zvar ur

Feature maps

I Difference
____ image

-.------------- ' (e) Motion

the curre frame I (c) Image encoder (d) Cross convolution decoder

Figure 7-3: Architecture of our future prediction network. The network consists of five
components: (a) a motion encoder, (b) a kernel decoder, (c) an image encoder, (d) a cross convolution
layer, and (e) a motion decoder. Our image encoder takes images at four scales as input. For
simplicity, we only show two scales in this figure. See Section 7.4 for details of our model. The
motion encoder (the grayed region) is only used in training. At testing time, the motion vector z is
sampled from its empirical distribution.

7.4.1 Layered Motion Representations and Cross Convolutional Nets

Motion can often be decomposed in a layer-wise manner [Wang and Adelson, 1993].
Intuitively, different semantic segments in an image should have different distributions
over all possible motions; for example, a building is often static, but a car moves.

To model layered motion, we propose a novel cross convolutional network (Figure 7-
3). The network first decomposes an input image pyramid into multiple feature maps

(segments) through an image encoder (Figure 7-3c). It then convolves these maps with
different kernels (Figure 7-3d), and uses the outputs to synthesize a difference image
(Figure 7-3e). This network structure naturally fits a layered motion representation,
as each feature map characterizes an image segment and the corresponding kernel
characterizes the motion of that segment. In other words, we model motions as
convolutional kernels, which are applied to feature maps of images at multiple scales.

Unlike a traditional convolutional network, these kernels should not be identical
for all inputs, as different images should be associated with different motions (kernels).
We therefore propose a cross convolutional layer to tackle this problem. The cross
convolutional layer does not learn the weights of the kernels itself. Instead, it takes

both kernel weights and image segments as input and performs convolution during a
forward pass; for back propagation, it computes the gradients with respect to both
convolutional kernels and image segments.

The characteristics of a cross convolutional layer naturally fit the layered motion

138

representation, as we can think of each feature map as an image segment, and the
corresponding kernel characterizes the layer's motion. In other words, we model
motions as convolutional kernels, which are applied to image segments (layers) at
multiple scales. Concurrent papers [Finn et al., 2016, Brabandere et al., 2016] have
also explored similar ideas. While they applied the learned kernels on input images,
we jointly learn image segments and kernels without direct supervision.

7.4.2 Network Structure

As shown in Figure 7-3, our network consists of five components: (a) a motion
encoder, which is a variational autoencoder that learns the compact representation, z,
of possible motions; (b) a kernel decoder, which learns the motion kernels from the
compact motion representation z; (c) an image encoder, which consists of convolutional
layers extracting segments from the input image I; (d) a cross convolutional layer,
which takes the output of the image encoder and the kernel decoder, and convolves
the image segments with motion kernels; and (e) a motion decoder, which regresses
the difference image from the combined feature maps. We now introduce each part in
detail.

During training, our motion encoder (Figure 7-3a) takes the current frame and
a difference image as input, both at resolution 128x128. The network then applies
six 5x5 convolutional and batch normalization layers (number of channels are {96,
96, 128, 128, 256, 256}) to the concatenated images, with some pooling layers in

between. The output has a size of 256x5x5. The kernel encoder then reshapes

the output to a vector, and splits it into a 3,200-dimension mean vectors zmean and

a 3,200-dimension variance vector Zvar, from which the network samples the latent

motion representation z ~ N(Zmean, Zvar). The motion encoder takes the current frame
as input, in addition to the motion image, so that it can learn to model the conditional
variational distribution (qo(-) in Equation 7.6).

Next, the kernel decoder (Figure 7-3b) sends the 3,200 = 128x5x5 tensor into two

additional convolutional layers, each with 128 channels and a kernel size of 5. They
are then split into four sets, each with 32 kernels of size 5x5.

Our image encoder (Figure 7-3c) operates on four different scaled versions of the
input image I (256x256, 128 x128, 64x64, and 32x32)¶. At each scale, there are four
sets of 5x5 convolutional and batch normalization layers (number of channels are {64,
64, 64, 32}), two of which are followed by a 2x2 max pooling layer. Therefore, the
output size of the four channels are 32x64x64, 32x32x32, 32x16x16, and 32x8x8,
respectively. This multi-scale convolutional network allows us to model both global
and local structures in the image, which may have different motions.

lFor the input image of size 128 x 128, we used five different scales instead. In that case, the size
of motion vector is 4,000 (= 5 x 5 x 32 x 5).

139

The core of our network is a cross convolutional layer (Figure 7-3d), which, as

discussed in Section 7.4.1, applies the kernels learned by the kernel decoder to the
feature maps (layers) learned by the image encoder. The cross convolutional layer has
the same output size as the image encoder.

Our motion decoder (Figure 7-3e) starts with an up-sampling layer at each scale,
making the output of all scales of the cross convolutional layer have a resolution
of 64x64. This is then followed by one 9x9 and two 1x 1 convolutional and batch
normalization layers, with {128, 128, 3} channels. These final feature maps (layers)
are then used to regress the output difference image.

Training and testing details. During training, the image encoder takes a single
frame I) as input, and the motion encoder takes both input frame ji) and the

difference image v) - JP) - I) as input, where JP) is the next frame. The network

aims to regress the difference image that minimizes the objective function Equation 7.6.
During testing, the image encoder still sees a single image I; however, instead

of using a motion encoder, we directly sample motion vectors z(A from the prior
distribution p2(z) (therefore, the gray part in Figure 7-3 is not used in testing).
In practice, we use an empirical distribution of z over all training samples as an
approximation to the prior, a.k.a. the variational distribution qo(z) in the literature,
as Doersch [2016] showed that this sampling strategy works better than sampling from
the prior distribution pz(z). Our sampling of z is independent of the input image I,
satisfying the independence assumption discussed in Section 7.3.3. The network then
synthesizes possible difference images 0) by taking the sampled latent representation
z() and an RGB image I as input. We then generate a set of future frames {J(i)}
from these difference images: J(i) = I + vi).

7.5 Evaluations

We now present a series of experiments to evaluate our method. We start with a
dataset of 2D shapes, which serves to benchmark our model on objects with simple, yet
nontrivial, motion distributions. Following Reed et al. [2015], we then test our method
on a dataset of video game sprites with diverse motions. In addition to these synthetic
datasets, we further evaluate our framework on real-world video datasets. Again,
note that our model uses consecutive frames for training, requiring no supervision.
Visualizations of our experimental results are also available on the project page.

7.5.1 Movement of 2D Shapes

We first evaluate our method using a dataset of synthetic 2D shapes. The dataset
contains three types of objects: circles, squares, and triangles. Circles always move
vertically, squares horizontally, and triangles diagonally. The motion of circles and

140

I

U. U..U.......

V V Y YY..

(a) Input (b) Next frame (c) Reconstruction (d) 3 sampled future frames (e) Zoomed-in views

Figure 7-4: Results on the Shapes dataset containing circles, squares, and triangles. For
a given frame (a) our goal is to predict probable motion. In (b) we show the ground truth future

frame. Notice how squares move horizontally, circles vertically, triangles diagonally, and the triangle's

motion is correlated with the circle's. Our model is able to reconstruct the motion (c) after encoding

and decoding with the ground truth image pairs. By sampling from the latent representation, we can

also synthesize additional novel future frames with probable motion (d). In (e), we show zoomed-in

regions for these samples. Note the significant variation among the sampled frames.

squares are independent, while the motion of circles and triangles are correlated (when

the triangle moves up, the circle moves down). The shapes can be heavily occluded,

and their sizes, positions, and colors are chosen randomly. There are 20,000 pairs for

training, and 500 for testing.

Figure 7-4 shows the results. Figure 7-4a and Figure 7-4b show a sample of

consecutive frames in the dataset, and Figure 7-4c shows the reconstruction of the

second frame after encoding and decoding with the ground truth image pairs. Figure 7-

4d and Figure 7-4e show samples of the second frame; in these results the network only

takes the first image as input, and the compact motion representation, z, is randomly

sampled. Note that the network is able to capture the distinctive motion pattern for

each shape, including the strong correlation of triangle and circle motion.

To quantitatively evaluate our algorithm, we compare the displacement distribu-

tions of circles, squares, and triangles in the sampled images with their ground truth

distributions. We sample 50,000 images and use the optical flow package by Liu [2009]

to calculate the mean movement of each object. We plot them in Figure 7-5 as well as

the isolines using the contour function in MATLAB.

We also compute their KL-divergence. Here, we divide the region [-5, 5] x [-5, 5]

into 41 x 41 bins and approximate the predicted distribution with the 2D histogram.

We compare our algorithm with a simple baseline that copies the optical flow field of

the closest image pairs from the training set ('Flow' in Figure 7-5); for each test image,

we find its 10-nearest neighbors in the training set (the retrieval is based on P-distance

141

V..

Ground o 0 0
trum t

5 v6 5v5 1

-50 -s -5
Pre- o 0

diction

Shapes

Circles Squares Triangles Circles-Triangles
-5 0 5 Flow 6.77 7.07 6.07 8.42

Vcr
-5 AE 8.76 12.37 10.36 10.58

Ours 1.70 2.48 1.14 2.46
0

KL divergence, DKL(Pgt I Ppred), between predicted and
- 0 v,5 0 5"' ground truth distributions

Circles Squares Triangles Circles-Triangles

Figure 7-5: The motion of the sampled data is consistent with the ground truth motion
distributions. Left: for each object, comparison between its ground-truth motion distribution and
the distribution predicted by our method. It shows the network learns to move circles vertically,
squares, horizontally, and the motion of circles and triangles is correlated. Right: KL divergence
between ground-truth distributions and distributions predicted by three different algorithms. Our
network scores much better than a simple nearest-neighbor motion transfer algorithm.

- *E Method Resolution

E N 32x32 64x64

Flow 29.7 21.0

M E Ours 41.2 35.7

& & W *ePercentages (%) of results
labeled as real by human. .. E subjects

(a) Input (b) Next frame (c) Reconstruction (d) 2 sampled future frames (e) Zoomed-in views

Figure 7-6: Results on the Sprites dataset. Left: We show input images (a), ground truth next
frames (b), our reconstruction (c), two sampled future frames (d), and corresponding zoomed-in
views (e). Right: Percentages (%) of synthesized results that were labeled as real by human subjects
in two-way forced choices on Amazon Mechanical Turk, at resolution 32x32 and 64x64. A perfect
algorithm would achieve a percentage around 50%.

between query image and images in the training dataset), and randomly transfer one of

the corresponding optical flow fields. To illustrate the advantage of using a variational

autoencoder (VAE) over a standard autoencoder, we also modify our network by
removing the KL-divergence loss and sampling layer ('AE' in Figure 7-5). Figure 7-5
shows our predicted distribution is very close to the ground-truth distribution. It also

shows that a VAE helps to capture the true distribution of future frames.

7.5.2 Movement of Video Game Sprites

We evaluate our framework on a video game sprites dataset1 , also used by Reed

et al. [2015]. The dataset consists of 672 unique characters; for each character, there

are 5 animations (spellcast, thrust, walk, slash, shoot) from 4 different viewpoints.
The length of each animation ranges from 6 to 13 frames. We collect 102,364 pairs of

neighboring frames for training, and 3,140 pairs for testing. The same character does

1 Liberated pixel cup: http: //lpc . opengameart . org

142

not appear in both the training and test sets. Sampled future frames are shown in

Figure 7-6. From a single frame, our method captures various possible motions that
are consistent with those in the training set.

As a quantitative evaluation on the success rate of our image synthesis algorithm,
we conduct behavioral experiments on Amazon Mechanical Turk. We randomly select

200 images, sample a possible next frame using our algorithm, and show them to

multiple human subjects as an animation side by side with the ground truth animation.

We then ask the subject to choose which animation is real (not synthesized). An ideal

algorithm should achieve a success rate of 50%. In our experiments, we present the

animation in both the original resolution (64x64) and a lower resolution (32x32). We

only evaluate on subjects that have a past approval rate of >95% and have also passed

our qualification tests. Figure 7-6 shows that our algorithm significantly outperforms

a baseline that warps the input by transferring one of closest flow fields from the

training set. Our results are labeled as real by humans 41.2% of the time at 32x32,
and 35.7% of the time at 64x64. Subjects are less easily fooled by 64x64 images, as

it is harder to hallucinate realistic details in high-resolution images.

7.5.3 Movement in Real Videos Captured in the Wild

To demonstrate that our algorithm can also handle real videos, we collect 20
workout videos from YouTube, each about 30 to 60 minutes long. We first apply
motion stabilization to the training data as a pre-processing step to remove camera

motion. We then extract 56,838 pairs of frames for training and 6,243 pairs for testing.
The training and testing pairs come from different video sequences.

Figure 7-7 shows that our framework works well in predicting the movement of

the legs and torso. Specifically, the algorithm is able to synthesize reasonable motions

of the human in various poses. The Mechanical Turk behavioral experiments also

show that the synthesized frames are visually realistic. In particular, our synthesized

images are labeled as real by humans 36.7% of the time at a resolution of 32x32, and

31.3% of the time at 64x64.

Given an input frame, how often can our algorithm sample realistic motion? We
have run an additional human study to evaluate this: for each of 100 randomly selected
test images, we sample 100 future frames at 128 x128, and ask AMT subjects whether
the two consecutive frames, one real and one synthesized, characterize realistic human
motion. The success rate is 44.3% (averaged over the 100 test images), with a standard
deviation of 4.3%.

Synthesizing images with realistic human motion is challenging. Traditional
methods often require a high quality 3D model of the human body for real-time
synthesis and rendering [Thies et al., 2016]. Although our algorithm does not require
a 3D model, it can still simulate how a human moves between frames. Note that

143

AAAMethod
3Resolution

A A A A32x32 64x64

-S Flow 31.3 25.5
Ours 36.7 31.3

Percentages (%) of results
labeled as real by human

n.....a ,subjects
(a) Input (b) Next (c) Recon- (d) 3 sampled future frames (e) Zoomed-in views(a)Inut frame struction

Figure 7-7: Results on the Exercise dataset. Left: We show input images (a), ground truth next
frames (b), our reconstruction (c), three sampled future frames (d), and corresponding zoomed-in
views (e). Right: Percentages (%) of synthesized results that were labeled as real by human subjects
in two-way forced choices on Amazon Mechanical Turk, at resolution 32x32 and 64x64. A perfect
algorithm would achieve a percentage around 50%.

(a) Input (b) Next frame (c) Reconstruction (d) 2 sampled future frames (e) Zoomed-in views

Figure 7-8: Sampling results on the PennAction dataset [Zhang et al., 2013], where we
show input images (a), ground truth next frames (b), our reconstruction (c), three sampled future
frames (d), and corresponding zoomed-in views (e).

synthesized large motions in our results often happen around locations corresponding

to skeletal joints, implying that our model has an implicit understanding of the

structure and correlation between body parts.

At last, we test our algorithm on realistic videos in the wild. We use the PennAction

dataset [Zhang et al., 2013], which contains 981 sequences of diverse human motion

with complex backgrounds. We extract 7,705 pairs of frames for training and 987
pairs for evaluation. To remove trivial panning motions, we detect the human in each

frame [Huang and Ramanan, 2017] and crop each frame to center the subject.

The results are shown in Figure 7-8. While in-the-wild videos are more challenging,
our model synthesizes multiple realistic future frames from a single image. Especially,
when synthesizing future frames, our model keeps the original background intact,
suggesting the learned motion representation separates the region of interest from
the background. In the future, we aim to develop prediction models that are able to

144

Input ve 3' V -npu
Images Images *

Scale 1 Scale 2
Map 25 Map 5 flf- l lf
Scale 2 Scale 1
Map 20 Map 32 -

Scale 2 Input
Map 28 Images

Scale 2 Scale 1
Map 31 Map 1

Figure 7-9: Learned layers on the Shapes dataset (left), the Sprites dataset (top right), and the
Exercise dataset (bottom right). Our system is able to implicitly discover semantic structure from
this self-supervised task. On the Shapes dataset, it learns to detect circles and triangles; it also
detects vertical boundaries of squares, as squares always move horizontally. On the Exercise dataset,
it learns to respond to only humans, not the carpet below them, as the carpet never moves.

better handle more complex visual scenes.

7.6 Analyses

In this section, we present an analysis of the learned network to demonstrate

what it captures. In particular, we visualize the learned feature maps (Section 7.6.1),
and show that the network implicitly learns object and edge detectors. Additionally,
we compute statistics of the latent representation (Section 7.6.2) to verify that the

network is learning a compact, informative representation of the motion manifold. We

then visualize certain dimensions of the latent representation to reveal their meanings

(Section 7.6.4).

7.6.1 Visualizing Learned Layers

Our network synthesizes the movement of objects by first identifying layers in the

input and transferring each layer. Therefore, we expect that the these layers carry

both low-level information such as object contours, and high-level information such as
object parts.

To verify this, we visualize the learned feature maps (Figure 7-3b) in Figure 7-9.
Even without supervision, our network learns to detect objects or contours in the

image. For example, we see that the network automatically learns object detectors
and edge detectors on the shapes dataset. It also learns a hair detector and a body

detector on the sprites and exercise datasets, respectively. The part detectors have a
sharper boundary on the shapes dataset than on the other two. This is because the

shapes dataset has well-defined concepts of independently movable parts; in contrast,
body parts in real videos have indistinguishable motion distributions.

145

Dataset Shapes Sprites Exercise

Non-zero element in Zmean 299 54 978
Dominating PCA components 5 5 47

Table 7.1: Statistics of the 3,200-dimensional motion vector z. The network learns a sparse
latent representation, encoding high-level knowledge using minimal bits.

0 500 1000 1500 2000 2500 3000

Dimensions of z

(a) The Shapes dataset

1.0

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.61

0 500 1000 1500 2000 2500 3000

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

0 500 1000 1500 2000 2500 3000

Dimensions of z

(b) The Sprites dataset

1.0

0.5

0.0 + +

-0.5

-1.0

-1.5
0 500 1000 1500 2000 2500 3000

0 -

-0.5

-1.0

-1.5

-2.0

-2.5

0 500 1000 1500 2000 2500 3000

Dimensions of z

(c) The Exercise dataset

Figure 7-10: Statistics of latent vectors Zmean and Zlogvar extracted from 1,000 image pairs from
the Shapes, Sprites, and Exercise datasets, respectively. Each vertical line is for a single dimension in z.
Although the z vector has 3,200 dimensions, only a small number of those have values deviating from
the prior (mean 0, log-variance 0). This shows the system is learning to encode motion information
in a compact way. Also, as the motion in the Exercise dataset is more complex, the system needs
more bits for encoding (cf., Table 7.1).

7.6.2 The Sparsity of the Latent Representation

Although our latent motion representation, z, has 3,200 dimensions, its intrinsic

dimensionality is much smaller. We show statistics in Table 7.1. There are two main

messages. First, zmean is very sparse. There are 299 non-zero elements of Zmean in the

shapes dataset, 54 in sprites, and 978 in exercise. The sprites dataset requires fewer

non-zero elements than the shapes dataset, because while the visual appearance of the

characters are more complex, their motion falls into a few pre-defined categories (e.g.,

thrust) and is thus simpler than the continuous motion of the shapes. Second, the

independent components of z are even fewer. We run principle component analysis

(PCA) on the Zmeans obtained from a set of training images, and find that for each

dataset, only a small fraction of components cover 95% of the variance in Zmean (5 in

shapes, 5 in sprites, and 47 in exercise).

146

1.5

1.0

0.5

0.0

-0.5

-1.0

0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

C

N

N
bfl
0

500 1000 1500 2000 2500 3000

Figure 7-10 further shows detailed statistics of Zmean and ZIogvar (a.k.a., log(zvar)).
For each dataset, we randomly select 1,000 train samples and calculate the correspond-
ing zmean and zlogvar through the motion encoder (Figure 7-3a). The first row shows
the distribution of Zmean and the second row shows the distribution of Zlogvar. The
x-axis in each figure corresponds to the 3,200 dimensions in zmean and Ziogvar. For each
dimension k, the blue region reflects the interval

[mean(zk) - std(zk), mean(zk) + std(zk)1, (7.12)

where mean(zk) is the mean of the 1,000 values in the k dimension for the 1,000
samples, and std(zk) is the standard deviation.

One interesting observation from Figure 7-10 is that, for most dimensions, Zmean

is very close to 0 and Zvar is very close to 1 (ziogvar equals to 0). This is because
the training object Equation 7.2 minimizes the KL divergence between N(O, I) and
N(Zmean, diag(zvar))**, and the minimizer of the KL divergence is Zmean = 0 and

Zvar 1.
However, not all dimensions of Zmean and Ziogvar are 0, and those non-zero di-

mensions actually encode the semantic information of how objects move between

frames. Recall that to calculate the compact motion representation z, the motion

encoder first estimates Zmean and Zvar from two input frames, and then samples z from

N(Zmean, diag(zvar)). Let us rewrite the sampling as Zk = Zmean,k - CkZvar,k, where k

is a dimension index and 6 k is a random Gaussian noise with zero mean and unit

variance. If Zvar,k is large, the corresponding dimension in the motion vector z is mostly

corrupted by the random Gaussian noise, and only those dimensions with small Zvar,k

are able to transmit motion information for next frame synthesis.

In other words, zmean carries the actual motion information, while Zvar is an indicator

of whether a dimension is being actively used. This corresponds to our observation

in Figure 7-10, where only uncorrupted dimensions (i.e., those with small Zvar) have

non-zero Zmean. Similar discussions were also presented by Hinton and Van Camp

[1993] and concurrently by Higgins et al. [2016].

To further demonstrate how KL-divergence criterion ensures the sparsity of motion

vector z, we also vary the weight of KL-divergence criterion A during training. As

shown in Figure 7-11, when A is small, most of dimensions of log(zvar) are smaller than

0, and Zmean is not sparse (left of Figure 7-11). When we increase A, the network is

forced to encode the information in a more compact way, and the learned representation

becomes sparser (right of Figure 7-11).

All these results suggest that our network has learned a compact representation

of motion in an unsupervised fashion, and encodes high-level knowledge using a

**diag(zvar) denotes a diagonal matrix whose diagonal elements are zvar.

147

80

2 --.------

c 0.2

0.

0 0

-0.2

7711 -0.4

0 0

-0.4 -0.4

V-0.8 -0.8

-1.2 -1.0

-1.6 -1.2

.1.4

(a) A = 10-5

I

500 1000 1500 2000 2500

(b) A = 10-4

3000

Figure 7-11: Statistics of latent vectors z using different
values of A, extracted from 1,000 image pairs from the Shapes
dataset. The latent vector becomes sparser when A is larger,
i.e., the network is encoding motion in a more compact way.

70L

60

S504

30

20

10

28

1000 30 40 5Eh0 60

Epochs

Size of z 8 32 128 3,200

components 3 3 3 5

Figure 7-12: Ablation study on
the size of z. Our model automati-
cally discovers the underlying dimen-
sion of the motion (the number of
dominating PCA components) in the
Shapes dataset. When we shrink the
size of z, the convergence gets a little
slower (especially when z has only
8 dimensions), but the results are
essentially the same.

small number of bits, rather than simply memorizing training samples. In the next
subsection, we will also illustrate what motion information is actually learned.

7.6.3 Varying the Size of the Latent Representation

We have explored the sparsity of the latent representation z, suggesting the model
learns to encode essential information using only a few bits, despite z itself has 3,200
dimensions. Here, we conduct an additional ablation study to understand the minimal
number of dimensions that are necessary for the network to initialize the learning
process.

We experiment on the Shapes dataset. Table 7.1 tells us that our model can
learn to encode motion information using only 5 dominating PCA components. We
therefore explore 4 different sizes of z: 8, 32, 128, and 3,200, as shown in Figure 7-12.
All networks converge regardless of the dimensions of z, with a slight difference in
convergence time (the network with smaller z takes longer to converge). Also, the
number of dominating PCA components is always small (3-5), suggesting that as long
as the dimension of the latent representation z is larger than its intrinsic dimension,
the model consistently learns to encode the information compactly, regardless of its
dimension.

148

i

(a) (b) (c) (d)

Dimensions of z

(a) NE

99SIILk

(d)AA tt~~
Figure 7-13: We visualize the effect of varying individual dimensions in the latent repre-

sentation z, revealing the system is learning a disentangled, interpretable motion representation.

For the dimensions whose log-variance is smaller than 0 (a-c), they record a certain type of motion.

For example, dimension (a) corresponds to humans move upwards, dimensions (b) and (c) correspond

to moving arms, hair, or legs to the left. For the dimensions whose log-variance is very close to 0,

they record no motion information: changing the value of dimension (d) results in no motion in

predicted frames.

7.6.4 Visualizing the Latent Representation

We visualize the encoded motion by manipulating individual dimensions of the

representation z, while keeping other dimensions constant. Through this, we have

found that each dimension corresponds to a certain type of motion. We show results

in Figure 7-13. On the exercise dataset, varying one dimension of z causes the girl to

stand-up, and varying another causes her to move her leg. The effect is consistent

across input images, showing individual dimensions in the latent vector z carries

abstract, higher-level knowledge. Also notice that only dimensions with smaller

variance Zmr contain semantic motion information (Figure 7-13a to Figure 7-13c).

Manipulating dimensions with variances close to 1 results in no significant motion

(Figure 7-13d).

7.6.5 Handling Disocclusions

Synthesizing future frames often involves handling disocclusions. Here we system-

atically evaluate it on a new dataset, Shapes+Texture, where the primitives in the

Shapes dataset now have horizontal (squares), vertical (triangles), or checkerboard

patterns (circles). Figure 7-14 shows our model handles disocclusions well, correctly

synthesizing the object texture even if it's not visible in the input. This is further

supported by Figure 7-9, showing the network learns feature maps that correspond to

amodal segments of shapes.

149

h

Ifl

S.'.

Reference ,,*flf
Input +

Prediction

Reference

Input +
Prediction

(a) Input (b) 2 sampled future frames

Figure 7-14: Our model han- Figure 7-15: Results on visual analogy-making, where we
dles disocclusions well. On want to transfer the motion in a reference pair to a target image.
the Shapes+Texture dataset, our We conduct experiments on two datasets, Sprites and Exercise, and
model is able to complete shapes mark the predicted frames in red. Our algorithm is able to transfer
with their corresponding texture high-level motion (e.g. downwards motion of a human body, as
after hallucinating their motion. opposed to pixel-wise motion) in a semantically plausible way.

Model spellcast thrust walk slash shoot average

Add 41.0 53.8 55.7 52.1 77.6 56.0
Dis 40.8 55.8 52.6 53.5 79.8 56.5
Dis+Cls 13.3 24.6 17.2 18.9 40.8 23.0

Ours 9.5 11.5 11.1 28.2 19.0 15.9

Table 7.2: Mean squared pixel error on test analogies, by animation. The first three models
(Add, Dis, and Dis+Cls) are from Reed et al. [2015]. Compared with them, our model achieves lower
errors.

7.7 Applications

Our framework models a general problem and therefore has a wide range of
applications. Here we present two possible applications of our framework: visual
analogy-making and extrapolation for generating video sequences.

7.7.1 Zero-Shot Visual Analogy-Making

Recently, Reed et al. [2015] studied the problem of inferring the relationship
between a pair of reference images and synthesizing an image analogy by applying the
inferred relationship to a test image. For example, the character shown in the top row
of Figure 7-15a leans toward to the right; the task is to transfer its leaning motion to
the target, bottom-left image.

The method by Reed et al. requires a set of quadruples during supervision (two
source images and two target images). In contrast, our network is able to preform
this task without first training using the quadruple sets. Specifically, we extract the
motion vector, z, from two reference frames using our motion encoder (Figure 7-3a).

150

I__

Time 0 Time 1 Time 2 Time 3 Time 4 Time 0 Time 1 Time 2 Time 3 Time 4

Figure 7-16: Generating video sequences by repeatedly applying a sampled motion rep-
resentation z. Our model is able to synthesize reasonable videos of human moving in various ways,
though artifacts gradually emerge over time (e.g. the thighs become bigger in the top-right example).

We then use the extracted motion vector z to synthesize an analogy-image given a

new test image. In this way, our network learns to transfer motion from a source pair

to the target image, without requiring any form of supervision (see Figure 7-15). As

shown in Table 7.2, our algorithm outperforms that by Reed et al. [2015].

7.7.2 Extrapolation

Our network can also be used to generate video sequences by extrapolation. In

Figure 7-16, we synthesize videos from a single image by simply repeatedly applying

the sample motion. Given an input image frame 1 and sampled motion vector z, we

first synthesize the second frame 12 from the first frame 11 and motion vector z, and

then synthesize the third frame 13 from the second using the same motion vector. We

see that our framework generates plausible video sequences. Recent work on modeling

transitions across possible motions [Chao et al., 2017] could serve as alternative way

to extend our framework to longer-term video generation. Compared with most of

previous deterministic video synthesis networks [Srivastava et al., 2015, Mathieu et al.,
2016], our approach can sample multiple possible ways a person can move, as shown

Figure 7-16. One limitation of this approach is that artifacts gradually emerge over

time. It may be possible to reduce these artifacts using a learned image prior [Zhang

et al., 2017a].

7.8 Extending to Hierarchical Structure

When we see objects move, we not only discover object parts that move together,
but also understand their relationships. Take a human body as an example. We

want our model to parse human parts (e.g., torso, hands, and legs) and to learn their
structure (e.g., hands and legs are both parts of the human body). In this section, we

extend the visual dynamics model to also discover the hierarchical structure among
object parts. We name our new model Parts, Structure, and Dynamics (PSD).

Formally, given a pair of images {11,12}, let M be the Lagrangian motion map
(i.e. optical flow). Consider a system that learns to segment object parts and to

151

Torso 4- Torso

Right leg

Left leg + Right leg Left leg

Torso Torso 4-

Right leg 4- +

Left leg 4- Right leg \ Left leg

(a) Pairs of images (b) Global motions of parts (c) Local motions of parts

Figure 7-17: Hierarchical motion decomposition. Knowing that the legs are part of human
body, the legs' motion can be decomposed as the sum of the body's motion and the legs' local motion.

capture their motions, without modeling their structure. Its goal is to find a segment
decomposition of 11 = {01, 02, .. . , On}, where each segment 0 k corresponds to an
object part with distinct motion. Let {Mg, Mg,..., Mg } be their corresponding
motions.

Beyond that, we assume that these object parts form a hierarchical tree structure:
each part k has a parent Pk, unless itself is the root of a motion tree. Its motion
Mg can therefore be decomposed into its parent's motion Mk and a local motion
component M within its parent's reference frame. Specifically, M = M= ± M, if
k is not a root. Here we make use of the fact that Lagrangian motion components
M and Mg are additive.

Figure 7-17 gives an intuitive example: knowing that the legs are part of human
body, the legs' motion can be written as the sum of the body's motion (e.g., moving
to the left) and the legs' local motion (e.g., moving to lower or upper left). Therefore,
the objective of our model is, in addition to identifying the object components {Ok},
learning the hierarchical tree structure {Pk} to effectively and efficiently explain the
object's motion.

Such an assumption makes it possible to decompose the complex object motions
into simple and disentangled local motion components. Reusing local components
along the hierarchical structure helps to reduce the description length of the motion
map M. Therefore, such a decomposition should naturally emerge within a design
with information bottleneck that encourages compact, disentangled representations.
In the next section, we introduce the general philosophy behind our model design and
the individual components within.

152

Trainng Only (a) Motion encoder (b) Kernel decoderI[.~.:.... Z ssan z d cdr Krels

Flow- field Z-aDti
- Detai (g) Image decoder

Input frame (c) Image encoder . Estimated flow Next frame

Feature maps (d) Cross convolution (e) Motion decoder (f) Structure descriptor

Figure 7-18: Our PSD model has seven components: (a) motion encoder; (b) kernel decoder;
(c) image encoder; (d) cross convolution; (e) motion decoder; (f) structural descriptor; and (g)
image decoder.

7.8.1 Learning Parts, Structure, and Dynamics

Figure 7-18 shows an overview of our Parts, Structure, and Dynamics (PSD) model.
It is similar to the original visual dynamics model, with the addition of a structure
descriptor.

Motion can be decomposed in a layer-wise manner, separately modeling different
object component's movement [Wang and Adelson, 1993]. Motivated by this, our
model first decomposes the input frame 11 into multiple feature maps using an

image encoder (Figure 7-18c). Intuitively, these feature maps correspond to separate

object components. Our model then performs convolutions (Figure 7-18d) on these
feature maps using separate kernels obtained from a kernel decoder (Figure 7-18b), and
synthesizes the local motions M of separate object components with a motion decoder

(Figure 7-18e). After that, our model employs a structural descriptor (Figure 7-18f) to
recover the global motions M from local motions M , and then compute the overall

motion M. Finally, our model uses an image decoder (Figure 7-18g) to synthesize the
next frame 12 from the input frame 11 and the overall motion M.

Our PSD model can be seen as a conditional variational autoencoder. During
training, it employs an additional motion encoder (Figure 7-18a) to encode the motion

into the latent representation z; during testing, it instead samples the representation
z from its prior distribution Pz(z), which is assumed to be a multivariate Gaussian
distribution, where each dimension is i.i.d., zero-mean, and unit-variance.

Architecture-wise, our model is the same as the original visual dynamics model,
with the addition of the structure descriptor. Our structural descriptor recovers the
global motions {Mg} from the local motions {M } and the hierarchical tree structure

153

{Pk} using

Mk= k PM k =MPM k +MPk)=.

= M + [i E Pk] -M, where Pk is the set of ancestors of Ok. (7.13)
ipk

Then, we define the structural matrix S as Sik = [i E Pk], where each binary indicator

Sik represents whether O(is an ancestor of Ok. This is what we aim to learn, and it is
shared across different data points. In practice, we relax the binary constraints on S to

[0, 1] to make this module differentiable: Sik = sigmoid(Wik), where Wik are trainable

parameters. Finally, the overall motion can be simply computed as M = Ek Mk.

Training details. Our objective function L is a weighted sum over three separate
components:

L2= frecon + /3 • reg + 7 -Cstruct, where # and y are two weighting factors. (7.14)

The first component is the pixel-wise reconstruction loss, which enforces our model

to accurately estimate the motion M and synthesize the future frame 12. We have
Lrecon = ||M - -1|2 + a - ||I2 - 2|2, where a is a weighting factor (which is set to

103 in our experiments).

The second component is the variational loss, which encourages our model to use
as few dimensions in the latent representation z as possible [Xue et al., 2016, Higgins

et al., 2017]. We have £reg = DKL (zA((mean, zvar) I Pz(z)), where DKL (- || -) is the
KL-divergence, and Pz(z) is the prior distribution of the latent representation (which
is set to normal distribution in our experiments).

The last component is the structural loss, which encourages our model to learn
the hierarchical tree structure so that it helps the motions M' be represented in an
efficient way: £struct =Ed 1 ||Ml2 . Note that we apply the structural loss on local

motion fields, not on the structural matrix. In this way, the structural loss serves as a
regularization, encouraging the motion field to have small values.

We implement our PSD model in PyTorch [Paszke et al., 2017]. Optimization
is carried out using ADAM [Kingma and Ba, 2015] with #1 = 0.9 and 32 = 0.999.
We use a fixed learning rate of 10- and mini-batch size of 32. We propose the
two-stage optimization schema, which first learns the disentangled and then learns
the hierarchical representation.

In the first stage, we encourage the model to learn a disentangled representation
(without structure). We set the -y in Equation 7.14 to 0 and fix the structural matrix S
to the identity I. The # in Equation 7.14 is the same as the one in the #-VAE [Higgins
et al., 2017], and therefore, larger #'s encourage the model to learn a more disentangled

154

4%,---- ------ (d) (e) Mf

(d)

- (e)1

(d) Offensive
-N player

(f) Defensive

.(e)Ball

(a) Input (b) Reconstruction (c) Ground truth (d) Offensive player (e) Ball (f) Defensive player (g) Hierarchical tree structure

Figure 7-19: Results of segmenting objects (d-f) and learning hierarchical structure (g)
on Atari games

representation. We first initialize the # to 0.1 and then adaptively double the value of

3 when the reconstruction loss reaches a preset threshold.

In the second stage, we train the model to learn the hierarchical representation.

We fix the weights of motion encoder and kernel decoder, and set the 3 to 0. We

initialize the structural matrix S, and optimize it with the image encoder and motion

decoder jointly. We adaptively tune the value of -y in the same way as the # in the

first stage.

7.8.2 Experiments

We evaluate our model on Atari games of basketball playing and real-world human

motions.

Atari games of playing basketball. We evaluate our model on a dataset of Atari

games. In particular, we select the Basketball game from the Atari 2600. In this

game, there are two players competing with each other. Each player can move in

eight different directions. The offensive player constantly dribbles the ball and throws

the ball at some moment; while the defensive player tries to steal the ball from his

opponent player. We download a video of playing this game from YouTube and

construct a dataset with 5,000 pairs for training and 500 for testing.

Our PSD model discovers three meaningful dimensions in the latent representation

z. We visualize the feature maps in these three dimensions in Figure 7-19. We

observe that one dimension (in Figure 7-19d) is learning the offensive player with

ball, another (in Figure 7-19e) is learning the ball, and the other (in Figure 7-19f)
is learning the defensive player. We construct the hierarchical tree structure among

these three dimensions from the structural matrix S. As illustrated in Figure 7-19g,
our PSD model is able to discover the relationship between the ball and the players:

the offensive player controls the ball. This is because our model observes that the ball

always moves along with the offensive player.

155

(c) (d) (e) (f) (g)

(c) (c) Full torso

(e)) 1 (g) Left leg (d) Upper torso (f) Right leg

(1(e) Arm

(a) Input (b) Flow field (c) Full torso (d) Upper torso (e) Arm (f) Right leg (g) Left leg (h) Hierarchical tree structure

Figure 7-20: Results of segmenting parts (c-g) and learning hierarchical structure (h) on
human motions

(c) (d) (e) (f) (g)

W) 1 (c) Full torso

- ~(d)11
(e) 1 1 (d) Left arm (e) Right arm

(01Left leg (g) Right leg

(a) Input (b) Flow field (c) Full torso (d) Left arm (e) Right arm (f) Left leg (g) Right leg (h) Hierarchical tree structure

Figure 7-21: Results of segmenting parts (c-g) and learning hierarchical structure (h) on
human motions with complex backgrounds

Moving humans. We then evaluate our method on two datasets of real-world

human motions: the human exercise dataset used in Xue et al. [2016] and the yoga
dataset used in Balakrishnan et al. [2018]. We estimate the optical flows between

frames by an off-the-shelf package [Liu, 2009]. Compared with previous datasets,
these two require much more complicated visual perception, and they have challenging

hierarchical structures. In the human exercise dataset, there are 50,000 pairs of frames
used for training and 500 for testing. As for the yoga dataset, there are 4,720 pairs of

frames for training and 526 for testing.

In Figure 7-20 and Figure 7-21, we visualize the feature maps corresponding to

the active latent dimensions. It turns out that each of these dimensions corresponds

to one particular human part: full torsos (7-20c, 7-21c), upper torsos (7-20d), arms

(7-20e), left arms (7-21d), right arms (7-21e), right legs (7-20f, 7-21g), and left legs

(7-20g, 7-21f). Note that it is extremely challenging to distinguish different parts

from motions, because different parts (e.g., arms and legs) might have similar motions

(see Figure 7-20b). R-NEM is not able to segment any meaningful parts, let alone
structure, while our PSD model gives imperfect yet reasonable part segmentation

results.

For quantitative evaluation, we collect the ground truth part segmentation for 30
images and compute the intersection over union (IoU) between the ground-truth and

the prediction of our model and the other two baselines (NEM, R-NEM). The quanti-

tative results are presented in Table 7.3. Our PSD model significantly outperforms

the two baselines.

We recover the hierarchical tree structure among these dimensions from the

156

Full torso Upper torso Arm Left leg Right leg Overall

NEM 0.298 0.347 0.125 0.264 0.222 0.251
R-NEM 0.321 0.319 0.220 0.294 0.228 0.276

PSD (ours) 0.697 0.574 0.391 0.374 0.336 0.474

Table 7.3: Quantitative results (IoUs) of object segmentation on the human exercise
dataset

structural matrix S. From Figure 7-20h, our PSD model is able to discover that the
upper torso and the legs are part of the full torso, and the arm is part of the upper
torso, and from Figure 7-21h, our PSD model discovers that the arms and legs are
parts the full torso.

7.9 Discussion

In this chapter, we have proposed a novel framework that learns to approximate
graphics and physics engines, which enables sampling future frames from a single
image. Our method incorporates a variational autoencoder for learning compact motion
representations and layer-based synthesis algorithm to generate realistic movement of
objects. We have demonstrated that our framework works well on both synthetic and
real-life videos.

The key component of our frame synthesis model is to decompose an input image
into different layers and model the movement of each layer through convolution. This
decomposition can well approximate the motion of a single deformable object, such
as a human body. We have also demonstrated that our model can be extended to
simultaneously capture the hierarchical structure among these layers. In the future,
we would also like to extend it to handle more complicated and stochastic motion,
e.g., water flowing, and we hope that the learned motion prior may find its use in
other computer vision and computational photography applications.

157

THIS PAGE INTENTIONALLY LEFT BLANK

158

Part III

Reasoning: Learning with Program

Executors

159

THIS PAGE INTENTIONALLY LEFT BLANK

160

Ill | Ill'Ir || I r , II I |M ll|||| | | | ||||||||1

Chapter 8

Learning to Discover Concepts

from Images and Language

In Part I and II, we have presented models that learn to see and predict by incor-
porating simulators in the loop. We have also seen models that learn to approximate
simulators themselves. In Part III, we look into high-level cognitive reasoning problems:
what is the relation among objects in the scene? are there any repetitive structures or
regularities in the shapes, objects, or image segments we observe? can we exploit them
for question answering or image manipulation? We aim to answer these questions
in Part III via the help of program execution engines, in place of the graphics and
physics engines we used in Part I and II.

In this chapter, we first study the problem of visual concept learning, as symbolic
concepts are the basis for cognitive reasoning. We propose the Neuro-Symbolic Concept
Learner (NS-CL), a model that learns visual concepts, words, and semantic parsing
of sentences without explicit supervision on any of them; instead, our model learns
by simply looking at images and reading paired questions and answers. Our model

builds an object-based scene representation and translates sentences into executable,
symbolic programs. To bridge the learning of two modules, we use a neuro-symbolic
reasoning module that executes these programs on the latent scene representation.
Analogical to human concept learning, the perception module learns visual concepts
based on the language description of the object being referred to. Meanwhile, the
learned visual concepts facilitate learning new words and parsing new sentences. We
use curriculum learning to guide the searching over the large compositional space of
images and language. Extensive experiments demonstrate the accuracy and efficiency
of our model on learning visual concepts, word representations, and semantic parsing
of sentences. Further, our method allows easy generalization to new object attributes,
compositions, language concepts, scenes and questions, and even new program domains.
It also empowers applications including visual question answering and bidirectional
image-text retrieval.

