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We study a new class of scheduling problems that capture common settings in service environments, in which

one has to serve a collection of jobs that have a-priori uncertain attributes (e.g., processing times and prior-

ities) and the service provider has to decide how to dynamically allocate resources (e.g., people, equipment

and time) between testing (diagnosing) jobs to learn more about their respective uncertain attributes and

processing jobs. The former could inform future decisions, but could delay the service time for other jobs,

while the latter directly advances the processing of the jobs but require making decisions under uncertainty.

Through novel analysis we obtain surprising structural results of optimal policies that provide operational

managerial insights, efficient optimal and near-optimal algorithms and quantification of the value of testing.

We believe that our approach will lead to further research to explore this important practical tradeoff.

Key words : Scheduling, Dynamic Programming, Service Operations, Approximation Algorithms

1. Introduction

Effective management of many service systems often relies on the ability to appropriately classify

and prioritize customers, tasks or jobs. However, in many settings the exact nature of the various

jobs is uncertain; for example, the time and amount of resources required to process a given job

and its relative priority might not be known exactly. While recent advancements in information
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technologies enable obtaining far more accurate predictions about each job, there are still many

settings, in which collecting more information on a job requires the allocation of the same resources

used to process the job. This gives rise to operational tradeoffs of exploration versus exploitation,

specifically, how to dynamically allocate resources between diagnostic work called testing that

aims to collect more information on the arriving jobs, and processing work called working that

simply serves the jobs (customers) in the systems. In this paper, we introduce new scheduling

models that capture these tradeoffs, and provide some structural results and insights on the optimal

policies as well as algorithmic results on how to obtain optimal and provably near-optimal policies.

Surprisingly, in many interesting cases the optimal policy can be described through myopic (local)

rules.

One relevant example for the type of tradeoff studied in this paper arises in aircraft maintenance.

Engine repair requires disassembling and reassembling engines, which are costly in terms of time.

Alternatively, engines can be diagnosed using special testing equipment, which can unveil the nature

of breakdowns, and the required corrective measures and processing times. The shared resource

in this case between working and testing are the maintenance personnel. Another example arises

in emergency medical departments. In this setting, patients undergo the process of triage that

aims at collecting information about their urgency (sensitivity to waiting), as well as the required

activities and processing times. This information allows prioritizing patients to ensure efficient

allocation of limited medical resources. While these examples stem from considerably different

practices, they both give rise to similar tradeoffs, specifically, how resources should be allocated

between diagnostics and actual processing of jobs.

The paper is focused on one of the core problems in scheduling theory, with a single server and

the objective of minimizing the weighted sum of completion times of a given set of jobs. This

objective reflects the goal of minimizing the weighted total (or average) wait time, which is realistic

in the practical settings mentioned above and in many others, in which the tradeoff of testing

versus working exists. The processing time and weight of the jobs is unknown but can be revealed

if the job is tested, an activity that requires a specified server time. Thus, at any stage a decision

has to be made whether to test another job or process a job (either one that was already tested,

or one that still has uncertain processing time and weight.) Once a job is processed it has to be

completed (i.e., preemption is not allowed.) We note that without the option to test, the problem is

known to be solved optimally by processing jobs in an increasing order of their expected weighted

processing times; this is known as the Weighted Shortest Processing Time rule (WSPT).

Contributions. This paper makes several important contributions. First, it introduces a new class

of scheduling models that capture exploration versus exploitation tradeoffs in service environments.

While it is widely recognized that understanding and controlling variability could be critical for
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sustaining uninterrupted operations, to the best of our knowledge, this is the first work that studies

the extent to which resources should be utilized to collect information and reduce uncertainty.

Second, while a natural formulation of the problem leads to a high-dimensional Dynamic Program

(DP), the paper provides structural analysis that obtains a characterization of optimal policies,

which is managerially intuitive. Specifically, we explicitly identify (and compute) two thresholds

that induce a partition of the tested jobs into three groups. The first group should be processed

immediately with no delay. The second group should be processed last after all other jobs are

processed. Finally, unknown jobs can be potentially tested only before known jobs from the third

group are processed. We also show that the optimal policy has a structure of an optimal stopping

time problem; it tests jobs and processes immediately jobs in the first group until at some point it

switches to processing all remaining jobs using the WPST rule, and never tests again. Third, based

on the structural characterization of the optimal policies together with an innovative marginal cost

accounting scheme, we propose a low-dimensional DP formulation that unlike the natural high-

dimensional one can be solved efficiently. Unlike traditional cost accounting schemes, in which the

contribution of a job to the overall objective function is accounted for at the moment when the

processing of this job is completed, in marginal cost accounting its contributions to the completion

times of other jobs are accounted once the relative scheduling order between jobs is determined.

Moreover, the structural properties of the optimal policy lead to a low-dimensional DP formulation

that can be solved near-optimally for any specified degree of accuracy using a fully polynomial

approximation scheme (FPTAS). Fourth, under a certain condition (which includes the special case

of equally weighted jobs), the optimal policy is shown to be a myopic rule that can be based merely

on current state. Fifth, the analysis provides insights into the value of testing as a function of

the various parameters of the problem, as well as analytically assesses the performance of simpler

policies. This analysis could be used to better understand and assess when the testing functionality

is indeed worthwhile. Finally, the analysis extends to broader settings, in which testing might reveal

only partial information about the latent attributes.

Literature review. For more than half a century the research community has developed a rich and

extensive literature in the area of scheduling. Nevertheless, despite the wide spectrum of problems

that has been explored, the topic of testing per se seems to have not receive attention. Typical

features of scheduling problems concern aspects such as individual job properties (e.g., processing

times, due dates, release dates and preemption), dependencies between jobs (e.g., precedence con-

straints, families of jobs, setup times), server properties (e.g., multiple servers, control of speed,

batch processing, and breakdowns), server-job settings (e.g., flow shop, job shop, and open shop

problems), under a variety of objectives (e.g., makespan, flow-time, lateness, and tardiness). The

literature review of this paper does not attempt to present a comprehensive survey of this enormous
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body of knowledge, but rather, present the main research areas within the scheduling literature,

and their relation to our work. For a comprehensive treatment of the subject, the reader is referred

to Pinedo (2012) and Leung (2004).

A principal way of classifying scheduling work is according to the amount of information known to

the scheduler. The main categories are deterministic, stochastic, and online. The three decrease in

the availability of information. In deterministic problems, all the information is known in advance,

which implies that decisions can be made in advance, and that the overall performance can be

predicted. Stochastic scheduling assumes a probabilistic characterization of uncertain data. On

the far extreme lies online scheduling, where no knowledge regarding the processing or the arrival

time to the system is assumed, and information is revealed gradually. The models studied in the

paper share properties of both stochastic and online scheduling problems. On one hand, probability

distributions are used to model uncertainties, but on the other hand, testing is allowed as a means

of learning about these uncertainties in an online fashion.

Early work on deterministic scheduling focused on solving relatively simple problems, either

by simple rules (such as the SPT or EDD rules, e.g., Smith (1956), Jackson (1955)), or using

algorithms, often based on DP formulations, or branch and bound (e.g., Moore (1968), Lawler

(1973), McMahon and Florian (1975)). Research then advanced to more complex systems, e.g.,

with multiple servers. While some of these problems could be solved optimally and efficiently (e.g.,

McNaughton (1959)), often they proved to be NP-hard (e.g., Bruno et al. (1974)). This line of

research of proving hardness results of scheduling problems drew significant attention following

the development of complexity theory (e.g., Lenstra et al. (1977), Lawler et al. (1993)). Later

and to these days, the focus has shifted to approximation algorithms, that is, algorithms that

sacrifice optimality to achieve computational efficiency. These are commonly based on solutions

to relaxed versions of the original problem, often using LP (e.g., Hall et al. (1997), Chekuri et al.

(2001)). One outcome of our work is an FPTAS for the problem (see Lawler (1982), Hochbaum

and Shmoys (1987) for examples of FPTAS of specific models, and Hochbaum (1997), Chen et al.

(1998), Ausiello et al. (1999) for an overview of approximation algorithms).

Research on stochastic scheduling tried, with various degrees of success, to solve stochastic

counterparts of deterministic scheduling problems. While these models are often more realistic

than the deterministic models, they also tend to be more difficult to solve. However, some results

fully extend to the stochastic case (e.g., the WSEPT rule, Rothkopf (1966)), while others require

special assumptions regarding the distribution functions (e.g., exponential distribution, Weiss and

Pinedo (1980)). On certain occasions, stochasticity actually simplifies problems and their analysis

(e.g., Pinedo (1983)). Usually however, the analysis of stochastic models is much harder, and

consequently, much less is known about such systems. As in the deterministic case, significant
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progress has been made on approximation algorithms for stochastic systems (e.g., Mohring et al.

(1999)).

In the literature on maintenance, a notable effort has been devoted to studying maintenance

problems with inspections, in a class of models that are known as preparedness models (McCall

(1965)). In these models, machines deteriorate over time in a process that is hidden unless inspection

is employed, which reveals the true state of the machine. Most of the related literature on inspection

models focused on single-component systems in an infinite horizon setting, where breakdowns

are invisible without inspections. Moreover, the assumptions are that inspections are costly and

that their time is neglible, and the objective is to minimize costs. That is, the focus is on costs

rather than on allocation of limited capacity. In multi-component systems, the work has mostly

been on harnessing economies of scale to reduce maintenance costs by simultaneously repairing

multiple components. In addition, models were created for systems in which a correlation exists

between the evolution of components, or where components are jointly maintained due to structural

dependencies. To the best of our knowledge, none of these works studied how inspections should be

used to dynamically inform scheduling decisions. For surveys of maintenance models the reader is

referred to: McCall (1965), Pierskalla and Voelker (1976), Sherif and Smith (1981), Sherif (1982),

Yamayee (1982), Valdez-Flores and Feldman (1989), Cho and Parlar (1991), Dekker et al. (1997),

Guo et al. (2000), Wang (2002), Frangopol et al. (2004), Jardine et al. (2006), Nicolai and Dekker

(2008), and, van Noortwijk (2009).

We also note several results that study the value of information in a single server queuing and

scheduling settings. Bansal (2005) studied an M/M/1 queue, in which job durations are known

upon arrival. He quantifies the improvement of a policy that processes jobs in an increasing order

of the remaining processing time, over the standard first comes first served policy. Wierman and

Nuyens (2008) studied a class of policies that generalizes the shortest processing time rule. These

are used in practice when jobs with different processing times need to be grouped and assigned

the same priority rule (which is similar to not having the exact information about the processing

times). They derive bounds for multiple performance measures, and investigate how the bounds

are affected by the accuracy of the information.

The tradeoff of exploration vs. exploitation has been studied in the context of several operational

problems in revenue management and supply chain management (for example, see Besbes and Zeevi

(2009) and Besbes and Muharremoglu (2013)). However, the typical assumption in this stream of

work is that the underlying distributions are unknown and learnt from data. In contrast, in our

setting the distributions are assumed known but specific instances from these distributions can be

observed through testing.
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The novelty of our work is in incorporating learning decisions into job scheduling problems.

Traditionally, scheduling problems focused on determining the optimal sequence of jobs processing

in a deterministic environment, or subject to uncertainties that are represented by probability

distributions. However, to the best of our knowledge, the issue of testing has not been studied in

published literature (the recent work of Sun et al. (2014) studied a very special case of this model).

