Homer: A Video Story Generator
by
Lee Hayes Morgenroth

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1992
© Lee Hayes Morgenroth, MCMXCII.

The author hereby grants to MIT permission to reproduce and to
distribute copies
of this thesis document in whole or in part, and to grant others the
right to do so.

Author , , . -
Departmen{ of Electr{cal Engineering and Computer Science
May 18, 1992

Certlﬁedby..7........................./
Glorianna Davenport
Assistant Professor of Media Technology
Thesis Supervisor

Accepted by ..o
Leonard A. Gould

Chairman, Departmental Committee on Undergraduate Theses aArcyyyes
MASSACHUSETTS INSTITUTE

VvoTragyahn) n(:Y

JUN 25 1992

UBRARIES

Homer: A Video Story Generator
by
Lee Hayes Morgenroth

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 1992, in partial fulfillment of the
requirements for the degree of
Bachelor of Science in Computer Science and Engineering

Abstract

This thesis includes the design, implementation, and use of Homer, a video story
generator. Homer takes a specific story model format as input. Based on this model,
Homer creates a video story from a supplied database of logged video. Along with
the story, a report is created of how well the story model matches the video. The
purpose of this application is to encode expert editing knowledge in the form of story
models. These models can then be reused by non-experts to create meaningful edits
from different collections of video.

Thesis Supervisor: Glorianna Davenport
Title: Assistant Professor of Media Technology

Acknowledgments

I would like to thank my family and Laura for dealing with me throughout this
endeavor. I would also like to thank all the members of the Interactive Cinema

group. Special thanks to Glorianna Davenport for supporting me through it all.

Contents

Introduction

Background

2.1 VideoLogging e e e e
22 VideoEditing o

2.2.1

ACE. e e .

Story Models

3.1 ACE’sModel @ . i it e
3.2 Homer'sModel i

3.2.1
3.2.2
3.2.3

Blocks i
StoryLimes e
Story Model Libraries

Building a Story Model

4.1 Comments and WhiteSpace
42 FormatofaStoryBlock

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

Block Name R
Open Brace . . . o oo e
Block Time ieen..

12
12

14

15

16
17
18
18
21
21

4.3 Format
4.3.1
4.3.2
4.3.3
434

ofaStoryLine
The First TwoLines
Toand FromBlocks
Classes and Keywords e e h e e e e m e e

StoryLine Temperament

Story Reports

5.1 Report

Format v i i i i e e e e e e e e e e e e e e e e e e e

52 UseoftheStory Report

Object Oriented Programming in Homer

6.1 Blocks

6.2 StoryLines e
6.3 Stratalines P
6.4 Reports i

6.5 Object

Set Benefits i i e e e e e e e e e e e e

Homer, the program

71 TheStoryModelFile.
7.2 The Video Database File« < o ovvveeeen e
7.3 Story Model Meets Database e e e e e e e e

7.4 Report

Generation . . « « v v v e e e e e e e e e e e e e e

7.5 The Sequence Creator

A Trial Ru

8.1 LoggingtheVideo e e
8.2 Building the Story Model

8.2.1

The PrimaryModel

8.2.2 The ComplexModel

Conclusion

9.1 Story Models and Story Structure

29
29
30

32
32
33
33
33
34

35
35
35
36
36
36

39
39
40
41
42

45

92 LogginglIssues.

93 HomerinReverse @ . . i i i i e i i

A Classes and Keywords for Trial Run
Al Things e e e e e e e
A2 People e e e
A3 Actions e e e e e e e e e
A4 Momologues i e
A5 Framing e

B StrataLines in Video Log for Trial Run

C Story Model Examples
C.1 Primary StoryModel
C.2 Complex Story Model

D Homer Object Set Specifications
D.1 String Object i e
D.2 ArrayObject e
D.3 AlphaArray Object
D.4 StratalineObject
D.5 StrataFileObject
D.6 StoryLineObject
D.7T Plot Object it it i
D.8 BlockObject
D.9 BlockArray Object
D.10Report Object e
D.11 ReportArray Object
D.12Story Object i e e e e e

E Homer Object Set Code

F Homer Control Code

47

49
49
50
50
51
52

53

59
59
61

7
7
81
84
87
92
95
99
102
108
111
115
118

119

120

List of Figures

41

5-1

8-1
8-2

An Example of Block Syntax. 23
An Example of StoryLine Syntax 26
An Example of Report Format 29
An illustration of the Primary storymodel 41
An illustration of the Complex storymodel 43

Chapter 1

Introduction

Homer is a video story generator. It is not do the job of a human editor. The act
of editing is a complex task that is beyond the scope of Homer. An editor must
worry about the transitions between each shot in a piece as well as the story being
told. An editor must also coﬁcern himself with the aesthetics of the story being
created. Homer, in the process of creating video sequences, atternpts to mimic the

story generation process used by human editors.

Homer uses the structure inherent in narratives to create a video story as output.
All stories have structure. There are various levels to this structure. On the highest
level there is the story purpose. In an adventure story this may be “the hero saves the
day.” There are of course more specific levels of structure to such a story. The hero
may first have to capture the villain, then destroy the doomsday device in order to
save the day. Each one of these tasks can be broken down into more specific actions.

All actions on all levels together make up the structure of a story.

In film this structure is reflected in the sequences and scenes that make up the
movie. Each scene contains one or more changes or actions that advance the story.
In a typical love story, each of the future companions has to be introduced. Each of
these introductions is accomplished in a scene. Further scenes may develop these and

other characters. At some point there will be a scene where the protagonists meet.

Each scene in the movie takes the story closer to its conclusion. Homer allows a user
to map out this story structure using description, and creates a video story applying

the user’s story model as a template.

Homer takes a story model and a database of logged video as input. Homer reads
the stcry model and tries to choose and order shots from the video database using
the story model. This narrative should reflect the characteristics outlined in the story
model. The specifics of the story model will be discussed in a later section. Basically,
a story model must contain a significant amount of knowledge that Homer can use to

create a meaningful video sequence.

Homer has multiple uses in modern day video processing. If careful video logs are
kept for a project, Homer can be used as an editor’s assistant. One of Homer’s story
models, that describes the story the editor wants to create, can be fed to Homer
with the logged video. Homer will provide the editor with a rough cut of one such
story. Homer also provides extra footage that could be used at each point in the
story. Homer provides easy access to useful footage for the editor to work with. In
some cases, Homer creates a true rough cut that only needs finishing touches from
bthe human editor. In either case, work is saved by using Homer. The question of
how much time is saved depends on how much time was spent logging, and how much
time was spent creating the story model. Issues of video logging will be discussed
later in the paper, but if footage is ever to be reused, careful logging is essential.
Homer’s story model feature is designed for story model reuse. Once a small library
of general story models is created, a user should be able to customize an existing

model to satisfy most story types.

Homer can also be used as a front end to a large database of logged video. It can be
used to search an archive by an editor or Homer can be used for general informational
purposes. Homer can create stories about any subject for which there is video and a
model available. A slightly modified general story model is a powerful tool fcr pulling

coherent narratives from large video archives. Automated Content Editor (ACE) vras

10

an early example of such an application. ACE formulated news stories from a simple

story model, a user choice of topic, and a video database.

Homer was originally named after the ancient Greek story-teller. If the database
provided to Homer is rich enough, and the story model is well structured, the appli-
cation has a chance to live up to its name. If either one of these inputs is lacking, the
application comes out looking more like Homer Simpson. If the logged database is
sub-par, Homer does not have the information about what is going on in the video.
If the story model is lacking, then Homer cannot apply the knowledge contained in
the log to create a meaningful sequence. On occasion the application may “pull a
Homer” and produce a meaningful sequence by luck. Homer relies on the story model.
and good logging to produce coherent narratives. In this sense Homer is really a tool
for organizing the editing process. It can even be though of as a blind editing tool,
or a tool in which the editor does not view the footage before using it. The choices of
the editor are encoded in the story model and the information contained in the video

*

iog.

11

Chapter 2

Background

Homer is a video tool. Its advantages and its shortcomings are grounded in the video
medium. Video is information rich. A single frame of video can take up thousands of
bytes in digital form. A single image can contain a large number of identifiable objects
and situations. Homer works with the same medium people may find intimidating to

work with.

2.1 Video Logging

The act of logging video is an attempt to represent the variety of information con-
tained in a video segment. Video has traditionally been logged for the editing process.
Before the days of computer aided editing, video logs were used by editors to find
pieces of video more quickly. A single video shoot could produce hours of video.
Detailed logs allow an editor to choose promising clips of video from the hours shot
without viewing it. Because of the processing power of computers, they can be used
to manage the information in video logs. Homer goes a step beyond simply finding
useful footage for human editors. Homer uses the information in video logs to fill a
videv story model. The result is a computer generated narrative. This new use of
logs raises interesting questions of how video should be logged for hurnan editors and

for Homer.

12

(At this point, text is used to log video. It is used in the form of titles, keywords
and classes, and in more advanced techniques such as semantic nets and natural
language models. The footage used by Homer for demonstration was logged using the
Stratagraph system developed by Thomas G. Aguierre Smith [Aguierre Smith 1991].
This system allows the user to lay down descriptions over contiguous frames of video.
These descriptions are in the form of class and keyword pairs. A class is a general
descriptor that is meant to encompass a wide variety of related video. Keywords are
specific descriptors that further describe the classes. Classes and keywords provide
a limited hierarchy of description. The class provides some context for sometimes
ambiguous keywords. For example the keyword “fan” could be used to mean a wind
fan or a sports fan. The class of fan should clear up this ambiguity. The words “wind”

and “sports” could be used as classes to provide context for the keyword “fan.”

Video logging may seem like a tiiesome task. It is. Other research, including
the Stratification project has been working or easing the work involved in logging
video. Homer does not deal with these issues; but Homer relies on good logging.
The quality of a log depends on how well the information contained in the video is
recorded. But since video is so information rich, the log must be selective. Based in
research using ACE and Homer, it has been found that the most useful video logs
contain information that is specific to the reuse of video in a story. Video must be
logged to be used to create stories. The logger must keep in mind the reason that
the video is being logged. Past efforts to log video have atiempted to describe the
content of the video and the relation between that content and its context [Eisenstein
1942]. Eisenatein dictates in his work, The Film Sense, that context is created by
the juxtaposition of video imé.ges ~ the context of video is dependent on how it is
used. This is why the eventual use of video is a key factor in logging. Its eventual
use is its context. This theory allows for any number of different contexts for a single
- piece of video. The logger cannot hope to record all possible contexts, only the most

impor'tant.

13

Any video that may eventually be used by Homer must be logged with Homer
in mind. The izﬁporta.nt aspects of a story must be recorded. Relevant characters
and places must be logged. Actions should be handled in a way in which Homer
can understand their relevance and their mechanics. Often, careful choice of classes
and keywords can help to describe actions. Actions can be thought of as having a
period of set-up, the action itself , and an effect. The more important the action,
the more attention should be paid to these aspects when logging it. The act of
firing a shotgun can be logged as class:shotgun, keyword:fire. The same action can be
broken up into class:shotgun keyword:load, cla.ss:shotgu‘n, keyword:aim, class:shotgun
keyword:pull_trigger, class:shotgun keyword:fire, and ciass:person keyword:shot. If
there is a variety of video rushes of firing this shotgun, and it is going to be used
as an important action in a story, then the video should be logged with at least the
detail of the second example. With detailed information available, a user of Homer
can model firing this gun in detail. This will help to ensure that Homer does not

present a clip of the person being shot before the footage of the trigger being pulled.

2.2 Video Editing

Video editing is a thought intensive task. It is both artistic and scientific. The science
of editing is in the use of the equipment, titles, and special effects. The art is in the

conveying of a message or emotion through the juxtaposition of images.

An editor uses a variety of techniques, knowledge, intuition, and hard work to
produce a final cut. Previous attempts at computer editors have used video logs and
even simple story models to edit. Human editors use logs to organize the editing
process, but they do nc-)t base their final edit solely on a log. Editors use the log to
fit the video to their idea for a story. If the video does not match, the editor must
either give up, or change her story. Computers rely heavily on logs to produce edits.
This is 2 problem with computers trying to edit. Occasionally they put together a

“meaningful” sequence; but computer edited pieces are sometimes better at pointing

14

out inadequacies in the log than at telling stories.

Homer tries to emulate the iterative process of editing. The editor must put down
her story in the form of a video story model. This model is in part created using
data contained in video logs. The story model is built using the keyword and class
information from an existing database of logged video. Homer then applies ¢ne story
to the video. Homer provides a rough edit, and a report on the video. This report
is meant to give the editor some of the same information that she would glean from
viewing the footage. If the story that Homer creates is not satisfactory, then the

editor can use the report to revise the story model to better suit the available video.