This chapter includes materials previously published as Mao et al. [2019a], Yi et al.

161

[2018]. Jiayuan Mao, Kexin Yi, and Chuang Gan contributed significantly to the
materials presented in this chapter.

8.1 Introduction

Humans are capable of learning visual concepts by jointly understanding vision and
language [Fazly et al., 2010, Chrupala et al., 2015, Gauthier et al., 20181. Consider the
example shown in Figure 8-1-I. Imagine that someone with no prior knowledge of colors

is presented with the images of the red and green cubes, paired with the questions
and answers. They can easily identify the difference in objects' visual appearance (in
this case, color), and align it to the corresponding words in the questions and answers
(Red and Green). Other object attributes (e.g., shape) can be learned in a similar
fashion. Starting from there, humans are able to inductively learn the correspondence

between visual concepts and word semantics (e.g., spatial relations and referential
expressions, Figure 8-1-I), and unravel compositional logic from complex questions
assisted by the learned visual concepts (Figure 8-1-III, also see Abend et al. 12017]).

Motivated by this, we propose the neuro-symbolic concept learner (NS-CL), which
jointly learns visual perception, words, and semantic language parsing from images
and question-answer pairs. NS-CL has three modules: a neural-based perception
module that extracts object-level representations from the scene, a visually-grounded
semantic parser for translating questions into executable programs, and a symbolic
program executor that reads out the perceptual representation of objects, classifies
their attributes/relations, and executes the program to obtain an answer.

NS-CL learns from natural supervision (i.e., images and QA pairs), requiring no
annotations on images or semantic programs for sentences. Instead, analogical to
human concept learning, it learns via curriculum learning. NS-CL starts by learning
representations/concepts of individual objects from short questions (e.g., What's the
color of the cylinder?) on simple scenes (<3 objects). By doing so, it learns object-
based concepts such as colors and shapes. NS-CL then learns relational concepts by
leveraging these object-based concepts to interpret object referrals (e.g., Is there a
box right of a cylinder?). The model iteratively adapts to more complex scenes and
highly compositional questions.

NS-CL's modularized design enables interpretable, robust, and accurate visual
reasoning: it achieves state-of-the-art performance on the CLEVR dataset [Johnson
et al., 2017a]. More importantly, it naturally learns disentangled visual and language
concepts, enabling combinatorial generalization w.r.t. both visual scenes and semantic
programs. In particular, we demonstrate four forms of generalization. First, NS-CL
generalizes to scenes with more objects and longer semantic programs than those
in the training set. Second, it generalizes to new visual attribute compositions, as

162

||||1 | [l ' 1 1 | || IN lll l I' li i | I I l ' , 1 1 1|| 1|||| | 1 lll 1||| I| |

I. Learning basic, object-based concepts.

163

I. Learning relational concepts based on referential expressions.
Q How many objects are right of the red object?_ Q What's the color of the object?
AA 2.

S there any cube? Q How many objects have the same material as the cube?

A Yes. A2

Q What's thcoloroftheobject? Ill. Interpret complex questions from visual cues.
A: Green. Q How many objects are both right of the green cylinder
Q Is there any cube? and have the same material as the small blue ball?
A: Yes. A: 3

Figure 8-1: Human visual concept learning: humans learn visual concepts, words, and semantic
parsing jointly and incrementally.

demonstrated on the CLEVR-CoGenT [Johnson et al., 2017a] dataset. Third, it
enables fast adaptation to novel visual concepts, such as learning a new color. Finally,
the learned visual concepts transfer to new tasks, such as image-caption retrieval,
without any extra fine-tuning.

8.2 Related Work

Our model is related to research on joint learning of vision and natural language. In

particular, there are many papers that learn visual concepts from descriptive languages,
such as image-captioning or visually-grounded question-answer pairs [Kiros et al.,
2014, Shi et al., 2018, Mao et al., 2016, Vendrov et al., 2016, Ganju et al., 2017], dense

language descriptions for scenes [Johnson et al., 2016b], video-captioning [Donahue

et al., 2015] and video-text alignment [Zhu et al., 2015].
Visual question answering (VQA) stands out as it requires understanding both

visual content and language. The state-of-the-art approaches usually use neural
attentions [Malinowski and Fritz, 2014, Chen et al., 2016a, Yang et al., 2016, Xu

and Saenko, 20161. Beyond question answering, Johnson et al. [2017a] proposed the
CLEVR (VQA) dataset to diagnose reasoning models. CLEVR contains synthetic
visual scenes and questions generated from latent programs. Table 8.1 compares our

model with state-of-the-art visual reasoning models [Andreas et al., 2016, Suarez et al.,
2018, Santoro et al., 2017] along four directions: visual features, semantics, inference,
and the requirement of extra labels.

For visual representations, Johnson et al. [2017b] encoded visual scenes into a
convolutional feature map for program operators. Mascharka et al. [20181, Hudson and

Manning [2018] used attention as intermediate representations for transparent program
execution. Recently, Yi et al. [2018] explored an interpretable, object-based visual

representation for visual reasoning, NS-VQA, which we will introduce in Section 8.3.
It performs well, but requires fully-annotated scenes during training. Our model also

adopts an object-based visual representation, but the representation is learned only
based on natural supervision (questions and answers).

Models Visual Features Semantics Extra Labels Inference
Prog. Attr.

FiLM [Perez et al., 2018] Convolutional Implicit 0 No Feature Manipulation
IEP [Johnson et al., 2017b] Convolutional Explicit 700K No Feature Manipulation

MAC [Hudson and Manning, 20181 Attentional Implicit 0 No Feature Manipulation
Stack-NMN [Hu et al., 20181 Attentional Implicit 0 No Attention Manipulation
TbD [Mascharka et al., 2018] Attentional Explicit 700K No Attention Manipulation

NS-VQA [Yi et al., 2018] Object-Based Explicit 0.2K Yes Symbolic Execution
NS-CL [Mao et al., 2019a] Object-Based Explicit 0 No Symbolic Execution

Table 8.1: Comparison with other frameworks on the CLEVR VQA dataset, w.r.t. visual
features, implicit or explicit semantics and supervisions

Anderson et al. [2018] also proposed to represent the image as a collection of

convolutional object features and gained substantial improvements on VQA. Their
model encodes questions with neural networks and answers the questions by question-
conditioned attention over the object features. In contrast, NS-CL parses question

inputs into programs and executes them on object features to get the answer. This

makes the reasoning process interpretable and supports combinatorial generalization

over quantities (e.g., counting objects). Our model also learns general visual concepts
and their association with symbolic representations of language. These learned concepts
can then be explicitly interpreted and deployed in other vision-language applications

such as image caption retrieval.

There are two types of approaches in semantic sentence parsing for visual reasoning:

implicit programs as conditioned neural operations (e.g., conditioned convolution and

dual attention) [Perez et al., 2018, Hudson and Manning, 2018] and explicit programs

as sequences of symbolic tokens [Andreas et al., 2016, Johnson et al., 2017b, Mascharka
et al., 2018]. As a representative, Andreas et al. [2016] built modular and structured

neural architectures based on programs for answering questions. Explicit programs
gain better interpretability, but usually require extra supervision such as ground-truth
program annotations for training. This restricts their application. We propose to

use visual grounding as distant supervision to parse questions in natural languages
into explicit programs, with zero program annotations. Given the semantic parsing of
questions into programs, NS-VQA [Yi et al., 2018] used a purely symbolic executor
for the inference of the answer in the logic space. Compared with that, we propose a
quasi-symbolic executor for VQA.

Our work is also related to learning interpretable and disentangled representations
for visual scenes using neural networks. Kulkarni et al. [2015b] proposed convolutional
inverse graphics networks for learning and inferring pose of faces, while Yang et al.
[2015] learned disentangled representation of pose of chairs from images. Siddharth
et al. [2017], Higgins et al. [2018] learned disentangled representations using deep
generative models. In Chapter 4, we have also introduced the neural scene de-rendering

164

ID Size Shape Material Color x y z

t Small Cube Metl Purple -0A5 -1.10 035

2 CNN Large Cube Metal Green 3.83 -0.04 0.70

3 Large Cube Metal Green -3.20 0.63 0.70

4 Small Cylinder Rubber Purple 0.75 1.31 0.35

5 Large Cube Metal Green 1.58 -1.60 0.70

1. Scene Parsing (de-rendering)

IL Question Parsing 1U. Program Execution
(d) Question (Program Generation) (e) Program 1. filter shape 3. filter shape

,*1. filter-shape(scene, cylinder) 2. relate 4. filtersize 5. count

How many cubes that 2. relate(behind) ID Size Shape ... ID Size ...

are behind the cylinder - . .4 3. filter-shape(scene, cube) - * i Sall Cube 2 Large .

are large? 4 4. filter size(scene, large) 3 Large Cube . Large
4 5. count(scene) 5 Large Cube

Figure 8-2: The NS-VQA model has three components: first, a scene parser (de-renderer) that
segments an input image (a-b) and recovers a structural scene representation (c); second, a question
parser (program generator) that converts a question in natural language (d) into a program (e);
third, a program executor that runs the program on the structural scene representation to obtain the
answer.

framework as an inverse process of any rendering process. In this chapter, we propose an
alternative representation learning approach through joint reasoning with language.

8.3 Neuro-Symbolic Visual Question Answering (NS-VQA)

We start by proposing a model named Neuro-Symbolic Visual Question Answering
(NS-VQA), which explicitly brings symbolic scene representations and reasoning into
scene understanding. As we will see, the use of symbolic structure improves the
model's accuracy, data-efficiency, and interpretability, but also poses challenges when
we want to apply it to real-world images.

The NS-VQA model has three components: a scene parser (de-renderer), a question
parser (program generator), and a program executor. Given an image-question pair,
the scene parser de-renders the image to obtain a structural scene representation
(Figure 8-2-I), the question parser generates a hierarchical program from the question
(Figure 8-2-II), and the executor runs the program on the structural representation to
obtain an answer (Figure 8-2-Ill).

The scene parser recovers a structural and disentangled representation of the scene
in the image (Figure 8-2a), based on which we can perform fully interpretable symbolic
reasoning. The parser takes a two-step, segment-based approach for de-rendering: it
first generates a number of segment proposals (Figure 8-2b), and for each segment,
classifies the object and its attributes. The final, structural scene representation is
disentangled, compact, and rich (Figure 8-2c).

The question parser maps an input question in natural language (Figure 8-2d) to
a latent program (Figure 8-2e). The program has a hierarchy of functional modules,

165

(h) hivt RPOM ete (c) Structural Scene Representation

each fulfilling an independent operation on the scene representation. Using a hierar-
chical program as our reasoning backbone naturally supplies compositionality and
generalization power.

The program executor takes the output sequence from the question parser, applies
these functional modules on the abstract scene representation of the input image, and

generates the final answer (Figure 8-2-III). The executable program performs purely
symbolic operations on its input throughout the entire execution process, and is fully

deterministic, disentangled, and interpretable with respect to the program sequence.

8.3.1 Model Details

Scene parser. For each image, we use Mask R-CNN [He et al., 2017] to generate
segment proposals of all objects. Along with the segmentation mask, the network also
predicts the categorical labels of discrete intrinsic attributes such as color, material,
size, and shape. Proposals with bounding box score less than 0.9 are dropped. The
segment for each single object is then paired with the original image, resized to 224

by 224 and sent to a ResNet-34 [He et al., 2016] to extract the spacial attributes such
as pose and 3D coordinates. Here the inclusion of the original full image enables the
use of contextual information.

Question parser. Our question parser is an attention-based sequence to sequence

(seq2seq) model with an encoder-decoder structure similar to that in Luong et al.
[2015] and Bahdanau et al. [20151. The encoder is a bidirectional LSTM [Hochreiter
and Schmidhuber, 1997] that takes as input a question of variable lengths and outputs
an encoded vector ei at time step i as

ei = [e , ei], wheree, hi = LSTM(E (xi) ,h- 1), ef , hg = LSTM(©E(xi), h -+
(8.1)

Here (DE is the jointly trained encoder word embedding. (ef, hf), (eF, hf) are the
outputs and hidden vectors of the forward and backward networks at time step i. The
decoder is a similar LSTM that generates a vector qt from the previous token of the
output sequence yt-1. qt is then fed to an attention layer to obtain a context vector ct
as a weighted sum of the encoded states via

qt = LSTM(1D(yt-1)) ati Oc exp(qTWAei), ct = atie. (8.2)

JD is the decoder word embedding. For simplicity we set the dimensions of vectors

qt, ei to be the same and let the attention weight matrix WA to be an identity matrix.
Finally, the context vector, together with the decoder output, is passed to a fully
connected layer with softmax activation to obtain the distribution for the predicted
token yt - softmax(Wo[qt, ct]). Both the encoder and decoder have two hidden layers

166

with a 256-dim hidden vector. We set the dimensions of both the encoder and decoder
word vectors to be 300.

Program executor. We implement the program executor as a collection of deter-

ministic, generic functional modules in Python, designed to host all logic operations
behind the questions in the dataset. Each functional module is in one-to-one correspon-

dence with tokens from the input program sequence, which has the same representation

as in Johnson et al. [2017b]. The modules share the same input/output interface, and
therefore can be arranged in any length and order. A typical program sequence begins

with a scene token, which signals the input of the original scene representation. Each

functional module then sequentially executes on the output of the previous one. The

last module outputs the final answer to the question. When type mismatch occurs

between input and output across adjacent modules, an error flag is raised to the

output, in which case the model will randomly sample an answer from all possible
outputs of the final module.

8.3.2 Training Paradigm

Scene parsing. Our implementation of the object proposal network (Mask R-CNN)
is based on "Detectron" [Girshick et al., 2018]. We use ResNet-50 FPN [Lin et al.,
2017] as the backbone and train the model for 30,000 iterations with eight images
per batch. Please refer to He et al. [2017] and Girshick et al. [2018] for more details.

Our feature extraction network outputs the values of continuous attributes. We train

the network on the proposed object segments computed from the training data using
the mean square error as loss function for 30,000 iterations with learning rate 0.002

and batch size 50. Both networks of our scene parser are trained on 4,000 generated
CLEVR images.

Reasoning. We adopt the following two-step procedure to train the question parser
to learn the mapping from a question to a program. First, we select a small number
of ground truth question-program pairs from the training set to pre-train the model
with direct supervision. Then, we pair it with our deterministic program executor,
and use REINFORCE [Williams, 1992] to fine-tune the parser on a larger set of
question-answer pairs, using only the correctness of the execution result as the reward
signal.

During supervised pre-training, we train with learning rate 7 x 104 for 20,000
iterations. For reinforce, we set the learning rate to be 10' and run at most 2M
iterations with early stopping. The reward is maximized over a constant baseline with

a decay weight 0.9 to reduce variance. Batch size is fixed to be 64 for both training

stages. All our models are implemented in PyTorch.

167

Methods Count Exist Compare Compare Query Overall
Integer Attribute Attribute

Humans [Johnson et al., 2017b] 86.7 96.6 86.4 96.0 95.0 92.6

CNN+LSTM+SAN [Johnson et al., 2017b] 59.7 77.9 75.1 70.8 80.9 73.2
N2NMN* [Hu et al., 2017] 68.5 85.7 84.9 88.7 90.0 83.7
Dependency Tree [Cao et al., 2018] 81.4 94.2 81.6 97.1 90.5 89.3
CNN+LSTM+RN [Santoro et al., 2017] 90.1 97.8 93.6 97.1 97.9 95.5
IEP* [Johnson et al., 2017b] 92.7 97.1 98.7 98.9 98.1 96.9
CNN+GRU+FiLM [Perez et al., 2018] 94.5 99.2 93.8 99.0 99.2 97.6
DDRprog* [Suarez et al., 2018] 96.5 98.8 98.4 99.0 99.1 98.3
MAC [Hudson and Manning, 2018] 97.1 99.5 99.1 99.5 99.5 98.9
TbD+reg+hres* [Mascharka et al., 2018] 97.6 99.2 99.4 99.6 99.5 99.1

NS-VQA (ours, 90 programs) 64.5 87.4 53.7 77.4 79.7 74.4
NS-VQA (ours, 180 programs) 85.0 92.9 83.4 90.6 92.2 89.5
NS-VQA (ours, 270 programs) 99.7 99.9 99.9 99.8 99.8 99.8

Table 8.2: Quantitative results of NS-VQA on the CLEVR dataset. Our model (NS-VQA)
outperforms current state-of-the-art methods on CLEVR and achieves near-perfect question answering
accuracy. The question-program pairs used for pretraining our model are uniformly drawn from the
90 question families of the dataset: 90, 180, 270 programs correspond to 1, 2, 3 samples from each
family respectively. (*): trains on all program annotations (700K).

8.3.3 Data-Efficient, Interpretable Reasoning

Setup. We evaluate our NS-VQA on CLEVR [Johnson et al., 2017a]. The dataset

includes synthetic images of 3D primitives with multiple attributes-shape, color,

material, size, and 3D coordinates. Each image has a set of questions, each of which

associates with a program (a set of symbolic modules) generated by machines based

on 90 logic templates.

Our structural scene representation for a CLEVR image characterizes the objects

in it, each labeled with its shape, size, color, material, and 3D coordinates (see

Figure 8-2c). We evaluate our model's performance on the validation set under various

supervise signal for training, including the numbers of ground-truth programs used

for pre-training and question-answer pairs for REINFORCE. Results are compared

with other state-of-the-art methods including the IEP baseline [Johnson et al., 2017b].

We not only assess the correctness of the answer obtained by our model, but also how

well it recovers the underlying program. An interpretable model should be able to

output the correct program in addition to the correct answer.

Results. Quantitative results on the CLEVR dataset are summarized in Table 8.2.

Our NS-VQA achieves near-perfect accuracy and outperforms other methods on all

five question types. We first pre-train the question parser on 270 annotated programs

sampled across the 90 question templates (3 questions per template), a number below

the weakly supervised limit suggested by Johnson et al. [2017b] (9K), and then run

REINFORCE on all the question-answer pairs. Repeated experiments starting from

168

96.0

70.8
88.7
97.1
97.1
98.9
99.0
99.0
99.5
99.6

77.4
90.6
99.8

95.0

80.9
90.0
90.5
97.9
98.1
99.2
99.1
99.5
99.5

79.7
92.2
99.8

IF

- UT -or(9K)Ount7(2K)

EP (9K)

100 1000 9000
Number of programs

Cl

0

0

Os

0

0~

100-
IEP

80 Ours

60,

40

20

0 I...... P -

180 270 500 1K 9K
Annotated Programs

100

0-
80

60

- -C-
-EP

-- Film

7000 70000 700000
Number of training questions

(a) Acc. vs. # pre-training programs (b) Program acc. vs. # programs (c) Acc. vs. # training data

Figure 8-3: Our NS-VQA model exhibits high data efficiency while achieving state-of-the-
art performance and preserving interpretability. (a) QA accuracy vs. number of programs
used for pretraining; different curves indicate different numbers of question-answer pairs used in the
REINFORCE stage. (c) QA accuracy vs. total number of training question-answer pairs; our model
is pretrained on 270 programs.

(a) 500 Programs

Ii
Q: Is there a big cylinder made of the
same material as the blue object?

Ours
scene

filterblue
unique

same_material
filter-large

filtercylinder
exist

A: no

IEP

filtergreen
unique
scene

... (25 modules)
samematerial

exist

A: yes

Q: Is t
as the large gray rubber thing?

the purple thing the same shape I

Ours IEP

fter -large uiuslen filrrgren

rrubber .. (25 modules)
unique queryshape
scene equal_shape .
ftr-puople

IEP

A:enA: noape

A: no A: no

(b) 1K Programs

I I
Q: What number of cylinders are gray
objects or tiny brown matte objects?

Ours
scene

filtersmall
filter_brown
filterrubber

filtergray
union

filter cylinder

A: 1

IEP
filter small
filterbrown
filterlarge
filtercyan

... (25 modules)
filtermetal

union
filter cylinder

count

A: 2

Q: Are there more yellow matte
things that are right of the gray ball
than cyan metallic objects?

Ours IEP
scene filtersmall

filtercyan filter cyan
filter_mtal union

Count filter_brown
... (4 modules) . .. (25 modules)

scene filtersmall
filter_yellow filter-yellow
filterrubber filter rubber

count count
greater-than greater_than

A: no A: no

Figure 8-4: Qualitative results of NS-VQA on CLEVR. Blue color indicates correct program
modules and answers; red indicates wrong ones. Our model is able to robustly recover the correct
programs compared to the IEP baseline.

different sets of programs show a standard deviation of less than 0.1 percent on the
results for 270 pre-training programs (and beyond). The variances are larger when we
train our model with fewer programs (90 and 180). The reported numbers are the
mean of three runs.

We further investigate the data-efficiency of our method with respect to both the

number of programs used for pre-training and the overall question-answer pairs used in

REINFORCE. Figure 8-3a shows the result when we vary the number of pre-training
programs. NS-VQA outperforms the IEP baseline under various conditions, even
with a weaker supervision during REINFORCE (2K and 9K question-answer pairs

in REINFORCE). The number of question-answer pairs can be further reduced by
pre-training the model on a larger set of annotated programs. For example, our model

169

100

U

U

80

60

40

filtrlge
filte~ry
filtrrubr

equalsae

achieves the same near-perfect accuracy of 99.8% with 9K question-answer pairs with
annotated programs for both pre-training and REINFORCE.

Figure 8-3b compares how well our NS-VQA recovers the underlying programs
compared to the IEP model. IEP starts to capture the true programs when trained
with over 1K programs, and only recovers half of the programs with 9K programs.
Qualitative examples in Figure 8-4 demonstrate that IEP tends to fake a long wrong
program that leads to the correct answer. In contrast, our model achieves 88%
program accuracy with 500 annotations, and performs almost perfectly on both
question answering and program recovery with 9K programs.

Figure 8-3c shows the QA accuracy vs. the number of questions and answers used
for training, where our NS-VQA has the highest performance under all conditions.
Among the baseline methods we compare with, MAC [Hudson and Manning, 20181
obtains high accuracy with zero program annotations; in comparison, our method needs
to be pre-trained on 270 program annotations, but requires fewer question-answer
pairs to reach similar performance.

Our model also requires minimal memory for offline question answering: the
structural representation of each image only occupies less than 100 bytes; in comparison,
attention-based methods like IEP requires storing either the original image or its
feature maps, taking at least 20K bytes per image.

8.4 Neuro-Symbolic Concept Learner

As discussed in the previous section, the NS-VQA model works well on synthetic
scenes such as the CLEVR dataset [Johnson et al., 2017a]; however, as it requires full
supervision on object attributes and semantic programs, NS-VQA faces challenges
generalizing to natural images and language, where these annotations are prohibitively
hard to obtain.

In this section, we present our neuro-symbolic concept learner (NS-CL), which
uses a symbolic reasoning process to bridge the learning of visual concepts, words,
and semantic parsing of sentences without explicit annotations for any of them. We
first use a visual perception module to construct an object-based representation for a
scene, and run a semantic parsing module to translate a question into an executable
program. We then apply a quasi-symbolic program executor to infer the answer based
on the scene representation. We use paired images, questions, and answers to jointly
train the visual and language modules.

Shown in Figure 8-5, given an input image, the visual perception module detects
objects in the scene and extracts a deep, latent representation for each of them. The
semantic parsing module translates an input question in natural language into an
executable program given a domain specific language (DSL). The generated programs

170

Vs-- - - -------- -------------- B ack-propagation

Obj
Symbolic Reasoning

ob Back-propagation Answer: Cylinder

-- ---- --- --- ---- --Sem--- ------ ------- ------ G roundtruth: BoxSemantic Parsing (Candidate Interpretations)Bo

Q: What is the shape of es Query(Shape, Filter(Red,Relate(Left,Filter(Sphere))))
tofthe i :X Query(Shape, Filter(Sphere, Relate(Left, Filter(Red))))

shereoj h X Exist(AERelate(Shape, Filter(Red, Relate(Left, Filter(Sphere))))): REINFORCE
sphere?

Figure 8-5: We propose to use neuro-symbolic reasoning as a bridge to jointly learn visual
concepts, words, and semantic parsing of sentences.

U m Cube
Sphere

ShapeOf()=. ' man Cylinder

ShapeOf(Obj1) Cube
Similarity(- =•-, -) = 0.99

Visual Perception Module Visual Attribute Operators Visual-Semantic Space Concept Embeddings

Figure 8-6: We treat attributes such as Shape and Color as neural operators. The operators
map object representations into a visual-semantic space. We use similarity-based metric to classify
objects.

have a hierarchical structure of symbolic, functional modules, each fulfilling a specific

operation over the scene representation. The explicit program semantics enjoys

compositionality, interpretability, and generalizability.

The program executor executes the program upon the derived scene representation

and answers the question. Our program executor works in a symbolic and deterministic

manner. This feature ensures a transparent execution trace of the program. Our

program executor has a fully differentiable design w.r.t. the visual representations

and the concept representations, which supports gradient-based optimization during

training.

8.4.1 Model Details

Visual perception. Shown in Figure 8-5, given the input image, we use a pre-

trained Mask R-CNN [He et al., 2017] to generate object proposals for all objects.

The bounding box for each single object paired with the original image is then sent to

a ResNet-34 [He et al., 2016] to extract the region-based (by Rol Align) and image-

based features respectively. We concatenate them to represent each object. Here, the
inclusion of the representation of the full scene adds the contextual information, which
is essential for the inference of relative attributes such as size or spatial position.

Concept quantization. Visual reasoning requires determining an object's at-

tributes (e.g., its color or shape). We assume each visual attribute (e.g., shape) contains
a set of visual concept (e.g., Cube). In NS-CL, visual attributes are implemented as

171

neural operators, mapping the object representation into an attribute-specific embed-

ding space. Figure 8-6 shows an inference an object's shape. Visual concepts that
belong to the shape attribute, including Cube, Sphere and Cylinder, are represented

as vectors in the shape embedding space. These concept vectors are also learned along

the process. We measure the cosine distances (.,.) between these vectors to determine

the shape of the object. Specifically, we compute the probability that an object oi is a

cube by
-((ShapeOf(oi), vcube) _ T, (8.3)

where ShapeOf(-) denotes the neural operator, oCube the concept embedding of Cube

and o- the Sigmoid function. -y and T are scalar constants for scaling and shifting

the values of similarities. We classify relational concepts (e.g., Lef t) between a pair

of objects similarly, except that we concatenate the visual representations for both

objects to form the representation of their relation.

DSL and semantic parsing. The semantic parsing module translates a natural

language question into an executable program with a hierarchy of primitive operations,
represented in a domain-specific language (DSL) designed for VQA. The DSL covers

a set of fundamental operations for visual reasoning, such as filtering out objects

with certain concepts or query the attribute of an object. The operations share the

same input and output interface, and thus can be compositionally combined to form

programs of any complexity. We include a complete specification of the DSL used by
our framework in the Appendix B.1.

Our semantic parser generates the hierarchies of latent programs in a sequence

to tree manner [Dong and Lapata, 20161. We use a bidirectional GRU [Cho et al.,
2014] to encode an input question, which outputs a fixed-length embedding of the
question. A decoder based on GRU cells is applied to the embedding, and recovers the

hierarchy of operations as the latent program. Some operations takes concepts their

parameters, such as Filter(Red) and Query(Shape). These concepts are chosen

from all concepts appeared in the input question. Figure 8-7B shows an example,
while more details can be found in Appendix B.2.

Quasi-symbolic program execution. Given the latent program recovered from
the question in natural language, a symbolic program executor executes the program

and derives the answer based on the object-based visual representation. Our program
executor is a collection of deterministic functional modules designed to realize all logic

operations specified in the DSL. Figure 8-7B shows an illustrative execution trace of a
program.

To make the execution differentiable w.r.t. visual representations, we represent
the intermediate results in a probabilistic manner: a set of objects is represented
by a vector, as the attention mask over all objects in the scene. Each element,

172

A. Curriculum concept learning

o Initializedwith DSL and executor.

Lesson1: Object-based questions.

Q: What is the shape of the red object?
A: Cube.

Lesson2: Relational questions.

Q: How many cubes are behind the
sphere?
A: 3

Lesson3: More complex questions.
Q: Does the red object left of the green
cube have the same shape as the
purple matte thing?
A:No

Deploy: complex scenes, complex questions

Q: Does the matte thing behind the big
sphere have the same color as the
cylinder left of the small matte cube?
A: No.

B. Illustrative execution of NS-CL

Q: Does the red object leftof the green
cube have the same shape as the
purple matte thing?

Step1: Visual Parsing

Step2, 3: Semantic Parsing and Program Execution

Q Program Representations Concepts Outputs

Green Cube

S Object 2
Re.le Left -

Filter ~Red

ie Purple Matte --

AObject Object 3~ ~Shape No (0.98)

Figure 8-7: A. Demonstration of the curriculum learning of visual concepts, words, and
semantic parsing of sentences by watching images and reading paired questions and answers. Scenes
and questions of different complexities are illustrated to the learner in an incremental manner. B.
Illustration of our neuro-symbolic inference model for VQA. The perception module begins
with parsing visual scenes into object-based deep representations, while the semantic parser parse
sentences into executable programs. A symbolic execution process bridges two modules.

Maski E [0, 1] denotes the probability that the i-th object of the scene belongs to the

set. For example, shown in Figure 8-7B, the first Filter operation outputs a mask of

length 4 (there are in total 4 objects in the scene), with each element representing

the probability that the corresponding object is selected out (i.e., the probability that

each object is a green cube). The output "mask" on the objects will be fed into the

next module (Relate in this case) as input and the execution of programs continues.
The last module outputs the final answer to the question. We refer interested readers

to Appendix B.3 for the implementation of all operators.

8.4.2 Training Paradigm

Optimization objective. The optimization objective of NS-CL is composed of two

parts: concept learning and language understanding. Our goal is to find the optimal
parameters E) of the visual perception module Perception (including the ResNet-34

for extracting object features, attribute operators. and concept embeddings) and e, of
the semantic parsing module SemanticParse, to maximize the likelihood of answering

173

the question Q correctly:

E8,E), <- arg max E [Pr[A = Executor(Perception(S; E8), P)]], (8.4)
es~es

where P denotes the program, A the answer, S the scene, and Executor the quasi-

symbolic executor. The expectation is taken over P ~ SemanticParse(Q; %5).
Recall the program executor is fully differentiable w.r.t. the visual representation.

We compute the gradient w.r.t. E8 as

VevEp [DKL(Executor(Perception(S; Ov), P)|A)]. (8.5)

We use REINFORCE [Williams, 1992] to optimize the semantic parser 8 :

Ve, = Ep [r . log Pr[P = SemanticParse(Q; E))]] , (8.6)

where the reward r = 1 if the answer is correct and 0 otherwise. We also use off-policy

search to reduce the variance of REINFORCE, the detail of which can be found in

Appendix B.4.

Curriculum visual concept learning. Motivated by human concept learning as

in Figure 8-1, we employ a curriculum learning approach to help joint optimization.

We heuristically split the training samples into four stages (Figure 8-7A): first, learning

object-level visual concepts; second, learning relational questions; third, learning more

complex questions with perception modules fixed; fourth, joint fine-tuning of all

modules. We found that this is essential to the learning of our neuro-symbolic concept

learner. We include more technical details in Appendix B.5.

8.5 Experiments

We demonstrate the following advantages of our NS-CL. First, it learns visual

concepts with remarkable accuracy; second, it allows data-efficient visual reasoning on

the CLEVR dataset [Johnson et al., 2017a]; third, it generalizes well to new attributes,
visual composition, and language domains.

We train NS-CL on 5K images (<10% of CLEVR's 70K training images). We

generate 20 questions for each image for the entire curriculum learning process. The

Mask R-CNN module is pre-trained on 4K generated CLEVR images with bounding

box annotations, following Yi et al. [20181.

8.5.1 Visual Concept Learning

Classification-based concept evaluation. Our model treats attributes as neural

operators that map latent object representations into an attribute-specific embedding

174

Visual Features Mean Color Material Shape Size

IEP Convolutional 90.6 91.0 90.0 89.9 90.6

MAC Attentional 95.9 98.0 91.4 94.4 94.2
TbD (high-res.) Attentional 96.5 96.6 92.2 95.4 92.6

NS-CL Object-Based 98.7 99.0 98.7 98.1 99.1

Table 8.3: We evaluate the learned visual concepts using a diagnostic question set con-
taining simple questions such as "How many red objects are there?". NS-CL outperforms both
convolutional and attentional baselines. The suggested object-based visual representation and
symbolic reasoning approach perceives better interpretation of visual concepts.

space (Figure 8-6). We evaluate the concept quantization of objects in the CLEVR
validation split. Our model can achieve near perfect classification accuracy (~99%) for
all object properties, suggesting it effectively learns generic concept representations.
The result for spatial relations is relatively lower, because CLEVR does not have
direct queries on the spatial relation between objects. Thus, spatial relation concepts
can only be learned indirectly.

Count-based concept evaluation. The SOTA methods do not provide inter-
pretable representation on individual objects [Johnson et al., 2017a, Hudson and
Manning, 2018, Mascharka et al., 2018]. To evaluate the visual concepts learned
by such models, we generate a synthetic question set. The diagnostic question set
contains simple questions as the following form: "How many red objects are there?".
We evaluate the performance on all concepts appeared in the CLEVR dataset.

Table 8.3 summarizes the results compared with strong baselines, including methods
based on convolutional features [Johnson et al., 2017b] and those based on neural
attentions [Mascharka et al., 2018, Hudson and Manning, 20181. Our approach
outperforms IEP by a significant margin (8%) and attention-based baselines by >2%,
suggesting object-based visual representations and symbolic reasoning helps to interpret
visual concepts.

8.5.2 Data-Efficient and Interpretable Visual Reasoning

NS-CL jointly learns visual concepts, words and semantic parsing by watching
images and reading paired questions and answers. It can be directly applied to VQA.

Table 8.4 summarizes results on the CLEVR validation split. Our model achieves
the state-of-the-art performance among all baselines using zero program annotations,
including MAC [Hudson and Manning, 2018] and FiLM [Perez et al., 2018]. Our model
achieves comparable performance with the strong baseline TbD-Nets [Mascharka et al.,
2018], whose semantic parser is trained using 700K programs in CLEVR (ours need
0). The NS-VQA model we just introduced achieves better performance on CLEVR;

175

Model Program Overall Count Compare Exist Query Compare
Annotations Integer Attribute Attribute

Human N/A 92.6 86.7 86.4 96.6 95.0 96.0

NMN 700K 72.1 52.5 72.7 79.3 79.0 78.0
N2NMN 700K 88.8 68.5 84.9 85.7 90.0 88.8
IEP 700K 96.9 92.7 98.7 97.1 98.1 98.9
DDRprog 700K 98.3 96.5 98.4 98.8 99.1 99.0
TbD 700K 99.1 97.6 99.4 99.2 99.5 99.6

RN 0 95.5 90.1 93.6 97.8 97.1 97.9
FiLM 0 97.6 94.5 93.8 99.2 99.2 99.0
MAC 0 98.9 97.2 99.4 99.5 99.3 99.5

NS-CL 0 98.9 98.2 99.0 98.8 99.3 99.1

Table 8.4: Accuracy on visual question answering. Our model outperforms all baselines using no
program annotations. It achieves comparable results with models trained by full program annotations
such as TbD.

however, it requires annotated visual attributes and program traces during training,
while our NS-CL needs no extra labels.

Here, the visual perception module is pre-trained on ImageNet [Deng et al., 2009].
Without pre-training, the concept learning accuracies drop by 0.2% on average and the
QA accuracy drops by 0.5%. Meanwhile, NS-CL recovers the underlying programs of

questions accurately (>99.9% accuracy). NS-CL can also detect ambiguous or invalid
programs and indicate exceptions. Please see Appendix B.6 for more details. NS-CL
can also be applied to other visual reasoning testbeds. Please refer to Appendix B.7.1
for our results on the Minecraft dataset [Yi et al., 2018].

For a systematic study on visual features and data efficiency, we implement two

variants of the baseline models: TbD-Object and MAC-Object. Inspired by Anderson

et al. [2018], instead of the input image, TbD-Object and MAC-Object take a stack
of object features as input. TbD-Mask and MAC-Mask integrate the masks of objects

by using them to guide the attention over the images.

Table 8.5 summarizes the results. Our model outperforms all baselines on data
efficiency. This comes from the full disentanglement of visual concept learning and
symbolic reasoning: how to execute program instructions based on the learned concepts
is programmed. TbD-Object and MAC-Object demonstrate inferior results in our
experiments. We attribute this to the design of model architectures and have a detailed
analysis in Appendix B.6.3. Although TbD-Mask and MAC-Mask do not perform
better than the originals, we find that using masks to guide attentions speeds up the
training.

NS-CL performs well on visual reasoning by leveraging both object-based repre-
sentation and symbolic reasoning; it also learns fully interpretable visual concepts.

176

Model Visual Features Accuracy Accuracy
(100% Data) (10% Data)

TbD Attentional 99.1 54.2
TbD-Object Object-Based 84.1 52.6
TbD-Mask Attentional 99.0 55.0
MAC Attentional 98.9 67.3
MAC-Object Object-Based 79.5 51.2
MAC-Mask Attentional 98.7 68.4
NS-CL Object-Based 99.2 98.9

Table 8.5: We compare with baselines using various visual features on data efficiency.
Using only 10% of the training images, our model is able to achieve a comparable results with the
baselines trained on the full dataset.

Please see Appendix B.8 for qualitative results on various datasets.

8.5.3 Generalizing to New Attributes and Compositions

Generalizing to new visual compositions. The CLEVR-CoGenT dataset is
designed to evaluate models' ability to generalize to new visual compositions. It has
two splits: Split A only contains gray, blue, brown and yellow cubes, but red, green,
purple, and cyan cylinders; split B imposes the opposite color constraints on cubes
and cylinders. If we directly learn visual concepts on split A, it overfits to classify
shapes based on the color, leading to a poor generalization to split B.

Our solution is based on the idea of seeing attributes as operators. Specifically, we
jointly train the concept embeddings (e.g., Red, Cube, etc.) as well as the semantic
parser on split A, keeping pre-trained, frozen attribute operators. As we learn distinct
representation spaces for different attributes, our model achieves an accuracy of 98.8%
on split A and 98.9% on split B.

Generalizing to new visual concepts. We expect the process of concept learning
can take place in an incremental manner: having learned 7 different colors, humans can
learn the 8-th color incrementally and efficiently. To this end, we build a synthetic split
of the CLEVR dataset to replicate the setting of incremental concept learning. Split A
contains only images without any purple objects, while split B contains images with at
least one purple object. We train all the models on split A first, and finetune them on
100 images from split B. We report the final QA performance on split B's validation
set. All models use a pre-trained semantic parser on the full CLEVR dataset.

Our model performs a 93.9% accuracy on the QA test in Split B, outperforming
the convolutional baseline IEP [Johnson et al., 2017b] and the attentional baseline
TbD [Mascharka et al., 2018] by 4.6% and 6.1% respectively. The acquisition of Color
operator brings more efficient learning of new visual concepts.

177

Q: What's the shape of the big Q: What size is the cylinder that Q: What's the shape of the big Q: What size is the cylinder that
yellowthing? is left of the cyan thing that is in yellowthing? is left of the cyan thing that is in

front of the big sphere? front of the gray cube?

Figure 8-8: Samples collected from four splits in Section 8.5.3. Models are trained on split A
but evaluated on all splits for testing the combinatorial generalization.

Model Test
Split A Split B Split C Split D

MAC 97.3 N/A 92.9 N/A
IEP 96.1 92.1 91.5 90.9
TbD 98.8 94.5 94.3 91.9

NS-CL 98.9 98.9 98.7 98.8

Table 8.6: We test combinatorial generalizations w.r.t. the number of objects in scenes and
the complexity of questions (i.e., the depth of the program trees). We makes four split of the data
containing various complexities of scenes and questions. Our object-based visual representation
and explicit program semantics enjoys the best (and almost-perfect) combinatorial generalization
compared with strong baselines.

8.5.4 Generalizing to New Scenes and Questions

Having learned visual concepts on small-scale scenes (containing only few objects)
and simple questions (only single-hop questions), we humans can easily generalize the
knowledge to larger-scale scenes and to answer complex questions. To evaluate this,
we split the CLEVR dataset into four parts: Split A contains only scenes with less
than 6 objects, and questions whose latent programs having a depth less than 5; Split
B contains scenes with less than 6 objects, but arbitrary questions; Split C contains
arbitrary scenes, but restricts the program depth being less than 5; Split D contains
arbitrary scenes and questions. Figure 8-8 shows some illustrative samples.

As VQA baselines are unable to count a set of objects of arbitrary size, for a
fair comparison, all programs containing the "count" operation over > 6 objects are
removed from the set. For methods using explicit program semantics, the semantic
parser is pre-trained on the full dataset and fixed. Methods with implicit program
semantics [Hudson and Manning, 20181 learn an entangled representation for perception
and reasoning, and cannot trivially generalize to more complex programs. We only use
the training data from the Split A and then quantify the generalization ability on other
three splits. Shown in Table 8.6, our NS-CL leads to almost-perfect generalization to

178

Split A Split B Split C Split D

Model Accuracy

IEP 95.5
TbD 97.0
NS-CL 96.9

Caption: There is a big yellow

Model Accuracy

CNN-LSTM 68.9
NS-CL 97.0

(c) Image-caption retrieval accu-

cylinder in front ofagray object. racy on the full dataset. Our
(b) Image-caption retrieval accu- model outperforms baselines and

(a) An illustrative pair of im- racy on a subset of data. Our requires no extra training or fine-
age and caption in our syn- model archives comparable re- tuning of the visual perception
thetic dataset. sults with VQA baselines, module.

Table 8.7: Results on image-caption retrieval. We introduce a new simple DSL for image-caption
retrieval to evaluate how well the learned visual concepts transfer. Due to the difference between
VQA and caption retrieval, VQA baselines are only able to infer the result on a partial set of data.
The learned object-based visual concepts can be directly transferred into the new domain for free.

larger scenes and more complex questions, outperforming all baselines by at least 4%

in QA accuracy.

8.5.5 Generalizing to a New Program Domain

The learned visual concepts can also be used in other domains such as image
retrieval. With the visual scenes fixed, the learned visual concepts can be directly
transferred into the new domain. We only need to learn the semantic parsing of
natural language into the new DSL.

We build a synthetic dataset for image retrieval and adopt a DSL from scene
graph-based image retrieval [Johnson et al., 2015]. The dataset contains only simple
captions: "There is an <object A> <relation> <object B>." (e.g., There is a box
right of a cylinder). The semantic parser learns to extract corresponding visual
concepts (e.g., box, right, and cylinder) from the sentence. The program can then
be executed on the visual representation to determine if the visual scene contains such
relational triples.

