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Abstract

This thesis explores the task of leveraging typology in the context of cross-lingual
dependency parsing. While this linguistic information has shown great promise in
pre-neural parsing, results for neural architectures have been mixed. The aim of the
investigation put forth in this thesis is to better understand this state-of-the-art. Our
main findings are as follows: 1) The benefit of typological information is derived from
coarsely grouping languages into syntactically-homogeneous clusters rather than from
learning to leverage variations along individual typological dimensions in a composi-
tional manner; 2) Typology consistent with the actual corpus statistics yields better
transfer performance; 3) Typological similarity is only a rough proxy of cross-lingual
transferability with respect to parsing. Code for the work in this thesis is available
at https://github.com/ajfisch/TypologyParser.
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Chapter 1

Introduction

Over the last decade, dependency parsers for resource-rich languages have steadily
continued to improve. In parallel, significant research efforts have been dedicated
towards advancing cross-lingual parsing. This direction seeks to capitalize on existing
annotations in resource-rich languages by transferring them to the rest of the world’s
over 7,000 languages (Bender, 2011). The NLP community has devoted substantial
resources towards this goal, such as the creation of universal annotation schemas,
and the expansion of existing treebanks to diverse language families. Nevertheless,
cross-lingual transfer gains remain modest when put in perspective: we show that
the performance of cross-lingual transfer models can often be exceeded using only a
handful of annotated sentences in the target language (Chapter 4). The considerable
divergence of language structures proves challenging for current models.

One promising direction for handling these divergences is linguistic typology. Lin-
guistic typology classifies languages according to their structural and functional fea-
tures, providing a scaffold for comparing languages. By explicitly highlighting specific
similarities and differences in languages’ syntactic structures, typology holds great po-
tential for facilitating cross-lingual transfer (O’Horan et al., 2016). Indeed, non-neural
parsing approaches have already demonstrated empirical benefits of typology-aware
models (Naseem et al., 2012; Ponti et al., 2018; Téckstrom et al., 2013; Zhang and
Barzilay, 2015). While adding discrete typological attributes is straightforward for

traditional feature-based approaches, for modern neural parsers finding an effective
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implementation choice is more of an open question. Not surprisingly, the reported
results have been mixed. For instance, Ammar et al. (2016) found no benefit to using
typology for parsing when using a neural-based model, while Wang and Eisner (2018)
and Scholivet et al. (2019) did in several cases.

There are many possible hypotheses that can attempt to explain the state-of-the-
art. Might neural models already implicitly learn typological information on their
own? Is the hand-specified typology information sufficiently accurate—or provided
in the right granularity—to always be useful? How do cross-lingual parsers use,
or ignore, typology when making predictions? Without understanding answers to
these questions, it is difficult to develop a principled way for robustly incorporating
linguistic knowledge as an inductive bias for cross-lingual transfer.

In this paper, we explore these questions in the context of two predominantly-used
typology-based neural architectures for delexicalized dependency parsing. We focus
on delexicalized parsing in order to isolate the effects of syntax by removing lexical
influences. The first method implements a variant of selective sharing (Naseem et al.,
2012); the second adds typological information as an additional feature of the input
sentence. Both models are built on top of the popular Biaffine Parser (Dozat and
Manning, 2017). We study model performance across multiple forms of typological

representation and resolution.

1.1 Key Findings

Our key findings are as follows:

e Typology as Quantization Cross-lingual parsers use typology to coarsely
group languages into syntactically-homogeneous clusters, yet fail to significantly
capture finer inter- and intra-cluster distinctions or typological feature compo-
sitions. Our results indicate that they primarily take advantage of the simple
geometry of the typological space (e.g. language distances), rather than specific

variations in individual typological dimensions (e.g. SV vs. VS).
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e Typology Quality Typology that is consistent with the actual corpus statis-
tics results in better transfer performance, most likely by capturing a better
reflection of the typological variations within that sample. Typology granular-
ity also matters. Finer-grained, high-dimensional representations prove harder

to use robustly.

e Typology vs. Parser Transferability Typological similarity only partially
explains cross-lingual transferability with respect to parsing. The geometry of
the typological space does not fully mirror that of the “parsing” space, and

therefore requires task-specific refinement.

