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ARTICLE

Deep-coverage whole genome sequences
and blood lipids among 16,324 individuals
Pradeep Natarajan 1,2,3, Gina M. Peloso4, Seyedeh Maryam Zekavat 3,5,6, May Montasser7,

Andrea Ganna3,8, Mark Chaffin 3, Amit V. Khera1,2,3, Wei Zhou9, Jonathan M. Bloom 3,8,

Jesse M. Engreitz 3,10, Jason Ernst 11, Jeffrey R. O’Connell7, Sanni E. Ruotsalainen12, Maris Alver13,

Ani Manichaikul14, W. Craig Johnson15, James A. Perry 7, Timothy Poterba3,8, Cotton Seed3,8, Ida L. Surakka12,

Tonu Esko 13, Samuli Ripatti12, Veikko Salomaa 12, Adolfo Correa 16, Ramachandran S. Vasan17,18,19,

Manolis Kellis3,20, Benjamin M. Neale 1,2,3,8, Eric S. Lander3, Goncalo Abecasis21, Braxton Mitchell7,

Stephen S. Rich14, James G. Wilson16,22, L. Adrienne Cupples4,19, Jerome I. Rotter23

NHLBI TOPMed Lipids Working Group, Cristen J. Willer 24 & Sekar Kathiresan 1,2,3

Large-scale deep-coverage whole-genome sequencing (WGS) is now feasible and offers potential

advantages for locus discovery. We perform WGS in 16,324 participants from four ancestries at mean

depth >29X and analyze genotypes with four quantitative traits—plasma total cholesterol, low-density

lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. Common variant

association yields known loci except for few variants previously poorly imputed. Rare coding variant

association yields known Mendelian dyslipidemia genes but rare non-coding variant association detects

no signals. A high 2M-SNP LDL-C polygenic score (top 5th percentile) confers similar effect size to a

monogenic mutation (~30mg/dl higher for each); however, among those with severe hypercholes-

terolemia, 23% have a high polygenic score and only 2% carry a monogenic mutation. At these sample

sizes and for these phenotypes, the incremental value of WGS for discovery is limited but WGS

permits simultaneous assessment of monogenic and polygenic models to severe hypercholesterolemia.
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P lasma lipids, including total cholesterol, low-density lipo-
protein cholesterol (LDL-C), high-density lipoprotein cho-
lesterol (HDL-C), and triglycerides, are heritable risk

factors for atherosclerotic cardiovascular disease1,2. Under-
standing the inherited basis for plasma lipid levels has led to new
treatments and to tests to identify individuals at risk for disease.
Advances in technologies to characterize DNA sequence variants
(i.e., Sanger sequencing, genotyping arrays, exome sequencing)
have progressively allowed us to solve monogenic forms of dys-
lipidemia and to uncover common DNA sequence variants as
well as rare mutations that contribute to plasma lipid levels in the
population. However, due to the inherent limitations of geno-
typing arrays and exome sequencing, the non-coding regions of
the genome remains incompletely characterized, particularly for
rare mutations. In addition, the relative contribution of common
DNA sequence variants and rare coding mutations to extreme
lipid values in the population has not been delineated.

It is now possible to directly enumerate the whole-genome
sequences of a large number of individuals. When performed at
sufficient depth of coverage (>20-fold coverage per base), whole-
genome sequencing (WGS) can detect single nucleotide poly-
morphisms (SNPs), insertions, and deletions across the allele
frequency spectrum in both non-coding and coding regions.
These advances allow us to test the incremental value of WGS as a
tool for locus discovery and also develop a framework to
understand why a specific individual might have an extreme lipid
value. Toward these two goals, we studied the whole-genome
sequences in 16,324 participants of European, African, East
Asian, and Hispanic ancestries with available plasma lipids
phenotypes.

In common variant association analyses, we replicate prior loci
but detect newly associated variants not previously detected by
prior genome-wide genotyping arrays or imputation. Analyses of
rare coding variants yield known Mendelian dyslipidemia genes.
Four approaches for analyzing rare non-coding variant associa-
tions do not detect any signals. WGS analysis of severe
hypercholesterolemia shows a ten-fold enrichment of a high
polygenic LDL-C score versus monogenic mutation for severe
hypercholesterolemia. While the incremental value for WGS for
locus discovery currently is limited largely due to relatively
smaller sample sizes, WGS markedly improves the diagnostic
yield of severe hypercholesterolemia through simultaneous
assessment of monogenic and polygenic models.

Results
Deep-coverage WGS of 16,324 participants. Participants of the
Framingham Heart Study (FHS), Old Order Amish (OOA),
Jackson Heart Study (JHS), Multi-Ethnic Study of Atherosclerosis
(MESA), FINRISK Study (FIN), and Estonian Biobank (EST)
underwent WGS (Fig. 1). Following quality control (Supple-
mentary Table 1), 16,324 participants with plasma lipids available
were included in the analysis (Supplementary Table 2). The mean
(standard deviation (SD)) age was 51 (15) years and 8669 (53%)
were women. About 5911 (36%) of the participants were of non-
European ancestry (Supplementary Table 2, Supplementary
Fig. 1a-c. The proportion of individuals on lipid-lowering medi-
cations was low (9%).

WGS target coverage was >30X for FHS, OOA, JHS, and
MESA (as a part of the NIH/NHLBI Trans-Omics for Precision

FHS JHS OOA MESA FIN EST

>30X >30X >30X >30X
>20X >20X

4064 3247 1083 4510 1165 2255

108 Million variants 119 Million variants 37 Million variants
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Fig. 1 Schematic of genomic variant discovery and analyses. Variants were jointly discovered in three distinct sets: (1) FHS, JHS, and OOA; (2) MESA; and
(3) EST and FIN. Cohorts included in analyses are denoted by color-coded icons. Allele frequency spaces assessed are indicated for analyses. EST Estonia,
FHS Framingham Heart Study, FIN Finland, JHS Jackson Heart Study, MESA Multi-Ethnic Study of Atherosclerosis, OOA Old Order Amish
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Medicine (TOPMed) research program) and was >20X for EST
and FIN (Supplementary Fig. 2). The mean (SD) attained
coverage for >30X target samples was 37.1(5.4)X and for >20X
target was 29.8(5.4)X.