The rest of this work is organized as follows. In Section 2 we describe the model, the new cost

accounting scheme, and the resulting DP formulation. Section 3 contains an analysis of the model

and the characterization of the optimal policy, a characterization that we then use in Section 4 to

develop algorithms that solve the problem near-optimally. In Section 5 we study a myopic policy

and prove its optimality under a certain assumption. In Section 6 we discuss the value of testing,

and in Section 7 we generalize the model to a broader settings and show that the results of the

basic model still hold. We conclude in Section 8 and discuss future research directions. Note that

some of the proofs were omitted due to space limitation, but these appear in an online appendix.

2. Mathematical Formulation

Consider N0 jobs that need to be processed by a single non-preemptive server. Each job i, is

associated with a given processing time ti as well as a weight wi that represents the relative

importance of the job. The duration ti and weight wi of job i are a-priori random variables (T,W )

distributed according to a joint distribution D with support [1,D]× [1, V ], and are independent

and identically distributed across jobs.

When the server becomes idle, the scheduler could do one of the following. It can process a job,

in which case the the processing time T and the weight W of the job are realized. However, the job

must be processed with no preemption. Alternatively, the server can be used to test a job, which

requires a specified processing time ta, and reveals the required processing time and weight of the

specific job. After testing, the job could be put on hold and processed later. Thus, whenever the

server becomes idle, three decisions are available: process one of the “known” jobs (i.e., process a

job that was tested), process an “unknown” job (i.e., process a job that was not tested), or test

an “unknown” job. Note that both known and unknown pertain to jobs that have not yet been

processed.

The system’s state can be expressed as a vector (N, [t1,w1, ..., tn,wn]), where N and n denote

the number of unknown and known jobs, respectively, and t1,w1, ..., tn,wn denote the realization

of the processing times and weights of each of the n known jobs. When there are no known jobs,

the system state is simply (N, []). Without loss of generality, we always assume that the ratio ti/wi

is non-decreasing in i. We denote by ρ=E [T ]/E [W ] and ρi = ti/wi the processing time to weight

(importance) ratio for an unknown job and a given tested job i, respectively. The action space
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can be described by the set {test, processu, processi}. The controls refer to testing an unknown

job, processing an unknown job, and processing the known job i. The goal is to find an adaptive

scheduling policy that minimizes the expected weighted sum of completion times. This will be

denoted as the S&T model (Scheduling with Testing).

Before presenting a DP formulation for the problem, we show in Section 2.1 below that a variant

of the WSPT rule extends to our problem. This allows introducing a marginal cost accounting

scheme in Section 2.2, which is then used to obtain a DP formulation for the problem (Section 2.3).

2.1. The WSPT Rule

The deterministic variant of the problem studied in this paper is known to be solved optimally by

the policy that processes jobs in a non-decreasing order of their ratio (a.k.a., the WSPT rule or

Smith’s rule, see Smith (1956)). A different (dynamic) view of this rule is that the optimal policy

always selects for processing the job with the lowest ratio.

In this section, it is shown that a weaker version of this property holds for the S&T model (this

will later be extended in Section 3). Specifically, we show that when processing, it is optimal to

process a known job when its ratio is less than the ratio of an unknown job.

Note that while this property is usually proven using a simple interchange argument, in the S&T

model test actions can take place between processing of any two jobs. In such a case, interchanging

the two jobs to form a decreasing ratio order might no longer guarentee an improved scheduling

policy. Moreover, by testing, we observe the true ratio of jobs, which might also affect the optimal

scheduling order.

In Lemma 1 below, we show that given that two jobs that are processed consecutively, their

ratio must be non-decreasing. We then prove in Lemma 2 a stronger property that given two jobs

do not undergo testing, it is sub-optimal to process the job with the higher ratio before processing

the job with the lower ratio (even when the jobs are not processed consecutively).

Lemma 1. It is sub-optimal to process a job immediately after processing a job with a higher

ratio.

Proof. See Appendix A.1.

Lemma 2. Processing a job (known or unknown) with a ratio higher than the ratio of a known

job is sub-optimal.

Proof. See Appendix A.2.

Note that Lemma 2 significantly reduces the actions space. At any state, we need to choose only

between testing or processing an unknown job, and processing the known job with the smallest

ratio.
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2.2. Marginal Cost Accounting

Marginal cost accounting is related to the concept of Linear Ordering (see Queyranne et al. (1994)

and the references therein). For the problem without testing, policies are described by linear order-

ing using the processing order of any pair of jobs. The objective value can then be written as∑n

i=1 tiwi+
∑

i 6=j (1i<jtiwj), where 1i<j is the indicator function for the event that job i is processed

before job j. We see that each job i contributes its processing time to itself (witi), and to every

job j that is processed afterward (tiwj).

When jobs can be tested, one has to consider in addition the further delays caused by testing.

For job i, the delays due to testing are ta times the number of tested jobs prior to job i. With

hindsight, we can write the objective value as follows:

Jmrg (N0, []) =

N0∑
i=1

tiwi +
∑
i 6=j

(1i<jtiwj) +

N0∑
i=1

wita (# of tested jobs prior to job i) .

Lemma 2 implies that as jobs are tested and their respective values ti, wi become known, the

optimal sequence of processing is partially determined. Therefore, some of the future costs can be

computed at the time of testing. More generally, in marginal cost accounting, we charge all of the

future costs that become known due to present action.

Specifically, when at state (N, [t1,w1, ..., tn,wn]) an unknown job l 6∈ {1..n} is tested and the

values (tl,wl) are realized, then the delays caused by testing, ta (Σn
i=1wi + (N − 1)E [W ] +wl), and

the ordering costs with respect to other known jobs, tlwl+Σn
i=1

(
1ρl<ρi (tlwi) + 1ρl>ρi (tiwl)

)
can be

charged. Furthermore, if an unknown job is processed, the ordering costs with respect to all other

jobs, E [TW + Σn
i=1Twi + (N − 1)TE [W ]] can be charged. This include the “self imposing cost”

TW , the costs associated with known jobs Σn
i=1Twi, and the costs associated with the other N −1

unknown jobs, which on expectation are (N − 1)TE [W ] (we use the independence between jobs).

Finally, when known job 1 is processed, the additional costs are the ordering costs of job 1 with

respect to the unknown jobs: Nt1E [W ]. Note that other ordering costs have been already accounted

for by the previous actions.

2.3. DP Formulation

In this section we describe a DP formulation of the problem. The state or the DP is represented by

the vector (N, [t1,w1, ..., tn,wn]) defined previously. From Lemma 2 we can restrict the control space

to {test, processu, process1}. The transitions are straightforward, whereas processing an unknown

job decreases N by 1; processing job 1 removes job 1 from the state; testing an unknown job,

decreases N by 1, and adds a known job to the state with the realizations of the processing time
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and weight (T,W ). This occurs with probability defined by the distribution D. Using the marginal

cost account scheme (Section 2.2), we define the Bellman’s equation as follows:

Jmrg (N, [t1,w1, ..., tn,wn]) = min



E [TW ] + (
∑
wi +NE [W ]) ta+ test

+E [
∑n

i=1 min{Wti,wiT}]
+E [Jmrg (N − 1, [t1,w1, ..., tn,wn]∪{T,W})]

E [TW ] + (
∑
wi + (N − 1)E [W ])E [T ]+ processu

+Jmrg (N − 1, [t1,w1, ..., tn,wn])

NE [W ] t1 +Jmrg (N, [t2,w2, ..., tn,wn]) process1

(1)

Jmrg (0, [t1,w1, ..., tn,wn]) = 0.

Since T and W are random, the transition to the next system state is random, and as a result, the

cost-to-go is captured through expectation over all possible states. Note that this DP formulation

has a high-dimensional state space that is likely to explode, making it computationally intractable

to solve.

3. Properties of the Optimal Policy

In this section, the DP formulation of described in Section 2.3 is leveraged to characterize structural

properties of optimal policies. These are then used to devise a low-dimensional DP formulation.

We start by introducing a new quantity ρa, that together with ρ= E [T ]/E [W ], will be key to

characterizing the optimal policy.

Definition 1. The testing ratio ρa is defined as the unique solution to the equation:

ρa = x : ta−E
[
(xW −T )

+
]

= 0. (2)

Lemma 3 below shows that ρa is well defined.

Lemma 3. (1) The function f (x) = ta−E
[
(xW −T )

+
]

is non-increasing in x. Moreover, f (x)

is strictly decreasing in x≥ inf Support (T/W ), where its value is ta > 0.

(2) The solution to ta−E
[
(xW −T )

+
]

= 0 is unique.

(3) If x< ρa then ta−E
[
(xW −T )

+
]
> 0; if x> ρa then ta−E

[
(xW −T )

+
]
< 0.

(4) ρa <ρ⇔ ta <E
[
(ρW −T )

+
]
.

Proof. Straightforward. Q.E.D.

The quantity ρa has the intuitive meaning of the minimal job ratio, for which testing earlier is

favored to testing later. As we will see, ρa is a trigger point for testing unknown jobs; specifically,

we will show that it is never optimal to test an unknown job after a known job i with ρa < ρi or
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before a known job with ρa > ρi. Similarly, ρ will serve as a trigger point for processing unknown

jobs, and we will show that it is never optimal to process unknown jobs after a known job i with

ρ< ρi, or before a known job i with ρ> ρi.

Using ρ and ρa we can divide known jobs into three groups: (i) low-ratio jobs (ρi <min(ρ, ρa));

(ii) medium-ratio jobs (min (ρ, ρa)<ρi <max(ρ, ρa)); and (iii) high-ratio jobs (ρi >max(ρ, ρa)).

For ease of exposition we assume that ρa 6= ρ (no loss of generality), and that for each i, we

have ρi 6= ρa and ρi 6= ρ. (This is with a slight loss of generality that can be easily resolved but

hinders readability.) For state (N, [t1,w1, ..., tn,wn]), denote the set of low/medium/high ratio jobs

by SLow/SMed/SHigh, respectively. Observe that these sets are state-dependent.

Figure 1 illustrates this classification of jobs assuming that ρa <ρ. Jobs are ordered on the axis

shown according to their ratio. Unknown jobs are denoted by a circle, and known jobs are denoted

by “x”. In this example, there is one unknown job, one low-ratio job, three medium-ratio jobs, and

two high-ratio jobs.

Figure 1 Classification of jobs according to their ratio (assuming ρa < ρ).

The next lemma shows that the low-ratio jobs have the highest priority and are the first to be

processed with no futher delays immediately after they were tested.

Lemma 4. For any state (N, [t1,w1, ..., tn,wn]), in which job 1 has a low-ratio, processing job 1

is the only optimal control.

Proof. See Appendix A.3.

Lemma 4 implies that low-ratio jobs should be processed immediately upon testing. This implies

that we can always assume that ρa <ρ1 and ρ< ρ1. That is, under an optimal policy there is never

a state with a low-ratio job.

We now consider two cases separately: (1) ρa <ρ, and (2) ρa >ρ. In the first case (Section 3.1),

we show that any testing must precede any processing of medium-ratio, high-ratio, and unknown

jobs. Consequently, all testing should be done immediately after processing low-ratio jobs, and once

Figure 2 Example: testing before processing low-ratio jobs
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we stop testing, all remaining jobs are processed in non-decreasing order of their ratio, essentially

following the WSPT rule. For the second case (Section 3.2), we show that unknown jobs should

never be tested. Therefore, the problem is reduced to the traditional problem (without testing), of

minimizing the weighted sum of completion times.

3.1. Short Test Time (ρa <ρ)

Using the assumption that ρa < ρ, we first prove a local optimality condition that pertains to

testing immediately after processing. Despite being local, this result together with the previous

lemmas and properties impose a significant amount of structure on the optimal policy.

