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Abstract

This dissertation studies the relationship between the hub-ard-spoke design in air
transportation and the phenomenon of landing congestion. The problem of model-
ing this congestion is difficult because of the necessity of capturing transient rather
than steady state behavior. To address the problem, we combine a deterministic
treatment of arrivals with a model of capacity as a Markov or semi-Markov process,
and from this we develop a computational approach for predicting transient queue-
ing delays. In the special case where the demand rate is constant, we also develop
an alternative method using a diffusion approxirnation adapted for this system. We
provide computational results comparing the two approaches. To test our model, we
conduct a case study using traffic and capacity data for Dallas-Fort Worth Interna-
tional Airport. Our results show that the model’s estimaies are reasonable, though
substantial data difficulties make thorough validation impossible. We explore in
depth two questions of policy: schedule interference between the two principal car-
riers, and the likely effects of demand smoothing policies on queueing delays. In
the final part of the thesis, we extend the analysis by developing two algorithms
for congestion in a hub-and-spoke network. These algorithms are decomposition
approaches which treat qucues individually while approximating alterations in the
downstream arrivals. Tests of the algorithms against a simple simulation model on
a small network indicate that these approximations work fairly well, though they
tend to underestimate the spreading of traffic which occurs as a result of delays.
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Chapter 1

Introduction

1.1 The Hub-and-Spoke Phenomenon

Since deregulation was initiated in 1978, the U.S. airline industry has been char-
acterized by turbulent change. The recent failures of two of the nation’s oldest
carriers, Pan American and Eastern, are the most recent testimony to this fact.
Unable to adapt quickly enough, these carriers succumbed after a decade of fighting
low-cost new entrants and established rivals who proved more innovative in a decade
of airline innovations.

Among the most noticeable innovations of the 1980’s was the development of ex-
tensive hub-and-spoke networks by the major carriers. Although American, United,
and Delta (the three largest carriers in 1992) all operated hubs prior to the 80’s,
these operations bore little resemblance to the well-developed networks which ex-
ist today. In the deregulated environment, carriers have taken advantage of the
freedoms granted to them by moving away from “linear” (point-to-point) systems
to multi-hub hub-and-spoke networks. For example, American, United, and Delta
today operate 6, 5, and 5 hubs respectively. The failure of Pan Am to develop a
good hub-and-spoke network is widely regarded as one of the principal reasons for
its demise.

There are strong economic motivations for developing hub-and-spoke networks.
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Figure 1.1: Illustration of connecting service advantage. In the hub system, the
36 east-west O-D (round-trip) pairs are served with just twelve flight legs. In the
point-to-point system, all markets are served nonstop, but the number of flight legs
necessary is three times as great.

A well-developed hub system consolidates demand in a large number of markets,
allowing an airline to offer higher frequency of service to its customers and to take
advantage of certain economies of scope and scale.! This demand consolidation
allows an airline to serve profitably a city pair whose traffic level alone would not
economically justify frequent service. It also reduces the uncertainty in the loads
carried, allowing carriers to improve their average load factors.? In a more strategic
vein, it is believed that the high frequencies of service to and from the hubs give

carriers a degree of market power in setting their fares at these locations [11,36].

The inherent advantages of demand consolidation are easily illustrated in the
hypothetical network of Figure 1.1. Here there are six “western” airports and six
“eastern” airports. Ignoring trips within regions, the total number of round-trip
markets is 36. In the case where a central hub is used to facilitate connecting
passengers (left side of figure), a total of 12 flight legs are necessary to service

demand while in the point-to-point network (right side of figure), 36 flight legs are

1Scale economies in aircraft operating costs imply that where a carrier can increase the size of
aircraft with which it serves demand, it can reduce its expenses. Consolidation of markets allows
the possibility of such activity. In connection with this, see [20}. Scope economies (i.e. those having
to do with breadth rather than size of operations) are associated with the ground costs of servicing
demand. See [26].

2The average load factor for an airline is defined as the ratio of revenue passenger miles (paying
customers times number of miles flown) to available seat miles (seats offered times miles flown). It
is a measure of how full the carrier’s aircraft are on average.
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necessary. The first network has an average traffic level per leg six times that of the
second, creating higher frequencies, larger loads, or both, and resulting in cost and
revenue benefits. But there are potential disadvantages in the design as well, as we

indicate next.

1.2 Delay and the Hub-and-Spoke Network

While the economic advantages of the hub-and-spoke system for airlines are univer-
sally acknowledged, there is disagreement with respect to the system’s benefits for
consumers. A recent article in The New York Times Magazine reported that the
fraction of Americans dissatisfied with the deregulation of the industry has risen
from 17 percent to 36 percent over the past decade.> Among the sources of this
discontent are the belief that nonstop service has decreased with the advent of the

hub-and-spoke design? and frustration with increased delays.

According to the legal director of the Aviation Consumer Action Committee,®
delay is the principal reason for consumer dissatisfaction with deregulation. During
the past fifteen years, congestion has become a fact of life at many major airports in
this country and in Furope. In 1986, ground delays at domestic airports averaged
2000 hours per day, the equivalent of grounding the entire fleet of Delta Airlines at
that time (250 aircraft) for an entire day.® In 1990, 21 airports in the U.S. exceeded
20, 000 hours of delay, with 12 more projected to exceed this total by 1997.7 Many
consumers associate this increased delay with travel in a hub-and-spoke system. As

a recent article in The Economist lamented,

3«Off Course”, The New York Times Magazine, September 1, 1991, page 14.

*It is a common belief that the growth of hub systems has led to a reduction in nonstop service for
passengers. However, there are no statistical studies supporting this conclusion. On the contrary,
one recent study [6] finds that nonstop service has improved over the past decade, chiefly because
there are now so many hubs with nonstop service to and from spoke cities.

SCornish Hitchcock, interview in “Off Course”, N.Y.T.M., Sept. 1, 1991, page 14.

¢J.A. Donoghue, “A Numbers Game,” Air Traffic World, December 1986.

" Winds of Change: Domestic Air Transport Since Deregulation, Transportation Research Board
National Research Council Special Report 230, Washington, D.C., September 1991, p.216.
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Figure 1.2: Flights concentrated into banks cause peaking of the landing demand
rate throughout the day. During slack periods, the absence of bank arrivals reduces
the demand rate.

Frequent travellers are only too happy to describe, in paralysing de-
tail, the horrors of flying in America. You must first negotiate thickets
of fares and ticketing restrictions, designed to make sure that business
travellers pay most. Then you will almost certainly have to shove your
way through one of the big congested “hub” airports, where jets swarm
in to swap passengers. Crowds and complications: such are the joys of

flying these days8®

While much of the growth in delays has come about because of demand in-
creases over the last decade, the development of hub-and-spoke networks has prob-
ably also played a role. Hubs are congested because they experience higher traffic
levels (Figure 1.1). In fact, among the 11 airports with the highest number of re-
ported delays in 1990, 8 were hubs: Chicago (O’Hare), Dallas-Fort Worth, Atlanta
(Hartsfield), Denver (Stapleton), Newark, Washington (Dulles), Detroit, and San
Francisco. Moreover, hub-and-spoke systems tend to concentrate major airport op-
erations (landings and takeofis) into short periods of time, placing further strain on
capacity (Figure 1.2). This concentration of traffic can lead to queues for gates and

runways, even when the overall daily load falls well within capacity limits. More-

84Too Many Airlines”, The Economist, October 19, 1991, page 13.
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over, hecause the hub is the center of operations for a carrier, large delays can have
serious adverse effects on system operations. Understanding and predicting these
delays is a matter of importance to carriers, regulators, air traffic controllers, and
passengers.

Operations research models like those presented in this dissertation have a clear
role to play in improved airport planning. This role was well summarized by the

National Transportation Research Board in its 1991 report “Winds of Change”:

The F.A.A. should emphasize research on simulation modeling of
airport and airspace capacity and related research. Greater use of such
techniques would lead to the establishment of performance measures that
would help the F.A.A. make better use of existing airport and airspace

capacity.®

The models developed here are intended as serious alternatives to simulation models,
which are widely considered to be necessary because of the inherent complexity of
airport queueing systems. As the following discussion indicates, this complexity

arises chiefly from the need to model the transient behavior of airport queues.

1.3 Queues at Hub Airports

Queues develop at airports in numerous contexts (e.g. ticketing, baggage handling),
but in this dissertation we are concerned with queues of aircraft which arise because
of limited runway capacity. Figure 1.3 depicts the relevant set of operations. Incom-
ing aircraft are seen as customers requiring service at a series of three stations: a
landing runway, a gate, and a departure runway. Most of the work in this disserta-
tion will focus on the landing queue, which is often the system bottleneck. However,
our methods are largely applicable to the departure queue as well.

The airport queueing system has several characteristics which make it unfit for

most traditional analyses, namely:

® Winds of Change: Domestic Air Transport Since Deregulation, p.299.
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Figure 1.3: The aircraft queueing system at an airport




1. Time vartation in arrival rate. As Figure 1.2 suggests, a hub airport is subject
to a highly time-varying demand rate. Work comparing transient and steady
state results for single queues [29,33] suggests that in such cases, the time
necessary to reach a condition which is approximately “steady state” substan-
tially exceeds the time over which the demand rate may reasonably be taken
as constant. The implication is that models which describe only steady state

behavior are of very limited value in this context.

2. Dependence of service times on weather. For the landing and departure pro-
cesses at an airport, service times are weather-dependent. Thus it is inappro-

priate to model service times as i.i.d.

3. Customer dependence. Aircraft in banks are not independent of one ancther.
Because of connections between flights, an aircraft’s time at the gate depends
on the arrival times of other flights, as well as its own service time. More-
over, separation rules for large and small aircraft negate the assumption that

consecutive landing service times are independent.

While these difficulties rule out most standard queueing approaches, they are
not insurmountable. The simple deterministic models of Chapter 2, for example,
can capture transient behavior, although they fail to model weather-dependence ad-
equately. The models presented later in the thesis overcome this second difficulty
by allowing capacity to vary as a stochastic process. Chapter 3 considers a single
airport in isolation, but Chapter 5 goes further in accounting for dependencies be-
tween airports in a network. Modeling of dependencies between aircraft (item three)
is more difficult and probably requires simulation. However, it is possible to gain

considerable insight even while ignoring such dependencies.
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1.4 Research to Date

In this section we review some of the literature relevant to the thesis. This work
essentially falls into two categories: general studies of transient queue behavior and

more specific studies of congestion at airports.

1.4.1 Studies of Transient Queueing Behavior

Although the general queueing theory literature is vast, the number of works dealing
with the transient behavior of queueing systems is surprisingly small, mainly because
of the difficulty of obtaining analytical results for these kinds of problems. Most
approaches to the transient behavior of a single queue model the service and arrival
processes as phase-type (i.e. Coxian) and attempt to solve the resulting forward
Kolmogorov equations. Methods differ chiefly in the approach they take to solving
these equations.

The most straightforward approach is to solve the Kolmogorov equations nu-
merically. Gross and Harris [15] give a fairly thorough discussion of the competing
methods — see especially their Section 7.3.2. Most of these methods become com-
putationally expensive because of the large state spaces needed to make the system
Markovian. A second approach developed in response to this difficulty is that of
uniformization (or randomization). An early application of this method is given by
Grassmann [14]. The essence of this method is that by uniformizing the underlying
Markovian system, one substantially reduces the work necessary to obtain a solu-
tion. An explanation of this method is also found in Gross and Harris [15]. A third
solution method due to Bertsimas and Nakazato [8] takes transforms of the Kol-
mogorov equations and then inverts these numerically to obtain the waiting time
and queue length distributions. This is done for a system where the service and
arrival distributions are mixed Erlang. A second paper [7] formulates the extension
to general GI/G/1 systems as a Hilbert problem.

Odoni and Roth [29,33] investigate the difference between transient and steady

18



state queueing systems of phase-type. They use numerical methods to solve the
Kolmogorov equations for a variety of these systems and compare the expected queue
lengths with steady state values. Their results indicate that substantia'l differences
persist for long enough periods to raise serious doubts about the validity of steady

state approaches in airport applications.

The above methods are “exact” in the sense that they seek solutions to the
equations posed by a queueing model. An alternative approach is to approximate
the queue length process by a continuous stochastic process, such as a Brownian
motion. The latter obeys a certain partial differential equation, the solution of
which, subject to initial conditions, yields the density for the (continuous) queue
length. Details of this method, called the diffusion approximation, are given in our
Chapter 3. The seminal papers on the subject are those of Iglehart and Whitt
[18,19]. Kobayashi [24] applies the method to computer communication networks.

Good summaries are found in Gelenbe and Mitrani [12] and Heyman and Sobel [17].

Our Chapter 5 deals with congestion in a network environment, a difficult prob-
lem. Successful modeling of general queueing network problems has been limited,
and even under steady state assumptions, exact results have been obtained only
for a relatively small class of problems which exhibit product-form solutions. The
major reference in this field is that of Kelly [23]. Much research has focused on
approximation methods, which may generally be divided into two types: diffusion
approximations (just discussed) and decomposition methods. This second method
consists of decomposing the network into its individual stations and approximating
the departure process from each queue as a renewal process. The most prominent
example of this kind of approach is the Queueing Network Analyzer [39], developed
at Bell Labs for steady state analysis of non-product-form networks. We are not

aware of any comparable approach for the transient problem.
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1.4.2 Studies Related to Airport Congestion

Airport capacity and queueing studies have a history of over 30 years. The earliest
work dates back to 1960 with the work of Blumstein [9] investigating the deter-
minants of airport capacity. Airborne Instrument Laboratories, under contract to
the F.A.A., developed the first handbook for estimating airport capacities [2,3], and
thirteen years later the consulting company of Peat, Marwick, and Mitchell [30,31]
published a new analysis based on simulation techniques. Newell [27] provides a
thorough discussion of how airport geometry, flight rules, and weather conditions de-
termine airport capacities. He claims, as we do, that standard queueing approaches
are inadequate for airport queueing systems and argues instead for a deterministic

approach similar to the one discussed at the end of our Chapter 2.

Two recent studies concern simulation approaches for estimating aircraft queue-
ing delay. Abundo [1] considers the problem of queueing for landing at a single
airport and provides some discussion of alternative methods. She proposes an
M(t)/Ex(t)/1 model for the landing queue in combination with a simulation of the
weather conditions in order to develop a capacity profile. She discusses the idea of
modeling service capacity as a continuous-time Markov process but rejects this ap-
proach for two reasons. First, the state space necessary for an M(t)/Ex(t)/1 model
together with a Markov weather process is computationally prohibitive. Second, she
finds that for Boston’s Logan airport, the subject of her case study, a Markov chain

assumption for weather changes is not statistically warranted.

St. George [34] is concerned specifically with the issue of delay at hub airports.
He uses a simple simulation model to estimate the delays expected to result from
published airline schedules. His model treats the queueing processes for landings
and takeoffs deterministically at several alternative levels of airport capacity, using
data from 12 U.S. airports in 1977. He provides a brief discussion of the effects of
hubs on delay in comparing St. Louis (a hub) to Boston (a non-hub) but does not

address the issue of capacity slow-down due to poor weather conditions, focusing
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instead on comparing airport schedules for a given level of capacity.

Recently, there has been a fair amount of work on the problem of flow control —
how to alter in “real time” the flow of traffic between airports to reduce congestion.
The central question is how long to hold aircraft on the ground prior to takeoff
in order to avoid costly airborne holds at the congested destination airport. An
introduction to the problem is given by Odoni [28]. Further work on the problem
has been undertaken by Andreatta and Romanin-Jacur [4], Terrab [35], Richetta
[32], and Vranas, Bertsimas, and Odoni [37,38].

1.5 Goal and Contribution of the Thesis

The goal of this thesis is the development of tractable and realistic models of con-
gestion at a hub airport and within a hub-and-spoke system. By realistic we mean
models which incorporate dependence between airports and which describe transient
(not steady-state) behavior. As the discussion thus far has indicated, hub-and-spoke
networks are central to the air transportation industry in this country and have def-
inite implications for congestion. From the point of view of airport and airline
planners, the modeling of these kinds of congestion delays is an issue of practical
interest. Thus we believe that the first contribution of the thesis is the develop-
ment of analytical models for single and multiple hub systems. As the case study
of Chapter 4, in particular, is intended to show, the models we develop are of direct
interest in addressing planning and policy questions. They also lead to a consider-
able amount of insight into the relationship between the hub-and-spoke system and
the phenomenon of queueing delay.

We believe the thesis also makes contributions within the field of queueing the-
ory. Queueing processes which require transient analysis are both numerous and
understudied. Our single hub model is an entirely new method for describing the
transient behavior of a certain type of single queue: one with simple probabilistic

input and a service rate which changes according to a Markov or semi-Markov pro-
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cess. Our explicit modeling of the dependence of the service rate on an external,
stochastic phenomenon is, to the best of our knowledge, new within the literature
on transient results in queueing theory. Qur implementation of the diffusion ap-
proximation in Chapter 3 is the first instance of which we are aware of a real-world
application with non-i.i.d. service times.

In Chapter 5 we introduce new approximation methods for estimating transient
effects of queueing in air networks. While only partially developed here, these ap-
proaches suggest new directions for research in this rather difficult area of queueing
theory. Potential applications are numerous in the fields of transportation, manu-

facturing, and communication.

1.6 Structure of the Thesis

The body of the dissertation is divided into four chapters. The first of these, Chapter
2, is introductory. Using a schematic model and deterministic analysis, we discuss
several main features of hub congestion, in particular the effect of large demand
peaks. We derive simple conditions for the queue to remain stable (i.e. not grow
indefinitely) over time and introduce the notion of interference between carriers
sharing a hub airport. We show that such interference may occur in situatioﬁs
where different carriers’ banks are scheduled close together.

While these simple models serve as a useful introduction, their realism is'severely
compromised by the fact that they require deterministic specification of capacity. It
is more desirable to have a model which explicitly takes into account the dependence
of capacity on weather. This fact motivates our development of the computational
approach introduced in Chapter 3, where we address the problem of predicting
landing queue congestion as weather and capacity vary. With minor modifications,
the method is applicable also to the departure queue.

Our model begins with the division of time into short increments, within which

we assume demand and capacity to be constant. From interval to interval, we allow
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capacity to vary according to either a Markov chain or a semi-Markov process, with
a discrete number of states determined by weather conditions and runway configu-
ration. We show how to calculate queue-length and waiting time moments for each
time increment by using a simple recursive procedure and indicate how this proce-
dure may be extended to the case where demand has a simple probabilistic (rather
than deterministic) structure. Using the steady state probabilities for the capacity
process, we obtain expected queue length and waiting time moments averaged over

all initial conditions and sample paths.