2.2.1 A.C.E.

The Automated Content Editor (ACE) is an example of a computer editor. ACE
takes keyword inputs from a user about a news topic the user wishes to know about.
ACE extracts footage from its database using these keywords. ACE applies a news
story model to this footage. This yields an entirely automated edit of a news story.
ACE’s database is a simple shot list with class/keyword descriptions. The news story -
‘model is basically a specialized filter that uses specific keywords to order the shots in

an edit.

Research on computer editing using ACE highlighted some of the difficulties with
such a system. A very small database was used for testing. ACE soon exhausted
this. ACE even seemed to outgrow the shot bounded class/keyword descriptions. The
da.tabaée used by .ACE was constructed quickly, and with a minimum of knowledge
about how the video would be used. Certain segments were logged more appropriately
than others. This became clear after only a few runs of ACE. Certain topics generated
coherent news stories. For other topics, there was an obvious lack of footage or the
footage was logged in little detail. This overall weakness in the database accounted
for a lack of variety of coherent news stories constructed by ACE. The effect of ACE'’s

story model on its performance is discussed in the next section.

15

Chapter 3

Story Models

A story model is a way of describing the various levels of structure present in a’
narrative. As discussed earlier, the story purposc and the actions that work to achieve
wiat purpose a.ré integral aspects of the story. The story model must have the capacity
to represent this definitive story structure. The story model must incorporate the
numerous aspects of a story. There are characters, action, plot, setting, etc. Each
aspect may b= more or less important than any other. The weight of each of these is

specific to each story, and must be evaluated individually for each narrative.

A story model can vary in its detail of description. A detailed model of a Shake-
spearian tragedy could be the actual script of the pl#y. This is a complex and specific
model. On the other extreme a model could simply state “everyone dies at the end.”
This is an overly generalized model of a tragedy. An efficient and powerful story
model obviously must lie somewhere between these two extremes. The decision of
how specific to make a story model depends on how much flexibility the user wishes
to give to Homer to create the story. If the description is too specific Homer may not
even be able to create one full story that meets all the restrictions of the model. If

the model is too general, Homer may use inappropriate footage in sections.

Computer comprehension of story models is an interesting problem. Story modeling

for computers puts certain constraints on the representaiion. ACE used one form of

6

representation. Homer uses another.

3.1 ACE’s Model

ACE has an internal model of what a news storj should look like. For ACE every
story begins with a shot of an anchorperson in the studio introducing the story. The
story itself is made up of on location action shots, expert accounts, and special effect
graphics. Every story closes with a shot of a reporter in the field signing off and then
returns to the anchorperson in the studio for recap. This simple outline is ACE’s

model for a television news story.

ACE's story model was responsible for most of its success at creating meaningful
narratives. It also highlighted ACE’s failures. In the original version of ACE, every
news story had to have an introduction, a body, and a wrap-up. When good footage
was available in the database, ACE’s stories were understamia.ble. When appropriate
footage was not available, the meaning of the narrative was broken. A second im-
plementation of ACE used only footage it saw as meaningful in the video story. The
narratives showed a higher rate of coherency, but the news framework broke down. If
an appropriate studio shot was not available for a story, no studio shot was included.
The lack of the television news style presentation detracted from the effectiveness of

the presentation.

The story model for ACE was a powerful tool because television viewers are used to
seéing TV news presented in a particular format. A well dressed person sitting behind
a desk reading headlines says to the viewer “Get ready, here’s some news.” The story
model of ACE mimics television news presentation style. As the second, stricter
version of ACE showed, this format is important to understanding the content of the
news piece. In an actual uews story, a voice over is used to unify the video images
that are presented. An interesting exercise is to watch television news without audio.
A large body of the information is suddenly lost. In some cases the images don’t even

seem to form a complete story. The ACE program did not have the functionality for

17

voice over; but the viewer tries to piece the images and voice bytes of the body of a

news piece into a story.

The viewers own perceptions of the video are an important force in story under-
standing. If large mistakes are not made, the viewer’s desire to make sense of the
video images can help in story creation. Sequences created using ACE showed that
in television news, if the video presented in the body of the news story is related by
a common thread, the viewer can tolerate some breadth of different images as part of
one news story. The beginning and ending shots on the other hand must not conflict
with the story the viewer is experiencing. For example if an anchorperson introduces
a story by saying that there was a disastrous earthquake in San Francisco, any number
of action shots can follow. There can be shots of fires, or of broken bridges, or even of
an interrupted World Series baseball game. Yet, if the final shot of the anchorperson
wrapping up the story talks about the fires, and no shots of fire were shown, the user
is lost. Televisicn news is easier to automate because of its format and the viewer’s

expectations. Homer must try to find similar formats for other forms of narrative.

3.2 Homer’s Model

Homer’s story model is built on two concepts. The first concept is a story Block; the

second is a StoryLine.

3.2.1 Blocks

A story Block is a nebulous chunk of story. Even the name, Block, is ambiguous.
Blocks are purposely non-nondescript. Blocks are meant to be used in a variety of
ways. The way in which a Block is used determines its purpose. One of the most
powerful features of Blocks is how they can be arranged in a hierarchical manner to
build complex story models. Any number of Blocks can be created as subBlocks to
any other Block. Every subBlock inherits all the information contained in all of its

parent Blocks.(superBlocks)

18

The hierarchical functionality of Blocks can be used to create powerful story mod-
els quickly. The different layers in the hierarchy can be thought of as layers of story
structure. Upper level blocks can be used to outline the general story purpose. Lower
level blocks can be used to map specific interactions and events. Small changes to key
Blocks in a hierarchical model can have dramatic effects on the story being described.
The hierarchical model is both powerful and dangerous in this respect. Carefully
made changes can gracefully incorporate new ideas into a story model. Careless

modifications can destroy good descriptions at unexpected levels.

Each story Block contains information outlining its characteristics in the form of
data fields. The most simple of these fields is the Block’s name. Names perform the
vital task of organizing the complex hierarchy of a story model. A consistent and
powerful naming scheme allows other users to easily understand models and allows

creators to reuse old models with a minimum of relearning.

The length of a block is specified in minutes and seconds. Each Block has a field
that contains the desired length of the Block. A desired time is vsed because some
edits are strictly limited by time. In television commercials a 30 second spot has to
be 30 seconds. It shouldn’t be less and it can’t be more. Each Block also has a delta
time field. The delta time specifies how much Homer can change the desired time and
still satisfy the timing requirements of the Block. For example, a Block may have a
desired time of one minute and thirty seconds, and a delta time of fifteen seconds.
These figures give Homer the flexibility of using anywhere between one minute and
fifteen seconds to one minute and 45 seconds of video to fill the Block. If the delta is
set to zerc, then the time field is followed strictly. Homer will fit its story to exactly
the desired time if enough footage is available. If there is not enough footage that
matches a story Block, then Homer will present all of the matching footage but no

more.

The delta time is preseht to give Homer some rocom to work with. If the shots

available for a certain block can fit well into the time plus or minus the delta, Homer

19

does not need to trim the shots in order to fit 2 specific time. The delta time allows

Homer to fit the time to the story instead of fitting the story to the time.

Although the length of a block has been specified, the length in terms of shots
has not been chosen. In video, the number of shots presented in a sequence and the
length of those shots can be as important as the length of the sequence in time. Ten
minutes of fast paced MTV style video and a ten minute continuous shot provide
two totally different experiences. The differences between these experiences is due to
shot pacing. Each Block has a pacing field. There are three options for pacing: slow,
medium, and fast. A fast paced Block will use very short shots. A slow paced Block
will use long shots; and medium paced shots will fall somewhere in between. The
combination of a time plus or minus some delta and a pacingvconcisely and flexibly:

describe the desired temporal characteristics of a Block.

Every Block has two arrays of classes and two arrays of keywords. One array of
classes and one array of keywords contain the entries that describe the footage that
should fill a Block. These classes and keywords specify what characters appear in the
Block, in what places, and performing what actions. The other two arrays contain '
classes and keywords that describe footage that must not appear in the Block. These
arrays are used to exclude shots that may be related to the action of the shot, but do
not belong in this Block. For example, there may be a story where Bill travels from
New York to Boston. The introduction may want to show Bill in New York. But we
definitely don’t want to show Bill in Boston. To exclude the case of Bill in Boston
from the first Block, Boston is added to the array of keywords that must not appear
in the first Block. Th\e ability to exclude certain shots from Blocks is a powerful tool.
If you are creating a murder mystery, exclusion can be used to mask the identity of
the murderer until the end. Almost all stories rely on the method of withholding

information to create suspense and drama.

A key aspect of Homer’s Block structure is that locks can be nested. Any subBlock
inherits all the characteristics of its superBlock. This allows the author to layer

20

descriptions of sections of the story. A Block can describe any degree of specificity
in a story. A upper level general story Block format for a conflict resolution story
model may contain three large Blocks: set-up, conflict, and resolution. The lower

level subBlocks can further specify actions and events.

3.2.2 SteryLines

StoryLines set up interBlock dependencies. They simply relate classes and keywords
between Blocks. There are two types of relations, positive and negative. A rositive
relation between two classes ensures that the same keyword will be used for each
class in both Blocks. A positive relation between a class and a keyword will ensure
that the keyword chosen for the class in the StoryLine will match the keyword in the
StoryLine. Negative relations have similar effects except that where things are the
same in positive StoryLines, they are ensured to be different in negative StoryLines. A
negative StoryLine connecting two classes will cause a different keyword to be chosen

for each class in the two Blocks.

The idea behind StoryLines is to set up sub plots and outline the various interac-
tions of a story. StoryLines can be used to set up important cinematic and narrative
relationships. They also provide enough power for the author to destroy the story

with inaccurate or misleading StoryLines.

3.2.3 Story Model Libraries

An efficient scheme for using story models is to maintain a library of general models.
This library should contain models for commonly used story types such as conflict-
resolution and process. ‘The library should also contain models of specific story :ater-
actions such as conversation or travel. Combinations or parts of library story models
may be used to create a single new model. This model can then be further specified
using classes and keywords from a database of video specific to the current story.
This method saves work in creating story models, and takes advantage of Homer’s

flexible general story model feature.

21

Chapter 4

Building a Story Model

Homer does not provide a story model building facility. Story models take the form
of ordinary text files, and can be created with any standard text editor. The only
important issues to be concerned with when authoring a story model is proper syntax,

proper ordering, and of course the story.

4.1 Comments and White Space

Comments can only be used in a story model on a full line basis. The percent sign
serves as the comment identifier. Any line that begins with a percent sign '%’ is
treated as a comment by Homer. The percent sign must be the first character of the
line, excluding white space. A comment cannot appear on the same line as data.
White space is ignored by Homer. Any number of blank lines, spaces, and tabs
can appear between lines and data objects. The only place where spaces are of a
concerﬁ is in the éntries of an array. This special case is discussed in the section on

data arrays.

4.2 Format of a Story Block

A story Block is described by a fairly strict format. Figure 4-1 illustrates the syntax
for a Block object. In the figure, all variables appear in uppercase, and time variables

22

Block BLOCK_NAME

{
Time 00:00
+/—- 60:00

Superblock SUPERBLOCK_NAME
Start 00:00
+/- 00:00
Pacing = SPEED
% This is a comment line

Class

{
CLASSES
}

Keyword
KEYWORDS

}

Not_Ciass

CLASSES
}

Not_Keyword

{ KEYWORDS
}

}

10

20

30

Figure 4-1: An Example of Block Syntax

23

appear as “00:00.” All other identifiers appear in their full form.

4.2.1 Block Name

The first variable to be entered is the BLOCK_NAME. This is the name field, which
was discussed earlier. It must follow the word “Block” and be on the same line. The
word “Block” signals Homer by saying “This is the beginning of a Block object.” If
the object being described is a subBlock of some other Block, then the word “Block”
can be replaced with “subBlock.” This option is included for organizational purposes.
A subBlock can begin with either the “Block” or “subRlock” identifiers. The choice

is purely a matter of style.

4.2.2 Open Brace

The next data item should be an open brace character '{.’ Braces are used in the
Block object syntax to encapsulate groups of related items. The first open brace

serves to encapsulate all the data for the Block named on the previcus line.

4.2.3 Block Time

The next data item in the Block syntax is Block time. As noted above, there are two
times to be entered, the desired time and the delta time. The desired time follows:
the word “Time” and the delta time follows the characters “+/-". The “+/-" line
must follow the “Time” line. All times in a Block object should be specified as they
would appear on a digital stopwatch — minutes:seconds. There can only be two digits
of minutes, which limits the length of any Block to be 99 min_utes and 99 seconds.

This should be more than enough time for any Block.