After performing quality control, a total of 189 million unique
variants were discovered across all datasets. Total variant count
characteristics varied by cohort due to sample sizes, relatedness,
ethnicity, and population history (Fig. 2). As expected, the MESA
cohort, of largely unrelated individuals of four diverse ethnicities,
had the most variants per individual while the OOA cohort, a
founder population of European ancestry, had the fewest variants
per individual (Supplementary Table 3). The median number of
variants, or sites with alleles differing from the hg19 reference
genome, per individual was 3,391,000, of which on average 4878
were observed in only a single individual.

Common plus low-frequency variant association study. We first
analyzed common and low-frequency variants, i.e., those that
occur with enough minor alleles to provide robust individual
association test statistics. We considered variants that had a
minor allele frequency (MAF) >0.1% within at least one of the
three WGS variant callsets (minor allele count >16 for the FHS/
OOA/JHS callset, >9 for MESA, or >6 for FIN and EST) (Fig. 1).
Association for these variants was estimated within each callset
with each of the four plasma lipids levels, and then meta-analyzed
using the inverse-variance method. Overall, 32,086,348 variants
were included in this analysis. The test statistics were well con-
trolled (Supplementary Table 4 and Supplementary Fig. 3a-d).
We used a conventional statistical threshold for genome-wide
significance (α= 5 × 10−8)3 (Supplementary Fig. 3e-h). Using this
cutoff, 592, 697, 447, and 522 variants were associated with total
cholesterol, LDL-C, HDL-C, and triglycerides, respectively
(Supplementary Table 5). These variants were distributed at 10, 7,
13, and 9 loci previously associated with total cholesterol, LDL-C,
HDL-C, and triglycerides, respectively, and five at putative novel
lipid loci (Supplementary Table 6)4–7. Of the variants at known
loci, 12 (38.7%) were lead variants in prior associations, eight
(25.8%) new lead variants were in high linkage disequilibrium
(LD) (r2 > 0.8) with prior lead variants, and the remaining 11
(35.5%) new lead variants were in low LD (r2 < 0.2) with prior
lead variants.

At a conventional α threshold of 5 × 10−8, we discovered five
associations at putative novel lipid loci (Supplementary Table 6).

For example, rs3215707 (MAF 2.0%), a 1-bp deletion at 9p24.1,
was associated with HDL-C (+3.3 mg/dl, P= 1.3 × 10−8).
rs3215707 occurs within an intron of PLGRKT and overlies
active promoter and strong enhancer histone modification signals
for HepG2 cells (Supplementary Fig. 4). The deletion is not in LD
with any known SNPs and thus the association was not detectable
by prior genome-wide association analyses. Within each callset,
estimated effects were consistent (heterogeneity P= 0.53) and all
demonstrated at least nominal association (P < 0.05) (Supple-
mentary Table 7). We sought further replication for rs3215707
from additional independent samples. We interrogated 233
individuals from families with dyslipidemia and enriched for
premature coronary heart disease who were whole-genome
sequenced within the EUFAM study8. Using a mixed model,
carriers (MAF 5.1%) were associated with a 5.6 mg/dl greater
HDL cholesterol (P= 0.03).

We performed iterative conditional analyses to identify distinct
independent associations among 16 loci reaching P < 5 × 10−8 for
LDL-C, HDL-C, and triglycerides in the FHS/OOA/JHS (TOPMed
Phase I) variant call file (VCF). While only four (25%)
loci displayed evidence of allelic heterogeneity at P < 5 × 10−8,
13 (81.3%) had at least moderate evidence (P < 1 × 10−4) of
allelic heterogeneity across the different ethnic groups available
(Supplementary Table 8). Through conditional analyses for LDL-C,
we identified a low-frequency haplotype specific to African
Americans (MAF 0.1% FHS, 0% OOA, 1.0% JHS,) including
variants in LD (r2 > 0.8) at a transcriptional transition region
within the first intron of LDLR (rs17242843), LDLR promoter
(rs17249141), and enhancer 4 kb upstream from the LDLR
transcription start site (TSS) (rs114197570) (Supplementary
Fig. 5, Supplementary Fig. 6). Presence of these variants resulted
in a 28 mg/dl lowering of LDL-C (P= 2 × 10−11), suggesting
increased expression of LDLR for carriers of the minor allele
(Supplementary Fig. 7).

Rare variant association study of coding variants. To improve
the power of detecting rare variant associations, we aggregated
putative disruptive rare variants in coding sequences of each
gene and tested the quantitative trait distribution among carriers
of a set versus non-carriers9. We aggregated coding sequence
variants within each gene that were predicted to lead to loss of
function (e.g., nonsense, canonical splice-site, or frameshift) or
annotated as “disruptive” by the ensemble MetaSVM10 in silico
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0 25,000,000 50,000,000 75,000,000 100,000,000 125,000,000
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Fig. 2 Deep-coverage WGS identifies genomic variation across the allelic spectrum. Variant counts by allele count/frequency bin within each of the
cohorts. Singletons (“AC 1”) and doubletons (“AC 2”) are separately distinguished from allele frequency bins within each cohort. Variants were jointly
discovered in three distinct sets: (1) FHS, JHS, and OOA; (2) MESA; and (3) EST and FIN. AC allele count, EST Estonia, FHS Framingham Heart Study, FIN
Finland, JHS Jackson Heart Study, MAF minor allele frequency, MESA Multi-Ethnic Study of Atherosclerosis, OOA Old Order Amish
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approach. The median combined MAF per gene was 0.25%
[interquartile range 0.090–0.69%] (Supplementary Fig. 8). To
account for known bidirectional effects of disruptive mutations
in some Mendelian dyslipidemia genes, we accordingly used a
mixed model Sequence Kernel Association Test (SKAT)11,12. Six
genes associated with lipids at an exome-wide level (α= 0.05/
~20,000 protein-coding genes= 2.5 × 10−6) (LDLR, APOB,
PCSK9, and APOE for LDL-C, LCAT for HDL-C, and APOC3
for triglycerides). Each has been previously established as a
cause of Mendelian forms of dyslipidemia (Supplementary
Table 9).