Lemma 5. If ρa < ρ, then testing immediately after processing jobs with ratio higher than ρa is

sub-optimal.

Proof. See Appendix A.4.

Lemmas 4 and 5 can be thought of as an interchange property of testing. Similarly to the way

the interchange argument reorders jobs in the problem without testing, the two lemmas reorder

testing so that it is performed after processing low-ratio jobs, and before processing any other job.

We conclude that when ρa < ρ, the optimal policy always processes all low-ratio jobs after

testing, and generally operates in two phases. In the first phase, unknown jobs are tested, and

processed immediately only if they have a low-ratio. In the second phase, all the jobs in the system

are processed in a non-decreasing order of their ratio. This means that the problem can be seen

as a stopping problem, where the decision to continue corresponds to testing an unknown job

(and processing if the respective job has a low-ratio), and stopping corresponds to processing all

remaining jobs (see Figure 3). These results are summarized in the following theorem.

Theorem 1. For ρa <ρ, the dynamics of the optimal policy are:

(1) Process all jobs with ratio below ρa in a non-decreasing order of their ratio;

(2) Either process all remaining jobs in a non-decreasing order of ratio, or, test a job and go

back to (1).

(when we process all the jobs in non-decreasing order of their ratio (in case 2), we use ρ as the

ratio for all unknown jobs and thus can process them all consequentially).

Proof. Immediate from Lemmas 4 and 5. Q.E.D.

Interestingly enough, the form for the optimal solution bears a close resemblance to current

practices of emergency departments. The highest priority is given to urgent patients (high weight),

and to cases that can be quickly resolved (low processing times). Other cases are triaged (tested)

and put on hold. This may suggest that the triage model should be considered in other industries

(possibly adjusted to the specific area of application).

Note that some of the questions are yet unanswered. Mainly, should we test or process all jobs

after all low-ratio jobs have been processed (that is, when to stop).
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Figure 3 The structure of the optimal policy when ρa < ρ.

3.2. Long Test Time (ρ< ρa)

When ρ< ρa, we show that testing is always sub-optimal, which implies that the problem reduces

to the traditional problem without testing.

Theorem 2. If ρ < ρa, then for every state (N, [t1,w1, ..., tn,wn]) the optimal policy processes

all jobs in a non-decreasing order of their ratio (i.e., testing is never optimal).

Proof. See Appendix A.5.

While a basic assumption of the model is that in the initial state of the system there are N0

jobs, Theorem 2 (and all other lemmas and theorems) holds even when the starting state contains

known jobs.

Note that when ρ < ρa, the optimal policy of processing all jobs in a non-decreasing order of

their ratios is a special case of the optimal policy when ρa < ρ, in which testing should not be

performed.

4. Solutions and Algorithms

In this section, we develop an efficient algorithmic solution to the problem. In Section 4.1 we

use the properties of the optimal policies proven in Section 3 to obtain a low-dimensional DP

formulation. In Section 4.2 we analyze the new formulation, and in Section 4.3, we use it to develop

an approximation scheme.

4.1. Low Dimensional DP Formulation

We start by defining several statistics for an arbitrary state (N, [t1,w1, ..., tn,wn]):

• ωM ,
∑

i∈SMed
wi (the total weight of medium-ratio jobs),

• ωH ,
∑

i∈SHigh
wi (the total weight of high-ratio jobs),

• τM ,
∑

i∈SMed
ti (the total processing time of medium-ratio jobs)

• ωτ ,
∑

i∈SMed∪SHigh
E [min (Twi, tiW )] (the expected ordering costs of a tested job and the

known jobs).

Building on Theorem 1 and the stopping time interpretation for the S&T problem, we formulate

an improved DP.
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Definition 2. The Low Dimensional DP is defined as following

JLD

N,
ωM , ωH ,
τM , ωτ

 = min



E [TW ] + (ωM +ωH +NE [W ]) ta +ωτ+

+
∑

d,v∈SD
pd,v



1 d
v<ρa

d (N − 1)E [W ]+

1 d
v<ρa

JLD (N − 1, ωM , ωH , τM , ωτ)+

1ρa< d
v<ρ

JLD

N − 1, ωM + v,ωH ,

τM + d,

ωτ +E [min (Tv,dW )]

+

1ρ< d
v
JLD

(
N − 1, ωM , ωH + v, τM ,

ωτ +E [min (Tv,dW )]

)


test-one

NE [TW ] +E [W ]NτM +NE [T ]ωH +
(
N
2

)
E [T ]E [W ] process-all

(3)

JLD

 0,
ωM , ωH ,
τM , ωτ

 = 0.

In these expressions, d and v are realizations of the processing time and weight of an unknown job.

There are only two controls in the LD DP: “test-one” and “process-all”. Testing one job refers to

testing a job and processing the respective job if it has low-ratio. Processing all refers to processing

all jobs in a non-decreasing order of their ratio.

We next show that there is an equivalence between the DP formulation of Section 2.3, and the

LD DP.

Theorem 3. For every state (N, [t1,w1, ..., tn,wn]), the following holds:

Jmrg (N, [t1,w1, ..., tn,wn]) = JLD (N,ωM , ωH , τM , ωτ)

Proof. Using marginal cost accounting (Section 2.2) and the characterization of the optimal

policy (Section 3), we write the costs under the controls “test-one” and “process-all”. When we

process all jobs, the entire processing order is determined. Figure 4 illustrates the costs for the

control process-all. There are three types of costs arising from the job ordering: (1) pairs of

unknown jobs
(
N
2

)
E [T ]E [W ] +NE [TW ] (Figure 4a); (2) pairs consisting of a medium-ratio jobs

and unknown jobs E [W ]N
(∑

i∈SMed
ti

)
(Figure 4b); and (3) pairs of high-ratio jobs and unknown

jobs NE [T ]
(∑

i∈SHigh
wi

)
(Figure 4c). The complete cost when we process all jobs is therefore:

NE [TW ] +E [W ]N

( ∑
i∈SMed

ti

)
+NE [T ]

 ∑
i∈SHigh

wi

+

(
N

2

)
E [T ]E [W ] .

Similarly, Figure 5 illustrates the source of the costs for the control test one. In Figure 5a we

see the system state before performing the test-one action. The immediate costs from the control



Levi, Magnanti and Shaposhnik: Scheduling with Testing
14 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Figure 4 LD DP: cost incurred under the control process all.

Figure 5 LD DP: cost incurred under the control test one.

include the self imposing costs of the tested job E [TW ] (Figure 5b), the costs from the testing delay(∑
i∈SMed∪SHigh

wi +NE [W ]
)
ta (Figure 5c), and the costs induced by the pairs of known jobs

and the tested job
∑

i∈SMed∪SHigh
E [min (Twi, tiW )] (Figure 5d). Conditioning on the realization

of the tested job, we add the costs-to-go. If the tested job has low-ratio (Figure 5e, d/v < ρa), it

is processed immediately and a cost of d (N − 1)E [W ] +Jmrg (N − 1, [t1,w1, ..., tn,wn]) is incurred.

This is the processing time of the tested job multiplied by the number of unknown jobs and their

expected weight, and the future costs from the next state, which is similar to the current state

only with one less unknown job. Otherwise, if the tested job has medium-ratio (Figure 5f) or high-

ratio (Figure 5g), we add the costs of the next state (Jmrg (N − 1, [t1,w1, ..., tn,wn]∪{d, v})) which

contains one less unknown job, and an additional known job with processing time and weight (d, v),

respectively.
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We can now write Bellman’s Equation for the DP with the controls “test-one” and “process-all”.

Jmrg

(
N,
[t1,w1, ..., tn,wn]

)
= min



E [TW ] +
(∑

i∈SMed∪SHigh
wi +NE [W ]

)
ta+

+
∑

i∈SMed∪SHigh
E [min (Twi, tiW )]+

+
∑

d,v∈SD
pd,v



1 d
v<ρa

d (N − 1)E [W ]+

1 d
v<ρa

Jmrg (N − 1, [t1,w1, ..., tn,wn])+

1ρa< d
v<ρ

Jmrg

N − 1,

[t1,w1, ..., tn,wn]

∪{d, v}

+

1ρ< d
v
Jmrg

N − 1,

[t1,w1, ..., tn,wn]

∪{d, v}





test one

NE [TW ] +E [W ]N
(∑

i∈SMed
ti

)
+

+NE [T ]
(∑

i∈SHigh
wi

)
+
(
N
2

)
E [T ]E [W ]

process all

(4)

Jmrg

(
0,
[t1,w1, ..., tn,wn]

)
= 0.

Observe that the DP cost function can be represented as a function of the number of unknown

jobs (N), the total weight of medium-ratio jobs (ωM =
∑

i∈SMed
wi), the total weight of high-ratio

jobs (ωH =
∑

i∈SHigh
wi), the sum of processing times of medium-ratio jobs (τM =

∑
i∈SMed

ti), a

summation over all known jobs (ωτ =
∑

i∈SMed∪SHigh
E [min (Twi, tiW )]), and a few other constants

(e.g., E [TW ]). By substituting for these quantities, we obtain the equivalence of the two DP

formulations. That is,

Jmrg (N, [t1,w1, ..., tn,wn]) = JLD (N,ωM , ωH , τM , ωτ) .

Q.E.D.

Note that the dimension of the state space is now five (comparing with the initial DP formulation

in Section 2.3, where the dimension was as high as N0).

4.2. Optimal Threshold Policy

The LD formulation has several advantageous properties in addition to having a low dimension.

It is monotonous in its parameters, but more importantly, its optimal solution admits a threshold

structure. That is, for every value of N,ωM , ωH and τM there exists a threshold value for ωτ that

determines if the optimal action is to test or to process all jobs.

Lemma 6. The value function JLD is non-decreasing in τM and ωτ .

Proof. See Appendix A.9.
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Lemma 7. For every value of N,ωM , ωH and τM , there exists a threshold value ωτ such that

testing is the optimal control, if and only if, ωτ ≤ ωτ .

Proof. See Appendix A.10.

Lemma 7 implies that there is an efficient way of representing the optimal policy when the

support of the distribution D is discrete. The number of different values that N,ωM , ωH , and τM

can take is polynomial in N0, D, and V , and for every value of (N,ωM , ωH , τM), exactly one value

of ωτ is sufficient to describe the optimal policy.

However, to find the actual values of these thresholds we need to solve the DP. This cannot be

done using standard DP methods due to the exponential growth of the state space. In the next

section we develop an approximation scheme for solving the low-dimensional.

4.3. FPTAS

We use Approximate Dynamic Programming (ADP) to construct an FPTAS. We start by describing

the state space of the ADP formulation. The state space is similar to the state space in the

low-dimensional formulation, except for having rounded values for the second through the fifth

dimensions. The first dimension of the state space takes values from the set {0,1, ...,N0}. The

second and third dimensions of the LD state space, namely ωM and ωH , can take values from the

set
{∑

i∈S wi
}

, where wi ∈ {1..V }, and S represents a collection of known jobs. The minimal and

maximal values of ωM and ωH , are 0 and N0V , respectively. The discretized set of values is defined

as:

S1 =
{

0,1, (1 + δ), (1 + δ)2, ..., dN0V e
}
.

The operator d·e rounds up to the next power of 1 + δ. Similarly, the maximal values that the

dimension τM and ωτ can hold are N0D, and N0DV , respectively. The discretized sets of values

for the dimensions τM and ωτ are defined as:

S2 =
{

0,1, (1 + δ), (1 + δ)2, ..., dN0De
}
,S3 =

{
0,1, (1 + δ), (1 + δ)2, ..., dN0DV e

}
.