4.2.4 SubBlock Timing

The three lines that follow the Block times are only present in subBlocks. If a Block
is on the highest level of the hierarchy and therefore has no superBlocks, the follow-

ing three lines should not appear in the Block description. If a Block is actually a

24

subBlock, these lines must appear. The first of these three lines is similar to the first
line of the Block, but it specifies the superBlock to the current subBlock. The syntax
is the same as the first line of the Block with “SuperBlock™ as the first word of the
line. The second and third lines of this group specify the timing of the subBlock.
The “Start” time dictates at what time in the scope of the SuperBlock does this
subBlock begin. The subBlock begins at the Start time and runs for its allotted time.
SubBlocks are not allowed to run over superBlock boundaries. Therefore, even if the
subBlock is longer than the superBlock, the subBlock will be cropped at the end of
the superBlock’s time. '

4.2.5 Pacing

The Block pacing is specified next. The pacing line must begin with “Pacing =."
The keyword specifying the pacing of the Block follows the equal sign. The current

choices for pacing are fast, medium, and slow.

4.2.6 Class & Keyword Arrays

Most of a Block object’s description is taken up by four arrays of words. The four
arrays are identical in syntax except for the names that begin each array. The “Class”
array will be used as an example for all four. The word “Class” must appear on a
line by itself. This line is followed on the next line by an open brace character '{’.
This brace begins the list of words for the array. After the open brace, the words that
specify the descriptive classes for the Block appear. The words must be listed one on
a line. Phrases are allowed, but all spaces must be replaced by underscore characters.
For example “big housge” would be replaced by “big_houses.” With the exception of
this replacement of spaces, the words that appear in the array must match the words
used in the StrataLine database exactly. Case must be conserved and spelling must
match the database exactly. A close brace character follows the last word entry. The
other three arrays are entitled Keyword, Not_Class and Not_Keyword. They follow

the exact same format as the Class array. The words that appear in the Class and

25

StoryLine
{

% Comments and white space are treated exacity
% as they are treated in Block objects.

FromBlock BLOCK_NAME
ToBlock BLOCK_NAME

Class/Keyword WORD 10
Class/Keyword WORD

Negative/Positive

Figure 4-2: An Example of StoryLine Syntax

Keyword arrays are classes and keywords that describe video that should appear in
the current Block. The entries in the Not_Class and Not_Keyword arrays are classes

and keywords that describe what should not appear in the current Block.

4.2.7 Close Brace

’

The final line of the Block object is a close brace character '}’. This close brace

matches the open brace that appeared on the second line of the Block object.

4.3 Format of a StoryLine

The primary purpose of StoryLines is to set up dependencies between Blocks. These
dependencies can be related to the action of a stery. They can describe what charac-
ters or objects can and cannot appear. The dependencies can also set up cinematic
constraints. StoryLines can be used to prevent cinematic taboos such as jump cuts

and 180 degree cuts.

26

4.3.1 The First Two Lines

The syntax for a generic StoryLine is shown in figure 4-2. The first line contains
only the word “StoryLine.” This line tells Homer that the following lines comprise
a StoryLine object. The line that follows this contains an open brace character ’{’.

The information following this character is the data of the StoryLine object.

4.3.2 To and From Blocks

A StoryLine can be pictured as a directional link, or an arrow connecting two Blocks.
The arrow must originate from one block and point to another. The Block from
which the arrow originates is the “FromBlock.” The first data line after the open
brace begins with the identifier “FromBlock.” The Block na.mé that follows refers to
the first Block of the StoryLine. Similarly, the next line begins with the identifier
“ToBlock.” This is the destination Block of the arrow representing the StofyLine.

The Block name that follows is the second Block of the StoryLine object.

4.3.3 Classes and Keywords

.The next two lines of data contain the classes and keywords that are related by the
StoryLine. The first line describes the class or keyword of the FromBlock. The first
word of this data line is either “Class” or “Keyword” depending on which is to be
used. If the author wants te link a class in the FromBlock with the StoryLine, then
4Class” should appear as the first word. The second word is the class itself. Similarly
if “Keyword” is chosen as the first entry, the second entry must be an actual keyword
from the FromBlock’s descriptive arrays. The second line is identical to the first

except that it describes the word to be linked in the ToBlock.

4.3.4 StoryLine Temperament

The last data line of the StoryLine describes its temperament. The two choices for

this line are “Positive” and “Negative.” The temperament of the StoryLine, along

27

with whether classes or keywords are chosen for each Block, describe the type of
relation that is set up by the StoryLine.

If a positive temperament is chosen, the StoryLine will enforce a equality relation-
ship between the FromBlock and the ToBlock. if a class is chosen for each Block, the
keywords chosen to describe these classes will be the same in both Blacks. If a class
is chosen for one Block and a keyword is chosen for another, a different relationship
is set up. In this case, the keyword chosen for the class will be the keyword that is
specified for the other Block in the StoryLine. |

A negative temperament will create relationships opposite to the relationships set
up by a positive temperament. If two classes are used, the keyword chosen for these
two classes will be different. If a class and a keyword are chosen, the keyword specified:
will not be the one used to describe the class.

All these reiationships are enforced in the segment generation procedure of the
application. This means that different relationships can be specified within the lan-
guage of a StoryLine object. Any user that can program her own segment creation
routine can also create new or modified StoryLine relations. The current segment
creation procedure of Homer follows the relations described in the previous two para-
graphs. However, these relations are only taken as indicators for Homer. In other
words, Homer will enforce the relations specified by StoryLines as long as they do not

interfere too seriously with other restrictions active in the story model.

28

Chapter 5

Story Reports

A Story Report is a collection of information that is used to model the iterative act of
video editing. A Story Report basically tells the user how well a story model matches
a video database. The current version of a story model providés a simple yet useful

summary of this information.

5.1 Report Format

Figure 5-1 shows the format of a blank story Report. This format is automatically
generated by Homer when a story model is applied to a video database. The Report
is broken down on a Block level. It gives the total time of footage available, and the
number of segments that make up that tetal time. The requested time of the Block

is also shown to put the amount of footage available in perspective.

Report for BLOCK_NAME
Total time of footage == 00:00

Tinie of Block = 00:00
+/— 00:00

Number of segments of footage = 0

Figure 5-1: An Example of Report Format

29

'The footage included in this summary consists of any video that has keywords or
classes in their description that match the entries of the class and keyword arrays for
the Block in question. In other words this is a collection of loosely associated video.
A stricter matching achemne can be implemented, but this would involve a stricter

sequence generation routine.

5.2 Use of the Utory Report

The information presented in a Report is an attempt to give the user an indication
of how their story model is being interpreted by Homer. A Report only gives a
general view of Homer’s perspective. This basic information can be used to build
more effective story models quickly.

In order to best utilize the story Report, it should be reviewed with the story Block
descriptions. The story inodel author can quickly see what Blocks need adjusting.
If a specific Block calls for two minutes of video, and the Report shows only one
minute available, something has to give. There is simply not enough video in the
database to match the description of the story model. The length of the Block has to
be shortened or the Block’s description has to be loosened. Manipulations of Block
times are straightforward. If the user wants to relax the description of a story they
can look to eliminate entries in the Not_Class and Not.Keyword arrays of the Block
description. If this does not produce the desired affect, then more keywords or classes
can be added to the descriptive arrays.

The opposite problem can also occur - a Block’s description can be too general.
In this case there may be many more minutes of footage available than are necessary.
This may or may not be a problem. If the actual video story produced by Homer
is satisfactory, then there really is nc problem with general Block descriptions. This
may often be the case because Homer orders the matching video by how well the
description of the footage matches the Block description. The best matched video is
tried first, and then increasingly less related footage is used to fill the story Block.

In some cases, the footage chosen by Homer for a Block may not match the

30

expectations of the author. This is often the result of a lack of context when chcosing
classes and keywords. For example, a user doing a story on the San Francisco area
may choose the class:keyword pair “place:marina” in a story Block. The user may
envision a place where boats are docked in the San Francisco bay. Homer may present
the user with images of a mid to upper middle class neighborhood. The application
is simply matching the class:keyword pair to the descriptions of the video. It has no
real understanding of the meaning of the word marina; but the person who logged
the video had a definite understanding. In this example the logger was describing a
neighborhood in San Francisco known as the Marina section. The lack of context in
descriptions is a problem inherent to describing video. Homer does not try to solve
this problem. Instead, Homer offers an iterative approach to circ';umventing it. A
story model is not a static entity. It is meant to be changed to fit the needs and
desires of each individual user. The story Report is one tool to help in this process.
The video story produced by Homer is another. Therefore, in our example, if the
user wants to see boats, then he must return to his story model, and try to adjust
it to the style of the database in use. There is also a second option - use a different

database of video.

31

Chapter 6

Object Oriented Programming in

Homer

Homer was implemented in the C++ object oriented programming language. The
use of C++ provides substantial gains over the use of C. These gains include easier

updates, reusable code among applications, and abstraction from performance.

The first task in implementing Homer was to create an object set for dealing with
‘story models and StrataLine log entries. A number of data objects were created,
including Blocks, StoryLines, Reports, and StrataLines. The specifications for these
objects are listed in appendix D. The code for each object is listed in appendix E.
These objects were made to handle the types of data specific to the application.

6.1 - Blocks

The Block object was created to hold all the information contained in a single story
Block. This includes timing, pacing, and class/keyword arrays. The Block object
also holds all the StoryLines that are related to the Block. An array of StrataLines
that is contained in the Block stores copies of all the video that matches the Block’s
descriptions. The Block is the central data object of Homer.

The other factor that is incorporated into Blocks is the potential use in a hier-

32

archical structure. All Blocks contain links to potential superBlocks in the form of
superBlock names. These subBlocks also hold the time at which they affect their
superBlock’s description. A second C++ object, called a BlockArray, is a mutable
array of Blocks. This object is used to hold the hierarchy of Blocks in a story model.

8.2 StoryLines

A StoryLine object is basically a link between two Blocks. The StoryLine holds the
names of the two Blocks being linked, and the characteristics of that link. SteryLines
in a story model are eventually stored in arrays in the two Blocks that the StoryLine
links. A mutable array of StoryLines, called a Plot, is used to hold a list of StoryLines.

The names StoryLine and Plot were chosen to describe their function. StoryLines
should be used to set up various dependencies between characters and objects in a

story. The combination of these StoryLines should outline the Plot of a narrative.

6.3 StrataLines

A StrataLine is a piece of video description. It links a piece of video from an in frame
and out frame to a group of descriptive classes and keywords. These were designed as
a part of Thomas G. Aguierre Smith’s Stratification system, and are used by Homer.
A file cqnta.ining a group of StrataLines is used by Homer as a logged video database

file. A StrataFile data object is used to store a group of StrataLines.

6.4 Reports

The ReportArray obje;:t is used to store information about how well a story model
matches a database. The total ReportArray is made up of any number of individual
Reports. The Report object is general. The name field of a Report can refer to any
data item that can be described with a name. The other fields of a Report keep

track of how much video matches the named item. This object has been designed to

33

meet various levels of description. Therefore, when a Report object is unparsed, or
outputed, some context information is necessary to complete the description of the
Report. This contextual information may include the type of data item to which the

name field refers and the requirements for video to match this particular item.

6.5 Object Set Benefits

The use of the data object set allows the issue of performance to be ignored. Originally
the objact set’s memory management was implemented in a grossly inefficient manner.
Because of the level of abstraction supplied by the object set I was able to write and
test procedures that depended on memory management. I was able to rewrite the
data management routines in the object set ai a later date. After this change was
made, one compilation was all that was needed to see the dramatic improvement
in performance. Not one line in the upper level procedures that relied on the data
objects had to be changed. Future updates to the object set can be implemented in

the same fashion.

34

Chapter 7

Homer, the program

The complete source code for Homer is listed in appendix F. The following is a

description of the processes carried out by the source code.

7.1 The Story Model File

Homer’s first action is to read in the story model file containing all Blocks and Story-
Lines for the current model. The Blocks of the story model are stored in a BlockArray
object. The StoryLines in the model are stored in their affecting Blocks. Then the
hierarchy is set up. All subBlocks inherit the classes, keywords, and StoryLines of

their superBlocks.

7.2 The Video Database File

Next Homer parses the video database file into a StrataFile object. The database file
contains StrataLines describing the footage available to Homer. This file is compat-
ible with Thomas G. Aguierre Smith’s Stratification project [Aguierre Smith 1991]
and Hiroshi Ikeda and Hiroaki Komatsu’s Infocon video incon system. Once the
StrataLines are read in, they are broken down into their finest granularity of descrip-
tion. The Stratification logging system allows the logger to describe footage in a

concise form. Homer must pull all of the descriptive information from this abbrevi-

35

ated form. Homer marks all the points in the footage where description changes and

creates a new StrataLine for each uniquely described section of video.