Rare variant association study of non-coding variants. Next, we
sought to determine whether rare variants in non-coding
regions associate with plasma lipids. We used four approaches
to aggregate rare, non-coding variants. (Fig. 3). First, we
aggregated variants within “sliding windows” of 3 kb in
length13,14. Second, we connected a non-coding variant to a
gene if it resided in a segment annotated as an enhancer (and
within 20 kb of a gene) or a region annotated as a promoter
(and within 5 kb of the TSS of a gene). Third, using gene
expression information, we connected a non-coding variant to a
gene if it resided in a region annotated as an enhancer. Finally,
we connected a non-coding variant to a gene based on a model
which predicted gene-enhancer pairs using a chromatin-state
model, including both HK27ac and Hi-C contact data, that we
previously described15. Regulatory annotations were derived
from the ENCODE and NIH Roadmap projects for two cell
types—HepG2 and adipose nuclei—relevant to lipoprotein
metabolism. For these analyses, we considered a P < 0.05 /
254,032 groups= 2.0 × 10−7 as significant (Supplementary
Table 10, Supplementary Table 11).

Using the sliding window approach to non-coding burden
tests, we observed suggestive associations for 3 kb windows at the
CETP (start chr16:56667000) locus (minimum P= 4 × 10−6) and
at the APOA1-C3-A4-A5 (start chr11:117094500) locus (mini-
mum P= 8 × 10−6) with HDL-C. A total of 17.6% of non-coding
sliding windows occurring within 1Mb of known lead lipid
variants were at least nominally (P < 0.05) associated with lipids
versus 4.4% in other regions of the genome across all traits
(P difference= 8 × 10−272).

An aggregation of rare non-coding variants at only two
genes—LDLR and APOE—were associated with LDL-C and
total cholesterol (P < 2 × 10−7) (Supplementary Fig. 9) (Supple-
mentary Table 12). The strongest LDLR signal (P= 9.7 × 10−11)
was seen for an analysis that connected enhancers and
promoters to a gene based on physical proximity (approach
#2 above). Closer inspection of the specific variants shows that
this signal is driven by the low-frequency haplotype specific to
African Americans also detected with single variant association
(Supplementary Fig. 10) (Supplementary Table 12). The
strongest APOE signal (P= 8.1 × 10−26) was observed in
the model connecting enhancers to a gene by eQTLs for gene
expression (approach #3 above). However, accounting for
the strongest common variant association at the locus
(rs7412, the APOE ε2 isoform allele), this signal attenuates to
non-significance (P= 1.8 × 10−2), suggesting that the non-
coding variants are driven by LD of the APOE ε2 isoform.
Beyond these two results, we found no additional signals for a
burden of non-coding variants.

Contribution of mono- and polygenic models to extreme
LDL-C. With the availability of sequence in both coding and
non-coding regions in the same samples, we estimated the
simultaneous contribution of monogenic and polygenic

determinants to extreme LDL-C in a population-based sample
of European (EA) and African (AA) ancestry. We defined
“extreme” as the top or bottom 5th ancestry-specific percentile
of LDL-C. Analyses were conducted in FHS and MESA-EA
subjects (extreme cutoff as LDL-C >183 mg/dl or LDL-C <72.9
mg/dl) and JHS and MESA-AA subjects (extreme cutoff as
LDL-C >198.6 mg/dl or LDL-C <71 mg/dl), separately.

Among participants with extremely high LDL-C, we searched
for mutations in any of six Mendelian genes previously implicated
as causing elevated LDL-C (LDLR, APOB, PCSK9, ABCG5,
ABCG8, and LDLRAP1) (Supplementary Table 13).

To determine polygenic contribution, we implemented a
systematic approach to derive, test, and validate a new
“genome-wide” polygenic score for LDL-C using mutually
independent datasets. A polygenic score provides a quantitative
assessment of the cumulative risk associated with multiple
common risk alleles for each individual.

We derived polygenic scores by three approaches: (1) only
inclusion of genome-wide significant variants (P < 5 × 10−8 in
separate discovery)7, (2) r2 and P value thresholds to restrict
variants without rescaling weights, and (3) entire summary results
of 2M variants (LDPred) with rescaled weights based on r2 and
P values16. We derived polygenic scores based on the association
statistics of all available common (MAF ≥ 0.01) SNPs with
LDL-C, as determined by our previously published genome-
wide association study7.

As a baseline, we generated an additional polygenic score
restricted to lead variants (P < 5 × 10−8) at distinct genomic
loci, weighted by discovery estimated effects (“restricted
score”). Second, we applied various r2 and P value thresholds
to the previously published results. Finally, we used the LDPred
computational algorithm which constructs genome-wide poly-
genic scores across full summary statistics16. Prior simulations
have suggested that approaches additionally including
variants with sub-genome-wide significance may improve the
predictive capability of polygenic risk scores17. To include such
variants, LDPred re-weights corresponding per-variant weights
from our prior genome-wide association study7 based on LD,
discovery P values, and a range of estimated causal fraction
(e.g., non-zero effect sizes) markers. The correlation between
the variants was assessed using the European reference
population from the 1000 Genomes study17. The best score
was determined based on maximal model fit (R2) from a linear
regression models in a health-care biobank of 25,534 unrelated
individuals (Nord-Trøndelag Health Study, HUNT)18 (Supple-
mentary Table 14).

For LDL-C, a genome-wide polygenic score incorporating
2 million SNPs with LDpred provided the best model fit
(Supplementary Table 15). Compared to a restricted score of 59
SNPs independently significant associated with LDL-C, a
relative increase of 21.6% of LDL-C variance was explained
by the expanded 2M-SNP score (r2restricted= 0.245 vs. r2expanded
= 0.298). We applied this polygenic score separately within the
WGS samples in FHS, JHS, and MESA. We labeled individuals
as having a high polygenic score if they fell in the top 5th
percentile of race-specific score distributions (Tables 1 and 2).

