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Abstract

In data science, the ability to model the distribution of rows in tabular data and
generate realistic synthetic data enables various important applications including data
compression, data disclosure, and privacy-preserving machine learning. However,
because tabular data usually contains a mix of discrete and continuous columns,
building such a model is a non-trivial task. Continuous columns may have multiple
modes, while discrete columns are sometimes imbalanced, making modeling difficult.

To address this problem, I took two major steps.
(1) I designed SDGym, a thorough benchmark, to compare existing models, identify

different properties of tabular data and analyze how these properties challenge differ-
ent models. Our experimental results show that statistical models, such as Bayesian
networks, that are constrained to a fixed family of available distributions cannot
model tabular data effectively, especially when both continuous and discrete columns
are included. Recently proposed deep generative models are capable of modeling
more sophisticated distributions, but cannot outperform Bayesian network models in
practice, because the network structure and learning procedure are not optimized for
tabular data which may contain non-Gaussian continuous columns and imbalanced
discrete columns.

(2) To address these problems, I designed CTGAN, which uses a conditional genera-
tive adversarial network to address the challenges in modeling tabular data. Because
CTGAN uses reversible data transformations and is trained by re-sampling the data, it
can address common challenges in synthetic data generation. I evaluated CTGAN on
the benchmark and showed that it consistently and significantly outperforms existing
statistical and deep learning models.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist
Laboratory for Information and Decision Systems
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Chapter 1

Introduction

Tabular data is one of the most common and important data modalities [1]. Massive

amounts of data, including census results, health care records, and web logs (generated

from human interaction with websites) are all stored in tabular format. Such data

is valuable because it contains useful patterns that can help in decision-making. As

more and more companies, policymakers, and research institutes rely on data to

make decisions, people have recognized the need to enable good decision-making and

ensure privacy protection, as well as manage other issues. It is in this context that

the demand for synthetic data arises.

1.1 Tabular data in different domains

Tabular data is widely used in different fields and has become an integral part of

predicting potential needs. Every day when we open YouTube, our favorite videos

are already queued up and can be viewed with just one click, without the need for

tedious searches. Data can be used to predict the risk of disease and provide people

with life and medical advice. Data can also help governments and companies make

decisions. The growth of the field is exponential, as the availability of massive data

inspires people to explore different applications.

However, due to the quality, quantity, and privacy issues associated with using

real data, people usually do not stick to the original data when creating and exploring
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these applications in various domains. We give examples within several representative

domains to show how issues with real data motivate the need for synthetic data.

1.1.1 Recommender systems

To this day, as long as we use the Internet, we will inevitably be affected by the

recommender system. A recommender system is one of the most profitable use cases

for tabular data, and has enabled companies like Amazon and Google to grow to a

trillion-dollar market cap. Taking movie recommendation as an example, we introduce

how recommender systems are built, and the issues that arise and motivate the need

for synthetic data generation methods.

Movie recommendation is a well-studied example in machine learning and data

science due to the availability of datasets like MovieLens [19] and Netflix [6]. The

methods verified on movie recommendation problems are also applied in other sce-

narios, such as product recommendations on Amazon [37, 24].

- Early content-based recommender systems [2] use movie descriptions and user

profiles to make recommendations. For example, if a user is interested in a

particular actor, the recommender system will recommend all the movies from

that actor. To build a content-based recommender system requires a table of

movie metadata, such as the directors, cast, and genres, and a table of users'

watch history. In the training phase, users' watch histories are used to identify

the users' interests and construct user profiles. For example, if a user watches

horror movies more frequently than average, the horror tag will be added to the

profile. In the inference phase, movies related to the profile are recommended

to the user.

Content-based methods require high-quality metadata. Before training the

model, metadata are constructed manually to ensure quality. Recently, content-

based methods have been replaced by collaborative filtering methods due to

their superior performance.

- Collaborative filtering [47] is a common method used in recommender systems.

16



Collaborative filtering methods start with a user-item matrix M. Each row of

M represents all the movies the user likes. An entry in a row is 1 if the user likes

the movie, and 0 otherwise. Then M is factorized to a low-rank user matrix U

and a low-rank movie matrix V where M ~ UVT. The interest level of user

i to movie j is the inner product of the user vector and movie vector UiV,

and recommendations are then made according to the interest level. To train a

collaborative filtering model requires only a table of users' watch history.

When building models this way, the following data issues arise. The quan-

tity issue: Collaborative filtering will give superior performance only when

the scale of the dataset is large. To overcome small datasets, people generate

large synthetic datasets. For example, to generate synthetic data from Movie-

Lens [19], people expand each real user into several similar fake users.1 The

quality issue: Expanding the dataset is not necessary for an industry-scale

system, because the quantity of training data is usually not an issue for com-

panies. Instead, their main issue is data quality. Users' watch history is noisy

because watching a movie does not necessarily indicate that the user likes that

movie. To tackle this, [35] filters the training data using users' ratings. The

movies that are rated low are taken out. Filtering is also done on users. Users

with very few watched movies tend to provide a noisy signal in the training, so

[21] filters out users with less than 20 watched movies. The imbalance issue:

Furthermore, the data distribution is highly imbalanced. For example, because

there are far fewer Chinese movies than English movies on most platforms, their

models perform worse when it comes to recommending those movies. This holds

true across minorities. [38, 34] split the dataset into smaller datasets and train

local models to address these issues. The privacy issue: It is also impor-

tant to note that in large-capacity models2, the model can remember a lot of

information, including users' personal information. This presents the risk of

'The code to generate synthetic MovieLens data from real data is available online. https:
//github.com/mlperf/training/tree/master/data-generation

2Collaborative filtering methods have lots of parameters. A typical setup uses 50 to 500 dimen-
sional vectors to represent users and movies.
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leaking sensitive user information. For example, Netflix's publicly available rec-

ommendation data set can be used to identify individuals and determine sexual

orientation, and has been prosecuted [49].

• [22, 52] uses gated-recurrent networks and transformers to make sequential rec-

ommendations. In these models, the prediction task is to predict what someone

will watch next, using their watch history as a sequence. These models perform

better than collaborative filtering because they consider sequential information.

For example, when a user watches Avengers I and II successively, he is likely to

watch Avengers III next. A sequential recommender can capture this pattern,

while collaborative filtering can not. To train a sequential recommender system

requires a table of users' watch history with timestamps.

The privacy issue: The parameters in these models are even larger than those

in collaborative filtering models. These models are also highly non-linear and

can remember various patterns, which increases the risk of a privacy breach.

Using tabular data to train a recommender system involves data quality, data

imbalance, and data privacy issues. Data quality can be improved by applying various

filtering criteria to the data. Data imbalance can be addressed by partitioning the

data and learning of local models. Addressing the privacy issue is more challenging.

1.1.2 Healthcare

Big data is also used in the medical field to make diagnoses more accurate and efficient.

* Data can be used to predict whether a patient will show up for an appoint-

ment [3], to help the hospital improve time management and resource use.

* Data can also be used to determine whether a patient has a certain disease, such

as heart disease, pneumonia, etc. This is a critical application. Due to issues

with medical data, the robustness and fairness of these models are questioned.

Collecting medical data requires the involvement of specialized doctors, leading

to a high collection cost and data. [16] uses data augmentation to increase

18



the size of a medical dataset. Medical data may also be noisy, and doctors'

wrong judgments can introduce errors into the data. In addition, it suffers from

data imbalance - [12] shows that the imbalanced medical data leads to unfair

predictions. Medical data also contains a large amount of personal information,

which can easily identify individuals and infringe on people's privacy.

e Wearables also collect large amounts of data and can provide suggestions meant

to improve people's health. For example, [46] uses wearables to track people's

sleeping conditions. Data collected by wearables, which can include location,

sound, or even images, are extremely sensitive and should not leave the device.

People design algorithms [8, 28] to train machine learning models on this data

without sending it to a central server.

Machine learning systems that use healthcare data deal with very sensitive infor-

mation and make critical decisions. The quantity, quality, imbalance, and privacy of

this data should be handled seriously.

1.1.3 Data storage and disclosure

Sometimes, tabular data is simply constructed by a website or gathered by surveyors

and is then either stored in a database, used to complete website business, or released

by a statistics bureau. This data may not require the use of machine learning for

analysis in the short term, but privacy issues will still be encountered during the

process of construction, storage, and distribution.

* Every few years, the National Bureau of Statistics conducts a census, and the

results of the census are published online. This data is helpful for solving social

problems, but the direct publication of accurate census data is likely to violate

citizens' privacy. If only statistical data is published instead of data for each

individual, the value of the data for research will decrease. As a result, people

have invested a lot of time in resolving the issue of census data while protecting

privacy. Some researchers in the statistical science community have begun using
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randomization-based methods to perturb sensitive columns in tabular data [44,

42, 43, 32].

• Another scenario involves data storage and use within a company. When users

interact with a company website, a large number of records are generated in

that company's database. Users may also fill in personal information such

as addresses, credit card numbers, preferences, etc. This information must be

strictly confidential in accordance with the General Data Protection Regulation

(GDPR). However, inside the company, engineers will have software develop-

ment and bug fix requirements that require data use. Companies do not want

their employees to have access to real user data, as this would violate user

privacy, so actions need to be taken to prevent insiders from reading sensitive

information. At Uber, for example, a system is deployed so that employees can

only access perturbed customer data [29]. Prior to deploying the system, Uber

reportedly mishandled customer data, allowing employees to gain unauthorized

access [20].

1.2 Necessity of synthetic data

Table 1.1: Data-related issues to address in different domains.

Quantity Quality Imbalance Privacy

Recommender System x V/ /
Healthcare / // /

Data Disclosure x x x /

Despite the huge investment institutions put into collecting tabular data every

day, real tabular data cannot always fulfill what is asked of it. Table 1.1 summarizes

data-related issues that arise in different domains.

- The quantity issue: In certain areas, insufficient data is an issue. Especially

if the acquisition of data requires a person with specialized skills, such as in the

medical field, the amount of data and the cost of acquiring the data will become
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a problem. If real data can be supplemented and enhanced using synthetic data,

then less existing data can be used to achieve more valuable applications.

- The quality issue: Data quality issues are common. During the data collection

process, various factors can affect the quality of the data - for example, missing

values and outliers from people incorrectly filling in a questionnaire. Learning

the distribution of the data and repairing and enhancing the data can reduce

the impacts of this problem.

- The imbalance issue: Data imbalance is the normal state of tabular data,

as tables usually have major and minor categories. Imbalance causes a lot of

problems when developing models. Using synthetic data to supplementing the

niche data in a table can solve this problem.

- The privacy issue: Furthermore, most tabular data contains sensitive infor-

mation that could be used to identify individuals and intrude on their privacy.

Data containing sensitive information tends to be strictly protected and out of

reach of researchers. If synthetic data can preserve correlations in a table but

remove all sensitive information, it could be used to remove this barrier to data

disclosure.

Applications of Synthetic Data High-quality synthetic data has important

applications:

- Data understanding: Learning the distribution of tabular data can help us

understand the underlying structure and association between columns.

- Data compression: Synthetic data generators can be used to store tabular

data efficiently and compactly. A small generative neural network can be easily

stored on portable devices to generate an infinite number of rows.