Bellman’s equation for the ADP can be written as follows:

Jδ

N,
ωM , ωH ,
τM , ωτ

 = min



E [TW ] + (ωM +ωH +NE [W ]) ta +ωτ+

+
∑

d,v∈SD
pd,v



1 d
v<ρa

d (N − 1)E [W ]+

1 d
v<ρa

Jδ (N − 1, dωMe, dωHe, dτMe, dωτe)+

1ρa< d
v<ρ

Jδ

(
N − 1, dωM + ve, dωHe, dτM + de,
dωτ +E [min (Tv,dW )]e

)
+

1ρ< d
v
Jδ

(
N − 1, dωMe, dωH + ve, dτMe,
dωτ +E [min (Tv,dW )]e

)


test one

E [W ]NτM +NE [T ]ωH +NE [TW ] +
(
N
2

)
E [T ]E [W ] process all

(5)



Levi, Magnanti and Shaposhnik: Scheduling with Testing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 17

Jδ

 0,
ωM , ωH ,
τM , ωτ

 = 0.

The next lemma shows that the ADP can be used as a close approximation to the low-dimensional

DP.

Lemma 8. For any state (N,ωM , ωH , τM , ωτ), the ratio between the value functions of the ADP

and the LD DP formulations is greater than or equal to one, and at most 1 + δ:

1≤ Jδ (N,ωM , ωH , τM , ωτ)

JLD (N,ωM , ωH , τM , ωτ)
≤ (1 + δ)N .

Proof. See Appendix A.11. Q.E.D.

The approximation algorithm is summarized in Algorithm 1. At each state, we use the ADP

to make decisions in the low-dimensional DP problem space. The decision of testing or processing

is done by evaluating the two controls using the approximated value function Jδ. When at state

(N,ωM , ωH , τM , ωτ), the decision we make is sub-optimal by a factor of at most (1+δ)N (Lemma 8).

Our next decision is sub-optimal by a factor of at most (1+δ)N−1. On the overall, the approximation

algorithm is sub-optimal by a factor of at most (1 + δ)N
2
0 . Therefore, setting the value of δ to

e
log 1+ε

N2
0 − 1 ensures a 1 + ε approximation.

Algorithm 1 Approximation Algorithm.

1: Choose ε

2: Set δ to e
log 1+ε

N2
0 − 1

3: Solve the ADP: calculate Jδ (N,ωM , ωH , τM , ωτ) for N ≤N0, ωM , ωH ∈ S1, τM ∈ S2, and ωτ ∈ S3
4: Set the current state S to (N0,0,0,0,0)

5: while S.N > 0 do

6: Activate the control that minimizes the value function Jδ(S)

7: Update the current state based on the selected control and the observed realization

8: end while

The size of each of the sets S1,S2, and S3 is polynomial in N0, logD, logV , and, 1/log(1 + δ).

By plugging the value of δ, we obtain the following:

1

log(1 + δ)
=

N 2
0

log(1 + ε)
=O

(
N 2

0

ε

)
,

which means that the total number of states in the ADP formulation is polynomial in the input

size and 1/ε, and we can solve the ADP in that same order of time.

The algorithm returns a 1 + ε approximation for the optimal policy, and its running time is

polynomial in the input size and 1/ε. Therefore, it is an FPTAS.
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Figure 6 An illustration of Assumption 1.

5. Optimal Myopic Policies

The optimal and near-optimal algorithmic solutions presented in the previous section allow us

to solve the problem in a polynomial number of steps. However, from a practical point of view,

N 5 may not be tractable for large instances. The heuristics on the other hand, can be efficiently

implemented, but may not always have sufficiently good performance guarantees. In this section,

we study a myopic policy that is both efficient and optimal under a relatively general assumption

(which includes the case where all jobs have equal weights).

We start with a definition before stating the assumption and the main Theorem.

Definition 3. The Single test policy (STP ) is the policy in which a single unknown job is

tested before processing all jobs in a non-decreasing order of their expected ratio (assuming there

is at least one unknown job).

Lemma 9. For any state (N, [t1,w1, ..., tn,wn]) with no low-ratio jobs and N > 0, the difference

in the objective value between policies PA and STP is equal to:

JSTP −JPA =

(
NE[W ] +

∑
i

wi

)
ta− (N − 1)E[(WE[T ]−E[W ]T )+] (6)

−
∑

i∈Medium

E[(Wti−wiT )+]−
∑
i∈High

E[(wiT −Wti)
+]

Proof. See Appendix A.12.

Assumption 1. For all jobs i that have medium ratio: ti ≤ E[T ], and for all jobs i that have

high ratio: wi ≤E[W ].

Figure 6 illustrates distributions D that satisfy Assumption 1. The support of such distributions

reside outside of the shaded area. Note that Assumption 1 includes the case of equally weighted

jobs wi =E[W ], where for medium-ratio jobs the condition ti <E[T ] holds.
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Theorem 4. Under Assumption 1, for any state (N, [t1,w1, ..., tn,wn]) with no low-ratio jobs

and N > 0, the optimal control is to process all jobs, if and only if, the following condition holds:(
NE[W ] +

∑
i

wi

)
ta ≥ (N − 1)E[(WE[T ]−E[W ]T )+] (7)

+
∑

i∈Medium

E[(Wti−wiT )+] +
∑
i∈High

E[(wiT −Wti)
+]

Proof. See Appendix A.6.

The optimal policy under Assumption 1 is summarized in Algorithm 2. From a technical point of

view, under Assumption 1 there is monotonicity in Equation (7) in the sense that with every test

the difference between the lefthand side and righthand side increases. This allows us to identify the

stopping condition. From an intuitive perspective, the optimal policy is sensitive to realizations

within the shaded area. On expectation, it might not worth testing once, but if the realization

happens to be an outcome with exceptionally high processing times and weight, we suddenly might

want to test again since the cost of a sub-optimal schedule increased comparing to the testing cost.

Based on this intuition, we construct an example and show that when Assumption 1 is not satisfied

the myopic policy need not always be optimal (see Appendix A.7).

Algorithm 2 The myopic policy algorithm.

1: Process all jobs with ratio below ρa in a non-decreasing order of their ratio.

2: while the following condition is satisfied(
NE[W ] +

∑
i

wi

)
ta < (N − 1)E[(WE[T ]−E[W ]T )+]

+
∑

i∈Medium

E[(Wti−wiT )+] +
∑
i∈High

E[(wiT −Wti)
+];

do

3: Test jobs and process them immediately if they have low-ratio.

4: end while

5: Process all jobs in a non-decreasing order of their ratio, where ρ is the ratio for all unknown

jobs, and the processing order of any two jobs with equal ratio can be arbitrarily chosen.

6. The Value of Testing

In this section we address the question of how much can we actually gain from testing. We start by

analyzing a few simple heuristics, and then examine how the different problem parameters affect

the value of testing.
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6.1. Heuristics

We analyze the performance of three simple policies:

• “Process-all”(PA, which was introduced in Section 3.1),

• “Test-all first” (TAF ),

• “Test-all process-low-ratio” (TAPL).

As their names suggest, in “test-all first”, we start by testing all jobs, and then process them

in a non-decreasing order of job ratios. Under the policy “test-all process low-ratio”, we test all

unknown jobs, but immediately process low-ratio jobs, and process other known jobs in a non-

decreasing order of ratio only after all testing has been completed. Note that policies PA and

TAPL correspond to the two extremes of the optimal policy: the first, when the stopping time is

zero, and the latter, when the stopping time is N . We denote by OPT the optimal policy.

6.1.1. Clairvoyant Solution (CL) We use the clairvoyant solution (CL) as a lower bound

for the optimal policy. That is, we calculate the objective value when the processing times and

weights are known to the scheduler (or alternatively if the testing time is zero). Using marginal

cost accounting, the objective value is

JCL (N, []) = E

[
N∑
i=1

TiWi +
N∑
i=1

i−1∑
j=1

min(WiTj,WjTi)

]

= NE [TW ] +

(
N

2

)
E [min (WiTj,WjTi)] .

The objective value consists of the self imposing costs (
∑N

i=1 TiWi), and the ordering costs of the

perfectly ordered jobs (as all the information is known in advance).

6.1.2. The “Process All” (PA) Policy Like the clairvoyant solution, we use marginal cost

accounting to calculate the objective value under policy PA:

JPA (N, []) = NE [TW ] +

(
N

2

)
E [T ]E [W ] .

The self imposing cost of every job is E [TW ] and every pair contributes a cost of E [T ]E [W ] to the

objective (we use the independence between jobs). We obtain the following bound on the objective

value of policy PA:

JPA (N, [])

JOPT (N, [])
≤ JPA (N, [])

JCL (N, [])

=
NE [TW ] +

(
N
2

)
E [T ]E [W ]

NE [TW ] +
(
N
2

)
E [min (WiTj,WjTi)]

≤
(
N
2

)
E [T ]E [W ](

N
2

)
E [min (WiTj,WjTi)]

=
E [T ]E [W ]

E [min (WiTj,WjTi)]
.
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The process all policy is of special interest to us, as it serves as basis for comparison when testing

is not available. Put another way, comparing the optimal policy with the process all policy tells us

the value of testing.

To get a better sense of the bound, we list below its values for a sample of distributions for the

unweighted case (W = 1). In favor of readability, the proofs are included in Appendix A.13.

Lemma 10. If T ∼Uni (a, b) and W = 1 the policy PA is a 3(b+a)

2(b+2a)
-approximation for the optimal

policy.

Lemma 11. If T ∼Exp (λ) and W = 1 the policy PA is a 2-approximation for the optimal policy.

Lemma 12. If T ∼

{
a p

b 1− p
and W = 1 the policy PA is a pa+(1−p)b

a+(1−p)2(b−a) -approximation for the

optimal policy.

In the last example, when a = 0, p = 1/2, policy PA is a a 2-approximation, and for a = 0, b =

M,p= 1− 1/M , PA is an M -approximation. This means that policy PA can do arbitrarily bad.

When the testing time is relatively short, the clairvoyant solution is close to the optimal policy,

and the bound becomes tight. In these examples, we see that testing can improve the objective by

33% for the uniform distribution, by 50% for the exponential distribution, and in some cases can

do even better (e.g., the M -approximation).

6.1.3. The “Test-All First” (TAF) Policy When the testing time is short, it makes sense

to test all jobs before doing any processing so that processing will be performed in the optimal

order. It is easy to see that:

JTAF (N, []) = taN
2E [W ] +JCL (N, []) , (8)

which results in an approximation ratio of

JTAF (N, [])

JOPT (N, [])
≤ JTAF (N, [])

JCL (N, [])

=
taN

2E [W ] +JCL (N, [])

JCL (N, [])

≤ 1 +
2taE [W ]

E [min (WiTj,WjTi)]
.

Indeed, as ta approaches zero, the TAF policy becomes optimal.
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6.1.4. The “Test-All Process Low-Ratio” (TAPL) Policy One could try to improve

policy TAF by processing low-ratio jobs immediately upon detection (Lemma 2).

The TAPL policy has two types of additional costs compared with the clairvoyant solution: due

to testing delays, and due to sub-optimal processing order. In terms of testing delays costs, the

completion time of all medium- and high-ratio jobs include the testing time of all N jobs, which

results in an additional cost of taE [W |T/W > ρa]N per job. Low-ratio jobs carry average testing

delay costs of taE [W |T/W < ρa] (1 +N)/2.

In terms of ordering costs, medium- and high-ratio jobs are scheduled optimally with respect to

all other jobs. Low-ratio jobs are optimal with respect to medium- and high-ratio jobs, but could

be sub-optimal with respect to other low-ratio jobs. This yields an expected additional cost of

E
[
(W2T1−W1T2)

+ |T1/W1, T2/W2 <ρa

]
to every pair of low-ratio jobs.