In Chapter 4 we apply the recursive method in a case study of congestion at
Dallas-Fort Worth Airport, one of the nation’s busiest hubs. From weather data, we
estimate parameters for Markov and semi-Markov models of capacity at DFW and
give some discussion of how these compare. We then carry out a number of compu-
tational experiments which are addressed to relevant policy and planning questions.
For example, we indicate the sensitivity of congestion delay to starting conditions
and explore how the smoothing of demand during the most congested periods of
the day could reduce the average amount of delay. While rigorous validation of
the model’s results is difficult because of inadequacies in available delay data, in-
formal analyses suggest that the model’s estimates are reasonable. Our discussion

illustrates the method’s usefulness as a decision support tool.

In Chapter 5 we consider the more general problem of queueing delay in the
environment of a hub-and-spoke network. In taking account of network effects, our
task becomes more challenging: interactions between airports invalidate our earlier
assumption that demand is known in advance. To address these difficulties, we
propose two decomposition methods which estimate delays at individual airports
according to the recursive procedures already developed and use these estimates
to update downstream arrival rates. The first method simply updates arrivals ac-
cording to the mean waiting times experienced by the aircraft, taking into account

the slack present in the schedules. The second uses information about waiting time
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variance to specify variability in the downstream effects. While both algorithms are
applicable to general networks, we show how they are particularly well-suited for
hub-and-spoke networks, where via a further simplification one can substantially
reduce the size of the network which must be considered. In the second half of
Chapter 5, we construct a hypothetical 2-hub network and test the two algorithms
against a simple simulation procedure. Our results indicate that the approximation
schemes work fairly well, though further improvement seems possible. The methods
provide an effective way to study interaction between hubs in a network.

Chapter 6 summarizes the ideas of the thesis and suggests directions for further

research.
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Chapter 2

Congestion at One Hub:
Introductory Models

While later chapters develop more precise computational models of congestion, the
goal of this chapter is to develop an initial modeling approach. For the landing
operations at a single hub airport, we consider a simple queueing model with a de-
terministic, time-varying demand rate and a constant service capacity. We focus on
two issues, peaking of demand and schedule interference between carriers, address-
ing these in Sections 2.1 and 2.2 respectively. In our concluding remarks in Section
2.3, we place these results in perspective, commenting on the models’ shortcomings

and motivating the work of later chapters.

2.1 Model of a Single-Carrier Hub

In this section we consider a monopoly hub, an airport used by a number of carriers,
only one of which (the “home carrier”) operates its hub there. We classify each
aircraft using this airport according to whether or not it belongs to the home carrier.
Note that aircraft in the former category are organized into banks of arrivals and
departures, while those in the latter arrive and depart in a less organized fashion
throughout the day.

For simplicity of illustration, we assume that the home carrier’s arrivals and



departures are organized into banks of lengths [ and d respectively. Together, each
landing bank and its subsequent departure bank define a complez. Within this
complex, the two banks are separated in time by the intra-complez slack time s,,
while the time from the end of a departure bank until the start of the next arrival
bank is the inter-complex slack time s, (see Figure 2.1). Within landing banks, the
home carrier’s aircraft have a constant landing demand rate A;; all other aircraft
have a constant landing demand rate Ay throughout the day. Thus during peak
periods the demand rate is the sum A; + A2, while in slack periods it is merely A,.
Corresponding to these demands we assume a constant landing capacity pu'.

We are concerned with the transient behavior of the system and in particular
with the effect of the peaking of demand on airport’s ability to meet its schedule.
Taking the simplest possible initial approach, we assume deterministic arrivals and a
constant service rate. Under such assumptions, aircraft queues only develop during
periods where demand exceeds capacity; thus to study the queue’s behavior we shall

assume

A2 < lll < A+ 2. (2.1)

There are two questions we wish to address. The first concerns disruption of the
connections schedule: under what conditions is the slack s; adequate to allow the
completion of all landings in a given bank in time to begin the subsequent departure
bank on schedule? Second and more important is the question of stability: are the
slacks s; and s; adequate to allow the completion of one landing bank before the
commencement of the next? When this latter condition fails, the queue for landing
aircraft never reaches zero — the queueing situation becomes unstable.

These two questions may be addressed via the simple model. Consider first
the issue of departure bank delays. Assume that each departure bank can only
begin after the preceding arrival bank has landed and passengers and bags have

connected.! Then our simple model implies the following condition for the slack

}This assumption is not realistic; in fact, the problem of deciding how long to hold departing
aircraft at the gate is one which airlines face all the time. We make this assumption here in order to
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Figure 2.1: One-carrier hub model
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parameter sj:

Proposition 2.1 The arrival schedule is adequzie to allow departing banks to com-

mence without delay following their corresponding landing banks if and only sf

M +r-p)xt
ul '

81 2t + (22)

PROOF:
At some point following time ! (the end of the scheduled arrival bank), all arrivals
in the bank will have landed. The difference between this time and the scheduled

time is a period of duration

(A1+A2-p')xl

2.3

. (2.3)

Thus departures can begin on schedule with all connections aclieved if and only if
(2.2) holds. 3

In practice, typical values for t. are about 20 minutes, and typical values for
51 at busy hubs such as Dallas-Fort Worth are close to 25 minutes. Thus (2.2)
suggests that even in good weather, minor passenger connection problems may arise
frequently, though the delays are not likely to be severe. For example, for a large hub
operating at a capacity of 90 landings per hour, a peak rate exceeding capacity by
10% translates into a queue of 9 aircraft and a delay of about 6 minutes in the statt
of the departure bank. Delays of this order of magnitude are commonly cbserved in
practice.

While connection delay is clearly a problem, it does not constitute instability in
the sense described above. The notion of instability is analogous to the queueing
inequality p > 1, where p is the traffic intensity, the ratio of the average arrival rate
to the average service rate. In our model, the natural expression for the this traffic
intensity is the time zverage demand rate divided by the capacity:

e_l_[ ! atdts A]
P T ¥a+d+ o I¥o1+d+s 0

simplify our assessment of the eflects of the schedule on aircraft delays, while acknowledging that
there are further service complications involved with deciding these other questions.

(A1 +22)+ (2.4)
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In these terms, the condition p > 1 in fact constitutes queue instability (in the sense

described above), as the next proposition shows.

Proposition 2.2 Under the assumplions of the model, the landing queue remains

stable if and only if

l (/\1+/\2) s1+d+ s (32)
—1<1 2.5
l+8s +d+s; u +I+sl+d+32 w)= (2.5)

PROOF:
Consider the beginning of a peak landing period. At the end of the time scheduled

for landings, the queue has grown by the amount
(M +A2=p)x L. (2.6)

In the slack period which follows, the effective rate at which the queue is reduced
is g/ — Aq. It then follows that the ratio of (2.6) to this rate is the length of time
beyond the peak period required for the queue to decrease by the amount which it
grew during that period. If this length of time exceeds the time until the start of
the next peak period, instability results; if not, the queue is stable. Simple algebra

yields (2.5). o

Instability is a comparatively rare phenomenon, even at busy hubs. For such
a hub, we typically have s; + s + d =~ 1 hour and ! = 20 minutes, in which case

stability would require

B> (1/4) + Az,

a fairly mild condition which we would expect to hold in all but the worst capacity
circumstances.

Propositions 2.1 and 2.2 underscore the importance of the slack parameters s;
and sz, which allow the hub carrier to recover from the effects of delay. Increasing
the slack increases the robustness of the schedule, though at the price of lower

aircraft utilization in periods of adequate capacity.
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2.2 A 2-Carrier Hub and the Notion of Interference

While the typical situation is for only one airline to operate a given location as a hub,
there are exceptions to this rule. The most prominent example of a two-airline hub
is Chicago’s O’Hare Airport, where United operates its largest hub and American
its second-largest after Dallas-Fort Worth. Until the demise of Easter::, that airline
shared Atlanta with Delta. Delta shares a hub with American at Dallas.

The model of the previous section may be adapted to a 2-carrier situation.
Consider Figure 2.2, which illustrates a general pattern of arrivals at a 2-carrier hub
over time. These are now categorized into three types, for convenience numbered
1,2, and 3. Type 1 arrivals belong to the principal carrier at the hub (i.e. the carrier
with the highest number of flights), type 2 arrivals belong to the other home carrier,
and type 3 arrivals constitute all others.

We again make a number of simplifying assumptions. Type 3 arrivals are sched-
uled to arrive and depart throughout the day at uniform rate Az. Within time
periods, arrivals of different types are scheduled uniformly. Peak demand rates are
A1 + A3 during carrier 1’s ianding banks and A2 + A3 during carrier 2’s. We also

assume that the demands and service capacities satisfy

A1+z\3>#’
A+ 23 > 4
/\3<I‘l

A1 > A2

and that takeoffs and landings utilize separate runways.

A notion of particular interest is that of interference. We define this to mean the
situation where the schedule of one carrier produces delays which are experienced by
the other. Figure 2.3 illustrates the idea. In the first part of the figure, the demand
peaks of the two carriers are spread apart, giving a relatively greater chance that the

delays produced by the congestion of one carrier do not affect the other. In other
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Figure 2.2: Two-carrier hub model

scheduled duration of each carrier 1 landing bank

scheduled duration of each carrier 2 landing bank

carrier 1 landing demand rate

carrier 2 landing demand rate

landing demand rate for all other carriers

landing service capacity (rate)

slack between banks for carrier 1

slack between banks for carrier 2

scheduled time from end of carrier 1’s bank until start of carrier 2’s bank

31




Iy Spread Landing Demand Y Concentraied Landing Denand

A+l
AL+A, . ﬁ I_Ll
M i
>

>

Figure 2.3: Alternate scenarios of arrival schedule at 2-carrier hub. The left side
shows a schedule in which the two carriers have staggered banks, a schedule less
prone to disruption. The right side shows a case where carrier 1’s schedule is likely
to disrupt that of carrier 2.

words, both carriers’ banks have slack. The second half of the figure, in contrast,
shows a situation where carrier 1 has its arrival banks positioned just prior to those
of carrier 2. This kind of schedule is maximally disruptive to the latter, which must
await the clearing of any queue created by carrier 1 before it can begin to land its
aircraft.

The value of the parameter z is critical because it allocates the available slack
between the two carriers and thus determines which is more likely to experience
disruption of its schedule. A value of 0 for z, for example, gives a scheduled demand
rate like the second half of Figure 2.2, favoring carrier 1. Conversely, a maximal
z-value of 51 —Iy is most favorable to carrier 2.

We can use our simple deterministic model to analyze this situation further.

Define the cycle length C by
Cé li + 51 =1+ 5.

The following result establishes a necessary and sufficient condition for stability of

the landing queue.

Proposition 2.3 In the above model of a 2-carrier hub, the landing queue remains

stable over time if and only if

(1 +X3)(1/C) + (2 + X0)(B/C) +Xas(C = —B)/C < . (27)
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PRroOF:
The proof is entirely analogous to that for Proposition 2.2. A necessary and sufficient
condition for stability over a cycle is that the total number of landing aircraft is less

than or equal to the total capacity:
h(M + As) + (A2 + A3) + (C — h — I2)(33) < CH.

Dividing through by C yields the result. 0

In theory, it is possible for one carrier or the other to experience persistent
schedule disruption despite the fact that (2.7) holds. This phenomenon is a direct
consequence of the value of z, the slack allocation parameter. Let us say that carrier
1 delays carrier 2 if the schedule is such that the initial arrivals of each carrier 2
bank are delayed. Similarly, carrier 2 delays carrier 1 if the initial arrivals of each

of the latter’s banks is delayed. We then have the following theorem.

Theorem 2.1 Necessary and sufficient conditions for carrier 1 to delay carrier 2

while carrier 2 does not delay carrier 1 are that the queue is stable and that
(Ot + Aa) [0/l + 2)] + Aa [2/(h +2)] > 4. (2.8)

Conversely, necessary and sufficient conditions for carrier 2 to delay carrier 1 while

carrier 1 does not delay carrier 2 are that the queue ts stable and that
(Az + 1\3) [12/(31 - .'L')] + A3 [81 -l —- z/(sl — z)] > yl. (29)

PROOF:

The proof for (2.8) is identical to that for (2.9), so it is sufficient to prove only
the former. Suppose that the queue is stable and that (2.8) holds. Then over the
period from the start of carrier 1’s bank until the start of carrier 2’s bank, the queue
grows since average demand exceeds average capacity. Thus carrier 2 arrivals are
delayed. But because the queueing process is stable, this queue must disappear by

the start of carrier 1’s next bank, for otherwise the queue would grow during each
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cycle. Hence carrier 1 delays 2 but carrier 2 does not delay 1. Conversely, if carrier
1 is not delayed by carrier 2, then there is no queue at the start of carrier 1’s bank.
In order for carrier 2 to be delayed under these conditions, the condition (2.8) must

hold. O

The result demonstrates the role of z in determining schedule disruption for the
two carriers. For large values of z, it becomes increasingly likely that (2.9) holds,
while smaller values favor (2.8). The important point is that it is possible for one
carrier to experience disruplion while the other one operates on time. The allocation
of the available slack, while not usually done in a formal way, is decisive.

A “fair” schedule might have the separation between competing banks at the hub
so that each carrier contributes equally to the chance of disruption for the other.

Mathematically, this condition would be expressed as

[0 + 20 = 1)/ = 2a) = =] = [lo(Ra+ 2 — )/ (W = Do) = (s — Lo = 2)] "
(2.10)

In practice, of course, no such formal planning takes place, and carriers are free to
schedule as they wish (with the exception of slot-controlled airports). It is interesting
to note that at one prominent 2-carrier hub, Dallas-Fort Worth, the schedule which
results from this process may tend to favor one carrier (American) over another
(Delta) in terms of queueing delays. We shall address this issue in the case study of

Chapter 4.

2.3 Concluding Remarks

The schematic models of this chapter simplify the queueing problem to a greater
degree than is necessary even for a deterministic approcach. A more general time-
varying demand rate A(t) can be accommodated within a deterministic scheme, and
one could in theory specify a time-varying service rate u(t) as well. The problem

with the latter, however, is that unlike the demand rate, it is not easily specified in
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advance or with certainty. One possibility is to employ such a model for a variety
of capacity levels and examine the sensitivity of waiting times. However, such a
model still ignores the possibility that capacity may change within the course of the
operating day. To gain a thorough understanding, we must go further in specifying

a stochastic capacity model. That challenge motivates the work of the next chapter.
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Chapter 3

A Computational Approach to
Congestion at a Hub

The present chapter is motivated by the need to develop a more powerful modei
of hub operations in order to improve our understanding of congestion at a hub
airport. In particular, we consider the dependence of capacity on weather conditions
and thereby address the major shortcoming of Chapter 2.

The model which we develop is intended as a strategic tool for airport and airline
planning. Moreover, because the transient queueing environment is not unique to
air transportation, our model is also motivated by potential applications in other
fields such as manufacturing and communications. In its full generality, it represents
a new approach for modeling queueing systems with time-varying arrival rates and
state-dependent service times.

The chapter is organized as follows. In Section 3.1 we discuss the arrival and
service operations for the landing queue at an airport and develop a model of ca-
pacity based on a semi-Markov process, which may be specialized to the simpler
case of a Markov chain. In Section 3.2 we present a computational method for
calculating queue length and waiting time moments for the landing process. The
four parts of this discussion address, respectively, the basic recursions under deter-
ministic demand (subsections 3.2.1 and 3.2.2), an extension to simple probabilistic

demand (subsection 3.2.3), and the problem of taking averages over initial condi-
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tions (subsection 3.2.4). In Section 3.3 we present computational results for a test
case with constant demand. In Subsection 3.3.1 we show how the effects of ini-
tial conditions may be slow to diminish over time and how even with a constant
demand rate, the time until equilibrium may be quite long. We also compare our
results with those from simulation and examine in particular the empirical distri-
bution of waiting times. In Subsections 3.3.2 and 3.3.3 we consider an alternative
approach based upon a diffusion approximation of the queue-length process. While
this kind of approximation has been applied to queueing systems where service times
are independent and identically distributed, we believe our analysis to be the first
such application to a queue where capacity varies according to a Markov chain.
In Subsection 3.3.4 we compare the results of the diffusion approximation to those
obtained from the recursive algorithm. While the results differ somewhat, the two

methods seem to capture the same essential behavior.

3.1 Models of Demand and Capacity

In this section we describe our assumptions about the demand for aircraft landings
and about airport service capacity.

As in Chapter 2, in this chapter we consider aircraft as customers utilizing a
set of runways which together constitute a single server. We continue to treat the
aircraft demand process as deterministic, assuming that aircraft follow schedules and
do not just demand to land “at random.” In practice, of course, this assumption
is not strictly valid: arrival schedules contain elements of uncertainty because of
earlier delays. We adopt the deterministic assumption in our initial approach and
indicate in Section 3.2.3 how to account for a simple probabilistic structure. We
model time-variation by dividing time into discrete intervals of fixed length and

allowing the demand rate to vary arbitrarily across these intervals.

We summarize our view of demand in the following assumption:
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Assumption 3.1 (Demand Process) The hub’s operating day consists of discrete
time iniervals of length At. For interval k, the number of aircraft demanding to
land, Ak, is known, and these aircraft constitute a continuous (deterministic) flow

over the interval.

Note that since the rate is assumed constant within each interval, realism requires
that At be short, on the order of 15 minutes.

Consider now the service process. The number of aircraft which the airport
can land per hour is a function of many variables — runway configuration, air
traffic control patterns, gate availability — but it is chiefly a function of which
runways can be used and how much separation is required between incoming aircraft.
These factors are in turn determined by weather conditions: ceiling, visibility, wind
direction, and wind speed. As the weather conditions change, capacity switches
from one state to another and thus constitutes a stochastic process with a discrete
number of potential states.

In this thesis we employ two alternative models of such a process, one based
on a Markov chain and one based on a semi-Markov process. In both cases, the
states are the different capacities attainable by the airport under different weather
scenarios and runway configurations. In the Markov model, capacity remains in
a given state for 2 length of time At and then undergoes a transition, with self-
transitions possible. Thus the number of periods for which the capacity remains in
a given state (the holding time) is a random variable having geometric distribution.
In the semi-Markov case, the holding time is allowed to have a general (discrete)
distribution which may depend upon the state.!