- Data augmentation: A generative model can generate (more) training data,

or reasonably perturb the original data, which can improve the performance of

downstream predictive models.
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- System testing: Synthetic datasets that are derived from the same actual

underlying process as their corresponding real datasets can be used to test new

systems, as opposed to those generated from (usually) unrealistic simulating

scenarios. System testing is sometimes conducted using synthetic data in order

to protect privacy or prevent over-fitting. The use of high-quality synthetic data

can ensure similar performance in testing and production environments.

- Data disclosure: Data privacy is an important issue today. Using synthetic

data instead of real data can avoid the disclosure of private information while

still allowing data to be used for various applications.

1.3 Types of synthetic data generators

Synthetic data generation is an effective way to address these quantity, quality and

privacy issues. We categorize synthetic data generation methods into two stages:

- Perturbion-based methods. Methods in this category modify the values in

existing tables to fix outliers or reduce privacy leaks. These methods have been

studied for many years. Because each row in synthetic data generated with this

method has a corresponding row in the real data, these methods can neither

increase the size of the data nor provide good privacy protection.

- Generation-based methods. Another category of methods tries to generate

synthetic data from some distribution. This distribution could either be hand-

crafted or learned from data. These methods can generate an arbitrary amount

of data. Under certain circumstances, privacy-protecting mechanisms can be

added to provide better privacy. Generating data with handcrafted distribu-

tions is in wide use, while synthesizing data using learned distributions is an

area of recent study.

The methods in the first stage are an ad-hoc, ineffective solution to protect privacy,

while methods in the second stage can systematically address quantity, quality and

privacy issues by substituting real data with synthetic data.
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1.4 Existing generation-based methods

Huge efforts have been made in the field of synthesizing tabular data from existing

distributions. Both statistical methods and deep learning methods are used to learn

the distribution of real data so that synthetic data can be generated by sampling.

Statistical methods use a family of the predefined probability distributions to fit a

new tabular dataset. For example, a Gaussian mixture model can be used to model the

joint distribution of a few continuous columns, while Bayesian networks can be used

to model the joint distribution of discrete columns. However, because these models

are limited by the probability distributions available, they are not general enough

for various datasets, especially when the data has a mix of discrete and continuous

columns. In the case of modeling survey data, where continuous columns can hardly

be avoided, people discretize continuous columns so that the data can be modeled

by Bayesian networks or decision trees. Even beyond issues with model capability,

training such statistical models is expensive, and these models cannot scale up to

large-scale datasets with thousands of columns and millions of rows.

Deep learning methods make up another major category of data synthesizers.

The motivation for building a high-quality deep neural network for tabular data

comes from the success of such models on computer vision and natural language

processing. Deep generative models like variational autoencoders (VAEs) [31] and

generative adversarial networks (GANs) [17] have two new capabilities: First, the

capacity to learn a complicated high-dimensional probability distribution, and second,

the ability to draw high-quality samples from images or text. These capabilities have

enabled various important applications in vision and language [26, 59, 33, 57, 54]. It

is also possible to build similarly high-quality models to generate synthetic tabular

data - the implicit joint distribution of columns can be learned from real data, and

synthetic rows can then be sampled from that distribution. A few models have been

proposed (MedGAN [13], TableGAN [39], PATE-GAN [30]) that work by directly applying

fully connected networks or convolutional neural networks on tabular data without

considering the specific case of modeling tabular data. These models can perform well
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on datasets, but have not been thoroughly compared with existing statistical models.

1.5 An overview of this research

In this project, we focus on using deep generative models to model the probability

distribution of rows in a table. To thoroughly understand the complexity of the prob-

lem, we designed a benchmark framework with simulated datasets and real datasets.

(See chapter 7.) This framework, called SDGym, can automatically evaluate all models

over all the datasets, and can help understand the properties of different tabular data

and their effects on different models. We also implemented several existing methods,

and evaluate all methods over different datasets and metrics.

By comparing existing models, we found that despite the potential of GANs to

model arbitrary distribution, GAN-based models cannot outperform simple statistical

methods due to several special properties of tabular data, including non-Gaussian

distribution of continuous columns, the imbalanced distribution of discrete columns,

and the mix of discrete and continuous columns. (See chapter 4 for these special

properties.)

To address these challenges, we designed conditional tabular GAN (CTGAN), a

method that introduces several new techniques. These include augmenting train-

ing procedures with reversible data transforms, architectural changes, and addressing

data imbalance by employing a conditional generator. (See chapter 5 for model de-

tails.) When applied to the same datasets and evaluated with one benchmarking

framework named SDGym, CTGAN performs significantly better than both the Bayesian

network baselines and the other new GANs we tested.

We made several attempts before CTGAN: We developed a GAN-based model called

TGAN, and a VAE-based model called TVAE. (See chapter 6 for details about TGAN

and TVAE.) In designing these two models, we gained a lot of experience and better

understood the challenges of this task, which helped us to design the better CTGAN

model later.

The contributions of this project are summarized as follows:
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- Conditional GANs for synthetic data generation. We propose CTGAN as

a synthetic tabular data generator to address several issues in synthetic tabular

data generation. We find CTGAN outperforms Bayesian networks and generates

high-quality synthetic data.

- Learning task and evaluation metrics. Generating synthetic data is a

complex task. We clearly define the learning task and the evaluation metric,

then identify the challenges inherent in this task.

- A benchmarking system for synthetic data generation algorithms. We

designed a comprehensive benchmark framework using several tabular datasets

and different evaluation metrics, as well as implementations of several base-

lines and state-of-the-art methods. At the time of this writing, the benchmark

has 5 deep learning methods, 2 Bayesian network methods, 15 datasets, and 2

evaluation mechanisms.

- Other methods. Before CTGAN, we designed different methods to generate

synthetic data, namely TGAN and TVAE.

- Opensource libraries. We open-sourced CTGAN, SDGym and TGAN on GitHub.

Upon writing, CTGAN has 27 stars and 7 forks; SDGym has 19 stars and 11 forks,

and TGAN has 91 stars and 36 forks.

The rest of the thesis is organized as follows: Chapter 2 presents a primer of

generative models; Chapter 3 describes the synthetic data generation task and four

existing methods; Chapter 4 lists the challenges of this task; Chapter 6 introduces

TGAN and TVAE; Chapter 5 introduces our model; Chapter 7 explains our benchmark

design and implementation; and Chapter 8 and 9 gives our experimental results and

conclusion.
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Chapter 2

Primer on Generative Models

Generative models are machine learning models that attempt to learn the real data

distribution and then draw samples from the learned distribution. It aligns with the

objective of generating synthetic data. The generation of synthetic data is to learn

the distribution of real data, and sample from the acquired distribution, while simul-

taneously satisfies other requirements such as privacy. Statistical generative models

like Bayesian networks, Gaussian mixture models, and copulas are limited to a par-

ticular class of probability distributions, and can not model complicated distributions

like images or text. In this chapter, we provide some background on deep generative

models, namely variational autoencoder (VAE) and generative adversarial network

(GAN) models, because of their effectiveness at modeling complex distributions like

images and texts.

2.1 Variational autoencoders

An autoencoder has an encoder E(-) and a decoder D(.). Given a dataset X, the en-

coder can encode an example the input data into a hidden distributed representation,

denoted as

z = (.), where x ~ X.
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The decoder can take this hidden representation and reconstruct the data

i = D(z), where ~- x.

Autoencoders are typically trained with mean-squared error

= EX'x [I|D(E(x)) - x| |]

In contrast to an autoencoder, a VAE [31] considers the hidden representation as a

Gaussian distribution K(.). So the encoder takes an example x and outputs a mean

vector p and a standard deviation vector o

p, -= E (x), where x ~ X,

meaning that the hidden representation follows V(p, o 2 ). The decoder then takes

one sample from the distribution and reconstructs the data

X = E~z~N(a) [D(z)], where i ~ x.

VAE also constrains the aggregated distribution of z over all the data X to be JV(O, I).

With this constraint, the VAE becomes a generative model because users can sample

a random vector from K(O, I) and feed it to the decoder to generate data.

The learning objective of a VAE is the evidence lower-bound (ELBO) loss

£ =Ex~x[ Ez~N(pI)[||D(z) - x|JI]

Term I

+ KL(KN(p,aoI)||N(0,I)) ].
(2.1)

Term II

Term I is to train the model to work as an autoencoder. In Term II, KL(p||q)

means the Kullback-Leibler (KL) divergence, which measures the distance between

two distributions p and q as

KL(p|Jq) = -p(x) log (X.
X p~xx
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The close form of Term II is

-0.5*I|1+21ogo- P2 - U'1

It constrains the distribution of z to be the standard normal distribution. When

generating data, D(-) takes z ~ J(O, I) and outputs a synthetic sample. When the

model converges, the learned generator is an approximated mapping from a multi-

variate Gaussian distribution to the data distribution.

An encoder and decoder are neural networks with multi-input and multi-output.

The model is trained by stochastic gradient descent. The outer expectation is com-

puted by taking the average over minibatch. The expectation in Term I of Eq. (2.1)

is computed by sampling one z from the distribution.

2.2 Generative adversarial networks

Vanilla GAN: A vanilla GAN [17] has a generator g(-) and a discriminator D(-).

The generator is supposed to project a multivariate Gaussian distribution to an arbi-

trary data distribution. The discriminator is supposed to tell whether the distribution

parameterized by the generator is the same as the distribution of real training data.

The generator and the discriminator are playing a zero-sum min-max game. When

the generator and discriminator are perfect, they achieve a Nash equilibrium: The

generator is modeling the exact data distribution and the discriminator cannot dis-

tinguish between these two distributions. When used for image generation, GANs

can generate images that are perceptually' better than VAEs because

e The discriminator gives a better learning signal than the mean-square error.

Discriminators can easily detect sharp and blurred images. If the training data

is sharp and the generator generates blurred images, the discriminator can reject

those images. If the generator generates a sharp realistic image, even if the

image is far away from any image in the training set pixel-wise, the discriminator

'Perceptually' means a human cannot tell difference visually.
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would accept the image. By doing so, the discriminator helps the generator

generate perceptually realistic images. In contrast, the mean-squared error in

VAEs encourages the decoder to output blurred images.

In a complicated data space such as all images, a GAN is learning the exact

probability distribution while a VAE is optimizing a lower-bound, thus learning

an approximated distribution[31].

The generator g(.) is a neural network that takes a random vector z from a N(O, I),

and projects z to a vector i in the data domain. The discriminator D(.) is another

neural network that predicts whether its input is from the real data distribution X

or the learned distribution IPg. D(.) outputs a continuous value in [0, 1], where 0

means the input is from the learned distribution and 1 means the input is from the

real data distribution. Therefore, D(-) can be considered as a binary classifier. When

training a GAN, the generator and discriminator are optimized iteratively. D(.) is

first optimized by

1 D = -E.x[log D(x)] + Ez~Nr(o,I)[log(1 - D(g(z))].

Lv is the cross-entropy loss for binary classification. Then G(.) is optimized by

£g = Ez-Ar(o,1) [log D(g(z)].

£g makes the generator maximize the chance of fooling the discriminator. When

optimizing £g, only the parameters in the !9() are optimized while D(.) is fixed.

Similarly, only the parameters in D(.) are updated when optimizing £D.

GAN is trained using stochastic gradient descent. In each iteration, there are two

updates, one for the discriminator, the other for the generator.

