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Abstract

A rich literature describes inhibitory innervation of pyramidal neurons in terms of the distinct 

inhibitory cell types that target the soma, axon initial segment, or dendritic arbor. Less attention 

has been devoted to how localization of inhibition to specific parts of the pyramidal dendritic arbor 

influences dendritic signal detection and integration. The effect of inhibitory inputs can vary based 

on their placement on dendritic spines versus shaft, their distance from the soma, and the branch 

order of the dendrite they inhabit. Inhibitory synapses are also structurally dynamic, and the 

implications of these dynamics depend on their dendritic location. Here we consider the 

heterogeneous roles of inhibitory synapses as defined by their strategic placement on the 

pyramidal cell dendritic arbor.

Introduction

Each pyramidal neuron harbors thousands of excitatory and inhibitory synapses [1,2], and 

the integration of synaptic signals from different locales across these neurons ultimately 

determines their action potential output at any given time [3–9]. A growing body of 

literature on inhibitory innervation of pyramidal cells has defined, in increasing detail, the 

inhibitory cell types that target distinct subcellular domains of postsynaptic pyramidal 

neurons (reviewed in [10–15]). The influence of inhibitory inputs on action potential 

initiation at the soma or axon initial segment has received much attention (reviewed in 

[10,11,14,15]). Yet, the vast majority of inhibitory synapses onto pyramidal neurons are 

located on the dendrites [1,2,11,16], where they play an important role in shaping dendritic 
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integration (Fig. 1) [12]. Inhibitory synapses on dendrites arise from multiple inhibitory cell 

types, but are canonically thought to be mostly from somatostatin-expressing (SOM) 

interneurons [11,17]. Despite their perceived monolithic innervation by SOM interneurons, 

dendritic inhibitory synapses can be considered heterogeneous based on their diverse effects 

on dendritic integration dependent on where they map onto the pyramidal dendritic arbor.

In contrast to excitatory synapses, which reside primarily on dendritic spines [1], dendritic 

inhibitory synapses reside on both the dendritic shaft and spines [1,2,18–20]. Inhibitory shaft 

and spine synapses have distinct effects on the postsynaptic cell due to the 

compartmentalization of voltage within spines [21,22]. The rich and complex structure of 

the dendritic arbor confers additional heterogeneity to inhibitory influence due to the 

asymmetric cable properties of dendrites, the influence of branch points on current 

propagation, and the differential impact of back propagating action potentials (bAPs) and 

excitatory synaptic inputs at proximal vs distal locations [3,8,9]. In an added layer of 

complexity, inhibitory synapses are structurally dynamic, with turnover far outpacing that of 

excitatory synapses [18–20], and the consequence of their removal or addition will also 

differ depending on dendritic location. Here, we discuss the location-dependent effects of 

dendritic inhibition on the detection and integration of excitatory signal, and the implications 

of inhibitory synapse structural dynamics based on dendritic placement.

Location-specific effects of inhibition on the detection and integration of 

excitatory signal

Excitatory synapses onto pyramidal cells are located on dendritic spines that are widely 

spread across a complex dendritic arbor [1]. Dendritic inhibition can attenuate these 

excitatory synaptic inputs in a spatially restricted manner (Fig. 2) [12,23,24], with inhibitory 

synapses on the dendritic shaft affecting excitatory synaptic inputs located on the same 

dendritic branch [24]. The effects of inhibitory synapses onto dendritic spines is further 

compartmentalized within the spine, so that GABA uncaging onto a spine can inhibit 

calcium influx evoked by glutamate uncaging at that spine, with no effect on calcium influx 

in neighboring spines [23]. Inhibitory synapses on dendritic spines would likely have the 

most influence in distal locations, where bAPs are small or undetectable [3] and excitatory 

synaptic inputs are the primary source of depolarization. Interestingly, inhibitory synapses 

on dendritic spines are located preferentially in distal regions, more than 125μm from the 

soma [20], where the relative influence of excitatory synaptic inputs compared to bAPs is 

greatest.

Modeling predicts that an inhibitory input onto a spine could reduce the amplitude of an 

excitatory postsynaptic potential by approximately 50% within the spine [11]. Accordingly, 

experimental evidence indicates that GABA uncaging onto individual spines attenuates but 

does not fully eliminate calcium influx induced by localized glutamate uncaging [23]. Thus, 

an inhibitory synapse on a dendritic spine may not act as an on/off switch for the excitatory 

input, but rather would regulate the strength of this excitatory input in a graded fashion. 