7.3 Story Model Meets Database

Once the story model and the database have undergone this preliminary processing,
the database is applied to the story model. In this procedure the StrataLines that
match the descriptions for each Block are simply copied into the Block_Strata object
for each Block. Now the BlockArray contains all the Block, StoryLine, and StrataLine
information needed to create a story. ‘

The actions performed thus far are the main functions of Homer. From this point
on any number of report generation procedures and sequence creation routines can be
applied. All the basic information contained in the story model and video database
has been loaded in and set up. The following sections describe the functions that

organize the output.

7.4 Report Generation

Any number of report generators can be applied to Homer. In the current imple-
mentation, the Report contains information on the Block level. The report generator
calculates the amount of available footage for each Block and presents this infor

mation as a total time and a number of shots. Future implementations may report

database matching on the class and keyword level for each Block.

7.5 The Sequence Creator

The sequence creator decides what pieces of video will be used in the story. The
information it has available to make these decisions are the the video for each Block,
the story Block descriptions, and the StoryLines. Different procedures may use each

of these in different capacities.

36

In order to make the sequence generator’s job easier, one more procedure is ap-
plied to the BlockArray. In this procedure, the hierarchy of Blocks and subBlocks is
flattened. This is similar to the operation that is performed on the StrataLines to
extract their full description. Tte finest granularity of description by story Blocks
is found. No information is lost in the flattening process. This procedure is done to
simplify the management of time in the stery building process. Once the hierarchy is
flattened, the sequence generator only needs to iterate through the array of Blocks,
filling each with video.

Now all the information that can be used to create a story is available in a simple
form. The procedure that chooses footage to present for the story only needs to
read one Block at a time and choose StrataLines from its Block Strata list. But
there are many ways that these StrataLines can be chosen. A strict methodology
can be used, and only StrataLines that fully match the description of a Block will be
chosen. A loose methodology, where any StrataLine that matches can be chosen, is
also a possibility. One sequence generator may demand the enforcement of StoryLine
relationships, while using Block descriptions only on an advisory level. Another
‘sequence generator may make all of its decisions based on the Block descriptions and
use the StoryLines only to break ties. Generally there.will be some algorithm by
which the best shots are chosen for each Block. But some users may want to use
different values to determine which shot is best. That is why all the processing of
the BlockArray and database is done first. After this initial processing, any number
of procedures can be applied to choose the shots to be used in a story. A user with
some Basic progra‘mming experience can even code his own shot selection procedure..
The current sequence generator uses all information available iu a relatively equal
way. The factors that it takes into account are Block arrays of classes and keywords,
Block pacing, and StoryLines. Each StrataLine that matches at least one class or
keyword from the Block arrays is evaluated. A weighting function is used to determine
which StrataLines of video should be used for each Block. Every match te a class or

keyword increments the weight. Therefore if a StrataLine matched two classes and one

37

keyword, its weight will increase by three. If the pacing of a StrataLine matches the
Block’s pacing value, the StrataLine’s weight is increased by one. Therefore pacing
has a slightly lesser effect than keywords and classes. StoryLines affect pacing in a
different manner. The weight of a StrataLine is increased for each StoryLine that it
satisfies. The StrataLine’s weight is incremented by the number of StrataLines in the
other Block that is pointed to by the StoryLine that satisfy the StoryLine. In other
words, the StoryLine pcints to some Block other than the current one. Any number
of StrataLines in that Block may satisfy the current StoryLine. It is that number of
StrataLines that is added to the weight of the StrataLine in the current Block. The
weighting scheme puts at least as much emphasis on StoryLines as it does on classes
and keywords. Each StrataLine for a Block is weighed. The StrataLines with the.
highest weights are used to fill the Block.

38

Chapter 8

A Trial Run

Homer was tested using fifteen minutes of video taken from a largzr bady of footage
shot by Ricky Leacock. The subject of the video is Joey Arias, an Andy Warhol
impersonator. The fifteen minutes of video show the ritual that Joey undertakes to
become Andy Warhol.

This video was used to model process. The overall subject, becoming Andy, is a
process. This larger goal is made up of smaller processes such as applying makeup

and getting into the right mental state.

8.1 Logging the Video

The first order of business was to log the video of Joey. A small list of classes and
keywords were used. The classes used were; Actions, People, Things, Monologues,
and Framing. Framing is a general class that is used to describe how tightly the
shot was framed. The remaining four classes were designed specifically for this video.
The listings of the keywords for the various classes are contained in appendix A. A
total of 102 StrataLines were created for the 15 minutes of video. The list of these
descriptions is contained in appendix B.

The VIXen video logging system, developed by Joshua Holden was used to create
StrataLines that describe the video. One logging pass was made over the entire video

for each class. In each pass all the appropriate keywords for that class were assigned

39

to the video that they described. For example, during the pass for the Things class,
all the shots in which Joey was either wearing or trying on wigs were assigned the
class:keyword pair Things:wig. Each pass was completed in less than the total time
of the video. This speed was achieved by s-anning quickly though sections and only
marking the relevant in and out points of descriptions. The time for each pass varied
depending on how strictly the class related tc the audio. The class Monologues was
the slowest to log. This was because the audio had to be followed carefully. Because
of this, the video had to be viewed at regular play speed for most secticns in order to
follow the audio track.

Several other factors influenced the style of the video log. One such factor was the
style of the video itself. The majority of the video is comprised of Joey speaking to
the camera while making himself up to be Andy. The actions in the videc are small
and involve mostly motion contained in a small space. All the video is taken from one
angle. This removes the responsibility of creating a space in the story model. The
space is constant. The framing in the video varies from medium shots to extreme
close-ups. The framing of each shot was logged to be used to avoid jump cuts.

A major factor that influenced the log was audio. Most of the audio in the fooiage
is comprised of short comments or sound bytes. All StrataLines were logged on audic
boundaries. In other words, StrataLines always started on a pause and ended on a
pause. If StrataLines began and ended in the middle of sentences or words, Homer
would break the video up into these small segments. Then the story that Homer
produced would be full of half sentences and cuts in the middle of words. Because the
audio cannot easily be separated from the video, logs for Homer must be constrained

by the audio track.

8.2 Building the Story Model

Once the video has been logged, the story model building begins. An incremental
story building process was used. In other words, a complex story model was built

from a simple. model by adding levels of description. This method was good for

40

Block J Block Joey->Andy Block Andy
Time 3: Time 2 Time 1:0G0
Paciing Slow Pacing Medium Pacing Fast
| 4 |
0 1 2 3 4 5 6

Figure 8-1: An illustration of the Primary story model

establishing continuity and creating transitions.

8.2.1 The Primary Model

The primary story model was comprised of three Blocks. These three Blocks mapped
Joey Arias's transition from Joey to Andy Warhol. The primary story model is
listed in appendix C. An illustzation of the Block structure for the primary model is
shown in figure 8-1. The first Block has one descriptive keyword — Joey_Arias and
cne exclusion keyword - Andy_Warhol. These keywords constrain the first Block to
contain shots of Joey and not Andy. The video used in the first Block should shew
Joey being himself. The second Block contains both Joey_Arias and Andy.Warhol as
descriptive keywords. The Block will look for footage where it is unclear whether Joey
is being himself or acting like Andy. Some of this footage may be of Joey turning into
Andy. The final Block has Andy_Warhol as a descriptive keyword and Joey_Arias
as an exclusion keyword. This Block will contain foctage of Joey acting like Andy
Warhol. '

The timing of the story was set to run from slow to fast. The first Block was
three minutes long and had slow pacing. The second Block was two minutes long
with medium pacing. The third Block was only a minute and was fast paced. The
thought behind this timing was to create a temporal buildup to a climax.

The video produced by the initial story model was partially successful. The overall

transition from Joey to Andy was present. The increased pacing of the video was

41

also effective. But there were major problems with continuity. The most obvious of
these involved Joey’s blonde wig. There were shots of Joey with and without his wig
on interspersed throughout the first two Blocks of video. This broke the feeling of
the continuous process of Joey turning into Andy. This problem and several other
breaks in continuity were easily fixed by adding levels of description to the initial
story model.

To solve the wig continuity problem, a level of subBlocks was added to the Joey
Block. This level had ouly two subBlocks. The first subBlock affected the first half of
the Joey Block and the second subBlock affected the second half of the Joey Block.
The first subBlock listed wig as an exclusion keyword. This ensured that Joey wouid
not be wearing the wig for the first half of the first Block. The second subBlock listed
wig as a descriptive keyword. This told Homer to show Joey in his wig for the second
half of the Block. The video output of this updated model successfully maintained
continuity with respect to the wig. Once Joey put his wig on, it was on for good.

However, the Joey and Andy, and the Andy Blocks did not have any keywords
that specified the wig. In this example, all the footage chosen for these two Blocks,
showed Joey wearing his wig. If this were not the case, a subBlock could be added.
for each of these Blocks specifying that the wig should be present.

8.2.2 The Complex Model!

This process of adding constraints to improve the quality of the story, and viewing the
product was carried out several times. Eventua.liy a thickly described coherent model
was developed. The text of the model is listed in appendix C. An illustration of the
Block structure for the complex model is shown in figure 8-2. The most surprising
quality of this process of improving the story model was that it was fun. Making
changes to the story model and seeing them affecting the video edit provided instant
satisfaction. The experience truly became one of building a story.

The process of refining the original story model highlighted certain problems. For
the first several iterations the affects were successful. Soon however, the limits of

the database were reached. The story model became specific enough to call for shoty

42

Block Make-up Block not-standing

0:15 Block eye-mu Time 0:10
Ti :
Block Pinning-Hair "T ime 0:15

Time 0:15 Cutaways

\] Block Standing
I _ A~ Time 0:20

B w/o wig B w/wng B w/o sg E‘ B w/ sunglas
T 0:20 g’ T 0:20 g T0:30
Block Joe Block Joey->Andy Block Andy
Time 1: Time 1:00 Time 1:00
Pacing Slow Pacing Medium Pacing Fast
| | | | |
o 172 1 1/72 2 1/2
Block Joey-Intro
Time 0:10
Pacing Slow

Figure 8-2: An illustration of the Complex story model

that either were not present in large enough quantity or not present at all. In even
worse cases, shots were chosen for particular purposes, but their expected content did
not match their description. These occurrences were rare, but that may be because
I logged the footage and built the story models. Footage logged by a user other
than the story model author should encounter the problem of description/content
conflicts more often. This is due to the different contexts of the logger and story
model author. In the case where the same person logs a.ﬁd authors, there can still be
a contextual difference based on how the person is thinking at the different stages of
story development.

Although the complex model suffered some problems, the video produced was
significantly more comprehensible than the primary model’s result. Also, many of
the slight breaks in continuity in the complex model could be fixed by reordering a
small set of the shots in the video example.

As a user develops a stdry model, she asserts more control over the edited result.
As subBlocks become smaller, and the layering of descriptions becomes thicker, the

user approaches specifying images at the shot ievel. Once the shot level is reached,

43

the story model author has become an editor.

At the shot level of control the timing of various blocks becomes important. A
single block can be filled by any number of shots. This depends on the length of ti.e
Block and the length of the shots. When the author begins to reach the shot level,
the times of the subBlccks involved become restricted so that one shot will fill the
Block. This level was encountered in the complex story model. This level of control
allowed a cutaway to be added to the story. In an early model, a shot showed up
of Joey talking to a person off screen other than the cameraman. A subBlock was
added after this shot that specified an image of a person other than Joey. This person
was Sarah. The subBlock also had the restriction that Joey should not appear in the
shot. The effect of this cliange was that Joey was shown talking off camera, and the

following shot showed Sarah listening.

44

Chapter 9

Conclusion

The development and use of Homer have provided insights into the areas of video
logging, editing, and story generation. Ideas about story models and story structure
have been explored; and directions for continued research have been marked.

9;1 Story Models and Story Structure

The trial run showed that Homer can be used to successfully model process. This was
done by building larger processes from smal! processes and parts of processes. In the
example, the smaller processes of applying makeup, putting on a wig, and putting on
sunglasses were combined to create the larger process of becoming Andy Warhol.

The second majer story type, conflict resolution, was not tested. Future research
will concentrate on building conflict resolution story models using Homer. One possi-
ble approach is to build the portions of the conflict resolution model from processes.
Research using Homer should be able to determine how well this approach works.

Story models were even able to address some primitives of editing. The shot
pacing was specified, and was followed closely. Editing techniques such as cutaways
can be implemented using Homer.

The one feature that was not tested in the trial run was StoryLines. The hier-
archical Block structure stole the spotlight in the story modeling process. However,

a potential use of StoryLines did emerge from the example. On several occasions,

45

Homer preduced a jump cut in the final edit. This is when two shots of the same
subject with the same framing follow each other. Once the shot level is reached by
the Block structure, StoryLines could be used to avoid this cinematic error. A simple
chain of negative StoryLines relating the Framing ciass would eliminate jump cuts.
Each StoryLine ensures that two adjacent shots do not exhibit the same framing. If
one such StoryLine connects every pair of connected shot level subBlocks, jump cuts

would be completely eliminated from the story.