• The discriminator is updated first. To do so, select a mini-batch of examples

from training data, and a mini-batch of random vectors. First, input the random

vectors to the generator and generate some fake data. Then feed both the real
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data and the fake data to the discriminator. Finally, compute £D and update

parameters in the discriminator.

e The generator is updated afterward. To do so, select another mini-batch of

random vectors. Use the generator to generate fake data. Input these fake

data into the discriminator. Then compute Lg and update parameters in the

generator.

Vanilla GANs are hard to train. The model is sensitive to hyper-parameters and

takes a long time to converge. When the learned distribution is far from the real

data distribution - for example at the beginning of the training - the discriminator

can only propagate small gradients to the generator, so the generator cannot learn

effectively.

Wasserstein GAN: One recent improvement to GAN is the Wasserstein GAN

(WGAN) [4]. Instead of using a discriminator, WGAN uses a critic network C(.).

The critic network outputs a larger value when the input is more realistic, and it

outputs a smaller value when the input looks fake.

To achieve this, the critic network is trained by

Lc = -Ex,x[C(X)] + Ez~r(0,I)[C(9(z))]. (2.2)

It tries to maximize the output on real data and minimize the output on fake data.

The generator is doing the opposite. It tries to maximize the output of the critic

network. So the loss function for the generator is

£g = -EZ~N(0,I)[C(g(Z))].

WGAN is superior to vanilla GANs because WGAN actually minimizes the Wasser-

stein distance between the learned distribution and real data distribution. And

Wasserstein distance has superior properties in that it can give reasonable gradi-

ents even when two distributions are far away, which benefits the training of GANs.

Here we show how the loss function of WGAN is connected to Wasserstein distance.
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Recall that the Wasserstein distance W(.) can be computed using the Kantorovich-

Rubinstein duality as

W(X,Pg) = sup Exx[f(x)] -- E.p,[f(i)), (2.3)

where I f I <; 1 means f is a 1-Lipschitz function. Comparing Eq. (2.2) and Eq. (2.3),

we observe that the £c is an approximation of W(X, Pg). The training of the critic is

to make the approximation more accurate. In WGAN, the parameters in the critic are

clipped to enforce 1-Lipschitz condition. The training of the generator is to minimize

the Wasserstein distance.

WGAN is also trained by stochastic gradient descent and has two updates in each

iteration.

• The critic is updated first. To update the critic network, sample a mini-batch

of real data, and a mini-batch of random vectors. Use the generator to generate

some fake data. Use the real data and fake data to compute £c and update C.

After the update, the parameters in C(.) are clipped to a small range such as

[-0.1,0.1] or [-0.01,0.01].

* The generator is updated afterward. Sample another mini-batch of random

vectors, and generate fake data using the generator. Input the fake data to the

critic network, then compute the £g to update the generator.

WGAN with gradient penalty: Clipping weights to enforce the 1-Lipschitz con-

dition is not an optimal solution. An alternative solution is to enforce the 1-Lipschitz

condition by constraining the gradients. The method is called WGANGP [18]. The

idea stems from the fact that an optimal critic has a gradient norm equal to 1 al-

most everywhere on real data distribution and a learned distribution. WGANGP uses

a regularization term that forces the norm of the gradient to be 1. The difference

between WGANGP and WGAN is the critic loss function

Lc = Ex-X,Z-~(O,1) [C(x) - C(G(z)) + 10 x (I VC(z)|| 2 - 1)2],
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where z is used to estimate the gradient and enforce the Lipschitz constraint. J is a

random linear composition of x and g(z) as

= px + (1 - p)g(z), where p - U (0, 1).

U(0, 1) means a uniform distribution in [0, 1]. In WGANGP, clipping weights is no

longer needed. WGANGP can generate more realistic data than GAN and WGAN.

In this research project, we explore the use of VAEs and GANs to generate syn-

thetic data. In our TVAE model, we use VAEs to generate synthetic data. In our

CTGAN model, WGANGP is used.
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Chapter 3

Synthetic Data Generation Task

and Related Work

In chapter 1, we highlighted the need for synthetic data. Synthetic data is a powerful

tool that can overcome many barriers in data science. High-quality synthetic data can

substitute for real data to alleviate privacy concerns. The quality of synthetic data is

determined by whether the synthetic data correctly captures the correlations between

different columns. In this chapter, we formally define the learning task so that the

quality of synthetic data can be quantitatively evaluated. Due to the complexity of

tabular data, we constrain our task to a specific type of tabular data, which is a single

table with independent rows. We then explain a handful of models that fit our task.

3.1 Synthetic data generation

Because tabular data can take different forms, it can represent various types of infor-

mation.

• Single table with independent rows: A table in this category can be

thought of as several samples from an underlying joint distribution, where each

row is sampled independently from the distribution. For example, a table of

people's gender, height and weight fits in this category. Each row in the table

is one sample from the joint distribution of gender, height, and weight of all
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human beings. Adding one row to the table does not affect the distribution of

the other rows.

" Single table with dependent rows: In some tables, there are strong cor-

relations between rows. For example, a table of gas stations and sales fits in

this category. Assuming the consumption of gas is stable, adding one more gas

station to the table is likely to reduce the sales of several nearby gas stations.

Another very common example is time-series data. In time-series data, each

row depends on previous rows.

" Multiple-table database: Sometimes, using multiple tables can represent

information more effectively. Each table in a multi-table database can have

dependent or independent rows. For example, a typical database for e-business

includes a table of users, products, and transactions. The user and product

tables have independent rows, while the transaction table is a time-series table

containing dependent rows.

Since the research on generating synthetic data is in an early stage, we focus on the

simplest case - a single table with independent rows.

Learning task definition: The synthetic data generation task is to train a data

synthesizer G which takes a table as input and generate a synthetic version of this

input. We require the input table to contain independent rows, and only continuous

and discrete columns.1 A table T contains Nc continuous columns {CI,... , CNc}, and

Nd discrete columns {D1, . . . , DNg }. Each column is considered as a random variable.

These random variables follow an unknown joint distribution IP(C1:Nc, D1:Nd). One

row rj = {ci,j, ... , CNc,j, d,j, ... , dNd,j} is one sample from the joint distribution. T

is then partitioned into training set Tt,in and test set Ttest. After training G on

Ttrain, Tsyn is constructed by independently sampling rows from G.

Evaluation metrics: Direct evaluation of Tsyn either tests whether Tsyn and Ttrain

are sampled from the same distribution or calculates the distance between two un-

'Continuous columns refer to ordinal columns that have many possible values; for example,
integer or float columns. Discrete columns refer to categorical columns or ordinal columns with few
values.
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derlying distributions. Existing methods for this test make strong assumptions about

the underlying distribution. For example, Z-test [10] assumes the data follows a

Gaussian distribution. Due to these strong assumptions, these methods do not apply

to tabular data with complicated distributions. Since direct evaluation is intractable,

we use two alternative methods.

- Sample likelihood: We handcraft a table T for evaluation purposes. In this

case, the underlying distribution of Tt,ain, denoted as Ptrain(-), is known, and

the underlying distribution of Toyn, denoted as Pyn(-), can be approximated.

The likelihood of Ttest on IPyn(.), and the likelihood of Tsyn on Ptrain(-) can

reveal the distance between two distributions.

- Machine learning efficacy: The previous metric requires underlying distri-

butions of Ttrain and T8 yn so that the likelihood can be computed. In more

general cases, finding the underlying distributions is difficult. Alternatively,

the quality of Tsyn can be evaluated by machine learning applications such as

classification or regression. For example, we can train a classifier or a regressor

to predict one column using other columns as features. We can measure the

efficacy by evaluating whether a classifier or regressor learned from Tsyn can

achieve equivalent or higher performance on Ttest as a model learned on Ttrain

would.

These two evaluation metrics are further elaborated in Chapter 7.

3.2 Existing techniques to generate synthetic data

The possibility of generating fully synthetic data appeals to different research com-

munities, including statistics, database management, and machine learning. Earlier

work in this area, such as PrivBayes [58], uses traditional Bayesian networks but

adds a differentially private learning algorithm. Recently, GANs have been used in

generating tabular data. GANs are appealing due to their performance and the flexi-

bility they show in representing data, as evidenced by their success in generating and
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manipulating images and natural language [4, 18, 59, 57].

We surveyed a few recent developments published in the period 2017-2019. VeeGAN

[50] uses GANs to generate 2D continuous data. [56] uses GANs to generate contin-

uous time-series medical records. MedGAN [13] combines an autoencoder and a GAN

to generate non-time-series continuous and/or binary data. [9] proposes to generate

discrete tabular data using GAN. ehrGAN [11] generates augmented medical records,

but doesn't explicitly generate synthetic data. TableGAN [39] tries to solve the prob-

lem of generating synthetic data using a convolutional neural network and explicitly

optimizing the quality of the label column, thus their generated data can be used to

train classifiers. PATE-GAN [30] tries to generate differentially private synthetic data.

All GAN-based models mentioned above were published in 2017 and 2018. We find

PrivBayes [58], MedGAN [13], TableGAN [39], and VeeGAN [50] are suitable for synthe-

sizing a single table with independent rows. We introduce these 4 methods in this

section2.

3.2.1 PrivBayes

PrivBayes [58] aims to generate high-quality, differentially private [15] synthetic data

using Bayesian networks.

Motivation: Bayesian networks can represent a joint distribution of discrete vari-

ables. Using a Bayesian network to generate differentially private synthetic data

involves three steps: (1) learn a Bayesian network, (2) inject Laplace noise3 to each

parameter in the network, (3) sample from the noisy network. However, this process

usually leads to low-quality synthetic data due to the large amount of noise injected

in step (2). To achieve a certain privacy level, different network structures require

different amounts of noise. PrivBayes proposes a heuristic to find a good network

structure that needs less injected noise.

Preprocessing: Bayesian networks cannot model continuous variables. In PrivBayes,
2 PATE-GAN is also suitable for our task. We do not explain PATE-GAN in detail because its contri-

bution is based around differential privacy, while in this thesis we focus on the model architecture.
3The scale of the noise depends on the sensitivity [15] of the parameter and the privacy require-

ment.
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all continuous variables are discretized into 16 equal-sized bins, so that the modeling

algorithm only deals with discrete-valued columns.

Model details: There is a trade-off between the Bayesian network's original quality

and the quality decrease after adding noise. For example, given a table with Nd

discrete columns, a (Nd - 1)-way4 Bayesian network can fit the distribution perfectly,

but some weights in the network will have high sensitivity 5 and low value, meaning

that noise can play a major role in a noisy model. Another extreme example involves

using a 0-way network. The sensitivity is low, but because the model only learns

the marginal distribution, it is not very useful. An appropriate number of ways is

between 0 and Nd - 1. PrivBayes does not set a fixed number of ways. Instead, it

uses a measure named 9-usefulness to balance the accuracy of the Bayesian network

and the amount of noise needed. A noisy distribution is 0-useful if the ratio of average

scale of information6 to average scale of noise is no less than 0. Under the constraint

of 0-usefulness, PrivBayes uses a greedy algorithm to find a graph that maximizes

the mutual information.7

Datasets and evaluation metrics: PrivBayes is extensively evaluated on four

real datasets. Machine learning efficacy is evaluated, as is the distance of marginal

distribution. Since this method provides E-differential privacy, the effect of c on

synthetic data quality is clearly shown in experiments.

Reproducibility: PrivBayes is implemented in a high-quality C++ code. 8 All the

datasets are included in the package. We can reproduce all results reported in the

paper using the code.

4A k-way Bayesian network means each node in the network can have at most k incoming edges;
that is, each variable can be conditioned on at most k other variables.