For simplicity, we treat retrieval as classifying whether a relational triple exists in
the image. This functionality cannot be directly implemented on the CLEVR VQA
program domain, because questions such as "Is there a box right of a cylinder" can
be ambiguous if there exist multiple cylinders in the scene. Due to the entanglement
of the visual representation with the specific DSL, baselines trained on CLEVR QA
can not be directly applied to this task. For a fair comparison with them, we show
the result in Table 8.7b on a subset of the generated image-caption pairs where
the underlying programs have no ambiguity regarding the reference of object B. A
separate semantic parser is trained for the VQA baselines, which translates captions
into a CLEVR QA-compatible program (e.g., Exist(Filter(Box, Relate(Right,
Filter(Cylinder))).

179

Yellowo(0 87) Model Accuracy

__________________MLP 43.9
Program MC 4.

Q: What color is the
fire hydrant? Filter Query NS-CL 44.3

Fire_ Hydrant Color

Table 8.8: Results on the
Figure 8-9: Demo from the VQS dataset. An example VQS test set. Quantitatively,
image-question pair from the VQS dataset and the corresponding our model achieves a comparable
execution trace of NS-CL. results with the baselines.

Concept: Horse Concept: Person On a Skateboard

Figure 8-10: Concepts learned from the VQS dataset, including object categories, attributes,
and relations

Table 8.7c compares our NS-CL against typical image-text retrieval baselines on

the full image-caption dataset. Without any annotations of the sentence semantics, our

model learns to parse the captions into the programs in the new DSL. It outperforms

the CNN-LSTM baseline by 30%.

8.5.6 Generalizing to Natural Images and Language

We further conduct experiments on MS-COCO [Lin et al., 2014] images. Results

are presented on the VQS dataset [Gan et al., 2017]. VQS contains a subset of images

and questions from the original VQA 1.0 dataset [Antol et al., 2015]. All questions in

the VQS dataset can be visually grounded: each question is associated with multiple

image regions, annotated by humans as essential for answering the question. Figure 8-9

illustrates an execution trace of NS-CL on VQS.
We use a syntactic dependency parser to extract programs and concepts from

language [Andreas et al., 2016, Schuster et al., 2015]. The object proposals and
features are extracted from models pre-trained on the MS-COCO dataset and the
ImageNet dataset, respectively. Illustrated in Figure 8-9, our model shows competitive
performance on QA accuracy, comparable with the MLP baseline [Jabri et al., 2016]
and the MAC network [Hudson and Manning, 2018]. Additional illustrative execution
traces of NS-CL are in Appendix B.8. Beyond answering questions, NS-CL effectively
learns visual concepts from data. Figure 8-10 shows examples of the learned visual
concepts, including object categories, attributes, and relations. Experiment setup and

180

implementation details are in Appendix B.7.2.
We focus on a neuro-symbolic framework that learns visual concepts about object

properties and relations. Indeed, visual question answering requires Al systems to
reason about more general concepts such as events or activities [Levin, 1993]. We
leave the extension of NS-CL along this direction and its application to general VQA
datasets [Antol et al., 2015] as future work.

8.6 Discussion

In this chapter, we have presented a method that jointly learns visual concepts,
words, and semantic parsing of sentences from natural supervision. The proposed
framework, NS-CL, learns by looking at images and reading paired questions and
answers, without any explicit supervision such as class labels for objects. Our model
learns visual concepts with remarkable accuracy. Based upon the learned concepts,
our model achieves good results on question answering, and more importantly, gener-
alizes well to new visual compositions, new visual concepts, and new domain specific
languages.

The design of NS-CL suggests multiple research directions. First, constructing 3D
object-based representations for realistic scenes needs further exploration [Anderson
et al., 2018, Baradel et al., 2018]. Second, our model assumes a domain-specific
language for describing formal semantics. The integration of formal semantics into
the processing of complex natural language would be meaningful future work [Artzi
and Zettlemoyer, 2013, Oh et al., 2017]. We hope our model could motivate future
research in visual concept learning, language learning, and compositionality.

Our framework can also be extended to other domains such as video understanding
and robotic manipulation. Here, we would need to discover semantic representations
for actions and interactions (e.g., push) beyond static spatial relations. Along this di-
rection, researchers have studied building symbolic representations for skills [Konidaris
et al., 2018] and learning instruction semantics from interaction [Oh et al., 2017] in
constrained setups. Applying neuro-symbolic learning frameworks for concepts and
skills would be meaningful future work toward robotic learning in complex interactive
environments.

181

THIS PAGE INTENTIONALLY LEFT BLANK

182

Chapter 9

Learning to Organize Concepts

into 3D Shape Programs

In Chapter 8, we have seen a model that discovers entry-level visual concepts

(e.g., geometric primitives) with minimal supervision. But human perception of 3D
shapes goes much beyond reconstructing them as a set of points or a composition of
geometric primitives: we also effortlessly understand higher-level shape structure such
as the repetition and reflective symmetry of object parts. In contrast, recent advances
in 3D shape sensing focus more on low-level geometry but less on these higher-level
relationships.

In this chapter, we propose 3D shape programs, integrating bottom-up recognition
systems with top-down, symbolic program structure to capture both low-level geometry
and high-level structural priors for 3D shapes. Because there are no annotations of
shape programs for real shapes, we develop neural modules that not only learn to infer
3D shape programs from raw, unannotated shapes, but also to execute these programs
for shape reconstruction. After initial bootstrapping, our end-to-end differentiable
model learns 3D shape programs by reconstructing shapes in a self-supervised manner.
Experiments demonstrate that our model accurately infers and executes 3D shape
programs for highly complex shapes from various categories. It can also be integrated
with an image-to-shape module to infer 3D shape programs directly from an RGB
image, leading to 3D shape reconstructions that are both more accurate and more
physically plausible.

This chapter includes materials previously published as Tian et al. [2019]. Yonglong
Tian contributed significantly to the materials presented in this chapter.

9.1 Introduction

Given the table in Figure 9-1, humans are able to instantly recognize its parts and
regularities: there exist sharp edges, smooth surfaces, a table top that is a perfect
circle, and two lower, square layers. Beyond these basic components, we also perceive

183

Draw("Top", "Circle", position, geometry)
Neural Program

Generator for (i < 2, "translation", a)
for (j < 2, "translation", b)

Neural Program Draw ("Leg", "Cub", position + i*a + j*b, geometry)

Executor for (i < 2, "translation", c)
Draw ("Layer", "Rec", position + i*c, geometry)

Figure 9-1: A 3D shape can be represented by a program via a program generator. This
program can be executed by a neural program executor to produce the corresponding 3D shape.

higher-level, abstract concepts: the shape is bilateral symmetric; the legs are all of
equal length and laid out on the opposite positions of a 2D grid. Knowledge like this
is crucial for visual recognition and reasoning [Koffka, 2013, Dilks et al., 2011].

Recent AI systems for 3D shape understanding have made impressive progress on
shape classification, parsing, reconstruction, and completion [Qi et al., 2017, Tulsiani
et al., 2017a], many making use of large shape repositories like ShapeNet [Chang
et al., 2015]. Popular shape representations include voxels [Wu et al., 2015b], point
clouds [Qi et al., 2017], and meshes [Wang et al., 2018a]. While each has its own

advantages, these methods fall short on capturing the strong shape priors we just
described, such as sharp edges and smooth surfaces.

A few recent papers have studied modeling 3D shapes as a collection of primi-
tives [Tulsiani et al., 2017a], with simple operations such as addition and subtrac-

tion [Sharma et al., 2018]. These representations have demonstrated success in

explaining complex 3D shapes. In this chapter, we go beyond them to capture the
high-level regularity within a 3D shape, such as symmetry and repetition.

Our key contribution is to represent 3D shapes as shape programs. We define a
domain-specific language (DSL) for shapes, containing both basic shape primitives
for parts with their geometric and semantic attributes, as well as statements such as

loops to enforce higher-level structural priors.

Because 3D shape programs are a new shape representation, there exist no annota-
tions of shape programs for 3D shapes. The lack of annotations makes it difficult to

train an inference model with full supervision. To overcome this obstacle, we propose

to learn a shape program executor that reconstructs a 3D shape from a shape program.

After initial bootstrapping, our model can then learn in a self-supervised way, by
attempting to explain and reconstruct unlabeled 3D shapes with 3D shape programs.

This design minimizes the amount of supervision needed to get our model off the

ground.

With the learned neural program executor, our model learns to explain input

shapes without ground truth program annotations. Experiments on ShapeNet show

that our model infers accurate 3D shape programs for highly complex shapes from

184

various categories. We further extend our model by integrating with an image-to-
shape reconstruction module, so it directly infers a 3D shape program from a color
image. This leads to 3D shape reconstructions that are both more accurate and more
physically plausible.

Our contributions are three-fold. First, we propose 3D shape programs: a new
representation for shapes, building on classic findings in cognitive science and computer
graphics. Second, we propose to infer 3D shape programs by explaining the input
shape, making use of a neural shape program executor. Third, we demonstrate that
the inference model, the executor, and the programs they recover all achieve good
performance on ShapeNet, learning to explain and reconstruct complex shapes. We
further show that an extension of the model can infer shape programs and reconstruct
3D shapes directly from images.

9.2 Related Work

Inverse procedural graphics. The problem of inferring programs from voxels is
closely related to inverse procedural graphics, where a procedural graphics program
is inferred from an image or declarative specification [Ritchie et al., 2016, St'ava
et al., 2010]. Where the systems have been most successful, however, are when
they leverage a large shape/component library [Chaudhuri et al., 2011, Schulz et al.,
2017] or when they are applied to a sparse solution space [van den Hengel et al.,
2015]. Kulkarni et al. [2015a] approached the problem of inverse graphics as inference
in a probabilistic program for generating 2D images, or image contours, from an
underlying 3D model. They demonstrated results on several different applications
using parametric generative models for faces, bodies, and simple multi-part objects
based on generalized cylinders. In this chapter, we extend the idea of inverse procedural
graphics to 3D voxel representations, and show how this idea can apply to large data
sets like ShapeNet. We furthermore do not have to match components to a library
of possible shapes, instead using a neural network to directly infer shapes and their
parameters.

A few recent papers have explored the use of simple geometric primitives to describe
shapes [Tulsiani et al., 2017a, Zou et al., 2017, Liu et al., 2018b], putting the classic
idea of generalized cylinders [Roberts, 1963, Binford, 19711 or geons [Biederman,
1987] in the modern context of deep learning. In particular, Sharma et al. [2018]
extended these papers and addressed the problem of inferring 3D CAD programs from
perceptual input. We find this work inspiring, but also feel that a key goal of 3D
program inference is to reconstruct a program in terms of semantically meaningful
parts and their spatial regularity, which we address here. Some other graphics papers
also explore regularity, but without using programs [Mitra et al., 2013, Zhu et al.,

185

2018a, Nishida et al., 2018, Li et al., 2017a].
Work in the HCI community has also addressed the problem of inferring parametric

graphics primitives from perceptual input. For example, Nishida et al. [2016] proposed
to learn to instantiate procedural primitives for an interactive modeling system. In

our work, we instead learn to instantiate multiple procedural graphics primitives
simultaneously, without assistance from a human user.

Program synthesis. In the Al literature, Ellis et al. [2018] leveraged symbolic
program synthesis techniques to infer 2D graphics programs from images, extending
their earlier work by using neural nets for faster inference of low-level cues such as
strokes [Ellis et al., 2015]. Here, we show how a purely end-to-end network can

recover 3D graphics programs from voxels, conceptually relevant to RobustFill [Devlin
et al., 2017], which presents a purely end-to-end neural program synthesizer for text
editing. The very recent SPIRAL system [Ganin et al., 2018] also takes as its goal to
learn structured program-like models from (2D) images. An important distinction
from our work here is that SPIRAL explains an image in terms of paint-like "brush
strokes", whereas we explain 3D voxels in terms of high-level objects and semantically
meaningful parts of objects, like legs or tops. Other tangential related work on program
synthesis includes Balog et al. [2017], Devlin et al. [2017], Parisotto et al. [2017], Gaunt
et al. [2016], Sun et al. [2018a], Liu et al. [2019].

Learning to execute programs. Neural Program Interpreters (NPI) have been
extensively studied for programs that abstract and execute tasks such as sorting, shape
manipulation, and grade-school arithmetic [Reed and De Freitas, 2016, Cai et al.,
2017, Bosnjak et al., 2017]. In NPI [Reed and De Freitas, 2016], the key insight is
that a program execution trace can be decomposed into pre-defined operations that
are more primitive; and at each step, an NPI learns to predict what operation to
take next depending on the general environment, domain specific state , and previous

actions. Cai et al. [2017] improved the generalization of NPIs by adding recursion.
Johnson et al. [2017b] learned to execute programs for visual question and answering.
In comparison, our model also learns a 3D shape program executor that renders 3D
shapes from programs as a component of our model.

9.3 3D Shape Programs

In this section, we define the domain-specific language for 3D shapes, as well as
the problem of shape program synthesis.

Table 9.1 shows our DSL for 3D shape programs. Each shape program consists of
a variable number of program statements. A program statement can be either Draw,
which describes a shape primitive as well as its geometric and semantic attributes, or
For, which contains a sub-program and parameters specifying how the subprogram

186

Program -4 Statement; Program
Statement - Draw(Semantics, Shape, PositionParams, Geometry_ Params)
Statement - For(ForParams); Program; EndFor
Semantics - semantics 1 1 semantics 2 1 semantics 3

Shape - Cuboid I Cylinder I Rectangle I Circle I Line
Position Params - (x, y, z)

Geometry Params (91, 92, 93, 94, ...)
For _ Params - Translation_ Params | RotationParams

TranslationParams - (times i, orientation u)
RotationParams - (times i, angle 0, axis a)

Table 9.1: The domain specific language (DSL) for 3D shapes. Semantics depends on the
types of objects that are modeled, i.e., semantics for vehicle and furniture should be different. For
details of DSL in our experimental setting, please refer to Appendix C.

should be repeatedly executed. The number of arguments for each program statement
varies. We tokenize programs for the purpose of neural network prediction.

Each shape primitive models a semantically-meaningful part of an object. Its
geometric attributes (Table 9.1: Geometry_ Params, PositionParams) specify the
position and orientation of the part. Its semantic attributes (Table 9.1: Semantics)
specify its relative role within the whole shape (e.g., top, back, leg). They do not
affect the geometry of the primitive; instead, they associate geometric parts with
their semantic meanings conveying how parts can be shared across object categories
semantically and functionally (e.g., a chair and a table may have similar legs).

Our For statement captures high-level regularity across parts. For example, the
legs of a table can be symmetric with respect to particular rotation angles. The
horizontal bars of a chair may lay out regularly with a fixed vertical gap. Each For
statement can contain sub-programs, allowing recursive generation of shape programs.

The problem of inferring a 3D shape program is defined as follows: predicting a
3D shape program that reconstructs the input shape when the program is executed.
We use voxelized shapes as input with a resolution of 32 x 32 x 32.

9.4 Inferring and Executing 3D Shape Programs

Our model, called Shape Programs, consists of a program generator and a neural
program executor. The program generator takes a 3D shape as input and outputs
a sequence of primitive programs that describe this 3D shape. The neural program
executor takes these programs as input and generates the corresponding 3D shapes.
This allows our model to learn in a self-supervised way by generating programs from
input shapes, executing these programs, and back-propagating the difference between
the generated shapes and the raw input.

187

Empty
-

3D Conv

~+3D Conv

+ 3D ConvB

Program Params Program Params Step LSTNI

+t
D I Program ID 2

-vacantTok000en

I~ui ___________________ Pogrm I 1 Program ID'211

---- ---- ---- --- V--nt-k-n--

Figure 9-2: Architecture of the 3D shape program generator. The core of our 3D shape
program generator are two LSTMs. The Block LSTM emits features for each program block. The
Step LSTM takes these features as input and outputs programs inside each block, which includes
either a single drawing statement or compound statements.

9.4.1 Program Generator

We model program generation as a sequential prediction problem. We partition full
programs into two types of subprograms, which we call blocks: (1) a single drawing
statement describing a semantic part, e.g. circle top; and (2) compound statements,
which are a loop structure that interprets a set of translated or rotated parts, e.g.
four symmetric legs. This part-based, symmetry-aware decomposition is inspired by
human perception [Fleuret et al., 2011].

Our program generator is shown in Figure 9-2. The core of the program generator
consists of two orthogonal LSTMs. The first one,the Block LSTM, connects sequential
blocks. The second one, the Step LSTM, generates programs for each block. At each
block, we first render the shape described by previous program blocks with a graphics
engine. Then, the rendered shape and the raw shape are combined along the channel
dimension and fed into a 3D ConvNet. The Block LSTM takes the features output
by the 3D ConvNet and outputs features of the current block, which are further fed
into the step LSTM to predict the block programs. The reason why we need the step
LSTM is that each block might have a different length (e.g., loop bodies of different
sizes).

Given block feature hblk, the Step LSTM predicts a sequence of program tokens,
each consisting of a program id and an argument matrix. The i-th row of the
argument matrix serves for the i-th primitive program. From the LSTM hidden state
ht, two decoders generate the output. The softmax classification probability over
program sets is obtained by fprog : RM -+ RN. The argument matrix is computed
by fparam : RM -+ RNxK, where N is the total number of program primitives and K

is the maximum possible number of arguments. The feed-forward steps of the Step
LSTM are summarized as

188

ht = fistm(xt, ht 1), (1)

Pt = fprog(ht), at = fparam(ht), (2)

where the pt and at corresponds to the program probability distribution and argument
matrix at time t. After getting the program ID, we obtain its arguments by retrieving
the corresponding row in the argument matrix. At each time step, the input of the
Step LSTM Xt is the embedding of the output in the previous step. For the first step,
the block feature hblk is used instead.

We pre-train our program generator on a synthetic dataset with a few pre-defined
simple program templates. The set of all templates for tables are shown in Section C-1.
These templates are much simpler than the actual shapes. The generator is trained to
predict the program token and regress the corresponding arguments via the following
loss 1gen = b,i Wplcis(Pb,i,Pb,i)) - walreg(ab,i, ab,i), where lcis(Pb,i ,]Pb,)) and lreg(ab,i, ab,i)

are the cross-entropy loss of program ID classification and the £-2 loss of argument
regression, in step i of block b, respectively. The weights w, and Wa balance the losses
between classification and regression.

9.4.2 Neural Program Executor

We propose to learn a neural program executor, an approximate but differentiable
graphics engine, which generates a shape from a program. The program executor
can then be used for training the program generator by back-propagating gradients.
An alternative is to design a graphics engine that explicitly executes a symbolic
program to produce a voxelized 3D shape. Certain high-level program commands,
such as For statements, will make the executor non-differentiable. Our use of a neural,
differentiable executor enables gradient-based fine-tuning of the program synthesizer
on unannotated shapes, which allows the model to generalize effectively to novel
shapes outside training categories.

Learning to execute a long sequence of programs is difficult, since an executor
has to learn to interpret not only single statements but also complex combinations of
multiple statements. We decompose the problem by learning an executor that executes
programs at the block level, e.g., either a single drawing statement or a compound
statements. Afterwards, we integrate these block-level shapes by max-pooling to form
the shape corresponding to a long sequence of programs. Our neural program executor
includes an LSTM followed by a deconv CNN, as shown in Figure 9-3. The LSTM
aggregates the block-level program into a fixed-length representation. The following
deconv CNN takes this representation and generates the desired shape.

To train the program executor, we synthesize large amounts of block-level programs
and their corresponding shapes. During training, we minimize the sum of the weighted

189

rprogram Executor

in3Dinecov

L------------.
(a) execute a single drawing statement

r- --- -- - - -
i Program Executor

I'

(b) execute a compound statement

Figure 9-3: Architecture of the program executor. The learned program executor consists of
an LSTM, which encodes multiple steps of programs, and a subsequent 3D DeconvNet which decodes
the features to a 3D shape.

Program Block 1 Program
Executor

Program Block 2 ...

Prog-a Program Block 3 - ...

Program Block 4 ...

Max

Pool,

Back

Prop Loss

Figure 9-4: Overview of inference and execution. Given an input 3D shape, the neural program
executor executes the generated programs. Errors between the rendered shape and the raw input are
back-propagated.

binary cross-entropy losses over all voxels via

L S WiYv log - Wo(1 - Yv) log(1 -
v6V

(9.1)

where v is a single voxel of the whole voxel space V, yv and 9 are the ground truth
and prediction, respectively, while wo and wi balance the losses between vacant and
occupied voxels. This training leverages only synthetic data, not annotated shape and
program pairs, which is a blessing of our disentangled representation.

9.4.3 Guided Adaptation

A program generator trained only on a synthetic dataset does not generalize well to
real-world datasets. With the learned differentiable neural program executor, we can
adapt our model to other datasets such as ShapeNet, where program-level supervision
is not available. We execute the predicted program by the learned neural program
executor and compute the reconstruction loss between the generated shape and the
input. Afterwards, the program generator is updated by the gradient back-propagated
from the learned program executor, whose weights are frozen.

This adaptation is guided by the learned program executor and therefore called
guided adaptation (GA), and is shown in Figure 9-4. Given an input shape, the
program generator first outputs multiple block programs. Each block is interpreted as
3D shapes by the program executor. A max-pooling operation over these block-level

190

shapes generates the reconstructed shape. The use of max-pooling also enables our
executor to handle programs of variable length. Vacant tokens are also executed and
pooled. Gradients can then propagate through vacant tokens and the model can learn
to add new program primitives accordingly. Here, the loss for Guided Adaptation is
the summation of the binary cross-entropy loss over all voxels.

9.5 Experiments

We present program generation and shape reconstruction results on three datasets:
our synthetic dataset, ShapeNet [Chang et al., 2015], and Pix3D [Sun et al., 2018b].

Setup. In our experiments, we use a single model to predict programs for multiple
categories. Our model is first pre-trained on the synthetic dataset and subsequently
adapted to target dataset such as ShapeNet and Pix3D under the guidance of the
neural program executor. All components of our model are trained with Adam [Kingma
and Ba, 2015].

9.5.1 Evaluation on Synthetic Data

Program generator. We first pre-train our program generator on our synthetic
dataset with simple templates. The synthetic training set includes 100,000 chairs and
100,000 tables. The generator is evaluated on 5,000 chairs and tables. More than
99.9% of the programs are accurately predicted. The shapes rendered by the predicted
programs have an average IoU of 0.991 with the input shapes. This high accuracy is
due to the simplicity of the synthetic dataset.

Program executor. Our program executor is trained on 500,000 pairs of synthetic
block programs and corresponding shapes, and tested on 30,000 pairs. The IoU
between the shapes rendered by the executor and the ground truth is 0.93 for a single
drawing statement and 0.88 for compound statements. This shows the neural program
executor is a good approximation of the graphics engine.

9.5.2 Guided Adaptation on ShapeNet

Setup. We validate the effectiveness of guided adaptation by testing our model on
unseen examples from ShapeNet. For both tables and chairs, we randomly select 1,000
shapes for evaluation and all the remaining ones for guided adaptation.

Quantitative results. After our model generates programs from input shapes, we
execute these programs with a graphics engine and measure the reconstruction quality.
Evaluation metrics include IoU, Chamfer distance (CD) [Barrow et al., 1977], and
Earth Mover's distance (EMD) [Rubner et al., 2000]. While the pre-trained model
achieves 0.99 IoU on the synthetic dataset, the IoU drops below 0.5 on ShapeNet,
showing the significant disparity between these two domains. As shown in Table 9.2,

191

Models IoU t CD t EMD

table chair table chair table chair

CSGNet-original 0.111 0.154 0.216 0.175 0.205 0.177

Tulsiani et al. [2017a] 0.357 0.406 0.083 0.079 0.073 0.072
CSGNet-augmented 0.406 0.365 0.072 0.077 0.069 0.076
Nearest Neighbour 0.445 0.389 0.083 0.084 0.084 0.084

Shape Programs w/o GA 0.487 0.422 0.067 0.072 0.063 0.072
Shape Programs 0.591 0.516 0.058 0.063 0.056 0.060

Table 9.2: Shape reconstruction results on ShapeNet, evaluated in intersection over union
(IoU, higher is better), Chamfer distance (CD, lower is better), and Earth Mover's distance (EMD,
lower is better). Our model outperforms the baselines.

all evaluation metrics suggests improvement after guided adaptation. For example, the
IoUs of table and chair increase by 0.104 and 0.094, respectively. We compare our
method with Tulsiani et al. [2017a], which describes shapes with a set of primitives;
and CSGNet [Sharma et al., 2018], which learns to describe shapes by applying
arithmetic over primitives. For CSGNet, we evaluate two variants: first, CSGNet-
original, where we directly test the model released by the original authors; second,
CSGNet-augmented, where we retrain CSGNet on our dataset with the additional
shape primitives we introduced. We also introduce a nearest neighbor baseline, where
we use Hamming distance to search for a nearest neighbour from the training set for
each testing sample.

Our model without guided adaptation outperforms Tulsiani et al. [2017a] and
CSGNet by a margin, showing the benefit of capturing regularities such as symmetry
and translation. The NN baseline suggests that simply memorizing the training set
does not generalize well to test shapes. With the learned neural program executor, we
try to directly train our program generator on ShapeNet without any pre-training.

This trial failed, possibly because of the extremely huge and complicated combinatorial
space of programs. However, the initial programs for pre-training can be very simple:
e.g., 10 simple table templates (Fig. Al) are sufficient to initialize the model, which
later achieves good performance under execution-guided adaptation.

Qualitative results. Figure 9-5 shows some program generation and shape recon-
struction results for tables and chairs, respectively. The input shapes can be noisy
and contain components that are not covered by templates in our synthetic dataset.
After guided adaption, our model is able to extract more meaningful programs and
reconstruct the input shape reasonably well.

Our model can be adapted to either add or delete programs, as shown in Figure 9-5.
In (a), we observe an addition of translation describing the armrests. In (b) the
"cylinder support" program is removed and a nested translation is added to describe

192

Reconstruction before adaption

draw('Top','Cir',P=(4,0,0),G=(1,7))

draw('Support','Cyl,P=(-9,0,0),G=(15,3))

for (i<4 , Rot (0,=90 , ax= (-9, 1 , 0)))
draw('Base','Line',P=(-9,1,0),

G=(-9,-6,-5),8,xi, ax)

draw('Layer','Rect',P=(-3,0,0),G=(2,4,6))

Reconstruction before adaption

draw ('Top','Sqr',P=(-4,-1,0),G=(4,9))

draw('Support','Cyl',P=(-11,-1,0),G=(12,3))

draw('BackSupp','Cub',P=(0,7,-3),G=(3,2,7))

draw('TiltBack','Cub',P= (4,6,-10),
G= (8,3,19,20))Ufor~i<2,'Trans1,u=(0,0,19))

draw(Sideboard', 'Rent ,P=(1,-2,-10)

+(ixu) ,G=(6,6,1))

Reconstruction after adaption Reconstruction after adaption
draw('Top','Cir', (P=(0,0,0),G=(2,6))) Iput

draw('Support','Cyl',P=(-11,0,0), G=(13,1)) draw('Top','Rect',P=(-8,-1,0),G=(9,10,11))

for (i<5, ' Rot ' , e,.t=72, ax= (-10, 0, 0))fo(i2'Trn',u=0,017)
draw('Base','Line',P=(-10,0,0), for(j<2,'Trans',u2=(0 ,17,0))

G=(-11,-6,-3),e,,txi, ax) draw('Leg','Cub',P=(-11,-10,-10)

draw('TiltBack' , 'Cub' ,P=(3,2,-5) ,G=-(8,2,9,7)) +(jxu2)+(ixul) ,G=(12,2,3))

for(i<2, Trans ,u1=(0,0,11)) draw('TiltBack','Cub' ,P=(0,4,-10),

for (j<2, 'Trans' ,u2=(0, 4,0)) G=-(10 ,4,21,11))

draw('ChairBeam' ,'Cub' ,P=(2,-4,-6) for(i<2,'Trans',u=(0,0,19))
+(jxu2)+(.ixul),G=(3,1,2)) draw('Sideboard', 'Rect',P=(0,-2,-12)

for(i<2,'Trans',u=(0,0,10)) +(ixu),G=(6,9,4))

draw('HoriBar','Cub',P=(4,-4,-6) (a) i (b)
+(ixu),G=(1,5,2))

Reconstruction before adaption (c) (d) Reconstruction before adaption
draw('Top','Rect',P=(5,0,0),G=(2,8,11))

for(i<2,'Trans',u1=(0,0,13))#for~j<2, 'Trans1,u2=(0,10,O))
draw('Leg','Cub',P=(-8,-7,-8)

+(jxu2)+(ixul),G=-(16,3,3))

for(i<2,'Trans',u=(0,0,11))
draw('HoriBar', 'Cub' ,P=(-5,-6,-7)

+(ixu) ,G=(2,12,4))

Reconstruction after adaption

draw('Top', 'Rect',P=(4,0,0),G=(2,7,12))

for(i.<2, 'Trans ,u=(O,O,10))

draw(1Leg','Cub',P=(-6,-1,-6)

4,4 +(ixu) ,G=-(10,1,2))

for(i<2, 'Trans ,u=(0,0,13))
draw('HoriBar' ,'Cub' ,P=(-5,-6,-8)

+(ixu) ,G=(1,12,2))

draw('HoriBar' , 'Cub' ,P=(-5,0,-8) ,G=(2,2,15))

draw('Top','Rect',P=-(6,0,0),G=-(1,7,12))

draw('Support','Sqr',P=(-8,0,0),G=(15,4))

Reconstruction after adaption

Input

draw('Top','Rect',P=(6,0,0),G=(2,7,12))

for(i<2, 'Trans ,u=(0,0,12))
draw('Leg' ,'Cub' ,P=(-7,-1,-8)

+(ixu) ,G=(12,2,2))

draw('Layer','Rect',P=(-7,0,0),G=(1,5,9))

Figure 9-5: Inferred programs for ShapeNet chairs and tables. For each shape, the first and
second rows represent results before and after guided adaptation. Best viewed in color.

four legs. In (c) and (d), the addition of "Horizontal bar" and "Rectangle layer" leads

to more accurate representation. Improvements utilizing modifications to compound

programs are not restricted to translations, but can also be observed in rotations, e.g.,
the times of rotation in (a) is increased from 4 to 5. We also notice new templates

emerges after adaptation, e.g., tables in (c) and (d) are not in the synthetic dataset

(check the synthetic templates for tables in Appendix C). These changes are significant

because it indicates the generator can map complex, non-linear relationships to the

193

Input

Models Stable (%) Connected (%) Stable & Connected (%)

table chair table chair table chair

Tulsiani et al. [2017a] 36.7 31.3 37.1 68.9 15.4 19.6

Shape Programs w/o GA 94.7 95.1 76.6 54.2 73.7 51.6
Shape Programs 97.0 96.5 78.4 68.5 77.0 66.0

Ground Truth 98.9 97.6 98.8 97.8 97.7 95.5

Table 9.3: Measurement of stability and connectivity. Our model is able to capture shape
regularity such as symmetry. Therefore, shapes represented by our programs are more stable and
better connected.

Models IoU t CD!.

bed sofa cabinet bench bed sofa cabinet bench

Shape Programs w/o GA 0.234 0.296 0.251 0.176 0.126 0.103 0.104 0.098
Shape Programs 0.367 0.597 0.478 0.418 0.096 0.067 0.092 0.059

Table 9.4: Shape reconstruction results on unseen categories. Results with or without guided
adaptation in intersection over union (IoU, higher is better) and Chamfer distance (CD, lower is
better).

program space.

9.5.3 Stability and Connectivity Measurement

Stability and connectivity are necessary for the functioning of many real-world

shapes. This is difficult to capture using purely low-level primitives, but are better

suited to our program representations.

We define a shape as stable if its center of mass falls within the convex hull of its

ground contacts, and we define a shape as connected if all voxels form one connected

component. In Table 9.3, we compare our model against Tulsiani et al. [2017a] and

observe significant improvements in the stability of shapes produced by our model

when compared to this baseline. This is likely because our model is able to represent

multiple identical objects by utilizing translations and rotations. Before GA, our model

produces chairs with lower connectivity, but we observe significant improvements with

GA. This can be explained by the significant diversity in the ShapeNet dataset under

the "chair" class. However, the improvements with GA also demonstrate an ability

for our model to generalize. Measured by the percentage of produced shapes that are

stable and connected, our model gets significantly better results, and continues to

improve with guided adaptation.

194

Ground truth w/o GA w/ GA Ground truth w/o GA w/ GA Ground truth w/o GA w/ GA

4 m#

Ln -

"
Figure 9-6: ShapeNet objects from unseen categories reconstructed with shape programs
before and after guided adaptation. Shape Programs can learn to adapt and explain objects from
novel classes.

MarrNet Shape Programs (Ours) Ground Truth MarrNet Shape Programs (Ours) Ground Truth

Figure 9-7: 3D reconstruction results on the Pix3D dataset. MarrNet generates fragmentary
shapes and our model further smooths and completes such shapes.

9.5.4 Generalization on Other Shapes

While our program generator is pre-trained only on synthetic chairs and tables,
generalization on other shape categories is desirable. We further demonstrate that
with guided adaptation, our program generator can be transferred to other unseen
categories.

We consider Bed, Bench, Cabinet, and Sofa, which share similar semantics with
table and chair but are unseen during pre-training. We split 80% shapes of each

category for guided adaptation and the remaining for evaluation. Table 9.4 suggests
the pre-trained model performs poorly for these unseen shapes but its performance
improves with this unsupervised guided adaptation. The IoU of bed improves from
0.23 to 0.37, sofa from 0.30 to 0.60, cabinet from 0.25 to 0.48, and bench from 0.18 to
0.42. This clearly illustrates the generalization ability of our framework. Visualized
examples are show in Figure 9-6.

9.5.5 Shape Completion and Smoothing by Programs

One natural application of our model is to complete and smooth fragmentary
shapes reconstructed from 2D images. We separately train a MarrNet [Wu et al.,
2017c] model for chairs and tables on ShapeNet, and then reconstruct 3D shapes from
2D images on the Pix3D dataset. As shown in Figure 9-7, MarrNet can generate

195

.a
U
_
Gi
ca

4M
0

Ln

(a) Manipulation of dimension 27

(b) Manipulation of dimension 25

(c) Manipulation of dimension 41

Figure 9-8: We visualize the effect of manipulating individual dimensions in the intermediate
representation of neural program executor. For example, dimension 27 corresponds to the height
of primitives, dimension 25 to the radius of primitives, and dimension 41 to the times of primitive
repetition.

fragmentary shapes, which are then fed into our model to generate programs. These
programs are executed by the graphics engine to produce a smooth and complete

shape. For instance, our model can complete the legs of chairs and tables, as shown
in Figure 9-7.

While stacking our model on top of MarrNet does not change the IoU of 3D
reconstruction, our model produces more visually appealing and human-perceptible
results. A user study on AMT shows that 78.9% of the participant responses prefer
our results rather than MarrNet's.

9.6 Discussion

We have introduced 3D shape programs as a new shape representation. We have
also proposed a model for inferring shape programs, which combines a neural program
synthesizer and a neural executor. Experiments on ShapeNet show that our model
successfully explains shapes as programs and generalizes to shapes outside training
categories. Further experiments on Pix3D show our model can be extended to infer

shape programs and reconstruct 3D shapes directly from color images. We now discuss
key design choices and future work.

Analyzing the neural program executor. We look deep into the intermediate
representation of the neural program executor, which is a 64-dimensional vector output

by the LSTM (see Figure 9-3). We manipulate individual dimensions and visualize

196

the generated voxels. Figure 9-8 shows that these dimensions capture interpretable
geometric features (e.g., height, radius, and number of repetitions).

Design of the DSL. Our design of the DSL for shape programs makes certain
semantic commitments. A DSL with these semantics has advantages and disadvantages:
it naturally supports semantic correspondences across shapes and enables better in-
class reconstructions; on the other hand, it may limit the ability to generalize to
shapes outside training classes. Our current instantiation focuses on the semantics
of furniture (a superclass, whose subclasses share similar semantics). Within this
superclass, our model generalizes well: trained on chairs and tables, it generalizes to
new furniture categories such as beds. In future work, we are interested in learning a
library of shape primitives directly from data, which will allow our approach to adapt
automatically to new superclasses or domains of shape.

Structure search vs. amortized inference. For program synthesis, we use neural
nets for amortized inference rather than structure search, due to the large search space
and our desire to return a shape interpretation nearly instantaneously, effectively
trading neural net training time for fast inference at test time. Our model takes about
5ms to infer a shape program with a Titan X GPU. We also considered various possible
approaches for structured search over the space of shape programs, but decided that
these would most likely be too our slow for our goals.

One approach to structured search is constraint solving. Ellis et al. [2015] used
the Z3 SMT solver [De Moura and Bjorner, 2008] to infer 2D graphics programs,
taking 5-20 minutes for problems arguably simpler than our 3D shape programs.
Other approaches could be based on stochastic search, such as MCMC in the space of
programs. For the related problem of inverse graphics from 2D images, MCMC, like
constraint solving, takes too long for perception at a glance [Kulkarni et al., 2015b].
Efficient integration of discrete search and amortized inference, however, is a promising
future research direction.

197

THIS PAGE INTENTIONALLY LEFT BLANK

198

Chapter 10

Learning Scene Programs

Humans are capable of building holistic scene representations at various levels,
from local objects and parts, to pairwise relations, to global structures. Finding
global scene structures involves reasoning about the higher-order relationship (e.g.,
repetition) among multiple objects in the scene. In Chapter 8 and Chapter 9, we have
presented models that automatically discover entry-level visual concepts and, in turn,
combine them to explain the 3D shape of a single object. The focus of this chapter is

to extend these models for multi-object scenes.

Our main contribution in this chapter is the Program-Guided Image Manipulator
(PG-IM), building neuro-symbolic, program-like representations for image manipula-
tion. Given an image, PG-IM detects repeated patterns, induces symbolic programs,
and manipulates the image using a neural network that is guided by the program.
PG-IM learns from a single image, exploiting its internal statistics. Despite trained
only on image inpainting, PG-IM is directly capable of extrapolation and regularity
editing in a unified framework. Extensive experiments show that PG-IM achieves
superior performance on all these tasks.

This chapter includes materials previously published as Mao et al. 12019b], Liu
et al. [2019]. Jiayuan Mao, Xiuming Zhang, and Yunchao Liu contributed significantly
to the materials presented in this chapter.

10.1 Introduction

Looking at the images in Figure 10-1, we effortlessly identify the objects (pieces
of cereal) in the image, interpret their pairwise relations, and reason over the global
regularity: all pieces of cereal are organized on a 2D lattice with a triangular boundary.
This holistic representation empowers our imagination of unseen objects: we can
inpaint missing pixels in images, extrapolate images while preserving the regularity
[Rock and Palmer, 1990], and reduce or exaggerate the regularity.

While tremendous progress has been made in object recognition [He et al., 2016]
and visual relation detection [Lu et al., 2016], a global representation for structural

199

I input K-C U- ---- -- -Repeated oKepeated for i in range(O, 5):

Object (Centroids) Program for j in range(o, 9): Neural Image
Detection Induction if i + i > 8: Manipulation

33 + 45* i + 24
6 + 45 * j, (trained only on

inpainting)

Input Output Input Output Input Output

A. Inpainting B. Extrapolation C. Regularity Editing

Figure 10-1: Overview of the Program-Guided Image Manipulator (PG-IM). Given an
input image, PG-IM detects repeated entities in the image (pieces of cereal) and then infers a
program-like representation for describing the regularity of the image. The regularity representation
empowers multiple downstream tasks, such as image inpainting, extrapolation, and regularity editing.

regularity is still missing in these studies. In this chapter, we propose to augment deep
networks, which are very powerful in pixel-level recognition, with symbolic programs,
which are flexible to capture high-level regularity within the image. The intuition

is that the disentanglement between perception and reasoning will enable complex
image manipulation, preserving both high-level scene structure and low-level object

appearance.

Our model, the Program-Guided Image Manipulator (PG-IM), induces symbolic

programs for global regularities and manipulates images with deep generative models

guided by the programs. PG-IM consists of three modules: a neural module that

detects repeated patterns within the input image, a symbolic program synthesizer

that infers programs for spatial regularity (lattice structure) and content regularity

(object attributes), and a neural generative model that manipulates images based on

the inferred programs.

We demonstrate the effectiveness of PG-IM on two datasets: the Nearly-Regular

Pattern dataset [Lettry et al., 20171 and the Facade dataset [Teboul et al., 2010].

Both datasets contain nearly-regular images with lattice patterns of homogeneous

objects. We also extend our experiments to a collection of Internet images with non-

lattice patterns and variations in object appearance. Our neuro-symbolic approach

robustly outperforms neural and patch-matching-based baselines on multiple image

manipulation tasks, such as inpainting, extrapolation, and regularity editing.

200

10.2 Related Work

Image manipulation. Image manipulation is a long-standing problem in computer
vision, graphics, and computational photography, most often studied in the context
of image inpainting. Throughout decades, researchers have developed numerous
inpainting algorithms operating at various levels of image representations: pixels,
patches, and most recently, holistic image features learned by deep networks. Pixel-
based methods often rely on diffusion [Ashikhmin, 2001, Ballester et al., 2001] and
work well when the holes are small; later, patch-based methods [Efros and Freeman,
2001, Barnes et al., 2009] accelerate pixel-based methods and achieve better results.
Both methods do not perform well in cases that require high-level information beyond
background textures.

Deep networks are good at learning semantics from large datasets, and the learned
semantic information has been applied to image manipulation [Xie et al., 2012, Pathak
et al., 2016, Ulyanov et al., 2018]. Many follow-ups have been proposed to improve the
results via multi-scale losses [Iizuka et al., 2017, Yang et al., 2017], contextual attention
[Yu et al., 2018], partial convolution [Liu et al., 2018a], gated convolution [Yu et al.,
2019], among others [Zhou et al., 2018, Yan et al., 2018]. Although these methods
achieve impressive inpainting results with the learned semantic knowledge, they have
two limitations: first, they rely on networks to learn object structure implicitly, and
may fail to capture explicit, global object structures, such as the round shape of a
clock [Xiong et al., 20191; second, the learned semantics is specific to the training
set, while real-world test images are likely to be out-of-distribution. Very recently,
Xiong et al. [2019] and Nazeri et al. [2019] tackled the first problem by explicitly
modeling contours to help the inpainting system preserve global object structures. In
this chapter, we propose to tackle both problems using a combination of bottom-up
deep recognition networks and the top-down neuro-symbolic program induction. We
apply our approach to scenes with an arbitrary number of objects.

Program induction and procedural modeling. The idea of using procedural
modeling for visual data has been a well-studied topic in computer graphics, mostly
for indoor scenes [Wang et al., 2011, Li et al., 2019a, Niu et al., 2018] and 3D shapes
[Li et al., 2017a]. More recently, with deep recognition networks, researchers have
studied converting 2D images to line-drawing programs [Ellis et al., 2018], primitive
sets [Sharma et al., 2018], markup code [Deng et al., 2017, Beltramelli, 2018], or
symbolic programs with attributes [Liu et al., 2019]. As we will see in Section 10.3,
these papers tackle synthetic images in a constrained domain, while here we study
natural images.