Given that initial activation of a strong excitatory input may saturate the spine, attenuation 
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by inhibitory synapses may serve to prevent saturation, effectively expanding the dynamic 

range of individual excitatory inputs.

An individual excitatory synaptic input may produce a large voltage change within the spine 

head on which it is located, but this depolarization attenuates sharply as current flows from 

the spine into the dendritic shaft, and through dendritic branching points to larger-diameter, 

more proximal regions of dendrite [3,21,25]. To propagate excitatory synaptic inputs to the 

soma, particularly when inputs are located on distal dendrites, pyramidal neurons rely on 

regenerative dendritic spikes that occur when multiple sources of depolarization converge 

[3,5,6,8,9,26–29]. For example, depolarization from nearby co-active excitatory synapses 

can sum non-linearly to initiate a dendritic spike [26,27,30–32]. Depolarization from a bAP 

or an earlier dendritic spike can also lower the threshold for initiating a dendritic spike in 

response to excitatory synaptic input [3,26]. Dendritic inhibition regulates this process of 

coincidence detection and signal propagation by attenuating bAPs and by directly curtailing 

dendritic spikes [12].

Modeling predicts that an individual inhibitory synapse on the dendritic shaft could 

substantially reduce bAP-induced depolarization and the resulting calcium influx within the 

dendritic branch in which it resides (Fig. 2) [33]. Experimental evidence bears out this 

prediction: GABA uncaging at a single site on the dendrite can attenuate bAP-induced 

calcium influx within approximately 20μm of the uncaging site on the same dendritic branch 

[34,35]. Similarly, stimulation of an individual inhibitory interneuron can attenuate bAP-

induced calcium influx within a spatially restricted region of the dendritic branch on which a 

putative synaptic contact is located, with negligible effects on neighboring branches [33,36]. 

Inhibitory synapses on dendritic spines have a more compartmentalized effect on bAPs: 

GABA uncaging onto a single spine can attenuate bAP-induced calcium influx within the 

same spine, with no detectable influence on neighboring spines [23]. These effects of 

inhibitory synapses on the spread of bAPs are likely to be most influential in proximal 

regions of the dendritic tree that are readily invaded by bAPs, as opposed to distal regions in 

which bAPs are smaller or undetectable [3].

In addition to attenuating bAPs, inhibition can curtail dendritic spikes within specific 

dendritic branches (Fig. 2). For example, GABA iontophoresis onto a pyramidal dendrite 

increases the threshold amount of glutamate uncaging necessary for eliciting a dendritic 

spike [37]. GABA iontophoresis is most effective at raising the threshold for dendritic spike 

initiation when it is co-localized with, or slightly distal to, the sites of glutamate receptor 

activation, while GABA iontophoresis proximal to the sites of glutamate uncaging is most 

effective at reducing the amplitude of the spike once it is initiated [37]. Thus, the placement 

of an inhibitory synapse in relation to nearby excitatory inputs can determine its effects on 

dendritic spiking.

A relatively small dendritic spike in a thin dendrite may fail to propagate to the soma, but 

multiple dendritic spikes can converge and summate, producing cooperativity among co-

active excitatory inputs on a larger scale [3,26]. Multiple co-active inhibitory synapses can 

produce far-reaching inhibition of dendritic spikes in the pyramidal arbor [38–42]. Modeling 

based on a reconstructed cortical pyramidal neuron and its SOM cell inputs suggests that 
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coordinated inhibition from sparse, distally located inhibitory synapses can spread 

centripetally, ultimately blocking the initiation of calcium spikes at the main branch point of 

the apical dendrite [38]. This inhibition is predicted to decouple the two main sites of spike 

initiation in the cortical pyramidal neuron, the somatic/axonal region and the main branch 

point of the apical dendrite, substantially altering the firing of the neuron [38]. Slice 

[39,40,43–45] and in vivo [45] electrophysiology studies confirm that precisely timed 

stimulation of distal inhibitory inputs can indeed block the initiation of spiking in the apical 

dendrite. Further, this blockade of spiking in the apical dendrite can prevent bursts of 

somatic action potentials in response to simultaneous current injections at the soma and 

distal dendrites [44]. These studies suggest that the coordinated action of even a few 

strategically placed inhibitory synapses can not only gate the detection of individual 

excitatory inputs or bAPs, but can regulate the integration of multiple sources of excitatory 

signal, ultimately influencing a neuron’s action potential output.