Denoting by N l the number of low-ratio jobs, we obtain the following:

JTAPL (N, []) = JCL (N, []) +E
[(
N l

2

)]
E
[
(W2T1−W1T2)

+ | T1

W1

,
T2

W2

<ρa

]
+taE

[
N −N l

]
NE

[
W | T

W
> ρa

]
+ taE

[
N l
] 1 +N

2
E
[
W | T

W
< ρa

]
. (9)

Comparing the costs under policies TAF and TAPL, we observe that under policy TAF, the

total testing time penalty (taN
2E[W ]) is higher, but on the other hand, the processing order is

optimal. In other words, policy TAPL trades the optimality of the processing order, in exchange

for lower testing times. Using Equations (8) and (9), we can conclude in what cases the tradeoff is

worthwhile.

6.2. Variability

In order to obtain insights on how the variability of the distribution D affects the value of testing,

we consider a more simple case without weights. We compare the model with the distribution of

T with a more variable random variable T ′ from a distribution that admits convex ordering with

respect to T , that is T ≤cx T ′.

In this case the bound on the process all policy becomes E [T ]/E [min (Tj, Ti)]. Since the function

min is concave, it is easy to see that E [min (Tj, Ti)]≥E
[
min

(
T ′j , T

′
i

)]
, and therefore

E [T ]

E [min (Tj, Ti)]
≤ E [T ′]

E
[
min

(
T ′j , T

′
i

)] .
As variability increases, the bound becomes looser. This seems to indicates that the value of

testing increases with variability. It matches our intuition since that when variability is higher, the

processing order of jobs becomes more significant (e.g., the processing order of jobs with duration

1,10 is more critical than the processing order of jobs with duration 5,6).
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6.3. Sequential Tests

We turn to investigate how the information obtained from testing, affects the value of future tests.

Some intuition can be gained from analyzing the low-dimensional DP formulation. Specifically, we

perform a sensitivity analysis to learn how changes in the values of ti and wi affect the optimal

control. We look at the derivatives of the value function under each of the controls test one and

process all.

Lemma 13. The derivatives of the value function under the controls test and process all with

respect to wi and ti satisfy the following conditions:

(1) d
dti
JprocessLD =

{
NE [W ] i∈ SMed

0 i∈ SHigh
;

(2) d
dwi
JprocessLD =

{
0 i∈ SMed

NE [T ] i∈ SHigh
;

(3) d
dti
J testLD ≤ d

dti
E [min (wiT,Wti)] + (N − 1)E [W ];

(4) d
dwi
J testLD ≤Nta + d

dwi
E [min (wiT,Wti)] + (N − 1)E [T ].

Proof. Straightforward from Equation (3). Q.E.D.

Considering a medium-ratio job i, Lemma 13 indicates that if the processing time of the respective

job increases, testing will become more advantageous compared to processing (since d
dti
JprocessLD >

d
dti
J testLD ). On the other hand, if job i has high-ratio and its processing time increases, then testing

becomes less attractive. That is, testing becomes more attractive when the changes draw the ratio

of a known job towards ρ. We observe a similar insight, when the weight of medium-ratio jobs

decreases, which increases jobs ratios, and makes testing more advantageous. This suggests that

the test action is optimal when the ratio of known jobs is closer to ρ, and processing all jobs is

optimal when the known job ratios are far from ρ.

6.4. The Initial Number of Jobs

We proceed to study how the value of testing is affected by the initial number of unknown jobs.

Specifically, we use a sufficient condition on the state space for which testing is optimal, to find a

lower bound on the number of times that the control test one is optimal (assuming ρa <ρ).

The following quantity is important for describing the lower bound on the optimal stopping time.

Definition 4. We define the stopping factor β as

β :=
tmaxa

ta
=

E
[
(ρW −T )

+
]

E
[
(ρaW −T )

+
] =

E
[
(E [T ]W −TE [W ])

+
]

taE [W ]
.

To develop intuition regarding the value β, consider the case when an unknown job is tested

immediately after processing another unknown job. The stopping factor β is the ratio between

the savings from testing earlier (using an improved schedule), and the additional cost of testing
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(from having another job waiting while we test). Intuitively, the higher the values of β, it is more

beneficial to test. (Note that as the testing time decreases, β increases, which matches our intuition

that for higher values of β, testing is more beneficial.) Also note that when the ratio is less than

1, it is sub-optimal to test (since ρa <ρ). We can therefore assume that β is greater than 1.

Lemma 14. For every state (N,ωM , ωH , τM , ωτ), where β > (NE [W ] +ωH)/ (N − 1), the opti-

mal control is to test.

Proof. See Appendix A.14. Q.E.D.

Note that the lefthand side of the inequality in Lemma 14 above (i.e., β) is a constant for the

problem, and that the righthand side dynamically evolves as a function of the state. Moreover,

β > 1, and the righthand side goes to 1 as N becomes larger. Therefore, when the number of initial

unknown jobs is large, testing is optimal for an increasing number of jobs. From a practical point

of view, in congested systems with many unknown jobs, testing is most beneficial.

In the next theorem, we use Lemma 14 to obtain a lower bound on the minimal number of tests.

Theorem 5. For finite and symmetrical distributions of jobs weight, the optimal policy tests for

at least Ntests periods where

Ntests =

⌊
N0

β− 1

β+ 1
− β

β+ 1

⌋
=N0− 1−

⌈
2N0 +β

β+ 1

⌉
.

Proof. See Appendix A.8. Q.E.D.

Lemma 14 suggests that the higher the number of unknown jobs is, the more likely we are to

test, that is the value of information increases with N0.

Another implication of Lemma 14 (that can be derived similarly to Theorem 5), is that when

the starting state has N0 unknown jobs, to find the optimal policy we need to solve a DP with

only N = β/(β − 1) jobs. While this quantity could be high (especially when the testing time

is short), it does not depend on N0, which indicates that the policy that tests all N0 jobs and

processes them if they have low-ratio is asymptotically optimal (to see this, we briefly note that

JLD (N0,0,0,0,0) = Θ(N 2
0 ), and that JLD (β/(β− 1), ωM , ωH , τM , ωτ) = Θ((β/(β − 1))2 + (β/(β −

1))N0), which means that testing and processing low-ratio jobs immediately can be sub-optimal

up to a cost that decreases asymptotically with N0).

6.5. The Testing Time

Using the condition ρ< ρa, we derive a threshold value for the testing time above which testing is

never optimal.

Theorem 6. If the testing time is greater than tmaxa :=E
[
(ρW −T )

+
]
, testing is never optimal.
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(a) Polar (b) Uniform (c) Binomial

Figure 7 The probability mass function of the Polar, Uniform, and, Binomial distributions.

Proof. By definition, if ta > tmaxa , then ta > E
[
(ρW −T )

+
]
. Therefore, ρa > ρ (Lemma 3), and

testing is not optimal (Theorem 2). Q.E.D.

Theorem 6 provides an upper bound on the testing time for which testing is still beneficial. In

Section 6.4 we saw that it is in fact the smallest possible bound (when ρa < ρ, testing is always

optimal for large enough values of N0).

6.6. Numerical Illustration

To illustrate the aforementioned observations, we plot in Figure 8 the improvement to the objective

value from testing, for three probability distributions (see Figure 7), and three values of the initial

number of jobs (N0 = 6,7,8).

For all curves, we see that when the testing time is high, processing all jobs is optimal (that is

the value of testing is zero, Theorem 6). As the testing time decreases, the performance of policy

PA deteriorates, and the optimal policy is a two-phase policy that transitions between TAPL to

PA. Policy PA is worst when ta→ 0, where the optimal policy coincides with policies TAF and

TAPL. We also see in the figure, that the value of information increases with the number of initial

jobs, and the variance of the distribution D (with the variance of the polar distribution being the

highest, and the binomial distribution being the lowest).

7. Extensions

In this section, we study a generalization of the problem and show that it can be solved using the

analysis and methods presented in Sections 3 and 4. Specifically, we consider the case where testing

does not reveal the exact processing times and weights, but rather the class of the respective job.

For example, in the context of emergency departments, testing may reveal the type of treatment

required by the patient but there may still be uncertainty associated with the actual service time,

and severity.

We assume that there are C classes, and that for class i ∈ C, the processing time and weight

of every job Ti,Wi are R.V.s from a known distribution Di with expected processing time T̄i,
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Figure 8 The value of testing for different distributions and initial number of jobs.

Figure 9 The information revealed by testing in the original problem (a), and in the generalized problem (b).

and expected weight W̄i. The probability that a job belongs to class i is denoted by pci (which

implies that the expected processing time and weight of an unknown job are E [T ] =
∑
pci T̄i, and

E [W ] =
∑
pciW̄i respectively). Testing a job reveals its class and requires ta units of time. Here we

denote by unknown, jobs that were not yet tested, and by known jobs that were tested and which

class is known (although actual processing time and weight may still be random).

Figure 9 illustrates the differences between the original and generalized problems. In the original

problem (9a) the exact processing time is known once testing is performed. On the other hand, in

the generalized problem (9b), only the class is realized by testing, and the exact processing time

is known only after processing. Note that in the generalized problem, jobs can be tested at most

once, that is, we can test a job to find its class and the respective distribution Di of the processing

time and weight, but we cannot test it further for exact values. Also note, that if the distributions

Di are degenerate, the extended problem reduces to a discrete instance of the original problem.
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While the generalized problem is more complex, the analysis of Section 3 carries through. To

prove this, we take advantage of two properties: (1) the linearity of the expectation operator and

the objective function; and (2) the independence between jobs. In what follows, we discuss how to

modify the proofs and algorithms to accommodate the general model.

The definition of jobs ratio perfectly extends to the generalized model, with the ratio of a known

job i being ρi =E [Ti]/E [Wi]. We define the processing and testing ratios in the same way. Lemma 1

applies regardless to whether jobs are deterministic or stochastic, and it is easy to see that Lemma 2

still holds if we replace the quantities t1,w1 with the random variables T1,W1 and take expectation.

Therefore, we can once again limit the control set to testing or processing the job with the smallest

ratio.

The DP formulation for the extended problem can be developed similarly to the original for-

mulation (Section 2.3). The state space can be described by N , the number of unknown jobs, and

by T̄1, W̄1, ..., T̄n, W̄n which are the expected values of the random variables corresponding to the

tested jobs (similarly, ρi is non-decreasing in i). The extended DP formulation can now be written

as following:

Jext
(
N,
[
T̄1, W̄1, ..., T̄n, W̄n

])
= min



E [TW ] +
(∑

W̄i +NE [W ]
)
ta+ test

+E
[∑n

i=1 min
{
WT̄i, W̄iT

}]
+E
[
Jext

(
N − 1,

[
T̄1, W̄1, ..., T̄n, W̄n

]
∪{T,W}

)]
E [TW ] +

(∑
W̄i + (N − 1)E [W ]

)
E [T ]+ processu

+Jext
(
N − 1,

[
T̄1, W̄1, ..., T̄n, W̄n

])
NE [W ] T̄1 +Jext

(
N,
[
T̄2, W̄2, ..., T̄n, W̄n

])
process1

Jext
(
0,
[
T̄1, W̄1, ..., T̄n, W̄n

])
= 0.