Among EA participants, a monogenic mutation was associated
with an odds ratio of 10.92 (95% CI 3.71(32.14) for extremely
high LDL-C, whereas a high polygenic score associated with an
odds ratio of 7.65 (95% CI 5.56–10.52). In EA individuals, those
who carried a monogenic mutation had 30 mg/dl higher LDL-C
(when compared with non-carriers; P= 2.1 × 10−4) and those
who had a high polygenic score had 33 mg/dl greater LDL-C
(when compared with all others; P= 1.7 × 10−57). Of the 287 EA
participants with extremely high LDL-C, 2% carried a monogenic
mutation and 23% had a high polygenic score.
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Fig. 3 Schematic of non-coding rare variant analyses. Four grouping schematics of rare non-coding variants (MAF <1%). (1) The sliding window approach
tiles across the genome at fixed widths, only including variants overlying annotations consistent with enhancers, promoters, and DHS in non-exonic
regions. All other approaches attempt to map non-coding putative functional genomic regions with discrete genes as the analytical unit. Overall, they are
based on: (2) promoter, enhancer, and DHS annotations near a gene’s transcription start site, (3) co-occurrence of enhancer and DHS annotations with
HepG2 gene expression, and (4) H3K27ac marks within Hi-C contact regions mapped to genes. DHS DNase hypersensitivity site, MAF minor allele
frequency
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Among AA participants, a monogenic mutation was
associated with an odds ratio of 7.43 (95% CI 3.01–18.35) for
extremely high LDL-C, whereas a high polygenic score
associated with an odds ratio of 3.2 (95% CI 2.1–4.89). In AA
individuals, those who carried a monogenic mutation had
41 mg/dl higher LDL-C (when compared with non-carriers;
P= 2.3 × 10−7), greater than that observed among EA indivi-
duals, and those who had a high polygenic score had 17mg/dl
greater LDL-C (when compared with all others; P= 6.4 × 10−10),
less than the effect observed among EA individuals. Of the 217 AA
participants with extremely high LDL-C, 3% carried a monogenic
mutation and 13% had a high polygenic score. Across the
full spectrum of LDL-C polygenic score, every SD of the LDL-C
polygenic score was associated with 15.5 mg/dl LDL-C
among EA (P= 4 × 10−277) and 8.7 mg/dl LDL-C among AA
(P= 1 × 10−47).

We replicated the association between a high polygenic score
and extremely high LDL-C in an independent sample, the ARIC

cohort. Among ARIC-EA (N= 7755) individuals, a high polygenic
score was associated with an odds ratio of 7.35 (95% CI 5.95–9.10;
P < 2 × 10−16) for extremely high LDL-C and 42.8mg/dl (95% CI
40.0–47.5; P < 2 × 10−16) higher LDL-C compared with individuals
without a high polygenic score. Among ARIC-AA (N= 1907)
participants, a high polygenic score was associated with an odds
ratio of 2.7 (95% CI 1.77–4.09; P < 3.3 × 10−6) for extremely high
LDL-C and a 23.2 mg/dl (95% CI 15.0–31.5; P= 3.8 × 10−8)
higher LDL-C compared with individuals without a high
polygenic score.

We analyzed the monogenic and polygenic contribution to
extremely low LDL-C in EA and AA participants and found
similar patterns where monogenic mutations as well as a
polygenic score conferred similar effect sizes (Tables 1 and 2).

Discussion
We performed WGS in 16,342 ethnically diverse individuals
and analyzed the incremental value of WGS for locus discovery

Table 1 Effect of monogenic mutation or polygenic score on odds for extremely high or low LDL-C

Extremely high LDL-C

Ancestry Ntotal Nextreme Monogenic
carrier
(Nextreme)

High
polygenic
score
(Nextreme)

Monogenic
carrier OR
(95% CI)

Monogenic
carrier
P-value

Monogenic
carrier PAF

High
polygenic
score OR
(95% CI)

High
polygenic
score P-value

Top 5th
percentile
of polygenic
score PAF

EA 5910 284 5 64 10.92
(3.71, 32.14)

1.4 × 10−5 1.60 7.65
(5.56, 10.52)

5.7 × 10−36 19.6

AA 4380 217 7 29 7.43
(3.01, 18.35)

1.4 × 10−5 2.79 3.2 (2.1, 4.89) 6.7 × 10−8 9.2

Extremely Low LDL-C

Ancestry Ntotal Nextreme Monogenic
carrier
(Nextreme)

Low
polygenic
score
(Nextreme)

Monogenic
carrier OR
(95% CI)

Monogenic
carrier
P-value

Monogenic
carrier PAF

Low
polygenic
score OR
(95% CI)

Low
polygenic
score P-value

Bottom 5th
percentile of
polygenic
score PAF

EA 5910 286 6 82 21.73
(6.2, 76.15)

1.5 × 10−6 2.00 10.38
(7.69, 14.02)

1.5 × 10−52 25.9

AA 4380 218 11 32 13.83
(6.25, 30.62)

9.4 × 10−11 4.68 3.7
(2.46, 5.58)

3.9 × 10−10 10.7

Values are represented as OR [95% CI] for association with given trait. (b). Effect of monogenic mutation or polygenic score on LDL-C in mg/dl. Values are represented as beta [95% CI] in mg/dl for
LDL-C. Multi-variable associations were performed with sex + age + age2 (effects not listed) with monogenic carrier status + high polygenic score using logistic regression. Polygenic risk score was
derived from 2 million variants using LDpred. High polygenic score was defined as membership in the top 5th percentile of the ancestry-specific score distribution. AA, African American; EA, European
American; SE, standard error.

Table 2 Effect of monogenic mutation or polygenic score on LDL-C in mg/dl

Monogenic mutation or high polygenic score

Ancestry Ntotal Monogenic
carrier (N)

High
polygenic
score (N)

Monogenic
carrier β
(mg/dl)

Monogenic
carrier SE

Monogenic
carrier
P-value

Highpolygenic
score β
(mg/dl)

High
polygenic
score SE

High
polygenic
score
P-value

EA 5910 18 297 29.98 8.07 2.1 × 10−4 33.07 2.05 1.7 × 10−57

AA 4380 25 220 41.05 7.93 2.3 × 10−7 16.96 2.74 6.4 × 10−10

Monogenic mutation or low polygenic score

Ancestry Ntotal Monogenic
carrier (N)

Low
polygenic
score (N)

Monogenic
carrier β
(mg/dl)

Monogenic
carrier SE

Monogenic
carrier
P-value

Low polygenic
score β
(mg/dl)