In the computational approach which we develop shortly, we employ the more

general semi-Markov formulation, from which one can easily deduce the results for

IThis is not quite the most general form of a semi-Markov process. In its most general form, a
semi-Markov process on a finite state space has a transition matrix P = {pi;}. When the process is
in state i, then conditional on the next transition being to state j, the amount of time spent in i is
a random variable with distribution Fj(z) = Pr{T: < z|i — j}. In the model proposed here, the
length of time in any state is assumed to be independent of the next state, so that F;j(z) = Fi(z)Vj.
This does not seerr. to be a bad assumption with respect to weather changes.
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the Markov case. However, the greater computaticnal simplicity of the latter will
prove to be of value in the case study of Chapter 4. We formalize our assumptions

concerning the service process as follows:

Assumption 3.2 (Service Process) Landing capacity at the airport during a given
interval j takes one of a discrete number of values py,p2,...,ps for some finite
number S of capacity states. These capacities are scaled according to the interval

length At and obey the relationship

m<p2<...<ps.

The random holding time (in intervals) for a given state i, T;, follows an arbitrary

discrete distribution with probability mass funclion
Pi(k) = P{T; = &},

the probability of a capacity p; period lasting for precisely k intervals of length At.

Upon eziting a state i, the capacity process enters another state j # i with probability

Pij-

3.2 An Algorithmic Approach

Assumptions 3.1 and 3.2 describe the arrival and service processes for this queueing
system. We now develop a computational method for describing its transient be-
havior. To do this, we shall assume that within any interval k, the queue behaves
like a deterministic flow process, with demand Ay and service rate pu(k), p(k) being
a random variable which takes on one of the values py,...,s. Thus given g, the
length of the queue at the end of some period k, the queue length one period later
is the maximum of 0 and the values gx + A — p; for i = 1,...,S. This fact sug-
gests that queue statistics may be obtained by a recursive procedure. The next two
subsections give such recursions for the queue-length and waiting time moments,

respectively.
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3.2.1 A Recursive Procedure for Transient Queue Lengths

To obtain queue-length moments, we begin by establishing a Markov chain within
the semi-Markov process. We enlarge the state space to be {i,m}, where i is the
current capacity state and m the age (in intervals) of that state, and we define the

following random variables:

np

Qk Queue length at end of interval k
Ck

Ag

e

Capacity state at end of interval k

11>

Age of current capacity state at end of interval &

1>

T; Random lifetime of capacity state ¢

The following proposition describes the evolution of the capacity-age process.

Proposition 3.1 The combined capacity-age process with state space (i, m) is Markov.

For a gtven state (i,m), the transition probabilities are given by

pii(m) & Pr(Gm)— (1) = Pri=m|Ti>mlp; j#i

pii(m) = Pr((i,m) = (i,m+1)) = Pr[T; > m+1 | T; > m] (3.1)

PROOF:

For a given capacity and age (i,m), the possible states at the end of the next
interval of time are (j, 1) for all j # i plus the state (i, m+1). The probabilities of
these transitions are clearly given by the formula (3.1), and since these transition
probabilities, conditional on the state, are independent of prior history, the process

1s Markov. (]

To define the recursive procedure for queue length, we introduce the notation

Qi(l,i,m,q) £ E[Qk|Qi =q.C =i,A=m]
k=1,...,K, i=1,...,5, m=1,....M

IS k, q= 1:---,9max(ksi)-
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where gmax(k,i) is the maximum attainable queue length at the end of period k,

given that at that time the capacity state is {. This obeys the recursion
gmax(k, i) = [anx(k" l) + Ak — I‘i]+ (32)

where
A .
‘Imax(k) = m'ax Qmax(k» ‘)-

Let z* denote max(z,0). Then the recursion for expected queue lengths is given in

the following theorem.

Theorem 3.1 The functions Qi(l,i,m,q) obey the recursive relationship

Qk(l,i,m,q) = Y pii(m)Qk (I4+1,5,1, (9 + A1 — 5)*) +
i#i
pii(m) Qi (14+1,i,m+1,(g + A1 — pi)) (3.3)

with boundary condition Q(k,-,-,q) =q.

PROOF:

Once a capacity state i is determined for interval [4+1, a deterministic queue assump-
tion means that the queue changes in the interval by the amount Aj41 — p;. Because
the queue may not drop below 0, if the queue length is ¢ at the start of a capacity
p period, then the length at the end of the period is (¢ + Ai41 — p)t. Conditional
on the fact that at the end of interval ! the queue level is g and the capacity u;
has prevailed for m intervals, one of S things may happen by the end of the next
interval. Either the airport will have remained in capacity state ¢, or it will have
switched to one of the other S — 1 states. These S transitions have corresponding

probabilities p;1(m), pia(m), . . ., Pis(m). The result (3.3) now follows. o

The goal of the recursion (3.3) is to compute the values Qx(0,#,m,0) for all
values of i, k, and m. These are expected future queue lengths conditional on

the capacity state at the start of the day and on the forecasted demand. They
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constitute a statistical prediction of how the queue is expected to behave, given
initial conditions.

The recursion is not limited to finding first moments. Second moments (and
hence variances) can also be found via a similar type of procedure. Define the

second moment of the expected queue length by the shorthand
201 1 A L2 .
Qk(l,i,m,Q) =FE [Qllel = Q)CI = 3rAI = m] .

The previous conditional probability argument proves the following theorem for the

second moments of queue length.

Theorem 3.2 The functions Gi(l,i,m,q) obey the recursive relationship

Qi(l,i,m,q) = Y pii(m)Qi (I+1,5,1,(g+ dn — p5)") +

J#i
Fi(m)QF (14+1,4,m+1,(q + A — ) ") (34)
with boundary condition Q% (k,-,-,q) = ¢%. m]

Theorems 3.1 and 3.2 imply the algorithm for the queue length process given
in Figure 3.1. The computational complexity and memory requirements of this

algorithm are naturally of interest and are addressed in the following theorem.

Theorem 3.3 The memory requirement for the semi-Markov queue length algo-
rithm is O(SK M Qmax) and the running time is O(S2K2MQmax), where S is the
number cf capacity states, K the total number of time intervals, M an upper bound
on the memory argument m, and Qmax = maxx gmax(k) is the highest attainable

queue length over all periods.

ProorF:

The number of table entries in the above recursion is

K
2x S x M x YY" qmax(l). (3.5)
k=1 1<k
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Algorithm for Queue Length Moments

Boundary Condition:
Fork=1to K
Fori=1to S
Form=1to M
For ¢ = 0 to gmax(k,¢)
Qk(kai)mtq) =4q
Q3 (k,i,m,q) = ¢*

Main Body:
Fork=1to K
For [ = k—1 down to 0
Fori=1to S
Form=1to M
For ¢ = 0 to gmax(l,¢€)

Qk(lx i,m, q) =
5 [P (m) Qi (141,53, 1, (g 4 e — ) )] +
pii(m)Qk (14+1,1, m+1,(g + Mig1 — pi)t)

Q]2¢(I1 ia m, Q) =
Yizi [ii(m)QF (141,53, 1, (g + Migr — i) D)) +
Pii(m)QF (1+1,i,m+1,(g + M1 — pi)*)

END.

Figure 3.1: Recursive algorithm for queue length moments conditional on initial
capacity and age conditions
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Within iteration k, however, the algorithm needs only to store four values at a
time, Qx(l,#,m,q) and Qx(I+1,i,m,q) for the first moment, Qi(I+1,i,m,q) and
Q2(I+1,i,m, q) for the second. Thus since gmax(/) < @max the memory requirement
is O(SK M Qmax)- To calculate each table entry requires O(S) time. Therefore the
overall run time has complexity O(S? K2 M Qumax)- 0

The theorem indicates that the speed (and hence the practicality) of the com-
putation rests on the relative sizes of K, M, and Qmax, since S is very small (x 5).
A full operating day is twenty hours at most (K =80), with typical values for Qmax
in the range of 200. A theoretical upper bound for Qmax is

K
Qmax < Z (Ae — I"min)+ )
k=1

where pimin is the lowest capacity.

There is a degree of latitude in the choice of the parameter M. The age m has
been introduced into the state space because holdirg times in each capacity might
not be geometric. At a maximum, M is an upper bound on these holding times. As
a practical matter, however, it can be that above a certain value of m, the transition
probabilities p;;(m) remain relatively constant over m. In rough terms, this means
that while the holding time distributions may not be geometric, their tails might
look approximately geometric. If this is the case, one need only take M high enough
to cover the part of the distribution over which the {p;j(m)} vary significantly. In
the case study of the next chapter, for example, a value of M as low as 20 proves

adequate.

Obviously, substantial computational savings are available through reduction
of M. At the extreme M =1, a Markov chain replaces the semi-Markov model,
with the state space is reduced from {i,m} to {i}, the set of capacities. Run time
and memory requirements are correspondingly reduced. These savings motivate

consideration of both Markov and semi-Markov models in Chapter 4.
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3.2.2 Computing Waiting Times

The previous discussion dealt with the evolution of the queue length process. This
subsection addresses the question of waiting times. Let Wi be the waiting time for
an aircraft scheduled to land at the end of the kth interval (i.e. at time kAt). As

for the queue length process, we define
. A .
Wi(l,i,m,q) = E[W|Qi=¢,Ci =i, Ai=m].

We can establish a recursion for mean waiting times in a fashion similar to that for
queue lengths. The main part of this recursion is contained in the next theorem.

The proof, identical to that of Theorem 3.1, is omitted.

Theorem 3.4 The functions Wi(l,i,m,q) obey the recursive relation (for | < k)

Wi(l,i,m,q) = Zﬁ:‘j(m) Wi (141,5,1, (g + X141 — 1) F)] +
J#i
Pii(m)Wi (I+1,1,m+1, (g + Mig1 — 1)) (3.6)

O

The complication with waiting times (as opposed to queue lengths) occurs at
the boundary [ = k. Let the notation (a A b) denote min(a,b). The calculation of
the expected waiting time for an incoming aircraft at the end of interval k, given
the queue length and capacity conditions at that time, is itself a recursive procedure

within a larger recursion, as seen in the following theorem.

Theorem 3.5 The functions Wi(k,i,m,q) obey the recurston

Wi(k,i,m,q) = Y pi;(m) (L ALY+ Wik 4,1, (g - Pj)+)] +
i Hi
i) [( A 1)+ Wik, met1, (g - wh| @)

where Wi(k,-,-,0) = 0.
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Proor:

Suppose that at the end of period k the capacity is p;, the age is m, and there are
g waiting aircraft. Consider an aircraft which arrives at this instant. Its waiting
time, which is the time necessary to clear the existing queue, is the sum of two
components:

We | 2] = (Wi + WY | 2. (38)

Here W} is the part of the waiting time experienced during the next interval (k+1),

WY is the part experienced thereafter, and Z denotes the conditioning information
{Qi=4¢,C=1i,A =m}.
Given this conditioning, the possible capacity-age states for intervai k41 are
(1,1),(2,1),...,(i-1,1), (¢, m+1),(i+1,1),...,(S,1).
Let Cr41 = j be the event that the capacity during the next interval is y;. Then

[Wi | Z, Cryy = j] = min(g/pj, 1). (3.9)

This follows because during the interval k+1 the queue in front of our aircraft is
reduced by min(g, y#;). If the queue is reduced to 0 during the interval, the aircraft
waits for a time g/p;; otherwise, it waits for the entire interval. To get W/, note that
after the interval has ended, any remaining waiting time is stochastically equivalent
to the waiting time of an aircraft arriving one interval later to a queue of g—u;, a
prevailing capacity of p;j, and an age of either 1 (if j is a new capacity) or m+1.

Symbolically, this is

[WI:I II|Ck+l =.’] ~ [Wk I Qr = (q—l‘j)+,Ck =j,Ax = l] v J #i
WY Z,Chepr=4] ~ [WelQe=(g=p)t.Ch=i,Ar=m+1]. (3.10)

Taking expectations of (3.9) and (3.10) and un-conditioning on Ci41 = j yields the

result. o
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As with the queue lengths, the result of Theorems 3.4 and 3.5 are values for the

expressions
Wi(0,i,m,0) = E[Wi|Qo=0,Co=4%,Ac=m], i=1,...,S,m=1,..., M.

These are expectations of waiting times at the end of each interval, based on given
initial conditions.

To obtain second moments, we define the functions
2 . A 2 .
Wi(li,m,q) S E[WE|Qi=9,Ci=i,A=m|.

The part of the recursion for I < k is the same as with the first moment. Proof is

omitted.

Theorem 3.6 The functions WZ(l,i,m, q) obey the recursive relation

Wl?('a i, m, q) = Zﬁu(m) [ng (I+ 1,7, 1,(9 + Ay — l‘j)+)] +
J#i

pi(m) WE U+ Lim+1,(g+ hn —p)?)] (B11)
O

Once again, there is a recursion within the major recursion to establish behavior

at the boundary. This is described in the following theorem.

Theorem 3.7 The functions Wi(k,i,m,q) obey the recursive boundary condition
Wz(k, ia m, Q) =
3 Bij(m) [(—"—, A2 +2(= AWk (k,5,1, (¢ = u5)*) + WE (k,5,1, (g — u,-)’“)] +
J#i 1] K5

ii(m) [(;“'- A1) + 2(;‘?7 AW (k,i,m+1,(g — pi)*) + WE (i, m+1, (g - ,‘.-)+)]

(3.12)

with Wi(k,-,-,0) = 0.
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PROOF:
Suppose again that at the end of period k the capacity is p;, the age is m, and there

are ¢ waiting aircraft. As before, let 7 denote the conditioning information
{Ql = Q|CI = ivAl = m}‘
Using (3.8) we write E[W? | Qx = ¢,Cx =i, A = m]

= E[Wi+ W) |1]
= E[W)? +2WLW, + (W)Y 1 1]

= Y pii(m)E[(W})? + 2WiWY + (W()? | Z,Ck4a = 3]
3

= 3 #ij(m) [(i, ALY + AL ADEW: | 2,001 = 5]+ EIWE | 2,002 = ,-]] +
J#i ] Hj

i) [(L AP +2(L ADEWL | T,Cuin = 11+ BIWE 17,001 = .

The final equality is a consequence of (3.9). The result (3.12) now foilows from
(3.10). O

Theorems 3.4 - 3.7 imply the algorithm for computing waiting time moments
given in Figure 3.2. Memory requirements and running time complexity are the
same as for the earlier queue length algorithm. We state this formally as our next

theorem.

Theorem 3.8 The memory requirement for the waiting time algorithm is O(SK M Qmax)
and the running time is O(S?K?M Qmax). m]

It should be clear to the reader that the recursive approach of the queue length
and waiting time algorithms could be used to obtain still higher moments, or in-
deed to recover the whole distribution of the queue length or waiting time 2t any
given interval. This latter calculation could be achieved by transforms or by direct

enumeration of the state space. However, the problem of determining a given term

Pr{Qk = ¢ | Qo, Co, Ac]
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Algorithm for Waiting Time Moments
Boundary Condition I:
Wi(k,-,-,0)=0
Wi(k,-,-,0)=0
Boundary Condition II:
Fork=1to K
Fori=1to S
Form=1to M
For ¢ = 1 to gmax(k,c,m)
Wk(ka i: m, 9) =
g (Bis(m) [( A L)+ Walk,5i 1, (g - mi)*)]) +
Fia(m) [(& A1)+ Wi(k,i,m+1, (g — i)*)]

ng(k’i;m1Q) =
S (B (m) [(Z AP + 2062 ADWi(k, 5,1, (0 = m5)*) + WE(R, 5 1 (g — m5)1)]) +
ﬁii(m) [(;‘9: A 1)2 + 2("% A I)Wk(k,i, m+l, (q - I“i)+) + Wz(kt i’ m+l’ (q - l“t')+)

Body:
Fork=1tc K
For | = k—1 down to 0
Fori=1to S
Form=1to M
For ¢ = 0 to gmax(l,c,m)

wk(’; i, m, 9) =
iz Pii (m)We (141, 5,1, (¢ + Migr — p5))] +
Pia(m)Wi (141,i,m+1, (g + M2 — pi)¥)

Wi(l,i,m,q) =
Lipi [Bis (m)WE (141,53, 1, (@ + X1 — 1) 1)) +
ﬁ"(m)wl% (41,4, m+1,(¢ + M1 — I‘i)+)

END.

Figure 3.2: Recursive algorithm for waiting time moments conditional on initial
capacity and age conditions
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has the same complexity as that of determining the expectation. Thus there is
an additional factor of Qmax in the complexity of such an approach — that is, an
algorithm for the full distributions would be expected to run about 200 times slower

than those above.

3.2.3 Extension to a Simple Probuabilistic Arrival Stream

The recursions for queue length and waiting time moments presented thus far are
appropriate when the input stream is well approximated as a deterministic flow.
This deterministic assumption is justified because aircraft are deliberately scheduled
into their landing slots. On the other hand, congestion and other sources of delay
introduce a degree of uncertainty into the arrival schedule which our models have
thus far ignored. Particularly in the context of a network of airports, where delays
at upstream airports affect others’ arrival streams, it may be important to take
account of this uncertainty. For this reason, we next introduce a straightforward
extension of our approach which allows for a simple probabilistic structure in the
demand process.

Suppose that during period k, the demand A; is a random variable which
may take on a finite number of values A}, .. .,/\f with corresponding probabilities
- ,7,?. In recognition of this stochasticity, the innermost loop of the recursion
is re-written to take the expectation over all possible values of A. For the expected

queue length the main recursion becomes (c.f. (3.3))

r=1

R
Qk(li,m,q) = Y 7n [ﬁﬁ(m)Qk (I+1,i,m+1,(g+ A4 — m)F) +

3 Bij(m)Qe (I41,5,1, (g + My — #i)*) | (3.13)
J#i

with boundary condition Qk(k,-,-,q) = ¢. Similarly, for waiting times we have

‘ R
Wi(li,mg) = D 7in [ﬁii(m)Wk (141,i,m+1,(g + Ay — m)*) +

r=1
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Y i(mWi (1+1,5,1, (g + M — )") | (3.19)
J#i

Clearly, these additions to the algorithm multiply the running time by a factor
R. Note that the method treats arrival rates in different periods as independent.
That is, the random variables {A;} are independent. While this extension does not
encompass a fully general arrival stream, it does allow some degree of uncertainty
to be reflected in the queue statistics. The method will be of value in Chapter 5,

where the problem of congestion in the network is addressed.

3.2.4 Averaging Over Initial Conditions

The recursions implied by Theorems 3.1, 3.2, 3.4, and 3.6 obtain moments condi-
tional on the starting state at the beginning of the day. For planning purposes, these
conditional moments may be exactly what is required, or a more general average
profile may be desired. It is possible to obtain such a profile via the steady state

probabilities for the different starting conditions. More precisely, let
7(i,m) = Pr{state of the system at time 0 is (i,m)}.
Then the unconditional mean queue length at the end of interval k is given by

-Q_k = Z W(i; m)Qk(Ol il m, 0): (315)

i,m

while the corresponding mean waiting time is

Wi = Z (i, m)Wi(0,%,m,0). (3.16)

i,m

Clearly the numbers w(#, m) correspond to the steady state probabilities for the
Markov chain defined on the capacity-age state space m = 1,...,M,s = 1,...,5.