SPIRAL [Ganin et al., 2018] used reinforcement learning to derive "drawing com-
mands" for natural images. Their commands are, however, not interpretable, and

201

it is unclear how they can be extended to handle complex relations among a set of

objects. Most recently, Young et al. 12019] integrated formal representations with deep
generative networks and applied it to natural image inpainting. Still, our model differs
from theirs in two aspects. First, we use neural modules for discovering repeated

patterns in images, which does not require the patch of interest to repeat itself over
the entire image (an assumption made in Young et al. [20191). Second, their algorithm

requires learning semantics on a pre-defined dataset for manipulation (e.g., image

extrapolation); in contrast, our model exploits the idea of internal learning [Shocher

et al., 2018] and requires no training data during image manipulation other than the

image itself.

Single-image learning. Because visual entropy inside a single image is lower than in

a diverse collection of images [Zontak and Irani, 2011], many approaches have exploited

image-level (instead of dataset-level) statistics for various image editing tasks including
deblurring [Bahat et al., 2017, Michaeli and Irani, 2014], super-resolution [Glasner
et al., 2009, Freedman and Fattal, 2011, Huang et al., 2015], and dehazing [Bahat and

Irani, 2016]. The same philosophy has also been proven successful in deep learning,
where neural networks are trained on (and hence overfit to) a single image. Such
image-specific networks effectively encode image priors unique to the input image

[Ulyanov et al., 20181. They can be used for super-resolution [Shocher et al., 2018],
layer decomposition [Gandelsman et al., 20191, texture modeling [Bergmann et al.,
2017, Zhou et al., 2018], and even generation tasks [Shaham et al., 2019, Shocher
et al., 2019].

Powerful as these approaches are, they often lack a high-level understanding of the
input image's global structure (such as the triangular shape formed by the cereal in

Figure 10-1). Consequently, there is usually no guarantee that the original structure
gets preserved after the manipulation (e.g., Row 2 of Figure 10-6). This work augments
single-image learning methods with symbolic reasoning about the input image's global
structure, not only providing a natural way of preserving such structure, but also
enabling higher-level, semantic manipulation based on the structure (e.g., extrapolating
an additional row of cereal following the triangular structure in the teaser figure).

10.3 Program Synthesis for Synthetic Scenes

As a first attempt, we look into synthetic scenes of geometric primitives as shown
in Figure 10-2a. Here we develop a model that combines convolutional nets for object
recognition and recurrent nets for program synthesis. The model first uses an object
parser to predict the segmentation mask and attributes for each object in the image.
A group recognizer then predicts the group that each object belongs to. Finally, a
program synthesizer generates a program block for each object group. Figure 10-2

202

for(i<3)
for(j<3-i)
sphere(pos=(1+i,1+j,0),

color=6-j)
for(i<4)

cylinder(pos=(3, 3,i),
color=7)

cylinder(pos=(4,2,0),
(sphere, small, metal, color=3)

green, x=2, y=2, z=0)

(a) Input image (b) Object parsing (c) Program
& group detection

Figure 10-2: Visual program synthesis for synthetic scenes. (a) The input is an image
consisting of multiple objects with ordered arrangements. We also perform instance segmentation
to get object masks. (b) We use two vision models to extract object attributes and predict object
groups, respectively. (c) These representations are then sent to a sequence model to predict the
program.

Program - Statement; ... ; Statement
Statement - cube(pos=Expression1, color=Expression2)
Statement - sphere(pos=Expression1, color=Expression2)
Statement - cylinder(pos=Expression1, color=Expression2)
Statement - f or(0 < Var < Expressionl){Program}
Statement - rotate(0 < Var < Expression1, start=Z, center=(Z, Z, Z)){Program}

Expression1 - Z x Varl +- + Z x Var + Z
Expression2 - Z x Var2 + - + Z x Var2 + Z

Varl - a free variable
Var2 - Var1 I Var1 % Z I Var1 / Z

Z - integer

Table 10.1: The DSL for programs on synthetic scenes. Primitive commands (cube, sphere,
cylinder) can be placed inside loop structures, where the position and color of each object are
determined by the loop indices.

shows an example of synthesizing programs from an input image, where a sphere

is selected at random (highlighted) and the group that this object belongs to is

predicted, which consists of six spheres. Then the program for this group (highlighted)

is synthesized.

A domain-specific language (DSL) for scenes. In order to constrain the pro-

gram space to make it tractable for our models, we introduce human prior on scene

regularities that can be described as programs. More specifically, we introduce a Do-

main Specific Language (DSL) which explicitly defines the space of our scene programs.

We present the grammar of our DSL in Table 10.1, which contains three primitive

commands (cube, sphere, cylinder) and two loop structures (for, rotate). The

positions for each object are defined as affine transformations of loop indices, while

the colors are more complicated functions of the loop indices, displaying alternating

(modular) and repeating (division) patterns.

203

Furthermore, since the DSL allows unbounded program depth, we define program

blocks to further reduce complexity. Each type of program block is an production
instance of the Statement token, and objects that belong to the same block form a
group. For example, in this work the program blocks include single objects, layered
for loops of depth < 3, and single-layer rotations of < 4 objects.

Object parsing. Following the spirit of the trace hypothesis [Ellis et al., 2018], we
use object attributes as an intermediate representation between image space and
structured program space. Parsing individual objects from the input image consists
of two steps: mask prediction and attribute prediction. For each object, its instance
segmentation mask is predicted by a Mask R-CNN [He et al., 2017]. Next, the mask
is concatenated with the original image, and sent to a ResNet-34 [He et al., 2016] to
predict object attributes. In our work, object attributes include shape, size, material,
color and 3D coordinates. Each attribute is encoded as a one-hot vector, except for
coordinates. The overall representation of an object is a vector of length 18. The
networks are trained with ground truth masks and attributes, respectively. For the
attribute network, we minimize the mean-squared error between output and ground
truth attributes.

Group detection. When we identify a distinct visual pattern, we first know which
objects in the image form the pattern before we can tell what the pattern is. Motivated
by this idea, we develop a group recognizer that tells us which objects form a group
that can be described by a single program block. The group recognizer works after
mask prediction is performed, and answers the following specific question: given an
input object, which objects are in the same group with this object?

The input to the model consists of three parts: the original image, the mask of the
input object, and the mask of all objects. These three parts are concatenated and sent
to a ResNet-152 followed by fully connected layers. The output contains two parts:
a binary vector g where g[i] = 1 denotes object i in the same group with the input
object, and the category c of the group, representing the type of program block that
this group belongs to. The network is trained to minimize the binary cross entropy
loss for group recognition, and the cross entropy loss for category classification.

Neural program synthesis. With the object attributes and groups obtained from
the vision models, the final step in our model is to generate program sequences
describing the input image. Since we have already detected object groups, what
remains is to generate a program block for each group. For this goal we train a
sequence to sequence (seq2seq) LSTM with an encoder-decoder structure and attention
mechanism [Luong et al., 2015, Bahdanau et al., 2015]. The input sequence is a set of
object attributes that form a group, which are sorted by their 3D coordinates. The
output program consists of two parts: program tokens are predicted as a sequence

204

as in neural machine translation, and program parameters are predicted by a MLP
from the hidden state at each time step. At each step, we predict a token t as well as
a parameter matrix P, which contains predicted parameters for all possible tokens.
Then we use P[t] as the output parameter for this step.

Since the program synthesizer only works for a single group, a method for combining
the group prediction with program synthesis is needed. Consider the simplest case
where we randomly choose an object and describe the group it belongs to. In practice,
by default we sample 10 times and stop when a correct program is generated. Here
correct means that we can recover the scene attributes successfully by executing the
program.

10.4 Program-Guided Image Manipulators

The model introduced in Section 10.3 works well on synthetic scenes as those
in Figure 10-2, but cannot easily generalize to natural images, where it's hard to
obtain supervision on object attributes such as color and shape. In this section,
we introduce Program-Guided Image Manipulator (PG-IM) as an extension to the
original model, combining deep recognition and generative networks with program
synthesis for natural image manipulation. PG-IM contains three modules, as shown in
Figure 10-1. First, it detects repeated objects and make them a variable-length stack
(Section 10.4.1). Then, it infers a program to describe the global regularity among
the objects (Section 10.4.2), with program tokens such as for-loops for repetition and
symmetry. Finally, the inferred program facilitates image manipulation, which is
performed by a neural painting network (Section 10.4.3).

10.4.1 Repeated Object Detection

PG-IM detects repeated objects in the input image with a neural module based on
Lettry et al. [2017]. Given the input image, it extracts convolutional feature maps from
a pre-trained convolutional neural network (i.e., AlexNet [Krizhevsky et al., 2012]).
A morphological filter is then applied to the feature maps for extracting activated
neurons, resulting in a stack of peakmaps. Next, assuming the lattice pattern of
repeated objects, a voting algorithm is applied to compute the displacements between
nearby objects. Finally, an implicit pattern model (IPM) is employed to fit the
centroids of objects. Please see Lettry et al. [2017] and Appendix D for details of the
algorithm.

10.4.2 Program Synthesizer

The program synthesizer takes the centroids of the repeated objects as input and
infers a latent program describing the pattern. The input image is partitioned into
object patches by constructing a Voronoi graph of all pixels. That is, each pixel

205

for i in range(0, 6):
for j in range(0, 3):

draw(70 + 110 * i, 130 + 150 * j,

for i in range(0, 9):
for j in range(0, 5):

draw(48 + 72 * i, 132 + 72 * j,

for i in range(0, 5):
for j in range(0, 9):

f i + j >= 8:

draw(33 + 45 * i + 24 * j, 6 + 45 * j,

Figure 10-3: Illustrative programs inferred from (top row) the Nearly-Regular Pattern dataset
[Lettry et al., 2017], (middle row) the-Facade dataset [Teboul et al., 2010], and (bottom row) Internet
images. The DSL of the inferred programs supports for-loops, conditions, and attributes.

Program
ForlStmt

{ For2Stmt }
For2Stmt

{ CondDrawStmt }
CondDrawStmt
CondDrawStmt

DrawStmt
attribute=AttributeExpr)

AttributeExpr
AttributeExpr
AttributeExpr
AttributeExpr
AttributeExpr

Expr

- ForlStmt
-+ For (i in range(Integer, Integer))

- For (i in range(Integer, Integer))

-+ If (Expr > 0) { CondDrawStmt }
- DrawStmt
- Draw (x=Expr, y=Expr,

-+ Expr // Integer
-+ 1 If (Expr 0) else 0

- 1 If (Expr 0 and Expr == 0) else 0
- 1 If (Expr % Integer 0) else 0
- 1 If (Expr % Integer 0 and Expr % Integer == 0) else 0
-- Integer x i + Integer x j + Integer

Table 10.2: The domain-specific language (DSL) for describing image regularities. Lan-
guage tokens including For, If, Integer and arithmetic/logical operators follow the convention of
Python.

is assigned to its nearest centroid, under the metric of Euclidean distance between
pixel coordinates. Meanwhile, objects are clustered into multiple groups. When the
program reconstructs an object with the Draw command, it is allowed to specify both
the coordinate of the object's centroid (x, y) and an integer (namely, the attribute),
indicating which group this object belongs to. We implement our program synthesizer
as a search-based algorithm that finds the simplest program that reconstructs the
pattern.

Domain-specific language. We summarize the domain-specific language (DSL)
used by PG-IM for describing object repetition in Table 10.2. In a nutshell, ForStmt1

206

0

r -- --- ---- --- ---- --- ---- -- ---- --- ---for i in ra n (2, 13):
Lattice for iin rage(?, : Condition for i~rn(3 a in range(O, 4):):

for j in range)?, ?): for jin range(0. 4;: Attribute draw(
Search Generation Search 5 + 35

Lti rCnii ao (eac, A70t+t75
70 + 75 a 70 + 75 * j Object[])

object S5
Repeated Objects Program (Step I) Program (Step 11) Program (Final)

Figure 10-4: The three-step inference of a program describing the shown repeated pattern.
Assuming the input keypoints follow a lattice pattern, we first search for parameters defining the
lattice, such as the distance between nearby keypoints and the origin. Next, we fit boundary
conditions for the program. Finally, we cluster objects into groups by their visual appearance, and
fit an expression describing the variation.

and ForStmt2 jointly define a lattice structure; CondDrawExpr defines the boundary

of the lattice; Draw places an object at a given coordinate. AttributeExpr allows the

attribute of the object to be conditioned on the loop variables (i and j). Figure 10-3
shows illustrative programs inferred from different datasets.

Program search. Finding the simplest program for describing a regularity pattern

involves searching over a large compositional space of possible programs, which

contains for-loops, if-conditions, coordinate expressions, and attribute expressions.

To accelerate the search, we heuristically divides the search process into three steps,
as illustrated in Figure 10-4. First, we search over all possible expressions for the

coordinates, and find the one that fits the detected centroids the best. Second, we

determine the conditions (the boundary). Finally, we find the expression for attributes.

Lattice search. The lattice search finds the expressions for coordinates x and y,
ignoring all potential conditions and attribute expressions. Thus, the search process can

be simplified as finding a 5-tuple (br, by, d2,, dX, , dy,j) that satisfies x = b,+i-d,,i+j-dx,j
and y = by +j . dy,j.

Each tuple defines a set of centroids P containing all (x, y) pairs whose coordinates

are within the boundary of the whole image. We compare these sets with the centroids

C detected by the repeated pattern detector. We find the optimal tuple as the one

that minimizes a cost function

iat = min [(x - u)2 + (y - v)2] + AP 1, (10.1)
(X,Y)EC (u,v)EP

where A = 5 is a hyperparameter for regularization. It matches each detected centroid
with the nearest one reconstructed by the program. The goal is to minimize the
distance between them and a regularization term over the size of P. From a Bayesian
inference perspective, P defines a mixture of Gaussian distribution over the 2D plane.
Lat approximates the log-likelihood of the observation C and a prior distribution over
possible P's, which favors small ones.

207

Condition search. In the next step, we generate the conditions of the program,
assuming all centroids fit in a convex hull. This assumption covers both rectangular

lattices and triangular lattices (see Figure 10-3 for examples). Since all pairs (x, y) are

computed by an affine transformation of all (i, j)'s, the conditions can be determined

by computing the convex hull of all (i, j)'s that are matched with detected centroids.

Specifically, we first match each coordinate in P with C by computing a minimum

cost assignment between two sets, where the distance metric is the Euclidean distance

in the 2D coordinate space. We then find the convex hull of all assigned pairs (i, I).
We use the boundary of the convex hull as the conditions. The conditions include the

boundary conditions of for-loops as well as optional if-conditions.

Attribute search. The last step is to find the expression that best describes the

variance in object appearance (i.e., their attributes). Attributes are represented

as a set of integers. Instead of clustering, we assign discrete labels to individual

patches. The label of the patch in row pi, column Pj is a function of (pi, p3). Shown

in Table 10.2, each possible AttributeExpr defines an attribute assignment function

A(p) _ A(pi, p3) for all centroids p = (pi, pj) E P. We say an expression fits the image

if patches of the same label share similar visual appearance. Formally, we find the

optimal parameters for the attribute expression that minimizes

Lattr =J:1 (sgn (A (p), A (q)) . d(p, q)) + plI A (P), (10.2)
pEP qEP

where sgn(A(p), A(q)) = 1 if A(p) = A(q), and -1 otherwise. d computes the pixel-

level difference between two patches centered at (pi, pj) and (q., q,), respectively.

p = 10 is a scalar hyperparameter of the regularization strength. |A(P)I computes
the number of distinct values of A(p) for all p E P. The inference is done by
searching over possible integer templates (e.g., ai + bj + c) and binary templates (e.g.,

(ai + bj + c // d % e) == 0), and the coefficients (a, b, c,.. .).

10.4.3 Neural Painting Networks

We propose the neural painting network (NPN), a neural architecture for ma-

nipulating images with the guidance of programs. It unifies three tasks: inpainting,
extrapolation, and regularity editing in a single framework. The key observation is

that all three tasks can be cast as filling pixels in images. For illustrative simplicity,
we first consider the task of inpainting missing pixels in the image, and then discuss
how to perform extrapolation and regularity editing using the same inpainting-trained
network.

Patch aggregation. We first aggregate all pixels from other "objects" (loosely
defined by the induceted program) to inpaint the missing pixels. Denote all object

208

Trained on Inpainting Tested on Three Tasks

Input (Corrupted) Output (Inpainted)

Inpu ir trtai) Output (Extrapolated)

Skip n

Source patches generated ----------- -

with the program --- ..-.---------------------------------------

Input (Regutar) Output (Inegular)

Tracks processed equally by the same conv. block Global features concat. to all tracks

Figure 10-5: Architecture of a neural painting network (NPN). An NPN takes as input an
image and a set of source patches, derived from the image with its program description, and outputs
a manipulated image. An NPN learns from a single image, exploiting the image's internal statistics.
Trained only on inpainting, it can directly extrapolate and edit the regularity of the input image in a
unified inference framework, without any finetuning.

centroids reconstructed by the program as P, the centroid of the object patch containing

missing pixels (xo, yo), and all other centroids P- = P \ {(xo, yo)}. The aggregation is

performed by generating JP- images, the i-th of which is obtained by translating the

original image such that the centroid of the i-th object in P- is centered at (X 0 , Yo).
Pixels without a value after the shift are treated as 0. We stack the input image

with missing pixels plus all the |P--| images (the "patch source") as the input to the

network.

Architecture. Our neural painting network (NPN) has a U-Net [Ronneberger et al.,
2015] encoder-decoder architecture, designed to handle a variable number of input

images and be invariant to their ordering. Demonstrated in Figure 10-5, the network

contains a stack of shared-weight convolution blocks and max-pooling layers that

aggregate information across all inputs. Paired downsampling and upsampling layers

(convolution layers with strides) are skip-connected. The input of the network is the

stack of the corrupted input image plus source patches, and the output of the network

is the inpainted image. A detailed printout of the generator's architecture can be

found in Appendix D.

The key insight of our design of the NPN is that it handles a variable number of

input images in any arbitrary order. To this end, inspired by Aittala and Durand

[2018] and Qi et al. [2017], we have a single encoder-decoder that processes the P-| + 1

images equally ("tracks"), and the intermediate feature maps from these tracks get

constantly max-pooled into a "global" feature map, which is then broadcast back to

the P -- + 1 tracks and concatenated to each track's local feature map to be processed

209

by the next block. Intuitively, the network is guided to produce salient feature maps
that will "survive" the max-pooling, and the tracks exchange information by constantly
absorbing the global feature map.

Extrapolation and regularity editing as recurrent inpainting. A key feature

of program-guided NPNs is that although they are trained only on the inpainting task,
they are able to be used directly for image extrapolation and regularity editing. With
the program description of the image, NPNs are aware of where the entities are in
the image, and hence able to cast extrapolation as recurrent inpainting of multiple

corrupted objects. For instance, to extrapolate a 64-pixel wide stripe to the right,
an NPN first queries the program description for where the new peaks are, and then

recurrently inpaints each object given all the previously inpainted ones. Similarly
for image regularity editing, when the (regularly spaced) centroids provided by the

program get randomly perturbed, the pixels falling into their Voronoi cells move
together with them accordingly, leaving many "cracks" on the image, which the NPN
then inpaints recurrently.

Training. We train our NPNs with the same training paradigm as Isola et al. [2017].
We compute an Li loss and a patch-based discriminator loss, between the generated
(inpainted) image and the ground-truth image. We train image-specific NPNs for each
individual image in the dataset. While only training the network to inpaint missing
pixels, we show that the network can perform other tasks such as image extrapolation
and regularity editing, by only changing the input to the network during inference.
Other implementation details such as the hidden dimensions, convolutional kernel
sizes, and training hyperparameters can be found in the Appendix D.

10.5 Experiments and Applications

We provide both quantitative and qualitative comparisons with the baselines on
two standard image manipulation tasks: inpainting and extrapolation. We also show
the direct application of our approach to image regularity editing, a task where the
regularity of an image's global structure gets exaggerated or reduced. It is worth
mentioning that these three problems can be solved with a single model trained for
inpainting (see Section 10.4.3 for details). Finally, we demonstrate how our program
induction easily incorporates object attributes (e.g., colors) in Internet images, in turn
enabling our NPNs to manipulate images with high-level reasoning in an attribute-
aware fashion. Please see Appendix D for ablation studies that evaluate each major
component of PG-IM. We start with an introduction to the datasets and baseline
methods we consider.

210

10.5.1 Dataset

We compare the performance of PG-IM with other baselines on two datasets: the
Nearly-Regular Pattern (NRP) dataset [Lettry et al., 2017] and the Facade dataset
[Teboul et al., 2010]. The Nearly-Regular Pattern dataset contains a collection of 48
rectified images with a grid or nearly grid repetition structure. The Facade dataset,
specifically the CVPR 2010 subset, contains 109 rectified images of facades.

10.5.2 Baselines

We consider two groups of baseline methods: non-learning-based and learning-
based. Among the non-learning-based methods are Image Quilting [Efros and Freeman,
2001] and PatchMatch [Barnes et al., 2009], both of which are based on the stationary
assumption of the image structure. Intuitively, to inpaint a missing pixel, they fill it
with the content of another existing pixel with the most similar context. Being unaware
of the objects in the image, they rely on human-specified hyperparameters, such as
the context window size, to produce reliable results. More importantly, in the case of
extrapolation, the user needs to specify which pixels to paint, implicitly conveying the
concept of objects to the algorithms. For PatchMatch and Image Quilting, we search
for one set of optimal hyperparameters and apply that to the entire test set.

We also compare PG-IM with a learning-based, off-the-shelf algorithm for image
inpainting: GatedConv [Yu et al., 2019]. They use neural networks for inpainting
missing pixels by learning from a large-scale dataset (Place365 [Zhou et al., 2017a]) of
natural images. GatedConv is able to generate novel objects that do not appear in
the input image, which is useful for semantic photo editing. However, this may not be
desired when the image of interest contains repeated but unique patterns: although a
pattern appears repeatedly in the image of interest, it may not appear anywhere else
in the dataset.

Therefore, we also consider another learning-based baseline, originally designed
for image extrapolation: Non-Stationary Texture Synthesis (Non-Stationary) [Zhou
et al., 20181. In their framework, an image-specific neural network is trained for each
input image. Its objective is to extrapolate a small (usually unique) patch (k x k) into
a large one (2k x 2k). Although both of their method and PG-IM use single-image
training for generating missing pixels, PG-IM uses symbolic programs as the guidance
of the networks, enjoying both interpretability and better performance for complex
structures. We also implement a variant of Non-Stationary, which keeps the neural
architecture and training paradigm as the original version for texture synthesis, but
use the same inpainting data as our method for inpainting. For a fair comparison, we
train Non-Stationary and PG-IM with single sets of optimal hyperparameters on all
test images.

211

Method Li Mean (Std.) Inception Score

Nearly-Regular Patterns [Lettry et al., 2017]

Image Quilting [Efros and Freeman, 2001] 12.30 (2.903) 1.253
PatchMatch [Barnes et al., 2009] 83.91 (17.62) 1.210

GatedConv [Yu et al., 2019] 50.45 (16.46) 1.196
Non-Stationary [Zhou et al., 2018] 103.7 (23.87) 1.186
PG-IM (ours) 21.48 (5.375) 1.229

Facade [Teboul et al., 2010]

Image Quilting [Efros and Freeman, 2001] 13.50 (6.379) 1.217
PatchMatch [Barnes et al., 2009] 81.35 (25.28) 1.219

GatedConv [Yu et al., 2019] 26.26 (133.9) 1.186
Non-Stationary [Zhou et al., 2018] 133.9 (39.75) 1.199
PG-IM (ours) 14.40 (7.781) 1.218

Table 10.3: We compare PG-IM against off-the-shelf neural baselines for image inpainting
on both datasets. Our method outperforms neural baselines with a remarkable margin across all
metrics.

10.5.3 Inpainting

We compare PG-IM with GatedConv, Image Quilting, and PatchMatch on the
task of image inpainting. For quantitative evaluations, we use the NRP and Facade
datasets, each of whose images gets randomly corrupted 100 times, giving us a total
of around 15,000 test images.

Table 10.3 summarizes the quantitative scores of different methods. Following
Liu et al. [2018a], we compare the Li distance between the inpainted image and the
original image, as well as Inception score (IS) of the inpainted image. For all the
approaches, we hold out a test patch whose pixels are never seen by the networks
during training, and use that patch for testing. Quantitatively, PG-IM outperforms the
other learning-based methods by large margins across both datasets in both metrics.
PG-IM recovers missing pixels a magnitude more faithful to the ground-truth images
than Non-Stationary in the Li sense. It also has a small variance across different
images and input masks. For comparisons with non-learning-based methods, although
Image Quilting achieves the best Li score, it tends to break structures in the images,
such as lines and grids (see Figure 10-6 for such examples). Note that the reason
why PatchMatch has worse Li scores is that it also modifies pixels around the holes
to achieve better image-level consistency. In contrast, the other methods including
PG-IM only inpaint holes and modify nothing else in the images.

Qualitative results for inpainting are presented in Figure 10-6. Overall, our
approach is able to preserve the "objects" in the test images even if the objects are
completely missing, while other learning-based approaches either miss the intricate
structures (Non-Stationary on Images 1 and 2), or produce irrelevant patches (learned

212

2

3

4

Corrupted
Images (Input)

PatchMatch Image Quilting

Non-Learning-Based

~1
4,N

Non-Stationa

Ii

GatedConv PG-IM (Ours)

Learning-Based

Figure 10-6: Corrupted input images and inpainting results (zoomed-in) by PG-IM and
the baselines. The white pixels in the leftmost column are missing pixels to inpaint. The rightmost
column shows the ground-truth patches. PG-IM inpaints realistic image patches that are consistent
with the intricate global regularity and meanwhile different from the original, ground-truth patches.

from largely diverse image datasets) that break the global structure of this particular

image (e.g., GatedConv on Image 2). Note how the image patches inpainted by our

approach is realistic and meanwhile quite different from the ground-truth patches

(compare our inpainting with the ground-truth Image 4). For the non-learning-

based approaches, the baselines suffer from blurry outputs and sometimes produce

inconsistent connections to the original image on boundaries. Moreover, as we will

demonstrate in Figure 10-9, unlike our approach that combines high-level symbolic

reasoning and lower-level pixel manipulations, PatchMatch fails to manipulate the

pixels in an attribute-aware fashion.

Runtime-wise, learning-methods including PG-IM, once trained, inpaint an image

in a forward pass (around 100ms on GPUs), whereas non-learning-based approaches

take around 15 minutes to inpaint one image.

10.5.4 Extrapolation

Figure 10-7 shows the extrapolation results by PG-IM and the baselines. With the

program description of the images, PG-IM naturally knows where to extrapolate to,

e.g., by incrementing the for-loop range. This contrasts with the baselines that either

require the user to specify which pixels to extrapolate (PatchMatch, Image Quilting,

213

ary

2

3

4

Partial Images PatchMatch Image Quilting GatedConv Non-Stationary PG-IM (Ours)
(Input)

Non-Learning-Based Learning-Based

Figure 10-7: Extrapolation results by PG-IM and the baselines. The white pixels in the
leftmost column indicate the pixels to be extrapolated. PG-IM generates realistic images while
preserving global regularity. In contrast, GatedConv fails to capture the regularity; Non-Stationary
does not preserve the original image contents; PatchMatch tends to generate blurry images in
smoothing the transition; Image Quilting does not guarantee the global structure gets preserved.

and GatedConv), or simply extrapolate to every possible direction (Non-Stationary).
Knowing where to extrapolate is particularly crucial for images where the objects do
not scatter all over. Take the pieces of cereal in Figure 10-1B as an example. PG-IM
reasons about the global structure that the pieces of cereal form, decides where to
extrapolate to by relaxing its program conditions, and finally extrapolates a new row.

As PatchMatch greedily "copies from" patches with the most similar context, certain
pixels may come from different patches, therefore producing blurry extrapolation
results (Images 1, 3, and 4). Learning from large-scale image datasets, GatedConv
fails to capture the repeated patterns specific to each individual image, thus generating
patterns that do not connect to the image boundary consistently (Images 2 and 3).
Non-Stationary treats the entire image as consisting of only patterns of interest and
expands the texture along all four directions; artifacts show up when the image contains
more than the texture (bottom of Image 4). Also interesting is that Non-Stationary

can be viewed as a super-resolution algorithm, in the sense that it is interpolating
among the replicated objects. As the rightmost column shows, during extrapolation,
PG-IM produces realistic and sharp patches (Image 1), preserves the images' global
regularity, and connects consistently to the image boundary (Images 2-4).

214

I

mai-

2 f4

3 i

Input Images Irregularity Exaggeration PG-IM (Ours)

Figure 10-8: PG-IM enables automated and semantic-aware irregularity exaggeration.
By comparing the centroids of the detected objects and the ones reconstructed by the program, we
can measure and exaggerate the structural irregularity of input images.

10.5.5 Image Regularity Editing

With a program describing the image's ideal global regularity, PG-IM is able

to exaggerate imperfections in the global regularity by magnifying the discrepancy

between what the program depicts and the detected object centroids. A similar task

has been discussed by Dekel et al. 12015]. In Figure 10-8, we magnify the displacement

vectors between the program-provided and detected centroids by two, and shift the

Voronoi cells together with their respective centroids, leaving missing values among

the cells. An NPN then fills in the gaps by recurrent inpainting.

10.5.6 Attribute Regularity

Beyond using for-loops and if-conditions to capture the global regularity of objects,
PG-IM can also reason about the regularity of object appearance variations (i.e., the

attribute regularity). Our model automatically clusters objects into groups. Beyond

knowing where to extrapolate to, with the attribute regularity described by the

program, our NPNs generate new pixels from only patches of the correct attributes.

Figure 10-9 illustrates this idea. We show the image extrapolation results on

images with attribute regularities, and compare PG-IM with a variant that does

not consider object attributes, as well as a strong baseline: PatchMatch. Without

explicit modeling of object attributes, the color of the new objects generated by PG-IM

215

Partial Image (Input) PG-IM w/o Attributes PG-IM (Ours) PatchMatch Partial Image (Input) PG-IM w/o Attributes PG-IM (Ours) PatchMatch

Figure 10-9: PG-IM can reason about the attribute regularity of images, which supports
object appearance-aware image extrapolation. PG-IM w/o Attributes denotes a variant of PG-IM
that does not include attributes. See the main text for detailed analysis and comparison.

without attributes fails to preserve the global attribute regularity. Meanwhile, due
to the existence of objects with similar colors, PatchMatch mixes up two different
colors, resulting in blurry output patches (Figure 10-9, left) or extrapolation results
that break the global attribute regularity (the central object in the top-right row of
zoom-in windows in Figure 10-9 should be purple, not green).

10.6 Discussion

In this chapter, we have introduced a neuro-symbolic approach to describing and
manipulating natural images with repeated patterns. It combines the power of program
induction-as symbolic tools for describing repetition, symmetry, and attributes-and
deep neural networks-as powerful image generative models. PG-IM supports various
tasks including image inpainting, extrapolation, and regularity editing.

Our results also suggest multiple future directions. First, variations in object
appearance are currently handled as discrete properties. We leave the interpretation

of continuous attributes, such as the color spectrum in Figure 10-9, as future work.
Combining regularity inference and data-driven approaches for scene semantics is
also a meaningful direction. As an example, from a facade image of merely windows,
humans can extrapolate the image by not only adding windows, but also doors at
the bottom and roofs at the top. Finally, the representational power of PG-IM is
limited by the DSL. PG-IM currently does not generalize to unseen patterns, such as
rotational patterns. Future work includes adding a more flexible DSL and discovering

new patterns or the DSL itself from data.

216

Chapter 11

Conclusion

In this dissertation, we have discussed the general paradigm of integrating machine
learning with simulation engines, as well as concrete realizations with graphics, physics,
and program execution engines across multiple areas (vision, learning, NLP, symbolic
reasoning, rule learning and program induction, planning, and control). In the era of
big data, large computing resources, and advanced learning algorithms, these once
separated areas across computer science have begun to reintegrate. I believe we should
now take an more integrative view toward these areas and actively explore their
interactions for a more general Al landscape. Below, I outline a few open challenges
and future directions.

One such direction is to achieve more fundamental integration of perception,
reasoning, and planning. While most computational models have treated them as
disjoint modules, we observe that having them communicate with each other facilitates
model design and leads to better performance {Sun et al., 2019, Janner et al., 20191.
The key factor that connects these modules is belief space-our belief of partially
observable, uncertain world states. Al researchers have been integrating perception
and planning in belief space [Kaelbling and Lozano-Prez, 2013]. Building upon these
insightful ideas, it becomes possible to explore interactive perception by integrating
both classic and modern Al tools: probabilistic inference for managing uncertainty;
causal and counterfactual reasoning in generative models, for explainability, imagi-
nation, and planning; and hierarchical inference for learning to learn, so knowledge
builds progressively. Also, discovering the cognitive and neural basis of belief space
perception, reasoning, and planning will be of significant value for understanding
human intelligence.

Another direction is to integrate symbolic priors with deep representation learning
via program synthesis for concept and structure discovery. Neuro-symbolic methods
enjoy both the recognition power from neural nets and the combinatorial generalization
from symbolic structure; therefore, they have great potential in scaling up current
intelligent systems to large-scale, complex physical scenes in the real life, for which pure

217

bottom-up, data-driven models cannot work well due to the exponentially increasing
complexity. As a preliminary study, our recent research has shown that they can
learn to discover concepts, meta-concepts (e.g., synonyms), and use them to answer
questions, all from natural supervision (images and question-answer pairs) as humans

do [Mao et al., 2019a, Yi et al., 2018, Han et al., 2019]. Future work includes exploring
the use of symbolic languages for knowledge representation and abstraction, and how

they can be integrated with deep networks' pattern recognition abilities for flexible

physical scene understanding.

Beyond physical objects and scenes, we need computational models that understand

an agent's goals, beliefs, intentions, and theory of mind, and use these knowledge for
planning and problem solving, drawing inspiration from intuitive psychology. While

we have been inferring physical object properties from interactions, can we also build
computational models that, just like 10-month-old infants {Liu et al., 2017], infer object
values in agents' beliefs from their behaviors? Research along this direction would
be incredible valuable for developing human-like and human-centered autonomous
systems.

More generally, we should connect computer science with other disciplines such as

cognitive science, neuroscience, social science, linguistics, and mechanical engineering.
Research in cognitive science and neuroscience has been offering intuitions for Al
researchers for decades; now we're entering a new stage, where contemporary research
in intelligent systems or computer science in general may help us better understand

human intelligence [Fischer et al., 2016, Yamins et al., 20141. Our recent research
has suggested that computational models that combine bottom-up neural recognition

networks and top-down simulation engines shed light on understanding cognitive and
neural processes in the brain [Yildirim et al., 2018b, Zhang et al., 2016]. Much more
work needs to be done in these areas. With the right integration of probabilistic

inference methods, deep learning, and generative models, we can build more powerful
computational models for both neural activities and cognitive, behavioral data. The
same applies to developmental psychology. We have been constructing benchmarks that
carefully replicate classic developmental psychology experiments for evaluating modern
computational models [Smith et al., 2019]. Our research compares and contrasts human
and artificial intelligence on understanding core knowledge-knowledge about object
permanence, solidity, continuity, and containment, and concepts such as gravity and
momentum [Spelke, 2000]. Such interdisciplinary research deepens our understanding
of multiple research areas and suggests future research topics.

We're in a unique and exciting time: the development of data, hardware, and
algorithms (e.g., deep networks, graphical models, probabilistic programs) has enabled
more flexible and expressive computational models. For the next decade, I believe
building structured models for machine physical scene understanding, as well as inves-

218

tigating its connection with perception, reasoning, and interaction, will be incredibly

valuable and essential for developing computational systems that contribute to broad

fundamental and practical research across disciplines.

219

THIS PAGE INTENTIONALLY LEFT BLANK

220

Appendix A

Data and Model Details

for Generalizable Reconstruction

In Appendix A, we supply additional details for the Generalizable Reconstruction
(GenRe) model introduced in Chapter 3.

A.1 Data Preparation

We describe how we prepare our data for network training and testing.

Scene setup. The camera is fully specified by its azimuth and elevation angles, as
its distance from the object is fixed at 2.2, its up vector is always the world +y axis,
and it always looks at the world origin, where the object center lies. Focal length of
the camera is fixed at 50mm on a 35mm film. Depth values are measured from the
camera center (i.e., ray depth), rather than from the image plane.

Rendering. We render 20 images of random views (or 200 fixed views in the
viewpoint study) for each object of interest. To boost the rendering realism and
diversity, we use three types of background: the SUN backgrounds [Xiao et al.,
2010], high-dynamic-range environment lighting crawled on the web, and pure white
backgrounds. Specifically, for each rendering, we randomly sample a background type
and then a random instance of that type. We use Mitsuba [Jakob, 2010] for all of our
rendering.

Data augmentation. For network training, we augment our RGB images with
three techniques: color jittering, adding lighting noise, and color normalization. In
color jittering, we multiply the brightness, contrast, and saturation, one by one in a
random order, by a random factor uniformly sampled from [0.6,1.4]. We then add
AlexNet-style lighting noise [Krizhevsky et al., 2012] and perform the standard color
normalization with statistics derived from the ImageNet dataset [Deng et al., 2009].

221

A.2 Model Details

We implement all of our networks in PyTorch 0.3.

A.2.1 Single-View Depth Estimator

We adopt an encoder-decoder architecture, where the encoder is a ResNet-18 [He
et al., 2016] that encodes a 256x256 RGB image into 512 feature maps of size lx1.
Specifically, it consists of, in a sequential order,

Conv2d(3, 64, kernel=7, stride=2, pad=3)

BatchNorm2d(64, eps=1e-05, momentum=0.1)

ReLU(inplace)

MaxPool2d(kernel=3, stride=2, pad=1, dilation=1)

BasicBlock(

(convi): Conv2d(64, 64, kernel=3,

(bnl): BatchNorm2d(64, eps=le-05,

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel=3,

(bn2): BatchNorm2d(64, eps=1e-05,

)
BasicBlock(

(convi): Conv2d(64, 64, kernel=3,

(bnl): BatchNorm2d(64, eps=1e-05,

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel=3,

(bn2): BatchNorm2d(64, eps=le-05,

)

BasicBlock(

stride=1, pad=1)

momentum=0.1)

stride=1, pad=1)

momentum=0.1)

stride=1, pad=1)

momentum=0.1)

stride=1, pad=1)

momentum=0.1)

(conv1): Conv2d(64, 128, kernel=3, stride=2, pad=1)

(bnl): BatchNorm2d(128, eps=le-05, momentum=0.1)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(128, eps=le-05, momentum=0.1)

(downsample) :

Conv2d(64, 128, kernel=1, stride=2)

BatchNorm2d(128, eps=1e-05, momentum=0.1)

)
BasicBlock(

(conv1): Conv2d(128, 128, kernel=3, stride=1, pad=1)

(bn1): BatchNorm2d(128, eps=le-05, momentum=0.1)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(128, eps=le-05, momentum=0.1)

)
BasicBlock(

(conv1): Conv2d(128, 256, kernel=3, stride=2, pad=1)

222

(bnl): BatchNorm2d(256, eps=1e-05, momentum=0.1)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1)

(downsample):

Conv2d(128, 256, kernel=1, stride=2)

BatchNorm2d(256, eps=1e-05, momentum=0.1)

)
BasicBlock(

(convi): Conv2d(256, 256, kernel=3, stride=1, pad=1)

(bnl): BatchNorm2d(256, eps=1e-05, momentum=0.1)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1)

)
BasicBlock(

(convi): Conv2d(256, 512, kernel=3, stride=2, pad=1)

(bnl): BatchNorm2d(512, eps=1e-05, momentum=0.1)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1)

(downsample):

Conv2d(256, 512, kernel=1, stride=2)

BatchNorm2d(512, eps=1e-05, momentum=0.1)

)
BasicBlock(

(conv1): Conv2d(512, 512, kernel=3, stride=1, pad=1)

(bnl): BatchNorm2d(512, eps=le-05, momentum=0.1)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(512, eps=le-05, momentum=0.1)

The decoder is a mirrored version of the encoder, with all convolution layers
replaced by transposed convolution layers. Additionally, we adopt the U-Net struc-
ture [Ronneberger et al., 2015] by feeding the intermediate outputs of each encoder
block to the corresponding decoder block. The decoder outputs an image of relative
depth values in the original view at the same resolution as input. Specifically, the
decoder comprises

RevBasicBlock(

(deconv1): ConvTranspose2d(512, 256, kernel=3, stride=1, pad=1)

(bnl): BatchNorm2d(256, eps=le-05, momentum=0.1)

(relu): ReLU(inplace)

(deconv2): ConvTranspose2d(256, 256, kernel=3, stride=2, pad=1, out-pad=)

(bn2): BatchNorm2d(256, eps=le-05, momentum=0.1)

(upsample):

223

ConvTranspose2d(512, 256, kernel=1, stride=2, out-pad=l)

BatchNorm2d(256, eps=le-05, momentum=0.1)

)
RevBasicBlock(

(deconv1): ConvTranspose2d(256, 256, kernel=3, stride=1, pad=1)

(bnl): BatchNorm2d(256, eps=le-05, momentum=0.1)

(relu): ReLU(inplace)

(deconv2): ConvTranspose2d(256, 256, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(256, eps=le-05, momentum=0.1)

)
RevBasicBlock(

(deconvi): ConvTranspose2d(512, 128, kernel=3, stride=1, pad=l)

(bnl): BatchNorm2d(128, eps=1e-05, momentum=0.1)

(relu): ReLU(inplace)

(deconv2): ConvTranspose2d(128, 128, kernel=3, stride=2, pad=1, out-pad=1)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1)

(upsample):

ConvTranspose2d(512, 128, kernel=1, stride=2, outpad=1)

BatchNorm2d(128, eps=le-05, momentum=0.1)

)
RevBasicBlock(

(deconvi): ConvTranspose2d(128, 128, kernel=3, stride=1, pad=l)

(bnl): BatchNorm2d(128, eps=1e-05, momentum=0.1)

(relu): ReLU(inplace)

(deconv2): ConvTranspose2d(128, 128, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1)

)
RevBasicBlock(

(deconv1): ConvTranspose2d(256, 64, kernel=3, stride=1, pad=1)

(bnl): BatchNorm2d(64, eps=1e-05, momentum=0.1)

(relu): ReLU(inplace)

(deconv2): ConvTranspose2d(64, 64, kernel=3, stride=2, pad=1, out-pad=l)

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1)

(upsample):

ConvTranspose2d(256, 64, kernel=1, stride=2, outpad=1)

BatchNorm2d(64, eps=le-05, momentum=0.1)

)
RevBasicBlock(

(deconv1): ConvTranspose2d(64, 64, kernel=3, stride=1, pad=1)

(bnl): BatchNorm2d(64, eps=1e-05, momentum=0.1)

(relu): ReLU(inplace)

(deconv2): ConvTranspose2d(64, 64, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(64, eps=le-05, momentum=0.1)

)
RevBasicBlock(

(deconv1): ConvTranspose2d(128, 64, kernel=3, stride=1, pad=l)

(bnl): BatchNorm2d(64, eps=le-05, momentum=0.1)

224

(relu): ReLU(inplace)

(deconv2): ConvTranspose2d(64, 64, kernel=3, stride=1, pad=l)

(bn2): BatchNorm2d(64, eps=le-05, momentum=0.1)

(upsample):

ConvTranspose2d(128, 64, kernel=1, stride=1)

BatchNorm2d(64, eps=le-05, momentum=0.1)

)
RevBasicBlock(

(deconv1): ConvTranspose2d(64, 64, kernel=3, stride=1, pad=1)

(bnl): BatchNorm2d(64, eps=le-05, momentum=0.1)

(relu): ReLU(inplace)

(deconv2): ConvTranspose2d(64, 64, kernel=3, stride=1, pad=1)

(bn2): BatchNorm2d(64, eps=le-05, momentum=0.1)

)
ConvTranspose2d(128, 64, kernel=3, stride=2, pad=1, out-pad=1)

BatchNorm2d(64, eps=le-05, momentum=0.1)

ReLU(inplace)

ConvTranspose2d(64, 1, kernel=8, stride=2, pad=3, out-pad=O).