The value function for the control process unknown, and process job 1 can be derived using the

fact the known jobs are independent from of each other (e.g., E [WT1] =E [W ]E [T1]). For the test

control, observe that the job ordering cost (i.e., E
[
min

{
WT̄i, W̄iT

}]
) between the tested job and

the already known job i, is achieved as following. If the the ratio of the tested job (T/W ) is smaller

than the ratio of job i (i.e., WT̄i > W̄iT ), a cost of W̄iT is added. Otherwise, if WT̄i < W̄iT , we

add the cost WT̄i. This is equivalent to adding the cost min
{
WT̄i, W̄iT

}
. The other components

of the test control are derived similarly to the original problem.

Considering the DP formulation for the extended problem, observe that it is identical to a discrete

instance of the original problem, where jobs are realized to their expected values. This means

that we can find the value function of the extended problem using the solution of an instance of

the original problem. Practically speaking, the extended problem reduces to the original problem.
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This implies that all the properties from Section 3 still hold, and that we can use the algorithms

developed in Section 4 to solve the extended problem efficiently.

We conclude this section by noting that while a basic assumption of the model was that the

testing time is a constant, it is easy to show that results follow even when the testing time is a

random variable Ta, which may be correlated with the processing time and weight of the tested

job. In this case, the testing threshold ρa is similarly defined using the expectation of Ta (instead

of using ta). A small modification to the DP formulation of Section 2.3 is needed, specifically,

replacing the expression NtaE [W ] by the term (N − 1)E [Ta]E [W ] + E [WTa]. We also note that

if the testing time is part of the processing time, that is, testing decreases the processing time by

ta, the structure of the optimal policy is preserved. In this case however, the testing threshold ρa

is smaller than the threshold of the original problem.

8. Conclusions

In this paper we introduced a new class of models that captures a principal exploration-exploitation

tradeoff that is common in many scheduling problems. We analyzed the problem and found an

intuitive characterization of the optimal policy. For a large number of cases, the optimal policy was

given explicitly in the form of a stopping rule. For all other cases, a novel cost accounting scheme

was used to formulate a low-dimension DP, which lead to optimal and near optimal algorithms.

We studied the performance of several intuitive policies, and how the problem parameters affect

the value of testing. Finally, it was shown that the properties and algorithms extend to a more

general model.

The concept of testing in scheduling problems seems relevant in many other setting. Some of the

directions that seem interesting to pursue are more general scheduling models with arrival of jobs

and multiple servers, models where the degree of testing can be controlled, and tests that reveal

additional information about the jobs, such as their due dates or the arrival times.
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Figure 10 Example of processing jobs in decreasing order of ratio.

Appendix A: Appendix

A.1. Proof of Lemma 1

Proof. We prove by contradiction. Let π denote the optimal policy, and assume that at some point jobs

1 and 2 are processed one after the other, and that the ratio of job 1 is greater than the ratio of job 2. We

introduce a policy π′ which is identical to policy π except for processing job 2 immediately before processing

job 1 (see Figure 10). It is easy to see that the interchange only affects jobs 1 and 2, as the expected

completion time of any other job remains the same.

We denote by Ti,Wi the random processing time and weight of job i. One of the jobs refers to a known job

with ratio ti/wi, while the other may refer to either another known job, or to an unknown job with ratio ρ.

The completion time of job 1 increased by T2, and the completion time of job 2 decreased by T1. Therefore,

the objective decreased by E [T1W2−T2W1]. We then obtain the following:

E [T1W2−T2W1] = E [T1]E [W2]−E [T2]E [W1]

= E [W1]E [W2]

(
E [T1]

E [W1]
− E [T2]

E [W2]

)
> 0,

whereas we use the independence between the two jobs for the first equality, and the assumption that the

ratio of job 1 is higher than that of job 2 to obtain the inequality. This contradicts the optimality of policy

π. Q.E.D.

A.2. Proof of Lemma 2

Proof. By contradiction, assume that at some point of time the optimal policy π processes a job i, s.t.

E [Ti]/E [Wi] > ρ1 (job 1 is a known job). Job i can be either a known or an unknown job. The resulting

schedule is illustrated in Figure 11. We denote by L the time interval between the processing of jobs i and

1 during which testing and processing of other jobs might take place. Let WL represent the total weight of

jobs processed in the time intervals L, and let TL denote the total duration of the time interval L. Note that

for any policy π, TL and WL random variables (as a special case these could be constants). In what follows

we ignore the part of the objective corresponding to the elapsed time, as this can be seen as a sunk cost

independent of future actions.

Under policy π, the expected weighted completion time of jobs i and 1 are E [TiWi], and

E [(Ti +TL + t1)w1]. If CL denotes the expected weighted completion times of the jobs processed in the time

intervals L under policy π, then the part of the objective value corresponding to jobs i, 1 and the jobs

processed in L, is

Cπ =E [TiWi +CL + (Ti +TL + t1)w1] . (10)
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Figure 11 The schedule under policy π

We now show that we can construct a policy π′ that achieves a lower expected objective value. Policy π′

imitates policy π over the interval L, while changing the order in which the processing of jobs 1 and i, and

the actions in the interval L are performed.

We start with the cases when E [WL] = 0, that is, when no processing takes place in L. If E [TL] = 0, then

the interval L is empty, and jobs i and 1 are processed consecutively. From Lemma 1 we know that policy

π is not optimal. If E [WL] = 0 and E [TL]> 0, then the policy π always performs tests (and only tests) in L.

In this case CL = 0 (but TL > 0), and so Cπ =E [TiWi + (Ti +TL + t1)w1]. An improved policy π′ is identical

to policy π except for processing job 1 before performing the test actions. It is easy to see that only job 1 is

affected by this change and that its completion time decreases.

Assume now that under policy π, E [WL] > 0. We define the ratio ρL = E [TL]/E [WL]. We are in one of

three cases:

(1) ρ1 <E [Ti]/E [Wi]≤ ρL;

(2) ρ1 <ρL <E [Ti]/E [Wi];

(3) ρL ≤ ρ1 <E [Ti]/E [Wi].

Note that we can seperate to different cases due to the independence of Wi and Ti. For any policy π,

the ratio ρL is fixed and can be determined in advance before taking any action. Calculating ρL might be

complicated and computationally challenging, but nonetheless, can be done in finite time.

Case 1, ρ1 < E [Ti]/E [Wi]≤ ρL. We construct the policy π′ as follows: first process job 1, process job i,

and then perform the actions in the interval L. The relevant part of the objective value under policy π′ is

Cπ′ =E [t1w1 + (t1 +Ti)Wi + (CL + t1WL)] ,

whereas the weighted time of job 1 is t1w1, the weighted time of job i is (t1 +Ti)Wi, and the weighted times

of the jobs in interval L is CL + t1WL. The latter is due to a delay of length t1 to the jobs in L, which

increased the objective value by t1WL. The difference in the objective values between the two policies is

therefore

Cπ −Cπ′ = E [TiWi +CL + (Ti +TL + t1)w1]−E [t1w1 + (t1 +Ti)Wi + (CL + t1WL)]

= E [Tiw1 +TLw1− t1Wi− t1WL]

= E [Tiw1− t1Wi] +E [TLw1− t1WL]

= (E [Ti]w1− t1E [Wi]) + (E [TL]w1− t1E [WL])

= w1E [Wi]

(
E [Ti]

E [Wi]
− t1
w1

)
+w1E [WL]

(
E [TL]

E [WL]
− t1
w1

)
.
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Since ρ1 <E [Ti]/E [Wi]≤ ρL, we obtain that Cπ −Cπ′ > 0 and that policy π′ is sub-optimal.

Similarly to Case 1, one can construct policies that outperform policy π under the assumptions of Cases 2

and 3. For Case 2, policy π′ is similar to policy π with an interchange between the processing of jobs i and 1.

For Case 3, in policy π′ we first process the jobs in L, then we process jobs 1, and finally we process job i and

imitate policy π thereafter. This contradicts the assumption that processing a job i when ρ1 <E [Ti]/E [Wi]

is optimal. Q.E.D.

A.3. Proof of Lemma 4

Proof. Using Lemma 2, we know that processing any other job is sub-optimal. It is left to show that

testing is also sub-optimal. We prove this by induction on the number of unknown jobs N .

Base, N = 1: Assume by contradiction that the under the optimal policy π, the control at state

(N, [t1,w1, ..., tn,wn]) is to test. We construct a policy π′, which processes job 1, tests the unknown job, and

then follows policy π (Figure 2). From Lemma 1, we know that after testing, both policies process all jobs

according to the WSPT rule. The difference in the objective value between the two policies is due to (1) an

additional testing delay under policy π, and (2) sub-optimal processing order under policy π′ when the ratio

of the tested job is smaller than ρ1. We obtain the following:

Jπmrg (1, [t1,w1, ...])− Jπ
′

mrg (1, [t1,w1, ...]) = taw1 +Prob

(
T

W
<
t1
w1

)
E
[
Tw1− t1W |

T

W
<
t1
w1

]
= taw1−Prob

(
T

W
<
t1
w1

)
E
[
t1W −Tw1|

T

W
<
t1
w1

]
= taw1−E

[
(t1W −Tw1)

+
]

= w1

(
ta−E

[
(ρ1W −T )

+
])
> 0,

which contradict the optimality of policy π.

Step, N > 1: By contradiction, assume that the optimal control under policy π is test. Using the induction

hypothesis one of two scenarios materializes: (1) the ratio of the tested job is greater than ρ1 in which case

job 1 is processed immediately after testing; (2) the ratio of the tested job is less than ρ1 in which case, the

tested job is processed immediately, followed by the processing of job 1. We compare the objective of policy

π with a policy π′ that tests only after processing job 1 (see Figure 2). In both cases, the difference in the

objective is an outcome of additional testing times (under policy π there is one more job in the system when

testing takes place), and there are savings to policy π from an improved processing order of job 1 and the

tested job. We obtain the following expression for the difference:

Jπmrg (N, [t1,w1, ...])− Jπ
′

mrg (N, [t1,w1, ...]) = taw1 +Prob

(
T

W
<
t1
w1

)
E
[
−t1W +Tw1|

T

W
<
t1
w1

]
= taw1−E

[
(t1W −Tw1)

+
]

= taw1−w1E

[(
t1
w1

W −T
)+
]

= w1

(
ta−E

[
(ρ1W −T )

+
])

> 0.

Since policy π′ has a lower objective, we obtain a contradiction to the optimality of policy π, which proves

that testing and processing unknown jobs before processing job 1 are not optimal. Q.E.D.
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Figure 12 Example: testing after processing a medium- or high-ratio job.

A.4. Proof of Lemma 5

Proof. By contradiction, assume that under the optimal policy π testing is performed immediately after

processing job i, such that ρa <ρi (Figure 12). Compare policy π with a policy π′ that tests before processing

job i. If the ratio of the tested job is lower than ρa it is processed immediately (Lemma 4), otherwise, policy

π′ processes job i and imitates policy π thereafter. Using marginal cost accounting, we obtain the following

difference in their objective:

Jπ
′

mrg (N, [t1,w1, ...])− Jπmrg (N, [t1,w1, ...]) = ETi,Wi

[
taWi−Prob

(
T

W
< ρa

)
ET,W

[
TiW −TWi|

T

W
< ρa

]]
= taE [Wi]−Prob

(
T

W
< ρa

)
ET,W,Ti,Wi

[
TiW −TWi|

T

W
< ρa

]
= taE [Wi]−Prob

(
T

W
< ρa

)
ET,W

[
E [Ti]W −TE [Wi] |

T

W
< ρa

]
= E [Wi]

(
ta−Prob

(
T

W
< ρa

)
E
[
E [Ti]

E [Wi]
W −T | T

W
< ρa

])
< E [Wi]

(
ta−Prob

(
T

W
< ρa

)
E
[
ρaW −T |

T

W
< ρa

])
= E [Wi]

(
ta−E

[
(ρaW −T )

+
])

= 0.