To calculate them, one must solve the system

=P, 3.17)
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where P is the full set of transition probabilities. A general linear system of this
type would imply S x M equations and could be solved using Gaussian elimination
in O(S3M?3) time. However, because of the special structure of the state space (see
Figure 3.3), the solution to (3.17) can be obtained by solving a system of only S
linear equations. This fact is shown in Theorem 3.9, which in turn depends on the

following three propositions.

Proposition 3.2 The steady state probabilities w(i,m) form =2,...,M -1 may

be written in terms of the steady state probabilities w(i, 1) as

m~1
(i, m) = n(i, 1) ] Bis(k) (3.18)
k=1
PROOF:
Note from the diagram that for m = 1,..., M — 1, each state has only one entry

point. Hence
n(i,m)=n(i,m—1)pi(m—-1) form=2,...,. M -1

Successive substitution yields equation (3.18). (=]

Proposition 3.2 The steady state probabilities 7(i, M) may be written in terms of

the steady state probabilities 7(i,1) as
M-1
w(i, M) = n(i,1)/(1 - (M) ] Bii(k) (3.19)
k=1

PRroor:

For the states (i, M) we have the expression
7, M) = (i, M = Da(M = 1)/(1 = Fis(M)).

Repeated substitution yields equation (3.19). 0
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Figure 3.3: Diagram of the extended state space (i, m) for the semi-Markov model.
Two kinds of transitions exist: those which keep the process in the same capacity
(rightward arrows) and those which take the process to a different capacity (leftward
arrows). The nodes labelled (i, M) correspond to states where the capacity s has
prevailed for M or more periods. These states alone have the potential for self-
transitions.

Proposition 3.4 The steady state probabilities w(i,m) must satisfy the system of
linear equations

M
n(i,1) =Y Y 7(j, m)pji(m). (3.20)

J#Fim=1

Proor:
The states m(i, 1) can be entered from all other states in the system. The equations
(3.20) are simply the standard balance equations for these states in the Markov

chain (i, my). 0O

As a result of the simplifications implied in Propositions 3.2, 3.3, and 3.4, the
problem of finding the steady state probabilities reduces to that of solving for the
S unknowns #(1,1),7(2,1),...,n(S,1).
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Theorem 3.9 The steady state probabilities w(i,1) are the unique solution to the

set of S linear equations

i=1,...,8-1:
7" m _ﬁM_M-l - — i
> x| (st [ st0) + 200 T ] = wtem
(3.21)
M~1m-1 M-1 q
Z (i, 1)(2:l kH Pu('c)+ = (M)) 1] p.-.-(k)) =1 (322
=1 m=1 k= 1 )

PROOF:
Propositions 3.2, 3.3, and 3.4 establish the necessity of equations (3.21). The Markov
chain (i, m) is clearly irreducible and aperiodic, so the rank of this linear system is

S — 1. The normalizing condition (3.22) thus ensures a unique solution. o

The significance of this theorem is that the enlargement of the state space via
the age process Ax does not severely affect the computation of the steady state
probabilities. One soives equations (3.21) and (3.22) for the probabilities x(i,1) and
then uses the relations- (3.18) and (3.19) to solve for the others.

3.3 Queueing Theoretic Aspects

In this section we consider the proposed algorithm in a queueing theoretic context.

3.3.1 Comparison with Simulation

As a departure point for discussion, consider the results of a test run of the recursive
algorithm for a constant arrival rate scenario: A =68, pmin =50, tmax =11%, p = 0.9.
In this test run, we employ the Markov chain version of the model.

Figure 3.4 depicts the mean queue length over time calculated by the Markov

model. The three curves correspond to different starting conditions (lowest capacity,
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Mean Queue Length Under Different Starting Conditions

= =meme= =low initial capacity

=== eeees high initia capacity

Figure 3.4: Comparison of expected queue length predicted by recursion under high
and low capacity initial conditions and averaged over all initial conditions

highest capacity, and average over all capacities). From the figure, it is evident that
the effects of the initial conditions do not wear off qu«ckly over time, although the
curves are obviously converging. Apparently, for these parameters the system is slow
to reach steady state, a fact suggested by the positive slope of all three curves at
t = 20 hours. The figure is evidence of the inappropriateness of steady state analysis,
even for this constant demand system. Odoni and Roth [29] have indicated that the
relaxation time for queues with i.i.d. service times can be quite large, especially
for heavy traffic conditions. We conjecture that in our case, the relaxation time
is still longer because of the grouping of services within intervals (i.e. all service
times within an interval are perfectly correlated) as well as the correlation between

successive intervals implied by the Markov chain.

As a check on our algorithm, we consider a simulation procedure in which we

choose each period’s capacity in Monte Carlo fashion according to the same Markov
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Single Queue with Heavy Traffic
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Figure 3.5: Comparison of mean waiting times estimated by simulation and by the
recursive algorithm for a single queue with constant demand and heavy traffic

chain, trace the resulting changes in the queue, and then take averages of the re-
sulting sample paths over different simulation runs. Our results are illustrated in
Figures 3.5 and 3.6. Figure 3.5, based on average waiting times from 5000 simula-
tion runs, indicates that the simulated mean values closely agree with those obtained
from the recursion. The slight under-estimation which the simulation gives suggests
that the tail occurrences for the waiting times are not sufficiently sampled. These
occurrences correspond to extended periods of low capacity and occur with very
low probabilities (less than 107). Although these tail occurrences do not have a
large effect on the means, we might expect them to have a noticeable effect on the
standard deviations; Figure 3.6, which plots the latter for both the recursion and

the simulation, confirms this.

Unfortunately, there is no easy way to rectify the sampling procedure to correct
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Single Queue with Heavy Traffic
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Figure 3.6: Comparison of standard deviations of waiting time estimated by simu-
lation and by the recursive algorithm for a single queue with constant demand and

heavy traffic

for this phenomenon. The waiting time at any given period k is a complicated
function of the k capacities preceding it. Standard variance reduction techniques
[16] such as stratified sampling and importance sampling are not readily applied to
this multi-dimensional case.

As a final interesting use of simulation, we explore the question of waiting time

distributions. Suppose we obtain the matrix of observations
W = {W¢},

where W' is the waiting time at the end of period k for the nth simulation. Ordering
the observations, we can obtain histograms for the waiting times for each period,
like the one illustrated in Figure 3.7. Note the presence of a substantial probability

mass at the minimum value (in tl:is case, 0). Values above this minimum seem to
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Histogram for Waiting Time of Single

4004 Queue at Period 50 (12.5 hours)
(1000 Realizations)

§ 3004
=]
s
: ™
Z

100 -1

0 100 200 300
Waiting time in minutes

Figure 3.7: Histogram from simulated waiting times in a single queue

follow an approximately exponential distribution. This is confirmed in Figure 3.8,

which plots the transformations

y() = e(-ut™)

where {w(™} are the ordered values of observations which exceed the ininimum and
1/v is their mean. If the underlying distribution were truly an exponential, this plot
should be a straight line sloping down to the right.? Plots such as this one suggest

an approximate mixed distribution for the waiting times W;:

Pr{Wi = wmin(k)} = 6
Pri{Wi < w | w> wmin(k)} = 1— e (w—vmin) (3.23)

_ 2If the exponential is correct, exp(—vW (™) are realizations of the reverse cumulative distribution
F(w) and should behave like the reversed order statistics of a U[0, 1] distribution.
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Exponential Plot for Positive Observations of
Walt Time at Period 50 (12.5 Hours)
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Figure 3.8: Test for exponential distribution of positive waiting time realizations

The parameters wmin(k), usually but not always 0, can be calculated directly from
the recursion in a manner similar to that for the parameters gmax(k). The two
numbers § and v can be estimated using the first two waiting time moments and
solving the two equations (subscripts omitted)

[o.o]
5tmin + (1 — 6) wre W ¥min) dy =  E[W]

Wmin

6(wmin)2 + (1 _ 6) had w2ue—U(W—wmin) dw = E[W2] (324)

Wmin
This procedure will prove useful in the development of network algorithms in Chap-

ter 5.

3.3.2 The Diffusion Approximation

The heavy loading of the system in our constant demand example is intentional,
because under such conditions, a diffusion approximation of the transient queue

behavior is possible. This method is applicable to a wide range of queueing systems
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(including those where the arrival process and service process are correlated), but
it does require a heavy traffic assumption.® It was developed in the 1970’s [18,19]
as a way of approximating a discrete-state queueing process by a continuous-state
stochastic process more amenable to analysis. The summary presented here is taken
from [12] and [17).

For a continuous time system on t > 0 define the arrival and service processes

for a queue:

cumulative number of arrivals up to time ¢

e

A(t)

ne

D(t) cumulative number of services up to time t

Q)

np

no. in queue at time t = [A(t) — D(t)]*

Let 1/ be the mean interarrival time and 1/ the mean service time. Define the

traffic intensity p = A/p. In the limit as p — 1
Q(t) = A(t) - D(®).

Define

e

AaQ() Q(t+T)-Q()

A(t+T) - D(t + T) - [A(t) - D(t)]

= AA(t) - AD(t).

As p — 1, for sufficiently large T the central limit theorem implies that AQ(t) is
approximately normal:

AQ(t) ~ N[BT, aT]. (3.25)

The parameters 3 and « are called the drift and the diffusion coefficient and are

defined by

o« 2 Jim Var[Q(¢ +TT) - Q@) (3.26)

3Most applications of the diffusion approximation have also been conducted for a constant
demand rate, as we do here. However, extension to time-varying demand is theoretically possible.
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If the interarrival times and service times constitute independent series of indepen-

dent random variables with variances aﬁ, ¢r§ respectively, it can be shown that

a 2302 + plol

B

A—p.

Equation (3.25) implies that under heavy traffic, Q(t) can be approximated by
the continuous stochastic process {X(t),t > 0} whose density function f(z,t) obeys

the Kolmogorov forward diffusion equation
i} o) o 8
-a—t-f(z,t) - ﬂ-a-;f(z,t) + 55::_2“"’“ =0 (3.28)

Solution of (3.28) subject to initial and boundary conditions yields a solution

for f(z,t) or (equivalently) for the cumulative distribution function
A
F(z,t) = Pr{X(t) < z}.

When the starting number in queue is zg, the initial condition is

0 fz<z
F(z,0) = ° (3.29)
1 ifz 2 Zo,
and the boundary condition is
F(0,t)=0 z>0, t>0 (3.30)

which reflects the heavy traffic assumption that the queue is always non-empty.

Under conditions (3.29) and (3.30) the solution to (3.28) is

F(z,t)=® (3_'_\2/_5_?1) - e*=Plog (1-—\/%"—ﬂt-) , (3.31)
where @ denotes the standardized cumulative normal distribution.

By differentiating (3.31), one obtains the density, from which it is possible to get
E[X (t)], an approximation of the expected queue length at time ¢, E[Q(t)]. Finally,
if <0,

F(z) = lim F(z,t) =1~ e~ 2Pl (3.32)
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and thus
Jim E[X(t) | X(0) = 2o] = 55

25 (3.33)

3.3.3 Adapting the Diffusion Approximation

The diffusion approximation as presented is not appropriate for the queueing system
of Figure 3.4 because it assumes independent service times. In contrast, our sys-
tem has periods of different service capacities which change according to a Markov
chain. To apply the diffusion approximation, it is necessary to find the appropriate
expressions for the drift and diffusion coefficient parameters # and a.

Consider successive aircraft periods indexed by k. Let § denote the number of
services in period k. Under the heavy traffic assumption, § is a random variable

taking one of the values py,...,pus. Let the steady state capacity probabilities be

given as my,..., s, so that the time average capacity is
S,
B= ) i
i=1

Define the cumulative arrival and service processes by

N
S =N
k=1

N
> & |

k=1

">

A(N)

>

S(N)
Under heavy traffic assumptions,
A
Q(N) = @n = A(N) = S(N).

The drift and diffusion coefficient parameters for this process are given by

5 = m EIQ00-Q0)
a = lim Var[Q(M)—Q(O)].
M—o0 M
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Assume that Q(0) = A(0) = S(0) = 0. Then it is immediate from the definitions
that

5 = jim EIAQD)_ L EIS(V)

N—oo N N—=oo N

= A- A;gnmg-[%@l. (3.34)

Moreover, from the independence of the arrival and service processes and the fact

that the arrival process is deterministic it follows that

_ Var[A(N)] = .. Var[S(N)]
o = Jm—xF TN N
_ . Var[S(N)]

Thus the problem reduces to that of finding the values

. E[S(N)]
e

. Var(SN)
am

S

ne

ne

a*(S)

To do this we require a result concerning a central limit theorem for additive pro-

cesses on a Markov chain due to Keilson and ‘Vishart [21,22].

Theorem 3.10 (Keilson and Wishart, 1963). Let J(k) be a Markov chain with
transition matriz P = {pij}, and let £(J(k)) be a series of independent random
variables with distributions determined by the state of the chain, §; ~ Fj(z). Define

an additive process recursively by
S(k+ 1) = S(k) +£(J (),

and define the matrices

B(z) = {pijFi(z)}-
B, 2 /_°° 2" dB(z)
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Suppose that J(k) is ergodic and S(k) is non-degenerate, in the sense that increments
over regenerative cycles of J are not identically 0. Suppose also that the increment

random variables {€} all have finite second moments. Let

m= lim E50)
k—+00 k
and
o? = lim Ef[i(’ﬂ,
k=00 k
Then

____5('2 ‘k"”‘ < N(0,1), (3.36)

where N(0,1) denotes the unit normal distribution. Moreover, the parameters m

and o are given by
m = n Bl (3-37)
o2 = 7Byl -3m® + 27T B1ZBi1, (3.38)
where 1 denotes the vector of 1’s and Z is the fundamental matriz of Markov chains,
z=[1-P+1T] 7.

The significance of the theorem in the present context is that it furnishes formulas
for S and 0?(S) for the service process defined on the Markov chain. We have only
to identify S with m and 0?(S) with o2 and apply equations (3.37) and (3.38). Note

that in our case,
B = {pi;nj}
B, = {Pij#,z'} .
Writing out (3.37) in full, we find that

5 = YD mpis
j i

= Dok
J

= I_L,
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Thus from (3.34) we may characterize the drift B as
B=A-%g, (339)

while the diffusion coefficient is

a = o, (3.40)

3.3.4 Discussion

The preceding analysis indicates how a diffusion approximation may be given for
a single queue with a constant arrival rate and a service process which varies ac-
cording to a Markov chain. Recall the formula (3.31) for the queue length distri-
bution. By finding the parameters B and « and using numerical integration, it is a
straightforward matter to compute E[X ()], the expected value of the queue length
approximation over time. This can be compared with E[Q], the expected queue
lengths calculated by the recursive algorithm. Figure 3.9 plots both sets of numbers
over a 50-hour period for a hgavily loaded system (p =~ 0.95). Also plotted is the
asymptotic value of the expected queue length,

. -0
Jim E[X(6)) = 55 ~ 200

The similarity of the curves suggests that the diffusion approximation captures
the essential qualitative behavior of this queueing system. The approach to equilib-
rium is remarkably slow, with the limiting value of 200 not attained even after 50
hours (200 periods). While the true steady state value is not known, these observa-
tions suggest that the true queue length process is also very slow to converge.

In a system where the arrival rate is near constant and the traffic is heavy, tran-
sient behavior is described fairly adequately by a diffusion approximation, which
may be computed in much less time than the recursion. For time-varying systems,
one could carry out the approximation within periods of constant demand, using
the previous period’s final condition as an initial condition. A better method, how-

ever, would be to adapt the approximation to a time-varying arrival rate. Such an

66



Expected Queue Length and the Diffusion Approximation
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Figure 3.9: Comparison of expected queue length predicted by recursion and by the
diffusion approximation

approach would be particularly useful in a network context, where speed becomes

more critical.
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Chapter 4

Dallas-Fort Worth: A Case
Study

In this chapter we discuss an application of the one-hub recursive model of Chapter
3 to the case of Dallas-Fort Worth International Airport. Qur intent is twofold.
First, we hope to gain further insight into congestion at hub airports, and second,
we hope to illustrate the usefulness of our congestion model in addressing important
questions of policy.

The discussion is organized into four sections. In Section 4.1 we give necessary
background on operations at DFW, focusing most attention on the service process
for arriving aircraft. In Section 4.2 we discuss parameter estimation and assess the
degree to which the data allow a simpler Markov (vs. semi-Markov) formulation. In
Section 4.3 we present initial computational results and results of a limited validation
using delay data obtained from the U.S. Department of Transportation (DOT).
Finally, in Section 4.4 we present the main part of our results. Section 4.5 contains

concluding remarks.

4.1 Operations at Dallas-Fort Worth

The Dallas-Fort Worth International Airport (DFW) is an ideal airport for studying

the effectiveness of the delay model. It ranks among the highest in the nation in
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Traffic Type | Major Operators Arrivals per Day ||
Air carrier American, Delta 750

Air taxi American Eagle, Atlantic Southeast | 220

Military — less than 20
General — 10-30

Table 4.1: Major demand sources at DFW. Source: Dallas-Fort Worth Airport
Authority

terms of delay problems, with only the three New York area airports, San Francisco,
and Chicago having significantly greater numbers of delays in 1989.} Its delay prob-
lems are largely due to the high level of traffic resulting from the dual hub presence

of American and Delta Airlines, which together account for 75% its operations.

The Arrival Process

Arrival traffic at DFW falls into four categories, as illustrated in Table 4.1. The
largest of these, air carrier traffic. consists of scheduled jet service and is dominated
by the two hub carriers. The second largest category is air taxi service, which
accounts for most propeller aircraft at Dallas. Much of this traffic is operated
by the two commuter companies, American Eagle and Atlantic Southeast, which
feed the jet service of their respective business partners, American and Delta. The
remaining 30 or so landings at DFW per day consist of military aircraft and general
aviation.

A typical daily demand schedule is illustrated in Figure 4.1. Adopting the con-
vention At = 15 minutes, we have grouped flights according to the 15-minute interval
in which they arrive. The peaked pattern reflects 12 American Airlines and 11 Delta
Airlines banks. The figure also includes the small numbers of military and general
aviation aircraft which use DFW. Because these do not follow a regular schedule,
we assume them to be spread uniformly through the major portion of the operating
day (7 a.m. to 10 p.m.). The small number of such flights (20-30 per day) makes

this assumption one of minor significance.