Relative depth values provided by the predicted depth images are insufficient
for conversions to spherical maps or voxels, as there are still two degrees of freedom
undetermined: the minimum and maximum (or scale). Therefore, we have an additional

branch decoding, also from the 512 feature maps, the minimum and maximum of the

depth values. Specifically, it contains

Conv2d(512, 512, kernel=2, stride=2)

Conv2d(512, 512, kernel=4, stride=1)

ViewAsLinear()

Linear(in-features=512, outfeatures=256, bias=True)

BatchNormld(256, eps=le-05, momentum=0. 1)

ReLU(inplace)

Linear(in-features=256, out_features=128, bias=True)

BatchNormld(128, eps=1e-05, momentum=0. 1)

ReLU(inplace)

Linear(in-features=128, outfeatures=2, bias=True).

Using the pretrained ResNet-18 as our network initialization, we then train this

network with supervision on both the depth image (relative) and the minimum as well
as maximum values. Under this setup, our network predicts effectively the absolute
depth values of the input view, which allows us to project these depth values to the
spherical representation or voxel grid.

This network was trained with a batch size of 4. We used Adam [Kingma and Ba,
2015] with a learning rate of le-3, 1 = 0.5, and #2 = 0.9 for optimization.

225

A.2.2 Spherical Map Inpainting Network

Our inpainting network shares the same architecture as the single-view depth

estimator. To mimic the boundary conditions of spherical maps, we use replication
padding for the vertical dimension (elevation) and periodic padding for the horizontal
dimension (azimuth). The padding size is 16 for all dimensions.

This network was trained with a batch size of 4. We used Adam with a learning

rate of le-4, #1 = 0.5, and 32 = 0.9 for optimization.

A.2.3 Voxel Refinement Network

Our voxel refinement network adopts the U-Net structure [Ronneberger et al.,
2015] and uses a sequence of 3D convolution and transposed convolution layers. The
input tensor is of shape BatchSizex2x128x 128x128, where one channel contains
voxels projected from the predicted original-view depth map, and the other contains
voxels projected from the inpainted spherical map. After fusion, the output tensor is

of shape BatchSizex 1 x128x 128x 128. Specifically, the network is structured as

Unet(

Conv3d-block(

Conv3d(2, 20, kernel=8, stride=2, pad=3)

BatchNorm3d(20, eps=1e-05, momentum=0.1)

LeakyReLU(negativeslope=0.01)

)
Conv3d-block(

Conv3d(20, 40, kernel=4, stride=2, pad=1)

BatchNorm3d(40, eps=1e-05, momentum=0.1)

LeakyReLU(negativeslope=0.01)

)
Conv3d-block(

Conv3d(40, 80, kernel=4, stride=2, pad=1)

BatchNorm3d(80, eps=le-05, momentum=0.1)

LeakyReLU(negativeslope=0.01)

)
Conv3d-block(

Conv3d(80, 160, kernel=4, stride=2, pad=1)

BatchNorm3d(160, eps=le-05, momentum=0.1)

LeakyReLU(negativeslope=0.01)

)
Conv3d-block(

Conv3d(160, 320, kernel=4, stride=2, pad=1)

BatchNorm3d(320, eps=le-05, momentum=0.1)

LeakyReLU(negativeslope=0.01)

)
Conv3d-block(

Conv3d(320, 640, kernel=4, stride=1)

226

BatchNorm3d(640, eps=le-05, momentum=0.1)

LeakyReLU(negative-slope=0.01)

)
fullconvblock(

Linear(in-features=640, outfeatures=640, bias=True)

LeakyReLU(negative-slope=0.01)

)
Deconv3dskip(

ConvTranspose3d(1280, 320, kernel=4, stride=1)

BatchNorm3d(320, eps=le-05, momentum=0.1)

LeakyReLU(negative-slope=0.01)

)
Deconv3dskip(

ConvTranspose3d(640, 160, kernel=4, stride=2, pad=1)

BatchNorm3d(160, eps=le-05, momentum=0.1)

LeakyReLU(negative-slope=0.01)

)
Deconv3dskip(

ConvTranspose3d(320, 80, kernel=4, stride=2, pad=1)

BatchNorm3d(80, eps=1e-05, momentum=0.1)

LeakyReLU(negative-slope=0.01)

)
Deconv3dskip(

ConvTranspose3d(160, 40, kernel=4, stride=2, pad=1)

BatchNorm3d(40, eps=1e-05, momentum=0.1)

LeakyReLU(negative-slope=0.01)

)
Deconv3dskip(

ConvTranspose3d(80, 20, kernel=8, stride=2, pad=3)

BatchNorm3d(20, eps=1e-05, momentum=0.1)

LeakyReLU(negative-slope=0.01)

)
Deconv3dskip(

ConvTranspose3d(40, 1, kernel=4, stride=2, pad=1)

)

This network was trained with a batch size of 4. We used Adam with a learning
rate of 10-5, #1 = 0.5, and 02 = 0.9 for optimization.

227

THIS PAGE INTENTIONALLY LEFT BLANK

228

Appendix B

Details and Results

for Neuro-Symbolic Concept Learners

In Appendix B, we supply additional details for the Neuro-Symbolic Concept
Learner (NS-CL) introduced in Chapter 8.

B.1 The CLEVR Domain-Specific Language

We first introduce the domain-specific language (DSL) designed for the CLEVR
VQA dataset [Johnson et al., 2017a]. Table B.1 shows the available operations in the
DSL, while Table B.2 explains the type system.

We note that some function takes Object as its input instead of ObjectSet. These
functions require the uniqueness of the referral object. For example, to answer the
question "What's the color of the red object?", there should be one and only one
red object in the scene. During the program execution, the input object set will be
implicitly cast to the single object (if the set is non-empty and there is only one object
in the set). Such casting is named Unique in related work [Johnson et al., 2017b].

B.2 Semantic Parsing

As shown in Appendix B.1, a program can be viewed as a hierarchy of operations
which take concepts as their parameters. Thus, NS-CL generates the hierarchies
of latent programs in a sequence to tree manner [Dong and Lapata, 2016]. The
semantic parser adopts an encoder-decoder architecture, which contains four neural
modules: (1) a bidirectional GRU encoder IEncoder [Cho et al., 2014] to encode an
input question into a fixed-length embedding, (2) an operation decoder OpDecoder
that determines the operation tokens, such as Filter, in the program based on the
sentence embedding, (3) a concept decoder ConceptDecoder that selects concepts
appeared in the input question as the parameters for certain operations (e.g., Filter
takes an object-level concept parameter while Query takes an attribute), and (4) a set
of output encoders {OEncoderi} which encode the decoded operations by OpDecoder

229

Signature

() -+ ObjectSet

(ObjectSet, ObjConcept) -+ ObjectSet

Operation

Scene

Filter

Relate (Object, RelConcept) -+ ObjectSet Filter out a set of objects that have
the relational concept (e.g., left)
with the input object.

AERelate (Object, Attribute) -+ ObjectSet (Attribute-Equality Relate) Filter
out a set of objects that have the
same attribute value (e.g., same
color) as the input object.

Intersection (ObjectSet, ObjectSet) - ObjectSet Return the intersection of two ob-
ject sets.

Union (ObjectSet, ObjectSet) - ObjectSet Return the union of two object sets.

Query (Object, Attribute) - ObjConcept Query the attribute (e.g., color) of
the input object.

AEQuery (Object, Object, Attribute) -+ Bool (Attribute-Equality Query) Query
if two input objects have the same
attribute value (e.g., same color).

Exist (ObjectSet) - Bool Query if the set is empty.

Count (ObjectSet) - Integer Query the number of objects in the
input set.

CLessThan (ObjectSet, ObjectSet) - Bool (Counting LessThan) Query if the
number of objects in the first input
set is less than the one of the second
set.

CGreaterThan (ObjectSet, ObjectSet) - Bool (Counting GreaterThan) Query if
the number of objects in the first
input set is greater than the one of
the second set.

CEqual (ObjectSet, ObjectSet) - Bool (Counting Equal) Query if the num-
ber of objects in the first input set
is the same as the one of the second
set.

Table B.1: All operations in the domain-specific language for the CLEVR VQA dataset

and output the latent embedding for decoding the next operation. The operation
decoder, the concept decoder, and the output encoders work jointly and recursively
to generate the hierarchical program layout. Algorithm 1 illustrates the algorithmic
outline of the semantic parser.

The function parse takes two inputs: the current decoding state f and all concepts
appeared in the question, as a set {ci}. The parsing procedure begins with encoding

230

Semantics

Return all objects in the scene.

Filter out a set of objects having
the object-level concept (e.g., red)
from the input object set.

Type Example Semantics

ObjConcept Red, Cube, etc. Object-level concepts.

Attribute Color, Shape, etc. Object-level attributes.

RelConcept Left, Front, etc. Relational concepts.

Object 0 A single object in the scene.

ObjectSet {.,0} A set of objects in the scene.

Integer 0,1,2,... A single integer.

Bool True, False A single boolean value.

Table B.2: The type system of the domain-specific language for the CLEVR VQA dataset

Algorithm 1: The String-to-Tree Semantic Parser

Function parse(f, {ci}):
program <- EmptyProgramo;
program.op +- OpDecoder(f);
if program.op requires a concept parameter then

L program.concept +- ConceptDecoder(f, {ci});

for i = 0, 1, - --number of non-concept inputs of program.op do

L program.input[i] <- parse (OEncoderi(f, program.op) ,{ci});
_ return program

the input question by IEncoder as fo, extracting the concept set {ci} from the input

question, and invoking parse(fo, {ci}).
The concept set {ci} is extracted using hand-coded rules. We assume that each

concept (including object-level concepts, relational concepts, and attributes) is associ-

ated with a single word in the question. For example, the word "red" is associated with

the object-level concept Red, while the word "shape" is associated with the attribute

Shape. Informally, we call these words concept words. For a given question Q, the

corresponding concept set {ci} is composed of all occurrences of the concept words in

Q. The set of concept words is known for the CLEVR dataset. For natural language

questions, one could run POS tagging to find all concept words [Andreas et al., 2016,
Schuster et al., 2015]. We leave the automatic discovery of concept words as a future

work [Gauthier et al., 2018]. We use the word embedding of the concept words as

the representation for the concepts {ci}. Note that, these "concept embeddings" are

only for the program parsing. The visual module has separate concept embeddings

for aligning object features with concepts in the visual-semantic space.

We now delve into the main function parse(f, {ci}): we first decode the root

operation op of the hierarchy by OpDecoder(f). If op requires a concept parameter (an

object-level concept, a relational concept, or an attribute), ConceptDecoder will be

invoked to choose a concept from all concepts {ci}. Assuming op takes two non-concept

231

inputs (e.g., the operation Intersection takes two object sets as its input), there

will be two branches for this root node. Thus, two output encoders OEncodero and

OEncoderi will be applied to transform the current state f into two sub-states fi and

f2. parse will be recursively invoked based on fi and f2 to generate the two branches
respectively. In the DSL, the number of non-concept inputs for any operation is at

most 2.
In our implementation, the input encoder IEncoder first maps each word in the

question into an embedding space. The word embeddings are composed of two parts:

a randomly initialized word embedding of dimension 256 and a positional embedding

of dimension 128 [Gehring et al., 2017]. For a concept word, its word embedding only

depends on which type it belongs to (i.e., object-level, relational or attribute). Thus,
after being trained on a fixed dataset, the semantic parser can parse questions with

novel (unseen) concept words. The sequence of word embeddings is then encoded by
a two-layer GRU with a hidden dimension of 256 x 2 (bidirectional). The function

parse starts from the last hidden state of the GRU, and works recursively to generate
the hierarchical program layout. Both OpDecoder and ConceptDecoder are feed-

forward networks. ConceptDecoder performs attentions over the representations of
all concepts {ci} to select the concepts. Output encoders OEncodero and OEncoderi

are implemented as GRU cells.
Another pre-processing of the sentence is to group consecutive object-level concept

words into a group and treat them together as a single concept, inspired by the notion

of "noun phrases" in natural languages. The computational intuition behind this

grouping is that, the latent programs of CLEVR questions usually contain multiple
consecutive Filter tokens. During the program parsing and execution, we aim to

fuse all such Filters into a single Filter operation that takes multiple concepts as

its parameter.

Running example. As a running example, consider again the question "What is
the color of the cube right of the red matte object?". We first process the sentence

(by rules) as: "What is the <Attribute 1 (color)> of the <(ObjConcept 1 (cube)>
<RelConcept 1 (right)> of the <ObjConcept 2 (red matte object)>?". The expected
parsing result of this sentence is:

Query(<Attribute 1>,
Filter(<ObjConcept 1>,

Relate(<RelConcept 1>,
Filter(<ObjConcept 2>, Scene)

)
)

The semantic parser encode the word embeddings with IEncoder. The last hidden

232

Step Inputs Outputs Recursive Invocation

1 fo OpDecoder(fo) -+ Query; parse(fi)
ConceptDecoder(fo) --< Attribute 1 >;
OEncodero (fo, Query) -* fi

2 fi OpDecoder(fi) - Filter; parse(f2)
ConceptDecoder(fi) -+< ObjConcept 1 >;
OEncodero(fi, Filter) -+ f2

3 f2 OpDecoder(f 2) -* Relate; parse(f3)
ConceptDecoder(f 2) ->< RelConcept 1 >;
OEncodero(f 2 , Relate) -+ f3

4 f3 OpDecoder(f 3) -+ Filter; parse(f4)
ConceptDecoder(f 3) -- < ObjConcept 2 >;
OEncodero(f3 , Filter) -- f4

5 f OpDecoder(f3) -+ Scene; (End of branch.)

Table B.3: A step-by-step running example of the recursive parsing procedure. The
parameter {ci} is omitted for better visualization.

state of the GRU will be used as fo. The word embeddings of the concept words
form the set {ci} = {Attribute 1, ObjConcept 1, RelConcept 1, ObjConcept 2}. The
function parse is then invoked recursively to generate the hierarchical program layout.
Table B.3 illustrates the decoding process step-by-step.

B.3 Program Execution

In this section, we present the implementation of all operations listed in Table B.1.
We start from the implementation of Object-typed and ObjectSet-typed variables.
Next, we discuss how to classify objects by object-level concepts or relational concept,
followed by the implementation details of all operations.

Object-typed and ObjectSet-typed variables. We consider a scene with n
objects. An Object-typed variable can be represented as a vector Object of length
n, where Object E [0,1] and E Objecti = 1. Object can be interpreted as the
probability that the i-th object of the scene is being referred to. Similarly, an ObjectSet-
typed variable can be represented as a vector ObjectSet of length n, where ObjectSeti E
[0, 1]. ObjectSeti can be interpreted as the probability that the i-the object is in
the set. To cast an ObjectSet-typed variable ObjectSet as an Object-typed variable
Object (i.e., the Unique operation), we compute: Object = softmax(o- 1 (ObjectSet)),
where --1 (x) = log(x/(1 - x)) is the logit function.

Concept quantization. Denote o as the visual representation of the i-th object,
OC the set of all object-level concepts, and A the set of all object-level attributes.
Each object-level concept oc (e.g., Red) is associated with a vector embedding v°"

233

and a Li-normalized vector b" of length JAI. b" represents which attribute does this
object-level concept belong to (e.g., the concept Red belongs to the attribute Color).
All attributes a E A are implemented as neural operators, denoted as Ua (e.g., uColor

To classify the objects as being Red or not, we compute:

Pr[object i is Red] = o (b . VRed) -

aA

where o- denotes the Sigmoid function, (.,.) the cosine distance between two vectors.

-y and T are scalar constants for scaling and shifting the values of similarities. By
applying this classifier on all objects we will obtain a vector of length n, denoted
as ObjClassify(Red). Similarly, such classification can be done for relational con-

cepts such as Left. This will result in an n x n matrix RelClassify(Left), where
RelClassify(Left)j,i is the probability that the object i is left of the object j.

To classify whether two objects have the same attribute (e.g., have the same
Color), we compute:

Pr[object i has the same Color as object J = ((Color(0),

We can obtain a matrix AEClassify(Color) by applying this classifier on all pairs of

objects, where AEClassifier(Color)j,i is the probability that the object i and j have
the same Color.

Quasi-symbolic program execution. Finally, Table B.4 summarizes the imple-
mentation of all operators. In practice, all probabilities are stored in the log space for
better numeric stability.

B.4 Optimization of the Semantic Parser

To tackle the optimization in a non-smooth program space, we apply an off-policy
program search process [Sutton et al., 20001 to facilitate the learning of the semantic
parser. Denote P(s) as the set of all valid programs in the CLEVR DSL for the input
question s. We want to compute the gradient w.r.t. 8 , the parameters of the semantic
parser:

Ve, = Ve),Ep[r . log Pr[P]],

where P - SemanticParse(s; 0,). In REINFORCE, we approximate this gradient via
Monte Carlo sampling.

An alternative solution is to exactly compute the gradient. Note that in the

definition of the reward r, only the set of programs Q(s) leading to the correct answer
will contribute to the gradient term. With the perception module fixed, the set Q can

234

Signature Implementation

Scene() - out: ObjectSet out := 1

Filter(in: ObjectSet, outi min(ini, ObjClassify(oc))
oc: ObjConcept) -+ out: ObjectSet

Relate(in: Object, rc: RelConcept) - outi := EZ(ing- RelClassify(rc),,))
out: ObjectSet

AERelate(in: Object, a: Attribute) -4 out := EZ(ing -AEClassify(a),,2))
out: ObjectSet

Int erse ct ion(inf i): ObjectSet, outi :=min(infl , in ())
in(2): ObjectSet) -* out: ObjectSet

Union(in(l): ObjectSet, outi := max(in), in (2)
in(2): ObjectSet) - out: ObjectSet

Query(in: Object, a: Attribute) - . . ObjClassify(oc) -b°
out: ObjConcept Pi E ObjClassify(oc')

AEQuery(in(1): Object, in(2): Object, b :=Ei (in . in - AEClassify(a)j,2))
a: Attribute) -> b: Bool

Exist(in: ObjectSet) -+ b: Bool b := maxi ini

Count(in: ObjectSet) - i: Integer i :E ini

CLessThan(in('): ObjectSet, b := o((in(') - Ein(- 1 + yc)/Tc)
in('): ObjectSet) -+ b: Bool

CGreaterThan(ini(): ObjectSet, b := -(() in(')
- E in(2) - 1 + c)/Tc)

in(): ObjectSet) -+ b: Bool

CEqual(in('): ObjectSet, b := -((-I E in(' - | +7c)/(7c Tc))
in(2): ObjectSet) -4 b: Bool

Table B.4: All operations in the domain-specific language for the CLEVR VQA dataset.

yc = 0.5 and Tc = 0.25 are constants for scaling and shift the probability. During inference, one can
quantify all operations as Yi et al. 120181.

be efficiently determined by an off-policy exhaustive search of all possible programs
P(s). In the third stage of the curriculum learning, we search for the set Q offline based
on the quantified results of concept classification and compute the exact gradient Ve).
An intuitive explanation of the off-policy search is that, we enumerate all possible

programs, execute them on the visual representation, and find the ones leading to

the correct answer. We use Q(s) as the "groundtruth" program annotation for the

question, to supervise the learning, instead of running the Monte Carlo sampling-based

REINFORCE.

Spurious program suppression. However, directly using Q(s) as the supervision

by computing £ EPQ(S) - log Pr(p) can be problematic, due to the spuriousness or
the ambiguity of the programs. This comes from two aspects:

235

1) intrinsic ambiguity: two programs are different but equivalent. For example

P1: AEQuery(Color, Filter(Cube), Filter(Sphere)) and

P2: Exist (Filt er(Sphere, AERelate(Color, Filter(Cube))))

are equivalent.
2) extrinsic spuriousness: one of the program is incorrect, but also leads to the

correct answer in a specific scene. For example,

P1: Filter(Red, Relate(Left, Filter(Sphere))) and

P2: Filter(Red, Relate (Left, Filter(Cube)))

may refer to the same red object in a specific scene. Motivated by the REINFORCE

process, to suppress such spurious programs, we use the loss function:

= stop _gradient(Pr[p]). (-log Pr[p]).
pEQ

The corresponding gradient Ve, is,

Ve, = 1 Pr[p] . Ve, (r . log Pr[P]) = Ve, r - Pr[p]).
PEQ (E

The key observation is that, given a sufficiently large set of scenes, a program can be

identified as spurious if there exists at least one scene where the program leads to a
wrong answer. As the training goes, spurious programs will get less update due to the

sampling importance term Pr[p] which weights the likelihood maximization term.

B.5 Curriculum Learning Setup

During the whole training process, we gradually add more visual concepts and

more complex question examples into the model. Summarized in Figure 8-7(A), in
general, the whole training process is split into 3 stages. First, we only use questions

from lesson 1 to let the model learn object-level visual concepts. Second, we train
the model to parse simple questions and to learn relational concepts. In this step, we

freeze the neural operators and concept embeddings of object-level concepts. Third,
the model gets trained on the full question set (lesson 3), learning to understand

questions of different complexities and various format. For the first several iterations
in this step, we freeze the parameters in the perception modules. In addition, during

the training of all stages, we gradually increase the number of objects in the scene:

from 3 to 10.

We select questions for each lesson in the curriculum learning by their depth of the

236

latent program layout. For eaxmple, the program "Query(Shape, Filter(Red, Scene))"

has the depth of 3, while the program "Query(Shape, Filter(Cube, Relate(Left,

Filter(Red, Scene))))" has the depth of 5. Since we have fused consecutive Filter

operations into a single one, the maximum depth of all programs is 9 on the CLEVR

dataset. We now present the detailed split of our curriculum learning lessons:

For lesson 1, we use only programs of depth 3. It contains three types of questions:

querying an attribute of the object, querying the existence of a certain type of objects,

count a certain type of objects, and querying if two objects have the same attribute

(e.g., of the same color). These questions are almost about fundamental object-based

visual concepts. For each image, we generate 5 questions of lesson 1.

For lesson 2, we use programs of depth less than 5, containing a number of questions

regarding relations, such as querying the attribute of an object that is left of another

object. We found that in the original CLEVR dataset, all Relate operations are

followed by a Filter operation. This setup degenerates the performance of the learning

of relational concepts such as Lef t. Thus, we add a new question template into the

original template set: Count(Relate(- , Filter(- , Scene))) (e.g., "What's the

number of objects that are left of the cube?"). For each image, we generate 5 questions

of lesson 2.

For lesson 3, we use the full CLEVR question set.

Curriculum learning is crucial for the learning of our neuro-symbolic concept

learner. We found that by removing the curriculum setup w.r.t. the number of object

in the scenes, the visual perception module will get stuck at an accuracy that is similar

to a random-guess model, even if we only use stage-1 questions. If we remove the

curriculum setup w.r.t. the complexity of the programs, the joint training of the visual

perception module and the semantic parser can not converge.

B.6 Ablation Study

We conduct ablation studies on the accuracy of semantic parsing, the impacts of

the ImageNet pre-training of visual perception modules, the data efficiency of our

model, and the usage of object-based representations.

B.6.1 Semantic Parsing Accuracy

We evaluate how well our model recovers the underlying programs of questions.

Due to the intrinsic equivalence of different programs, we evaluate the accuracy of

programs by executing them on the ground-truth annotations of objects. Invalid or

ambiguous programs are also considered as incorrect. Our semantic parser archives

> 99.9% QA accuracy on the validation split.

237

B.6.2 Impacts of the ImageNet Pre-training

The only extra supervision of the visual perception module comes from the pre-

training of the perception modules on ImageNet [Deng et al., 2009]. To quantify the

influence of this pre-training, we conduct ablation experiments where we randomly

initialize the perception module following He et al. [2016]. The classification accuracies

of the learned concepts almost remain the same except for Shape. The classification

accuracy of Shape drops from 98.7 to 97.5 on the validation set while the overall

QA accuracy on the CLEVR dataset drops to 98.2 from 98.9. We speculate that

large-scale image recognition dataset can provide prior knowledge of shape.

B.6.3 Data Efficiency and Object-Based Representations

In this section, we study whether and how the number of training samples and

feature representations affect the overall performance of various models on the CLEVR

dataset. Specifically, we compare the proposed NS-CL against two strong baselines:

TbD [Mascharka et al., 2018] and MAC [Hudson and Manning, 2018].

Baselines. For comparison, we implement two variants of the baseline models:

TbD-Object and MAC-Object. Inspired by Anderson et al. [2018], instead of using a

2D convolutional feature map, TbD-Object and MAC-Object take a stack of object

features as inputs, whose shape is k x debj. k is the number of objects in the scene,

and dobj is the feature dimension for a single object. In our experiments, we fix k = 12

as a constant value. If there are fewer than 12 objects in the scene, we add "null"

objects whose features are all-zero vectors.

We extract object features in the same way as NS-CL. Features are extracted from

a pre-trained ResNet-34 network before the last residual block for a feature map with

high resolution. For each object, its feature is composed of two parts: region-based

(by Rol Align) and image-based features. We concatenate them to represent each

object. As discussed, the inclusion of the representation of the full scene is essential

for the inference of relative attributes such as size or spatial position on the CLEVR

domain.

TbD and MAC networks are originally designed to use image-level attention for

reasoning. Thus, we implement two more baselines: TbD-Mask and MAC-Mask.

Specifically, we replace the original attention module on images with a mask-guided

attention. Denotes the union of all object masks as M. Before the model applies the

attention on the input image, we multiply the original attention map computed by

the model with this mask M. The multiplication silences the attention on pixels that

are not part of any objects.

Results. Table 8.5 summarizes the results. We found that TbD-Object and MAC-

Object approach show inferior results compared with the original model. We attribute

238

this to the design of the network architectures. Take the Relate operation (e.g.,
finds all objects left of a specific object x) as an example. TbD uses a stack of
dilated convolutional layers to propagate the attention from object x to others. In
TbD-Object, we replace the stack of 2D convolutions by several ID convolution layers,
operating over the k x dobj object features. This ignores the equivalence of objects
(the order of objects should not affect the results). In contrast, MAC networks always
use the attention mechanism to extract information from the image representation.
This operation is invariant to the order of objects, but is not suitable for handling
quantities (e.g., counting objects).

As for TbD-Mask and MAC-Mask, although the mask-guided attention does not
improve the overall performance, we have observed noticeably faster convergence
during model training. TbD-Mask and MAC-Mask leverage the prior knowledge of
object masks to facilitate the attention. Such prior has also been verified to be effective
in the original TbD model: TbD employs an attention regularization during training,
which encourages the model to attend to smaller regions.

In general, NS-CL is more data-efficient than MAC networks and TbD. Recall
that NS-CL answers questions by executing symbolic programs on the learned visual
concepts. Only visual concepts (such as Red and Left) and the interpretation of
questions (how to translate questions into executable programs) need to be learned
from data. In contrast, both TbD and MAC networks need to additionally learn to
execute (implicit or explicit) programs such as counting.

For the experiments on the full CLEVR training set, we split 3,500 images (5%
of the training data) as the hold-out validation set to tune the hyperparameters and
select the best model. We then apply this model to the CLEVR validation split and
report the testing performance. Our model reaches an accuracy of 99.2% using the
CLEVR training set.

B.7 Extending to Other Scene and Language Domains

B.7.1 Minecraft Dataset

We also extend the experiments to a new reasoning testbed: Minecraft worlds [Yi
et al., 2018]. The Minecraft reasoning dataset differs from CLEVR in both visual
appearance and question types. Figure B-1 gives an example instance from the dataset.

Setup. Following Yi et al. [2018], we generate 10,000 Minecraft scenes using the
officially open-sourced tools by Wu et al. [2017b]. Each image contains 3 to 6 objects.
The objects are chosen from 12 categories, with 4 different facing directions (front,
back, left and right). They stand on a 2D plane.

Besides different 3D visual appearance and image contexts, the Minecraft reasoning

239

Q: What direction is the closest creature facing?
A: Left.
P: Query(Direction, FilterMost(Closest,

Filter(Creature)

Figure B-1: An example image and a related question-answering pair from the Minecraft
dataset

Model Overall Count Exist Belong Query

NS-VQA 87.7 83.3 91.5 91.1 86.4
NS-CL 93.3 91.3 95.6 93.9 94.3

Table B.5: Results on the Minecraft dataset. Our model achieves comparable results on the
Minecraft dataset with baselines trained by full program annotations.

dataset introduces two new types of reasoning operations. We add them to our domain-
specific language:

1. FilterMost(ObjectSet, Concept) -± ObjectSet: Given a set of objects, finds the
"most" one. For example, FilterMost(Closest, set) locates the object in the
input set that is cloest to the camera (e.g., what is the direction of the closest
animal?)

2. BelongTo(Object, ObjectSet) -4 Bool: Query if the input object belongs to a
set.

Results. Table B.5 summarizes the results and Figure B-4 shows sample execution
traces. We compare our method against the NS-VQA baseline [Yi et al., 2018], which

uses strong supervision for both scene representation (e.g., object categories and
positions) and program traces. In contrast, our method learns both by looking at

images and reading question-answering pairs. NS-CL outperforms NS-VQA by 5%
in overall accuracy. We attribute the inferior results of NS-VQA to its derendering

module. Because objects in the Minecraft world usually occlude with each other,
the detected object bounding boxes are inevitably noisy. During the training of the

derendering module, each detected bounding box is matched with one of the ground-

truth bounding boxes and uses its class and pose as supervision. Poorly localized

bounding boxes lead to noisy labels and hurt the accuracy of the derendering module.
This further influences the overall performance of NS-VQA.

B.7.2 VQS Dataset

We conduct experiments on the VQS dataset [Gan et al., 2017]. VQS is a subset
of the VQA 1.0 dataset [Antol et al., 2015]. It contains questions that can be visually

240

Q: Does this man have any pens on
him?
A: Yes.
P: Exist(Filter(Man,

Relate(Have, Filter(Pen))

Figure B-2: An example image from the VQS dataset. The orange bounding boxes are object
proposals. On the right, we show the original question and answer in natural language, as well as the
latent program recovered by our parser. To answer this question, models are expected to attend to
the man and his pen in the pocket.

grounded: each question is associated with multiple image regions, annotated by

humans as necessary for answering the question.

Setup. All models are trained on the first 63,509 images of the training set, and

tested on the test split. For hyper-parameter tuning and model selection, the rest

5,000 images from the training set are used for validation. We use the multiple-choice

setup for VQA: the models choose their most confident answer from 18 candidate

answers for each question.
To obtain the latent programs from natural languages, we use a pre-trained

syntactic dependency parser [Andreas et al., 2016, Schuster et al., 2015] for extracting

programs and concepts that need to be learned. A sample question and the program

obtained by our parser is shown in Figure B-2. The concept embeddings are initialized

by the bag of words (BoW) over the GloVe word embeddings [Pennington et al., 2014].

Baselines. We compare our model against two representative baselines: MLP [Jabri

et al., 2016] and MAC [Hudson and Manning, 20181.
MLP is a standard baseline for visual-question answering, which treats the multiple-

choice task as a ranking problem. For a specific candidate answer, a multi-layer

perceptron (MLP) model is used to encode a tuple of the image, the question, and

the candidate answer. The MLP outputs a score for each tuple, and the answer to

the question is the candidate with the highest score. We encode the image with a

ResNet-34 pre-trained on ImageNet and use BoW over the GloVe word embeddings
for the question and option encoding.

We slightly modify the MAC network for the VQS dataset. For each candidate
answer, we concatenate the question and the answer as the input to the model. The

MAC model outputs a score from 0 to 1 and the answer to the question is the candidate
with the highest score. The image features are extracted from the same ResNet-34
model.

Results. Table 8-9 summarizes the results. NS-CL achieves comparable results with
the MLP baseline and the MAC network designed for visual reasoning. Our model also

241

brings transparent reasoning over natural images and language. Example execution
traces generated by NS-CL are shown in Figure B-5. Besides, the symbolic reasoning
process helps us to inspect the model and diagnose the error sources. See the caption
for details.

B.8 Visualization of Execution Traces and Visual Concepts

Another appealing benefit is that our reasoning model enjoys full interpretability.

Figure B-3, Figure B-4, and Figure B-5 show NS-CL's execution traces on CLEVR,
Minecraft, and VQS, respectively. As a side product, our system detects ambiguous

and invalid programs and throws out exceptions. As an example (Figure B-3), the
question "What's the color of the cylinder?" can be ambiguous if there are multiple
cylinders or even invalid if there are no cylinders.

Figure B-6 and Figure B-7 include qualitative visualizations of the concepts learned
from the CLEVR and Minecraft datasets, including object categories, attributes, and
relations. We choose samples from the validation or test split of each dataset by
generating queries of the corresponding concepts. We set a threshold to filter the
returned images and objects. For quantitative evaluations of the learned concepts on

the CLEVR dataset, please refer to Table 8.3 and Table 8.7.

242

Example A.

Q: Do the cyan cylinder that is behind
the grav cylinder and the gay
cylinder have the same material?

Q: There is a small blue obiect
that is to the ight of the small red
matte object; what shape is it?

Concept Program

Gray Cylinder Filter

Behind Relate

Cyan Cylinder - Filter

Gray Cylinder Filter

Material AEQuery

Example C. Failure Case

Result Concept Program Result

Small Red Filter
Matte Object

Right Relate

Small Blue Filter

Object

Shape Query Cube (0.85)

Yes (0.92)

Example D. Ambiguous Program Case

Q: What is the color of the big box
left ofthe blue metal cylinder?

Q: What is the color of the big
metal obiect?

Program Result

Filter No such object found!

Execution r----------------------------------
Exction

TAbort

tRelate

Filter

Color: Blue I/
Material: Rubber X

Query Shape: Cylinder V
Size: Small

Concept Program

Big Metal Filter
Object Execution

Abort

Color Query

Result

Ambiguous Referral!

Figure B-3: Exemplar execution trace generated by our Neuro-Symbolic Concept Learner
on the CLEVR dataset. Example A and B are successful executions that generate correct answers.
In example C, the execution aborts at the first operator. To inspect the reason why the execution
engine fails to find the corresponding object, we can read out the visual representation of the object,
and locate the error source as the misclassification of the object material. Example D shows how
our symbolic execution engine can detect invalid or ambiguous programs during the execution by
performing sanity checks.

243

Concept

Blue Metal

Cylinder

Left

Big Box

Color

Example B.

Example A.

Q: Are there sheep near the wolf?

Program Result

O Filtere

Relate

Filter

Exist No (0.98) v

Example C.

* Q: Which direction is the closest
animal facing?

Program

Filter

FilterMost

Face

Example B.

Concept

Pig

Closer

Animal

Q: How many animals are closer
to the camera than the pg?

Program Result

Filter

Relate

Filter

Count 11

Example D. Failure Case

Q: How many pigs are there?

Concept Program Result

Pig Filter

Count

E Detected
Missed

Result

Right

IX

Figure B-4: Exemplar execution trace generated by our Neuro-Symbolic Concept Learner
on the Minecraft reasoning dataset. Example A, B and C are successful execution. Example
C demonstrates the semantics of the FilterMost operation. Example D shows a failure case: the
detection model fails to detect a pig hiding behind the big tree.

244

Concept

Wolf

Near

Sheep

Concept

Animal

Closest

Direction

Example A.

Q: How many zebras are there?

Concept Program

Zebra

Result

Filter

Count

Example C.

Q: What is the sharm object on the table?

Concept Program Result

Table Filter

On Relate

Shape Object Filter

What Query Knife (0.85) 1

Example D.

Q: What kind of desert is plated?

Concept Program Result

Desert, Plated Filter

Kind Query Cake (0.68)v

Q: What are the kids doing?

Concept Program

Kids Filter

What Query

Result

PlayingFrisbee(0.70) X
Groundtruth: PlayingBaseball

Figure B-5: Exemplar execution trace generated by our Neuro-Symbolic Concept Learner
on the VQS dataset. Execution traces A and B shown in the figure leads to the correct answer to

the question. Our model effectively learns visual concepts from data. The symbolic reasoning process
brings transparent execution trace and can easily handle quantities (e.g., object counting in Example
A). In Example C, although NS-CL answers the question correctly, it locates the wrong object during
reasoning: a dish instead of the cake. In Example D, our model misclassifies the sport as frisbee.

245

Exampile B.

Concept: Cylinder

Concept: Blue Sphere

Concept: Yellow Obiect Left of C

Figure B-6: Concepts learned on the CLEVR dataset

246

Concept: Wolf

Concept: Closest Living Thing

Figure B-7: Concepts learned on the Minecraft dataset

247

THIS PAGE INTENTIONALLY LEFT BLANK

248

Appendix C

Details and Results for 3D Shape Programs

In Appendix C, we supply additional details for the Shape Programs introduced

in Chapter 9.

C.1 Defined Programs

The details of semantics and shape primitives in our experimental setting for
furniture are shown in Table C.1. Due to the semantic nature of objects, while a few
semantics are category specific, e.g., "ChairBeam", other semantics are shared across

different shape categories, e.g., "Leg" and "Top".

C.2 Architecture Details

Program generator. The program executor contains a 3D ConvNet and two
LSTMs. (1) 3D ConvNet. This 3D ConvNet is the first part of the program generator

model. It consists of 8 3D convolutional layers. The kernel size of each layer is 3
except for the first one whose kernel size is 5. The number of output channels are

(8,16,16, 32, 32, 64, 64, 64), respectively. The output of the last layer is averaged over
the spatial resolution, which gives a 64-dimension embedding. (2) Block LSTM and

Step LSTM. These two LSTMs share similar structure. Both are one-layer LSTMs.
The dimensions of the input and hidden state are both 64.

Program executor. The program executor contains an LSTM and a 3D DeConvNet.
(1) LSTM. This LSTM aggregates a block-level programs into a 64-dimensional
vector. The dimension of the hidden state is also 64. The input of each time step
is the concatenation of category distribution over programs and the corresponding
parameters retrieved from the parameter matrix. (2) 3D DeConvNet. It consists of 7
layers. TransposedConv layer with kernel size 4 and Conv layer with kernel size 3 are
alternating. The number of output channels are (64, 64, 16, 16, 4, 4, 2), respectively.

The output of the last layer is fed into a sigmoid function to generate the 3D voxel
shape.

249

Leg

Top

Layer

Support

Base

Sideboard
Semantics

Horizontal Bar

Vertical Board

Locker

Back

Back support

ChairBeam

Cylinder (Cyl)

Cuboid (Cub)

Circle (Cir)
Shapes

Square (Sqr)

Rectangle (Rect)

Line (Line)

Table C.1: The list of semantics

Chair leg, table leg, etc. Usually long and used jointly for
support

Seat top, table top, etc. Usually a broad and flat surface

Shelf embedded in table, cabinet shelf etc. Usually a flat
surface between other similar shapes

Chair support, table support etc. A monolithic object used
to raise things off the ground

Base of an sofa, table etc. Usually a flat surface on the
ground to help with stability

Sideboard of a cabinet, table etc. A vertical, flat surface on
the bottom half of an object

Horizontal bar of a chair etc. A thin bar used for structural
integrity

Vertical board of a arm rest etc. A vertical, flat surface
used by humans for arm support

Table drawer etc. A boxy object used to put things in

Chair back, Sofa back etc. A surface used for resting backs
on

Office chair back support beam etc. A beam used to support
a back rest

Arm rest support beam in chairs, benches etc. A long object
used to support an arm rest

P = (x, y, z), G (t, r), draw a cylinder at (x, y, z) with
sizes (t, r)

P = (x, y, z), G (t, ri, r2 , [ang]), draw a cuboid at (x, y, z)
with sizes (t, ri, r2) and optional ang of tilt along front/back

P = (x, y, z), G (t,r), draw a circle at (x, y, z) with sizes
(t, r), t is usually small

P = (x, y, z), G = (t, r), draw a square at (x, y, z) with sizes
(t, r), t is usually small

P = (x, y, z), G = (t, ri, r2), draw a rectangle at (x, y, z)
with sizes (t, ri, r2), t is usually small

P = (xi, y1, zi), G = (x2 , y 2 , z 2), draw a line from P to G

and shapes, as well as associated parameters used by our model

End-to-end differentiability. The end-to-end differentiability is obtained via our
design of the neural program executor. The output of the program inference model
is actually continuous. A real execution engine (not the neural executor) actually
contains two steps: (1) discretize such output, and (2) execute the discretized program
to generate the voxel. Our neural executor is learned to jointly approximate both
steps, thus the whole pipeline can be differentiable in an end-to-end manner.

250

Rec

(a) 10 templates for synthetic dataset (b) Raw and reconstructed shapes on ShapeNeT

Figure C-1: Templates and results on the ShapeNet dataset. (a) shows random samples
from all of our 10 table templates for synthetic dataset. (b) shows raw and reconstructed tables on
ShapeNet.

C.3 Synthetic Templates vs. ShapeNet

ShapeNet was proposed to be the ImageNet of shapes; it is therefore highly diverse

and intrinsically challenging. Our synthetic dataset were designed to provide minimal,
simple guidance to the network. In Figure C-1, (a) shows sampled shapes from all of

our 10 table templates, while (b) shows the ground truth and reconstructed tables

in ShapeNet, which are significantly more complex. Such disparity of complexity

explains why we saw a dramatic drop of IoU when we directly tested on ShapeNet
with model only pre-trained on synthetic dataset. Our guided adaptation further

adapt the pre-trained model.