9.2 Logging Issues

Advanced use of Homer led to some interesting discoveries about fhe video log. At
some point, a detailed story model reaches the limits of the log. Certain Blocks in
the story model may request video that is present, but has not been logged in the
way it is requested. The story model may also become more detailed than the video
log. This case appeared in the complex story model in the trial run.

A section of the complex story model described Joey trying on sunglasses. The
Block was short and used Joey and trying.on_sunglasses as keywords. Two shots
were chosen by Homer to fill this Block. The first shot showed Joey taking off one
pair of sunglasses and putting on another. The second shot showed Joey with no
sunglasses on, picking up a pair of sunglasses in a case. Homer presented these two
shots in the wrong order, and the story’s continuity was broken. The story model
could be enhanced by adding two subBlocks to the trying on sunglasses Block. The
first subBlock would specify picking up the sunglasses and the second subBlock would
specify putting on the sunglasses. Howevér, this would not have affected the video
edit produced by Homer, because the action of trying on the sunglasses is not logged
to this level of specificity.

The story specified in the previously described story model asks for a certain level
of specificity, but the log cannoﬁ deliver it. A simple solution is to have the user
switch the order of the two shots of putting on sunglasses. This fixes the problem in

the edit, but it does not solve the problem for Homer. If the same story model is run

46

through Homer with the same datubase, Homer will still place the two shots in the
wrong order. The solution is to have Homer do some work to help himself.

Homer has all the information he needs to solve the problem. The story model
specifies that Joey should pick up the sunglasses in one Block, then put them on in
the next. The video story produced by Homer reflects the story model, but it has
certain problems. It is simple for the user to see these problems, and in some cases
it is equally easy for the user to fix them. Once the user has changed the ordering in
the edit, Homer can incorporate this knowledge into the log. Homer just has to run

in reverse.

9.3 Homer in Reverse

Homer takes story models and applies them to logs to produce video stories. In
reverse, Homer can take story models, apply them to video and produce logs. ﬁomer
can add entries to the log based on the information in the story model and the users
improvements to the edit. In the example of the sunglasses, Homer can add the
descriptions of picking.up_sunglasses and putting-on_sunglasses to the proper video
segments. When Homer recreates an edit for this story model, it should get the trying |
on sunglasses sequence right. This is essentially a form of learning. Homer records
the information in the story model and the user’s modifications to the edit in the log.
Homer learns from this procedure, and does not make the same mistake again.

Running Homer in reverse can be viewed as an alternative to logging. All the
work involved in video logging is still present, but the focus has changed. In the act
of conventional video logging, the logger attempts to add a large number of layers of
description to video one description at a time. By using a story model, the user can
incorporate the same m.ass of information into a more intuitive form.

When performing conventional logging, the logger is constantly asking himself
about what the video contains. If the logger is new to the video, this process is
necessary. If the user is familiar with the video, he may already know how the

video should be used and therefore logged. Viewing the video while logging may

47

end up being distracting to the logger. Logging is a labor intensive task. Logging
while the video is running is difficult because the logger must maintain concentration
throughout the entire procedure. If the logger losses concentration he may have to
backtrack. In worse cases, the logger may lose his concentration, and thereby the
context in which he is iogging. This may result in discontinuities or even errors in
the log. Because the video and the log are passing in time, it is easy for the logger to
allow these errors to pass. Some of these issues can be resolved by using story models
for logging. |

A story model can be viewed as a log for a story. A complete log and a complete
story model contain essentially the same information. The main difference between
a story model and a log is that the story model is not as grounded in the video. The.
story model offers a layer of abstraction from the video. This allows the author to
concentrate on the issues involved in the story without being a slave to the video.
Story models could even be used to apply description directly to video. When someone
goes out to shoot or returns from shooting they generally have some form of story
model in mind. If the interface for building story models is good, it shouid be a
straightforward process to create this story model. Then, the major in points and
out points of the footage can be inserted into the model; and the video has been
logged. The same process can be done when creating an edit manually. Every editor
has a story model for their edit. If they build the story model to match their edit,
the footage used in the cut will be automatically Iogged.to the precision of the story
model.

These alternate forms of logging seem promising. Future research will be needed
to discover just how effective they will be. One fact that supports this research is
how the two tasks of logging and story building differ. Logging is a chore, but story

building can be fun.

48

Appendix A

Classes and Keywords for Trial
Run

A.1 Things

o white make-up
e eye pencil
® wig
e sunglasses
e hair brush
@ hair pins
e mirror
e dog
o hair spray

e black turtleneck

49

A.2 People

Joey Arias
Andy Warhol
Sarah

Ricki Leacock

A.3 Actions

greeting

brushing hair
pinning hair
applying make-up
trying on wigs
putting on wig
watching

brushing wig
spraying wig
applying eye pencil
trying on sunglapaea
making-up hands
standing

showing hand positions

e waving

e uncovering

A.4 Monclogues

e become Andy in your neighborhood

e ’m going to become Andy
e chaio Manhattan

e how Andy got pale

e how to make make-up

o fast talking

o falling into Andy ﬁlode

e Andy’s age

» Andy’s interview on cable
° And.y’s real hair

e Andy’s new wig

e Andy’s different wigs

e Andy without wig

e Andy’s snap on v;ig

e how to become Andy

e what to think

e questions

51

o slipping into Joey

e finding out about a person

o father of poﬁ

o I love make-up
o I love black

e the Andy dance

e your fifteen minutes

A.5 Framing

o Extreme Close-up
o Medium Close-up
¢ Full Close-up

o Wide Close-up

e Close Shot

¢ Medium Close Shot
e Medium Shot

o Medium Full Shot

o Full Shot

52

Appendix B

StrataLines in Video Log for Trial
Run

The format is as follows
e VolumeName|InPoint|OutPoint|ContentFrame|Speed|Title(none)|Class|Keyword
1. Warhol|719|8687|24467|30| |People|Joey-Arias
2. Warhol|8716]9309|754|30| |People|Sarah
3. Warhol|9309]13477]1088|30| |People}Joey_Arias
4. Warhol|11410[24201]1767|30| [People|Andy_Warhol
s, Warhol|14302|16696]3011|30| IPeople|Joey_Arias
6. Warhol|17723|17965|4738|30| |People|Joey-Arias
7. Warhol|19941]22115[4257|30| |People|Joey-Arias
8. Warhol|24201|24734|6851|30| |People|Joey_Arias
9. Warhol|719|789|7117|.;$0| | Things|hair_brush

10. Warhol|934/1243|8534]30| |Things|wig

53

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Warhol|1518/2016/9310|30| | Things|hair_brush
Warhol|2655|3368|9310|30| |Things|hair_pins
Wa;hol|3369|6108|9666|30| |Things|white_make-up
Warhol|4195}4319{9666|30| |Things|dog
Warhol|6851]7116]11334|30| |Things|white_make-up
Warhol|7117|8534|16056|30| |Things|wig
Warhol|8534/8687|18266|30] |Things|hair_pins
Warhol[9310|9666|23463|30] | Things|hair_brush
Warhol[9310[24734|23503]30| |Things|wig
Warhol|9666]11066|724|30) | Things|hair_spray
Warhol|11334|14895(855[30| |Things|white_make-up
Warhol|14895{16056]|1498|30| |Things|eye_pencil
Warhol|16056|24515|2210|30| |Things|sunglasses
Warhol|18266|20375|2529(|30| |Things|white_make-up
Warhol|23463|23544|2876|30| |Things|white.make-up
Warhol|719)729|3233]30| |Framing|Extreme_Close-up

Warhol|729|981|3233|30| jFraming|Clese_Shot

Warhol|981|2016|3755]30| |Framing|Medium_Close_Shot

Warhol|2016]2405]5715|30| |Framing|Close Shot

Warhol|2405|2654|7607(30| |Framing|Medium_Close_Shot

Warhol|2655/3098(8305|30| |Framing|Medium.Close_Shot

54

32.

Warhol|3098|3368|8925/30| |Framing|Close_Shot

Warhol|3369|4141(9235(30| |Framing|Medium Shot

34. Warhol|41417290|9489|30| |Framing|Close Shot

35. Warhol|7290|7924|9895|30| |Framing|Medium Shot

36. Warhol{7924|8687|12535|30| |Framing|Close_Shot

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

Warhol|8688]9'62|15227|30| |Framing|Full Close-up
Warho!|9162]9309|16031|30| |Framing|Full Close-up
Warhol|9310|9668|18115{30| [Framing|Close_Shot
Warho!|9668|10123|19715|30| |Framing|Medium_Close_Shot
Warhol{10123|14950|21851}30| |Framing|Close_Shot
Warhol|14951|15504|22578|30| |Framing|Extreme_Close-up

Warhol|15504|17965|22734|30| |Framing|Ciose_Shot

. Warhol|17966(18265|22898]30| |Framing|Medium_Close_Shot

Warhol|18266|21165|23024|30| |Framing|Medium Shot
Warhol|21165|22538|23620|30| |Framing|Close_Shot
Warhol|22539|22618|24438{30} |Framing|Full Close-up
Warhol|22619]22849]24438|30| [Framing|Extreme._Close-up
Warholl22850|22§47|1106|30| |Framing|Medium_Close-up
Warhol|22947|23101|1755{30| |Framing|Full.Close-up
Warhol|23101|24139|2336|30| |Framing|Wide_Close-up

Warhol|24140|24737|3011|30| |Framing|Medium Shot

55

93.

58.

57.

58.

59.

61.

62.

63.

65.

67.

68.

69.

70.

71.

72.

73.

Warhol|719|1493|4734/|30| |Actions|greeting
Warhol|1493|2018(6434|30| |Actions|brushing_hair
Warhol|2018|2654|6943|30| |Actions|separating_hair
Warhol|2655|3368|7824|30| |Actions|pinning-hair |
Warhol|3369|6099|8609{30| |Actions|applying-make-up
Warhol|6099|6770|8794|30| |Actions|smoothing.make-up(hands)

Warhol|6770|7116/9259|30| |Actions|applying-make-up

. Warhol|7117|8532|9408|30] |Actions|trying_on_wigs

Warhol|8532|8687|10364|30| |Actions|pinning_hair
Warhol|8717|8871|13117|30| |Actions|watching

Warhol|9210]9309|15476|30| |Actions|watching

. Warhol|9310|9678|17010|30| |Actions|brushing wig

Warhol|9678|11050]19225|30| |Actions|spraying-wig
Warhol|11337|14897|20867|30| |Actions|applying_make-up
Waxghol|14897| 16055|21751|30| JActions|applying_eye_pencil
Warhol|16055|17965|21751|30] |Actions|trying_on_sunglasses
Warhol|18103|20348|22327|30| |Actions|applying_make-up_to_hands
Wa.rhol|20348|213.8‘(i22578|30| | Actions|standing
Warhol|21387|22115]24261|30] |Actions|showing-hand_positions
Warhol|22116|22538|24673|30| |Actions|greeting|Actions|waving

Warhol|22539]|22618|24673|30| |Actions|goodbye|Actions|waving

56

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

85.

86.

87.

88.

89.

90.

91.

92.

93.

9.

Warhol|24140|24382|24673|30] |Actions|uncovering
Warhol|24611(24735|1107|30| |Actions|goodbye
Warhol|719]149613237|30| |Monologues|I'm_going-to_beccme_Andy
Warhol|3106|3368|3679/30] {Monologues|chaio_Manhattan
Warhol|3505|3853|4030|30| |Monologues|how_Andy.got_pale
Warhol|3853|4208|4030|30| |Monologues|how_to_make.make-up
Warhol|4972|5379|5175|30] |Monologues|fast._talking
Warhol|5379|5782|5580|30| |Monologues|falling-into.Andy_mode
Warhol|5782|5993|5887|30| |Monologues|Andy’s_age
Warhol|6532]6730|6631|30] [Monologues|Andy’s_age
Warhol|7545|7758{7651|30| |Monologues|Andy’s.interview_on_cable
Warhol|7863|8273|8068|30| |[Monologues|Andy’s_real_hair
Warhol|9519]9669]9594|30] |Monologues|Andy’s_new_wig
Warhol|9833|10023]|9928|30| |Monologues|Andy’s_new_wig
Warhol|10116|10596]10356]30] |Monologue§|Andy’s.diﬂ'erent.wigs
Warhol|11073|11339|11206]30| |Monologues|Andy’s_snap_on_wig
Warhol|11593|13087|12340|30| |Monologues|/how_to_become_Andy
Warhol|13087| 1366 1/13344|36| |Monologues|finding.-out_about_a_person
Warhol|13675(1428513980|30] |Monologues|questions
Warhol|l4285|-l4431|14358|30| |Monologues|slipping.into_Joey

Warhol|14431/14766]14598|30| |Monologues|finding_out_about_a_person|Monologuesjquestions

57

95.