1.2 Outline

The rest of this thesis is organized as follows:

e Chapter 2 introduces different notions of typology and how it can be repre-

sented for different languages.

e Chapter 3 presents our models for dependency parsing, both with and without

any typology augmentation.

e Chapter 4 details our experimental design and results to comprehensively eval-
uate and analyze the effects of the typology augmentation schemes we considered

on the model parsing performance.
e Chapter 5 presents a summary of related work.

e Chapter 6 concludes the thesis and discusses directions for future work.

17
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Chapter 2

Typology Representations

The performance of typology-aware neural dependency parsers can depend on the type
of typological representation used. In this chapter we describe the several variants of

language typology representation that we test and compare in our experiments.

2.1 Linguistic Typology

The standard representation of typology is sets of annotations by linguists for a variety
of language-level properties, which we refer to in this thesis as “Linguistic Typology”
(TL). These properties can be found in online databases such as The World Atlas of
Language Structures (WALS)! (Dryer and Haspelmath, 2013). WALS contains over
190 features that describe aspects of phonology, morphology, and syntax—all curated
by dozens of linguists for hundreds of languages. We consider the same subset of
features related to word order as used by Naseem et al. (2012), represented as a k-hot
vector T € {0,1}2¢ IVl where V; is the set of values feature f may take.

The typological tendencies for some languages are not always consistent, however,
and can vary across different text samples. This is a deficiency for static databases
such as WALS—sections 2.2 and 2.3 describe alternative representations that cap-
ture these variations. As a point of comparison, we also consider WALS features

directly derived from the target corpus. Table 2.1 summarizes the rules we used to

'https://wals.info/
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derive corpus-specific WALS features. The values are determined by the dominance

#{~}
#H{ A}

right-direction value, and vice versa. In-between values are set to Mixed. In our

of directionalities, e.g., if > 0, then its typological feature is set to the

experiments we use § = 0.75.

WALS ID ‘ Condition Values
89 relation € {nsubj, csubj} A VS(A). SV(A), Mixed
h.p=VERB A (m.p=NOUN V m.p=PRON)
S3A relation € {dobj, iobj} A VO(~) . OV(~), Mixed
h.p=VERB A (m.p=NOUN V m.p=PRON)
85A (h.p=NOUN V/ h.p=PRON) A m.p=app | |repositions(m),
Postpositions ()
Noun-Genitive (),
86A h.p=NOUN A m.p=NOUN Genitive-Noun(~),
Mixed
Adjective-Noun(+»),
87TA h.p=NOUN A m.p=ADJ Noun-Adjective(n),
Mixed
Demonstrative-Noun(+),
88A relation € {det} A m.p=DET Noun-Demonstrative (1),
Mixed

Table 2.1: Rules for determining the dependency arc set of each specific WALS feature
type. The arc direction specificed in the parenthesis of each value indicates the global
directional tendency of the corresponding typological feature.

2.2 Liu Directionalities

Liu (2010) proposed using a real-valued vector T' € [0, 1]" of the average direction-
alities of each of a corpus’ r dependency relations as a typological descriptor. We
refer to them in this thesis as "Liu Directionalities" (T). Clearly, this representa-
tion is related to its categorical linguistic counterpart. For example, a language with
a dominantly left-directed nsubj treebank is likely 82A SV. These serve as a more
fine-grained alternative to linguistic typology. Compared to WALS, there are rarely
missing values, and the degree of dominance of each dependency ordering is directly

encoded — potentially allowing for better modeling of local variance within a lan-
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guage. It is important to note, however, that true directionalities require a parsed
corpus to be derived; thus, they are not a realistic option for cross-lingual parsing
in practice (though Wang and Eisner (2017) indicate that they can be predicted
from unparsed corpora with reasonable accuracy). Nevertheless, we include them for
completeness.