5Sensitivity [15] of weight refers to how much the weight changes when one data row is removed.
Sensitivity determines the amount of noise required for that weight to maintain a certain level of
privacy.

6The scale of information is the reciprocal of the number of parameters to learn in the current
step. For example, in a Bayesian network of all binary variables, if a node has k incoming edges, the
parameters to learn are values in a 2k x 2 table. Each row of the table represents one combination of
k binary values, and each column represents one possible value of this node. The scale of information
is 1/ 2k+1.

7Maximizing mutual information can find an optimal tree structure Bayesian network [14].
PrivBayes extends the algorithm from a tree to a graph.

8 https://sourceforge.net/projects/privbayes/
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3.2.2 MedGAN

Because health records are valuable for research but strictly protected for privacy

reasons, healthcare is a domain that particularly desires synthetic data technology. To

remove such barriers, MedGAN [13] uses a GAN framework to generate fully-synthetic

health records.

Motivation: In health records, each column follows a very different distribution,

making the learning of a GAN model difficult. Direct modeling cannot produce a

good result. Thus in MedGAN, an autoencoder is deployed to project raw data into

a lower-dimensional representation. After that, a GAN is used to generate such a

representation.

Preprocessing: The model supports a table with all binary columns and all con-

tinuous columns. A binary column is simply represented as 0 or 1. A continuous

variable is normalized to [0, 1] using min-max normalization

cij - min(Ci) (3.1)
max(C) - min(Ci)'

Model details: Figure 3-1 illustrates the model. In MedGAN, the generator and

discriminator are working on different spaces. The generator generates a hidden

representation. The discriminator checks raw data. So the output of the generator

should go through the decoder before feeding into the discriminator, shown as the

second workflow in Figure 3-1. During training, the autoencoder is trained first,

shown as the first workflow in Figure 3-1. It is fixed when training the GAN. The

loss function for the autoencoder is the mean squared error if the table contains

only continuous columns, and cross-entropy loss if the columns are all binary. The

generator and discriminator are trained using the same loss function as a vanilla

GAN [17].

Datasets and evaluation metrics: Experiments are conducted on three electronic

health records datasets. The machine learning efficacy is evaluated. Furthermore,

the marginal distribution of each column is plotted and compared visually.
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The encoder and decoder are pertained on real data.

x 0 Encoder -+ h -+ Decoder] 1 x'

The output of the generator goes through the decoder before being fed into the discriminator.

z-+ Generator J-+ ' - Decoder x' Discriminator 10Fakea

Real data are directly fed into the discriminator.

x Discriminator Real

Figure 3-1: The MedGAN framework contains an encoder, a decoder, a generator, and

a discriminator. The encoder and decoder are pretrained on the real data and fixed

in later steps. During training, the output of the generator is passed through the
decoder before feeding into the discriminator. The discriminator checks whether the

data are real or fake.

Reproducibility: MedGAN is implemented in Python and TensorFlow.9 The original

implementation does not support tables with mixed types. It only supports con-

tinuous and binary variables. I was not able to reproduce the results due to the

availability of the data.

3.2.3 TableGAN

TableGAN [39] directly applies the idea of DCGAN [41] to generate synthetic data

aimed at solving privacy issues.

Preprocessing: All continuous columns are normalized per Eq. (3.1). Discrete

columns are also converted to a floating-point number. Each category in a discrete

column is first represented by a unique integer in {0,..., DIl - 1} then divided by

|Dil -1. Since DCGAN designed for images, the input is a matrix rather than a vector,

and a row in a table is reshaped to a squared matrix. If the number of columns is

not exactly a square number, zeros are padded to the row to increase the number

of columns to the next square number. For example, if a table has 19 columns, the

preprocessing method first appends 6 zero columns to the table, then reshapes each

9https://github.com/mp2893/medgan
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row to a 5 x 5 matrix.

Model details: The model uses convolutional networks in both the generator and

the discriminator, and is trained in the same way as a vanilla GAN. When tabular

data contains a label column, a prediction loss is added to the generator to explicitly

improve the correlation between the label column and other columns.

Datasets and evaluation metrics: The model is evaluated on four datasets. The

evaluation metrics include machine learning efficacy and plots of marginal distribu-

tions.

Reproducibility: TableGAN is implemented in Python and TensorFlow.10 The pack-

age includes two datasets used in the paper as well as scripts for preprocessing and

training. We were not able to reproduce all results due to the availability of data.

3.2.4 VeeGAN

Although VeeGAN [50] is not designed to generate tabular data, it tackles the mode

collapse issue, which turns out to be important for tabular data generation because

continuous columns in tabular data have multiple modes. (See Chapter 4 for details

about multi-modality in tabular data)

Motivation: Mode collapse is a known issue for GANs. It stems from the fact that

GANs are reluctant to generate certain objects in an image, and such a flaw is notice-

able when data has lower dimensionality (See Figure 4-2). To address this problem,

VeeGAN introduces a reconstructor module that can detect when mode collapse occurs

and guide the generator to overcome the flaw.

Preprocessing: VeeGAN is designed for continuous data. All values are min-max

normalized to [0, 1] as Eq. (3.1).

Model details: In VeeGAN, the reconstructor does the opposite of the generator, and

projects a row back to the random vector. With a generator, a discriminator, and

a reconstructor, we can construct two workflows, as shown in Figure 3-2. The three

modules are trained as follows:

lohttps://github.com/mahmoodm2/tableGAN
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" Generator: The first step of the loss function is to fool the discriminator, the

same as would happen with a vanilla GAN [17]. The second step is to minimize

the L2 distance between z and z'.

* Discriminator: The discriminator is trained as a binary classifier using cross-

entropy loss.

• Reconstructor: The reconstructor also minimizes the distance between z and

Figure 3-3 illustrates how a reconstructor helps with mode collapse. The generator

captures one of two modes and projects zo to X2. But the reconstructor can project

any point in the data space to the noise space. Data from the left mode are also

projected to the same space as the right mode, causing overlaps after projection. For

example, x1 and X2 are both projected to zo. At this time, x1 and X2 are connected by

the reconstructor. (XI, zO) is more likely to be classified as real by the discriminator

because the discriminator never sees a negative example from the left mode. When

the generator generates X2 from zo, the gradient will guide it to generate x1 to fool

the discriminator, eliminating the mode collapse.

Datasets and evaluation metrics: The model is evaluated on two 2D datasets.

The evaluation metric is the number of modes captured by GAN which can be ob-

served visually.

Reproducibility: VeeGAN is implemented in Python and Tensorflow." The imple-

mentation is inconsistent with the descriptions in the paper. It also uses undocu-

mented APIs in Tensorflow, making the code difficult to understand. After trying

the model, we failed to reproduce the results.

43

"lhttps://github.com/akashgit/VEEGAN



Workflow starting
from random noise.

Fake

Discriminator

G-Uenerator tries to oo

the discriminator.

z - ! Generator x' Reconstructor zr

Generator and Reconstructor work together to make z =zr
------------------------------------------------------------------------------------

Workflow starting
from real data. x Reconstructer Z'

Discriminator

Real

Figure 3-2: VeeGAN framework. VeeGAN contains three modules: a generator, a dis-
criminator, and a reconstructor. The top section shows the workflow starting from
random noise z. In this workflow, the generator projects z to synthetic data x' and
tries to fool the discriminator. The gradients from the discriminator help the gener-
ator improve. Meanwhile, the reconstructor learns to project x' back to z' = z. The

bottom section shows the workflow starting from real data x. x is inputted to the
reconstructor in order to generate a representation vector z'. Then real tuples (x, z')

and fake tuples (x', z) are used to train the discriminator.
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Figure 3-3: The reconstructor makes a connection between missing modes and existing
modes, so that the generator can recover from mode collapse. The left section shows
how the generator projects random noise into the data space. The right section shows
how the reconstructor projects data into the noise space.
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Chapter 4

Challenges of Modeling Tabular

Data using GAN

Several unique properties of tabular data make designing a GAN-based model chal-

lenging. In this section, we first highlight these challenges as they relate to single table

non-time series data, which we try to address in our model. We then summarize other

challenging properties of time series data and multiple-table data.

4.1 Challenges on single-table non-time-series data

Modeling and synthetically generating single-table non-time series data is the simplest

problem in synthetic data. Each row of in the table is sampled independently from the

distribution of all possible rows. One could argue that if a row of data is represented

as a vector, specifically using min-max normalization on continuous values and one-

hot representation for discrete values, then GAN models designed for images could

easily be adapted to tabular data. However, here we list several special properties of

single-table non-time-series data that can break this naive adaptation.

C1. Mixed data types. Real-world tabular data consists of mixed data types

(continuous, ordinal, categorical, etc.). Each column has a complicated correlation

with other columns. Traditional GAN for images uses sigmoid activation to generate

each pixel. For tabular data, modifications to GANs must apply both softmax and
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tanh on the output to simultaneously generate a mix of discrete and continuous

columns. Meanwhile, the modeling technique should be able to model the probability

density of mixed discrete-continuous distribution.

C2. Non-Gaussian distributions: In images, a pixel's values follow a Gaussian-

like distribution, which can be normalized to [-1, 1] using a min-max transform. A

tanh function is usually employed in the last layer of a network to output a value

in this range. Continuous variables in tabular data are usually non-Gaussian and

have distributions with long tails; thus, most generated values will not be centered

around zero. Very likely, the gradient of tanh where most values will be located

is flat - a phenomenon known as gradient saturation. This results in the model's

inability to learn via gradients. For example, annual household income has a long-tail

distribution. The average of this column is around $60k. However, there are several

outliers that make more than $100M a year. Applying min-max normalization would

be problematic in this scenario because most of the values would be squeezed to

[-1, -0.998]. In this range, the gradient of tanh vanishes. In Figure 4-1, we visualize

this scenario. A vanished gradient not only prevents the model from learning the

distribution of a column effectively. It also lets other columns with larger gradients

occupy most of the model capacity.

0.005

-1.000 -0.999 -0.998 -6 -5 -4 -6 -5 -4

(A) (B) (C)

Figure 4-1: Challenges of non-Gaussian distribution on GAN models. Assume we
have a non-Gaussian continuous column with a few large outliers. The large outliers
squeeze all other values towards -1. After min-max normalization, the probability
density looks like (A). To use a neural network with tanh activation to generate this
column, the probability distribution of values before the tanh activation looks like
(B). The gradient of tanh vanishes in this range, as shown in (C). The model can not
learn effectively with a vanished gradient.
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C3. Multimodal distributions. Continuous columns in tabular data usually have

multiple modes. We observe that 57/123 continuous columns in our 8 real-world

datasets have multiple modes. [50] showed that a vanilla GAN couldn't model all

modes on a simple 2D dataset as illustrated in Figure 4-2; thus it also wouldn't be

able to model the multimodal distribution of continuous columns. This is a known

issue of vanilla GAN [41, 4, 18, 36]. Vanilla GANs make their real/fake decision on

only one example, so if the generator figures out one realistic example and tries to

repeat that example every time, the discriminator does not have enough information

to figure out the issue.

6 6

44 0.8

2 2 0.6

0 0 0 0.4

10 02

-6 5 -5 0 5 -1 0 1 -1.0 -0.8

(A) (B) (C) (D)

Figure 4-2: [50] show that a vanilla GAN can not model a simple 2-dimensional
Gaussian mixture. (A) is the probability density of 25 Gaussian distributions aligned
as a grid. (B) is the corresponding distribution learned by GAN. (C) is the original
distribution and (D) is the corresponding distribution learned by GAN.