! Winds of Change, p.212.
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Demaznd Schedule for March, 1989

Arrivals

cwsaBRERES

i

7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00 1:00
Time of Day

g

Figure 4.1: Arrival schedule at DFW for March 1989. Sources: DOT, OAG., and
DFW Airport Authority

The Service Process

Consider next the service process for arriving aircraft at DFW. The recursive
model of Chapter 3 requires that the user specify the parameters p1,...,ps and
furnish a description of the underlying probabilistic structure. To do this, one would
ideally like to have an historical record of available capacity. Unfortunately, no such
record is available from any of the sources — the Federai Aviation Administration
(F.A.A)), the Airport Authority, American Airlines — where one would expect
to find it. Thus capacity specification requires a further examination of actual
operations.

Figure 4.2 depicts the runway layout at DFW. There are four North-South
runways? and two diagonal runways set off from these at an angle of 50°. During
normal operatioas, one of each pair of runways is devoted to landings with the other
used for takeoffs. Thus in favorable weather conditions DFW has three runways
available to handle landing aircraft. However, in less favorable weather conditions,
only two runways are available for landings, and capacity is correspondingly reduced.

Capacity under different configurations is given by “engineered performance

2The numbers marking the ends of each runway indicate (in tens of degrees) the compass direc-
tion taken by aircraft beginning their takeoff or landing at that end. There are four N-S runways,
so to distinguish the second pair, the notation 17R/35L and 17L/35R is used.
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Figure 4.2: Map of runway system at Dallas-Fort Worth Airport.

Capacity under different configurations is given by “engineered performance
standards” for the runways. These estimates are determined at the time of con-
struction based upon known operating procedures under the different configura-
tions. Essentially, they reflect the number of runways available and on how much

separation is required between incoming aircraft.

Federal regulations prohibit the use of a runway when the component of wind
velocity perpendicular to the direction of travel exceeds 15 mph (for propeller-driven
aircraft) or 20 mph (for jets). For this reason, runways are typically positioned so
that the prevailing winds run parallel to them. At Dallas, prevailing winds tend to be
North-South, and there are very few days when the four parallel runways cannot be
used. Operations are more often shut down on the diagonal runways because these
experience cross-winds more frequently. These runways also cannot be used during
periods of low cloud ceiling and visibility, when the required separation between
incoming aircraft increases. Ceiling and visibility are classified into the four states

given in Figure 4.3: Visual Flight Rules I, Visual Flight Rules II, Instrument Flight

3A more detailed discussion of this process is given in [27).
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Figure 4.3: The four flight rules specifications
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State | Description Landings per Hour (EPS) ||
A | IFR-2 & lower 50
B | IFR-1 60
C | VFR-2, windy 66
D | VFR-1, windy 70
E | VFR-2, still 90
F | VFR-1, still 95

Table 4.2: Engineered performance standards at DFW. Source: Dallas-Fort Worth
Airport Authority

Rules I, and Instrument Flight Rules II & lower. In general, the higher the required

separation, the lower the capacity.

The division of capacity into discrete states involves a degree of arbitrariness.
Considering wind speed, wind direction, ceiling, and visibility together, we chose a
total of six capacity states for DFW. Table 4.2 lists these six states together with the
associated engineered performance standards (EPS) in aircraft per hour. As may be
seen from the table, the capacity configurations range from the lowest state (‘A’) of
50 aircraft per hour up to the highest state (‘F’) of 95 aircraft per hour. There is a
substantial difference between the two highest capacity states and all other states,

due to the availability of the third runway.

Within the air transportation industry, EPS estimates are considered to be con-
servative for high-capacity configurations because under visual flight rules and good
conditions, experienced pilots can operate safely with separations less than those as-
sumed in setting the standards. On the other hand, the standards are not considered
to be conservative for the lower-capacity states. To compensate, our implementation
considers an ongoing study by UNISYS Corporation [13] which presents estimates of
runway capacity per hour based on empirical observations made during peak peri-
ods. Preliminary results put the highest arrival capacity state at DFW in the range
of 115 aircraft per hour, a substantial increase over the number 95 reported in the
table. Thus far, UNISYS has provided no further estimates for other configurations,

but it is reasonable to expect a similar increase for state ‘E’, while the 4-runway con-
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figuration estimates should remain essentially unchanged. We adopt these changes
for the capacities in this study and note that the need for more accurate capacity

estimation procedures seems obvious.

4.2 Estimation of Weather Change Parameters

Because historical capacity data were not available to us, we were forced to recon-
struct capacity histories from weather data obtained from the National Oceanic and
Atmospheric Administration (NOAA). Simple tabulation of eight years of hourly
observations reveals that the six capacities at DFW shown in Table 4.2 occur with
quite different frequencies. Over the course of a year, the highest capacity state
(configuration ‘F’) is observed about 80% of the time, while IFR conditions (states
‘A’ and ‘B’) occur only about 6% of the time in total. There are considerable
differences in average capacity from month to month. Figure 4.4 plots the average
number of hours observed per month for three different capacities: ‘A’ (lowest IFR),
‘D’ (windy, VFR-1), and ‘F’ (still, VFR-1). State ‘F’ is dominant: its number of
hours observed per month is greater than the others’ by an order of magnitude.
Seasonal variability is evident in the data. Not surprisingly, lower visibility
conditions tend to occur more in the winter; indeed, in summer, occurrences of this
worst state are exceedingly rare. January, February, March, and April constitute the
windiest portion of the year. Because of this seasonal variation, we chose a particular
month (March) and based the parameter estimates on data for that month only.
We chose March because its weather falls in between that of the low-capacity winter
months and the high-capacity summer months. Configuration ‘F’ constitutes about

75% of March observations.

4.2.1 Estimation in the Markov Case

Suppose that the six capacity states (i = 1,...,6) follow a homogeneous Markov

chain, with transitions occurring from one 15-minute period to the next according
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Variation in Configuration/Capacity by Month
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Figure 4.4: Capacity at DFW by month of year
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to the transition matrix
P = {pi;}. (4.1)

If observations were taken every fifteen minutes rather than eve-y hour, then a
sufficient statistic for estimating the transition probabilities would be the matrix
N = {n;;} of the number of transitions observed between states, and one could
obtain the maximum likelihcod estimates

nu

bij = .
MY

With hourly observations, we have only the matrix N’ = {n};} of hourly transi-

(4.2)

tions. In theory, we could obtain maximum likelihood estimates from the likelihood

function

L(N',P) =m;, [] (Z > ZPikPI:IPIumJ’) . (4.3)
k I m

i,J
However, this estimation would require numerical methods, an amount of effort
which seems unjustified given the arbitrariness of previous assumptions, such as
At = 15 minutes. A simpler estimation procedure is suggested by the form of
equation (4.2). The idea is to replace the unknown numbers n;; by estimates i;;

and then estimate the transition probabilities via
pij = ﬁ,’j/z ;. (4.4)
b

The estimates f1;; are obtained from the n/; as

fij; = nj; fori#j (4.5)

njj = 4n;j +15 zi(n:-j + n;-,-) forj=1,...,6. (4.6)

The formula (4.6) has an intuitive explanation. Suppose there are m+1 consec-
utive hourly observations of state j preceded by some other state i and followed by
some other state k. In symbols, this means n’; = m (see Figure 4.5). Assume that
if n; = m, then the capacity has been in state j continuously between the first and
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Figure 4.5: Schematic view of observation prccess for weather data

last of these observations.? Thus there are 4m self-transitions for 15-minute periods
plus any just prior to the first hourly observation and just after the final one. The

number of j—j transitions may be thought of as a random variable
N;i = 4"_'1';' + Xa + Xb,

where X, and X, are random variables indicating the number of j—j transitions
associated with the hour just before the first of the m+1 observations and the hour
after the last. We assume that, given that a transition took place at some point
between hourly observations, it was equally likely to have taken place anywhere in

that hour.> Thus
E[X.] = E[Xs] = 1/4(0+ 1 +2+3) = 1.5, (4.7)

and the formula (4.6) follows.

4.2.2 Estimation for the Semi-Markov Model

Estimation for the semi-Markov model is more complicated than for the Markov

model since the former requires two sets of parameters: the transition matrix P and

*This simplification neglects the possibility of multiple state changes between successive hourly
observations. The result is to introduce a slight conservative bias in the estimates, in the sense
that they reflect higher holding probabilities than is truly the case. However, the alternative is to
compute all 4-period paths in the Markov chain and solve the likelihood equation numerically.

5Recall the earlier assumption of only one state change allowed between successive but different
hourly observations. The justification for this new uniformity approximation lies in the memory-
lessness inherent in the Markov chain.
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the holding time probabilities Pr{T; = m}. The matrix P has the natural estimator

Pu ... P
P=1: .. . (4.8)
Per ... Pes
where the p;; are given by
. i/ Ligini; ifi#]
pij = t] J#i g . (49)
ifi=j

Notice that the difficulty with estimating self-transitions is removed.

The holding time probabilities can be calculated from the observed hour-based
histograms, but the.ere is again the problem of inferring parameters for 15-minute
periods from hourly observations. To overcome this, we elected to assign equal
probability masses to all lengths in between the hours. For example, if the observed
probability masses for 3 hours and 4 hours are ps and py4, then the inferred probability
masses for 3 hours, 3 hours 15 minutes, 3 hours 30 minutes, and 3 hours 45 minutes
are (p3 + p4)/8. Similarly, lengths between 4 and 5 hours have the estimates (p4 +
ps)/8 and so on. The fact that the inferred probabilities sum to 1 is easily checked.

The implicit uniformity assumption here has less justification than in the Markov
model, but without some hypothesis about the underlying distribution, there can

be no further structure added.

4.2.3 Evaluation of the Markov Model

Recall from the discussion of Chapter 3 that while the semi-Markov model is less
restrictive than the Markov model, its run time is higher by the factor M. Thus a
question of interest is how well a Markov hypothesis fits the weather observaticns.

To examine this question we consider the hourly observation process. For given

state i, we define a run of length m to be the event that this state is observed exactly
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m consecutive times in the hourly observation process. Let N(i,m) be the number
of runs of length m for state i, and let

N(G) 2 T N(G,m). (4.10)

m>1

For a particular state i, the collection of N(i,m) over all values of m constitutes
a kind of histogram for the holding periods. Informally, we can compare the ob-
served frequencies of the N (i,m) (the numbers N (i, m)/N(i)) with the probabilities
Pr[M; = m | M; > 1], where M; is a random variable representing the length of a
run for state i. In Figure 4.6, the smooth curves indicate predicted distributions,
while the jagged lines connect the data points. Several features are quite striking.
First of all, notice that states ‘B’, ‘C’, and ‘D’ tend to have very short durations,
states ‘A’ and ‘E’ short to medium durations, and state ‘F’ short to very long dura-
tions. In fact, the full tail of the ‘F’ histogram extends into the hundreds of hours,
though this is not shown in the figure. Second, notice that all six distributions have
a probability mass at 1 hour which is higher than that predicted by the Markov
model.

In five of the six cases, geometric distributions appear to fit the data fairly well,
although in every case there is greater actual probability mass at 1 hour than the
model predicts. The poorest fit occurs with state ‘F’. In this case, actual obser-
vations of extended periods of good weather force the geometric model to give a
rather flat distribution, which fails to capture the behavior at low values. With all
states, the dropoff in the early part of the distribution is greater than the estimated
geometric rate.

A formal way to test the fit is to perform a x? test of the null hypothesis that
the values N(i,m) are distributed according to the Markov model. As Table 4.3
indicates, the results are not favorable — the computed statistics in all cases fall
well out on the tail of the x? distribution implied by the null hypothesis.

But do these results necessarily lead to a rejection of the Markov model? The

answer is not clear. The Markov model, like all models, is an abstraction of reality,
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Frequency Distributions for Holding Times of
Six Capacity States at DFW
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Figure 4.6: Examining goodness of fit for the Markov model. The solid lines indicate
the observed frequencies for run lengths, while the dashed lines indicate the expected
frequencies under a Markov chain model.
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State | %tile from x* test
0.80

0.985

0.995

0.995+
0.975

0.995+

= =) 0| Q= >

Table 4.3: Results of x? test for the six holding time distributions

state | occupancy probability
expected actual
3.13% 3.06%
2.06% 2.05%
1.01% 1.01%
6.36% 6.36%
11.97% 11.95%
75.47% 75.58%

| = O] >

Table 4.4: Predicted and actual occupancy probabilities at DFW

and we should not necessarily expect it to do well in formal statistical tests such as
this one. Moreover, while the holding times do not conform exactly to the data, the
predicted state occupancy probabilities (i.e. the numbers m;) are eztremely close to
the time-fractions observed in the data (i.e. the numbers N (7)/3_; N(¢) — see Table
4.4). Apparently, despite the fact that the holding times in each capacity state are
not strictly geometric, the overall time fractions for each state are well predicted
by a Markov chain. Considering the fact that the Markov model offers substantial
computational savings, we are reluctant to reject it solely on the basis of the x? test.

A further verdict awaits test runs with actual traffic data.

4.3 Model Validation

Validation of the recursive queueing model presents considerable difficulties, because
the data necessary to conduct rigorous tests are not readily available. The most

comprehensive data for air traffic delay in the U.S. are the On Time Arrival Statistics
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(OTAS) which airlines must report to the Department of Transportation. On a
monthly basis the DOT receives this information for every flight performed by the
major domestic jet operators, including scheduled departure time, actual departure
time, scheduled arrival time, and actual arrival time. Unfortunately, this information
is not sufficient for conducting precise tests for at least two reasons. First of all, the
schedules against which the DOT measures delays are not reliable, because carriers
have responded to the risk of poor on-time statistics by including slack in scheduled
flight times. However, this difficulty can be resolved to some degree by normalizing
flight times according to some standard. A much more serious difficulty with the
data is that they reflect total aircraft delays rather than just queueing delays at the

destination. These include:

1. Departure delays. Late arrivals at DFW coinciding with late departures from
the preceding airport may be due to ground holds (DFW congestion) or to

departure congestion. The ambiguity is not easily resolved.

2. Travel time. Delays calculated from the DOT data include travel delays caused

by elements unrelated to congestion (e.g. head winds).

3. Gate delays. DOT data include delays caused by lack of available gate space
for arriving flights. While this kind of delay clearly falls within the category

of congestion at the destination, it is not included in our queueing model.

To summarize, the DOT data reflect total delays, including delays carried over
from earlier periods, while our queueing model is concerned solely with waiting times
caused by runway congestion upon landing. This discrepancy severely hampers ef-
forts at validation. Indeed, the only real way to achieve the necessary precision for a
full validation would be to collect the data specifically for our objectives, controlling
for the factors mentioned. Such an exercise is beyond the scope of the work under-

taken here. Of course, a full-fledged implementation demands such procedures. For
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Predicted Queuzing Delays at DFW: March 1989
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Figure 4.7: Expected waiting times at DFW based on March weather and 1989
traffic
the purposes of this study, subjecting the findings to some informal data analyses,

keeping the above remarks in mind, must suffice.

Consider first the predictions of the queueing model. Figure 4.7 plots the un-

conditional expected waiting times
Wi =Y _ mE[Wi | Qo=0,Co =1

based on traffic estimates for March 1989 and on a Markov capacity model with
parameters drawn from eight years of March data. The familiar peaking pattern is
evident and testifies to the deterministic effect produced by high traffic concentra-
tions at particular times of day — the morning American and Delta complexes, the
noon double complex (Delta following American), and the 6:00 p.m. double complex
(Delta again following American).

Despite the fact that overall capacity exceeds demand substantially (p = 0.5),

there are short periods where landing delay on average reaches 15 minutes, a good
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High Coefficient of Variation for Waiting Times
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Figure 4.8: Coefficient of variation for delays at DFW under Markov model

illustration of how overall sysiem capacity may be more than adequate even while
short periods show significent capacily shortfalls. Delays during non-peak periods
are, not surprisingly, close to 0. Queue lengths are not shown in the figure, but they

follow the same pattern as the waiting times.

Waiting time variance is high. Figure 4.8 plots the predicted (unconditional)

coefficients of variation in the waiting times

Var(W,
Culk) = E('(Tf

As may be seen, these values are substantially greater than unity, a reflection of the
possibility of widely varying sample paths for the process, including the possibility

of extreme tail values (extended periods of low capacity).

8Compare the situaticn where capacity remains high throughout the day to that where it remains
low. Ir the former case, there will be delays only at the busiest times, while in the latter casc,
capacity is inadequate for all but the lightest demand periods, and delay may reach into the range
of several hours.
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In order to conduct a validation test, we examined the DOT statistics for March,

1989. The relevant data are

>

DTC Scheduled Departure Time

">

DTA Actual Departure Time

1

DD Departure Delay = DTA - DTC

e

ATC Scheduled Arrival Time

ne

ATA Actual Arrival Time

npe>

FTC Scheduled Flight Time = ATC - DTC

>

FTA Actual Flight Time = ATA - DTA.

To correct for possible inconsistencies in scheduled flight lengths, for each origin we
calculated a single average scheduled flight length (AFTC). Then for each flight ¢,

we determined the total delay upon arrival as
TD; = max {FTA; — AFTC; + DD;, 0} .

Note that this statistic includes all possible flight delays, not only those due to
landing congestion. To correct for outliers, we grouped all observations by day
and scheduled arrival time, took group means and standard deviations, and then
threw out observations more than 3 standard deviations above the mean. In so
doing, we hoped to omit observations reflecting long delays due to reasons other
thon congestion. We then ordered the remaining observations by scheduled arrival
time, grouped them in 15-minute intervals (recall At == 15), and calculated means.
These average total delays per 15-minute period are plotted in Figure 4.9 together
with the average landing congestion delays predicted by the Markov model.

The results are somewhat ambiguous and point to the difficulties cited above.
Not surprisingly, the DOT average delays are almost uniformly higher than the
queueing delays predicted by the model, a reflection of the fact that they are indeed

total delays. On the other hand, the differences are larger at some times of the day
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Figure 4.9: Predicted waiting times at DFW (from queueing model) compared with
average total aircraft delays from adjusted DOT statistics

than at others, and several peaks exist where none are predicted. Travel time delays
(e.g. head winds) seem the only possible explanation in some of these cases — for
example, the earliest Delta and American banks of the day (around 5:30 a.m.) show
significant delays, but the level of traffic at that time is nowhere near a level which
would suggest significant congestion. A more likely explanation lies in the fact that
these early banks are mainly flights from the west coast and Hawaii, with long flight
times and late evening departure times.”

Mid-morning and mid-afternoon discrepancies are more troubling. The banks

at the latter of these times again correspond to arrivals from the west coast. Large

actual total delays in the late evening cannot really be attributed to congestion at

? Airlines are more likely to hold flights at these times of day as a service for late passengers.

87



DFW, since the traffic at those times is very low. High lateness statistics here may
ke attributable to the fact that the originating departures are the last flights of
the day (see the previous footnote), or more likely the fact that they reflect delays
carried over from earlier portions of the day.