Among all the 37 relation types defined in Universal Dependencies, we select a
subset of dependency relations which appear in at least 20 languages, as listed in
Table 2.2. For relation types that are missing in a specific language, we simply put

its value (directionality) as 0.5 without making any assumption to its tendency.

cc conj case nsubj nmod dobj
advel amod advmod neg nummod xXcomp
ccomp cop acl aux punct det
iobj dep csubj  parataxis mwe name
nsubjpass compound auxpass csubjpass mark appos

vocative discourse

Table 2.2: Subset of the Universal Dependency relations used for deriving the Liu
Directionalities typology.

2.3 Surface Statistics

It is possible to derive a proxy measure of typology from part-of-speech tag sequences
alone—which we refer to in this thesis as "Surface Statistics" (Ty,). Wang and Eisner
(2017) found surface statistics to be highly predictive of language typology. For
example, a language with many initial NOUN VERB subsequences is also fairly likely to
be 824 SV. Wang and Eisner (2018) replaced typological features entirely with surface
statistics in their augmented dependency parser. Surface statistics have the advantage
of being readily available and are not restricted to narrow linguistic definitions, but
are less informed by the true underlying structure. We compute the set of hand-
engineered features used in Wang and Eisner (2018), yielding a real-valued vector

T € [0,1]23%0,
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Chapter 3

Dependency Parsing Models

The performance of typology-aware neural dependency parsers can also depend on
the how the typological representation is integrated into the model architecture. In

this chapter we describe the different architecture choices used in our experiments.

3.1 Baseline Parsing Architecture

We use the graph-based Deep Biaffine Attention neural parser of Dozat and Manning
(2017) as our baseline model. Given a delexicalized sentence s consisting of n part-
of-speech tags, the Biaffine Parser embeds each tag p,, and encodes the sequence
with a bi-directional LSTM to produce tag-level contextual representations h;. Each

h; is then mapped into head- and child-specific representations for arc and relation

-d - 1-d -
h?rc ep’ h?rc head7 h;re ep h;el head

prediction, , and , using four separate multi-layer

perceptrons. For decoding, arc scores are computed as:

sire = (Rt (e psreter o ) (3.1)

)

while the score for dependency label r for edge (7, j) is computed in a similar fashion:

23



rel _ rel-head\ T’ 7 rrel . rel-dep

),
(urel—head) T hlirel—head + (32)

r

rel-dep) 1" g rel-dep
(u,, ) h; + b,

Both si;¢ and s‘(”flj) . are trained greedily using cross-entropy loss with the correct head

or label. At test time the final tree is composed using the Chu-Liu-Edmonds (CLE)

maximum spanning tree algorithm (Chu and Liu, 1965; Edmonds, 1967).

3.2 Typology-Augmented Parsers

Selective Sharing Naseem et al. (2012) introduced the idea of selective sharing
in a generative parser, where the features provided to a parser were controlled by
its typology. The idea was extended to discriminative models by Téackstrom et al.
(2013). For neural parsers which do not rely on manually-defined feature templates,
however, there is not an explicit way of using selective sharing. Here we choose to
directly incorporate selective sharing as a bias term for arc-scoring;:

S?;C—aug _ S?;C + vaij (33)
where v is a learned weight vector and f,; is a feature vector engineered using Téack-

strom et al.’s head-modifier feature templates (Table 3.1).
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d ® w.81A ® 1[h.p=VERB A m.p=NOUN]

d ® w.81A ® 1[h.p=VERB A m.p=PRON|

[

[

d ® w.85A ® 1[h.p=NOUN A m.p=ADP]

d ® w.86A ® 1[h.p=PRON A m.p=ADP]
[

d ® w.87A ® 1[h.p=NOUN A m.p=AD]J]

Table 3.1: Arc-factored feature templates for selective sharing. Arc direction: d €
{LEFT, RIGHT}; Part-of-speech tag of head / modifier: h.p / m.p. WALS features:
w.X for X=81A (order of Subject, Verb and Object), 85A (order of Adposition and
Noun), 86A (order of Genitive and Noun), 87A (order of Adjective and Noun).
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Input Features We follow Wang and Eisner (2018) and encode the typology for

language [ with an MLP, and concatenate it with each input:

® = W, - tanh (W, - TV + b) (3.4)

h =BilLSTM({p, ® ®,...,p, ® ®}) (3.5)

This approach assumes the parser is able to learn to use information in T® €
{Tg), T%), Tg)} to induce some distinctive change in encoding h.
3.3 Fine-tuning

We also compare to simple model fine-tuning on a few labelled sentences from the
target language. We fine-tune the baseline architecture from Section 3.1 using only

10 examples for supervision.
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Chapter 4

Experiments

4.1 Data

We conduct our analysis on the Universal Dependencies v1.2 dataset (Nivre et al.,
2015)! and follow the same train-test partitioning of languages as Wang and Eisner
(2018). We train on 20 treebanks and evaluate cross-lingual performance on the
other 15; test languages are shown in Table 4.1. Two treebanks that overlap with the
training languages are excluded from evaluation, following the setting of Wang and
Eisner (2018). We perform hyper-parameter tuning via five-fold cross-validation on
the training languages. Test results are reported over the train splits of the held-out

languages.

4.2 Training

To train our baseline parser and its typology-augmented variants, we use ADAM (Kingma
and Ba, 2015) with a learning rate of 107 for 200K updates (2M when using GD).
We use a batch size of 500 tokens. Early stopping is also employed, based on the
validation set in the training languages. For fine-tune, we perform 100 SGD updates
with no early-stopping. Following Dozat and Manning (2017), we use a 3-layered
bidirectional LSTM (BiLSTM) (Hochreiter and Schmidhuber, 1997) with a hidden size

'We evaluate on this older release of UD for fair comparison to Wang and Eisner (2018).
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of 400. The hidden sizes of the MLPs for predicting arcs and dependency relations
are 500 and 100, respectively.

Our baseline model shares all parameters across languages. During training, we
truncate each training treebank to a maximum of 500K tokens for efficiency. Batch
updates are composed of examples derived from a single language, and are sampled
uniformly, such that the number of per-language updates are proportional to the size
of each language’s treebank. Following Wang and Eisner (2018), when training on
GD, we sample a batch from a real language with probability 0.2, and a batch of GD
data otherwise.

All reported numbers are the average of three runs with different random seeds.

All models are implemented in PyTorch (Paszke et al., 2019).

4.3 Results

Tables 4.1 and 4.2 present our cross-lingual transfer results for unlabelled attachment
scores (UAS) and labelled attachment scores (LAS), respectively. The entries for B*
and +T% are the baseline and surface statistics model results, respectively, of Wang
and Eisner (2018).2

On UAS scores, our baseline model improves over the benchmark in (Wang and
Eisner, 2018) by more than 6%. As expected, using typology yields mixed results.
Selective sharing provides little to no benefit over the baseline. Incorporating the
typology vector as an input feature is more effective, with the Liu Directionalities
(Tp) driving the most measurable improvements — achieving statistically significant
gains on 13/15 languages. The Linguistic Typology (T1) gives statistically significant
gains on 10/15 languages. Nevertheless, the results are still modest. Fine-tuning on
only 10 sentences yields a 2.3x larger average UAS increase, a noteworthy point of

reference. LAS scores show similar trends.