Role of inhibition in synaptic plasticity

Spike timing dependent plasticity (STDP), which can produce strengthening or weakening 

of synapses, is dependent on the correlated or uncorrelated, respectively, nature of 

depolarizing events [3,46–48]. STDP provides a mechanism by which individual pyramidal 

neurons can associate inputs arriving within a specific time window, but potentially at 

disparate locations on the dendritic arbor [46]. The change in the weights of excitatory 

synapses that participate in correlated events (reviewed in [3,46]) often goes hand in hand 

with changes in synapse size and spine morphology, i.e, spine head expansion or shrinkage, 

and can ultimately lead to spine gain or loss [49,50].

Since inhibition can attenuate the detection or summation of what would otherwise be 

correlated synaptic inputs, inhibitory synapse activity can have a profound effect not only in 

attenuating the spread and integration of convergent sources of depolarization, but also on 

whether they lead to synapse strengthening or weakening [3,12]. Modeling predicts that 

individual inhibitory synapses on a pyramidal dendrite can alter the propensity for long-term 

potentiation or long-term depression at nearby excitatory synapses, with inhibitory inputs 

differentially affecting the weights of excitatory synapses dependent on their location 

proximal or distal to these excitatory synapses [51].

Along with its influence on synaptic strength, dendritic inhibition can influence excitatory 

synaptic structural plasticity and circuit remodeling [12]. For example, GABA uncaging at 

the site of convergent bAPs and glutamate uncaging can induce the shrinkage and 

elimination of nearby spines, which likely represents the weakening and removal of 

excitatory synapses [35]. The ability of GABA uncaging onto the dendritic shaft to induce 

spine shrinkage is limited to spines within 15μm of the uncaging site [35]. Thus, the specific 

location of an inhibitory synapse also determines its effects on excitatory circuit remodeling.

Implications of inhibitory synapse structural dynamics

Dendritic inhibitory synapses are highly dynamic [18–20]. Both shaft and spine synapses 

show repeated removal and recurrence at stable sites, suggesting they may reversibly 
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modulate the ability of individual spines or dendritic branches to detect and participate in 

plasticity-inducing events [18].

In response to monocular deprivation, recurrent inhibitory synapses shift to a dynamic state 

in which their average lifetime is reduced and the time between re-appearances is lengthened 

[18]. When these inhibitory synapses are absent, excitatory inputs and bAPs that were once 

attenuated may now be detected, allowing the disinhibited dendrite to integrate convergent 

excitatory inputs. This disinhibition may play a critical role in ocular dominance plasticity 

by creating an environment that is permissive for STDP of excitatory synapses, enabling 

disinhibited dendritic branches to participate in experience-dependent circuit remodeling 

[52,53].

The most dynamic inhibitory synapses are those located on spines [18,20]. These dually 

innervated spines (DiS), which also house an excitatory synapse, are extremely stable, as are 

the excitatory synapses they house [18]. The apposition of a stable excitatory input with a 

highly dynamic inhibitory input on the same spine potentially enables rapidly reversible 

inhibitory modulation of input efficacy at stable excitatory synapses [18]. This could 

dynamically regulate not only the magnitude of specific excitatory synaptic inputs [23], but 

also their integration with bAPs or other nearby excitatory synaptic and local regenerative 

events. Thus, inhibitory spine synapse dynamics would allow both spatially and temporally 

restricted exclusion of specific excitatory connections from circuit activity and synaptic 

plasticity.

The ability of inhibitory shaft and spine synapses to reversibly modulate excitatory circuits 

that appear structurally stable may generalize more broadly. For example, in vivo imaging 

studies show that monocular deprivation does not alter spine dynamics on L2/3 pyramidal 

neurons in primary visual cortex [20,54], but it does alter the structural dynamics of 

inhibitory synapses on the dendritic spines and shafts of these same neurons [18–20]. In this 

case, the absence of structural excitatory circuit change as inferred by spine dynamics does 

not necessarily indicate a lack of functional rewiring that could be powered by structural 

remodeling of inhibitory synapses.