C.4 Additional Results

In Figure C-2 through Figure C-8, we show the generated shape and programs

using a network that is only pre-trained jointly on synthetic "table" and "chair" objects,
and a network that is pre-trained then further enhanced by guided adaptation on
ShapeNet data. Figure C-2 and Figure C-3 correspond to "chairs", Figure C-4 to

"tables", Figure C-5 to "benches", Figure C-6 to "couches", Figure C-7 to "cabinets",
and Figure C-8 to "beds". In Figure C-2, Figure C-3, and Figure C-4, even though
"chair" and "table" have been seen in the synthetic dataset, we still note improvements

in program inference and shape reconstruction on ShapeNet after guided adaptation.
This is because our synthetic data is simpler than ShapeNet data. When directly

using a model pre-trained on synthetic "chairs" and "tables" to other classes, it is not

surprised some shapes are interpreted as tables or chairs. However, such mispredictions

dramatically drop after our guided adaptation.

251

Reconstruction before adaption
draw('Top','Rect',P=(5,0,0),G=(1,8,10))

for(i<2 ,Trans',um(0,0,16))
draw('Sideboard' , 'Rect',P=(-8,1,-8)+

(iu,G=(13,8,1))y

draw 'Layer', 'Rect', P=(--5,0,0) ,G=(1, .9))

Reconstruction after adaption
draw('Top ','Rect',P=(0,0,0),G=(2,8,9))

for(i<2,'Trans',u=(0,0,14))

for()3<2,'Trans-,u2=(0,12,0))

draw('Leg','Cub',P=(-11,-7,-8)

+(jxu2)+(ixul),G=(14,3,1))

draw('TiltBack, 'Cub',P=(1,5,-7),
G= (10 ,2, 15, 11))

for(i<2, 'Trans ,u=(0,0,15))
draw('HoriBar' 'Cub' ,P=(5, -8, -9)

+(ixu),G=(2,14,2))

(a) i(b)

Reconstruction before adaption (c) (d)
draw('Top','Cir',P=(-1,-1,0),G=(2,8))

draw 'Support' 'Cy1' , P=(-.11, -1, 0) , G=(10, 2)

for(i<4,'Rot , e_,=90,ax=(-12,-1,0))
draw('Base','Line',P=(-12,-1,0),G=(-12,-7-4),

draw('TiltBack','Cub',P-(0,3,-5),G=(12,2,11,5))

for(i<2, Trans' ,u=(0,0,13))
draw ('ChairBea','Cub',P=(0 ,-3,-7 +(iu) G=311

for(i<2,'Trans',u=(0,0,13))
draw('HoriBar' ,'Cub' ,P=(3, -3, -7)

+(ixu) ,,G=(2,7,1))

Reconstruction after adaption
Input draw('Top','Cir',P=(-2,-1,0),G=(2,7))

dra ('Support' 'Cyl,1P=(-11,--1,0) G= t(11,1))

for (i<5, Rot 0=72,ax=(-11,--1,0))
draw('ae,Line',P=(-11,-1,0),G=(-11,-7,-4)

0 xi X, ax)

draw (' TiltBack ','Cub' ,P= (-1, 3, -5) , G= (12,2, 10,5))

for(i<2,'Transl,u=(0,0,12))
draw('Chaireama' ,'Cub' ,P=(0 ,-2,-7)

+(ixu),G=(4,2,2))

for(i<2,'Trans',um(0,0,12))
draw('HoriBra','Cub',P=(4,-2,-7)

+(ixu),G=(2,6,2))

Reconstruction before adaption

draw('Top', 'Rect', P=(-5,-2,0),G=(4,7,9))

draw ('Support' , 'Cyl' , P=(-11, -2,0) , G=(10,2))

draw('Base' ,Cir' ,P=(-12,2,0),G=(1,6))

draw ' Tilt~ack','Cub',P=(-2,4,-8),G=(13,3,15,17)

fori<2, 'Trans' ,u=(0,0,21))
draw('Sideboard', 'Rect' ,P=(-2,0,11)

+(ix)ru) ,G=(4,5,1))

Input Reconstruction after adaption Input
drw) 'Top','Rect',P=(-6,-1,0),G=(5,8,9))

draw(Support' ,'Cyl' ,P=(-11,-2,0) , (10, 2))

for(i<4,'Rot',O,,,=90,ax=(-12,-2,0))
draw ('Bass','Line' ,P=(-12,-2,0) ,G(-12,-9,-7),

0,xi, ax)

draw('TiltBack','Cub',P=(-2,3,-
7),G=(13,4,15,17))

for(i<2,'Trans',u=(0,0,20))
draw('Sideboard', 'Rect' ,P=(-2,0,-12)

+(iu) ,G=(3,6,3))

Reconstruction before adaption
draw ('Top','Sqr',P=(1,O,0),G=(3,6))

for) (i<2, ' Trans I, ul=(0,0, 7))Itnt <2,lTrans ,u2 (0,9 0))
draw('Leg',Cb ,= -1 6 -5

+(jvu2)+(ixul),G=(14,2,3))

draw('Base','Sqr',P=(-8,0,0),G=(2,5))

draw('Tiltack','Cub',P=(2,3,-5) ,G(10,3,10,6))

Reconstruction after adaption
draw('Top','Sqr',P=(-3,0,0),G=(3 5))

for) i<2,'Trans',ul=(0,0,7))
for(j<2, 'Trans',u2(09,0))
draw('Leg','Cub',P=(-11,-6,-5)

+(jxu2)+(ixul) ,G-(13,2,3))

draw('TiltBack','Cub',P=(1,2,-5),G= (10,3,10,6))

for(i<2,'Trans',ua(0,0,7))
draw('ChairBeam' Cub' ,P=(1,-6,-5)

+(ixu),G=(3,1,2))

for~i<2,'Trans',u-<0,0,6))
draw('HoriBar', 'Cub' ,P=(3,-6, -5)+(ixu) ,G=(1, 9, 3))

Reconstruction before adaption
draw('Top','Rect',P=(5,-1,0),G=(1,11,12))

for(j<2,''Trans',u2=)0,20,0))
draw('Leg' 'Cub' ,0P)-7,-11, -12)

4), ~ +(3xu2)+(ixul),G=(14,2,1))

for(i<2, Trans ,u=(0,0,23))
P draw('HoriBar', 'Cub' ,P=(-6, -10 ,-12)

+(ixu),G=(1,21,1))

dr:aw (HriBar ' , u' , P=(-5, -2, -13)

Reconstruction after adaption
t draw('Top','Rect',P=(-1,-1,0),G=(2,10,11))

for~ni<2, 'Trans',ul=(0,0,22))

fortj<2,'Trans',u2=(0,19,0))P drs'a 'L' , ub' , P=-1, - ,-12)
+(jxu2)+(ixul),G=(12,2,2))

for(iC2,'Trans',ul=(0,0,
2 2

))
draw('HoriBar' ,'Cub', P=-10,-11,-12)

+(ixu),G=(2,20,2))

draw('BackSupp','Cub',P=(1,6,-4),G=(3, 1,8))

draw('TiltBack','Cub',P=(3,6,-12),G=(7,2,23,30))

for(i<2,'Trans',u-(0,0,18))
draw('ChairBeam','Cub' ,P=(1,-11,-10)

+(ixu),G=(4,1,3))

for(i<2,'Trans,u=(0,18))
dray('Horiar' 'Cub',P=(5,--11-11)

+(ivu) ,Gn(2,19.3))

(e) (Reconstruction before adaption
draw('Top','Cir',P=(3,0,0),G=(3,12))

for(i<2,'Trans',ul=(0,0,16))

for(j<2,'Trans',u2=(0,16,0)}

dw Leg' ', Cub' , P=(•-6, -9, -9)

+(ixu2)+(xul),G=(13,2,2))p for(i<2, 'Trans' ,u=(0,0,16))
draw('HriBar', 'Cub' , P=(-5,-10,-9)

+(ixu),G=(1,19,2))

draw('Horiar' ,'Cub',P=(-4,-2,-9),G=(1,3,18))

Reconstruction after adaption
draw('Top','Cir',P=-1,-1,0),G=(3,11))

for(1.<2 'Trans',u1=(0,0,15))

for(j<2,'Trans',u2=(0,15,0))

draw('Leg','Cub',P=(-11,-9,-8)

+(jxu2)+(ixul),G=(13,1,1))

for (i<2, ' Trans ,u=(0, 0,15))
draw)(' Horilar ' ,' Cub't , P=)(-11 , -10 , -8)

+(ixu),G={1,17,1))

draw('TiltBack','Cub',P=(2,5,-9),G=(8,3,17,21))

for(i<2,'Trans',um(0,0,18))
draw('Sideboard' 'Rect' ,P=(3,-1,-10)

+(iu) ,G=(5,7,2))

Figure C-2: Generated shapes and programs for ShapeNet chairs

252

Reconstruction before adaption Reconstruction before adaption
draw('Top','Rect',P=(2,O,0),G=(4,9,11)) draw('Top','Rect',P=(-4,-2,0),G=(4,7,8))

for(i<2,'Transt,ul=(0,0,15)) draw('Support','Cy1',P=(--11,-2,0),G=(10,2))

for(j<2,'Trans',u2=(0,16,0)) for(i<2,'Trans',u=(0,0,10))
draw ('Leg' , ' Cub' , P=(-8, -10, -9) dr(i<Horar ',ub' ,P11- 6
+(3xu2)+(ixul),G=(15,2,3)) +(i) G= ,12 ,))

+ (i+(ixu), G=(1,12,2))

for(i<2,.'Trans,u(,0,16))

+(+(ixu),G=(2,5 2))
for(i<2,'Trans',u=(0,0,16))

Recnsrucioaferaapti on draw(Sideboard', 'Rent' ,P=(-1,-2,-9)

Input draw('Top','Rect',P=(-3,0,0),G=(5,9,10))

for(<2,Trans,u=(,,13))Reconstruction after adaption

for(j<2,'Trans,u2=(0,17,0)) Input draw('Top','Cir',P=(-5,-2,0),G=(4,8))

draw('Leg','Cub',P=(-12,-10,-8) draw('Support','Cyl',P=(-11,-1,0),G=(9,1))
+(jxu2)+(ixul),G=(14,1,2))

for(i<4,'Rot',2e'=90,ax=(-11,-2,0))
for(i<2,'Trans',u=-(0,0,13)) draw('Base','Line',P=(-11,-2,0),G=(-11,-7,-6),
draw (' HoriBar ', 'Cub' ,P= (-11, -10 ,-7) e,x i ,ax)

+(ixu),G=(2,18,2))

draw('TiltBack','Cub',P=(-2,3,-),G=(12,3,15,14))

draw('TiltBack','Cub',P=(2,4,-7),G=(9,3,14,24))
for(i<2,'Trans',u=(0,0,15))

for (i<2 ,l'Trans ', ul=(0 , 0,18)) draw (' Sideboard ', ' Rectl', P=(-1, -1, -
draw('Sideboard', 'Rect',P=(2,-3,-10) a) 8)+(ixu)e,G=(3, 5,2))

+(ixu) ,G=(3,5,2) u),G=(3,5,2))

Reconstruction before adaption (c) (d) Reconstruction before adaption
draw('Top','Rect',P=(3,O,0),G=(3,12,13))

draw(' Top' ,'Rect',P=(-2,-2, 0),G=(1,8,10))

for(i<2,'Trans',u=(0,0,20))
draw (VertBoard' , P= (-10, -10, -10) ,G= (11 1, 21)) draw ('Sideboard', 'Rect' ,P= (-7 0,-11)

+ (i xu) ,G= (10 ,10 ,2))
draw('Base','Sqr',P=(-10,-1,O),G=(1,9))

draw('TiltBack', 'Cub',P=(1,6,-7) ,G= (10,1,14,17) Reconstruction after adaption

... Input draw('Top','Rect',P=(-6,0,0),G=(6,10,11))

Reconstruction after adaption or (i<2, Trans ,ul=(0,0,18))

Ip t draw(' Top' ,'Rect',P=(-1, -2, 0),G=(2,7,9)) for(3<2,lTrans',u2=(0,13,0))

Inputdraw('Leg,'Cub',P=(-11,-9,-)
for(i<2,'Trans',u=(0,,20)) +(ixu2)+(ixul),G=(11,2,2))

draw('Sideboard', 'Recr ,P=(-11,-2,-11)
+(ixu) ,G=(11, 9, 3)) draw (' TiltBack' ,'Cub',,P=(0,5,-10) ,G=(10, 3, 20,6))

draw(' Base' , ' Sqr' , P=(-10, -2,0) ,G=(1, 8)) for(i<2,'Trans',u=(0,0,21))
draw('Sideboard', 'Rect',P=(1,-1,-11)

draw('TiltBack,'Cub',P=(0,5,-7),G=(10,1,13,17)) | +(ixu),G=(6,9,1))

Reconstruction before adaption (e) (9 Reconstruction before adaption
draw('Top','Rect',P=(-2,-1,0),G=(4,6,8))

draw ('Support' ,Cy' , P=(-l1 , -1, 0) , G= (12, 3))

for (i<4, 'Rot' ,e,~g=90, ax=(-12,-2,0))

draw('Base','Line',P=(-12,-2,0),G=(-12,-7,-5),
8exi,ax) draw('Top',Rect',P=(2,-1,0),GG=(5,9,11))

draw(' TiltBack',Cub',P= (0,4,-7) ,G= (11, 3,13, 10)) draw('Su-pport',*Cy1' ,P=(-8,-2,O),G=(13,5))

for(i<2, 'Trans ,u=(0,0,14))

draw(ChairBeam' , 'Cub' , P=(1,-6,-8)+(ixu) ,G=(2,1,2)1

for(i<2, 'Trans ',u=(0,0,14))

draw('HoriBar','Cub',P=(3,-6,-8)+(ixu),G=(1,9,2))

Reconstruction after adaption I Reconstruction after adaption
draw('Top','Rect',P=(-3,-1,0),G=(4,6,6))

[nput

draw('Suppor t' , 'Cyl ,P= (-11 , -1, 0) , G= (11, 2)) draw(' Top','Cir',P=(-5,-2,0),G=(5,10))

for(i<5,'Rot',8,9=72,ax=(-11,-2,0)) for(i<2,'Trans',ul=(0,0,12))

draw(' Base','Line',P=(-11,-2,0),G=(-12,-8,-4), I for(j<2,'Trans',u2=(0,14,0))

Oexi,ax) draw('Leg','Cub',P=(-10,-8,-8)

+(jxu2)+(ixul),G=(11,2,3))

draw(TiltBack,'Cub',P=(0,3,-6),G=(11,3,12,10))
draw('TiltBack','Cub',P=(0,3,-8),G=(10,3,15,22))

for(i<2,'Trans',u=(0,0,13))

draw('ChairBeam','Cub',P=(1,-5,-7)+(ixu),G=(3,1,2)) for(i<2,'Trans',u=(0,0,18))
draw('Sideboard', 'Rect',P=(1,0,-10)

for(i<2,'Trans',u=(0,0,13)) +(ixu),G=(5,5,2))

draw(HoriBar,Cub,P=(3,-4,-7)+(ixu),G=(2,9,2)) |

Figure C-3: Generated shapes and programs for ShapeNet chairs

253

Reconstruction before adaption
draw('Top','Sqr',P=(0,-1,O),G=(2,5))

dr aw('Support ,'Cy1' ,P=(-13,0, 0),G=(16,2))

Reconstruction before adaption

draw('Top','Rect',P=(-6,-1,0),G=(4,5,8))

5,'ot', =
7
2,ax=-1))draw('VertBoard',P=(-14,-5,-10),G=(18,2,20))

draw('Base','Line',P=(-13,1,),G=-15,-,-5-),

,ax)draw('Layer ,'Rect',P (-5,0,0),G=(2,3,11))

draw 'Bak~up ','ub'P=(12,-),G=4,13))draw('Layer','Rect',P=(-2,0,0),G=(3,2,10))

Reconstruction after adaption Reconstruction after adaptionSdraw('Top','Rect',P=(4,0,0),G=(4,3,12))
Input draw('Top','Sqr',P=(9,0,0),G=(1,5)) Input

for(.i<2,'Trans',u=(0,0,21))
draw('Support,'Cy1',P=(-1,0,0),G=(22,)) draw('Sideboard', PRect,P=(-9,0,-12)

+ (ixu) ,G=(12, 3,2))

draw('Base','aeSqr',P=(-12,0,0),G=(2,5))3 adraw('Layer','Rect',P=(-8,0,0),G=(3,3,11))
draw(' Locker Cub' , P=(-4, -3, -9) ,G=(10,5,2)) d (e (b

draw('Locker','Cub',P=(-8,-3,-7),G=(12,5,4))

Reconstruction before adaption Reconstruction before adaption
draw('Top','Rect' ,P=(4,0,0),G=(2,10,11))

for(i<2,'Trans1,ul=(0,0,11))
draw(' Top',Cir,P=(9,O,0),G=(2,13)) for(j<2,1Trans,u2=(0,13,0))

draw('Leg','Cub',P=(-6,-8,-7)
dr aw('Support','Cyl ,P=(-11,0,0),G=(23,1)) +(jxu2)+(ixul),G=(13,2,3))

for (iC<5, ' Rot' ,E,=72, ax=(-11,0, 0)) for(i<2,'Trans',u=(O,0,11))
draw('Base 'Line' , P=(-11, 0,0) ,G=(-11, -8, -5) d raw('HoriBar ,'Cub',P=(-7,-7,-6)

ax) +(ixu) ,G=(2,13,2))

draw('HoriBar','Cub',P=(-6,2,-7),G=(2,2,14))

Reconstruction after adaption Reconstruction after adaption

Input Input draw('Top','Rect',P=(4,0,0),G=(2,10,12))

draw('Top' , 'Sqr' ,P=(10,0,0) ,G=(1,11)) or (i<2,'*Trans' ,u1=(0,0,12))

for(j<2,'Trans',u2=(0,10,0))

draw('Support' , Cyl' ,P= (-11, 0,0) ,G= (22,2)) draw('Leg', 'Cub1,P=(-6,-6 -7)

+(]Xu2I1(xu1)G=(12,22))

for (i<4, ' Rot' E,9=90, ax= (-11, 0, 0))
draw ('Base' ,'Line' , P=(-11, 0, 0) , G=(-11,0, -10) ,for(i<2, Trans ,u=(0,0,12))

O x*, ax) draw('HoriBar','Cub',P=(-5,-8,-7)
+(ixu),G=(2,16,2))

draw('HoriBar','Cub',P=(-6,-1,-7),G=(2,2,14))

Reconstruction before adaption (e) (f) Reconstruction before adaption
draw('Top','Rect' ,P=-(0,0, 0) ,G= (3, 5, 10)) draw('Top','Rect',P=(5,0,0),G=(1,10,11))

for(1<2,'Trans',u=(0,0,21)) for(i<2,'Trans',u1=(0,0,1
7
))

draw('Leg','Cub',P=(-8,-5,-12)+(ixa'),G=(10,2 ,2))1 for(j<2,'Trans',u2=(0,19,0))
draw('Leg ,'Cub',P=(-6,-11,-10)

for(i<2,'Trans',u=(0,1,21)) +(jxu2)+(ixul),G=(13,4,3))

draw('HoriBar','Cub',P=(-8,-5,-11)

+(ixu),G=(1,8,2)) for(i<2,'Trans',u=(0,0,16))
draw('HoriBar','Cub',P=(-5,-9,-10)

for(i<2,'Trans',ul=(0,0,20)) +(ixu),G=(2,19,3))

draw('HoriBar','Cub',P=(-3,-5,-11)

+(iaxu)r,CG=u(1,8, 3)) draw('HoriBar','Cub',P=(-2,-6,-11),G=(2,5,20))

draw HoriBar ,'Cub' ,P= (-3, 4, -12) ,G= (1, 1, 23))

Reconstruction after adaption Reconstruction after adaption
Input draw(' Top' ,'Rect',P=(3,0,0),G=(2,4,12)) In t

draw('Top','Rect',P=(4,0,0),G=(2,9,11))

for(i<2,'Trans',u=(0,0,22))

draw(Sideboard', 'Rect ,P=(-5,0,-12) for(i<2,'Trans',u=(0,0,16))

+(ixu),G=(7,4,2)) draw('Sideboard', 'Rect',P=(-6,0,-9)

+(ixu),G=(10,9,1))

draw(VertBoard',P=(-3,3,--11),G=(6,1,23))
for(i<2,'Trans',u=(0,18,2))

for(i<2,'Trans',u=(0,0,15)) draw('HoriBar','Cub',P=(-1,-11,-11)

draw ('Locker' , ' Cub' , P=(-3,-3, -10)+(ixu) ,G=(6,7,5)) +(ixu),G=(1,3,20))

Figure C-4: Generated shapes and programs for ShapeNet tables

254

Reconstruction before adaption Reconstruction before adaption
draw('Top','Rect',P=(4,0,0),G=(1,8,11))

draw('Top','Rect',P=(1,-1,0),G=(3,6,11)) for(i<2,'Trans',ul=(0,0,20))

for(j<2,'Trans',u2=(0,12,0))

for (i<2 , 'Trans ', u=(O , 0,14)) draw ('Leg ',l'Cub , P=(-5, -7, -11)

draw (' HoriBar ' ,' Cub' ,P=(-5, -3, -8)+ (ixu) ,G= (2,72,2)) jjj + (jxu2)+(ixul) ,G=(11, 2,2))

draw('Layer' , 'Rect' ,P=(0,0,0) ,G=(1,7,11))

Reconstruction after adaption - a fter.adaptio

Inputdraw<'Top' ,'aect',P=(-1,0,0) ,G=(3, 4, 12)) Reconstruction afer adaption
p draw('Top','Rect',P=(0,0,0),G=(1,5,11))

for(i<2, 'Trans ,u=(0,0,16)) Input
draw('Leg','Cub',P=(-6,-2,-9)+(1xn),G=(9,1,2)) for(i<2,'Trans',ul=(1,0,21))

for(j<2,'Trans',u2=(0,9,0))

for(i<2,'Trans',u=(0,0,10)) draw('Leg','Cubl,P=(-6,-5,-11)
draw('ChairBeam',Cub',P=(2, -2, -6) +(i xu) ,G= (2,1, 2) +(jxu2)+(ixul),G=(10,2,1))

for(i<2,'Trans',ul=(0,0,10))

for(j<2,'Trans',u2=(0,3,0))

draw('ChairBeam' ,'Cub' ,P=(2,-3,-6)

+(jxu2)+(ixul),G=(3,1,2))

for(i<2,'Trans',u=(0,0,20))

draw('Sideboard', 'Rect',P=(0,1,-11)
+(ixu) ,G=(3,6,2))

for(i<2,'Trans',u=(0,0,19))

for(i<2,'Trans',u=(0,0,11)) (a) (b) draw(lSideboard', 'Rect',P=(3,1,-11)

draw('HoriBar','Cub',P=(5,-2,-6)+(ixu),G=(1,5,2)) +(ixu),G=(2,5,2))

Reconstruction before adaption Reconstruction before adaption
draw('Top' , 'Rect' ,P=(-1 ,-1, 0) ,G=(3,7, 11))

(c) (d)
for (i<2, ' Trans ',ul=(O, 0,21)) daw('Top',Rect',P=(-2,-1,0),G=(4,7,11))

for(j<2,'Trans',u2=(0,9,0))

draw('Leg','Cub',P=(-10,-6,-Il)

+(jxu2)+(ixul),G=(13,3,1))

for(i<2,'Trans',u=(0,0,20))
draw('HoriBar','Cub',P=(-5,-5,-11)

+(ixu),G=(2,8,1))

draw('TiltBack','Cub',P=(3,4,-10),G=(8,3,20,7))

Reconstruction after adaption
Input draw('Top','Rect',P=(-2,-1,),G=(2,4,12))

for (iC2, 'Trans',ul= (1, 0, 21))
for (j<2, Trans', u2=(0, 8,0))
draw('Leg','Cub',P=(-8,-5,-12)

+(j xu2)+ (ixul) G= (11, 1, 2))

for(i<2,'Trans',u=(0,0,20))

draw (' Sideboard' , 'Rect' , P=(-4,0,-12)

+(ixu),G=(5,3,2))

draw('TiltBack' ,'Cub',P=(2,2,-9) ,G=(7,2,19,16))

for(i<2,'Trans',u=(0,0,18))
draw('Sideboard', 'Rect',P=(-10,-2,-10)

+ i u G=(1 6,1)

draw('Tiltfack','Cub',P=(2,3,-10),G=(8,3,20,O)

for(i<2,'Trans',u=(0,0,15))

draw('HoriBar','Cub',P=(2,-3,-9)+(ixu),G=(2,9,2)

for(i<2,'Trans',u=(0,0,16))

draw('HoriBar','Cub',P=(-5,-3,-9)+(ixu),G=(1,7,1)

Reconstruction after adaption
draw (' Top' , 'Rect ' ,P=(-3, -1, 0) ,G=(4 ,5, 12))

4for (a<2, ' Trans' ,1= (0, 0, 17))
for(j<2,'Trans',u2=(0,7,0))
draw('rLeg,l'CCub',(P=(-9,-5,--10)

+(jxu2)+(ixul),G=(10,1,2))

draw('TiltBack','Cub',P=(1,2,-9),G=(8,2,18,14))

for(i<2,'Trans',u=(1,0,21)) draw('TiltBack','Cub',P=(2,4,-9),G=(8,2,19,7))
draw('HoriBar','Cub',P=(3,-4,-11),G=(1,7,1))

Reconstruction before adaption

draw 'Top ' ,' Rect' , P= (-1,0, 0) ,G= (2,8, 11)

for(i<2,'Trans',u=(0,0,21))

draw (' Sideboard' , 'Rect , P= 9, -1 ,-11)
+(ixu),G=(10,6,1))

(e) (f)
Reconstruction before adaption

draw('Top','Rect',P=(0,0,0),G=(3,7,10))

for (i<2, 'Trans' ,u= (0,0, 19))
draw('Sideboard', 'Rect',P=(-9,0,-10)

+(ixu) ,G=(12,5,1))

draw('Locker','Cub',P=(-3,-3,2),G=(7,4,4))
draw('TiltBack','Cub',P=(1,5,-10),G=(9,3,21,0))

for(i<2,'Trans',u=(0,0,15))
for(i<2,'Trans',u=(0,0,21)) draw('Sideboard', 'Rect',P=(1,0,-9)
draw('Sideboard', 'Rect',P=(0,2,-12) +(ixu),G=(4,3,2))

+(ixu),G=(4,6,2)) -••--.---.-'--''-•

Reconstruction after adaptionReconstruction after adaptionInut draw('Top','Rect',P=(-1,0,0),G=(2,3,11))
draw('Top','Rect',P-(-1,0,0) G=(1,4,11))

,1 or (i<2,'1Trans'I, ul= (1, 0, 21))
for(j<2,'Trans',u2=(0,6,0))

draw('Leg' ,'Cub' ,P=(-8,-5,-12)+(jxu2)
+(ixul) ,G=(10,2,1))

for(i<2,'Trans',u=(1,0,21))

draw ('Sideboard', 'Rect' P=(-5, 0 ,-12)

+(ixu),G=(5,3,1))

draw('TiltBack','Cub',P=(2,2,-10),G=(8,1,20,7))

for(i<2,'Trans',u1=(0,0,19))
for(j<2,'Trans',u2=(0,6,0))

draw('Leg','Cub',P=(-6,-3,-10)
+(jxu2)+(ixul),G=(10,2,1))

draw('TiltBack','Cub',P=(2,3,-8),G=(7,2,17,0))

for(i<2, 'Trans ,u=(1,0,20))

draw('Sideboard', 'Rect',P=(2,1,-11)
+(ixu),G=(3,2,1))

for(i<2,'Trans',u=(1,0,22))

draw ('Sideboard ', 'Rect',P=(l,-l,-12)

+(ixu),G=(2,3,1))

Figure C-5: Generated shapes and programs for ShapeNet benches

255

Reconstruction before adaption
draw (' Top ', 'Rect' ,P=(0 ,-1, 0) ,G=(3, 7 ,11))

draw (' Layer' , 'Rect, P=(-3,0,0) ,G=(1,5, 10))

Reconstruction after adaption
draw('Top','Rect',P=(-3,0,0),G=(5,5,12))

for(i1<2,'Trans:,u=(0,O,20))

draw('Sideboard', 'Rect',P=(-6,0,-11)
+(ixu),G=(9,5,11)

dr aw ('Til tBack ' , ' Cub' , P= (-1I, 2, -11) ,G=- (8 ,2, 20 ,3,21))

for(i<2,'Trans',u=(0,0,19))

draw('Sideboard', 'Rect',P= (1,0,-11)
+(ixu) ,G=(3,5,2)) (a)

(C) Reconstruction before adaption
Reconstruction before adaption draw ('Top' , 'Rect' , P=(-4 ,-1,0) ,G= (4 , 7,10))

draw('Top' , 'Rect ,P=(2,0,0),G=(3,7,11)) draw('TiltBack','Cub',P=(0,4,-10),
I ftG= (11, 3,19,5))

draw ('Layer Rect ,P=(-2,0,0) G=(3 5, 11))

jfor (i<2,l'Transl',u=(0, 0,19))
..-. -...............--- --- draw (' Sideboard' , ' Rect ' ,P=(1, 1, -11)

Reconstruction after adaption ----- Gi-4- -------------

'drawT TopRRecttP='(-5,(,00),,)G=,(6,6,12)G

for(i<2, Trans ,ul=(0,0,22)) nput
for()<2,'Trans',u2=(0,10,0))

draw'Leg' ,'Cub',P(-7-6-)ans,u2=(0,8,0))
+ (j)xu2) +(i xul) ,G= (10 ,2 ,2)) draw (iLeg ',!*Cub ' ,P=(-7 ,-5, -11)(jsjxu)+((iuul),(=(9,2,1)

draw('TiltBack','Cub-,P=(-2,1,-12),

G=(8,2,22,27)) draw('TiltBack','Cub',P=(-2,1,-12),G=(8,2,21,21))

for(i<2,'Trans',ul=(0,0,22))

for(j<2,'Trans',u2=(0,8,0)) for(j<2,'Trans',u2=(0,5,19))forr~j<2,'Trans ,u2=(O,8,0))
draw('ChairBeam', 'Cub' ,P=(1,-6,-13) draw('ChairBeam','Cub',P=(0,-4,-12)
+(jxu2)+(ixul) ,G=(2,2,2)) +(jxu2)+(ixul),G=(2,1,3))

for(i<2,'Trans',u=(0,0,22)) for(i<2,'Trans',u=(0,0,20))
draw (' HoriBar' , 'Cub ', P= (2 ,-5, -12) draw (' HoriBar ', 'Cub ' ,P= (2, -3, -12)

+ (ixu) ,G=(1, 9,2))+(iu ,G=17,2)

Reconstruconstrucionfbeforaddaptio

~~Reconstruction before adaption(e M
draw('Top,'Rect',P=(2,0,0),G=(2,9,12))R

o rct o io

for(i<2,'Trans',u=(0,0,20))
draw(lSideboard', 'Rect',P=(-9,0,-11) draw('Top','Rect',P=(2,0,0),G-(2,9,11))

9
+(ixu),G=(9,9,2))

draw('Layer','Rect',P=(-3,0,0),G=(3,8,10)) rwLae'RctP-(100,(281)

Reconstruction after adaption Reconstruction after adaption
nut draw('Top','IRect',P=(-6,0,0),G=-(7,7,12)) Input draw('Top','Rect',P(0,0,0),G=(4,7,12))

forti<2,!Trans-,u=(0,1,20)) for(i<2,'Trans',ul=(0,0,23))

dra('SLdeoad',Pea',=(-,0-1)for (j 2 ,Trans, u2(0,12,)

+(ixu),G=(9,6,2)) draw(Leg',Cub',P=(-4,-7,-12)

draw('TiltBack','Cub',P=(-1,2,-11),G=(8,3,20,4))
+(jxu2)+(ixul),G=-(8,3,3))

for(i<Trans,u=(tP=(0,0,-12) draw('Layer','Rect',P=(-3,0,0),G=(3,8,13))

dra(wi,G=(3,,1))tl,'ub'P(2-

+(iu) ,G=(,,))

Reconstruction before adaption

draw('Top','Rect',P=(3,0,0),G=(2,7,11))

for(i<2,'Trans',u=(0,0,21))
draw('Sideboard', 'Rect',P=(-7,0,-12)

+(ixu) ,G=(8,7,3))

_draw('Layer','Rect',P=(-4,0,0),GG=(4,7,10))

Reconstruction after adaption
Input draw('Top','Rect',P=(-6,0,0),G=(7,6,12))

for(i<2, Trans ,u=(0,0,21))
draw(Sideboard', 'Rect' ,P=(-5,1, -12)

+(ixu) ,G=(9,5,3))

draw('TiltBack','Cub',P= (-1,1,-11),
G= (7 ,3 , 20 , 23))

for(i<2, 'Trans' ,ul=(0,0,20))
for(j<2, Trans',u2=(0,6,0))
draw('ChairBeam' ,'Cub' ,P=(1,-5,-12)

+(jxu2)+(ixu1),G=-(2,2,2))

Figure C-6: Generated shapes and programs for ShapeNet couches

256

(d)

Reconstruction before adaption
Reconstruction before adaption draw (' Top' , 'Rect' ,P= (7,0,0) ,G=(3,5,13))

for(i<2, 'Trans' ,u=(0,0,21))

draw('Sideboard', 'Rect',P=(-10,0,-11)
draw('Top','Rect',P=(5,0,0),G=(3,6,12)) +(iu)G=(194,2))

draw(Support','Sqr',P=(-9,1,0),G=(18,6)) draw('VertBoard',P=(-7,6,-12),G=(15,1,23))

draw('Layer','Rect',P=(-3,0,0),G=(3,4,12)) draw('Locker','Cub',P=(-7,-5,-5),G=(15,
7
,6))

.ta d Reconstruction after adaptionReconstruction after adaption ! raw<' Top' ,'Rect', P=<4,0,0),G=<7,3,13))

Input draw('Top','Rect',P=(2,0,0),G=(7,5,12)) input
for(iC2, 'Trans ',u1=(0,0,1

7
))

Eor(i<2,'Trans',ul=(-1,0,20)) for(j<2,'Trans',u2=(0,2,-1))
for(j<2, 'Trans ,u2=(0,

7
,-l)) draw) Leg', 'Cub' ,P(-10,-3,-12)

draw ('Leg' ,l'Cub' ,P=(-8, -5, -12) +a('xu2)+(iul,G=(210, 3,)
+(jxu2)+(ixul),G=(16,3,4))
rraw('Layer','Rect',Pu2)+(is =(-,,),G=(6,

raw('Layer','Rect',P=(-4,0,0),G=(6,5,12)),P(-5,0,0),G(6,4,2))

draw('HoriBar','Cub',P=(-7,-6,-12),G=(
2

,
2

,
2 2

))

Reconstruction before adaption (c) (d) Reconstruction before adaption
draw('Top','Rect',P=(7,0,0),G=(1,5,12))

draw('Top','Sqr',P=(8,0,0),G=(2,7)) for(2<2,'Trans',ul=(0,0,22))

for(j<2,'Trans',u2=(0,4,0))

draw('Support','Sqr',P=(-11,0,0),G=(22,4)) draw('Leg','Cub',P=(-8,-2,-12)

I 4(jxu2)+(ixul) ,G=(15,1,2))

draw('Base'Sqr',P.(-8,-1,0),G=(2,7)) for(i<2,'Trans',u=(O,0,19))

draw('HoriBar','Cub',P=(-8,--3,-12)

Reconstruction after adaption +(inu) ,G=(1,7,4))

Iptdraw('Top','Sqr',P=-(7,0,0),G=-(5,6))
draw('HoriBar','Cub',P=(-8,-2,-11),G=(1,1,

2 2
))# draww(d' Support' Sqr' ,P=(-11, 0,0), G=(22,5))

Reconstruction after adaption
draw('Layer','Rect',P=-(-1,0,0),G=(3,7,7)) Input draw('Top','Rect',P=(5,0,0),G=(4,

3
,1

2
))

for(i<2,o'Trans,ul=(-1,0,20))

forO(<2, 'Trans ,u2=(0,1,-l))

draw('Leg','Cub' ,P=(-8,--2,-12)

+(jxu2)+(3xul),G=(16,2,4))

draw('VertBoard',P=(-8,0,-12),G=(12,2,2
5
))

draw('HoriBar','Cub', P=(-9,-3,-12),G=(2,1,22))

Figure C-7: Generated shapes and programs for ShapeNet cabinets

Reconstruction before adaption
Reconstruction beforeadaption draw('Top','Sqr',P=(-4,-1,0),G=(

4
,10))

draw('Top','Rect',P=(-4,-1,0),G=(4,10,12))
for (iC2 , 'Trans ' ,ul= (0 , 0,18))

draw('VertBoard',P=-(-10,-9,-11),G=(10, 1,21)) draw('Sideboard', 'Rect!,P=(-11,-1,-9)
+(ixu),G=(10,8,1))

draw('TiltBack','Cub',P=(0,9,-10),

G=(10O 2 1,,j)) draw('TiltBack','Cubt ,P=(0,9,-9),G=(10,2,17,-2))

Reconstruction after adaption Reconstruction after adaption
draw('Top','Rect',P=(-5,0,0),G=(5,12,10))

nput Input
for(i<2,'Trans',ul=(0,0,18)) draw('Top','Sqr',P=(-4,0,0),G=(5,11))

for(j<2, 'Trans' ,u2=(0,20,0))

draw('Leg', 'Cub' ,P=(-8,-12,-10) da (T l~ c ','u ',P (31 ,9 G (211 ,)

+(jxu2)+(ixul),G=(3,2,2))
draw('TiltBack','Cub',P=(0,9, -9) ,G=(10,1,16,6))

draw('TiltBack','Cub',P=(-3,9,-11),

G=(11,2,20,10)) (a) (b)

Figure C-8: Generated shapes and programs for ShapeNet beds

257

THIS PAGE INTENTIONALLY LEFT BLANK

258

Appendix D

Details and Results

for Program-Guided Image Manipulators

In Appendix D, we supply additional details for the Program-Guided Image
Manipulators (PG-IM) introduced in Chapter 10. In Section D.1, we first discuss the
detailed implementation of PG-IM. We then, in Section D.2, provide ablation studies

evaluating the effects of PG-IM's different modules or designs. Finally, we show more
results produced by PG-IM in Section D.3, and also quantitatively compare them

with results by the baselines.

D.1 Implementation Details

We discuss the implementation details necessary to reproduce our results.

D.1.1 Repeated Object Detection

We replicated the algorithm developed by Lettry et al. [20171. The algorithm
works on nearly-regular images and detects the repeated objects within the image.

The model builds on the assumption that features learned from ImageNet [Deng et al.,
2009] encode visual concepts at various levels: from edges to patches to high-level
semantic objects. The algorithm takes as input the feature map from a pre-trained
AlexNet [Krizhevsky et al., 2012] and outputs a set of 2D coordinates representing
the centroids of repeated objects. In this section, we explain the algorithm as six-step
procedure.

1) For each input feature map f, it extracts all activated neurons at different
locations. Denote the neuron at the 2D position (i, j) being activated by act(fi,i) = 1,
which is given by

act(fi,,) = 1 [ff == max fu,v1, (D.1)
(u,v), lu-il <K,l -j <K

where 1 [.] is the indicator function, and K is a hyperparameter for "kernel size."

259

Feature maps at different layers of the AlexNet use different kernel sizes.

2) All activated 2D neurons are collected. For each pair of activated neurons from
the same feature map, a displacement vector is computed. For simplicity, we use
d -' = (dli, dgi) to index the j-th displacement vector from the i-th feature map. A
majority voting is performed over all displacement vectors. The output of this step is

an image-level displacement vector d* = (d*, d*) between centroids of different objects

d* arg max exp(-||dj - x|) and d arg max | -y|).

3) Based on the image-level displacement vector d*, all displacement vectors are

filtered. A vector is selected if

|dJ - d*||2 < 3 x a, (D.2)

where a is a scalar hyperparameter of radius.

4) Each feature map is weighted by the number of selected displacement vectors
from this feature map. Only highly weighted feature maps are selected.

5) For each 2D coordinate (x, y), we define a helper function

M(x, y) A (x mod d, y mod d*). (D.3)

An offset o* is then determined by optimizing the following objective:

o* = arg miny wi,5||M(d'is-o) - || ,1 (D.4)
0

i

where
1 ||d2'J - d*||1)

wi= I3 + - .exp 2.2 (D.5)

Here, Ki is the number of displacement vectors of feature map i. # and ae are
hyperparameters. In our implementation, we use gradient descent to find the optimal

o*.
0.

6) For each object region detected, the coordinates for all activated neurons within
the region vote for the centroid. This step allows distortions of objects that may cause
irregular lattices.

D.1.2 Adaptive Network Depth for PatchGAN

In order to encourage creative and sharp patch generation, we employ a discrim-
inator loss provided by AdaPatchGAN, our adaptive variant of PatchGAN [Isola
et al., 2017], in addition to the Li loss. In the original PatchGAN, the classifier

260

C,

architecture is fixed with a receptive field of a certain size. However, in images of
our interest, the scale of texture varies violently across different images: the repeated

pattern is sometimes a small entity but appearing many times, while other times the
pattern is a larger object appearing only a few times. Given a single image, since its
inferred program description provides a way of dividing it into patches, AdaPatchGAN

computes a rough patch size and automatically adds convolutional layers until its
receptive field is large enough to cover this patch size. In practice, we observe that

our AdaPatchGAN enables the generator to produce more realistic patches than the
original PatchGAN.

D.1.3 Extrapolation as Recurrent Inpainting

As mentioned in the main text, a single neural painting network (NPN) trained
on the task of image inpainting is able to perform additional manipulation tasks
including extrapolation without any finetuning. The straightforward way of doing
this is treating the pixels to extrapolate as missing, and just inpainting them in one
go. This approach of treating extrapolation without recurrent inpainting, however,
results in distorted objects that fail to look realistic, as shown in an ablation study
below. This is because NPNs are better at inpainting a localized patch (what they
are trained to do as in inpainting) than inpainting a region spanning multiple objects.

Bearing this key observation in mind, our NPNs cast extrapolation into a task of
recurrent inpainting, where it inpaints one object at a time, conditioned on the context
provided by the previous inpainting. Note that this is only possible because the NPNs
are guided by programs of images and therefore know how many objects should be
extrapolated as well as where each of them should appear. Implementation-wise, this
is achieved by repeatedly filling the current empty patch with the network output,
and running network inference on the next empty patch. By this design, an empty
patch gets inpainted so that it connects seamlessly to both the previously inpainted
patches and the original image boundary.