Low polygenic
score SE

Low
polygenic
score
P-value

EA 5910 12 297 −47.25 9.55 7.7 × 10−7 −35.00 2.00 7.9 × 10−67

AA 4380 28 220 −41.41 7.47 3.1 × 10−8 −20.41 2.74 1.1 × 10−13

Values are represented as beta [95% CI] in mg/dl for LDL-C. Multi-variable associations were performed with sex + age + age2 (effects not listed) with monogenic carrier status + high polygenic score
using linear regression. Polygenic risk score was derived from 2 million variants using LDpred. High polygenic score was defined as membership in the top 5th percentile of the ancestry-specific score
distribution. AA, African American; EA, European American; SE, standard error.
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for blood lipid levels and for clinical interpretation. We repli-
cated associations for 28 common variant loci previously
associated with lipids in much larger genome-wide association
analyses. We identified an association for a low frequency 1-bp
deletion at 9p24.1 with HDL-C. We replicated burden asso-
ciations of rare coding mutations at known Mendelian lipid
genes. However, we did not detect any burden associations of
rare non-coding mutations through four different approaches.
Lastly, we developed a genome-wide polygenic score and
showed that such a score confers an effect size on LDL-C
similar to carrying a monogenic mutation and is present in ten-
fold more individuals with severe hypercholesterolemia than
monogenic mutations. At these sample sizes and for these
phenotypes, the incremental value of WGS as a discovery tool
was limited but WGS allowed us to simultaneously assess the
contribution of monogenic and polygenic models to severe
hypercholesterolemia.

These results permit several conclusions. Using WGS as a
discovery tool, the incremental yield of new loci was modest.
Current sample sizes for WGS are much smaller compared to
genome-wide association and whole exome sequencing studies
clearly limiting relative power for detecting associations for
common/low-frequency non-coding variants and rare coding
variants. Despite genome-wide interrogation of rare variant
signals in non-coding space, we identified no burden-of-rare-
variant signals using four different aggregation approaches and
regulatory annotations from two relevant tissues.

Mutation target size and natural selection pressure are smaller in
non-coding regions when compared with coding regions; based on
these considerations, power calculations have suggested that sample
sizes may need to be considerably larger to identify rare variant
burden associations in non-coding regions compared to coding
regions9. While sample size is an important determinant of power,
prioritization of putative causal rare non-coding variants remains a
major power limitation. Functional annotations from reference
datasets largely prioritize functional sequence and MAF thresholds
assist in prioritizing causal variants, but this likely retains a large
fraction of benign variants. Genome-wide organism-level functional
variant scores19 offer the promise of improved prioritization but did
not improve associations at LDLR and APOE. Novel, genome-wide
tissue-level functional scores may improve prioritization compared
to organism-level scores20–22. Assessments of consequence for rare
coding mutations in experimental systems has improved associa-
tions of lipid-related genes beyond in silico tools23,24. Similar sys-
tematic approaches for rare non-coding variants in relevant tissues
may further improve power.

WGS in diverse populations permits discovery of novel asso-
ciated variants. Most of the observed lead single variant associa-
tions at known loci were previously tagged by lead variants from
genome-wide association analyses of largely European ancestry
participants. Our trans-ethnic analyses yielded new lead variants
at one-third of known lipid loci not previously tagged by prior
lead loci. Additionally, variant classes not previously detected by
array-genotyping and whole-exome sequencing are associated
with lipids. We observed that a 1-bp deletion, not correlated with
previously cataloged variants, was associated with HDL choles-
terol. These observations indicate that new variants are detected
not only by including diverse ethnicities, but also WGS can
overcome many limitations of imputation for variant discovery,
including application in non-Europeans, variable coverage in
genome-wide genotype arrays, and detection of rarer variants.

Of great interest, we observed that the relative contribution of
polygenic score to extremely high LDL-C is considerably greater
than monogenic mutations. For example, in EA individuals, both
high polygenic score and a monogenic mutation confer similar
effects (~30mg/dl higher LDL-C) but a high polygenic score is

present in 20% of participants with extremely high LDL-C
whereas a monogenic mutation is present in only 2%. In most
individuals who carry diagnosis of familial hypercholesterolemia,
no monogenic mutation is identified with clinical exome
sequencing;25,26 for a large fraction of these “mutation-negative”
familial hypercholesterolemia, high polygenic scores may be
operative. WGS permits the application of simultaneous assess-
ment of monogenic determinants as well as the most optimally
performing polygenic score with relative ease.

Our observed monogenic carrier rates for severe hypercholes-
terolemia (2%) are consistent with observations in other
population-based cohorts26,27 and health-care-associated bio-
banks25 but lower than for patients with clinical criteria for familial
hypercholesterolemia (up to 24%)27, particularly those clinically
referred for familial hypercholesterolemia genetic testing (up to
50%)28–31. As anticipated, this subgroup is also likely to have a
greater monogenic relative to polygenic contribution32,33.

Important limitations should be considered. First, appropriate
definitions of statistical significance for WGS association analyses
have not been harmonized in the field. The convention of α= 5 ×
10−8 comes from the assumption of performing 1,000,000 inde-
pendent tests. Based on our findings and simulations from
others3, 10−9 may be more appropriate for analyses across diverse
ethnicities to allele frequency 0.1%. Second, power is somewhat
diminished with our rare variant meta-analysis approach to
combine P values with Fisher’s method. Given known diverse
coding mutations within Mendelian genes with bidirectional
effects and the inability to assume unidirectional effects within
the non-coding space, we employed a SKAT statistical frame-
work. Prior approaches leveraging covariance matrices for SKAT
meta-analysis were computationally inefficient for the dataset and
multiple grouping strategies34,35. Thus, our approach is con-
servative. Third, the polygenic scores described here were derived
from genome-wide association studies performed largely in EA
ancestry participants7. Because allele frequencies, LD patterns,
and effect sizes of common polymorphisms vary by ancestry, the
predictive capacity of polygenic score was attenuated in non-
European ancestry individuals36. Furthermore gene flow between
ancestral groups and resultant admixture37,38 for an individual
further hinders accuracy of polygenic risk scores derived from
distinct populations for application at the individual level39. This
is an important limitation for the field that requires efforts to
characterize common genomic variation influencing complex
traits among non-Europeans and develop locus admixture-aware
polygenic risk scoring.

In summary, we present a large-scale WGS analysis of plasma
lipids in 16,324 ethnically diverse participants. Common, non-
coding variants and rare, coding variants contribute to plasma
lipid variation; however, association signals for rare, non-coding
mutations were not detectable. Among participants with severe
hypercholesterolemia, a high polygenic score was present in ten-
fold more individuals than a monogenic mutation.