C4. Learning from sparse one-hot-encoded vectors. To enable learning from

non-ordinal categorical columns, a categorical column is converted into a one-hot

vector. When generating synthetic samples, a generative model is trained to generate

a probability distribution over all categories using softmax. This is problematic in

GANs because a trivial discriminator can simply distinguish real and fake data by

checking the distribution's sparseness instead of considering the overall realness of a

row.

C5. Highly imbalanced categorical columns. In real-world datasets, most

categorical columns have a highly imbalanced distribution. In our datasets, we noticed

that 636/1048 of the categorical columns are highly imbalanced - the major category

appears in more than 90% of the rows, creating severe mode collapse. Missing a minor
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category only causes tiny changes to the data distribution, but imbalanced data leads

to insufficient training opportunities for minor classes. The critic network cannot

detect such issues unless mode-collapse-preventing mechanisms such as PacGAN are

used. These mechanisms can prevent GANs from generating only the most salient

category. Synthetic data for minor categories are expected to be of lower quality,

necessitating resampling.

C6. High dimensionality. The high dimensionality of tabular data increases

the complexity exponentially. For example, n binary variables have 2' possibilities.

Accurately representing the probability distribution using a small neural network is

impossible because there are not enough parameters, and there is usually not enough

training data. In this case, any modeling technique introduces bias to the estimate.

For example, when modeling with a GAN, bias could come in while choosing a specific

network structure or learning objective. Compared to statistical models, the bias

introduced in neural network models is hard to analyze.

C7. Lack of training data. Learning with small training data is a challenging

problem. Similar problems have been branded as few-shot learning or meta learning.

Such tasks are easier with images because content in different images shares similar

filters. However, tabular data is drastically different. It is challenging to effectively

transfer knowledge learned from one table to another.

C8. Missing values. Tabular data has missing values. To directly train a GAN

model on tabular data with missing values, one should modify the data representation

to properly distinguish missing values from known values, and mask the model to

make it robust towards missing values. An alternative approach is to impute the

missing values before training the model. However, the data imputation also requires

modeling of the table. Mistakes in data imputation would be propagated to learned

GAN models.

Table 4.1 shows whether existing methods explicitly address these challenges.
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Table 4.1: A summary showing whether existing methods and our CTGAN explicitly
address the aforementioned challenges [C1 - C8]. (* indicates it is able to model
continuous and binary.)

Problems MedGAN TableGAN PATE-GAN CTGAN

C1 /* /* /* /
C2 x x x /
C3 x / x /
C4 x x x /
C5 x / x /
C6 / / / /
C7 x x x x
C8 x x x x

4.2 Challenges on time-series data

Time series data is another type of tabular data. The major difference between time

series and non-time series data is that the distribution of each row is no longer inde-

pendent. In time-series data, the distribution of a row is conditioned on previous rows.

Modeling time series data requires the model to be capable of modeling conditional

distribution.

4.3 Challenges on multiple table data

Data with complicated information is stored as multiple tables in a relational database.

Modeling this type of data raises more challenges for GAN models. In multiple table

data, there could be several non-time series tables and several time series tables. For

example, a typical e-business website could have a table of users, a table of products,

and a table of orders. The user table and the product table are non-time series, while

the order table is time series. Modeling such distributions is still challenging, and

would require the integration of heuristic algorithms such as SDV [40] with different

GAN models.
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Chapter 5

Conditional Tabular GAN

The failure of existing methods has emphasized the necessity of designing a new

method to generate high-quality synthetic data. We find that a proper preprocessing

method and an improved learning algorithm are required to make GANs work on

tabular data. In this chapter, we explain our CTGAN model.

5.1 Notations

We define the following notations.

- X1 (B 2 ( ... : concatenate vectors zi, £2,...-

- gumbel,(x): apply Gumbel softmax[27] with parameter T on a vector x

- leaky.,(x): apply a leaky ReLU activation on x with leaky ratio -y

- FCev (x): apply a linear transformation on a u-dim input to get a v-dim output.

We also use tanh, ReLU, softmax, BN for batch normalization [25], and drop for

dropout [51].

5.2 Mode-specific normalization

Properly representing the data is critical for training neural networks. Discrete val-

ues can naturally be represented as one-hot vectors, while representing continuous
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values with arbitrary distribution is non-trivial. Previous models [13, 39] use min-

max normalization to normalize continuous values to [-1, 1]. In CTGAN, we design

a mode-specific normalization to deal with columns with complicated multi-modal

distributions.

Figure 5-1 shows our mode-specific normalization for a continuous column. In

our method, each column is processed independently. Each value is represented as

a one-hot vector indicating the mode, and a scalar indicating the value within the

mode. Our method contains three steps.

1. For each continuous column Ci, use variational Gaussian mixture model (VGM)

[7] to estimate the number of modes mi and fit a Gaussian mixture. For instance,

in Figure 5-1, the VGM finds three modes (mi = 3), namely 1, 972 and rj3 . The

learned Gaussian mixture is Pc(ci,j) = E _1 p= N(c3=; 'l, #e) where y1 and #k

are the weight and standard deviation of a mode respectively.

2. For each value ci,j in C, compute the probability of ci,3 coming from each

mode. For instance, in Figure 5-1, the probability densities are P1, P2, P3. The

probability densities are computed as Pk = PkN(ci,j; Ilk, 0k ).

3. Sample one mode from the given probability density, and use the sampled mode

to normalize the value. For example, in Figure 5-1, we pick the third mode

given pi, P2 and p3. Then we represent ci,3 as a one-hot vector #ij = [0, 0, 1]

indicating the third mode, and a scalar aj, = to represent the value

within the mode.

The representation of a row becomes the concatenation of continuous and discrete

columns

rj = a1ij #1,j E ... E aNc,j G Ncj ( dlj ( - -- dN,,j,

where di,j is a one-hot representation of a discrete value.
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Model the distribution of a
continuous column with VGM.

%\

For each value, compute the
probability of each mode.

Sample a mode and
normalize the value.

Cij

- Ci,j - r/3

403
A 00,1]

-P3

. 2

Figure 5-1: An example of mode-specific normalization. The distribution of a continuous column (the blue dashed line in the
left figure) has 3 modes, and these modes are modeled by a variational Gaussian mixture model. In the middle figure, a value
from that column ci, appears. cij has the probability density of P1, P2, P3 of coming from each mode. It is more likely to come
from the third mode. So cij is normalized by the mean and standard deviation of the third mode, namely rq3 and 03.
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5.3 Conditional tabular GAN architecture

Traditionally, a GAN is fed with a vector sampled from a standard multivariate

normal distribution .A(O, I), and by means of the Generator and Discriminator or

Critic([4],[18]) neural networks, one eventually obtains a deterministic transformation

that maps AP(O, I) onto the distribution of the data.

This method of training a generator does not account for the imbalance in the cat-

egorical columns. If the training data are randomly sampled during training, the rows

that fall into the minor category will not be sufficiently represented, and the generator

may not be trained correctly. If the training data are resampled, the generator learns

the resampled distribution, which is different from the real data distribution. This

problem is reminiscent of the "class imbalance" problem in discriminatory modeling,

but the challenge is exacerbated, since there is not a single column to balance and

the real data distribution should be kept intact.

Specifically, the goal is to resample efficiently so that all the categories from dis-

crete attributes are sampled evenly (but not necessarily uniformly) during the training

process, and to recover the (not-resampled) real data distribution during the test or

synthesis. One way to attain this is to enforce that the generator matches a given

category. Let k* be the value from the i*th discrete column Di. that has to be

matched by the generated samples i-, then the generator can be interpreted as the

conditional distribution of rows given that particular value at that particular column,

i.e. i- ~ Pg(rowlDj, = k*). For this reason, we call this generator a Conditional

generator, and a GAN built upon it is referred to as a Conditional GAN. Moreover,

in this thesis we construct our CTGAN as a Conditional GAN upon two main modules:

the conditional generator 9 and the critic C.

Integrating a conditional generator into the architecture of a GAN requires tack-

ling the following issues: 1) it is necessary to devise a representation for the condition

as well as to prepare an input for it, 2) it is necessary for the generated rows to pre-

serve the condition as it is given, and 3) it is necessary for the conditional generator to

learn the real data conditional distribution, i.e. Pg(rowlDj, = k*) = P(rowlDi, = k*),
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Select from Select a category
D1 and D 2  from D2  z ~ A(0, 1)

Say D2 is selected Say category 1 is selected

Pick a row from T. with D2 = 1 Generatorg(

Critic C()

Score

Figure 5-2: CTGAN structure.

so that

IP(row) = Pg(rowlDi, = k*)P(D . = k).

We present a solution that consists of three key elements, namely: the conditional

vector, the generator loss, and the training-by-sampling method.

Conditional vector. We introduce the vector cond to indicate the condition (D. =

k*). Recall that after the reversible data transformation, all the discrete columns

D1, ... , DN end up as one-hot vectors di, . . . , dN such that the ith one-hot vector is

di = [d k)], for k = 1,...,|DjI. Let mi = [m k)], for k = 1,..., DIl be the ith mask

vector associated to the ith one-hot vector di. Hence, the condition can be expressed

in terms of these mask vectors as

(~k) 1 if i=i* and k=k*,

0 otherwise.

Then, define the vector cond as cond = mi G... EmN. For instance, for two discrete

columns, Di = {1, 2, 3} and D2 = {1, 2},the condition (D2 = 1) is expressed by the

mask vectors mi = [0, 0, 0] and M 2 = [1, 0]; so cond = [0, 0, 0, 1, 0]. ([0, 0, 0] means

no value is assigned to D1 .)

Generator loss. During training, the conditional generator is free to produce any set

of one-hot discrete vectors {d 1, ... , 1N}. In particular, given the condition (D. = k*)
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in the form of cond vector, nothing in the feed-forward pass prevents from producing

either di*) =0 or djk) =1 for k # k*. The mechanism proposed to enforce the

conditional generator to produce * = mi- is to penalize its loss by adding the cross-

entropy between mi. and ai-, averaged over all the instances of the batch. Thus, as

the training advances, the generator learns to make an exact copy of the given mi*

into di..

Training-by-sampling. The output produced by the conditional generator must be

assessed by the critic, which estimates the distance between the learned conditional

distribution Pg(rowlcond) and the conditional distribution on real data P(rowlcond).

The sampling of real training data and the construction of the cond vector should

comply to help the critic estimate the distance. There are two possibilities: either

we randomly select an instance (row) from the table and then select the condition

attribute within it, or we randomly select an attribute (column) and a value from that

column and then select a row filtering the table by the value of that column. The

first possibility is not appropriate for our goal because we cannot ensure that all the

values from discrete attributes are sampled evenly during the training process. On

the other hand, if we consider all the discrete columns equally likely and randomly

select one, and then consider all the values in its range equally likely, it might be the

case that one row from a very low-frequency category will be excessively oversampled;

so once again is not an appropriate choice. Thus, for our purposes, we propose the

following steps:

1. Create Nd zero-filled mask vectors mi = [m k)]k=1I...lDi, for i = 1,... Nd, SO

the ith mask vector corresponds to the ith column, and each component is

associated with the category of that column.