D.1.4 Detailed Network Specifications and Training Parameters

We append to the end of this document a commented printout of the generator
architecture, where channel numbers of the feature maps, kernel sizes, strides, padding,
and more can be found. The training of PG-IM generally follows the procedure
described in Pix2Pix [Isola et al., 2017], except that we do not decay our learning
rate after 100 epochs like Pix2Pix does. Each of our epochs contains 1,000 training
samples (i.e., random crops at different scales of the same image of interest), and the
networks usually converge within 150 epochs.

261

Eun
Corrupted Image (Input)

262

I

a Corrupted Image (Input) No Source PG-IM (Ours) Ground Truth
Patches Patches

Figure D-1: Inpainting with vs. without the source patches provided by program. For
each pane, the leftmost figure is the corrupted input to inpaint; to the right are results inpainted with
and without source patches as well as the ground truth. With programs describing where the object
centers are, our NPNs align the intact objects to the corrupted object and exploit such alignment to
inpaint the missing pixels. Without such source patches, the networks have difficulty ensuring the
"objectness" of the inpainted patch.

D.2 Ablation Studies

We report three ablations studies to provide intuitions as to why PG-IM works.
Key to our approach is the use of program-like descriptions for images in guiding
neural painting networks (NPNs) to perform pixel manipulations. The first study
demonstrates why such descriptions facilitate the image manipulation tasks. Next, we
justify a crucial design for image extrapolation: extrapolation should be cast into the
task of recurrent inpainting for NPNs, rather than "one-go inpainting." Supplemental
to Figure 10-9, the third study emphasizes the advantages of considering high-level
attributes in the lower-level image manipulation tasks.

D.2.1 With vs. Without Source Patches

Our program-like description for an image informs NPNs of where the pattern of
interest (repeatedly) appears in the image. NPNs can then align the available patterns
to the corrupted or missing one in order to inpaint it (for simplicity, we discuss only
image inpainting in this study, but the conclusion stands for the other tasks). These
aligned image patches serve as "source patches," from which NPNs smartly copy to fill
in the missing pixels.

Without program-like descriptions, NPNs would not have access to these source
patches, which in turn leads to inferior performance such as results with the correct
background but missing objects. As Figure D-1 shows, when programs (and hence
source patches) are not available to the networks to smartly copy from, they fail to
ensure the presence of the missing object in their inpainting (e.g., the cross in the left
pane and the diamond in the right pane). In contrast, our NPNs exploit the source
patches provided by programs and can inpaint the missing objects even if they are
corrupted completely in the input. This result supports that PG-IM outperforms

F-Z7 -

0

Partial Image (Input) One-Go Recurrent Partial Image (Input) One-Go Recurrent
(Ours) (Ours)

Figure D-2: Extrapolation as one-go vs. recurrent inpainting. For each pane, the leftmost
figure is the partial input to be extrapolated; to the right are results extrapolated with and without
recurrent inpainting. Recall that the networks are trained only on inpainting one entity, so the
networks tend to produce distorted objects if they are asked to inpaint the whole stripe spanning
multiple entities. Instead, our NPNs treat extrapolation as recurrent inpainting, where they repeatedly
solve the task they are good at and therefore produce better results.

repetition-aware but "programless" CNNs.

D.2.2 With vs. Without Recurrent Inpainting

In this study, we show empirical evidence that NPNs produce better results when

extrapolation is cast into the task of recurrent inpainting rather than feedforward

inpainting. As Figure D-2 shows, when the entire stripe gets extrapolated without

recurrent inpainting, the extrapolated objects tend to be distorted, since our NPNs

are trained only on more localized inpainting. By treating extrapolation as recurrent

inpainting, our NPNs are essentially doing, repeatedly, what they are trained on and

hence generate more realistic-looking results.

D.2.3 With vs. Without Considering Attributes

In Figure 10-9, we show our program-like descriptions of images can naturally
incorporate attributes, enabling the NPNs to perform attribute-aware image manip-
ulation, e.g., by referencing only patches with the same attributes as the patch to

inpaint. We supplement two more examples demonstrating why attribute-aware image
manipulations are important, and how PG-IM achieves superior performance on such

tasks.

As shown in Figure D-3 left, the tomato to be inpainted is next to four orange

tomatoes and one green tomato. Since convolutions are more of a local operation,
one can expect a convolutional generator to produce a tomato with mixed colors of

both orange and green, as is the case for PG-IM without attributes. However, we, as

humans, reason at a higher level over the entire image, coming to the conclusions that

the tomato to inpaint on the left should be orange, and that the candy to inpaint

263

Corrupted Image (Input) PG-IM w/o PG-IM (Ours) Ground Truth Corrupted Image (Input) PG-IM w/o PG-IM (Ours) Ground Truth
Attributes Attributes

Figure D-3: Inpainting with vs. without considering object attributes. For each pane, the
leftmost figure is the corrupted input to be inpainted; to the right are results inpainted with and
without considering attributes as well as the ground truth. The attribute-agnostic networks tend to
produce patches with mixed colors that break the global regularity of attributes. PG-IM is able to
respect such regularity by referencing only patches with the same attribute as the patch to inpaint.

on the right should be red. With similar capabilities, PG-IM correctly preserves the
global regularity of attributes in its inpainting.

D.3 More Experiments and Results

We supplement more results by PG-IM on the tasks of image inpainting, extrap-
olation, and regularity editing. For PatchMatch and Image Quilting, we search for
one set of optimal hyperparameters and use that for the entire test set. Similarly,
we train Non-Stationary [Zhou et al., 2018] and PG-IM with single sets of optimal
hyperparameters on each test image. For GatedConv [Yu et al., 2019], we use the
trained model released by the authors.

D.3.1 Inpainting

Figure D-4 shows how PG-IM compares in image inpainting with the baselines on
another six test images. PG-IM is able to ensure the presence of the repeated object
in its inpainting (e.g., the cross structure in Image 1 and the yellow tag in Image
5), while the baselines tend to have the object missing (e.g., PatchMatch completely

misses the yellow tag in Image 5) or incomplete (e.g., the pig in Image 3) due to lack
of the concept of objects.

D.3.2 Extrapolation

We supplement four more examples of image extrapolation by PG-IM and how
they compare with results by the baselines. As Figure D-5 shows, extrapolation by
PG-IM is sharp, respects the global regularity (e.g., the "pig array" in Image 3), and
seamlessly connects to the original images. In contrast, PatchMatch tends to blur

over the image boundaries for smooth transition to the extrapolated contents (e.g.,
the blurriness over the boundary in Image 2). Image Quilting and GatedConv tend

264

2

3

4

6

Corrupted
Images (Input)

ImE~~
I.
I.
I.
I-

PatchMatch Image Quilting

Non-Learning-Based

II.1

Non-Stationary GatedConv PG-IM (Ours) Ground Truth

Learning-Based

Figure D-4: Additional inpainting results by PG-IM and the baselines. The white pixels in
the leftmost column are missing pixels to inpaint; the rightmost column shows the ground-truth
patches. For easier comparison, we show only the close-up views of the inpainted region (and its
proximity for some context). Aware of the images' global regularity, PG-IM inpaints the missing
objects that maintain this regularity. Note this is not necessarily the case for other methods: baselines
miss out the pig entity of Image 3 and the yellow tag of Image 5. Although PatchMatch gets the
cross structure in Image 1, its result is less realistic than ours. Another advantage of PG-IM over
the baselines is the ability to generate pixels that seamlessly connect to the original image contents

(compare the results for Images 1, 2, and 4).

to break the global regularity (e.g. Images 2 and 4). Finally, Non-Stationary should

be considered as a super-resolution method instead of an extrapolation one, because

it essentially replicates the patterns on a larger canvas and interpolates in between;

notice how it does not extrapolate beyond the texture boundaries in Images 2 and 4.

265

a a U a a

2

Partial Images (Input) PatchMatch Image Quilting GatedConv Non-Stationary PG-IM (Ours)

Non-Learning-Based Learning-Based

Figure D-5: Additional extrapolation results by PG-IM and the baselines. The white
pixels in the leftmost column indicate the pixels to be extrapolated, and the red dots are object
centers given by the program descriptions. With such program descriptions, PG-IM knows where to
extrapolate to automatically, whereas other methods require the user to specify where to extrapolate
to. PG-IM generates realistic images while preserving the global regularity. In contrast, GatedConv
fails to capture the regularity; Non-Stationary does not preserve the original content of images;
non-learning-based baselines sometimes generate blurry images because of the repetition of similar
objects in the partial image.

D.3.3 Regularity Editing

We supplement four more examples of image regularity editing by PG-IM in

Figure D-6. Although PG-IM has been trained only on inpainting, with the program

descriptions of images, it is naturally capable of exaggerating the irregularity in the

images' global structures.

266

I

IMENE q3u
2 ME 4Hu

Input Images Irregularity Exaggeration PG-M (Ours) Input Images Irregularity Exaggeration PG-IM (Ours)

Figure D-6: PG-IM enables automated and semantic-aware irregularity exaggeration. By
comparing the centroids of the detected objects and the ones reconstructed by the program, we
can measure and exaggerate the structural irregularity of input images. In these examples, we first

multiply by 2 the displacement vectors between the object centroids provided by the programs
and the detected object centroids, and then randomly flip the sign for each displacement vector.
According to these new displacement vectors, we shift the patches and then let the NPN fill in the
missing pixels.

Input Image w/ Inpainting by PG-IM Ground Truth
Inferred Program

Figure D-7: A failure case for inpainting. In this challenging case, the transmission and reflection
effects make the repetitive patterns less homogeneous, leading to non-photorealistic inpainting.

D.3.4 Failure Cases

Figure D-7 demonstrates a failure case for inpainting. In this challenging case,
the transmission and reflection effects make the repetitive patterns less homogeneous,
leading to non-photorealistic inpainting.

D.3.5 Baseline Finetuning

PG-IM learns from a single input image by exploiting the repetition structure,
whereas other learning-based methods (GatedConv and PartialConv) learn from a

large dataset (Places365). We supplement extra experiments, where we finetune the

GatedConv model (pre-trained on Places365) on 50 Facade images and evaluate it on

the held-out images (Figure D-8). Learning from similar facade images does help the

model produce more photorealistic results (Inception score: 1.187 -+ 1.191). However,

the model still fails on structured objects such as windows, which can be well handled

by our patch-based, program-guided NPN (PG-IM's Inception score is 1.210).

267

Corrupted GatedConv GatedConv PG-IM (Ours) Ground Truth

Images (Input) (Finetuned)

Figure D-8: Comparing with the GatedConv model finetuned on the Facade dataset. Our
PG-IM model is only trained on a single input image and still performs better.

D.4 Detailed Generator Architecture

('1', ReppadConv2d(3, 64, 3, stride=1, padding=1)),

('1a', nn.ELUo),

2: maxpool across tracks

3: concat 2

('4:+pool', ReppadConv2d(128, 96, 1, stride=1)),

('4a', nn.ELUo),

('5', ReppadConv2d(96, 96, 4, stride=2, padding=1)),

('5a', nn.ELU(),

6: maxpool across tracks

7: concat 6

('8:+pool', ReppadConv2d(192, 128, 1, stride=1)),

('8a', nn.ELUO),

('9', ReppadConv2d(128, 128, 4, stride=2, padding=1)),

('9a', nn.ELU(),

10: maxpool across tracks

11: concat 10

('12:+pool', ReppadConv2d(256, 256, 1, stride=1)),

('12a', nn.ELUo),

('13', ReppadConv2d(256, 256, 4, stride=2, padding=1)),

('13a', nn.ELUo),

14: maxpool across tracks

15: concat 14

('16:+pool', ReppadConv2d(512, 384, 1, stride=1)),

('16a', nn.ELUo),

('17', ReppadConv2d(384, 384, 4, stride=2, padding=1)),

('17a', nn.ELUo),

('18', ReppadConv2d(384, 384, 3, stride=1, padding=1)),

('18a', nn.ELUo),

('19', nn.ConvTranspose2d(384, 384, 4, stride=2, padding=1)),

('19a', nn.ELUo),

268

20: maxpool across tracks

21: concat 16a, 20

('22:+pool+16a', ReppadConv2d(1152, 384, 1, stride=1)),

('22a', nn.ELU(),

('23', ReppadConv2d(384, 384, 3, stride=1, padding=1)),

('23a', nn.ELU(),

('24', nn.ConvTranspose2d(384, 256, 4, stride=2, padding=1)),

('24a', nn.ELU(),

25: maxpool across tracks

26: concat 12a, 25

('27:+pool+12a', ReppadConv2d(768, 256, 1, stride=1)),

('27a', nn.ELU(),

('28', ReppadConv2d(256, 256, 3, stride=1, padding=1)),

('28a', nn.ELU(),

('29', nn.ConvTranspose2d(256, 192, 4, stride=2, padding=1)),

('29a', nn.ELU(),

30: maxpool across tracks

31: concat 8a, 30

('32:+pool+8a', ReppadConv2d(512, 192, 1, stride=1)),

('32a', nn.ELUO),

('33', ReppadConv2d(192, 192, 3, stride=1, padding=1)),

('33a', nn.ELU(),

('34', nn.ConvTranspose2d(192, 96, 4, stride=2, padding=1)),

('34a', nn.ELUO),

35: maxpool across tracks

36: concat la, 35

('37:+pool+la', ReppadConv2d(256, 96, 1, stride=1)),

('37a', nn.ELUO),

('38', ReppadConv2d(96, 96, 3, stride=1, padding=1)),

('38a', nn.ELU(),

39: maxpool across tracks

('40:pool', ReppadConv2d(96, 64, 3, stride=1, padding=1)),

('40a', nn.ELUO),

('41', ReppadConv2d(64, nch-out, 3, stride=1, padding=1)),

269

THIS PAGE INTENTIONALLY LEFT BLANK

270

M R PIPI I 111 1

Bibliography

Omri Abend, Tom Kwiatkowski, Nathaniel J Smith, Sharon Goldwater, and Mark Steedman.
Bootstrapping Language Acquisition. Cognition, 2017. 162

Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh Agrawala, Michael Cohen, Brian
Curless, David Salesin, and Richard Szeliski. Panoramic Video Textures. A CM Transactions
on Graphics (TOG), 24(3):821-827, 2005. 131

Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning
to Poke by Poking: Experiential Learning of Intuitive Physics. In Advances in Neural
Information Processing Systems (NeurIPS), 2016. 101, 102

Miika Aittala and Fr6do Durand. Burst Image Deblurring Using Permutation Invariant
Convolutional Neural Networks. In European Conference on Computer Vision (ECCV),
2018. 209

Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauza, Leslie P. Kaelbling, Joshua B. Tenen-
baum, and Alberto Rodriguez. Augmenting Physical Simulators with Stochastic Neural
Networks: Case Study of Planar Pushing and Bouncing. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018. 5

Anurag Ajay, Maria Bauza, Jiajun Wu, Nima Fazeli, Joshua B. Tenenbaum, Alberto Ro-
driguez, and Leslie P. Kaelbling. Combining Physical Simulators and Object-Based
Networks for Control. In IEEE International Conference on Robotics and Automation
(ICRA), 2019. 5, 6

Zeynep Akata, Mateusz Malinowski, Mario Fritz, and Bernt Schiele. Multi-Cue Zero-Shot
Learning with Strong Supervision. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 39

Ijaz Akhter and Michael J. Black. Pose-Conditioned Joint Angle Limits for 3D Human
Pose Reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. 15

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould,
and Lei Zhang. Bottom-up and Top-Down Attention for Image Captioning and Visual
Question Answering. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 163, 176, 181, 238

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to Compose
Neural Networks for Question Answering. In Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), 2016. 163, 164, 180, 231, 241

271

Stanislaw Antol, C. Lawrence Zitnick, and Devi Parikh. Zero-Shot Learning via Visual
Abstraction. In European Conference on Computer Vision (ECCV), 2014. 39

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. VQA: Visual Question Answering. In IEEE
International Conference on Computer Vision (ICCV), 2015. 180, 181, 240

Yoav Artzi and Luke Zettlemoyer. Weakly Supervised Learning of Semantic Parsers for
Mapping Instructions to Actions. Transactions of the Association for Computational
Linguistics (TACL), 2013. 181

Michael Ashikhmin. Synthesizing Natural Textures. In ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (13D), 2001. 201

Mathieu Aubry, Daniel Maturana, Alexei Efros, Bryan Russell, and Josef Sivic. Seeing 3D
Chairs: Exemplar Part-Based 2D-3D Alignment Using a Large Dataset of Cad Models. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014. 12, 15

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple Object Recognition with
Visual Attention. In International Conference on Learning Representations (ICLR), 2015.
66, 68, 102

Yuval Bahat and Michal Irani. Blind Dehazing Using Internal Patch Recurrence. In IEEE
International Conference on Computational Photography (ICCP), 2016. 202

Yuval Bahat, Netalee Efrat, and Michal Irani. Non-Uniform Blind Deblurring by Reblurring.
In IEEE International Conference on Computer Vision (ICCV), 2017. 202

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. In International Conference on Learning
Representations (ICLR), 2015. 166, 204

Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and Ravi Ramamoorthi. Selectively
De-animating Video. ACM Transactions on Graphics (TOG), 31(4):66-1, 2012. 102

Ren6e Baillargeon. Infants' Physical World. Current Directions in Psychological Science, 13
(3):89-94, 2004. 87

Guha Balakrishnan, Amy Zhao, Adrian V. Dalca, Fredo Durand, and John Guttag. Synthe-
sizing Images of Humans in Unseen Poses. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 156

Coloma Ballester, Marcelo Bertalmio, Vicent Caselles, Guillermo Sapiro, and Joan Verdera.
Filling-in by Joint Interpolation of Vector Fields and Gray Levels. IEEE Transactions on
Image Processing (TIP), 10(8):1200-1211, 2001. 201

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. DeepCoder: Learning to Write Programs. In International Conference on Learning
Representations (ICLR), 2017. 186

272

Aayush Bansal and Bryan Russell. Marr Revisited: 2D-3D Alignment via Surface Normal
Prediction. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016. 15, 38

Fabien Baradel, Natalia Neverova, Christian Wolf, Julien Mille, and Greg Mori. Object Level
Visual Reasoning in Videos. In European Conference on Computer Vision (ECCV), 2018.
181

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. PatchMatch: A
Randomized Correspondence Algorithm for Structural Image Editing. ACM Transactions
on Graphics (TOG), 28(3):24, 2009. 201, 211, 212

Jonathan T. Barron and Jitendra Malik. Shape, Illumination, and Reflectance from Shading.
IEEE Transactions on Pattern Analysis and Machine intelligence (TPAMI), 37(8):1670-
1687, 2015. 38

Harry G. Barrow and Jay M. Tenenbaum. Recovering Intrinsic Scene Characteristics from
Images. In Computer Vision Systems. Elsevier, 1978. 33, 38

Harry G. Barrow, Jay M. Tenenbaum, Robert C. Bolles, and Helen C. Wolf. Parametric
Correspondence and Chamfer Matching: Two New Techniques for Image Matching. In
International Joint Conference on Artificial Intelligence (IJCAI), 1977. 57, 191

Evgeniy Bart and Shimon Ullman. Cross-Generalization: Learning Novel Classes from a
Single Example by Feature Replacement. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2005. 39

Peter W. Battaglia, Jessica B. Hamrick, and Joshua B. Tenenbaum. Simulation As an
Engine of Physical Scene Understanding. Proceedings of the National Acacdemy of Sciences
(PNAS), 110(45):18327-18332, 2013. 4, 86, 101

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu.
Interaction Networks for Learning about Objects, Relations and Physics. In Advances in
Neural Information Processing Systems (NeurIPS), 2016. 101, 102

Peter N. Belhumeur, David W. Jacobs, David J. Kriegman, and Narendra Kumar. Localizing
Parts of Faces Using a Consensus of Exemplars. IEEE Transactions on Pattern Analysis
and Machine intelligence (TPAMI), 35(12):2930-2940, 2013. 23

Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic Images in the Wild. ACM Transactions
on Graphics (TOG), 33(4):159, 2014. 38

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material Recognition in the Wild
with the Materials in Context Database. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015. 116

Tony Beltramelli. Pix2Code: Generating code from a graphical user interface screenshot. In
ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS), 2018.
201

Yoshua Bengio, J6r6me Louradour, Ronan Collobert, and Jason Weston. Curriculum Learning.
In International Conference on Machine Learning (ICML), 2009. 69

273

Urs Bergmann, Nikolay Jetchev, and Roland Vollgraf. Learning texture manifolds with the
periodic spatial GAN. In International Conference on Machine Learning (ICML), 2017.
202

Thomas G. Bever and David Poeppel. Analysis by Synthesis: A (Re-)Emerging Program of

Research for Language and Vision. Biolinguistics, 4(2-3):174-200, 2010. 15, 66

Irving Biederman. Recognition-by-Components: A Theory of Human Image Understanding.

Psychological Review, 94(2):115, 1987. 185

Thomas 0. Binford. Visual Perception by Computer. Invited talk at IEEE Conf. on Systems

and Control, 1971. 185

Matko Bosnjak, Tim Rocktsschel, Jason Naradowsky, and Sebastian Riedel. Programming

with a Differentiable Forth Interpreter. In International Conference on Machine Learning
(ICML), 2017. 186

Lubomir Bourdev. Poselets and Their Applications in High-Level Computer Vision. PhD

thesis, UC Berkeley, 2011. 23

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic Filter Networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2016. 139

Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Numerical Geometry of
Non-Rigid Shapes. Springer Science & Business Media, 2008. 57

Jonathon Cai, Richard Shin, and Dawn Song. Making Neural Programming Architectures

Generalize via Recursion. In International Conference on Learning Representations (ICLR),
2017. 186

Qingxing Cao, Xiaodan Liang, Bailing Li, Guanbin Li, and Liang Lin. Visual Question

Reasoning on General Dependency Tree. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 168

Zhangjie Cao, Qixing Huang, and Karthik Ramani. 3D object classification via spherical
projections. In International Conference on 3D Vision (3DV), 2017. 38

Susan Carey. The Origin of Concepts. Oxford University Press, 2009. 87

Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Jitendra Malik. Human Pose
Estimation with Iterative Error Feedback. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 15

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo
Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher
Yu. ShapeNet: An Information-Rich 3D Model Repository. arXiv:1512.03012, 2015. 36,
37, 39, 56, 57, 75, 184, 191

Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A Composi-
tional Object-Based Approach to Learning Physical Dynamics. In International Conference
on Learning Representations (ICLR), 2017. 100, 101, 102, 104, 118

274

Yu-Wei Chao, Jimei Yang, Brian Price, Scott Cohen, and Jia Deng. Forecasting Human
Dynamics from Static Images. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 151

Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun. Prob-
abilistic Reasoning for Assembly-Based 3D Modeling. ACM Transactions on Graphics
(TOG), 30(4):35, 2011. 185

Jiawen Chen, Shahram Izadi, and Andrew Fitzgibbon. Kinktre: Animating the world with
the human body. In ACM Symposium on User Interface Software and Technology (UIST),
2012. 33

Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram Nevatia.
ABC-CNN: An attention based convolutional neural network for visual question answering.
In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR
Workshop), 2016a. 163

Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-Image Depth Perception in the
Wild. In Advances in Neural Information Processing Systems (NeurIPS), 2016b. 38

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative
Adversarial Nets. In Advances in Neural Information Processing Systems (NeurIPS), 2016c.
64, 66

Kyunghyun Cho, Bart Van Merri~nboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations Using RNN
Encoder-Decoder for Statistical Machine Translation. In Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2014. 172, 229

Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3D-
R2N2: A Unified Approach for Single and Multi-View 3D Object Reconstruction. In
European Conference on Computer Vision (ECCV), 2016. 15, 38, 52

Grzegorz Chrupala, Akos Kdir, and Afra Alishahi. Learning Language through Pictures.
In Annual Meeting of the Association for Computational Linguistics (ACL), 2015. 162

Taco Cohen, Mario Geiger, and Max Welling. Convolutional Networks for Spherical Signals.
In International Conference on Machine Learning Workshops (ICML Workshop), 2017. 38

Taco S. Cohen, Mario Geiger, Jonas K6hler, and Max Welling. Spherical CNNs. In
International Conference on Learning Representations (ICLR), 2018. 38, 54

Ronan Collobert, Koray Kavukcuoglu, and C16ment Farabet. Torch7: A Matlab-Like
Environment for Machine Learning. In Advances in Neural Information Processing Systems
Workshops (NeurIPS Workshop), 2011. 107

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes Dataset
for Semantic Urban Scene Understanding. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 65, 76

275

Erwin Coumans. Bullet Physics Engine. Open Source Software: http://bulletphysics. org,
2010. 86, 92, 100, 104, 116

Jifeng Dai, Kaiming He, and Jian Sun. Instance-Aware Semantic Segmentation via Multi-Task
Network Cascades. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 70

Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. The Helmholtz
Machine. Neural Computation, 7(5):889-904, 1995. 87

Leonardo De Moura and Nikolaj Bjorner. Z3: An Efficient SMT Solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 337-340. Springer, 2008. 197

Tali Dekel, Tomer Michaeli, Michal Irani, and William T. Freeman. Revealing and Modifying
Non-Local Variations in a Single Image. ACM Transactions on Graphics (TOG), 34(6):
227, 2015. 215

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009. 176, 221, 238, 259

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M Rush. Image-to-Markup
Generation with Coarse-to-Fine Attention. In International Conference on Machine
Learning (ICML), 2017. 201

Misha Denil, Pulkit Agrawal, Tejas D. Kulkarni, Tom Erez, Peter Battaglia, and Nando
de Freitas. Learning to Perform Physics Experiments via Deep Reinforcement Learning.
In International Conference on Learning Representations (ICLR), 2017. 102

Emily L. Denton, Soumith Chintala, and Rob Fergus. Deep Generative Image Models Using a
Laplacian Pyramid of Adversarial Networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2015. 64, 131

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mo-
hamed, and Pushmeet Kohli. RobustFill: Neural Program Learning under Noisy I/o. In
International Conference on Machine Learning (ICML), 2017. 186

Daniel D. Dilks, Joshua B. Julian, Jonas Kubilius, Elizabeth S. Spelke, and Nancy Kanwisher.
Mirror-Image Sensitivity and Invariance in Object and Scene Processing Pathways. Journal
of Neuroscience, 31(31):11305-11312, 2011. 184

Carl Doersch. Tutorial on Variational Autoencoders. arXiv:1606.05908, 2016. 140

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-Term Recurrent Convolutional
Networks for Visual Recognition and Description. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. 163

Li Dong and Mirella Lapata. Language to Logical Form with Neural Attention. In Annual
Meeting of the Association for Computational Linguistics (ACL), 2016. 172, 229

276

Alexey Dosovitskiy and Thomas Brox. Generating Images with Perceptual Similarity
Metrics Based on Deep Networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2016. 74

Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to Generate
Chairs with Convolutional Neural Networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. 12, 16

Yilun Du, Zhijian Liu, Hector Basevi, Ales Leonardis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. Learning to Exploit Stability for 3D Scene Parsing. In
Advances in Neural Information Processing Systems (NeurIPS), 2018. 4

Alexei A. Efros and William T. Freeman. Image Quilting for Texture Synthesis and Transfer.
In Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),
2001. 201, 211, 212

Sebastien Ehrhardt, Aron Monszpart, Niloy J. Mitra, and Andrea Vedaldi. Taking Visual
Motion Prediction to New Heightfields. Computer Vision and Image Understanding
(CVIU), 181:14-25, 2019. 101

David Eigen and Rob Fergus. Predicting Depth, Surface Normals and Semantic Labels with
a Common Multi-Scale Convolutional Architecture. In IEEE International Conference on

Computer Vision (ICCV), 2015. 38

David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map Prediction from a Single
Image Using a Multi-Scale Deep Network. In Advances in Neural Information Processing

Systems (NeurIPS), 2014. 72

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised Learning by
Program Synthesis. In Advances in Neural Information Processing Systems (NeurIPS),
2015. 186, 197

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to
Infer Graphics Programs from Hand-Drawn Images. In Advances in Neural Information
Processing Systems (NeurIPS), 2018. 186, 201, 204

S. M. Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, and
Geoffrey E. Hinton. Attend, Infer, Repeat: Fast Scene Understanding with Generative
Models. In Advances in Neural Information Processing Systems (NeurIPS), 2016. 66, 102

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning
SO(3) equivariant representations with spherical CNNs. In European Conference on
Computer Vision (ECCV), 2018. 38

Haoqiang Fan, Hao Su, and Leonidas Guibas. A Point Set Generation Network for 3D
Object Reconstruction from a Single Image. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 38, 56

Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing Objects by Their
Attributes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009. 39

277

Nima Fazeli, Miquel Oller, Jiajun Wu, Zheng Wu, Joshua B. Tenenbaum, and Alberto
Rodriguez. See, Feel, Act: Hierarchical Learning for Complex Manipulation Skills with
Multisensory Fusion. Science Robotics, 4(26):eaav3l23, 2019. 6

Afsaneh Fazly, Afra Alishahi, and Suzanne Stevenson. A Probabilistic Computational Model
of Cross-Situational Word Learning. Cognitive Science, 2010. 162

Sanja Fidler, Sven J. Dickinson, and Raquel Urtasun. 3D Object Detection and Viewpoint
Estimation with a Deformable 3D Cuboid Model. In Advances in Neural Information
Processing Systems (NeurIPS), 2012. 16

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised Learning for Physical
Interaction through Video Prediction. In Advances in Neural Information Processing
Systems (NeurIPS), 2016. 101, 131, 139

Jason Fischer, John G. Mikhael, Joshua B. Tenenbaum, and Nancy Kanwisher. Functional
Neuroanatomy of Intuitive Physical Inference. Proceedings of the National Acacdemy of
Sciences (PNAS), 113(34):E5072-E5081, 2016. 218

David J. Fleet, Michael J. Black, Yaser Yacoob, and Allan D. Jepson. Design and Use of
Linear Models for Image Motion Analysis. International Journal of Computer Vision
(IJCV), 36(3):171-193, 2000. 128, 130

Frangois Fleuret, Ting Li, Charles Dubout, Emma K Wampler, Steven Yantis, and Donald
Geman. Comparing Machines and Humans on a Visual Categorization Test. Proceedings
of the National Acacdemy of Sciences (PNAS), 108(43):17621-17625, 2011. 188

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning Visual
Predictive Models of Physics for Playing Billiards. In International Conference on Learning
Representations (ICLR), 2016. 4, 100, 101, 102, 105

Gilad Freedman and Raanan Fattal. Image and video upscaling from local self-Examples.
ACM Transactions on Graphics (TOG), 30(2):12, 2011. 202

William T. Freeman. The Generic Viewpoint Assumption in a Framework for Visual
Perception. Nature, 368(6471):542, 1994. 60

Christopher Funk and Yanxi Liu. Beyond Planar Symmetry: Modeling Human Perception
of Reflection and Rotation Symmetries in the Wild. In IEEE International Conference on
Computer Vision (ICCV), 2017. 39

Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual Worlds As Proxy for
Multi-object Tracking Analysis. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 65, 76, 82

Chuang Gan, Yandong Li, Haoxiang Li, Chen Sun, and Boqing Gong. VQS: Linking
Segmentations to Questions and Answers for Supervised Attention in VQA and Question-
focused Semantic Segmentation. In IEEE International Conference on Computer Vision
(ICCV), 2017. 180, 240

278

Yossi Gandelsman, Assaf Shocher, and Michal Irani. "Double-DIP": Unsupervised Image
Decomposition via Coupled Deep-Image-Priors. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 202

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Eslami, and Oriol Vinyals. Syn-
thesizing Programs for Images Using Reinforced Adversarial Learning. In International

Conference on Machine Learning (ICML), 2018. 186, 201

Siddha Ganju, Olga Russakovsky, and Abhinav Gupta. What's in a Question: Using Visual
Questions As a Form of Supervision. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 163

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli,
Jonathan Taylor, and Daniel Tarlow. TerpreT: A probabilistic programming language for
program induction. In Advances in Neural Information Processing Systems Workshops
(NeurIPS Workshop), 2016. 186

Jon Gauthier, Roger Levy, and Joshua B Tenenbaum. Word Learning and the Acquisition of
Syntactic-Semantic Overhypotheses. In Annual Meeting of the Cognitive Science Society
(CogSci), 2018. 162, 231

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolu-
tional Sequence to Sequence Learning. In International Conference on Machine Learning
(ICML), 2017. 232

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are We Ready for Autonomous Driving?
the Kitti Vision Benchmark Suite. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012. 76, 79

Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a Pre-
dictable and Generative Vector Representation for Objects. In European Conference on
Computer Vision (ECCV), 2016. 38, 44, 47

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014. 14, 27

Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollir, and Kaiming He. Detectron.
https://github.com/facebookresearch/detectron, 2018. 167

Daniel Glasner, Shai Bagon, and Michal Irani. Super-Resolution from a Single Image. In
IEEE International Conference on Computer Vision (ICCV), 2009. 202

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in
Neural Information Processing Systems (NeurIPS), 2014. 46, 47, 74, 131

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. DRAW: A
Recurrent Neural Network for Image Generation. In International Conference on Machine
Learning (ICML), 2015. 66, 131

279

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu
Aubry. AtlasNet: A Papier-mich6 Approach to Learning 3D Surface Generation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 56, 58

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.

Improved Training of Wasserstein GANs. In Advances in Neural Information Processing

Systems (NeurIPS), 2017. 50

Abhinav Gupta, Alexei A. Efros, and Martial Hebert. Blocks World Revisited: Image

Understanding Using Qualitative Geometry and Mechanics. In European Conference on

Computer Vision (ECCV), 2010. 101

Jessica B. Hamrick, Andrew J. Ballard, Razvan Pascanu, Oriol Vinyals, Nicolas Heess,
and Peter W. Battaglia. Metacontrol for Adaptive Imagination-Based Optimization. In

International Conference on Learning Representations (ICLR), 2017. 101

Chi Han, Jiayuan Mao, Chuang Gan, Joshua B. Tenenbaum, and Jiajun Wu. Visual Concept-
Metaconcept Learning. In Advances in Neural Information Processing Systems (NeurIPS),
2019. 218

Christian Hsne, Shubham Tulsiani, and Jitendra Malik. Hierarchical Surface Prediction for

3D Object Reconstruction. In International Conference on 3D Vision (3DV), 2017. 38

Bharath Hariharan and Ross Girshick. Low-Shot Visual Recognition by Shrinking and
Hallucinating Features. In IEEE International Conference on Computer Vision (ICCV),
2017. 39

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for

Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 43, 55, 75, 106, 108, 113, 166, 171, 199, 204, 222, 238

Kaiming He, Georgia Gkioxari, Piotr Dollir, and Ross Girshick. Mask R-CNN. In IEEE

International Conference on Computer Vision (ICCV), 2017. 71, 75, 166, 167, 171, 204

M. Hejrati and D. Ramanan. Analysis by Synthesis: 3D Object Recognition by Object
Reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014. 15

Mohsen Hejrati and Deva Ramanan. Analyzing 3D Objects in Cluttered Images. In Advances

in Neural Information Processing Systems (NeurIPS), 2012. 20

Irina Higgins, Loic Matthey, Xavier Glorot, Arka Pal, Benigno Uria, Charles Blundell, Shakir
Mohamed, and Alexander Lerchner. Early Visual Concept Learning with Unsupervised
Deep Learning. arXiv:1606.05579, 2016. 147

Irina Higgins, Loic Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning Basic Visual
Concepts with a Constrained Variational Framework. In International Conference on
Learning Representations (ICLR), 2017. 154

280

Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal, Christopher P. Burgess, Matthew
Botvinick, Demis Hassabis, and Alexander Lerchner. SCAN: Learning Abstract Hierarchical
Compositional Visual Concepts. In International Conference on Learning Representations
(ICLR), 2018. 164

Geoffrey E. Hinton and Zoubin Ghahramani. Generative Models for Discovering Sparse
Distributed Representations. Philos. Trans. Royal Soc. B, 352(1358):1177-1190, 1997. 15

Geoffrey E. Hinton and Drew Van Camp. Keeping the Neural Networks Simple by Minimizing
the Description Length of the Weights. In Conference on Learning Theory (COLT), 1993.
147

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The "Wake-Sleep"
Algorithm for Unsupervised Neural Networks. Science, 268(5214):1158, 1995. 66, 102, 108

Geoffrey F. Hinton. A Parallel Computation That Assigns Canonical Object-Based Frames
of Reference. In International Joint Conference on Artificial Intelligence (IJCAI), 1981.
33

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735-1780, 1997. 64, 66, 166

Berthold K. P. Horn and Michael J. Brooks. Shape from Shading. MIT press, 1989. 38

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning
to Reason: End-to-End Module Networks for Visual Question Answering. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 168

Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate Saenko. Explainable Neural
Computation via Stack Neural Module Networks. In European Conference on Computer
Vision (ECCV), 2018. 164

Wenze Hu and Song-Chun Zhu. Learning 3D Object Templates by Quantizing Geometry
and Appearance Spaces. IEEE Transactions on Pattern Analysis and Machine intelligence
(TPAMI), 37(6):1190-1205, 2015. 15

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman,
Jiajun Wu, Daniela Rus, and Wojciech Matusik. ChainQueen: A Real-Time Differentiable
Physical Simulator for Soft Robotics. In IEEE International Conference on Robotics and
Automation (ICRA), 2019. 5, 6

Jonathan Huang and Kevin Murphy. Efficient Inference in Occlusion-Aware Generative
Models of Images. In International Conference on Learning Representations Workshops
(ICLR Workshop), 2015. 66, 102

Qixing Huang, Hai Wang, and Vladlen Koltun. Single-View Reconstruction via Joint Analysis
of Image and Shape Collections. ACM Transactions on Graphics (TOG), 34(4):87, 2015.
12, 15, 16, 202

Shiyu Huang and Deva Ramanan. Expecting the Unexpected: Training Detectors for Unusual
Pedestrians with Adversarial Imposters. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 144

281

Drew A. Hudson and Christopher D. Manning. Compositional Attention Networks for

Machine Reasoning. In International Conference on Learning Representations (ICLR),
2018. 163, 164, 168, 170, 175, 178, 180, 238, 241

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and Locally Consistent

Image Completion. ACM Transactions on Graphics (TOG), 36(4):107, 2017. 201

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-Image Translation

with Conditional Adversarial Networks. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 74, 77, 210, 260, 261

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard A. Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew J. Davison, and

Andrew W. Fitzgibbon. KinectFusion: Real-Time 3D Reconstruction and Interaction

Using a Moving Depth Camera. In Jeffrey S. Pierce, Maneesh Agrawala, and Scott R.