Methods
Study participants. Study participants were from the FHS (N= 4064), JHS (N=
3247), OOA (N= 1083), MESA (N= 4510), FIN (N= 1165), and the EST (N=
2255). Each study was previously approved by respective institutional review
boards (IRBs), including for the generation of WGS data and association with
phenotypes. All participants provided written consent. The analyses of WGS data
with plasma lipids was approved by the Massachusetts General Hospital IRB
(MGH IRB# 2016P001308). Please refer to Supplementary Note 1 for study par-
ticipant details.

WGS, variant calling, and genotyping. Sequencing was performed at one of the
four sequencing centers, with all members within a cohort sequenced at the same
center. For the TOPMED phase 1 data, 4148 FHS individuals and 1095 OOA
individuals were sequenced at the Broad Institute of Harvard and MIT (Cambridge,
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MA), while 3266 JHS individuals were sequenced at University of Washington
Northwest Genomics Center (Seattle, WA). About 4601 MESA individuals were
additionally sequenced at the Broad Institute of Harvard and MIT as part of
TOPMED Phase 2. About 1180 Finnish FINRISK individuals and 2281 Estonian
Biobank participants were sequenced at the Broad Institute of Harvard and MIT
(Cambridge, MA). Three separate callsets were utilized due to timeline of avail-
ability as well as data use restrictions.

TOPMED phase 1 BAM files provided by the sequencing centers were
harmonized by the TOPMed Informatics Research Center (IRC) before joint
variant discovery and genotype calling across studies. In brief, sequence data were
received from each sequencing center in the form of bam files mapped to the 1000
Genomes hs37d5 build 37 decoy reference sequence. Processing was coordinated
and managed by the “GotCloud” processing pipeline40.

The two sequence quality criteria used in order to pass sequence data on for
joint variant discovery and genotyping are: estimated DNA sample contamination
below 3%, and fraction of the genome covered at least 10 × 95% or above. DNA
sample contamination was estimated from the sequencing center read mapping
using software verifyBamId41.

The genotype callsets used for analysis are from “freeze 3a” of the variant calling
pipeline performed by the TOPMed IRC (Center for Statistical Genetics, University
of Michigan, Hyun Min Kang, Tom Blackwell, and Goncalo Abecasis). The
software tools used in this version of the pipeline are available in the following
repository: https://github.com/statgen/topmed_freeze3_calling. Variant detection
(SNPs and indels) from each sequenced (and aligned) genome is performed by vt
discover2 software tool42. The variant calling software tools are under active
development; updated versions can be accessed at http://github.com/atks/vt or
http://github.com/hyunminkang/apigenome.

WGS for MESA, FINRISK, and the Estonian Biobank was performed using the
Illumina HiSeqX platform at the Broad Institute of Harvard and MIT (Cambridge,
MA). DNA samples are informatically received into the Genomics Platform’s
Laboratory Information Management System via a scan of the tube barcodes using
a Biosero flatbed scanner. All samples are then weighed on a BioMicro Lab’s XL20
to determine the volume of DNA present in the sample tubes. Following this, the
samples are quantified in a process that uses PICO-green fluorescent dye. Once
volumes and concentrations are determined, the samples are then handed off to the
Sample Retrieval and Storage Team for storage in a locked and monitored −20 °C
walk-in freezer.

Libraries were constructed and sequenced on the Illumina HiSeqX with the use
of 151-bp paired-end reads for WGS and output was processed by Picard to
generate aligned BAM files (to hg19)43,44. Samples were tracked by automated
LIMS messaging. Samples were fragmented with acoustic shearing and libraries
were prepared with a KAPA Biosystems kit. Libraries were normalized to 1.7 nM.
Cluster amplification was performed using Illumina cBot and flowcells were
sequenced in HiSeq X. Variants (SNPs and indels) were discovered using the
Geome Analysis Tookit (GATK) v3 HaplotypeCaller according to Best Practices45.
Variants from MESA samples were generated in one callset. Finland and Estonia
samples were jointly called in a separate callset.

Whole-genome sequence quality control. The following three approaches were
used by the TOPMed Genetic Analysis Center to identify and resolve sample
identity issues: (1) concordance between annotated sex and biological sex inferred
from the WGS data, (2) concordance between prior SNP array genotypes and
WGS-derived genotypes, and (3) comparisons of observed and expected related-
ness from pedigrees.

The variant filtering in TOPMed Freeze 3 were performed by (1) first
calculating Mendelian consistency scores using known familial relatedness and
duplicates and (2) training SVM classifier between the known variant sites (positive
labels) and the Mendelian inconsistent variants (negative labels). Two additional
hard filters were applied: (1) Excess heterozygosity filter (EXHET), if the
Hardy–Weinberg disequilbrium P-value was less than 1 × 10−6 in the direction of
excess heterozygosity. An additional ~3900 variants were filtered out by this filter,
and (2) Mendelian discordance filter (DISC), with 3 or more Mendelian
inconsistencies or duplicate discordances observed from the samples. An additional
~370,000 variants were filtered out by this filter. Functional annotation for each
variant was provided in the INFO field using snpEff 4.1 with a GRCh37.75
database46. Analysis used hard-call genotypes, without genotype likelihoods.
Genotypes with a depth <10 were excluded.

Additional measures for quality control of TOPMed Phase I Freeze 3 and
quality control for MESA, Finland, and Estonia were performed using the Hail
software package (https://hail.is)47. Samples were filtered by contamination (>3.0%
for all, except >5.0% for Finland and Estonia), chimeras >5%, GC dropout >4, raw
coverage (<30X for all, except <19X for Finland and Estonia), indeterminant
genotypic sex or genotypic/phenotypic sex mismatch.

Variants for MESA, Finland, and Estonia were initially filtered by GATK
Variant Quality Score Recalibration. Additionally, genotypes with GQ <20, DP < 10
or >200, and poor allele balance (homozygous with <0.90 supportive reads or
heterozygous with <0.20 supportive reads) were removed. And variants within low
complexity regions were removed across all samples48. Variants with >5% missing
calls, quality by depth <2 (SNPs) or <3 (indels), InbreedingCoeff <−0.3, and
pHWE <1 × 10−9 (within each cohort) were filtered out.