2. Randomly select a discrete column Di out of all the Nd discrete columns, with

equal probability. Let i* be the index of the column selected. For instance, in

Figure 5-2, the selected column was D2 , so i* = 2.

3. Construct a PMF across the range of values of the column selected in 2, Di.,

such that the probability mass of each value is the logarithm of its frequency in
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that column.

4. Let k* be a randomly selected value according to the PMF above. For instance,

in Figure 5-2, the range D 2 has two values and the first one was selected, so

k* 1.

5. Set the k*th component of the i*th mask to one, i.e. mi = 1.

6. Calculate the vector cond = mi ... me G mNd. For instance, in Figure 5-2,

we have the masks mi = [0, 0, 0] and m 2* = [1, 0], so cond = [0, 0, 0, 1, 0].

We use the PacGAN framework, taking 10 samples from the training data in

each pac. The training algorithm under this framework is completely described in

Algorithm 1. It begins by creating as many condition vectors cond, and drawing as

many samples from NA(O, I), as the batch size (lines 1-3). Both are fed-forward into

the conditional generator to produce a batch of fake rows (line 4). The input to

PacGAN is twofold. On the one hand, it comes from sampling the training tabular

data according to the cond vector. On the other hand, it is the output of the con-

ditional generator. Both are preprocessed as detailed in lines 7 and 8 before being

fed-forwarded into the critic, to obtain its loss £c (line 9). In lines 10-12 we follow

[18] to compute the gradient penalty for the critic. To update the parameters of the

critic we use a gradient descent step, with learning rate 2 - 10-4, #1 = 0.9,/32 = 0.5

and Adam optimizer (line 13). In order to update the parameters of the conditional

generator, it is first necessary to repeat the feed-forward steps both in the conditional

generator (lines 1-7) and in the critic (line 15). This leads to the loss of the condi-

tional generator, since in this step the critic is not updated. Then, we use a gradient

descent step similar to the one for the parameters of the critic (line 16).

Finally, the conditional generator g(z, cond) architecture can be formally de-
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hI = ReLU(BN(FCCondl+lzl, 256 (z @ cond)))

h2 = ReLU(BN(FClcondl+lzj+ 256 - 25 6 (z G cond e hi)))

di = tanh(FCcondl+zl+512-4*1(h 2 ))

= gumbelo. 2 (FClcondl+lzl+ 5 12-mi (h2 ))

(i = gumbelo.2(FCicondl+lzl+512-ilDil(h 2 ))

1< i <Nc

1 < i< Nc

1 < i < Nd

and the architecture of the critic (with pac size 10) C(ri, ... , rio, condi,.. . , condio)

can be formally described as

ho = r1 e ... G rio Ee condi D ... G condio

hi = drop(leak 0 .2 (FCoIrl+10lcondl-+25 6 (ho)))

h2= drop(1eakyO. 2 (FC 256-4256(hi)))

C(.) = FC256 -- 1 (h 2 )

Generate synthetic data for different purposes. During testing, the user has to

provide the Conditional CTGAN both with a random vector z (as to any other GAN)

and a cond vector properly constructed according to the discrete columns and their

range of values. Users can construct cond to generate rows with a specific value

in a discrete column, for example generating several columns with D2 = 1. In our

experiments, i* is sampled uniformly and mi. follows the marginal distribution of Di.

so that the generated data are expected to reveal the real data distribution.
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Algorithm 1: Train CTGAN on step.
Input: Training data Ttrain, Conditional generator and Critic parameters ?G and Jc respectively, batch size m, pac

size pac.
Result: Conditional generator and Critic parameters 1G, 41 c updated.

1 Create masks {mi, ... , mi-, ... , mN j}, for 1 < j < m
2 Create condition vectors condj,
3 Sample {z} ~ A((O, I) , f
4 fj <- Generator(zj, condj) ,
5

for 1 < j < m from masks > Create m conditional vectors
or 1 j < m

for 1 j < m
Sample rj - Unif orm(Trainjcondj) , for 1 < j < m

6 cond ac) <- condkxpac+1 e ... © condkxpac+pac,

7 (pac)foI7 a rkxpac+x1 p ... x

8 r (pac) rkxpac+1 e ... D rkxpac+pac , for 1 <

9

io Sample Pi, . . ., Pm/pac ~ Unif orm(O, 1)

> Generate fake data
c> Get real data

for 1 < k < m/pac

k < m/pac

k < m/pac

> Conditional vector pacs
> Fake data pacs

> Real data pacs

for 1 < k <m/pac

12 LGP -mpac m/pac (pac) Critic(f (pac), cond pac)) 2 _ 1)2 > Gradient Penalty [18]
13 (c <- (DC - 0.0002 x Adam(VDc (Lc + 10£GP))

14 Regenerate iy following lines 1 to 7

15 LG - mpac m /pac Criti C(j pac), cond (pac)) mL M CrossEntropy(di-,, mi.)

16 (G +- 4G - 0.0002 x Adam(VCTL G)

Lc 1-Em/pac Crt Cj(pac)' con(pac) )\ 1 E-m/pac CiPc) (a)
mipac k=- m/pac k=-r(a) od(a)

1(pac) - Pkh pac) + (1 - pk)rkpac)
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Chapter 6

Other Methods for Synthetic Data

Generation

Before developing CTGAN, we made several attempts to build a synthetic data gen-

erator, including a long-short-term-memory (LSTM) [23] model and a variational

autoencoder model. In this chapter, we describe these efforts.

6.1 TGAN

TGAN [55] uses an LSTM to generate synthetic data column by column. Each column

depends on the previously generated columns. We use an attention mechanism [5]
to model the correlation between columns. When generating a column, the attention

mechanism pays attention to previous columns that are highly related to the current

column. TGAN has many more parameters than CTGAN, and so is more time-consuming

to train.

Preprocessing TGAN uses a similar preprocessing method as CTGAN. All continuous

columns are normalized to a scalar aij and a vector #ij using mode-specific nor-

malization (Section 5.2).1 All discrete columns are represented as a one-hot vector

di,j.

'In TGAN, we use Gaussian mixture model (GMM) with 5 modes. In CTGAN, GMM is upgraded
to VGM to automatically infer the number of modes.
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a, di   a2 #2 d2

t t
1 f2 3s -f6

TM LSTM LSTM LSTM LSTM LSTM

z z z z z z
<GO> -+11 -+ f2 -+s -+ 1 -+ As

a,   a2 a3 a4  a5 a6

Figure 6-1: Example of using TGAN generator to generate a simple table. The example
has two continuous variables and two discrete variables. The order of these columns
is [C1, Di, C2, D 2]. TGAN generates these four variables one by one following their
original order in the table. Each sample is generated in six steps. Each numerical
variable is generated in two steps while each categorical variable is generated in one
step.

Figure 6-1 shows the structure of our TGAN and how to use it to generate tabular

data. We use a long-short-term memory (LSTM) network as the generator, and use

Multi-Layer Perceptron (MLP) in the discriminator.

Generator: We generate a numerical variable in two steps. We first generate the

value scalar aj, then generate the cluster vector 3. We generate a categorical feature

in one step as a probability distribution over all possible labels.

The input to the LSTM in each step t is the random variable z, the previous hidden

vector ft-1 or an embedding vector ft'_ 1 depending on the type of previous output,

and the weighted context vector at. The random variable z is a 100-dimensional

vector sampled from K(O, I). The attention-based context vector at is a weighted

average over all the previous LSTM outputs hi:t. We learn an attention weight vector

7yt E R'. y are additional parameters in the model. The context vector is computed

as
t-1

at = sof tmax(-y)khk. (6.1)
k=1

We set ai = 0, because there are no previously generated columns. The output of
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LSTM ht is a 100-dimensional vector. We project the output to a hidden vector

ft = FC1oo+ 100(ht). We further convert the hidden vector to an output variable.

e If the output is the value part of a continuous variable, we compute the output

as ai = FCioo41(ft). The hidden vector for t + 1 step is ft.

e If the output is the cluster membership of a continuous variable, we compute

the output as #i = softmax(FCioos5 (ft)). The feature vector for t+ 1 step is ft.

e If the output is a discrete variable, we compute the output as di = sof tmax(FClooI-Di (ft))

The hidden vector for t + 1 step is ft = Ei[argk max di], where E C RIDIlxOG is

an embedding matrix for discrete column Di.

e fo is a special vector <GO> and we learn it during the training.

Discriminator We use a two-layer, fully connected neural network as the discrim-

inator. The network structure is the same as CTGAN. Instead of PacGAN, we use a

mini-batch discrimination vector [45] in TGAN.

Loss Function The model is differentiable, so we train our model using an Adam

optimizer. We optimize the generator so that it can fool the discriminator as much

as possible. To warm up the model more efficiently, we jointly optimize the KL

divergence of discrete variables and the cluster vector of continuous variables by

adding them to the loss function. Adding the KL divergence term can also make the

model more stable. We optimize the generator as

Ne Nd

£g = -Ez~N(o,I) log D(9(z)) + KL(,3 #,3i) + KL(d, di), (6.2)
i=1 i=1

where 3' and d' are generated data, while 3i and di are real data. We optimize the

discriminator in the same way as the vanilla GAN [17].
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6.2 Tabular VAE

The VAE simultaneously trains a generative model po(x) = f po(xlz)p(z)dz and an

inference model qw(zlx) by minimizing the evidence lower-bound (ELBO) loss [31]

log pO(xj) > £(0,q<;xj) = Eq,(zx)[logpo(xjjzj)] - KL[qo(zjlxy )||p(zj)].

where

(6.3)

n

log pO(x) = log po(xI, x 2 ,. . . ,xn) log po(xj)
j=1

Usually p(zj) is multivariate Gaussian distribution A(O, I). Moreover, po(xjIzj)

and qp(zjlxj) are parameterized using neural networks and optimized using gradient

descent.

When using VAE to model rows rj in tabular data T, each row is preprocessed as

rj = c at (a,, #i,1, .... , aNj, ONj, d1,j --.. ,dNd,j).

This affects the design of the network po(rj Izj) which needs to be done differently so

that p0 (r zj) can be modeled accurately and trained effectively. In our design, the

neural network outputs a joint distribution of 2Nc + Nd variables, corresponding to

2Nc + Nd variables ry. We assume ayj follows a Gaussian distribution with different

means and variance. All fijy and dij follow a categorical PMF. Here is our design.

hi r ReLU(FC 12 8-128(zy))

h2= ReLU(FC 128- 128(hi))

aij = tanh(FC128-4 1 (h 2 ))

Oij ~Cat(sof tmax(FC128-+m(h 2 )))

~ Cat(softmax(FC128-o1Di(h 2 )))

po(rjIzj) = R= 1 Pjd%4 y = ) fc P(& = i,5) H=1 i(d ,

1 < i < Nc

1 <i < Nc

1< i < Nc

1 <i < N
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Here di. , Oji, di, are random variables, and pa(rj Iz) is the joint distribution of these

variables. So logpo(rjlzj) is

log V exp '2 ' CE(Ai, Oi,) +L CE(ai, , di,) +constant. (6.4)
i=1 e

In po(rj Iz), weight matrices and 6i are parameters in the network. These parameters

are trained using gradient descent.