To give some idea of the magnitude of the differences between the two curves,

we define the standard error

5= \/ Yier(TD; — PQD;)?
\Z|

where

PQD; 2 Predicted queueing delay for period i

7 &

Set of periods for which delay observations are available.
For Figure 4.9, this standard error is
s = 6.7 minutes,

which is approximately 2/3 of the actual average delay (9.46 minutes). The sum
of the predicted queueing delays (}; PQD;) is about half the sum of the actual
total delays (3°; TD;) — 250 minutes versus 540 minutes. These numbers indicate a
fairly large difference between the two curves, with the major discrepancies coming
in mid-afternoon and late evening.

On balance, these validation results are a better indication of the shortcomings
in the data than of the accuracy of our queueing model. In the absence of a fully
controlled validation experiment, however, we must be careful in the strength of the
conclusions we draw. Thus our discussion in the following section is mainly confined

to qualitative rather than quantitative issues.

4.4 Results and Discussion

In this section we explore some of the implications of the model’s results at DFW.

The following set of questions will guide the discussion:
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e Are the results for the Markov and semi-Markov models appreciably different?

e Are the results of these stochastic models appreciably different from those

obtained from a purely deterministic analysis?

e How do the correlations in service times implied by the model affect predicted

delay?

e What does the model predict about how American and Delta affect one an-

other at DFW in terms of congestion?
e What is the effect of schedule peaking on predicted delay?

e What are the advantages and disadvantages of traffic smoothing at DFW?

Markov vs. Semi-Markov Model

Figure 4.10 plots mean waiting times (averaged over initial conditions) for both
the Markov and semi-Markov models. The focus on only part of the day is made
to facilitate faster run-time for the semi-Markov model, w!ich with M = 20 has
run times on the order of 2 hours on a DEC-3100 workstation (for K =80 periods)
versus 5 minutes for the Markov model. As is evident from the figure, the differences
between the two models are quite small and could easily have been produced by
quirks in the estimation procedures. This observation reinforces our earlier remarks
about the limited suitability of strict hypothesis testing in this context. Apparently,
the differences between the Markov and semi-Markov models constitute only second
order effects at DFW. Although we did not expect this close agreement between the
two approaches at the outset of the case study, the finding is a pleasant surprise and
a reminder that simplicity in modeling is always a worthwhile goal. Because of the
close agreement and the greater speed of the Markov model, the rermainder of the

discussion focuses on the results obtained from it alone.

Stochastic vs. Deterministic Models
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Expected Waiting Times for March 1989
as predicted by Markov and Semi-Markov Models

B Semi-Markov

Queueing delzy (minutes)
-]

Figure 4.10: Comparison of predictions of expected waiting times at DFW under
the Markov and semi-Markov models

An examinatior: of the profiles predicted by the Markov and semi-Markov models
suggests that the mean waiting times which emerge from our calculations mainly
reflect high capacity acting upon demand in peak periods. Recall that capacity
at Dallas is in one of the top two states approximately 85% of the time. Thus
the question arises: how do the results of our stochastic model compare with a
deterministic analysis like that of Chapter 2? As an answer, consider Figure 4.11.
Here we have employed a purely deterministic model with a constant capacity equal

to the time-average capacity at DFW:

E=) mpi.
i
The figure plots the mean waiting times predicted by a simple deterministic model
together with the mean waiting times predicted by the Markov chain model. Not
surprisingly, during the peak periods of the day, the two curves agree closely, because

the deterministic effect A > u is the dominant factor in determining delays at these
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Figure 4.11: Comparison of predictions of expected waiting times at DFW under
Markov and deterministic models

times. During slack periods, however, the picture is much different. While the
deterministic model predicts very low average waiting times, the predictions of the
stochastic model are significantly higher. The explanation is that at these times
of day, the major cause of waiting is the presence of a queue of aircraft which
has formed because of earlier high demand combined with low capacity. Because
the deterministic model assumes a constant service rate, it does not account for
the possibility of such low capacity, and it therefore under-predicts waiting times.
The figure demonstrates the advantage we gain by using the more sophisticated

stochastic models.

Effect of Correlation in Service Rates

An important phenomenon at DFW is that of correlation in service capacity
over time. More precisely, the high probabilities of self-transitions estimated for
the Markov chain indicate that when the airport begins the day in a given capacity

state, it is likely to remain in it for a significant length of time. This phenomenon
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Figure 4.12: Capacity correlation means that initial conditions are important in
determining expected waiting times.

in turn implies that mean queue lengths and waiting times will look quite different
conditional on different starting states. Figure 4.12 plots two waiting time profiles
based upon the starting states ‘A’ (lowest capacity) and ‘F’ (highest capacity). The
difference is striking, with waiting times in the former case higher by an approximate
factor of 3 throughout the day. Since these profiles are averages of sample paths,
the peaks approaching 40 minutes indicate the possibility of very long delays.

To exarnine the effect of correlation further, we consider an alternative, less
realistic congestion model where the capacitics from period to period are i.i.d. and
the probability of a giver: state i in any period is equal to the steady state probability
n;. The effect of this new model is to eliminate correlation from period to period 8
This change should reduce predicted mean waiting times, a fact which is confirmed
by Figure 4.13. Note that the Markov model has only slightly higher estimates

than the independent model for peak periods — the deterministic effect once again.

8However, within a given interval, all service times are in some sense still perfectly correlated;
that is, when capacity enters state i, all customers served in that interval still have identical service

times.
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Expected Waiting Times for March 1989
as predicted by Markov and LLD. Models

Queueing Delay (minutes)

Figure 4.13: Comparing Markov and i.i.d. models illustrates the effects of correla-
tions in capacity from period to period.

The contrast is greater, however, in the slack periods. At these times, the i.i.d.
model reflects a lack of memory: delay dies out. This phenomenon is not observed
under the Markov model, where correlation is taken into account and delay is more
likely to persist. While this effect is small for the case shown here (average over
initial conditions) we have already seen that it can be much greater in low capacity

situations.

Schedule Interference

It is an interesting fact that at DFW during the busiest times of the day, Delta’s
banks tend to follow closely after American’s, with greater schedule slack separating
the Delta banks from subsequent American banks. This type of scheduling suggests
that Delta may bear a share of delay at Dallas out of proportion to its level of
traffic, since it is more likely to be subject to holdover congestion delay from the

preceding American bank. The phenomenon is illustrated in Figure 4.14. Here, we
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Figure 4.14: The four major double banks at DFW, labeled with the 2nd scheduled
carrier in each case. Although both major carriers at DFW are affected by delays,
Delta may bear a higher risk of waiting since its peaks are mostly scheduled right
after American’s.

have labeled the four highest delay peaks where the two carriers have arrival banks
in close proximity. In each case, the label indicates the carrier which is second in
the order. In all but the early morning peak, Delta follows American. The figure
suggests that Delta’s schedule position may increase its queueing delays.®

As an experiment with the DOT data, we selected all reported flights for March
1989 with scheduled arrival times during one of the four periods labeled in the
preceding figure: 7:15 a.m. to 7:45 a.m., 8:45 a.m. to 9:15 a.m., 11:45 a.m. to 12:30
p.m., and 5:40 p.m. to 6:10 p.m. We refer to these double banks by the numbers 1-4,

respectively. Within each bank, we grouped flights according to carrier (American

°To improve the situation, Delta could of course alter its schedule, but there are other factors
which work against this change. For example, the 6 p.m. peak involves numerous aircraft in the
midst of a west-to-east bank. Delaying the departure of these aircraft might have significant costs
in marketing, since such action would dzlay the eventual arrival times on the east coast, which are
already quite late — about 10 p.m.
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Bank I.D. | Carrier | No. of Arrivals | Average Total Delay per Aircraft
1 American 19 9.2
1 Delta 15 4.5
2 American 31 7.1
2 Delta 13 6.2 "
3 American 34 9.6
3 Delta 19 10.4
4 American 29 11.1
4 Delta 22 9.4

Table 4.5: Comparison of average aircraft delays for Delta and American during the
four major double-banks

or Delta) and computed the average total delay over all flights (defined as in the
earlier validation discussion, with the exception that outliers are not removed).!?
Table 4.5 presents the results. For banks 1 and 3, the second carrier in the order
(American for bank 1, Delta for bank 3) has the higher delays, while for banks 2
and 4, American has higher average delays despite coming first in the order (see the
fourth column of the table). The evidence seems mixed. However, it is important to
note that in every-bank, American has a larger number of flights. Since in the two
early morning banks there is still some separation between American and Delta, this
higher traffic would tend to increase American’s queueing delays. In the case where
the two carriers’ banks actually overlap significantly (bank 3), Delta shows higher
delays even with less traffic. Moreover, American’s delays are only significantly
higher than Delta’s in the one case where it is scheduled second (bank 1). Overall,
the data suggest that schedule position does play a role, but the effect is probably

only important when banks actually overlap.

Demand Smoothing

The issue of schedule interference is related to the larger question of how the

10Note that in this case, because we are comparing carriers rather than evaluating absolute
estimates, the difficulties discussed earlier are less significant. That is, here we are concerned only
with whether or not a difference exists rather than with the absolute numbers. It is important,
however, that we correct for schedule stretching, since it is possible that one carrier practices this
more than the other.
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demand peaking at Dallas affects delay. During recent years, congestion-related pric-
ing of capacity has been proposed as a potential way ‘o reduce delays by smoothing
the demand pattern over the day.!! What effects would such smoothing produce at
DFW? To explore this question, consider a hypothetical smoothing policy in which
we tmrase @ mazimum limit L on the number of arrivals for any 15-minute pertod.
For periods of the day which violate the limit, extra flights are shifted to the nearest
period in which there is room (either prior or subsequent). The resulting schedule
is a smoothed version of the original, with the parameter L determining the degree
of smoothing. Naturally, we expect that for lower values of L there will be greater
reductions in delay at increasing inconvenience cost (displaced flights).

Smoothing policies for L =28 and L =20 arrivals per 15-minute period are illus-
trated in Figure 4.15, which also reproduces the actual demand schedule for March
1989. The case L =28 reduces traffic so that it never exceeds the estimate for high-
est capacity state ‘F’. We term this level of smoothing “moderate” — to the extent
that 112 aircraft per hour is a hard upper bound on landing capacity, moderate
smoothing represents a rationalization of the schedule to reflect capacity realities.1?
The L = 20 policy goes much further, introducing excess capacity approximately
85% of the time at Dallas. Appropriately, we term this level of smoothing “severe.”

Figure 4.16 reproduces the average case congestion profile for March 1989, as
well as the hypothetical profiles of what delay would look like under the smoothed
schedules. Improvement is dramatic during peak periods — well over a 50% reduc-
tion in waiting time. Similar reductions are not achieved for the non-peak periods,
but waiting times during these periods are already fairly small. Weighted average
aircraft delays are shown in the second column of Table 4.6. In moving from no

smoothing to severe smoothing, there is a reduction in weighted average delay of

11 For a more thorough discussion, see Winds of Change, Chapter 6.

1214 is interesting to note that at certain times of day, scheduled demand actually exceeds the
airport’s highest capacity of 112 per hour (28 per 15-minute period). This phenomenon persists
despite the reality that delay for these aircraft is a virtual certainty. Apparently, carriers have
decided that the market benefits of serving the traffic at these peak times outweigh the costs of the
resultant delays.
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Figure 4.15: Alternative degrees of smoothing for DFW traffic
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Delays Under Varying Degrees of Smoothing
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Figure 4.16: Predicted effects of traffic smoothing on waiting times

Smoothing Policy | Percent of Flights Shifted | Average Delay (mins)
None — 6.05
Moderate 7.23% 3.29
Severe 17.37% 2.43

Table 4.6: Costs and benefits of smoothing policies

about 60%. This represents about 3 minutes on average, but of course much more
than that during the peaks.

The key observation to be made is that most of the reduction in delay (46%)
is achieved in moving from the normal schedule to moderate smoothing; reduction
beyond this level of smoothing is relatively modest. In other words, diminishing
returns exist: once the schedule is smoothed to the point of “rationalization,” most
of the delay benefits have been rezlized, and gains from further smoothing are not
as great. This result is consistent with the general principle in queueing theory that
the greatest improvement in performance is obtained near p = 1.

The cost of the smoothing policies is difficult to assess. Some flights are shifted

from the major banks, resulting in longer complex times. Table 4.6 lists the percent-
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ages of flights shifted in the two smoothing schemes: around 7% in the moderate case
and around 17% in the more severe case. Thus in addition to exhibiting diminishing
returns, the smoothing policies also exhibit increasing costs. From the standpoint of
costs and benefits, therefore, it seems that moderate policies of demand smoothing
are better than excessive ones.

But is any policy better than no policy? Newell [27] has remarked that delays
themselves eventually work to police carriers operating at congested airports. If this
is the case, active demand smoothing policies might well be viewed as unnecessary.
Final evaluation must assess the likely response of carriers, including the possibility
of their utilizing other hubs. Congestion models such as this one have a clear role

to play, but the technical issue of congestion is only one part of the story.

4.5 Concluding Remarks

In this chapter we have attempted to demonstrate how the theoretical model de-
veloped in Chapter 3 can be implemented and used. In so doing, we have tried to
indicate the necessity of careful attention to operational detail, especially in light of
less-than-ideal conditions for estimating parameters. Unfortunately, available data
are inadequate for conducting a thoroughly controlled validation procedure. |

Analyses based on the model indicate a number of interesting features of this
queueing system. First of all, as we have emphasized, the system exhibits a large
amount of variability due to the great disparity between alternative sample paths.
This high variance is reflected in the wide differences observed under different initial
conditions. These differences reflect in turn the serial correlation inherent in the high
self-transition probabilities estimated from the data. Our observations reinforce the
idea of the necessity of transient analysis.

In the realm of strategy and policy, the model points out the reality of interaction
between carriers at a hub and suggests that in the case of DFW, improved scheduling

on the part of Delta (allowing itself greater slack at those times of day where it has
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major banks near those of American) could improve performance. Our anralysis
also suggests that the high degree of schedule peaking at DFW is responsible for
many of the day-to-day delays. Traffic smoothing policies can reduce these delays
and rationalize airlines’ schedules, but smoothing beyond a certain level is likely to

create a degree of excess capacity with high opportunity cost for the carriers.
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Chapter 5

Congestion Models for
Networks

The natural extension of the work of the previous chapters is to consider the problem
of congestion in a network. While isolated hub models are of obvious interest,
airports operate in the environment of other aiiports, and congestion delay at one
location affects performance at others.

This interaction between airports is particularly important for hubs in a hub-
and-spoke network. Because of dependencies created by the schedule, performances
at the hubs may be highly interconnected. For example, when American Airlines
experiences a low capacity day at Chicago, the effects might be felt in Dallas, even
if Dallas has no significant congestion problem. In fact, concerns about such an
effect led American at one time to consider a policy of isolating the Chicago hub,
requiring all or most departures from O’Hare to return to O’Hare rather than visit
another hub in the system [10]. Although the strategy was never enacted, the mere
fact that it was considered underlines the importance of the network problem.

In this chapter we will show how the methods of Chapter 3 may be extended
to apply to networks of airports. Our goal is once again to develop models which
improve our understanding of the system. More generally, our work constitutes a
new approach to addressing a class of transient queueing network problems. These

problems are of great interest in the operations research community because they

101



are both relevant in practice and difficult to solve.

The chapter is organized as follows. In Section 5.1 we describe the general
queueing network context into which this airline problem falls and outline two de-
composition approaches which exploit the recursive method for the single airport
introduced in Chapter 3. Section 5.1.1 describes the first of these, in which down-
stream arrivals are adjusted according to expected upstream waiting times, while
Section 5.1.2 describes a more involved approach which uses second moment infor-
mation about delays to give a stochastic description of downstream arrival rates.
In Section 5.2 we test the two methods against a simple simulation procedure on a
2-hub network. Qur results indicate that the approximations inherent in the models
work well for moderate traffic but tend to underestimate the spreading of demand
which takes place in heavy traffic situations. These shortcomings suggest that fur-
ther improvements would be welcome, particularly in the second method, which

allows for more flexibility. We provide concluding remarks ir Section 5.3.

5.1 Queueing Approaches for Networks

The network problem represents a significant increase in complexity over the problem
of the single hub airport considered in Chapter 3. Recall that in the approach taken
there, a known schedule of arrivals was specified as an input, and the outputs were
the queue length and waiting time moments. In a network context, matters are
complicated by the fact that delays at one airport alter the downstream arrival
pattern. Moreover, an airline network is a multi-class queueing system, with the
different classes being the individual aircraft. This is due to the fact that every
aircraft has a unique #tinerary specifying the details of its passage through the
system. Thus our overall problem is one of describing the transient behavior of a
multi-class queueing network with auto-correlated service rates at each node. This
high degree of complexity suggests that approximation methods are necessary.

The following two subsections present two such approximation methods based on
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decomposition, where we apply the recursive method to each airport in the network
and use the resulting estimates of congestion delay to update itineraries and adjust

arrival rates.

5.1.1 A Decomposition Approach Based on Expected Waiting Times

A simple decomposition approach is based on the following idea. Suppose that
at the start of the day, one knows the schedules for all aircraft operating in the
network. Under the assumption that delays are zero at the outset of the day, the
schedule for the initial period of the day is fixed. Hence the first-period demands
are fixed, and mean queue lengths and waiting times for each airport during this
period may be determined by applying the one-hub recursive algorithm separately
to each airport. The resulting expected waiting times for period 1 are estimates of
the delay encountered by all aircraft scheduled to land in this period. Taking into
account the slack which these aircraft have in their schedules and updating future
arrival streams accordingly, one then fixes demand for the next period, calculates
the resulting new expected waiting times, and so forth. We refer to this simple
decomposition approach as “Decomposition Algorithm 1.” Details are as follows.
Consider a network of airports i = 1,2,..., N. On this network let there be a
set A of aircraft numbered v = 1,2, ..., V. Divide the operating day into periods of

length At, numbered as k = 1,2,..., K. Each aircraft v has an itinerary

I() & {(2, 1%, s5)} m=1,2,...

mi“m?

where
. A s .
i¥ = mth stop on itinerary of aircraft v
to £ scheduled arrival time at mth stop for aircraft v
A . .
sY = slack time between stops m — 1 and m for aircraft v.

Let dv represent the current cumulative delay for aircraft v — i.e. as one traces

aircraft v through its itinerary, d” represents the current amount by which it is
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behind schedule. Further define the terms

A(i, k) 2 set of aircraft scheduled to land at i in period k

E [W,:] = expected waiting time for an aircraft arriving to airport i at
end of period k

Ai 2 nhumber of scheduled arrivals at airport ¢ during period k

The arrival times £, are real numbers which represent times within the integer
time periods. Time t=0 is the start of the operating day. Let x(t) be the function

which takes real time values into their corresponding periods:

K(t) = [t/(A1)].