Annotation. Variants were annotated with Hail using annotations from Ensembl’s
Variant Effect Predictor49 for protein-coding annotations and Reg2Map
HoneyBadger2-intersect for regulatory annotations at DNase I regions –log10(P)
≥10 (https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger2-
intersect_release/).

Traits. Conventionally measured plasma lipids, including total cholesterol, LDL-C,
HDL-C, and triglycerides, were included for analysis. LDL-C was either calculated
by the Friedewald equation when triglycerides were <400 mg/dl or directly mea-
sured. Given the average effect of statins, when statins were present, total choles-
terol was adjusted by dividing by 0.8 and LDL-C by dividing by 0.7, as previously
done50. Triglycerides were natural log transformed for analysis. Phenotypes were
harmonized by each cohort and deposited into the dbGaP TOPMed Exchange
Area.

Common plus low-frequency variant association analysis. Single variant ana-
lysis was performed in EPACTS (https://genome.sph.umich.edu/wiki/EPACTS)
with Efficient Mixed-Model Association eXpedited (EMMAX) for associating each
variant site with each lipid trait as a continuous measure within each jointly called
VCF11. Empiric kinship matrices were first generated for each VCF (“make-kin”)
using default parameters. Next, association analyses (“single”) were performed
adjusting for age, age2, sex, cohort, self-reported ethnicity (for MESA), and an
empirically derived kinship matrix to account for both familial and more distant
relatedness within each VCF. For the TOPMed Phase I VCF, which included OOA,
LDL-C and total cholesterol analyses were also adjusted for APOB p.R3527Q and
triglycerides and HDL-C analyses were also adjusted for APOC3 p.R19Ter. To
ensure robust results, we only performed single variant analysis for variants with a
MAF >0.1%. Variants were meta-analyzed across all three VCFs using METAL
(https://genome.sph.umich.edu/wiki/METAL)51. Summary statistics only for var-
iants with MAF >0.1% for the given VCF were included in the meta-analysis.
Statistical significance α of 5 × 10−8 was used for these analyses.

For loci with at least one variant with P < 5 × 10−8 within the TOPMed Phase I
VCF, iterative conditional association analysis was performed. Iterative
conditioning was performed until P > 1 × 10−4 was attained.

Rare variant association analyses. We first identified rare (MAF <1%) mutations
for each VCF within the coding sequences. After Variant Effect Predictor49

annotation, we identified loss-of-function (e.g., nonsense, canonical splice-site, and
frameshift) and disruptive missense (by MetaSVM10) in canonical transcripts as
specified by Ensembl.

We further performed rare variant association tests within the non-coding
space (Supplementary Figure 7). As before, we performed a “sliding window”
approach aggregating 3 kb (overlapping by 1.5 kb) windows and considering rare
variants occurring within enhancer or promoter elements at DNase I
hypersensitivity sites.

For non-coding tests, we next attempted to link rare non-coding variants with
genes for association testing using regulatory annotations for HepG2 and adipose
nuclei from ENCODE and NIH Roadmap. Given prior observations showing
enrichment of functional promoter variants at LIPG with HDL-C extremes52,
we similarly aggregated variants near TSSs. Prior studies have shown that
approximately 80% of cis-eQTLs fall within 100 kb of TSS53. To increase the
likelihood of mapping regulatory variants to the nearest gene, we were more
restrictive and included variants overlapping promoter sequences ±5 kb and
enhancer sequences ±20 kb of TSS at DNase I hypersensitivity sites.

We also linked chromatin state defined enhancers with genes using data from
the Roadmap Epigenomics project54 and the method presented previously55 with a
few small modifications56. The method predicts links using chromatin state
information, position of the enhancer relative to the TSS, and the correlation of
multiple chromatin marks with gene expression across cell types. Here we used the
correlation with gene expression of the signal of five chromatin marks: H3K27ac,
H3K9ac, H3K4me1, H3K4me2, and DNaseI hypersensitivity. The gene expression
data were the RPKM expression data for protein-coding exons across 56 reference
epigenomes from the Roadmap Epigenomics project (available in the file
57epigenomes.RPKM.pc from http://compbio.mit.edu/roadmap; Universal Human
Reference was excluded). The chromatin mark signal was the −log10(P) tracks
averaged to a 200-bp resolution. As input to our code, we used the version of those
tracks first averaged at 25-bp resolution using the “Convert” command of
ChromImpute57. In computing correlation between a specific chromatin mark
signal and gene expression, we used the Pearson correlation and omitted from the
calculation samples lacking both chromatin mark signal and gene expression
data. We made predictions separately for each of the 127 reference epigenomes
and locations assigned to chromatin states, 6_EnhG, 7_Enh, and 12_EnhBiv, of the
15-state core 5-marks ChromHMM model54,58. We restricted our predictions to
chromatin state assignments on chr1-22 and chrX. We considered linking 200-bp
bins within 1Mb of a TSS of each gene as annotated in the file Ensembl_v65.
Gencode_v10.ENSG.gene_info available from http://compbio.mit.edu/roadmap
(ref. 54). If a gene had multiple TSS, then we only used the outermost TSS.

The method for linking is based on determining for each combination of cell
type, chromatin state, and position relative to the TSS the estimated probability the
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set of correlations we observed would come from the actual data compared to
randomized data. To this end, we created a training set of actual observed
correlations (positive examples) and correlations computed after randomizing
which gene expression values were assigned to which genes (negative examples)
separately for each combination of cell type, chromatin state, and position relative
to the TSS. Each entry in the training set has five features corresponding to
correlations for each of the considered chromatin marks. There is a positive and a
corresponding negative entry for each instance of the specified chromatin state in
the specified cell type at the specified position relative to the TSS or within 5 kb of it
(for smoothing purposes). We trained a logistic regression classifier to discriminate
actual correlations with randomized correlations. We used the logistic regression
library implemented in the Weka package version 3.7.3 with the regularization
parameter set to 159. For considering linking a specific instance of a chromatin state
assignment in a specific cell type and position relative to the TSS of a gene, we
applied the corresponding classifier. Let p denote the probability the classifier gives
of being in the positive class of the actual observed correlations. We retained those
links for which p/(1−p) was ≥2.5. The method we used here is implemented in the
code LinkingRM.java. For the analyses presented here, we used those links for the
primary enhancer state, 7_Enh.