96.

97.

98.

99.

100.

101.

102.

Warhol|18266{18876}18571|30| |Monologues|father.of_pop

Warhol|19063|19314|19188|30] |Monologues|I_love_make-up

Warhol|19314/19924|19619|30| |Monologues|I_love black

Warhol[19924|20348|20136|30| |Monclogues/how_to_become_Andy
Warhol|20451|20890{20570(30] |Monologues|how.to-b€come.Andy|Monologueslthe_Andy_dan.
Warhol|21158]21859|21508|30| |Monologues|how_to_become_Andy|Monologues|the_Andy_dan
Warhol|22619|22849|22734[30| [Menologues|your_fifteen_minutes

Warhol|22850]|24139|23494|30| |Monologues|become_Andy.in_your_neighborhood

58

Appendix C

Story Model Examples

C.1 Primary Story Model

%__Basic story model of Joey becoming Andy

Block Joey

{
Time 03:00
+/- 00:30

Pacing = Slow

Class

{
}

Keyword
{

Joey_Arias

}

Not_Class

{

}
Not_Keyword

59

10

20

—— e wew e * ATy = :

Block Joey—>Andy

{
Time 02:00

+/— 00:20

Pacing = Medium

Class

{
}
Keyword
{
Joey_Arias
Andy_Warhol
}

Not_Class

{

}
Not_Keyword

Block Andy

{
Time 01:00

+/— 00:10

Pacing = Fast -

40

 —————

Class

{
}
Keyword

{
Andy_Warhol

}

Not_Class

{
}
Not_Keyword
{
Joey_Arias
}
}

70

C.2 Complex Story Model

%__Complex story model of Joey becoming Andy

Block Joey—intro

{
Time 00:10

+/- 00:10
Pacing = Slow

Class

{

}
Keyword

greeting

61

10

Not_Class
{
} : 20
Not_Keyword
{
}
}

% _— _— _— o

Block Joey

{ .
Time 01:06 30
+/- 00:30 '

Pacing = Slow

Class

{

}
Keyword

Joey_Arias 40

Not_Class

{
}

Not_Keyword

{
Andy_Warhol

}
} . i 50

62

% —_—

SubBlock Joey—no—wig

{
Time 00:30
+/- 00:10

SuperBlock Joey
Start 00:00
+/— 00:00

Pacing = Slow

Class

Not_Class

{

}
Not_Keyword
{

wig
}
}

70

B — e e - ~80

SubBlock Joey—no—wig—pinning—hair
{ .

Time 00:15

+/- 00:10

SuperBlock Joey—no—-wig

63

Start 00:00
+/- 09:00

Pacing = Slow

Class

{
}
Keyword
{
pinning hair
}
100

Not_Class

{
}
Not_Keyword
{
}

}

B —— e e e e e e e e e e

SubBlock Joey—no—wig—makeup

{
Time 00:15

+/~ 00:10
SuperBlock Joey—no—wig
Start 00:15
+/—- 00:00

Pacing = Slow 120

Class
{

y
Keyword
{

applying make—up
}

Not_Clase 130

{
}

Not_Keyword

{

SR e

SubBlock Joey—putting—on—wig 140
{

Time 90:10

+/— 00:06

SuperBlock Joey
Start 00:30
+/- 00:00

Pacing = Slow
' 150
Class

{
}

Keyword

{
trying on_wige

}

Not_Class

65

SubBlock Joey—with—-wig
{

Time 00:25

+/- 00:05

SuperBlock Joey
Start 00:40
+/- 00:00

Pacing, = Slow

Class

{

}
Keyword

Not_Class

{
}
Not_Keyword
{
}

180

170

180

190

% ' —

SubBlock Joey—with—wig—spraying—wig
(:

Time 00:25

+/- 00:10

SuperBlock Joey—-with—wig
Start 00:00
+/- 00:00

Pacing = Slow

~ Class
{
}
Keyword
{
spraying wig
}
Not_Class
{
}
Not_Keyword
{
}
}
S _—— —_———

Block Joey—with—wig—spraying—wig—Sarahl

{
Time 00:03

+/- 00:01

67

200

210

220

330

SuperBlock Joey—with—wig—spraying—wig
Start 00:10

+/- 00:00

Pacing = Slow

Class

{

} ' 249

Not_Class

Not_Keyword 250

Joey_Arias

Block Joey—with—wig—spraying—wig—Sarah2

{ .
Time 00:02 260
+/- 00:01

SuperBlock Joey—with—wig—spraying—wig
Start 00:23 '

+/— 00:00

Pacing = Slow

Not_Class

Not_Keyword

Joey_Arias

B _—

Block Joey—>Andy
{

Time 01:00

+/- 00:20

Pacing = Medium

Class

{

}

Keyword

{
Joey_Arias

Andy_Warhol
}

69

270

- -

Not_Class
{
}
Not_Keyword
{
}

}

% e

SubBlock Joey—>Andy—no-—sunglasees

{
Time 00:20
+/- 00:10

SuperBlock Joey—>Andy
Start 00:00
+/- 00:00

Pacing = Medium

Not_Keyword

{

sunglasses

}

70

310

% —— ——

SubBlock Joey—>Andy—no—sunglasses—applying eye_pencil

{
Time 00:15

+/- 00:10

SuperBlock Joey—>Andy—no—sunglusses

Start 00:00
+/- 00:00

Pacing = Slow

Class

{

}

Keyword

{
applying_eye_pencil

}

Not_Class

{
}
Not_Keyword

{

SubBlock Joey—>Andy—putting—on—sunglasss

{
Time 00:10

71

340

a3s0

360

+/- 00:19

SuperBlock Joey—>Andy
Start 00:20 '
+/- 00:00 v 380

Pacing = Medium

Class

{
}
Keyword
{
~ trying on_sunglasses

} 300

Not_Class

{
}

Not_Keyword

{

SubBlock Joey—>Andy—with—sunglasees

{
Time 00:30

+/- 00:20

SuperBlock Joey—>Andy
Start 00:30
+/- 00:00
410

Pacing = Medium

72

Class

{
}

Keyword

{

sunglasees

}

Not_Class

{

}
Not_Keyword

{

420

SubBlock Joey—>Andy—with—sunglasses—not—standing

{

Time 00:10
+/- 00:08

SuperBlock Joey—>Andy—with—sunglasses
Start 00:00 '
+/- 00:00

Pacing = Medium

Class

{
}

Keyword

{
}

73

440

mra v

—-

— TR

SubBlock Joey—>Andy--with—sunglasses-—-standing

{

Not_Clazs

{
}

Not_Keyword

{

standing

Time 00:20
+/- 00:10

SuperBlock Joey—>Andy—with—sunglasses
Start 00:10
+/- 00:00

Pacing = Medium

Class

{
}

Keyword

{

standing

}

Not_Class

{
}

Not_Keyword

{

74

——— . —— —— — — T U S S — . —— —— Y —— — T — — — - T —— — i - — —— ——

460

480

470

480

Block Andy

{
Time 01:00
+/- 00:10

Pacing = Fast

Class

{
}
Keyword

{
Andy_Warhol

}

Not_Class

{
}

Not_Keyword

{

Joey_Arias
} .
}

(£

490

500

510

520

76

Appendix D

Homer Object Set Speciﬁcations

D.1 String Object

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <assert.h>

class String
|
protected:
int _size;
char *_chararray; 10

int addh (char x);
// EFFECTS adds member z to the Jront end of TString.
// REQUIRES z must ve of the same type as TString.
/| MODIFIES TString.

int addl (char x);
/| EFFECTS adds member z to the front end of TString.
// REQUIRES z must be of the same type as TString. : 20
// MODIFIES TString.

[

char remh ();
|/ EFFECTS deletes one member from the tail end of TString.
// MODIFIES TString.

char reml ();
/| EFFECTS deletes one member from the front end of TString.
[/ MODIFIES TSiring.

friend void delete_String (String *s)

{
delete (*s)._chararray;
(*s)._chararray = NULL;
}
public:
String ();

|/ EFFECTS creales a new String object with no entries.
// MODIFIES the String object.

“String ();
/| EFFECTS deletes String.
// MODIFIES the String object.

String *Clear ();
/| EFFECTS clears the contents of a String, leaving the NULL String
// MODIFIES the String object.

int empty();
/| EFFECTS returns i if String is umply, returns 0 otherwise.

78

40

80

int size(); 60
|/ EFFECTS returns the size of the TSiring.

char& operator(] (int i);
|/ EFFECTS returns the charccter held in position Stringfi] of the
// the erray of chars beginning at 1.
/| REQUIRES i <= String.size()

String &operator=(char *s); : 70
]/ EFFECTS Allows a String object to be used as an lvalue for the
// = ezpressicn with char *s as an rvalse. [t converts this
!/ char * to a String and stores it in the String object.
// MOPDIFIES the Sring object.

String &operator=(String& s);
|/ EFFECTS Allows e String object to be uscd as an lvaluc for the
// = ezpressicn with String object as an rvalue. It
// stores s in the Siring object. 80
/| MODIFIES the Siring object. '

String *CharPtr2String (char *s);
/| EFFECTS Converts *s to a String and stores i¢ in the String object.
/! MODIFIES the String object.

char *String2CharPtr (char *c); ,
|/ EFFECTS Converts the String object and returns it as a char *. 90

!/ Note String2CharArray relurns a psinter o a char *
// copy.

|/ REQUIRES c must have suffiecient space allocated prior to S2CPtr.

79

char *String2CharPtr ();
|/ EFFECTS Converts the String object and returas it as a char *.

// Note String2CharArray returns a pointer o the actual char *
// stored in the String object. If a copy is desired use
// String2CharPtr (char *c) or use sircpy on this return val.

String *unparse (FILE *out);
// EFFECTS prints String to out in a Auman readable form

100

80

D.2 Array Object

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include “String/String.h"

cliass Array
{

protected:
int _size;

String **_contents; - 10
friend void delete Array (Array *a);

public:

Array ();

|/ EFFECTS creates @ new Array object with no entries.
|/ MODIFIES the Array object

“Array (); , 20
/| EFFECTS deletes the Array object.
/] MODIFIES the Array object

int empty();
/| EFFECTS returns 1 if the Array object contains no sirings,

// returns 0 otherwise.

int size(); 30

/| EFFECTS returns the size of ﬂte Array object in aumber of strings.

int addh (char *x);

81

/| EFFECTS adds memkr.: to the Aigh end of the Array object.

!/ returns the size of the Arrag cbject.
/! MODIFIES the Array object.

int addl (char *x);
/| EFFECTS adds member z 1o the low end of the Array object.
// relurns the size of the Array object.
// MODIFIES the Array object.

int addh (String *y);

|/ EFFECTS a?ds member g to the high end of the Array object.

!/ returns the size of the Array object.
// MODIFIES the Array object.

int addl (String *y);
// EFFECTS adds member y to the low end of the Array object.
// returns the size of the Array object.
// MODIFIES the Array object.

int remh (String *x);

/| EFFECTS deletes one member from the high end of the Array object.

// inserts the object in z (NULL String if emply)
// and returns the size of the Array after deletion.
// MODIFIES the Array object.

int reml (String *x);

|/ EFFECTS deletes one member from the low end of the Array object.

// inserts the object in z (NULL String if empty)
// and returns the size of the Array after deletion.
// MODIFIES the Array object.

82

40

60

70

int remh ();

/| EFFECTS deletes one member from the high end of the Array object.

!/ and returns the size of the Array after deletion.
// MODIFIES the Arrey object.

int reml (); .
/! EFFECTS deletes one member from the low end of the Arrey object.
!/ and returns the size of the Array cfier deletion.
/| MODIFIES the Array object.

String &operator{] (int i);
/| EFFECTS allows the Array to be refernced by indez as a standard

// carray. Ez. 3fl], s[¢]. Note Array objects have their
// first member in the number I position. Ez. sfl].

!/ reiurns the String object refernced by i and may be

// used as an lvalue.

unparse (FILE *out);
/| EFFECTS prints the Array object to out in a human readable form

b

90

83

D.3 AlphaArray Object

#include <strings.h>
#include <stdio.h>
#include "Array/Array.h"

extern "C" int strcasecmp(const char *, const char *);

class AlphaArray : private Array
{

private:
10

friend void delete_AlphaArray (AlphaArrzy *a);

public:

AlphaArray () : Array()
/| EFFECTS creates a ncw Alphaarray object with no entries
// MODIFIES the Alphaarray object

{}

20

“AlphaArray ()
/| EFFECTS deletes the Alphaarray object
// MODIFIES the Alphaarray sbjeci

{}

int empty();
/| EFFECTS returns 1 if the Alphaarray object has no entries,

// returns 0 otherwise. , 30

int size(); .
/| EFFECTS returns the number of entries in the Alphaarray object.