*Wang and Eisner (2018)’s final T} also contains additional neural features that we omitted, as
we found it to under-perform using only hand-engineered features.
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Language B* +T% | Our Baseline | Selective Sharing | +T;, +Tp +Tg | Fine-tune
Basque 49.89 54.34 56.18 56.54 56.35" 56.77 56.50 | 60.71
Croatian | 65.03 67.78 74.86 75.23 74.07 77.39 7520 | 78.39
Greek 65.91 68.37 70.09 70.49 68.05 71.66 70.47 | 73.35
Hebrew 62.58 66.27 68.85 68.61 72.02 7275 69.21 | 73.88
Hungarian | 58.50 64.13 63.81 64.78 70.28 66.40 64.21 | 72.50
Indonesian | 55.22  64.63 63.68 64.96 69.73 67.73 66.25 | 73.34
Irish 58.58  61.51 61.72 61.491 65.88 66.49 6221 | 66.76
Japanese | 54.97 60.41 57.28 57.80 63.83 64.28 57.04 | 72.72
Slavonic | 68.79 71.13 75.18 75.171 74.65 7417 75.16T| 73.11
Persian 40.38  34.20 53.87 53.61 45.14 56.72 53.03 | 59.92
Polish 72.15  76.85 76.01 75.931 7951 71.09 76.29 | 77.78
Romanian | 66.55 69.69 73.00 73.40 75.20 76.34 73.82 | 75.15
Slovenian | 72.21  76.06 81.21 80.99 81.39 81.36 80.92 | 82.43
Swedish 72.26  75.32 79.39 79.64 80.28 80.10 79.22 | 81.29
Tamil 51.59 57.53 57.81 58.85 59.70 60.37 5839 | 62.94
Average | 60.97 6455 |  67.53 | 67.83 | 69.07 69.57 67.86 | 72.28

Table 4.1: A comparison of UAS scores of all methods on held-out test languages.
Results with differences that are statistically insignificant compared to the baseline
are marked with T (arc-level paired permutation test with p > 0.05).

Language ‘ B* +T% I Our Baseline ‘ Selective Sharing ‘ +T;, +Tp +Tg ‘ Fine-tune
Basque 27.07 31.46 34.64 34.79 36.49 36.83 34.90 43.04
Croatian 48.68 52.29 61.34 61.41F 59.86 63.72 61.60 65.07
Greek 50.10 56.73 56.51 56.531 55.16 60.18 56.59t|  64.66
Hebrew 49.71 53.29 41.15 41.05 43.58 43.63 41.50 43.14
Hungarian | 42.85 47.73 32.65 33.43 34.14 32.01 33.07 44.26
Indonesian | 39.46 47.63 47.17 48.21 51.82  50.78 49.22 62.23
Irish 39.06 40.75 39.63 39.607 43.02 4214 40.24 48.58
Japanese | 37.57  40.6 43.32 43.69 47.67 4810 42.85 60.59
Slavonic 40.03  43.95 57.35 57.40f 56.89 56.69 57.19 53.88
Persian 30.06 24.6 35.72 35.59 32.85 39.78 34.93 49.72
Polish 50.08 54.85 61.67 61.57 64.69 57.20 61.71 65.68
Romanian | 50.90 53.42 55.77 56.21 55.99" 59.28 56.48 59.12
Slovenian | 57.09 61.48 70.86 70.01 70.44  70.03 70.29 73.81
Swedish 55.35  58.42 67.24 67.40 66.92 68.03 67.04 68.65
Tamil 28.39 37.81 33.81 34.57 34.96 36.61 34.70 47.46
AVG | 43.09 47.00 | 49.26 | 49.43 | 50.30 51.00 49.49 |  56.66

Table 4.2: A comparison of LAS scores of all methods on held-out test languages.
Results with differences that are statistically insignificant compared to the baseline
are marked with { (arc-level paired permutation test with p > 0.05).
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4.4 Analysis

Typology as Quantization Adding simple, discrete language identifiers to the
input has been shown to be useful in multi-task multi-lingual settings (Ammar et al.,
2016; Johnson et al., 2017). We hypothesize that the model utilizes typological in-
formation for a similar purpose by clustering languages by their parsing behavior.
Testing this to the extreme, we encode languages using one-hot representations of
their cluster membership. The clusters are computed by applying K-Means to WALS
feature vectors (see Figure 4-1 for an illustration). We use Euclidean distance as
our metric, another extreme simplification. There is no guarantee that all dimen-
sions should be given equal weight, as indicated in Table 4.5. In this sparse form,
compositional aspects of cross-lingual sharing are erased. Performance using this im-
poverished representation, however, only suffers slightly compared to the original —
dropping by just 0.56% UAS overall and achieving statistically significant parity or
better with T, on 7/15 languages. A gap does still partially remain; future work
may investigate this further—for example, this might be explained by soft versus

hard clustering.
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Figure 4-1: t-SNE projection of WALS vectors with clustering. Persian (fa) is an
example of a poorly performing language that is also far from its cluster center.
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WALS ID \ 82A 83A 85A 86A 8TA 88A