To connect non-coding variants with putative target genes, we predicted
functional gene-enhancer pairs using a chromatin state-based model we
previously developed15. This model assumes that the impact of an enhancer on
gene expression is determined by the product of its intrinsic “Activity” (for
which we use quantitative DNase-Seq and H3K27ac ChIP-Seq levels as a proxy)
and the “Contact Frequency” at which the enhancer physically encounters its
target promoter in the nucleus (for which we use Hi-C data as a proxy). We
previously found such an Activity by Contact (ABC) model accurately identifies
enhancers whose perturbation leads to changes in gene expression in the human
MYC locus15, and we have since found that the same model can identify
enhancers across other gene loci and cell types (Fulco, C., Lander, E., and
Engreitz, J., in preparation). We extended our previously published model to
predict enhancer-gene connections in the liver, using DNase-Seq and H3K27ac
ChIP-Seq data from a hepatocarcinoma cell line (HepG2) previously generated
by the ENCODE project60. To define putative regulatory elements, we expanded
DNase-Seq peak calls from ENCODE by 500 bp on either side and merged
overlapping peaks15. For each element, we calculated Activity as a function of
the normalized read count of H3K27ac and DNase-Seq. Because high-resolution
Hi-C data is not available for HepG2 cells, we estimated the Contact probability
between putative regulatory elements and genes using the average profile across
deeply sequenced Hi-C libraries from seven different cell types61 as previously
described15. For each putative enhancer-gene pair, we calculated an “ABC score”
equal to the Activity × Contact of the putative enhancer normalized by the sum
of Activity × Contact across all other putative elements within 5 Mb of the target
gene. We tuned free parameters in this model (such as the relative weight of
DNase-Seq and H3K27ac data and a pseudocount to add to Hi-C data) and
chose a threshold cutoff using a set of experimentally measured
enhancer–promoter connections in two cell types (Fulco, C., Lander, E., and
Engreitz, J., in preparation). This analysis defined, for each expressed gene, a set
of elements predicted to regulate that gene in HepG2 cells. These sets of
elements were used for gene-level variant burden tests.

We tested the association of the aggregate MAF <1% variants within each of the
aforementioned groupings with each lipid trait as continuous traits using the
mixed-model SKAT implementation in EPACTS to account for bidirectional
effects11. We first created group files (“make-group”) using annotations from the
aforementioned strategies, created VCF-specific kinship matrices (“make-kin”)
using default parameters, and performed association analyses (“group --test
mmskat –max-maf 0.01”) (https://genome.sph.umich.edu/wiki/EPACTS). Analyses
were adjusted for age, age2, sex, cohort, self-reported ethnicity (for MESA), and
empiric kinship within each of the VCFs. P values for each grouping were meta-
analyzed across the three callsets using Fisher’s method. Statistical significance for
each gene-based test was 0.05/20,000 tests= 2.5 × 10−6.

Lipid extremes analysis. We first defined LDL-C extremes as the top and bottom
ancestry-specific 5th percentiles from the data (LDL-C >183 mg/dl or >198.6 mg/dl
for EA and AA, respectively; LDL-C <72.9 mg/dl or <71 mg/dl for EA and AA,
respectively).

We next cataloged mutations in Mendelian genes previously linked to extreme
LDL-C (Supplementary Table 13). We included variants that were previously
linked to Mendelian dyslipidemia in ClinVar (“pathogenic” or “likely pathogenic”
with no “benign”) or loss-of-function, and had an allele frequency <1% (autosomal
dominant) or <10% (autosomal recessive). Genotypes were only considered based
on expected inheritance pattern (autosomal dominant or autosomal recessive).

We evaluated three distinct approaches to generate weighted polygenic scores
using prior genome-wide association analysis summary statistics7: (1) only lead
variants at genome-wide significant loci, (2) varying P and LD r2 thresholds
(defined by 1000G CEU) using PLINK62, and (3) all variants but adjusting weights
according to P and r2 (by 1000G CEU) with LDpred varying rho16. To minimize
errors from strand flips, A/T and C/G SNPs were excluded. The scores were
calculated as additive sums of risk allele counts for included SNPs multiplied by
weights (discovery effect estimates for (1) and (2), or adjusted by LDpred for (3)).

LDPred16 is a Bayesian approach, calculates a posterior mean effect size for each
variant based on a prior (association with LDL-C in a previously published study)
and subsequent shrinkage based on the extent to which this variant is correlated
with similarly associated variants in a reference population. The underlying
Gaussian distribution additionally considers the fraction of causal (e.g., non-zero
effect sizes) markers. Because this fraction is unknown for any given disease,
LDpred uses a range of plausible values to construct different polygenic scores.

Polygenic scores were generated within the HUNT cohort, the training set18.
Lipid values were extracted from the electronic health record; absence of lipid-
lowering therapy was prioritized. For each trait, the model with the best fit, as
measured by R2, was chosen to apply to the testing set, TOPMed samples.

In a multivariable model, we associated likelihood of membership within the
extreme tail of a trait with monogenic mutation carrier status, high (top 5th
percentile) or low (bottom 5th percentile) polygenic score, age, age2, and sex,
separately in European American (EA from FHS and MESA-EA) and African
American (AA from JHS and MESA-AA) samples. We also ran linear regression
models with continuous LDL-C and the independent variables listed above.

Data availability. Individual whole-genome sequence data for TOPMed whole
genomes (FHS, JHS, OOA, and MESA) are available through restricted access via
the TOPMed dbGaP Exchange Area. The accession numbers are: FHS phs000974.
v1.p1, JHS phs000964.v1.p1, OOA phs000956.v1.p1, and MESA phs001416.v1.p1.
Individual-level harmonized lipids used for analysis are also available through
restricted access via the TOPMed dbGaP Exchange Area. Summary-level genotype
data are available through the BRAVO browser (https://bravo.sph.umich.edu/).
The Finnish WGS and array genotype data can be accessed through the THL
Biobank (https://thl.fi/fi/web/thl-biobank). The WGS data at Estonian Genome
Center, University of Tartu, can be accessed via the Estonian Biobank (www.
biobank.ee).
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