We obtain the first equality by comparing the objective of the two policies, conditioning on the ratio of the

tested job. If the tested job has low-ratio, it is processed immediately after testing. The difference between

the two policies is in the additional testing time, and the processing order of job i and the tested job.

The difference in the objective is: Prob
(
T
W
<ρa

)
ETi,Wi

[
taWi−ET,W

[
TiW −TWi| TW <ρa

]]
; otherwise, if

the ratio of the tested job is not low, the processing order is the same under both policies, while there is still

the additional testing cost of: Prob
(
T
W
>ρa

)
ETi,Wi

[taWi]. The third equality results from the independence

of job i and the tested job, and the following inequality holds since ρa < ρi. Note that job i is allowed to

have a random processing time and weight to cover the case when job i is an unknown job that is processed

without testing. Q.E.D.

A.5. Proof of Theorem 2

Proof. We prove by induction on N , that for any state s= (N, [t1,w1, ..., tn,wn]), testing is not optimal.

Denote by test the policy that tests the unknown job at state s.

Starting with N = 1, the case with no known jobs is trivial. If ρ1 < ρ, then Lemma 4 implies that policy

test is not optimal and the claim holds. Otherwise, if ρ < ρ1, we compare policy test with the the policy

proc−all, which processes all jobs in non-decreasing order of their ratio (in which case the unknown job has

the lowest ratio of all jobs). Using marginal cost accounting, the difference in the objective value between
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the two policies results from the additional testing time under policy test, and the sub-optimal ordering of

policy proc− all. The difference is therefore:

J testmrg (1, [t1,w1, ...])− Jproc−allmrg (1, [t1,w1, ...]) = ta
∑

wi +
∑

E [min (Wti,wiT )]−
∑

wiE [T ]

= ta
∑

wi +
∑

wiE
[
min

(
W

ti
wi
, T

)]
−
∑

wiE [T ]

=
∑

wi (ta−E [T −min (Wρi, T )])

=
∑

wi

(
E
[
(ρaW −T )

+
]
−E

[
(T − ρW )

+
])

>
∑

wi

(
E
[
(ρW −T )

+
]
−E

[
(T − ρW )

+
])

= 0.

In the fourth equality we use Definition 1 to substitute for ta with an equivalent expression. The last equality

results from simple arithmetic. This shows that J testmrg (1, [t1,w1, ...]) > Jproc−allmrg (1, [t1,w1, ...]), which means

that testing is not optimal for the base case.

Now, assume that N > 1 and the claim holds for N − 1. Once again, if ρ1 < ρ the claim follows from

Lemma 4. For ρ < ρ1, the proof follows by contradiction. Assume that testing is optimal under the optimal

policy π (see Figure 13). By the induction hypothesis, after testing we have N − 1 unknown jobs and the

optimal policy π processes all jobs in a non-decreasing order of their ratio. Thus, if the tested job’s ratio is

smaller than ρ, it will be processed before processing the next unknown job (there is at least one such job

since N > 1). If the tested job has a greater ratio, then it is processed at some point after processing the

first unknown job. We compare the objective value of policy π with that of policy π′ that first processes an

unknown job, then tests, and then processes all jobs in a non-decreasing order of their ratio. The difference

in the objective value between the two policies includes an ordering costs, and testing costs. We denote by

T,W,T1,W1 the processing times and the weights of the tested and the processed (unknown) job respectively.

The difference is:

Jπmrg (N, [t1,w1, ...])− Jπ
′

mrg (N, [t1,w1, ...]) = ET1,W1

[
taW1 +Prob

(
T

W
< ρ

)
ET,W

[
TW1−WT1|

T

W
< ρ

]]
= taE [W1]−Prob

(
T

W
< ρ

)
ET1,W1,T,W

[
WT1−TW1|

T

W
< ρ

]
= taE [W1]−Prob

(
T

W
< ρ

)
ET,W

[
WE [T1]−TE [W1] | T

W
< ρ

]
= taE [W1]−E [W1]Prob

(
T

W
< ρ

)
E
[
W

E [T1]

E [W1]
−T | T

W
< ρ

]
= taE [W1]−E [W1]Prob

(
T

W
< ρ

)
E
[
Wρ−T | T

W
< ρ

]
= E [W1]

(
ta−E

[
(Wρ−T )

+
])

> 0.

The first equality is a direct outcome of marginal cost accounting. For the third equality we use the inde-

pendence between the tested and processed unknown jobs. Finally, the inequality results from Definition 1,

using the assumption that ρ< ρa. The objective value under policy π exceeds the one under policy π′, which

is a contradiction to the optimality of testing. Q.E.D.
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Figure 13 Example: testing when ρ < ρa.

A.6. Proof of Theorem 4

Proof. There are two directions to be proved. If(
NE[W ] +

∑
i

wi

)
ta < (N − 1)E[(WE[T ]−E[W ]T )+]

+
∑

i∈Medium

E[(Wti−wiT )+] +
∑
i∈High

E[(wiT −Wti)
+],

then it is straightforward from Lemma 9 that policy STP outperforms policy PA, and therefore by Theorem 1

the optimal control is test.

We prove the second direction by induction on N . For the base case N = 1, there are only two possibilities

at state (N, [t1,w1, ..., tn,wn]): (1) process the job with the smallest expected ratio, which implies processing

all of the jobs (Theorem 1), or (2) test the unknown job, in which case there are no additional unknown jobs

left, and all jobs will be processed after a single test was done. These correspond to the policies PA and

STP . We obtain the condition of Equation (7) directly from Lemma 9.

We now assume that the assumption holds for any N − 1, and show that it holds for N . We first show

that if (
NE[W ] +

∑
i

wi

)
ta ≥ (N − 1)E[(WE[T ]−E[W ]T )+]

+
∑

i∈Medium

E[(Wti−wiT )+] +
∑
i∈High

E[(wiT −Wti)
+],

then after testing a job, we reach a state that satisfies the same condition.

There are three cases for the realization of the tested job:

1. Low-ratio job

2. Medium-ratio job

3. High-ratio job

Case 1: the low-ratio job is immediately processed in which case the lefthand side (LHS) decreases by

E[W ]ta. The righthand side (RHS), decreases by E[(WE[T ]−E[W ]T )+]. Since

ta = E
[
(ρaW −T )

+
]

< E
[
(ρW −T )

+
]

=
1

E[W ]
E[(WE[T ]−E[W ]T )+],
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we obtain that E[W ]ta <E[(WE[T ]−E[W ]T )+], and LHS remains larger.

Case 2: In this case, LHS increases by (−E[W ] +wi)ta, and RHS increases by:

−E[(WE[T ]−E[W ]T )+] +E[(Wti−wiT )+],

where ρi <ρ. A sufficient condition for LHS≥RHS is

(−E[W ] +wi)ta ≥−E[(WE[T ]−E[W ]T )+] +E[(Wti−wiT )+]

⇔ (wi)ta−E[(Wti−wiT )+]≥ (E[W ])ta−E[(WE[T ]−E[W ]T )+]

⇔ wi
(
ta−E[(Wρi−T )+]

)
≥E[W ]

(
ta−E[(Wρ−T )+]

)
⇔ wi

(
E[(Wρi−T )+]− ta

)
≤E[W ]

(
E[(Wρ−T )+]− ta

)
.

We now look at the last inequality for the realization of the medium-ratio job that satisfy the inequality. The

RHS does not depend on the realization. The LHS is increasing in ti, and decreasing in wi. This means that if

a realization (ti,wi) satisfy the inequality, then the points (ti,wi+ ε), (ti− ε,wi), and (cti, cwi) (where c < 1)

will also satisfy the inequality. The inequality holds as an equality when (ti,wi) = (E[T ],E[W ]), therefore it

will also hold for all the points (t,wi) such that ρa < t/w < ρ and ti ≤E[T ].

Case 3: As in case 2, LHS increases by (−E[W ] +wi)ta, and RHS increases by:

−E[(WE[T ]−E[W ]T )+] +E[(wiT −Wti)
+],

where ρi >ρ. A sufficient condition for LHS≥RHS is

(−E[W ] +wi)ta ≥−E[(WE[T ]−E[W ]T )+] +E[(wiT −Wti)
+]

⇔ (wi)ta−E[(wiT −Wti)
+]≥ (E[W ])ta−E[(WE[T ]−E[W ]T )+]

⇔ wi
(
ta−E[(T −Wρi)

+]
)
≥E[W ]

(
ta−E[(Wρ−T )+]

)
⇔ wi

(
ta−E[(T −Wρi)

+]
)
≥E[W ]

(
ta−E[(T −Wρ)+]

)
⇔ wi

(
E[(T −Wρi)

+]− ta
)
≤E[W ]

(
E[(T −Wρ)+]− ta

)
⇔ wi

(
E[(T −Wρi)

+]− ta
)
≤E[W ]

(
E[(Wρ−T )+]− ta

)
.

Similarly to Case 2, we want to find the range of values (ti,wi) for which the inequality holds. Observe

that the RHS is always positive, and does not depend on the realization of the high-ratio job. The LHS

is monotonically increasing in wi, and monotonically decreasing in ti. This means that if a point (ti,wi)

satisfies the inequality, then so will the points (ti,wi− ε), (ti + ε,wi), (cti, cwi) where c < 1. Since the point

(ti,wi) = (E[T ],E[W ]) satisfy the inequality (with equality), we deduce that all the high-ratio jobs with

wi ≤E[W ] also satisfy the inequality.

By the induction hypothesis, when the condition of Equation (7) is met, a policy that tests a job necessarily

processes all jobs in the next state, and therefore is the STP policy. Lemma 9 guarantees that if(
NE[W ] +

∑
i

wi

)
ta ≥ (N − 1)E[(WE[T ]−E[W ]T )+]

+
∑

i∈Medium

E[(Wti−wiT )+] +
∑
i∈High

E[(wiT −Wti)
+],

then policy PA is better than policy STP , which means that processing all jobs is the optimal control.

Q.E.D.
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State JPA Jmrg Optimal control
(0, [3, 100], [1, 110]) 0 0 process all
(0, [100, 3], [110, 1]) 0 0 process all
(0, [100, 100], [110, 110]) 0 0 process all
(0, [100], [110]) 0 0 process all
(1, [3], [1]) 115.96 115.96 process all
(2, [], []) 235.11 234.93 test one
(0, [3, 3], [1, 1]) 0 0 process all
(1, [], []) 112.97 112.97 process all
(0, [], []) 0 0
(0, [3], [1]) 0 0 process all
(1, [100], [110]) 419.97 386.79 test one

Figure 14 The solution to the model.

Figure 15 The Distribution DT,W

A.7. Example for a model where the myopic policy that is not optimal

Consider the following model: N0 = 2, ta = 0.53, and where the distribution DT,W is given by: P (3,1) = 0.5,

P (1,3) = 0.49, P (100,110) = 0.01. The parameters ρ and ρa are equal to 0.97, and 0.69, respectively (see

Figure 15 for an illustration).

The dynamic programming solution to the model is summarized in Table 14. For every state, it shows the

value function of the optimal policy (Jmrg), the cost of processing all jobs (JPA), and the optimal controls.

While the myopic policy chooses to process all jobs at the initial state (2,[],[]), the optimal policy performs

a test, and based on the realization, either processes all jobs or performs an additional test.

A.8. Proof of Theorem 5

Proof. From Lemma 14, we know that it is optimal to test as long as the following holds:

β >
N +ωH/E [W ]

N − 1
.