Logreg 87 85 97 92 94 92
Majority 61 56 87 75 51 82

Table 4.3: Performance of typology prediction using hidden states of the parser’s
encoder, compared to a majority baseline which predicts the most frequent category.

+GD | B* +Tj
Average \ ~ 67.11] 6845 69.23 68.36 67.12

Baseline +T, +Tp +Tg

Table 4.4: Average UAS results when training with Galactic Dependencies. The Lin-
guistic Typology (TiL) is computed directly from the corpora using the rules Table 2.1.

This phenomenon is also reflected in the performance when the original WALS
features are used. Test languages that do belong to compact clusters have higher
performance on average than that of those who are isolates (e.g., Persian, Basque).
Indeed from Table 4.1 and Fig. 4-1 we observe that the worst performing languages
are isolated from their cluster centers. Even though their typology vectors can be
viewed as compositions of training languages, the model appears to have limited
generalization ability. This suggests that the model does not effectively use individual
typological features.

This can likely be attributed to the training routine, which poses two inherent
difficulties: 1) the parser has few examples (entire languages) to generalize from,
making it hard from a learning perspective and 2) a naive encoder can already im-
plicitly capture important typological features within its hidden state, using only the
surface forms of the input. This renders the additional typology features redundant.
Table 4.3 presents the results of probing the final max-pooled output of the BiLSTM
encoder for typological features on a sentence level. We find they are nearly linearly
separable — logistic regression achieves greater than 90% accuracy on average on
held out sentences from the 15 training languages.

Wang and Eisner (2018) attempt to address the learning problem by using the
synthetic Galactic Dependencies (GD) dataset (Wang and Eisner, 2016) as a form of
data augmentation. GD constructs “new” treebanks with novel typological qualities

by systematically combining the behaviors of real languages. Following their work,

31



=
o
]

Accuracy
© o
[o)] [e0]
1 1

o
>
1

o
N
1

nl
id
et

(o)
Ko]

da
de
ar
fr
grc
cs
es
sl
fi

> C
V] V]

Figure 4-2: Averaged matching accuracy of the linguistically-defined WALS features
on 15 randomly sampled languages compared to their corpus-specific values derived
from UD v1.2. Rules for deriving the features from corpus are described in Table 2.1.

we add 8,820 GD treebanks synthesized from the 20 UD training languages, giving
8,840 training treebanks in total. Table 4.4 presents the results of training on this
setting. While GD helps the weaker T substantially, the same gains are not realized
for models built on top of our stronger baseline—in fact, the baseline only narrows

the gap even further by increasing by 0.92% UAS overall.?

Typology Quality The notion of typology is predicated on the idea that some
language features are consistent across different language samples, yet in practice
this is not always the case. For instance, Arabic is listed in WALS as SV (824,
Subject”Verb), yet follows a large number of Verb™Subject patterns in UD v1.2.
Fig. 4-2 further demonstrates that for some languages these divergences are signifi-
cant (see Appendix F for concrete examples). Given this finding, we are interested in
measuring the impact this noise has on typology utilization. Empirically, T p, which
is consistent with the corpus, performs best. Furthermore, updating our typology fea-
tures for T, to match the dominant ordering of the corpus yields a slight improvement
of 0.21% UAS overall, with statistically significant gains on 7/15 languages.