Klemmer, editors, ACM Symposium on User Interface Software and Technology (UIST),
2011. 38

Allan Jabri, Armand Joulin, and Laurens van der Maaten. Revisiting Visual Question

Answering Baselines. In European Conference on Computer Vision (ECCV), 2016. 180,
241

Max Jaderberg, Karen Simonyan, and Andrew Zisserman. Spatial Transformer Networks. In

Advances in Neural Information Processing Systems (NeurIPS), 2015. 20

Wenzel Jakob. Mitsuba Renderer, 2010. http://www.mitsuba-renderer.org. 57, 221

Varun Jampani, Sebastian Nowozin, Matthew Loper, and Peter V. Gehler. The Informed

Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision

Models. Computer Vision and Image Understanding (CVIU), 136:32-44, 2015. 66

Michael Janner, Jiajun Wu, Tejas D. Kulkarni, Ilker Yildirim, and Joshua B. Tenenbaum. Self-

Supervised Intrinsic Image Decomposition. In Advances in Neural Information Processing

Systems (NeurIPS), 2017. 3, 38

Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn,
and Jiajun Wu. Reasoning about Physical Interactions with Object-Oriented Prediction
and Planning. In International Conference on Learning Representations (ICLR), 2019. 5,
7, 99, 217

Dinesh Jayaraman and Kristen Grauman. Look-ahead before You Leap: End-to-end Active

Recognition by Forecasting the Effect of Motion. In European Conference on Computer

Vision (ECCV), 2016. 68

Dinesh Jayaraman, Ruohan Gao, and Kristen Grauman. ShapeCodes: Self-Supervised
Feature Learning by Lifting Views to Viewgrids. In European Conference on Computer

Vision (ECCV), 2018. 39, 56

Zhaoyin Jia, Andy Gallagher, Ashutosh Saxena, and Tsuhan Chen. 3D Reasoning from

Blocks to Stability. IEEE Transactions on Pattern Analysis and Machine intelligence

(TPAMI), 37(5):905-918, 2015. 87, 101

282

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein,
and Li Fei-Fei. Image Retrieval Using Scene Graphs. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. 179

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-Time Style
Transfer and Super-Resolution. In European Conference on Computer Vision (ECCV),
2016a. 74, 120

Justin Johnson, Andrej Karpathy, and Li Fei-Fei. DenseCap: Fully convolutional localization
networks for dense captioning. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016b. 163

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick,
and Ross Girshick. CLEVR: A Diagnostic Dataset for Compositional Language and
Elementary Visual Reasoning. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017a. 162, 163, 168, 170, 174, 175, 229

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-Fei,
C. Lawrence Zitnick, and Ross Girshick. Inferring and Executing Programs for Visual
Reasoning. In IEEE International Conference on Computer Vision (ICCV), 2017b. 163,
164, 167, 168, 175, 177, 186, 229

Neel Joshi, Sisil Mehta, Steven Drucker, Eric Stollnitz, Hugues Hoppe, Matt Uyttendaele,
and Michael Cohen. Cliplets: Juxtaposing Still and Dynamic Imagery. In A CM Symposium
on User Interface Software and Technology (UIST), 2012. 131

Leslie Pack Kaelbling and Tomis Lozano-P6rez. Integrated Task and Motion Planning in
Belief Space. The International Journal of Robotics Research (IJRR), 32(9-10):1194-1227,
2013. 217

Abhishek Kar, Shubham Tulsiani, Joao Carreira, and Jitendra Malik. Category-Specific
Object Reconstruction from a Single Image. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. 12, 15, 17, 38

Abhishek Kar, Christian Hine, and Jitendra Malik. Learning a Multi-View Stereo Machine.
In Advances in Neural Information Processing Systems (NeurIPS), 2017. 33

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3D Mesh Renderer. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 72, 73, 75

Michael Kazhdan, Bernard Chazelle, David Dobkin, Adam Finkelstein, and Thomas
Funkhouser. A Reflective Symmetry Descriptor. In European Conference on Computer
Vision (ECCV), 2002. 38

Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Symmetry Descriptors
and 3D Shape Matching. In Eurographics Symposium on Geometry Processing (SGP),
2004. 38

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations (ICLR), 2015. 47, 75, 76, 154, 191,
225

283

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In International
Conference on Learning Representations (ICLR), 2014. 129, 131, 133, 134, 135, 136, 137

Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
Supervised Learning with Deep Generative Models. In Advances in Neural Information
Processing Systems (NeurIPS), 2014. 134, 135, 136

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollar. Panoptic
Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019. 73

Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Unifying Visual-Semantic Em-
beddings with Multimodal Neural Language Models. In Advances in Neural Information
Processing Systems Workshops (NeurIPS Workshop), 2014. 163

Kris M. Kitani, De-An Huang, and Wei-Chiu Ma. Activity Forecasting. In Group and Crowd
Behavior for Computer Vision, pages 273-294. Elsevier, 2017. 102

Kurt Koffka. Principles of Gestalt Psychology. Routledge, 2013. 184

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From Skills to Symbols:
Learning Symbolic Representations for Abstract High-Level Planning. Journal of Artificial
Intelligence Research (JAIR), 2018. 181

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2012. 31, 205, 221, 259

Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash Mansinghka. Picture:
A Probabilistic Programming Language for Scene Perception. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015a. 15, 66, 102, 185

Tejas D. Kulkarni, William F. Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum. Deep
Convolutional Inverse Graphics Network. In Advances in Neural Information Processing
Systems (NeurIPS), 2015b. 15, 64, 66, 100, 164, 197

Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to Detect Unseen
Object Classes by Between-Class Attribute Transfer. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009. 39

Anders Boesen Lindbo Larsen, Soren Kaae Sonderby, and Ole Winther. Autoencoding
beyond Pixels Using a Learned Similarity Metric. In International Conference on Machine
Learning (ICML), 2016. 74

Yvan G. Leclerc and Martin A. Fischler. An Optimization-Based Approach to the Interpre-
tation of Single Line Drawings As 3D Wire Frames. International Journal of Computer
Vision (IJCV), 9(2):113-136, 1992. 15

Yann LeCun, L6on Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. 94

284

Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine.
Stochastic Adversarial Video Prediction. arXiv:1804.01523, 2018. 121

Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. EPnP: An Accurate 0(n) Solution
to the PnP Problem. International Journal of Computer Vision (IJCV), 81(2):155, 2009.
42

Adam Lerer, Sam Gross, and Rob Fergus. Learning Physical Intuition of Block Towers by
Example. In International Conference on Machine Learning (ICML), 2016. 100, 101, 102,
108, 109, 110

Louis Lettry, Michal Perdoch, Kenneth Vanhoey, and Luc Van Gool. Repeated Pattern
Detection Using CNN Activations. In IEEE Winter Conference on Applications of
Computer Vision (WACV), 2017. 200, 205, 206, 211, 212, 259

Kenneth Levenberg. A Method for the Solution of Certain Non-Linear Problems in Least
Squares. Q. Appl. Math., 2(2):164-168, 1944. 42

Beth Levin. English Verb Classes and Alternations: A Preliminary Investigation. University
of Chicago Press, 1993. 181

Thomas Lewiner, H6lio Lopes, Ant6nio Wilson Vieira, and Geovan Tavares. Efficient
Implementation of Marching Cubes' Cases with Topological Guarantees. J. Graph. Tools,
8(2):1-15, 2003. 55

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas.
GRASS: Generative Recursive Autoencoders for Shape Structures. ACM Transactions on
Graphics (TOG), 36(4):52, 2017a. 186, 201

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir,
Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. GRAINS: Generative
recursive autoencoders for INdoor scenes. ACM Transactions on Graphics (TOG), 38(2):
12:1-12:16, 2019a. 201

Wenbin Li, Ales Leonardis, and Mario Fritz. Visual Stability Prediction for Robotic Manipu-
lation. In IEEE International Conference on Robotics and Automation (ICRA), 2017b.
102

Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and Leonidas J.
Guibas. Joint Embeddings of Shapes and Images via CNN Image Purification. ACM
Transactions on Graphics (TOG), 34(6):234, 2015. 13

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning
Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids. In
International Conference on Learning Representations (ICLR), 2019b. 5, 6

Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B. Tenenbaum, Antonio Torralba, and Russ
Tedrake. Propagation Networks for Model-Based Control under Partial Observation. In
IEEE International Conference on Robotics and Automation (ICRA), 2019c. 5

Zicheng Liao, Neel Joshi, and Hugues Hoppe. Automated Video Looping with Progressive
Dynamism. ACM Transactions on Graphics (TOG), 32(4):77, 2013. 131

285

Joseph J. Lim, Hamed Pirsiavash, and Antonio Torralba. Parsing Ikea Objects: Fine Pose
Estimation. In IEEE International Conference on Computer Vision (ICCV), 2013. 14, 24,
25, 26, 27, 39, 40, 41

Joseph J. Lim, Aditya Khosla, and Antonio Torralba. FPM: Fine Pose Parts-Based Model
with 3D CAD Models. In European Conference on Computer Vision (ECCV), 2014. 16

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollir, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context.
In European Conference on Computer Vision (ECCV), 2014. 180

Tsung-Yi Lin, Piotr Dollir, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature Pyramid Networks for Object Detection. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 167

Ce Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis.
PhD thesis, Massachusetts Institute of Technology, 2009. 141, 156

Ce Liu, Jenny Yuen, and Antonio Torralba. SIFT Flow: Dense Correspondence across Scenes
and Its Applications. IEEE Transactions on Pattern Analysis and Machine intelligence
(TPAMI), 33(5):978-994, 2011. 130

Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, and Bryan
Catanzaro. Image Inpainting for Irregular Holes Using Partial Convolutions. In European
Conference on Computer Vision (ECCV), 2018a. 201, 212

Jiongxin Liu and Peter N. Belhumeur. Bird Part Localization Using Exemplar-Based Models
with Enforced Pose and Subcategory Consistency. In IEEE International Conference on
Computer Vision (ICCV), 2013. 22, 23

Shari Liu, Tomer D. Ullman, Joshua B. Tenenbaum, and Elizabeth S. Spelke. Ten-Month-Old
Infants Infer the Value of Goals from the Costs of Actions. Science, 358(6366):1038-1041,
2017. 218

Yunchao Liu, Zheng Wu, Daniel Ritchie, William T. Freeman, Joshua B. Tenenbaum, and
Jiajun Wu. Learning to Describe Scenes with Programs. In International Conference on
Learning Representations (ICLR), 2019. 6, 8, 186, 199, 201

Zhijian Liu, William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu. Physical Primitive
Decomposition. In European Conference on Computer Vision (ECCV), 2018b. 3, 4, 7, 99,
185

Matthew M Loper and Michael J Black. OpenDR: An approximate differentiable renderer.
In European Conference on Computer Vision (ECCV), 2014. 65

David G. Lowe. Three-Dimensional Object Recognition from Single Two-Dimensional Images.
Artificial Intelligence, 31(3):355-395, 1987. 14, 15

Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual Relationship Detection
with Language Priors. In European Conference on Computer Vision (ECCV), 2016. 199

286

pill P1 11

Hongjing Lu and Alan L. Yuille. Ideal Observers for Detecting Motion: Correspondence
Noise. In Advances in Neural Information Processing Systems (NeurIPS), 2006. 130

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches to Attention-
Based Neural Machine Translation. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2015. 166, 204

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier Nonlinearities Improve
Neural Network Acoustic Models. In International Conference on Machine Learning
(ICML), 2013. 47

M. Malinowski and M. Fritz. A Multi-World Approach to Question Answering about Real-
World Scenes Based on Uncertain Input. In Advances in Neural Information Processing
Systems (NeurIPS), 2014. 163

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The
Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences from Natural
Supervision. In International Conference on Learning Representations (ICLR), 2019a. 6,
7, 161, 164, 218

Jiayuan Mao, Xiuming Zhang, Yikai Li, William T. Freeman, Joshua B. Tenenbaum, and
Jiajun Wu. Program-Guided Image Manipulators. In IEEE International Conference on
Computer Vision (ICCV), 2019b. 8, 199

Junhua Mao, Jiajing Xu, Kevin Jing, and Alan L Yuille. Training and Evaluating Multimodal
Word Embeddings with Large-Scale Web Annotated Images. In Advances in Neural
Information Processing Systems (NeurIPS), 2016. 163

Donald W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters.
J. Soc. Ind. Appl. Math., 11(2):431-441, 1963. 42

David Marr. Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. W. H. Freeman and Company, 1982. 3, 36

David Mascharka, Philip Tran, Ryan Soklaski, and Arjun Majumdar. Transparency by
Design: Closing the Gap between Performance and Interpretability in Visual Reasoning.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 163,
164, 168, 175, 177, 238

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep Multi-Scale Video Prediction
beyond Mean Square Error. In International Conference on Learning Representations
(ICLR), 2016. 102, 128, 131, 151

John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J. Davison. SceneNet RGB-
D: Can 5M Synthetic Images Beat Generic ImageNet Pre-training on Indoor Segmentation?
In IEEE International Conference on Computer Vision (ICCV), 2017. 16, 33, 38

Tomer Michaeli and Michal Irani. Blind Deblurring Using Internal Patch Recurrence. In
European Conference on Computer Vision (ECCV), 2014. 202

Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. arXiv:1411.1784,
2014. 74

287

Niloy Mitra, Michael Wand, Hao Richard Zhang, Daniel Cohen-Or, Vladimir Kim, and
Qi-Xing Huang. Structure-Aware Shape Processing. In SIGGRAPH Asia Courses. ACM,
2013. 185

Andriy Mnih and Danilo J. Rezende. Variational Inference for Monte Carlo Objectives. In
International Conference on Machine Learning (ICML), 2016. 68, 69, 104, 108

Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi. Newto-
nian Scene Understanding: Unfolding the Dynamics of Objects in Static Images. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016a. 4, 101

Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi. "What happens
if..." learning to predict the effect of forces in images. In European Conference on Computer

Vision (ECCV), 2016b. 101

Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecki. 3D bounding box
estimation using deep learning and geometry. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2017. 79

Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and Mehran Ebrahimi. EdgeConnect:
Generative image inpainting with adversarial edge learning. arXiv:1901.00212, 2019. 201

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew W.
Fitzgibbon. KinectFusion: Real-Time Dense Surface Mapping and Tracking. In Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), 2011. 33

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked Hourglass Networks for Human Pose
Estimation. In European Conference on Computer Vision (ECCV), 2016. 15

Gen Nishida, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and Adrien Bousseau.
Interactive Sketching of Urban Procedural Models. A CM Transactions on Graphics (TOG),
35(4):130, 2016. 186

Gen Nishida, Adrien Bousseau, and Daniel G. Aliaga. Procedural Modeling of a Building
from a Single Image. Computer Graphics Forum (CGF), 37(2):415-429, 2018. 186

Chengjie Niu, Jun Li, and Kai Xu. Im2Struct: Recovering 3d shape structure from a single
rgb image. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018. 201

Fakir S. Nooruddin and Greg Turk. Simplification and Repair of Polygonal Models Using
Volumetric Techniques. IEEE Transactions on Visualization and Computer Graphics
(TVCG), 9(2):191-205, 2003. 115

David Novotny, Diane Larlus, and Andrea Vedaldi. Learning 3D Object Categories by
Looking around Them. In IEEE International Conference on Computer Vision (ICCV),
2017. 38

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder Singh. Action-
Conditional Video Prediction Using Deep Networks in Atari Games. In Advances in Neural
Information Processing Systems (NeurIPS), 2015. 131

288

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-Shot Task General-
ization with Multi-Task Deep Reinforcement Learning. In International Conference on
Machine Learning (ICML), 2017. 181

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-Symbolic Program Synthesis. In International Conference on
Learning Representations (ICLR), 2017. 186

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation
in PyTorch. In Advances in Neural Information Processing Systems Workshops (NeurIPS
Workshop), 2017. 154

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros.
Context Encoders: Feature Learning by Inpainting. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 201

Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko. Learning Deep Object Detectors
from 3D Models. In IEEE International Conference on Computer Vision (ICCV), 2015.
39

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global Vectors for
Word Representation. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014. 241

Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. Teaching 3D Geometry to
Deformable Part Models. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012. 27

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM:
Visual Reasoning with a General Conditioning Layer. In AAAI Conference on Artificial
Intelligence (AAAI), 2018. 164, 168, 175

Silvia L. Pintea, Jan C. van Gemert, and Arnold W. M. Smeulders. Deja Vu: Motion
Prediction in Static Images. In European Conference on Computer Vision (ECCV), 2014.
130

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park, and Abhinav Gupta. The
Curious Robot: Learning Visual Representations via Physical Interactions. In European
Conference on Computer Vision (ECCV), 2016. 101, 102

Javier Portilla and Eero P. Simoncelli. A Parametric Texture Model Based on Joint Statistics
of Complex Wavelet Coefficients. International Journal of Computer Vision (IJCV), 40
(1):49-70, 2000. 131

Mukta Prasad, Andrew Fitzgibbon, Andrew Zisserman, and Luc Van Gool. Finding Nemo:
Deformable Object Class Modelling Using Curve Matching. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010. 12, 15

Marc Proesmans, Luc Van Gool, and Andr6 Oosterlinck. One-Shot Active 3D Shape
Acquisition. In International Conference on Pattern Recognition (ICPR), 1996. 39

289

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++: Deep Hierarchical

Feature Learning on Point Sets in a Metric Space. In Advances in Neural Information
Processing Systems (NeurIPS), 2017. 184, 209

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning

with Deep Convolutional Generative Adversarial Networks. In International Conference

on Learning Representations (ICLR), 2016. 47, 128, 131

Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Reconstructing 3D Human Pose from

2D Image Landmarks. In European Conference on Computer Vision (ECCV), 2012. 15

Anurag Ranjan and Michael J. Black. Optical Flow Estimation Using a Spatial Pyramid

Network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. 106

Scott Reed and Nando De Freitas. Neural Programmer-Interpreters. In International

Conference on Learning Representations (ICLR), 2016. 186

Scott E. Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep Visual Analogy-Making. In
Advances in Neural Information Processing Systems (NeurIPS), 2015. 81, 140, 142, 150,
151

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks. In Advances in Neural Information

Processing Systems (NeurIPS), 2015. 20, 72

Danilo Jimenez Rezende, S. M. Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg,
and Nicolas Heess. Unsupervised Learning of 3D Structure from Images. In Advances in

Neural Information Processing Systems (NeurIPS), 2016a. 38, 44, 68, 72, 102, 104, 108

Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra.
One-Shot Generalization in Deep Generative Models. In International Conference on

Machine Learning (ICML), 2016b. 66

Gernot Riegler, Ali Osman Ulusoys, and Andreas Geiger. OctNet: Learning Deep 3D
Representations at High Resolutions. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 38

Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah Goodman. Neurally-Guided
Procedural Models: Amortized Inference for Procedural Graphics Programs Using Neural
Networks. In Advances in Neural Information Processing Systems (NeurIPS), 2016. 185

Lawrence G. Roberts. Machine Perception of Three-Dimensional Solids. PhD thesis, Mas-
sachusetts Institute of Technology, 1963. 185

Irvin Rock and Stephen Palmer. The Legacy of Gestalt Psychology. Scientific American,
263(6):84-91, 1990. 199

Jason Rock, Tanmay Gupta, Justin Thorsen, JunYoung Gwak, Daeyun Shin, and Derek
Hoiem. Completing 3D Object Shape from One Depth Image. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015. 39

290

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI), 2015. 55, 209, 223, 226

Stefan Roth and Michael J. Black. Fields of Experts: A Framework for Learning Image
Priors. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
128, 130

Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method: A Unified Approach
to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-
Verlag, Berlin, Heidelberg, 2004. 121

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The Earth Mover's Distance As a
Metric for Image Retrieval. International Journal of Computer Vision (IJCV), 40(2):
99-121, 2000. 191

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211-252, 2015. 12, 27

Fereshteh Sadeghi, C. Lawrence Zitnick, and Ali Farhadi. VISALOGY: Answering Visual
Analogy Questions. In Advances in Neural Information Processing Systems (NeurIPS),
2015. 81

Ryusuke Sagawa, Hiroshi Kawasaki, Shota Kiyota, and Ryo Furukawa. Dense One-Shot 3D
Reconstruction by Detecting Continuous Regions with Parallel Line Projection. In IEEE
International Conference on Computer Vision (ICCV), 2011. 39

Adam N. Sanborn, Vikash K. Mansinghka, and Thomas L. Griffiths. Reconciling Intuitive
Physics and Newtonian Mechanics for Colliding Objects. Psychological Review, 120(2):
411, 2013. 86

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan Pascanu,
Peter Battaglia, and Timothy Lillicrap. A Simple Neural Network Module for Relational
Reasoning. In Advances in Neural Information Processing Systems (NeurIPS), 2017. 163,
168

Benjamin Sapp and Ben Taskar. Modec: Multimodal Decomposable Models for Human Pose
Estimation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2013. 14, 15, 21, 22, 23

Scott Satkin, Jason Lin, and Martial Hebert. Data-Driven Scene Understanding from 3D
Models. In British Machine Vision Conference (BMVC), 2012. 15

Arno Sch6dl, Richard Szeliski, David H. Salesin, and Irfan Essa. Video Textures. ACM
Transactions on Graphics (TOG), 7(5):489-498, 2000. 131

John Schulman, Alex Lee, Jonathan Ho, and Pieter Abbeel. Tracking Deformable Objects
with Point Clouds. In IEEE International Conference on Robotics and Automation (ICRA),
2013. 87

291

Adriana Schulz, Ariel Shamir, Ilya Baran, David IW Levin, Pitchaya Sitthi-Amorn, and
Wojciech Matusik. Retrieval on Parametric Shape Collections. ACM Transactions on
Graphics (TOG), 36(1):11, 2017. 185

Sebastian Schuster, Ranjay Krishna, Angel Chang, Li Fei-Fei, and Christopher D. Manning.
Generating Semantically Precise Scene Graphs from Textual Descriptions for Improved
Image Retrieval. In Conference on Empirical Methods in Natural Language Processing
Workshops (EMNLP Workshop), 2015. 180, 231, 241

Thomas W Sederberg and Scott R Parry. Free-Form Deformation of Solid Geometric Models.
ACM Transactions on Graphics (TOG), 20(4):151-160, 1986. 72

Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. SinGAN: Learning a generative
model from a single natural image. In IEEE International Conference on Computer Vision
(ICCV), 2019. 202

Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast Pose Estimation with Parameter-
Sensitive Hashing. In IEEE International Conference on Computer Vision (ICCV), 2003.
16

Tianjia Shao, Aron Monszpart, Youyi Zheng, Bongjin Koo, Weiwei Xu, Kun Zhou, and
Niloy J. Mitra. Imagining the Unseen: Stability-Based Cuboid Arrangements for Scene
Understanding. ACM Transactions on Graphics (TOG), 33(6), 2014. 101

Abhishek Sharma, Oliver Grau, and Mario Fritz. VConv-DAE: Deep Volumetric Shape
Learning without Object Labels. In European Conference on Computer Vision Workshops
(ECCV Workshop), 2016. 47

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.
CSGNet: Neural Shape Parser for Constructive Solid Geometry. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 184, 185, 192, 201

Haoyue Shi, Jiayuan Mao, Tete Xiao, Yuning Jiang, and Jian Sun. Learning Visually-
grounded Semantics from Contrastive Adversarial Samples. In International Conference
on Computational Linguistics (COLING), 2018. 163

Jian Shi, Yue Dong, Hao Su, and Stella X. Yu. Learning Non-Lambertian Object Intrinsics
across ShapeNet Categories. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 38

Kevin J. Shih, Arun Mallya, Saurabh Singh, and Derek Hoiem. Part Localization Using
Multi-proposal Consensus for Fine-Grained Categorization. In British Machine Vision
Conference (BMVC), 2015. 15, 22, 23

Daeyun Shin, Charless C. Fowlkes, and Derek Hoiem. Pixels, Voxels, and Views: A Study of
Shape Representations for Single View 3D Object Shape Prediction. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018. 39, 56, 57, 58, 59, 60

Assaf Shocher, Nadav Cohen, and Michal Irani. "Zero-Shot" Super-Resolution Using Deep
Internal Learning. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 202

292

Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani. InGAN: Capturing and remapping
the "DNA" of a natural image. In IEEE International Conference on Computer Vision
(ICCV), 2019. 202

Abhinav Shrivastava and Abhinav Gupta. Building Part-Based Object Detectors via 3D
Geometry. In IEEE International Conference on Computer Vision (ICCV), 2013. 15

N. Siddharth, T. B. Paige, J. W. Meent, A. Desmaison, N. Goodman, P. Kohli, F. Wood, and
P. Torr. Learning Disentangled Representations with Semi-Supervised Deep Generative
Models. In Advances in Neural Information Processing Systems (NeurIPS), 2017. 164

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor Segmentation
and Support Inference from RGBD Images. In European Conference on Computer Vision
(ECCV), 2012. 38

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. In International Conference on Learning Representations (ICLR),
2015. 74, 75, 120

Kevin A. Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Joshua B. Tenenbaum,
and Tomer D. Ullman. Modeling Expectation Violation in Intuitive Physics with Coarse
Probabilistic Object Representations. In Advances in Neural Information Processing
Systems (NeurIPS), 2019. 218 -

Kihyuk Sohn, Xinchen Yan, and Honglak Lee. Learning Structured Output Representation
Using Deep Conditional Generative Models. In Advances in Neural Information Processing
Systems (NeurIPS), 2015. 135

Amir Arsalan Soltani, Haibin Huang, Jiajun Wu, Tejas D. Kulkarni, and Joshua B. Tenen-
baum. Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes
with Deep Generative Networks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 15, 56

Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang, Manolis Savva, and Thomas
Funkhouser. Semantic Scene Completion from a Single Depth Image. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017. 33, 38

Elizabeth S. Spelke. Core Knowledge. American Psychologist, 55(11):1233, 2000. 218

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised Learning of
Video Representations Using LSTMs. In International Conference on Machine Learning
(ICML), 2015. 131, 151

Ondrej St'ava, Bedrich Benes, Radomir Mech, Daniel G Aliaga, and Peter Kristof. Inverse
Procedural Modeling by Automatic Generation of L-systems. Computer Graphics Forum
(CGF), 29(2):665-674, 2010. 185

Hao Su, Qixing Huang, Niloy J. Mitra, Yangyan Li, and Leonidas Guibas. Estimating Image
Depth Using Shape Collections. ACM Transactions on Graphics (TOG), 33(4):37, 2014.
12, 15, 16

293

Hao Su, Charles R. Qi, Yangyan Li, and Leonidas J. Guibas. Render for CNN: Viewpoint

Estimation in Images Using CNNs Trained with Rendered 3D Model Views. In IEEE
International Conference on Computer Vision (ICCV), 2015. 13, 14, 16, 25, 26, 27

Joseph Suarez, Justin Johnson, and Fei-Fei Li. DDRprog: A CLEVR Differentiable Dynamic

Reasoning Programmer. arXiv:1803.11361, 2018. 163, 168

Baochen Sun and Kate Saenko. From Virtual to Reality: Fast Adaptation of Virtual Object

Detectors to Real Domains. In British Machine Vision Conference (BMVC), 2014. 16

Chen Sun, Per Karlsson, Jiajun Wu, Joshua B. Tenenbaum, and Kevin Murphy. Stochas-

tic Prediction of Multi-Agent Interactions from Partial Observations. In International

Conference on Learning Representations (ICLR), 2019. 217

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural Program

Synthesis from Diverse Demonstration Videos. In International Conference on Machine

Learning (ICML), 2018a. 186

Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Tianfan
Xue, Joshua B. Tenenbaum, and William T. Freeman. Pix3D: Dataset and Methods for

Single-Image 3D Shape Modeling. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018b. 7, 35, 51, 52, 57, 191

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural

Networks. In Advances in Neural Information Processing Systems (NeurIPS), 2014. 80

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy

Gradient Methods for Reinforcement Learning with Function Approximation. In Advances

in Neural Information Processing Systems (NeurIPS), 2000. 234

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper with Convo-

lutions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
109, 110

Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. Web-Scale Training for
Face Identification. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015. 20

Marshall F. Tappen, William T. Freeman, and Edward H. Adelson. Recovering Intrinsic

Images from a Single Image. In Advances in Neural Information Processing Systems

(NeurIPS), 2003. 38

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Multi-View 3D Models from
Single Images with a Convolutional Network. In European Conference on Computer Vision
(ECCV), 2016. 38

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree Generating Networks: Ef-
ficient Convolutional Architectures for High-Resolution 3D Outputs. In IEEE International

Conference on Computer Vision (ICCV), 2017. 38, 52

294

Olivier Teboul, Loic Simon, Panagiotis Koutsourakis, and Nikos Paragios. Segmentation
of Building Facades Using Procedural Shape Priors. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2010. 200, 206, 211, 212

Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Niener.
Face2Face: Real-Time face capture and reenactment of RGB videos. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016. 143

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. Learning to Infer and Execute 3D Shape Programs. In
International Conference on Learning Representations (ICLR), 2019. 6, 8, 183

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A Physics Engine for Model-Based
Control. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2012. 121

Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Technical
report, Carnegie Mellon University, 1991. 92

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient
Object Localization Using Convolutional Networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. 15, 19, 20, 22, 23, 24

Jonathan J. Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint Training of a
Convolutional Network and a Graphical Model for Human Pose Estimation. In Advances
in Neural Information Processing Systems (NeurIPS), 2014. 19, 22, 23

Antonio Torralba and Alexei A. Efros. Unbiased Look at Dataset Bias. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2011. 25

Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing Visual Features for
Multiclass and Multiview Object Detection. IEEE Transactions on Pattern Analysis and
Machine intelligence (TPAMI), 29(5), 2007. 39

Lorenzo Torresani, Aaron Hertzmann, and Christoph Bregler. Learning Non-Rigid 3D Shape
from 2D Motion. In Advances in Neural Information Processing Systems (NeurIPS), 2003.
12, 15, 17, 20

Alexander Toshev and Christian Szegedy. DeepPose: Human Pose Estimation via Deep
Neural Networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014. 15, 23

Zhuowen Tu and Song-Chun Zhu. Image Segmentation by Data-Driven Markov Chain Monte
Carlo. IEEE Transactions on Pattern Analysis and Machine intelligence (TPAMI), 24(5):
657-673, 2002. 66

Shubham Tulsiani and Jitendra Malik. Viewpoints and Keypoints. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015. 14, 16, 27

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik.
Learning Shape Abstractions by Assembling Volumetric Primitives. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017a. 110, 112, 184, 185, 192, 194

295

Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. Multi-View Su-
pervision for Single-View Reconstruction via Differentiable Ray Consistency. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017b. 33, 38, 44, 51,
52, 56, 58

Tomer D. Ullman, Elizabeth Spelke, Peter Battaglia, and Joshua B. Tenenbaum. Mind
Games: Game Engines As an Architecture for Intuitive Physics. Trends in Cognitive

Sciences (TiCS), 21(9):649-665, 2017. 86

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep Image Prior. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 201, 202

Anton van den Hengel, Chris Russell, Anthony Dick, John Bastian, Daniel Pooley, Lachlan
Fleming, and Lourdes Agapito. Part-Based Modelling of Compound Scenes from Images.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. 185

Laurens Van der Maaten and Geoffrey Hinton. Visualizing Data Using t-SNE. Journal of
Machine Learning Research (JMLR), 9(11):2579-2605, 2008. 32

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-Embeddings of Images
and Language. In International Conference on Learning Representations (ICLR), 2016.
163

Sara Vicente, Joao Carreira, Lourdes Agapito, and Jorge Batista. Reconstructing PASCAL
VOC. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
12, 15

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating Visual Representations
from Unlabeled Video. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016a. 130

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating Videos with Scene
Dynamics. In Advances in Neural Information Processing Systems (NeurIPS), 2016b. 131

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-
200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
2011. 14, 15, 21

Jacob Walker, Abhinav Gupta, and Martial Hebert. Patch to the Future: Unsupervised
Visual Prediction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014. 128, 130

Jacob Walker, Abhinav Gupta, and Martial Hebert. Dense Optical Flow Prediction from a
Static Image. In IEEE International Conference on Computer Vision (ICCV), 2015. 102,
130

Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An Uncertain Future:
Forecasting from Static Images Using Variational Autoencoders. In European Conference
on Computer Vision (ECCV), 2016. 130

296

John Y. A. Wang and Edward H. Adelson. Layered Representation for Motion Analysis. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1993. 137, 138,
153

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang.
Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images. In European Confer-
ence on Computer Vision (ECCV), 2018a. 184

Peng Wang, Lingqiao Liu, Chunhua Shen, Zi Huang, Anton van den Hengel, and Heng Tao
Shen. Multi-Attention Network for One Shot Learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 39

Shaoxiong Wang, Jiajun Wu, Xingyuan Sun, Wenzhen Yuan, William T. Freeman, Joshua B.
Tenenbaum, and Edward H. Adelson. 3D shape perception from monocular vision, touch,
and shape priors. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018b. 4

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018c. 73, 74,
75, 77, 79

Xiaolong Wang, David Fouhey, and Abhinav Gupta. Designing Deep Networks for Surface
Normal Estimation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. 38

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng, and
Yueshan Xiong. Symmetry Hierarchy of Man-Made Objects. Computer Graphics Forum
(CGF), 30(2), 2011. 201

Yu-Xiong Wang and Martial Hebert. Learning to Learn: Model Regression Networks for
Easy Small Sample Learning. In European Conference on Computer Vision (ECCV), 2016.
39

Nicholas Watters, Andrea Tacchetti, Theophane Weber, Razvan Pascanu, Peter Battaglia,
and Daniel Zoran. Visual Interaction Networks: Learning a Physics Simulator from Video.
In Advances in Neural Information Processing Systems (NeurIPS), 2017. 118

Yair Weiss. Deriving Intrinsic Images from Image Sequences. In IEEE International
Conference on Computer Vision (ICCV), 2001. 38

Yair Weiss and Edward H. Adelson. Slow and Smooth: A Bayesian Theory for the Combina-
tion of Local Motion Signals in Human Vision. Technical report, Massachusetts Institute
of Technology, 1998. 128, 130

Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-Time Video Completion. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2004. 131

Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning. Machine Learning, 8(3-4):229-256, 1992. 65, 68, 69, 73, 103, 114,
167, 174

297

Jiajun Wu, Ilker Yildirim, Joseph J. Lim, William T. Freeman, and Joshua B. Tenenbaum.
Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep
Learning. In Advances in Neural Information Processing Systems (NeurIPS), 2015a. 3, 4,
7, 15, 66, 85, 102, 130

Jiajun Wu, Joseph J. Lim, Hongyi Zhang, Joshua B. Tenenbaum, and William T. Freeman.
Physics 101: Learning Physical Object Properties from Unlabeled Videos. In British
Machine Vision Conference (BMVC), 2016a. 3, 4, 7, 85, 102, 130

Jiajun Wu, Tianfan Xue, Joseph J. Lim, Yuandong Tian, Joshua B. Tenenbaum, Antonio
Torralba, and William T. Freeman. Single Image 3D Interpreter Network. In European
Conference on Computer Vision (ECCV), 2016b. 7, 11, 66, 72

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenenbaum.
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial
Modeling. In Advances in Neural Information Processing Systems (NeurIPS), 2016c. 3, 7,
15, 35, 38, 44, 50

Jiajun Wu, Erika Lu, Pushmeet Kohli, William T. Freeman, and Joshua B. Tenenbaum.
Learning to See Physics via Visual De-animation. In Advances in Neural Information
Processing Systems (NeurIPS), 2017a. 3, 4, 7, 99, 130

Jiajun Wu, Joshua B. Tenenbaum, and Pushmeet Kohli. Neural Scene De-rendering. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017b. 3, 7, 63,
80, 239

Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, William T. Freeman, and Joshua B.
Tenenbaum. MarrNet: 3D Shape Reconstruction via 2.5D Sketches. In Advances in Neural
Information Processing Systems (NeurIPS), 2017c. 3, 7, 15, 33, 35, 36, 38, 49, 53, 55, 56,
58, 72, 195

Jiajun Wu, Tianfan Xue, Joseph J. Lim, Yuandong Tian, Joshua B. Tenenbaum, Antonio
Torralba, and William T. Freeman. 3D interpreter networks for Viewer-Centered wireframe
modeling. International Journal of Computer Vision (IJCV), 126(9):1009-1026, 2018a. 3,
7, 11

Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T. Freeman, and
Joshua B. Tenenbaum. Learning Shape Priors for Single-View 3D Shape Completion and
Reconstruction. In European Conference on Computer Vision (ECCV), 2018b. 3, 7, 35, 38

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3D ShapeNets: A Deep Representation for Volumetric Shapes. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015b. 47, 48, 184

Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-Shot Learning-the Good, the Bad
and the Ugly. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. 39

Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond PASCAL: A Benchmark for 3D
Object Detection in the Wild. In IEEE Winter Conference on Applications of Computer
Vision (WACV), 2014. 14, 16, 24, 26, 27, 28, 29, 39, 50, 51, 52

298

Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su, Roozbeh Mottaghi,
Leonidas Guibas, and Silvio Savarese. ObjectNet3D: A Large Scale Database for 3D
Object Recognition. In European Conference on Computer Vision (ECCV), 2016. 39, 42

Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Sun
Database: Large-Scale Scene Recognition from Abbey to Zoo. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010. 24, 28, 221

Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthesizing Dynamic Textures and
Sounds by Spatial-Temporal Generative Convnet. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 131

Junyuan Xie, Linli Xu, and Enhong Chen. Image Denoising and Inpainting with Deep Neural
Networks. In Advances in Neural Information Processing Systems (NeurIPS), 2012. 201

Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3D: Fully Automatic 2D-to-3D Video
Conversion with Deep Convolutional Neural Networks. In European Conference on
Computer Vision (ECCV), 2016. 131

Wei Xiong, Zhe Lin, Jimei Yang, Xin Lu, Connelly Barnes, and Jiebo Luo. Foreground-Aware
Image Inpainting. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 201

Huijuan Xu and Kate Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial
Attention for Visual Question Answering. In European Conference on Computer Vision
(ECCV), 2016. 163

Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T. Freeman, Joshua B. Tenen-
baum, and Jiajun Wu. Unsupervised Discovery of Parts, Structure, and Dynamics. In
International Conference on Learning Representations (ICLR), 2019. 5, 7, 127

Tianfan Xue, Jianzhuang Liu, and Xiaoou Tang. Example-Based 3D Object Reconstruction
from Line Drawings. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012. 15

Tianfan Xue, Michael Rubinstein, Neal Wadhwa, Anat Levin, Fredo Durand, and William T.
Freeman. Refraction Wiggles for Measuring Fluid Depth and Velocity from Video. In
European Conference on Computer Vision (ECCV), 2014. 130

Tianfan Xue, Jiajun Wu, Katherine Bouman, and William T. Freeman. Visual Dynamics:
Probabilistic Future Frame Synthesis via Cross Convolutional Networks. In Advances in
Neural Information Processing Systems (NeurIPS), 2016. 5, 7, 102, 127, 154, 156

Tianfan Xue, Jiajun Wu, Katherine Bouman, and William Freeman. Visual Dynamics:
Stochastic Future Generation via Layered Cross Convolutional Networks. IEEE Transac-
tions on Pattern Analysis and Machine intelligence (TPAMI), 2019. 7, 127

Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and
James J. DiCarlo. Performance-Optimized Hierarchical Models Predict Neural Responses
in Higher Visual Cortex. Proceedings of the National Acacdemy of Sciences (PNAS), 111
(23):8619-8624, 2014. 218

299

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2lmage: Conditional
Image Generation from Visual Attributes. In European Conference on Computer Vision
(ECCV), 2016a. 129, 131, 134, 136

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective Transformer
Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision. In Advances
in Neural Information Processing Systems (NeurIPS), 2016b. 38, 44, 72

Zhaoyi Yan, Xiaoming Li, Mu Li, Wangmeng Zuo, and Shiguang Shan. Shift-Net: Image
inpainting via deep feature rearrangement. In European Conference on Computer Vision
(ECCV), 2018. 201

Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao Li. High-Resolution
Image Inpainting Using Multi-Scale Neural Patch Synthesis. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 201

Jimei Yang, Scott E. Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly-Supervised
Disentangling with Recurrent Transformations for 3D View Synthesis. In Advances in
Neural Information Processing Systems (NeurIPS), 2015. 64, 66, 164

Yi Yang and Deva Ramanan. Articulated Pose Estimation with Flexible Mixtures-of-parts.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011. 15, 23

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked Attention
Networks for Image Question Answering. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 163

Shunyu Yao, Tzu-Ming Harry Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, William T.
Freeman, and Joshua B. Tenenbaum. 3D-Aware scene manipulation via inverse graphics.
In Advances in Neural Information Processing Systems (NeurIPS), 2018. 3, 7, 56, 63

Hashim Yasin, Umar Iqbal, Bj6rn Kruger, Andreas Weber, and Juergen Gall. A Dual-Source
Approach for 3D Pose Estimation from a Single Image. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 15, 16

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B.
Tenenbaum. Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language
Understanding. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
6, 7, 161, 163, 164, 174, 176, 218, 235, 239, 240

Ilker Yildirim, Winrich Freiwald, and Joshua Tenenbaum. Efficient Inverse Graphics in
Biological Face Processing. bioRxiv, page 282798, 2018a. 87

Ilker Yildirim, Kevin Smith, Mario Belledonne, Jiajun Wu, and Joshua B. Tenenbaum.
Neurocomputational Modeling of Human Physical Scene Understanding. In Conference
on Cognitive Computational Neuroscience (CCN), 2018b. 218

Halley Young, Osbert Bastani, and Mayur Naik. Learning Neurosymbolic Generative Models
via Program Synthesis. In International Conference on Machine Learning (ICML), 2019.
202

300

_J

Fisher Yu, Vladlen Koltun, and Thomas A Funkhouser. Dilated Residual Networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 73, 75

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Generative
Image Inpainting with Contextual Attention. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 201

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-Form
Image Inpainting with Gated Convolution. In IEEE International Conference on Computer
Vision (ICCV), 2019. 201, 211, 212, 264

Alan Yuille and Daniel Kersten. Vision As Bayesian Inference: Analysis by Synthesis? Trends
in Cognitive Sciences (TiCS), 10(7):301-308, 2006. 15, 66, 102

Andy Zeng, Shuran Song, Matthias NieEner, Matthew Fisher, and Jianxiong Xiao. 3DMatch:
Learning the Matching of Local 3D Geometry in Range Scans. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 15

Renqiao Zhang, Jiajun Wu, Chengkai Zhang, William T. Freeman, and Joshua B. Tenenbaum.
A Comparative Evaluation of Approximate Probabilistic Simulation and Deep Neural
Networks As Accounts of Human Physical Scene Understanding. In Annual Meeting of
the Cognitive Science Society (CogSci), 2016. 101, 218

Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin, Tianhe Yu, and
Alexei A Efros. Real-Time User-Guided Image Colorization with Learned Deep Priors.
ACM Transactions on Graphics (TOG), 36(4):119, 2017a. 151

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The
Unreasonable Effectiveness of Deep Networks As a Perceptual Metric. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018a. 77, 78

Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape-from-Shading:
A Survey. IEEE Transactions on Pattern Analysis and Machine intelligence (TPAMI), 21
(8):690-706, 1999. 38

Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpanis. From Actemes to Action:
A Strongly-Supervised Representation for Detailed Action Understanding. In IEEE
International Conference on Computer Vision (ICCV), 2013. 144

Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Joshua B. Tenenbaum, William T.
Freeman, and Jiajun Wu. Learning to Reconstruct Shapes from Unseen Classes. In
Advances in Neural Information Processing Systems (NeurIPS), 2018b. 3, 7, 35

Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Joshua B. Tenenbaum, and
William T. Freeman. Shape and Material from Sound. In Advances in Neural Information
Processing Systems (NeurIPS), 2017b. 4

Zhoutong Zhang, Jiajun Wu, Qiujia Li, Zhengjia Huang, James Traer, Josh H. McDermott,
Joshua B. Tenenbaum, and William T. Freeman. Generative Modeling of Audible Shapes
for Object Perception. In IEEE International Conference on Computer Vision (ICCV),
2017c. 4

301

Bo Zheng, Yibiao Zhao, Joey Yu, Katsushi Ikeuchi, and Song-Chun Zhu. Scene Understanding
by Reasoning Stability and Safety. International Journal of Computer Vision (IJCV), 112
(2):221-238, 2015. 87, 101

David Zheng, Vinson Luo, Jiajun Wu, and Joshua B. Tenenbaum. Unsupervised Learning
of Latent Physical Properties Using Perception-Prediction Networks. In Conference on
Uncertainty in Artificial Intelligence (UAI), 2018. 5, 130

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 Million Image Database for Scene Recognition. IEEE Transactions on Pattern Analysis
and Machine intelligence (TPAMI), 40(6):1452-1464, 2017a. 211

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene Parsing through ADE20K Dataset. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017b. 73, 75

Tinghui Zhou, Philipp Krdhenbiihl, Mathieu Aubry, Qixing Huang, and Alexei A. Efros.
Learning Dense Correspondence via 3D-Guided Cycle Consistency. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016a. 16

Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A. Efros. View
Synthesis by Appearance Flow. In European Conference on Computer Vision (ECCV),
2016b. 131

Xiaowei Zhou, Spyridon Leonardos, Xiaoyan Hu, and Kostas Daniilidis. 3D Shape Estimation
from 2D Landmarks: A Convex Relaxation Approach. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. 13, 14, 15, 24, 25, 26, 27

Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. Non-
Stationary texture synthesis by adversarial expansion. ACM Transactions on Graphics
(TOG), 37(4):49, 2018. 201, 202, 211, 212, 264

Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. SCORES:
Shape Composition with Recursive Substructure Priors. ACM Transactions on Graphics
(TOG), 37(6):211:1-211:14, 2018a. 185

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang,
and Eli Shechtman. Toward Multimodal Image-to-Image Translation. In Advances in
Neural Information Processing Systems (NeurIPS), 2017a. 73

Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Joshua B.
Tenenbaum, and William T. Freeman. Visual Object Networks: Image Generation with
Disentangled 3D Representations. In Advances in Neural Information Processing Systems
(NeurIPS), 2018b. 3, 38

Song-Chun Zhu and David Mumford. A Stochastic Grammar of Images. Foundations and
Trends@ in Computer Graphics and Vision, 2(4):259-362, 2007. 66, 102

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and
Ali Farhadi. Target-driven Visual Navigation in Indoor Scenes Using Deep Reinforcement
Learning. In IEEE International Conference on Robotics and Automation (ICRA), 2017b.
82

302

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Aligning Books and Movies: Towards Story-Like Visual
Explanations by Watching Movies and Reading Books. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. 163

M. Zeeshan Zia, Michael Stark, Bernt Schiele, and Kaspar Schindler. Detailed 3D Represen-
tations for Object Recognition and Modeling. IEEE Transactions on Pattern Analysis
and Machine intelligence (TPAMI), 35(11):2608-2623, 2013. 15, 16

C. Lawrence Zitnick and Devi Parikh. Bringing Semantics into Focus Using Visual Abstraction.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013. 80

Maria Zontak and Michal Irani. Internal Statistics of a Single Natural Image. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2011. 202

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 3D-PRNN:
Generating Shape Primitives with Recurrent Neural Networks. In IEEE International
Conference on Computer Vision (ICCV), 2017. 110, 185

303