84

|
i
l‘
i
f

A p——

int ADd (char *s);
/| EFFECTS edds member s to AlphaArray in alphabetical order. Note

// duplicaies are not added.
/]| MODIFIES the Alphaarray cbject.

int ADd (String *str);
/| EFFECTS «dds member s to AlphaArray in alphabetical order. Note
!/ duplicates are not added.
// MODIFIES the Alphaarray object.

int DEl (char *s);
/| EFFECTS deletes member s from AlphaArray.
// MODIFIES the Alphaarray object.

int DEI (String *str);
// EFFECTS deletes member s from AlphaArray.
// MODIFIES the Alphaarray object.

String& operator(] (int i);
// EFFECTS allows the Alphaarray to be refernced by indez as a standard

// c array. Ez. aafl], aaf?]. Note Alphaarray objects have
// " their first member in the number I position. Ez. aafl].
!/ if [] is used as an lvalue alphabetical order cannot be

// mainiained..

unparse (FILE *out);
// EFFECTS prints the Alphaarray object o out in a human readable
// form.

85

40

50

60

70

unparse ();
/| EFFECTS prints the Alphaarray object to ost in a Auman readable
/! Jorm.

86

D.4 StrataLine Object

#include <strings.h>

#include <stdio.h>

#include “Alpbadrray/ Alphadrray.h”
#define MAX_KEY 50

class StrataLine
{
protected:
String volume;
int _in, _out;
int _content, _speed;
String title;

int sort_val;
friend delete_StrataLine (StrataLine *s)
{
void delete_String (String *);
void delete_AlphaArray (AlphaArray *)
delete_String (&(*s).volume);
delete_String (&(*s).title);
delete_AlphaArray (&(*s).Class_Keyword);
public:

AlphaArray Class_Keyword;

StrataLine();

// EFFECTS creates a new StrataLine object

// MODIFES the StrataLine object

“StrataLine();

10

20

30

|/ EFFECTS deletes the StrataLime object
// MODIFES the StrataLine object

StrataLine *Clear ();

|| EFFECTS clears the contents of a StraiaLine, leaving the StrataLine

/! int the newly created state.
// MODIFIES the String object.

int AddCKPair (char *c, char *key);
/| EFFECTS adds the class; keyword pair to the list of pairs
// for the StrataLine object. Note, no dups
// returns the number of c/k pairs after the Add op.
// MODIFIES the SirataLine object (Class Keyword A—Arrey)

int DelCKPair (char *c, char *key);
/| EFFECTS deletes the class/keyword pair from the list
// of pairs for the StrataLine object.

// reiyrns the number of c/k pairs after the Del op.
/| MODIFIES the StrataLine object (Class_Keyword A—Array)

SetSortVal (int s);
/| EFFECTS Puts the value of s inte the sort value field of
// ihe StrataLine object. A StoryLineArray can be
// sorted in ascending order by this value
// MODIFES the StrataLine object

int GetSortVal ();
/| EFFECTS returns the valse of ihe sort value field
// of the StrutaLine object

88

410

50

60

70

SetVolume (char *vol);
/| EFFECTS Puts a copy of the string at vol into the volsme field of
// the StrataLine object.
/| MODIFES the StrataLine object

char *GetVolume ();
|| EFFECTS returrs ¢ copy of the string in tAe volume field
!/ of the StrataLine object

SetTitle (char *tit);
/| EFFECTS Psis a copy of the string at tit into the title field of .
// the StrataLine object.
/! MODIFES the StrataLine object

char *GetTitle ();
/| EFFECTS returns a copy of the string in the title field
// of the StrataLinc object 90

SetIn (int in);
/| EFFECTS Puts the value of in into the in point field of
// the StrataLine object.
// MODIFES the StrataLine object

int Getln ();
/| EFFECTS returns the value of the in point field 100
// of the StrataLine objec

SetOut (int out);
/| EFFECTS Puts the value of out into the out point field of
// the SirataLine object.

89

/| MODIFES the StrataLine object

int GetOut (); 110
// EFFECTS returns the value of the out point field
// of the StrataLine objec

SetContent (int cont);
|/ EFFECTS Puts the value of cont into the content field of
/] the StrataLine object.
// MODIFES the SirataLine cbject

120
int GetContent ();

|/ EFFECTS returns the value of the content field

!/ of the StrataLine objec

SetSpeed (int speed);
|/ EFFECTS Puts the value of speed snto the speed field of
// the StrataLine object.
// MODIFES the StrataLine object

130

int GetSpeed ();
/| EFFECTS rcturns the value of the in speed field
/ / . of the StrataLine objec

StrataLine *Copy (St:ataLine *sl);
/| EFFECTS places a copy of StrataLine sl in the current
!/ StrataLine object.
// MODIFIES the StrataLine object. 140

unparse (FILE *out);

90

/| EFFECTS prints the StrataLine object to out in & hsmen readable form

91

D.5 StrataFile Object

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include "Strataline/Strataline.h*

class StrataFile
{
protected:
int _sige;

StrataLine ** _contents; 10

friend void delete_StrataFile (StrataFile *s)
{

int i;

for (i=1; i <= (*s)._size; i++)
delete_StrataLine (((*s)._contents)fi]);

for (i=1; i <= (*s)._size; i++)
delete (((*s)._contents)[i]);

delete (*s)._contents;

} ' 20
public:.

StrataFile ();
/| EFFECTS creates a new StrataFile object with no entries.
// MODIFIES the StrataFile object

“StrataFile ();
// EFFECTS deletes the StrataFile objest.
// MODIFIES the StrataFile object 30

int empty();
/| EFFECTS returns 1 if the StrataFile object contains no Stratalines,

92

// returns 0 otherwise.

int size();
|/ EFFECTS returns the size of the StrataFile object in number of StrataLines.

40

int addh (StrataLine *y);
/| EFFECTS adds member z to the high end of the StrataFile object.
// returns the size of the StretaFile object.
/| MODIFIES thke StretaFile object.

int addl (StrataLine *y);
/| EFFECTS adds member z to the low end of the StrataFile object.
!/ reiurns the size of the StrataFile object. 50
// MODIFIES the StrataFile object.

int remh (StrataLine *x); ,
/| EFFECTS deletes one member from the high end of the StrataFile object.
// inserts the deleted object in £ and
/] returns the size of the StrataFile after deleteion.
// MODIFIES the StrataFile object.

60
int reml (StrataLine *x);

/| EFFECTS deletes one member from the low end of the StrataFile object.

// inseris the deleted object in z and '

// returns the size of the StrataFile after deleteion.

// MODIFIES the StrataFile object.

int remh ();
/| EFFECTS deletes one member from the high end of the StrataFile object.
// returns the size of the StrataFile after deleteion. 70

3

/] MODIFIES the StrataFile object.

int reml ();

/| EFFECTS' deletes one member from the low end of the StrataFile object.

//

returns the size of the StrataFile afier deleteion.

// MODIFIES the StretaFile objeci.

int ADd (StrataLine *str); 80
/| EFFECTS cdds member s to StrataFile in ascending order of sort_val.
/| MODIFIES the StrataFile object.

StrataLine &operator(] (int i);
/| EFFECTS allows the StrataFile to be referaced by indez as a standard

/]
/!
/]
/1

c StrataFile. Ez. s[1], s[¢]. Note StrataFile objects have their
first member in the number 1 position. Ez. sfl].
returns the SirataLine object refernced by i and may de

used as an lvalue. 80

unparse (FILE *out);
/| EFFECTS prints the StrataFile object to out in a human readable form

b

100

9

D.6 StoryLine Object

#include <stdio.h>
#include "StrataFile/StrataFile.h"

clase StoryLine
{
protected:
String _bl;
String _b2;
String _temperament;

Array |;

/? types:
KEY
CLASS

Y/

friend void delete_StoryLine (StoryLine *s)
{ .
void delete_String (String *);
void delete_Array (Array *);

delete_String (&(*s)._b1);
delete_String (&(*s)._b2);
delete_String (&(*s)._temperament);
'delet.e_Ahay (&(*s).1);

public:

StoryLine();

// EFFECTS creates a new Storyline object

/| MODIFIES the StoryLine object

95

20

30

“SteryLine()
// EFFECTS deletes the Storyline objcct
// MODIFIES the StoryLine object
{
|5

void Clear ();
/| EFFECTS Sets all the valuer in the StoryLine object
!/ to their creating defaslts.
// MODIFIES the StoryLine object

void SetNegative ();
/| EFFECTS Sets the Storyline ‘object’s temperament lo negative
// MODIFIES the StoryLine object

void SetPositive ();
/| EFFECTS Sets the Storyline object’s temperament to positive
/| MODIFIES the StoryLine object

char *GetTemperament();

/| EFFECTS Returns the temperament (POS or NEG) of the StoryLine

// object as a String.

int SetFromBlock(char *b1);
|/ EFFECTS Sets blockl of the Storyline object to b1.
// MODIFIES the StoryLine object

int SetFromBlock(String "bl);
/| EFFECTS Sets blockl of the Storyline object to b1.

96

40

70

/| MODIFIES the SioryLine object

char *GetFromBlock();

/! EFFECTS Returns blockl of the Storyline as a String.

int SetToBlock(char *b2);
|| EFFECTS Sets block? of the Storyline object to b2.
/| MODIFIES the StoryLine object

int SetToBlock(String *b2);
|| EFFECTS Sets block2 of the Storyline object to b2.
// MODIFIES tke StoryLine object

char *GetToBlock();

/| EFFECTS Returns block® of the Storyline as a Siring.

" void SetFromValues (char *type, char *w);

/| EFFECTS Set the start atiributes of the StoryLine. The start

]/ . of the SioryLine is always at blockl. 1ype specifies
// cither CLASS or KEYWORD. w specifies the actual member
// of type. Both type and w are ssored in the StoryLine objeci.

[/ MODIFIES the StoryLine object

char *GetFromType ();

|/ EFFECTS Returns the Storyline data type for the from block

// as a String.

char *GetFromWord ();

// EFFECTS Returns the Storyline word value for the from block

// as a String.

97

90

100

void SetToValues (char *type, char *w);
/| EFFECTS Set the end attributes of the StoryLine. The end

// of the StoryLine is always at block®. type specifies 110
// either CLASS or KEYWORD. w specifies the actual member
// of type. Both type and w acre stored in the StoryLine object.

// MODIFIES the StoryLine object

char *GetToType ();
// EFFECTS Returns the Storyline data iype for the to dlock
// as a String.

char *GetToWord ();
// EFFECTS Returns the Storyline word valse for the to block 120
// as a String.

StoryLine *Copy (StoryLine *S1);
/] EFFECTS Copies the values in S1 to the StoryLine oljecy
// MODIFIES The StoryLine object.

void unparse (FILE *out);
// EFFECTS prints the StoryLine object to out in form readable 130

// - by Homer. (semi—human readable/computer readable)

void Unparse (FILE *out);
// EFFECTS prints the StoryLine object to out in a human readable

/1 form

98

~:rAl W™ T

D.7 Plot Object

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include “StoryLine/StoryLine.h"

class Plot
{
protected:
int _size;

StoryLine **_contents;
public:

Plot ();
||/ EFFECTS creates a new Plot object with no entries.
// MODIFIES the Plot object

“Plot ();
/| EFFECTS deletes the Plot object.
/| MODIFIES the Plot object

int empty();
// EFFECTS returns 1 if the Plot object contains no StoryLines,

// returns 0 otherwise.

int size();

// EFFECTS returns the size of the Plot object in number of StoryLines.

int addh (StoryLine *y);
// EFFECTS adds member z 1o the high end of the Plot object.
// returns the size of the Plot object.

99

10

20

30

'// MODIFIES the Ploi objeci.

int addl (StoryLine *y);
/] EFFECTS adds member z to the low end of the Plot object.
// returns the size of the Plot object.
// MODIFIES the Plot object.

int remh (StoryLine *x);

|/ EFFECTS deletes one member from the high end of the Plot object.

// inserts the deleted StoryLine object in
!/ and returns the size of the Plot after deletion.
// MODIFIES the Plot object.

int reml (StoryLine *x);
// EFFECTS deletes one member from the low end of the Plot abject.
// inserts the deleted StoryLine object in z
// and returns the size of the Plot after deletion.
// MODIFIES the Plot object.

int remh ();

// EFFECTS deletes one member from the high end of the Plot object.

!l and returns the size of the Plot after deletion.