The scheduled arrival rates {,\}c} are determined from the sets of aircraft A(i, k)

which are in turn determined by the itineraries Z(v):

e = AGK)I (5.1)
A(i, k) = {v:(i,t,s) €I(v) for some s and «(t) = k} v(5.2)

Consider an aircraft which arrives at airport i at some time ¢ during period k. A
reasonable estimate of this aircraft’s waiting time to land is the convex combination

of expected waiting times at the end of periods k—1 and k,
oE [Wi,] +(1-0)E (Wil (5.3)
with the weight o determined by whether ¢ lies closer to the end of period k or k—1:
a = k(t) — t/(At).

Not all of this delay is necessarily propagated to later points in the system, however,
because of slack, and cumulative delay d” is adjusted to reflect this fact. To illustrate,
let the above aircraft’s next scheduled stop (stop m+1) be i’ at time t’, and suppose

that from the current stop until the next stop there is an available slack of s'. Prior
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to the mth stop, the aircraft’s cumulative delay was d¥; thus its new scheduled

arrival time is given by
¢+ (¢ +oE [Wioy] + (1 - )E [Wf] - &)
In words, the aircraft’s delay into its next stop is the maximum of zero and the value
X = current delay + new congestion delay — schedule slack .

Algorithm 1, based on this simple idea, is given in Figure §.1.

The algorithm consists of two main parts: computation of expected waiting times
and updating of schedules. To accomplish the former, we must aggregate aircraft
and compute the level of demand at each airport, while in the updating procedure we
must disaggregate again to the level of individual aircraft. Because of this repeated
aggregation and disaggregation, the choice of data structures is important. For the
implementation discussed here, the central data structure is the one illustrated in
Figure 5.2. The arrival sets A(i, k) are singly linked lists of aircraft indexed by
their currently scheduled destination i and arrival period k. Each aircraft record
contains a pointer to its schedule, another linked list, and a pointer to the current
destination in that schedule. In a given period, the number of aircraft records
hung from a particular location in the data structure constitutes the demand rate.
This counting is the aggregation procedure. Once the resulting queueing delay is
calculated for this period and location, each affected aircraft record is re-hung from
a new part of the arrival matrix based upon its slack and schedule. This update is
the disaggregation procedure.

This choice of data structure means that the inner updating loop (the disaggre-
gation procedure) requires only O(V) time. The bottleneck of the algorithm consists
of repeated calls to the subroutine for computing expected waiting times. Hence

the following theorem on computational complexity.

Theorem 5.1 The complezity of the ezpectation-based decomposition algorithm is

O(KNU), where U is the complezity of the single hub recursive algorithm for watting
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First Decomposition Algorithm for Air Network Congestion

Initialize:
Fork=1to K
Fori=1to N
AGi,k) = ¢
**+%* first itinerary stops are deterministic since not affected by earlier delays ***¥*
For i=1to N
For v=1to V
AG, 5(8)) = AG, K(£2)) U v
Setd? =0V wv.

Main loop:
For k=1to K
For i=1to N
Set A} = A(i, k)|
Using the recursive method at each airport, calculate £ (wil,....E [W,fV ]
For v € A(i, k):
**%** find the part of the itinerary corresponding to this stop
Find m: (i%,t2,,s%) € Z(v) and k(t, +d’) =k
Set i=im,t=tm +d’, 5§ =85m, & =ims1, t =tms1, 8 = Smy1-
Set a = k(t) — t/(At).
***¥* calculate propagated delay *****
Set d2,yy = [@ + 0B [Wigy_,] + (1= ) B [Wigy] - #]".
***#*¥* Jetermine next arrival period and update data structure *****
Set A(¥, k(' + d”)) = A(, k(' + d’)) U v.

*kk¥*k

END.

Figure 5.1: Decomposition algorithm for network based on deterministic updating
scheme
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Figure 5.2: Data structure used in network congestion algorithms
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time moments with deterministic input. If the Markov capacity model is specified

with S capacily states, overall complezity is O(N S2K3Qmax)- 0

The presence of the additional factor K in the complexity is due to the fact
that at each time period k, the algorithm re-calculates all expected waiting times
through period k. This duplication of effort could theoretically be reduced if it were
possible to store the end conditions of iteration k to be used as initial conditions for
iteration k+ 1. However, even for the simpler Markov capacity model, this would
mean storing the joint probabilities for queue length and capacity. Since computing
these probabilities requires O(Qmax) times as much effort as for the expectation
alone, there is no benefit to doing so unless they are desired for some other reason.

A more practical improvement is to have the recursion re-start only every m peri-
ods, where m is the minimum number of periods any aircraft has between scheduled
stops. Under this scheme, the algorithm is run for the first m periods, arrivals are
updated, then the algorithm is run for the first 2m periods, and so on. Whereas in
the original implementation, the number of iterations performed within the recursive

algorithm is

1424 ...+ K = K(K+1)/2,

under this new scheme it is
m+2m+3m+Gm+ K' =G(G+1)m/2+ K'

where G = [ K/m]| and
K ifGm< K
K' =
0 otherwise

This modification alone leads to substantial savings. The number of iterations is

reduced by a factor

K(K+1)/2 s _K(K+1)
mK/m| ((K/m] +1) = K(K/m+1)
K+1
- K/m+1.
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In the case K = 80, for example, a value of m = 10 implies that the number of
iterations is reduced from 3240 to 360, one-ninth of the former number. We note
that because of the higher computational requirements of the network problem, the
speed advantage of the Markov model over the semi-Markov model is substantial.

All of the subsequent runs employ the Markov formulation.

5.1.2 An Algorithm with Probabilistic Updating

The updating scheme of the previous section takes deterministic arrival streams
and uses expected waiting time information to convert them into new deterministic
arrival streams. A more sophisticated method is suggested by the stochastic inpui
refinement discussed in Section 3.2.3. The aim is to allow the variance in the waiting
times, as well the as the means, to specify information about future arrival rates.

These arrival rates are specified probabilistically rather than deterministically.

Consider a particular airport i at period k, and let the expectation and vari-
ance of the waiting time at that point be denoted simply as p and o%. Suppose
that it is possible from these parameters to estimate an approximate density f,‘;(w)
for the waiting time W,: From this density and knowledge of the schedule slacks,
one can then characterize (probabilistically) the next arrival period of each air-
craft v € A(i, k). More specifically, one can specify numbers Pv(0),...,ps(C) and
ky(0),...,ky(C) with the following interpretation: the next period in which aircraft
v will have a landing is k,(0) with probability p,(0), kv(1) with probability p,(1)
and so on up to some practical bound C. Figure 5.3 illustrates this phenomenon of
traffic “splitting.”

In order to complete the updating scheme, the algorithm must translate the
probabilistic information on individual aircraft into information on future arrival

rates. Defining the stochastic arrival quantities

A(, k) £ number of arrivals at airport ¢ in period k,
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Figure 5.3: The traffic splitting phenomenon: alternative future aircraft paths de-
pend upon delay encountered. The numbers {p,} indicate probabilities.
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the algorithm estimates numbers 7£(1),...,7;(L) and AL(1),...,AL(L) which de-

scribe the arrival process probabilistically:

Pr{AGi,k) =D} = 7i(D)
Pr{AG.B) =@} = 7®

Pr{AG,k) = ML)} = 7k(L). (5.4)

This simplified description of variability in the arrival rates is easily incorporated
into the recursion for expected queue lengihs, as was shown in Section 3.2.3. The
recursion then produces future waiting time estimates, leading to new densities, new
arrival probabilities, and so on.

An extremely important point is suggested by Figure 5.3. Because of uncertainty
in delays, an aircraft landing at a particular place and time takes one of many fu-
ture paths. Ideally, we would like to keep track of all such future paths and thus
be able to assign probabilities to all realizations of the sets A(i, k). Unfortunately,
the computational complexity inherent in this task is overwhelming because of the
large number of such paths — O(C™™) for each aircraft v, where r(v) is the num-
ber of points in v’s itinerary. Thus while we can reflect the splitting phenomenon
in assigning probabilities to the different values Xi(-), we must limit the realiza-
tions of the sets A(i, k). To accomplish this, we repeat the method of Algorithm
1, updating each aircraft’s cumulative delay by a convex combination of E[Wj] and
E[Wi_,]. Thus, unlike Algorithm 1, Algorithm 2 allows a partial modeling of the
splitting phenomenon (through the Ai’s), but it also introduces a potential incon-
sistency between schedule adjustment (traffic splitting disallowed) and demand rate
adjustment (traffic splitting allowed). This inconsistency could adversely affect the
results.

In total, the second decomposition algorithm requires four separate procedures:

1. Estimation of the densities f,‘; (w; p(i, k), o (i, k)) for the waiting times at each
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station and period, given the estimates of mean and variance computed in the

recursion.

2. Translation of these density functions into probabilistic descriptions of future
arrival periods for each aircraft, as given in the parameters p,(0),...,p,(C)

and k,(0),...,k,(C).

3. Translation of the individual aircraft parameters p,(0), . .., p»(C) and ky(0), ... ,k,(C)

into simple discrete distributions for the random variables A(i, k).

4. Updating of aircraft itineraries and airport arrival lists.

The fourth of these procedures was described in the previous subsection. The first
three are described in further detail in what follows, and a summary of the algorithm

is given in Figure 5.6.

Obtaining waiting time densities

Estimation of the densities f(w) cannot be done on the basis of the recursive algo-
rithm alone, since this procedure gives only the first two moments of the distribu-
tion. Knowledge of the third moment would give enough information to determine

a unique 2-point discrete distribution by solving the non-linear system

nw +pwe = E[W]

nod +pud = B[]
nod ot = B[]

pntp =1
p1,p2, w, w2 > 0. (5.5)

for the values p;, p2, wy, and w,. However, this system is not guaranteed to have

any solution because of the positivity requirement.
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An alternative method is suggested by the discussion of Section 3.3, in which we
proposed a 2-parameter distribution for waiting times based on simulation results.

The distribution is reproduced here as [c.f. (3.23)]

Pr{Wi = wmin(i,k)} =
Pr{W,‘; <w | w> wnin(i, lc)} = 1— e YW ¥min) (5.6)

Recall from the earlier discussion that the parameter wmy, is determined directly
within the recursion, while the parameters § and v must be determined by solving
a pair of equations [equations (3.24)] using the first two waiting time moments. In

terms of the mean W and variance o2 we obtain the solution (omitting subscripts)

o? — (w- wm;n)2
b= e (5.7)
2(w - wmin)

o2 + (ﬁ — wmjn)2

(5.8)

Note that 6 is always less than 1 and will be nonnegative provided that

o?

—_—_ > 1.
("lﬁ— wmjn)2

In the typical case where wpin is zero, this is equivalent to the condition that the
coefficient of variation exceed 1. Only in rare instances of the tests presented shortly
was this condition found not to hold. In those cases, the parameter § was set to 0

and the entire distribution assumed to be exponential.

From densities to schedules

Given estimated densities for W,: for all points i in the network, the next step in
the procedure is to infer probabilities for the immediate future paths of all aircraft
v € A(i, k). For any such aircraft, let (i',',5’) be the scheduled next stop (stop
m+1) on its itinerary. The earliest period in which this aircraft’s next landing may

actually take place 1s

ky(0) = & (t' + [d” + wimin — 8] .
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This is the earliest period at which this aircraft could next land, reflecting the
minimum waiting time achievable at this stop (usually 0). Accordingly, the greatest
amount of delay this aircraft can endure at i and have this next arrival period remain

unaltered is
w(0) = max{w :k(t'+[d" +v' = &T") = k(0)}
= {v:t+d"+v' - & =k, (0)At}
= k,(0)At—t'—d’ +5'.

where d¥ is its cumulative delay prior to the mth stop. The probability that the

aircraft’s next scheduled period is k,(0) is

w
p(0) = j Y f(w; p, 0% )dw. (5.9

Wmin

If Wiin = 0, which is usually the case, k,(0) corresponds to the outcome that zero
additional periods of delay are added to aircraft v at this stop. When the waiting

time density is approximated by the distribution (5.6) with wpin = 0, (5.9) becomes

pu(0) = 6 4+ (1 — 8) [1 — exp(—Aw(0))] .
Letting w(1) = w(0) + At, the probability of the next scheduled period being
ky(i) = ky(0)+11is

w(l) 9 .
= [ o), (5.10)
and in general the probability of ¢ additional periods of delay is
w(c)
pul(c) = /( )f(w;p,az)dw, (5.11)
w(ec-1

where w(c) = w(0) + cAt. ‘These have the appropriate specific forms when the
distribution (5.6) is substituted.
For practical reasons, it is necessary to choose some upper bound C on the

number of periods delay to allow. Hence

p.(C) = /

w(C-1

(oo

F(w; py 0%)dw,
)
Together with the numbers {k,(c)}, the probabilities {p,(c)} then constitute a prob-

abilistic description of the next period in which aircraft v will demand to land.
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Characterizing arrivals

In order to translate the numbers {p,(c)} into a probabilistic description of the

future demand rates A(i, k), define the random variable

1 if v € A(j, 1) is delayed such that its
Xk (v) = next stop will be i at period k
0 otherwise
This random variable denotes the “contribution” of an arrival at one place and time
to the arrival rate at a future place and time. Note that if the next stop of v € A4,
is i, then
Pr{X;iix(v) = 1} = pu(k — 0).
In words, for aircraft v € A(j, I), the probability that it will contribute to the landing
demand at airport i during period k (assuming that j is its next scheduled stop) is
pu(k =1).
The random variables X j;;x(v) provide the necessary connection between aircraft
and arrival rates. A moment’s thought shows that
N \4
AGR) =D Xiik(v)- (5.12)
j=11<k v=1
In words, this says that the arrival rate at (i, k) is the sum of all contributions
from previous points in the itineraries (see Figure 5.4). Note the form of (5.12).
The random variables {A} are sums of Bernoulli random variables. Making the

definition

NL(v,k) £ next destination of aircraft v after period k

the expectation is easily obtained as

|4

Y 3U) ElXu(v)]-

N
j=li<kv=1
N

,ZZ Yo pu(k=1) (5.13)

j=11<k v:NL{vl)=i

E[A(i, k)]

I
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in period k

\ . A (1,k) =demand at airport i

Pl
®
®
L

Figure 5.4: Updating downstream arrivals in Algorithm 2: early arrivals and delays
contribute to demands later in the day.
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Obtaining variances is not straightforward because the terms of the sum are
not independent. Aircraft delayed at earlier points in the day may share the same
source for those delays, so that their contributions to future demands may be corre-
lated. On the other hand, diversity in scheduling and slack weaken this dependence.
For the sake of tractability, we make the approximation that the contributions are

approximately independent and write

N
Var[AGEI= Y3 Y pu(k =D ~pu(k—1)). (5.14)

i=11<k v:NL(v,l)=i
Simulation results indicate that this approximation is fairly good.

The specification of approximate distributions for the {A(i,k)} is the final step
in translating aircraft delays into arrival rate information. If we could compute the
third moment, we could determine a 2-point distribution by solving a non-linear
system such as (5.5). However, there is no straightforward way to obtain a third
moment (which reflects skewness) other than simulation. An alternative is to assume
a normal form for A and discretize into a suitable number of points. Such a normality
assumption has some basis in the central limit theorem, but convergence may not
be good because of non-independence between terms of the sum. Simulation results
indicate that for early periods of the day where there are fewer terms in the sum,
strange skewness patterns are possible (see Figure 5.5). These patterns disappear
later in the day. While this phenomenon is some cause for concern, the test runs
indicate a degree of insensitivity to the demand rate distribution. We retain the

normality assumption while acknowledging its imperfections.

5.1.3 Complexity, Model Power, and Perspective

Although Algorithm 2 involves considerably more modeling work than Algorithm 1,
its computational complexity is not significantly higher. Within the principal loop,
the bottleneck operation remains that of calculating the waiting time moments in

the recursion. Because the arrival stream is specified probabilistically rather than
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Figure 5.5: Histogram of A(1,22) obtained from simulation. Unusual skewness
patterns such as this one may occur when the contributing prior arrivals are still
largely deterministic.

deterministically, there is an additional factor R equal to the number of values
specified for each arrival rate distribution. Hence we have the following theorem for

the computational complexity of Algorithm 2:

Theorem 5.2 The complezity of the Algorithm 2 is O(RKNU), where U is the
complezity of the single hud recursive algorithm for waiting ttme moments with de-
terministic input. If the Markov capacily model is specified with S capacity states,
overall complezity is O(RN S? K3Qumax)- (m]

Both Algorithms 1 and 2 are suitable for any kind of network. However, their
running times are not trivial: for a simple 2-airport network with K =80 periods
at each airport, Algorithm 1 takes about one hour on a DEC-3100 workstation
while Algorithm 2 takes about three hours (R=3). Note that these running times

do not reflect the reduction in calls to the recursion discussed earlier. Even with
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Second Decomposition Algorithm for Air Network Congestion

Initialize:
Fork=1to K
Fori=1to N
A ) = ¢
E[AG, k) =0
o?[A(i,k)) =0
#+¥* Pirst demand period for each aircraft is fixed *****
Forv=1toV
AG,5(8)) = A, K(E3)) U
Yor each (i,t,s) € Z(v), E[,\i(t)] = E[/\f‘(t)] +1
Setd* =0V wv.

Main loop:
For k=1to K
For i=1to N ’
From E[A(i, k)] and o?[A(i, k)] determine the quantities
A1), M(L) and 2i(1) -, 7E(L)

Using the recursive algorithm with probabilistic input Ap
calculate E[W}],...,E [W,f’] and 0% (W}),...,0% (W,ﬁv)

*#*#* {Jpdate itineraries — same way as first algorithm FEEEE
For v € A(i, k):
Find m: (i%,t%,5%) € Z(v) and &(t;, +d°) =k
Set a = k(t) —t/(At).
Set dlyy = [ + B [Wigy | + (1 - ) E W] |-+
m+1 = K(t)~1 x(t) .
Set A(',k(t' +d”)) = A(#,k(t' + d’)) Uv.

*#¥+* [Jpdate future arrival rates *****
From o, E[W}], and o?(W}), determine the densities {fi(w)}.
From the densities fi(w), determine the quantities
2o(0), - ., po(C) and ky(0),. .-, k,(C) Vv € A(i, k).
Forc=0to C:
E [Afu] = B [N + 70
7 (Kiguey) = o (Aigo) + o)1 = Pu(€))
END

Figure 5.6: Decomposition algorithm for network based on stochastic update scheme
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this factor-ten improvment, however, modeling a full-size network of a large airline
(400+ nodes) is a daunting problem. On the other hand, the problem is well-suited
to parallel computation, with different processors handling the individual nodes and
a central processor controlling the bookkeeping of aggregation and disaggregation.
Without such parallel capability, one must ask the question of whether it is necessary

to model all airports in the network or whether further simplification is possible.