The modeling for q(zjlrj) is similar to conventional VAE.

r = c at (a,, #1,j ... , /Nc ,j, ONj, d1j, - . . , dNd,j)

hi = ReLU(FCirJ-4128(rj))

h2 = ReLU(FC128- 12 8(hi))

p = FC 128- 12 8(h 2 )

0- = exp(jFC 128- 128(h2 ))

qO (zjI rj) ~-(p, or)

TVAE is trained using Adam with learning rate le-3.
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Figure 6-2: TVAE structure.
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Chapter 7

SDGym Benchmark Framework

Many statistical and deep learning methods have been proposed to model tabular

data. However, as of this writing, no consistent benchmark has been developed to

fairly compare different methods. Tabular data have different properties, such as

single or mixed column types, low or high dimensions, etc. A thorough benchmark

should contain various combinations of such properties.

As shown in [53], metrics for evaluating generative models are largely indepen-

dent. Thus, we don't rely on one metric to compare different models. Instead, our

benchmark contains two parts, simulated data and real data, and evaluates several

metrics. Simulated data have a known probability distribution and are used to eval-

uate the quality of learned data distribution, whereas real data come from a real

machine learning task and can be used to evaluate performance in a real scenario.

In this benchmark, we focus on how well a model can learn the probability distri-

bution of rows. The benchmark does not challenge models for learning distributions

from very few examples. All the datasets we select contain at least 10, 000 rows, and

the number of rows is significantly higher than the number of columns.

In the rest of this chapter, we describe the simulated data and real data benchmark

aspects in detail.
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7.1 Simulated data

For the simulated data, we handcrafted several data distributions, using a Gaussian

mixture model or a Bayesian network in order to control the data distribution. As

shown in Figure 7-1, we handcrafted a simulated data generator S and generated

training and test set Ttrain and Ttest. We trained a data synthesizer G on Ttrain and

generated synthetic data Ty,. We evaluated G using the following metrics.

" Likelihood of generated data £,y: We computed the likelihood of Toy on

S. Because S is a known distribution, the likelihood of synthetic data on the

simulated data distribution can be easily computed. The likelihood can show,

in some sense, the quality of synthetic data. This is a flawed metric: High

likelihood does not necessarily indicate a good synthesizer, as a trivial G which

repeats the same data point multiple times could achieve high likelihood.

" Likelihood of test data £test: We retrain the simulated data generator as S'

using Tsyn. S' has the same structure as S, but different parameters. If S is

a Gaussian mixture model, we use the same number of Gaussian components

and retrain the mean and covariance of each component. If S is a Bayesian

network, we keep the same graph and learn a new conditional distribution on

each edge. We compute the likelihood of Ttest on S'. This metric introduces

the prior knowledge of the structure of S' which is not necessarily encoded in

Tsyn, thus may be a flawed metric.

We constructed 7 different simulated data sets. Table 7.1 shows statistical infor-

mation about the simulated data. Grid, gridr and ring are generated by Gaussian

mixture models. We follow [50] to generate grid and ring. Gridr is generated by

adding random noise to the modes in grid. Figure B-1 shows these three datasets.

The other four datasets are generated by Bayesian networks. Figure B-2 and B-3

shows the Bayesian network structures. We use graph structures and probability

distributions from http: //www. bnlearn. com/bnrepository/.
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Training Synthetic Data Synthetic
Data Generator Data

+ Likelihood Isyn
Parameterized

Simulated Data/
Oracle Y

Learn oracle
parameters from
synthetic data

Pass the oracle

Likelihood Ytest

A

Re-parameterized
Oracle S'

Figure 7-1: Evaluate synthetic data generator using simulated data.

7.2 Real data

For the real data component, we wanted to evaluate the effectiveness of using synthetic

data as training data for machine learning. In other words, real data enables an

application-level evaluation. As shown on Figure 7-2, we have training data Ttrain

and test data Ttest. We train a data synthesizer G on Tt,rin and generate synthetic

data T,,, using G. We train prediction models on T,vn and test prediction models

Table 7.1: Simulated datasets in our benchmark. #C, #B, and #M mean number of
continuous columns, binary columns and multi-class discrete columns respectively.

name #train/test #C #B #M

grid 10k/10k 2 0 0
gridr 10k/10k 2 0 0
ring 10k/10k 2 0 0
asia 10k/10k 0 8 0
alarm 10k/10k 0 13 24
child 10k/10k 0 8 12
insurance 10k/10k 0 8 19
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using Ttest. We evaluate the performance of classification tasks using accuracy and F1,

while evaluating the regression task using R2 . For each dataset, we select classifiers

or regressors that achieve reasonable performance. Since we are not trying to pick the

best classification or regression model, we take the average performance of multiple

prediction models as metrics for G.

We pick adult, census, covertype, intrusion and news from the UCI machine

learning repo. We pick credit from Kaggle. We convert MNIST into 28x28 and

12x12 images, vectorize each image as one row of data, and call them MNIST28 and

MNIST12 respectively. Table 7.2 shows statistics for these simulated datasets.

For each real dataset, we run several classifiers and regressors and pick models

with reasonable performance. Table 7.3 shows the selected models and corresponding

performances.

Training Synthetic Data Synthetic
Data Generator Data

+Train prediction
models

Decon Tree

Test Accuracy

Data Linear SVM F1
Dt R2

LIP

Test prediction models

Figure 7-2: Real data in synthetic data generator benchmark.
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Table 7.2: Real datasets in our benchmark. #C, #B, and #M mean number of
continuous columns, binary columns and multi-class discrete columns respectively.

name #train #test #col #C #B #M task

adult 22561 10000 15 6 2 7 classification
census 199523 99762 41 7 3 31 classification
covtype 481012 100000 55 10 44 1 classification
credit 264807 20000 30 29 1 0 classification
intrusion 394021 100000 41 26 5 10 classification
mnist12 60000 10000 145 0 144 1 classification
mnist28 60000 10000 785 0 784 1 classification
news 31644 8000 59 45 14 0 regression

Table 7.3: Classifiers and regressors selected for each real dataset and corresponding
performance.

dataset name accuracy fl macrofl microfl r2

Adaboost (estimator=50) 86.07% 68.03%

adult Decision Tree (depth=20) 79.84% 65.77%
Logistic Regression 79.53% 66.06%
MLP (50) 85.06% 67.57%

Adaboost (estimator=50) 95.22% 50.75%
census Decision Tree (depth=30) 90.57% 44.97%

MLP (100) 94.30% 52.43%

Decision Tree (depth=30) 82.25% 73.62% 82.25%
covtype MLP (100) 70.06% 56.78% 70.06%

Adaboost (estimator=50) 99.93% 76.00%
credit Decision Tree (depth=30) 99.89% 66.67%

MLP (100) 99.92% 73.31%

intrusion Decision Tree (depth=30) 99.91% 85.82% 99.91%
MLP (100) 99.93% 86.65% 99.93%

Decision Tree (depth=30) 84.10% 83.88% 84.10%
mnist12 Logistic Regression 87.29% 87.11% 87.29%

MLP (100) 94.40% 94.34% 94.40%

Decision Tree (depth=30) 86.08% 85.89% 86.08%
mnist28 Logistic Regression 91.42% 91.29% 91.42%

MLP (100) 97.28% 97.26% 97.28%

news Linear Regression 0.1390
MLP (100) 0.1492
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Chapter 8

Experiment Results

In this chapter, we use SDGym to benchmark existing statistical and deep learning

models, as well as CTGAN and TVAE. We first describe our experimental settings and

hyperparameters. We then show our quantitative results, go through some case stud-

ies, and present an ablation study on CTGAN.

8.1 Settings and hyperparameters

We evaluate CLBN, PrivBN, MedGAN, VeeGAN, TableGAN, CTGAN, and TVAE using our

SDGym. Here are the settings for each model:

• CLBN: We use the implementation in Pomegranate library [48]. Since CLBN

only supports discrete variables, we discretize continuous columns to 15 bins

before training the Bayesian network.

• PrivBN: We use the original C++ implementationi and write a Python wrapper

for the executable binary file. In the implementation, all continuous variables

are discretized to 20 bins. PrivBN is a differentially private data synthesizer.

It adds noise to synthetic data. For a fair comparison, we use a large privacy

budget to reduce the effect of noise on the performance. We set E-differential

privacy budget to 10.

lhttps://sourceforge.net/projects/privbayes
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" MedGAN: We follow the settings in the original implementation 2 . We use a 1-layer

multilayer perceptron (MLP) with 128 hidden units for the autoencoder. And

we use 2-layer MLP for GAN. The hidden layer size is (128, 128) for the genera-

tor and (256, 128) for the discriminator. We use a relatively large regularization

weight equal to le - 3.

" VeeGAN: We use 2-layer MLP with hidden size (128, 128) for both generator and

reconstructor. We use a 1-layer MLP with hidden size 128 for the discriminator.

• TableGAN: We use 3 convolutional layers in the generator and 3 deconvolutional

layers in the discriminator.

" TVAE and CTGAN: We obey the hyperparameters described in Chapter 5.

For TVAE and all GAN-based models, we use batch size 500. Each model is trained

for 300 epochs using an Adam optimizer. Each epoch iterates over all the training

examples one time.

We posit that for any dataset, across any metrics except £syn, the best perfor-

mance is achieved by Ttrain. Thus we present the Identity method which outputs

Ttrain -

8.2 Quantitative results

Experimental results are shown in Table 8.1, 8.2 and 8.3. The number in the bracket

is the rank of a method (lower is better). The rank is computed as follows. For each

set of experiments: (1) Rank the algorithms' overall metrics in each set. (2) Take

the average of all ranks of each algorithm. Get one score in the range [1, 7] for each

algorithm. (3) Rank the scores again.

In the continuous data case, CLBN and PrivBN suffer because continuous data

are discretized. MedGAN, VeeGAN, and TableGAN all suffer from mode collapse. With

mode-specific normalization, our model performs well on 2D continuous datasets.

2https ://github. com/mp2893/medgan
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Table 8.1: Benchmark results on Gaussian mixture simulated data.

method

Identity

CLBN (2)
PrivBN(4)
MedGAN(7)

VEEGAN(6)

TableGAN(5)

TVAE (1)
CTGAN (3)

grid

,syn Ltest

-3.06 -3.06

-3.68 -8.62
-4.33 -21.67
-10.04 -62.93
-9.81 -4.79
-8.70 -4.99

-2.86 -11.26
-5.63 -3.69

gridr

£syn £test

-3.06 -3.07

-3.76 -11.60
-3.98 -13.88
-9.45 -72.00

-12.51 -4.94
-9.64 -4.70

-3.41 -3.20
-8.11 -4.31

ring

Lsyn £test

-1.70 -1.70

-1.75 -1.70
-1.82 -1.71
-2.32 -45.16
-7.85 -2.92
-6.38 -2.66

-1.68 -1.79
-3.43 -2.19

Table 8.2: Benchmark results on Bayesian network simulated data.

method

Identity

CLBN(3)
PrivBN(1)
MedGAN(5)
VEEGAN(7)

TableGAN(6)

TVAE (2)
CTGAN(4)

asia

£syr Ltest

-2.23 -2.24

-2.44 -2.27
-2.28 -2.24
-2.81 -2.59
-8.11 -4.63
-3.64 -2.77

-2.31 -2.27
-2.56 -2.31

alarm

Lsy £test

-10.3 -10.3

-12.4 -11.2
-11.9 -10.9
-10.9 -14.2
-17.7 -14.9
-12.7 -11.5

-11.2 -10.7
-14.2 -12.6

child

£Lsyn test

-12.0 -12.0

-12.6 -12.3
-12.3 -12.2
-14.2 -15.4
-17.6 -17.8
-15.0 -13.3

-12.3 -12.3
-13.4 -12.7

insurance

£syn Itest

-12.8 -12.9

-15.2 -13.9
-14.7 -13.6
-16.4 -16.4
-18.2 -18.1
-16.0 -14.3

-14.7 -14.2
-16.5 -14.8

On the dataset generated from Bayesian networks, CLBN and PrivBN have a nat-

ural advantage. Our CTGAN achieves slightly better performance than MedGAN and

TableGAN. Surprisingly, TableGAN works well on discrete datasets, despite consid-

ering discrete columns as continuous values. Our reasoning for this is that in our

simulated data, most columns have fewer than 4 categories, so conversion does not

cause serious problems.