In addition to the quality of the representation, we can also analyze the impact
of its resolution. In theory, a richer, high-dimensional representation of typology

may capture subtle variations. In practice, however, we observe an opposite effect,

3Sourcing a greater number of real languages may still be helpful. The synthetic GD setting is
not entirely natural, and might be sensitive to hyper-parameters.
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where the Linguistic Typology (T) and the Liu Directionalities (Tp) outperform the
surface statistics (Tg), with |Tz| ~ |Tp| < |Ts|. This is likely due to the limited
number of languages used for training (though training on GD exhibits the same
trend). This suggests that future work may consider using targeted dimensionality

reduction mechanisms, optimized for performance.

Typology vs. Parser Transferability The implicit assumption of all the ty-
pology based methods is that the typological similarity of two languages is a good
indicator of their parsing transferability. As a measure of parser transferability, for
each language we select the oracle source language which results in the best transfer
performance. We then compute precision@k for the nearest k£ neighbors in the ty-
pological space, i.e. whether the best source appears in the k nearest neighbors. As
shown in Table 4.5, we observe that while there is some correlation between the two,
they are far from perfectly aligned. Tp has the best alignment, which is consistent
with its corresponding best parsing performance. Overall, this divergence motivates

the development of approaches that better match the two distributions.

| Pal P@3 P@5 P@10

T, | 13 33 60 80
Tp | 27 67 67 93
Ts | 13 27 27 73

Table 4.5: Precision at k for identifying the best parsing transfer language, for the k
typological neighbors.
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Chapter 5

Related Work

This chapter provides a brief overview of other related works in the field with re-
spect to cross-lingual parsing. Cross-lingual parsing is a long-standing task in nat-
ural language processing (McDonald et al., 2011; Sggaard and Wulff, 2012; Zeman
and Resnik, 2008). Various approaches have tried to tackle the problem from different
angles. Recent progress in the field has focused on lexical alignment (Guo et al., 2015,
2016; Schuster et al., 2019). Data augmentation (Wang and Eisner, 2017) is another
promising direction, but at the cost of greater training demands. Both directions
do not directly address structure. With respect to structure, Ahmad et al. (2019)
showed structural-sensitivity is important for modern parsers; insensitive parsers suf-
fer. Post-hoc constraints can be applied at test-time to attempt to match corpus
level statistics with known typology (Meng et al., 2019). Performance, however, can
vary based on how pronounced typological divergences are with respect to the given
data sample (e.g., Figure 4-2), and can still lag behind simple fine-tuning methods
(e.g., Section 3.3). Data transfer is an alternative solution to alleviate the typological
divergences, such as annotation projection (Hwa et al., 2005; McDonald et al., 2011;
Tiedemann, 2014; Yarowsky et al., 2001) and source treebank reordering (Rasooli and
Collins, 2019). These approaches are typically limited by parallel data and imper-
fect alignments. Our work aims to understand cross-lingual parsing in the context
of model transfer, with typology serving as language descriptors, with the goal of

eventually addressing the issue of structure.
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Chapter 6

Conclusion

Realizing the potential for typology may require rethinking current approaches. We
can further drive performance by refining typology-based similarities into a metric
more representative of actual transfer quality. Ultimately, we would like to design

models that can directly leverage typological compositionality for distant languages.

Future Work

The work presented in this thesis answers some important questions about typology
usage in modern neural dependency parsers, but still leaves some unanswered—and

introduces additional ones:

e Typology Representation: Both the information content and quality of ty-
pology affects parsing performance. Current common typological representa-
tions (e.g., Chapter 2) do not appear to be well-suited for the task at hand.
Instead, future work may seek to learn typological representations that capture

universal linguistic properties that are indeed useful for cross-lingual transfer.

e Learning Problem: Learning to use typology from only a (relatively) few
languages in a generalizeable way is a fundamentally hard machine learning
problem (Section 4.4). More regularized training or directions such as meta-

learning may yield more success.
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e Analysis Tools: Interpreting the performance of neural models is difficult.
Though we present several important analyses in this work, our scope is nev-
ertheless still limited. Developing robust methods to measure and quantify if
models are using typology or other inductive biases in the ways we expect is an

important area of research.
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