/! MODIFIES the Plot object.

int reml ();
|/ EFFECTS deletes one member from the low end of the Plot object.
// and returns the size of the Plot after deletion.
// MODIFIES the Plot object.

StoryLine &operatorf] (int i);

100

40

50

60

70

-——ym mm———————

// EFFECTS allows the Plot to be refernced by indez as a standard

// ¢ Plot. Ez. s[1], s[2]. Note Plot objects have their
// first member in the number I position. Ez. sfl].

// returns the StoryLine object refernced by i and may be
// used as an lvalue.

unparse (FILE *out);
/| EFFECTS prints the Plot object to out in a human readable form
k

80

101

s
o

T

o

= T R pReTOm o R

D.8 Block Object

#include "Plot/Plot.h"
#tdefiae MAX_SUB_BLOCKS 25

class Block

{
protected:

String name;

int min; 10

int sec;

int delta_min;

int delta_sec;

int sb_min;

int sb_sec;

int sb_delta_min;

int sb_delta sec; ' 20

String pacing;

String spb;

friend void delete_Block (Block *b);

public:

Array sbb; ' 30

/| array of sub—block names

AlphaArray classes;
AlphaArray keys;

102

AlphaArray not_classes;
AlphaArray nct_keys;

Plot Block_Plot;
StrataFile Biock_Strata;

Block ();
// EFFECTS creates a new Block object
// MODIFES the Block object

“Block ();
// EFFECTS deletes the Block object
// MODIFES the Block object

Clear ();
/| EFFECTS sets all valees in the Block object equal to the
// defaxlt creation values.

// MODIFES the Block object

SetName (char *s);"
// EFFECTS Puts a copy of the siring at s into the name field of
// the Block object |
// MODIFES the Block object

char *GetName ();
// EFFECTS returns the string most recentiy stored in the name field
// of the Block object

SetTime (int m, int s);
// EFFECTS Stores the time of the Block object in m minutes and
// 8 seconds.
// MODIFES the Block object

103

10

50

60

70

int GetTime ();
// EFFECTS Returns the time of the Block object

// in seconds.

SetDelta (int m, int s);
/| EFFECTS Siores the +/— time of the Block object in m minules and
// s seconds.
// MODIFES the Block object

int GetDelta ();
|/ EFFECTS Returns the +/— time of the Block object

// in seconds.

SetSBTime (int m, int s);
/| EFFECTS Stores the super— Block start time of the Block object

// in m minutes and s seconds.

// MODIFES the Block object

int GetSBTime ();
/| EFFECTS Returns the super— Block start time of the Block object

// in seconds.

SetSBDelta (int m, int 8);
/| EFFECTS Stores the super— Block start +/— time of the Block object

// in m minutes and s seconds.

// MODIFES the Block object

int GetSBDelta ();

104

80

90

100

|/ EFFECTS Returns ihe super—Block start +/— time of the Block object

// in seconds.

SetPacing (char *s);
/| EFFECTS Psts a copy of the string at s into the pacing field of
// the Block object
// "MODIFES the Block object

char *GetPacing ();
/| EFFECTS returns the string most recently stored in the pacing field
// of the Block object

int AddClass (char *s);
// EFFECTS Adds a copy of the string at s into the Class
// array of the Block object, in alphabetical order
// without duplicates
// MODIFES the Block object

int AddKey (char *s);
/| EFFECTS Adds a copy of the siring at s into the Key
// array of the Block object, in alphabetical order
// without duplicates
// MODIFES the Block object

int AddNotClass (char *s);
/| EFFECTS Adds a copy of the string at s into the NotClass
// array of the Block object, in alphabetical order
// without duplicates
/] MODIFES the Block object

105

110

120

130

140

int AddNotKey (char *s);
/! EFFECTS "Adds a copy of the siring at s into the NotKey
// array of the Block object, in alphabetical order
// without duplicates
// MODIFES ihe Block object

int DelClass (char *s); 150
// EFFECTS Removes the string s from the Class
// array of the Block object
/! MODIFES the Block object

int DelKey (char *s);
// EFFECTS Removes the string s from the Key
// array of the Block objc'ct
// MODIFES the Block object

160

int DelNotClass (char *s);
// EFFECTS Removes the string s from the NotClass
// array of the Block object
// MODIFES the Block vbject

int DelNotKey (char *s);
/] EFFECTS Removes the string s from the NotKey
// array of the Block object 170
// MODIFES the Block object

SetSuperBlockName (char *s);
// EFFECTS Puls a copy of the string at s inlo the super— Block name
// field of the Bilock object
// MODIFES the Block object

106

char *GetSuperBlockName (); 180
|/ EFFECTS Returns a copy of the string at the super— Block name
// field of the Block object

Block *Copy (Bleck *bl);
/| EFFECTS places a copy of Block b1 in the current Block object
// MODIFIES the Block object

unparse (FILE *out); 190
// EFFECTS prints the Block object to out in a human readable form

BE

107

D.9 BlockArray Object

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "Block/Block.h"

class BlockArray
{
protected:
int. _size;

Block ** _contents; 10
public:

BlockArray ();
// EFFECTS creates a new BlockArray object with no eniries.

// MODIFIES the BlockArray object

“BlockArray ();
/] FFFECTS deletes the BlockArray object.
// MODIFIES the Block/rray object 20

int empty();
/| EFFECTS returns I if the BlockArray object contains no Blocks,

!/ returns 0 otherwise.

int size();
/| EFFECTS returns the size of the BlockArray object in number of Blocks.

30

inc addh (Block *y);
/| EFFECTS adds member z to ihe high end of the BlockArray object.
]/ returns the size of the BlockArray object.

108

// MODIFIES the BlockArray object.

int addl (Block *y);
// EFFECTS edds member z to the low end of the BlockArray object.
// returns the size of the BlockArray object. 40
// MODIFIES tihe BlockArray cbject.

int remh (Block *x);
|/ EFFECTS deletes one member from the high end of the BlockArray object.
!/ inserts the deleted Block object in z
// and returns the size of the BlockArray after deletion.
// MODIFIES the BlockArray object.

50
int reml (Block *x);

/| EFFECTS deletes one member from the low end of the BlockArray object.

// inserls the deleted Block object in z

// and retwrns the size of the BlockArray after deletion.

|/ MODIFIES the BlockArray object.

int remh ();
/| EFFECTS deletes one member from the high end of the BlockArray object.
// and returns the size of the BlockArray after deletion. 60
// MODIFIES the BlockArray object.

int reml ();
/| EFFECTS deletes one member from the low end of the BlockArray object.
// and returns the size of the BlockArray afier deletion.
// MODIFIES the BlockArray object.

Block &oﬁerntor[] (int i); 70

109

/| EFFECTS allows the BlockArray to be refernced by indez as a standard

!/ ¢ BlockArray. Ez. s[1], s[2]. Note BlockArray objects have their
// first member in the number I position. Ez. sfl].

// returns the Block object refernced by i and may be

// used as an lvalue.

unparse (FILE *out);
// EFFECTS prints the BlockArray object to out in a human readable form

b

80

110

D.10 Report Object

#include “BlockArray/BlockArray.h”
class Report

{

protected:
String name;

int min;

int sec;

int delta_min;

int delta_sec;

int tot_min;

int tot_sec;

int no segs;

friend void delete_Report (Report *b);
public:

Report ();

/| EFFECTS creates ¢ new Report object
// MODIFES the Report object

“Report ();
// EFFECTS deletes the Report object
// MODIFES the Report object

Clear ();
/| EFFECTS sets all values in the Report object equal to the

111

!/ default creation values.
// MODIFES the Report object

SetName (char *s);
// EFFECTS Puts a copy of the string at s into the name field of
// the Report object
/| MODIFES the Report object

char *GetName ();
/| EFFECTS rcturns the siring most recently stored in the name field
!/ of the Report object

SetTime (int m, int s);
/| EFFECTS Stores the time of the Report object in m minutes and
// s seconds.
/] MODIFES the Report object

int GetTime ();
/| EFFECTS Returns the time of the Report object
// in seconds.

SetDelta (int m, int s);

/| EFFECTS Stores the +/— time of the Report object in m minutes and

7 8 seconds.
// MODIFES the Report object

int GetDelta ();
/| EFFECTS Returns the +/— time of the Report object
!/ in seconds.

112

40

50

60

70

SetTotTime (int m, int s);
/| EFFECTS Stores the total time of footage avaiiable to object name
/7 in the Report objeci in m minutes and
// s .econds,
// MODIFES the Report object

int GetTotTime ();
/| EFFECTS Returns the tot time of footage available to the Report object

// in seconds. 80

SetNoSegments (int n); ,
/| EFFECTS Stores the number of segements of footage available to
/ name in the Report object.

// MODIFES the Report object

int GetNoSegmen.a ();

/| EFFECTS Returns the number of segments of footage available to 80
// 1o name in the Report cbject.
// in seconds.

AddStrataLine (StrataLine *s);
/| EFFECTS Modifies the Report object to reflect s being footage
// available to the Report object. Updates total time and
// number of segments of footage available.
// MODIFIES :he Reoprt object.

100
Report *Copy (Rsport *bl);

/| EFFECTS places a copy of Report bl in the current Report object
// MODIFIES the Report object

113

unparse (FILE *out);

b

/| EFFECTS prints the Report object to out in a human readable form

110

114

a

"!-—'—E'

1

D.11 ReportArray Object

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "Report/Report.h" .

class ReportArray

‘ -
protected: o
int _size; E—
Report **_contents; 10 !
E
public: =
p
i

ReportArray ();
/| EFFECTS creates a new ReportArray object with no entries.

// MODIFIES tke ReportArray object

= g

“ReportArray ();
/| EFFECTS deletes the ReportArray object.
/| MODIFIES the ReportArray object 20

int empty();
/| EFFECTS returns 1 if ike ReportArray object contains no Reports,

// “returns 0 otherwise.

int size();
/| EFFECTS returns the size of the ReportArray object in number of Reports.
30

int addh (Report *y);
/| EFFECTS adds member z 1o the high end of the ReporiArray object.
// refurns the size of the ReportArray odject.

115

/| MODIFIES the ReportArray object.

int addl (Report *y);
/| EFFECTS adds member z to the low end of the ReportArray object.
// reiurns the size of the ReporiArray object. 40
// MODIFIES the ReportArray object.

int remh (Report *x);
/| EFFECTS deletes one membzr from the high end of the ReportArray object.
// inserts the deleted Report object in z
// and returns the size of the R ortArray after deletion.
// MODIFIES the ReportArray object.

50
int reml (Report *x);
/| EFFECTS deletes one member from the low end of the ReportArray object.
// inserts the deieted Report object in z)
!/ and relurns the size of the ReportArray after deletion.
// MODIFIES the ReportArray object.

int remh (); . ,
// EFFECTS deletes one member from the high end of the ReportArray object.
// and returns the size of the ReporiArray after deletion. 60
/| MODIFIES the ReportArray object.

int rem! ();
/| EFFECTS deletes one member from the low end of the ReportArray object.
!/l and returns the size of \ae ReportArray afier deletion. '
/| MODIFIES the ReportArray object.

Report &operator(] (int i); ' 70

116

/| EFFECTS allows the Répoerray to be refernced by index es a standerd

//
/1
//
//

¢ ReportArray. Ez. s[l1], s[2]. Note ReportArray objects have their
first member in the number I position. Ez. sfl].
returns the Report object refernced by i and may be

used as an lvalue.

unparse (FILE *out);
/| EFFECTS prints the ReporiArray object to out in a human readable form

b

80

117

D.12 Story Object

#include <stdio.h>
#include "ReportArray/Reportirray.h”

class Story

{

protected:

public:

StrataFile Strata,;
BlockArray Blocks;
Plot StoryLines,; -
ReportArray Reports;

Story();
/| EFFECTS creates ¢ new Story object
// MODIFIES the Story object

“Story();
// EFFECTS deletes the Story object

// MODIFIES the Story object

10

20

118

Appendix E

Homer Object Set Code

Source code availabie by special request only.

119

Appendix F

Homer Control Code

Source code available by special request only.

120

Bibliography

[1] Thomas G. Aguierre Smith. Stratification: Toward a computer representation of

the moving image. Technical report, The Media Lab, MIT, 1991.

[2] D. Applebaum. The galatea network video device control syétem. Technical
report, The Media Lab, MIT, 1989.

[3] Giles R. Bloch. From concepts to film sequences. Technical report, Yale University,
Department of Computer Science, Artificial Intellingence Lab, 1900.

[4] Segei Eisenstein. The Film Sense. Harcourt Brace and Company, 1942.
[5) Segei Eisenstein. Film Form. Harcourt Brace and Company, 1949.

[6] Benjamin Rubin. Constrain-based cinematic editing. Master’s thesis, Mas-
sachusetts Institute of Technology, June 1989.

121