Conclusion and future directions

In vivo imaging of genetically labeled inhibitory synapses has revealed structurally dynamic 

synapses distributed strategically throughout the pyramidal dendritic tree. Slice 

electrophysiology and calcium imaging suggest that by influencing the detection and 

integration of multiple sources of excitatory signal, these inhibitory synapses may alter 

information processing and the propensity for synaptic plasticity within their local circuit. 

Extending such studies to an in vivo context and establishing their relevance during a 

behavioral task is significantly more challenging. Recently, new in vivo functional 

manipulation and imaging tools have enabled experiments demonstrating dendritic 

integration within intact circuits in specific behavioral contexts [55–59]. However, we lack 

explicit knowledge of the type of information being integrated, and our knowledge related to 

inhibition in these in vivo paradigms is still in its infancy. Pioneering in vivo studies show 

that inhibition can suppress calcium spikes in the apical dendrites of pyramidal cells [58,60] 
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and demonstrate the feasibility of calcium imaging of GABAergic axons in awake behaving 

animals [61,62]. One of the limitations to combining synaptic resolution functional studies 

of both excitatory and inhibitory activity has been the ability to concurrently monitor both 

elements in vivo. Development of tools for functional imaging in multiple colors [63], would 

open the door to future in vivo studies that include simultaneous monitoring of inhibitory 

afferent activity and the integration of excitatory signal in the pyramidal dendrites they 

target. Further, expanding the palette of genetic calcium sensors and integrating their use 

with new methods for genetically labeling inhibitory postsynaptic sites in vivo [18–20] 

would allow monitoring of dendritic function in relation to the placement and structural 

dynamics of dendritic inhibitory synapses. Ultimately, future studies may reveal the effects 

of strategically placed inhibitory inputs on the integration of excitatory signal across the full 

dendritic arbor within the brain of an animal performing a well-defined behavioral task.
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Highlights

• The placement of inhibitory synapses defines their effects on the postsynaptic 

cell

• Inhibitory synapses on dendritic spines attenuate individual excitatory inputs

• Shaft synapses alter the integration of excitatory synaptic inputs and bAPs

• Distance from the soma influences the role of inhibitory shaft and spine 

synapses

• Effects of inhibitory synapse structural dynamics depend on the dendritic 

location
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Figure 1. The vast majority of a cortical pyramidal cell’s inhibitory synapses are located on the 
dendritic arbor, with a smaller number located on the soma and axon initial segment
Inhibitory synapses are schematized by red circles. Dendritic inhibitory synapses are found 

on both the shaft and spines, with inhibitory spine synapses located preferentially on distal 

dendrites. Spines that house inhibitory synapses also contain large, stable excitatory 

synapses (not pictured). Inset shows an enlarged version of the distal dendritic branches in 

the boxed region. Filled triangles point to inhibitory spine synapses; open triangles point to 

inhibitory shaft synapses.
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Figure 2. Effects of inhibitory synapses on the propagation of depolarization in the dendritic 
shaft and spines
The effects of inhibitory synaptic inputs are illustrated at sites labeled A–D in the top figure. 

The same regions of dendrite are shown without inhibition and labeled A′–D′ in the bottom 

figure. A) An inhibitory synapse on the dendritic shaft reduces the spread of the bAP 

(denoted by green fill) in a restricted region of the dendritic shaft and an adjacent spine. A′) 

Without inhibition, the bAP propagates along the same branch with only slight attenuation, 

but then weakens substantially as it crosses a branching point and reaches more distal 

regions of dendrite. B) An inhibitory synapse on the dendritic shaft prevents the detection of 

2 convergent excitatory inputs (denoted by blue fill) and the bAP within the adjacent 

dendritic shaft. B′) Without inhibition, the convergence of excitatory synaptic input with the 

bAP initiates a dendritic spike (denoted by purple fill). C) An inhibitory synapse on a 

dendritic spine attenuates an excitatory input onto that spine, while an adjacent spine (D) is 

unaffected. C′–D′) Without inhibition, the 2 distal excitatory inputs produce depolarization 

shown in blue.
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