On real datasets, TVAE and CTGAN outperform CLBN and PrivBN, whereas other

GAN models cannot get as good a result as with Bayesian networks. When it comes to

large-scale real datasets, learning a high-quality Bayesian network is difficult. There

is a significant performance gap between real data and synthetic data generated by a

learned Bayesian network.
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Table 8.3: Benchmark results on real data.

adult census credit cover. intru. mnistl2/28 news

method F1 F1 F1 Macro Macro Ace Acc R2

Identity 0.669 0.494 0.720 0.652 0.862 0.886 0.916 0.14

CLBN(3) 0.334 0.310 0.409 0.319 0.384 0.741 0.176 -6.28
PrivBN(4) 0.414 0.121 0.185 0.270 0.384 0.117 0.081 -4.49
MedGAN(6) 0.375 0.000 0.000 0.093 0.299 0.091 0.104 -8.80
VEEGAN(6) 0.235 0.094 0.000 0.082 0.261 0.194 0.136 -6.5e6

TableGAN(5) 0.492 0.358 0.182 0.000 0.000 0.100 0.000 -3.09

TVAE(1) 0.626 0.377 0.098 0.433 0.511 0.793 0.794 -0.20
CTGAN(1) 0.601 0.391 0.672 0.324 0.528 0.394 0.371 -0.43

We compute the distance between generated synthetic data and nearest neighbor

in training data on all real datasets shown in Table 8.4. TVAE and CTGAN are both at

the top in terms of machine learning effectiveness, but synthetic data generated by

CTGAN has a larger distance to the training data then TVAE. Thus, CTGAN preserves

privacy better than TVAE.

Table 8.4: Distance between synthetic data and nearest neighbor in training set.

Model Avg. Std.

CLBN(3) 59.5 145.1
PrivBN(4) 8.6 10.0
MedGAN(6) 1073.5 2763.3
VeeGAN(6) 4.7 2.6

TableGAN(5) 2.5 0.9

TVAE(1) 2.5 2.0
CTGAN(1) 3.1 2.7

On seven classification datasets, we mostly use decision tree classifiers (DCT)

and MLP classifiers. Table 8.5 shows the average performance of these two classi-

fiers. On the real training data, MLP can achieve slightly better performance than

decision trees, but does not work as well on synthetic data generated by Bayesian-

based synthetic data generators. On synthetic data generated by MedGAN, VeeGAN

and TableGAN, DCT and MLP achieve similar performance. Our TVAE and CTGAN

generate high-quality synthetic data, so both DCT and MLP perform much better
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than trained on other synthetic data. MLP is slightly better than DCT, which is

consistent with real data.

Table 8.5: Classification performance of different classifers.

Model DCT MLP

Identity 0.724 0.755

CLBN 0.409 0.350
PrivBN 0.267 0.216
MedGAN 0.110 0.148
VeeGAN 0.148 0.139

TableGAN 0.282 0.288

TVAE 0.477 0.532
CTGAN 0.437 0.509

8.3 Case analysis

TableGAN VEEGAN TVAE CTGAN

Figure 8-1: Visualize synthesized grid data set using TableGAN, VEEGAN, TVAE and
CTGAN. The red marks are the ground truth modes and the blue dots are synthetic
samples generated by different synthesizers.

Figure 8-1 shows the results of TableGAN, VEEGAN, TVAE and CTGAN on the grid

dataset. Clearly, TableGAN and VEEGAN do not model the data very well. TableGAN

ignores the bottom left corner and does not properly model the variance on any of

the modes. VeeGAN also fails, as many samples lie at the boundary. VeeGAN also

tends to sample lots of data horizontally or vertically between adjacent modes. For

example, many points are sampled on the horizontal line y = -4 and the vertical

line x = 4. Our TVAE and CTGAN successfully capture 25 modes, largely because the

reversible data transformation can successfully capture five modes on each axis. TVAE
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captures the variance better than CTGAN. Synthetic data generated by CTGAN has a

higher variance than ground truth. Surprisingly, in TVAE, the first two rows get fewer

samples than the last three rows.

TableGAN VEEGAN TVAE CTGAN

Figure 8-2: Visualize synthesized gridr data set using TVAE and CTGAN. The red
marks are the ground truth modes and the blue dots are synthetic samples generated
by different synthesizers.

Figure 8-2 shows TVAE and CTGAN results on the gridr dataset. In this dataset,

the modes are randomly perturbed, so that the modes found in the Gaussian mixture

model preprocessing are not perfectly aligned with the modes in the data. Therefore,

the generative model needs to properly generate one dimension of data depending on

the value of the other dimension. TVAE works perfectly on this dataset. It does not

suffer from the same problem in grid. CTGAN does not work as well as TVAE, as it

does not capture the perturbation on modes.

8.4 Ablation study

To understand the importance of each module in CTGAN, we conducted an ablation

study.

Mode-specific normalization: In CTGAN, we use a variational Gaussian mixture

model (VGM) to normalize continuous columns. We compare it with (1) GMM5:

Gaussian mixture model with 5 modes, (2) GMM10: Gaussian mixture model with

10 modes, and (3) MinMax: min-max normalization to [-1, 1]. Table 8.6 shows that

using GMM slightly decreases the performance while min-max normalization gives

the worst performance.

Conditional vector and training-by-sampling: We successively remove these two
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Table 8.6: Ablation study on mode-specific normalization.

Model GMM5 GMM10 MinMax

Performance -4.1% -8.6% -25.7%

components. (1) w/o S.: we first disable the training-by-sampling, but the generator

still gets a condition vector and its loss function still has the cross-entropy term. The

condition vector is sampled from training data frequency instead of log frequency. (2)

w/o C.: We further remove the condition vector in the generator. Table 8.7 shows

that both training-by-sampling and the condition vector are important for imbal-

anced datasets. Especially on highly imbalanced datasets such as credit, removing

training-by-sampling results in 0% on the F1 metric.

Table 8.7: Ablation study on training-by-sampling and conditional vector.

Model w/o S. w/o C.

Performance -17.8% -36.5%

WGANGP and PacGAN: In the thesis, we use WGANGP+PacGAN. Here we

compare it with three alternatives: WGANGP only, vanilla GAN loss only, and vanilla

GAN + PacGAN. Table 8.8 shows that WGANGP is more suitable for a synthetic

data task than vanilla GAN, while PacGAN is helpful for vanilla GAN loss but not

as important for WGANGP.

Table 8.8: Ablation study on Wasserstein GAN and PacGAN.

Model GAN WGANGP GAN+PacGAN

Performance -6.5% +1.75% -5.2%

8.5 Discussion

TVAE outperforms CTGAN in several cases, but GANs do have several favorable at-

tributes, and this result does not indicate that we should always use VAEs rather

than GANs on modeling tables. CTGAN has a few advantages over TVAE, namely
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since the generator in GAN is not directly optimized by mean square error, it is

easier to make it differentially private using existing frameworks like DPGAN

and PATE-GAN. Empirically, we compute the distance between synthetic data

and nearest neighbor in training data. We observe that CTGAN gets a 13% larger

distance than TVAE, while achieving the same accuracy or F1 score on the real

data.

CTGAN is more flexible in the sense that it is capable of capturing interactions

among variables through their architecture, while TVAE is not intrinsically ca-

pable of doing so. To this end, in scenarios where strong complex underlying

structures are involved, CTGAN should outperform TVAE.
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Chapter 9

Conclusion and Future Work

In this thesis, a comprehensive synthetic tabular data benchmark, SDGym, was im-

plemented and open-sourced. The implementation of the benchmark revealed the

challenges of modeling tabular data and problems in existing statistical and deep

learning models. CTGAN was designed to overcome such problems. Experimental re-

sults show that CTGAN can model tabular data with complicated distributions and

mixed types, and is robust over different datasets. CTGAN is the first deep learning

model that outperforms Bayesian networks in our benchmark.

There are a number of use cases for synthetic data. CTGAN can effectively model

tabular data and generate high-quality synthetic data, but further research is required

to satisfy different types of applications. As future work, we would like to explore the

following directions.

Generate differentially private synthetic data. One important application

involves using synthetic data to overcome privacy or bureaucratic barriers in

releasing data. Since CTGAN outperforms all other GAN-based models, it is

important to create a differentially private version of CTGAN. Similarly, We want

to explore the possibility of differentially private VAEs.

- Apply CTGAN on data augmentation. A lack of training data is a severe

problem in machine learning. Synthetic data can be used to generate a large

volume of training data. We want to explore whether machine learning models
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can benefit from adding extra synthetic training data into a real training set.

Use CTGAN to understand underlying relations between columns. Un-

derstanding the causal relationship between columns is challenging. We want

to interpret the learned generative model in order to understand the underlying

relation between columns.

Understand the theoretical guarantee of model convergence. Al-

though we show empirically that GANs can be used to model a mix of discrete

and continuous variables, a theoretical justification is required to guarantee

that the model works as expected. Such a guarantee could also inspire better

learning objectives and optimization methods for gaining better performance.
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Appendix A

Notations
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Table A.1: Notations

Notation Description

Notations for probability distributions.
N(p, o-I) Multivariate Gaussian distribution.
U(l, h) Uniform distribution on [1, r].

Notations for tabular data generation task.
C1,..., CNc Nc continuous columns in tabular data.
D1,..., DN Nd discrete columns in tabular data.
T Real or simulated tabular data with Nc + Nd columns.
Ttrain, Ttest The traning and testing part of T.
Tsyn   Synthetic data generated by some generative model.
ci,j A float showing the i-th continuous column of j-th row in Ttrain.
dej A integer showing the i-th discrete column of j-th row in Ttrain.

Notations for the benchmark.
S, S' Simulated data generator and the retrained generator in the bench-

mark.
G A synthetic data generation model to be evaluated.

Notations for preprocessing.
asij A normalized value for ci,j row.
#i,j A one-hot vector denoting the mode ci,j coming from mi Gaussian

distributions.
dij A one-hot representation for d ,3 .

Notations for CTGAN.
g(-) Generator.

C(-) Critic.
z Random noise input.

Notations for TVAE.
E(-) Encoder.
D(-) Decoder.
p, o Mean and standard deviation of the hidden representation.
z Hidden representation.
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Appendix B

Figures

*0 OW -
*4D

4* 1P,

Figure B-1: Visualize grid (left), gridr (middle) and ring (right) datasets. Each
blue point represents a row in a table. The x-axis and y-axis represent the value
of two continuous columns respectively. The red 'x's in the plots are the modes for
Gaussian mixtures.
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Figure B-2: Bayesian network structures of asia (left) and alarm (right) datasets.
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Figure B-3: Bayesian network structures of child (left) and insurance (right)
datasets.
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