In the initial state of the system, N =N0 and n= 0. Each time we test, the denominator (N − 1) decreases

by 1, and the nominator (N +ωH/E [W ]) increases by at most 1 (since wi ≤ 2E [W ]). In the worst case, after
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Ntests tests (and processing of low-ratio jobs), the righthand side is at most (N0 +Ntests)/ (N0− 1−Ntests).

A sufficient condition for testing after Ntests periods is

β >
(N0 +Ntests)

(N0− 1−Ntests)
,

which implies that the control test one is optimal for at least

Ntests =

⌊
N0

(β− 1)

(β+ 1)
− β

β+ 1

⌋
periods. Q.E.D.

A.9. Proof of Lemma 6

Proof. By induction on N . Base: for N = 0 the claim holds as JLD (N,ωM , ωH , τM , ωτ) = 0.

Now assume the claim holds true for some N − 1. The value function is the minimum of two expressions.

Since τM and ωτ are non-negative, the first (test-one) is non-decreasing in τM and ωτ , and JLD (N − 1, ·, ·, ·, ·)
is also non-decreasing in τM and ωτ by the induction hypothesis. The second term (process-all) is also

non-decreasing in τM and ωτ . Q.E.D.

A.10. Proof of Lemma 7

Proof. By induction on N . Base: N = 1. Recall that:

JLD (N,ωM , ωH , τM , ωτ) = min

{
E [TW ] + (ωM +ωH +E [W ]) ta +ωτ test one

E [TW ] +E [W ] τM +E [T ]ωH process all.
(11)

The value function under the control test-one is increasing in ωτ , and the value function under process-all

is unaffected by changes in ωτ . This is the form of a threshold policy.

Step: once again, the value function under the control process all is unaffected by changes in ωτ , while

the value function under the control test one is strictly increasing in ωτ (using Lemma 6). Q.E.D.

A.11. Proof of Lemma 8

Proof. We want to show that for any state (N,ωM , ωH , τM , ωτ), the following holds:

1≤ Jδ (N,ωM , ωH , τM , ωτ)

JLD (N,ωM , ωH , τM , ωτ)
≤ (1 + δ)N .

We prove this by induction on N . We show that for each state and under each control, the ratio in the

value functions between the two DP formulation is greater than or equal to 1, and smaller than or equal to

(1 + δ)N .

Starting with the base case, N = 0, the control test-one is not feasible (no unknown jobs). Under the

control process-all the costs are identical for both formulations and the lemma holds.

Before we continue to the step, we prove two properties about the ADP formulation.

Lemma 15. The value function Jδ (N,ωM , ωH , τM , ωτ) is non-decreasing in ωM , ωH , τM , ωτ .

Proof. The proof is similar to the proof of Lemma 6 and thus omitted.

Lemma 16. The following holds:

Jδ (N,ω′M , ω
′
H , τ

′
M , ωτ

′)

Jδ (N,ωM , ωH , τM , ωτ)
≤ 1 + δ,

where x≤ x′ ≤ (1 + δ)x for x∈ {ωM , ωH , τM , ωτ}.
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Proof. We prove by induction on N , starting with the base case N = 0. Testing is not allowed (no

unknown jobs), therefore the value function is equal to the cost-to-go when choosing the control process-all:

Jδ (N,ω′M , ω
′
H , τ

′
M , ωτ

′)

Jδ (N,ωM , ωH , τM , ωτ)
=

E [W ]Nτ ′M +NE [T ]ω′H +NE [TW ] +
(
N

2

)
E [T ]E [W ]

E [W ]NτM +NE [T ]ωH +NE [TW ] +
(
N

2

)
E [T ]E [W ]

.

This expression is bounded by 1 + δ as τM and ωH satisfy: τ ′M ≤ (1 + δ)τM , ω′H ≤ (1 + δ)ωH .

For the step, we assume the induction hypothesis holds for N − 1 and prove that it holds for N . We show

that for each of the controls the ratio between the value functions under the control is bounded by 1 + δ.

For the control process-all the ratio is bounded similarly to the base case. For the control test-one we

observe that the cost function part satisfies:

E [TW ] + (ωM
′+ω′H +NE [W ]) ta +ωτ ′ ≤ (1 + δ) (E [TW ] + (ωM +ωH +NE [W ]) ta +ωτ) ,

and that the terms d (N − 1)E [W ] and Jδ (N − 1, dωMe, dωHe, dτMe, dωτe) are the same under both formu-

lations. We are left to show that the following two inequalities hold:

Jδ

(
N − 1, dω′M + ve, dω′He, dτ ′M + de,
dωτ ′+E [min (Tv,dW )]e

)
≤ (1 + δ)Jδ

(
N − 1, dωM + ve, dωHe, dτM + de,
dωτ +E [min (Tv,dW )]e

)
,

and

Jδ

(
N − 1, dω′Me, dω′H + ve, dτ ′Me,
dωτ ′+E [min (Tv,dW )]e

)
≤ (1 + δ)Jδ

(
N − 1, dωMe, dωH + ve, dτMe,
dωτ +E [min (Tv,dW )]e

)
.

These hold by the induction hypothesis, and using the following inequality which holds for v≥ 0:

dx′+ ve
dx+ ve

≤ ddxe+ ve
dx+ ve

≤ 1 + δ.

The latter holds since that
dxe+ v

x+ v
≤ dxe

x
≤ 1 + δ,

which implies that
ddxe+ ve
dx+ ve

≤ 1 + δ.

Q.E.D.

We are now ready to prove the step of the main lemma. Once again, we compare the value functions

under each of the controls. For the control process-all the two value functions are identical by definition.

For the test-one control, we look at the terms composing the cost-to-go function:

E [TW ] + (ωM +ωH +NE [W ]) ta +ωτ,

and,

d (N − 1)E [W ]

are identical in both formulations.

Using Lemma 16 and the induction hypothesis:

Jδ (N − 1, dωMe, dωHe, dτMe, dωτe) ≤ (1 + δ)Jδ (N − 1, ωM , ωH , τM , ωτ)

= (1 + δ)(1 + δ)N−1JLD (N − 1, ωM , ωH , τM , ωτ)

= (1 + δ)NJLD (N − 1, ωM , ωH , τM , ωτ) .
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Similarly,

Jδ

(
N − 1, dωM + ve, dωHe, dτM + de,
dωτ +E [min (Tv,dW )]e

)
≤ (1 + δ)Jδ

(
N − 1, ωM + v,ωH , τM + d,
ωτ +E [min (Tv,dW )]

)
≤ (1 + δ)(1 + δ)N−1JLD

(
N − 1, ωM + v,ωH , τM + d,
ωτ +E [min (Tv,dW )]

)
= (1 + δ)NJLD

(
N − 1, ωM + v,ωH , τM + d,
ωτ +E [min (Tv,dW )]

)
and,

Jδ

(
N − 1, dωMe, dωH + ve, dτMe,
dωτ +E [min (Tv,dW )]e

)
≤ (1 + δ)Jδ

(
N − 1, ωM , ωH + v, τM ,
ωτ +E [min (Tv,dW )]

)
≤ (1 + δ)(1 + δ)N−1JLD

(
N − 1, ωM , ωH + v, τM ,
ωτ +E [min (Tv,dW )]

)
= (1 + δ)NJLD

(
N − 1, ωM , ωH + v, τM ,
ωτ +E [min (Tv,dW )]

)
,

which implies that
Jδ (N,ωM , ωH , τM , ωτ)

JLD (N,ωM , ωH , τM , ωτ)
≤ (1 + δ)N .

Using Lemma 15 and the fact that rounding only increases the parameters, it is easy to see that the lower

bound on the above ratio holds as well. Q.E.D.

A.12. Proof of Lemma 9

Proof. Using marginal cost accounting, testing an unknown job carries an additional expected weighted

time of (NE[W ] +
∑

iwi) ta, but, in return, it improves the scheduling order. For any medium-ratio job, the

ordering cost of the unknown job and a medium-ratio job i, is by default Wti (since the medium-ratio job

comes before the unknown job). The savings occur when the realization of the tested job has a lower ratio, in

which case the improved ordering cost is wiT . The expected savings of the pair is therefore E[(Wti−wiT )+].

Similarly, the expected savings of high-ratio jobs is E[(wiT −Wti)
+], and the savings with respect to other

unknown jobs is equal to E[(WE[T ]−E[W ]T )+] (and also to E[(E[W ]T −WE[T ])+]. Q.E.D.

A.13. Proof of Lemmas 10, 11, and, 12

We look at the expression E [min (T1, T2)]. Let Z be the r.v. defined as Z = min (T1, T2). Then, Pr (Z ≤ z) =

1− (1−F (z))
2
, and fZ (z) = 2 (1−F (z))f (z), which means that E [Z] =

∫
2 (1−F (z))f (z)zdz. We get the

following equivalent bound on the “process all” policy:

JPA (N, [])

JOPT (N, [])
≤ µ

E [Z]
=

µ∫
2 (1−F (z))f (z)zdz

.

For uniform distribution:

E [Z] =

∫ b

a

2 (1−F (z))f (z)zdz

=

∫ b

a

2

(
1− z− a

b− a

)
1

b− a
zdz

=
2

(b− a)
2

bz2

2
− z3

3

∣∣∣∣b
a

=
1

3 (b− a)
2 (b+ 2a) (b− a)

2
,
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which implies an approximation of

APX =
(a+ b)

2

3 (b− a)
2

(b+ 2a) (b− a)
2 =

3 (b+ a)

2 (b+ 2a)
,

this last is monotonically decreasing in a.

For exponential distribution:

E [Z] =

∫ ∞
0

2 (1−F (z))f (z)zdz

=

∫ ∞
0

2
(
1− 1 + e−λz

)
λe−λzzdz

=

∫ ∞
0

2λe−2λzzdz

=
1

2λ
,

which implies a 2-approximation.

For T ∼

{
a p

b 1− p
:

µ

E [Z]
=

ap+ b (1− p)

b (1− p)2 + a
(

1− (1− p)2
)

=
ap+ b (1− p)

a+ (b− a) (1− p)2
,

By plugging in a= 0, p= 1/2, we get a 1/ (1− p) = 2 approximation. For a= 0, b=M,p= 1− 1/M , we get

an M approximation.

A.14. Proof of Lemma 14

Proof. A sufficient condition for the optimality of testing is JSTP − JPA < 0. Using Lemma 9, this is

equivalent to: (
NE[W ] +

∑
i

wi

)
ta ≤ (N − 1)E[(WE[T ]−E[W ]T )+]

+
∑

i∈Medium

E[(Wti−wiT )+]

+
∑
i∈High

E[(wiT −Wti)
+],

and to (
NE[W ] +

∑
i∈High

wi

)
ta ≤ (N − 1)E[(WE[T ]−E[W ]T )+]

+
∑

i∈Medium

wi
(
E[(Wρi−T )+]− ta

)
+
∑
i∈High

wiE[(T −Wρi)
+].

By plugging β, we obtain(
NE[W ] +

∑
i∈High

wi

)
ta ≤ (N − 1)βtaE[W ]

+
∑

i∈Medium

wi
(
E[(Wρi−T )+]− ta

)
+
∑
i∈High

wiE[(T −Wρi)
+].
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Since the last two summations are positive (ρi >ρa implies that E[(Wρi−T )+]> ta), the following condition

is sufficient for the inequality to hold:

NE[W ] +
∑
i∈High

wi ≤ (N − 1)βE[W ],

or equivalently:

β >
N + ωH

E[W ]

N − 1
.