Consider a single carrier trying to understand congestion in its own hub-and-
spoke network. From this carrier’s perspective, delays at its hubs have far greater
implications for disruption of its schedule than delays at its spokes. This observation
suggests a simplification: reduce the hub-and-spoke network to a network of hubs.
That is, keep track only of aircraft belonging to the hub carrier, treat other arrivals
as fixed, and treat all congestion delays other than those emanating from the hubs as
negligible. In the resulting collapsed network, we incorporate spoke information in
setting aircraft itineraries. As before, these consist of ordered triples {Gm,tm,sm)}s
but now each i, refers to a hub airport and each sy, reflects the total slack available
to an aircraft between successive visits to hubs, including the slack available at an
intervening spoke. External aircraft add to demand and congestion in the system,
but their arrival schedules are considered fixed. All internal flights in the collapséd
network appear to take place between hubs, but flight timnes vary widely to reflect

the fact that in reality, the aircraft have intermediate spoke stops.

By ignoring congestion at the spokes of the system and concentrating only on the
hubs, we reduce the size of a large airline’s network from 400+ nodes to perhaps 5 or
6. These changes reduce the model’s realism, but the reduced model should capture
essential behavior. Since one of the main goals is to improve our understanding of
interactions between hubs (e.g. the issue of isolating Chicago), this simplification
seems to be further justified. The testing and analysis presented in the remainder

of this chapter is conducted on a simple 2-hub network which embodies these ideas.

120



5.2 Testing the Decomposition Models

1t is desirable to test the validity of the results obtained from the network de-
composition models, much as the Dallas case study examined the usefulness of the
single-hub model. However, rather than consider actual data as we did in Chapter
4, we present here results of a small “case study” conducted on a simple hypothet-
ical 2-hub network, using demand and capacity data which resemble those found
in practice. Section 5.2.1 discusses the set-up of the test procedure, including the

issues to be addressed, while Section 5.2.2 presents a discussion of our findings.

5.2.1 The Testing Procedure
The following set of questions will guide our test procedure:

How well do the network approximation procedures work?

e What is the effect of congestion at one hub on demand and congestion at the

other?

e How is this effect altered by the amount of slack in aircraft schedules?

What is the effect of isolating a congested hub by not allowing its flights to

connect with the other hub?

Figure 5.7 illustrates the form of our test network. Along the lines of the above
remarks, we simplify to create a network of two hubs. The test runs have two sources
of landing demand at each hub: external demands {vi}, which are specified as pa-
rameters, and internal demands {\i} which are endogenously determined according
to schedules and delays.

Table 5.1 summarizes the main characteristics of the various test cases. The
cases differ with respect to the presence or absence of banks of flights, the degree
of separation between banks, the amount of slack in aircraft schedules, the traffic

intensity, the initial capacity conditions, and the percentage p of flights which visit
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case # | no. banks | bank space | p | p slack initial capacities ||

1 (DFW) — 0 | 0.5 | 15-20 mins. low/high

2a 12 15 mins. | 0.5] 0.9 5 mins. steady state
2b 12 15 mins. | 0.5 | 0.9 | 500 mins. steady state
3 — — 05}08 5 mins. steady state
4a 10 30 mins. 0 |07 5 mins. low /high

4b 10 30 mins. 1 [07] 5 mins. low/high

5a 10 30 mins. | 0.5 0.7 5 mins. steady state
5b 10 30 mins. | 0.5]0.7| 10 mins. steady state
L1 10 30 mins. | 0.5(0.7| 15 mins. steady state
5d i0 30 mins. | 0.5 0.7 | 20 mins. steady state

Table 5.1: Test run information. Note that traffic intensities p are based on that
part of the schedule which does not include the runout period at the end of the day.

different hubs (rather than the same hub) on alternate visits. This latter statistic is
a measure of how each hub is tied to the performance of the other. In the schedules,
an aircraft with an arrival at a given hub H has its next hub arrival at the other
location with probability p and at H with probability 1—p. A value of p = 1 implies

a fully connected network, while a 0 value means a totally disconnected network.

Validation: Cases 1,2, and 3

Cases 1,2, and 3 are concerned with validation of the network models. In each
case we test the models against a simulation procedure like the one first introduced in
Chapter 3. This simulation generates period-by-period capacities at each hub using
Monte Carlo methods. It works in exactly the same fashion as the two approximation
procedures, except that arrival rates are adjusted by simulated waiting times rather
than by expected values or some approximate distribution of waiting time.

The demand and capacity data for case #1 closely resemble those at DFW. We
have collapsed the capacity state space to the three states corresponding to ‘A’, ‘D’,
and ‘F’ at Dallas. These have corresponding steady state probabilities 0.07, 0.10,
and 0.83. The simulated demand, together with the actual DFW demand, is shown
in Figure 5.8. Aircraft slack for this experiment takes values in the range of 15-20

minutes between stops at hubs, depending on the distance to the intervening spoke.
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Figure 5.8: Case #1 has demand simulated to resemble DFW.

Case #2 has internal aircraft grouped into identically timed banks of 30-minutes
duration at each hub with relatively short inter-bank periods of 15 minutes. Peak
demands are higher than at DFW, capacities are slightly lower, and the underlying
Markov chain has steady state probabilities 0.26,0.21,0.53. The result is a con-
siderably higher traffic intensity here than in case #1. Figure 5.9 illustrates the
hypothetical arrival patterns. For this case we report results for runs with very low
aircraft slack (s =5 minutes) and artificially high slack (s =500 minutes). The latter
instance is investigated to ascertain the effect of hub interaction. This is an artificial
experiment because the same schedule is retained as with =35, i.e. the 500-minute
slack actually exceeds the time between visits. The effect is as if delays encountered
are not propagated to later parts of the day. Comparison with the low-slack case

thus illustrates the effect of delay propagation on the arrival schedules.
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Figure 5.5: Shape of 2-hub hypothetical demand for cases 2, 4, and 5

Case #3 reports results for a continuous demand pattern at the two airports (no

banks).

Effects of Slack and Connectivity: Cases 4 and 5

In cases 4 and 5 we are concerned with illustrating the effects of slack and network
connectivity. Both experiments have a traffic pattern like that of #2 except that
there is lower landing demand and greater separation (30 minutes) between banks.
Case #4 illustrates the idea of hub isolation by considering an instance in which the
two hubs have no aircraft in common (p=0, the disconnected case) and an instance
in which they have all aircraft in common (p= 1, the fully connected case). Case
#5 considers four instances in which aircraft slack is varied. In each of these we
are concerned with the resultant effects on cumulative aircraft delays rather than on

expected waiting times at each airport over the course of the day.
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Waiting Times at Hub #1 in Case #1
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Figure 5.10: Comparison of expected waiting times predicted by one-hub algorithm,
simulation, and the two decomposition algorithms for case #1

5.2.2 Results and Discussion

We remark at the outset that mode! parameters have a noticeable effect on the
mechanics of the network. In the DFW case (#1), waiting times are of the same
order as aircraft slack, and there is substantial separation between major traffic
peaks. For these reasons, we expect delay propagation to be relatively low and have
a less disruptive effect on the schedule. In case #2, on the other hand, major peaks
are much closer together, traffic intensity is sharply higher, and delay propagation

should be more important. Case #3 lies in between these first two cases.

Case #1: Comparison with Single-hub Algorithm

In case #1 we focus only on the first hub. Figure 5.10 plots expected waiting
times at this hub as estimated by four different procedures: the single-hub algorithm

of Chapter 3, decomposition algorithms 1 and 2, and simulation. There is fairly close
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agreement between all four curves. The solid line indicates the predictions of the
one-hub algorithm, in which all demands are treated as external and no account is
made for propagation. The curve for Algorithm 1 (update by expected value) is
quite close to this first curve, -eflecting the fact that slack values (15-20 minutes)
are approximately equal to expected waiting times and hence delay propagation is
minimal. Algorithm 2 reflects the effects of delay propagation slightly more, though
the differences are still small. Finally, with the simulation curve we see a further

departure from the one-hub results.

The most striking features of the graph are the closeness of the four curves and
the preservation of the peaked delay pattern, both of which indicate that the effects
induced by delay propagation (the “network effects”) are relatively minor. Because
there is ample space between major banks and slack values are close to the mean
waiting times, the general peaked pattern is preserved. However, as the next case
illustrates, the situation changes when traffic becomes heavier and spacing between

major banks is decreased.

Case #2: Effects of Heavier Traffic and Closer Spacing

A more difficult test for the network approximations is provided by case #2a (see
Figure 5.11). Here expected waiting times (30-40 minutes) are quite high relative
to aircraft slack (5 minutes), and there is only a 15-minute gap between successive
banks. Thus, while the early part of the day shows a close fit between the simulation
and the algorithms (the deterministic effect), there is a noticeable disparity in the
middle part of the day, when alterations in the arrival stream become significant.
Notice that relative to simulation, both algorithms tend to overestimate delay during

the middle part of the day, with the error as high as 30% for certain periods.

For a given hub (1 or 2) and algorithm (1 or 2) we can define a standard error
in the predictions relative to simulation. Let X denote the waiting time value

predicted by algorithm for period k and Yj denote the corresponding value for the
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Figure 5.11: Comparison of expected waiting times predicted by simulation and the
two decomposition methods for case #2a
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simulation. Then the standard error s is given by

e \/51:;1 (Xe = Yi)?
LS08

This provides a measure of how far apart the simulation and algorithm results are.

For Algorithm 1, these values are 4.5 and 2.6 minutes at the two hubs, while the
corresponding numbers for Algorithm 2 are 4.5 and 2.3. The numbers represent an

average error of 10-20%, with worse fits in the middle part of the day.

The Demand-smoothing Phenomenon

Note how the waiting time profiles are much smoother in case #2a than in case
#1. With only a 15-minute separation between banks, the relatively high waiting
times combine with low aircraft slack to overwhelm the bank structure, as illustrated
at the top of Figure 5.12. This figure plots the original demand profiles at Hub #1
with those which occur as a result of the smoothing action of delay (the peaked case
is labelled s =500, for reasons explained below). In the high-traffic, low-slack case,
propagation effects smooth the demand pattern substantially, with large numbers
of aircraft shifted to periods quite late in the day. The sharp peak structure of the
original demand is considerably altered.

Demand smoothing lies at the heart of why Algorithms 1 and 2 consistently
overestimate delays in the middle part of the day (a phenomenon noticed in all test
runs). In the actual process, an aircraft scheduled at a given period may experience
a delay ranging from zero up to a very long time, perhaps 3 hours or more. In cases
of high waiting times, the aircraft’s next arrival time will be considerably later than
was scheduled, and its contribution to later demand is pushed back by a significant
number of periods. Thus over a large number of simulations with heavy traffic, a
noticeable fraction of arrivals are pushed back to the later part of the day, when
there is no scheduled traffic. Because capacity is more than adequate then, the
result of this traffic shift is to reduce waiting times.

Ideally, the computational algorithms should reflect this shifting and smoothing
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of demand. However, as was remarked earlier, to do a thorough job they would
have to keep track of the thousands of potential paths which aircraft may follow as
a result of delay, a seemingly impossible computational burden. To limit the state
space to manageable size, both algorithms update aircratt schedules according to
one number, expected waiting time. The result is that both algorithms tend not
to shift aircraft to the very late part of the day but rather to concentrate demand

more in the middle part, resulting in higher predicted waits.

Demand Smoothing and Delay

" The phenomenon of demand shifting and smoothing explains other observations
which seem counter-intuitive at first. An example of such a result is the fact that
higher aircraft slack may actually increase expected queneing times at the hubs.
Cases 2a and 2b illustrate. Both are cases of heavy traffic organized into narrowly
separated banks. The difference is that in case #2b, each aircraft is given artificially
high slack (500 minutes) while in case #2a aircraft have very low slack (5 minutes).
In the ‘b’ case, the amount of slack actually exceeds the time between stops — it is
an artificial case in which no matter what delay an aircraft encounters, it will reach
its next destination on schedule. In a heavy traffic situation like case #2, this high
slack acts to preserve the original concentrated demand pattern, whereas the low
slack case allows the demand to become smoother over time as aircraft are pushed
back to the end of the day (look again at the top of Figure 5.12). In the high slack
case, the higher concentration of demand produces higher queueing delays, as we
see in the bottom half of Figure 5.12. Here we also see a fairly close fit between
the algorithms and the simulation, because the high slack removes the uncertainty

inherent in the schedule disruption.

Case #3: Continuous Demand

Case #3 compares the performances of the algorithms with simulation when the

demand is allowed to be continuous over the day (rather than organized into banks).
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Figure 5.12: Top — demand rate at hub #1 with and without the smoothing effects
produced by delays in the arrivals of incoming aircraft. Bottom — high waiting
time at hub #1 produced by unsmoothed demand.
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The results are illustrated in Figure 5.13. Again, the algorithms give estimates of
waiting times greater than those predicted by simulation. The traffic intensity for
this case is higher than case #1 but lower than case #2. The difference between the
algorithms and siinulation exceeds 20% for a lazge part of the day at hub 2, while
the standard errors are approximately 15% of the delays: 2.2 minutes at hub 1 (for

both algorithms) and 2.4 and 2.6 minutes (Algorithm 1 and Algorithm 2) at hub 2.

Summary of Cases 1,2, and 3

Cases 1,2, and 3 collectively suggest that the deterministic part of the schedule
has a fairly large effect. This effect is most important when traffic is moderate and
slack and bank separation are large, as in case #1. In cases of heavier traffic, lower
slack, and less separation, the performance of the algorithms worsens as they tend
not to capture the true spreading of demand. The results suggest that for a hub like
DFW, network effects may be less important than for a case like Chicago’s O’Hare,

which has a more extended busy period.

Effects of Slack and Connectivity

The remainder of the cases (#4 and #5) illustrate the effect of network connec-
tivity and aircraft slack on cumaulative aircraft delay. This delay should be distin-
guished from waiting times at the hubs; the former is the sum of several instances

of the latter, with slack subtracted.

Cases 4a and 4b illustrate the idea of hub isolation referred to early in the
chapter. In case #4a, the network is completely disconnected (p=0) in the sense
that each aircraft has all of its stops at only one of the two hubs. The effect is that
the scheduled bank times at a hub cannot be disrupted by late arrivals caused by
congestion at the other location (they can, of course, be disrupted by earlier delays
at the same location). In contrast, case #4b ensures that aircraft encountering

delays at one hub have the maximum chance to disrupt the schedule at the second,
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since that is their next destination.

In both cases of this experiment, the initial state of the first hub is taken to
be 1 (lowest capacity), and the initial state of the second hub is set at 3 (highest
capacity). The phenomenon of interest is the propagation of delays created at
the first hub to the banks of the second. To examine this, consider Figure 5.14.
Note that unlike previous graphs, this figure plots average cumulative delay per
arriving aircraft rather than the queueing delays present at the hub when the atrcraft
arrives. Thus the early banks! show zero delay, while later banks reflect delay carried
over from previous points in the itinerary. The figure indicates a degradation in
performance at hub #1 when it is isolated, as well as the corresponding improvement
at hub #2. Conversely, the fully connected case benefits hub #1 at the expense of
#2.

Do these results make sense? Clearly we expect hub #2’s schedule to become
more reliable when it is disconnected from the disruptions produced by #1. But we
also see that hub #1’s schedule performance improves when it moves in the opposite
direction — from disconnected to fully connected. Examining the situation at hub
#1 more closely, we notice that the delays in the connected case seems to lag the
delays in the disconnected case by about 2 banks (2 hours). This is no coincidence:
in the connected case, the minimum time between any aircraft’s successive visit to
the same hub is 4 hours (4 banks), while in the disconnected case it is only 2. Thus
the schedule delays produced by the congestion at hub #1 are felt 2 hours later at
that hub in the connected case, producing the 2-hour lag. However, this lag does not
fully explain the difference in the heights of the two curves. In the connected case,
late aircraft leaving hub #1 have the opportunity of recovering some of the delay
through slack at their next stop (uncongested hub #2). This opportunity is not
available in the disconnected case, since the next stop is (congested) hub #1, a fact

which explains why the corresponding curve is higher even after we take account of

1The z-axis of Figures 5.14 and 5.15 is in terms of banks rather than continuous time — thus
2a indicates the first half of the second bank, 7b indicates the second half of the seventh bank, etc.
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the lag.

Cases 5a, 5b, 5c, and 5d illustrate the effect of slack on aircraft lateness. We
noted earlier that higher slack preserves demand peaking and may actually increase
queueing delays at the hubs. On the other hand, slack reduces each aircraft’s cu-
mulative delay. Figure 5.15 illustrates that this second effect predominates in this
relatively light traffic. For varyirg slack values, the figure plots the average cumu-
lative delay per aircraft arriving at each bank of the day, not including any waiting
at the current stop. Certainly the figure does not contain any surprises. We include

it in order to illustrate the kind of planning for which the models are well-suited.

5.3 Concluding Remarks

In this chapter we have developed two related approximation approaches to the dif-
ficult problem of modeling transient queueing behavior in a hub-and-spoke network.

We would summarize our major findings as follows:

1. Importance of traffic splitting phenomenon. High uncertainty in levels of delay
encountered by aircraft is a prominent feature of the network problem. Unfor-
tunately, accuracy in keeping track of aircraft amid this uncertainty is limited

by high computational complexity.

2. Continued importance of deterministic effect. The peaked pattern of demand
at hub airports remains a strongly determining factor in predicting waiting

times, particularly when major banks are separated by large lengths of time.

3. Delay and smoothing. On the other hand, in cases where banks are narrowly
spaced, delay propagation exerts a strong smoothing effect on the demand and

waiting time profiles.

4. Effects of hub tsolation. A policy of isolating a congestion-prone hub clearly

does have the effect of improving performance at others. On the other hand,
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under this policy the isolated hub produces congestion delays which disrupt

its own future schedule.

We conclude with a few remarks about running times. As we reported earlier, the
running times for Algorithms 1 and 2 are high even for the small 2-hub test network:
approximately one hour for Algorithm 1 and three hours for Algorithm 2 on a DEC-
3100 workstation. These times are particular poor considering that the running
time for the simulation program (5000 samples) is significantly shorter — about 10
minutes. In the absence of improvements in the algorithms, this observation favors
simulation. However, the implementation of Algorithms 1 and 2 used in our tests is
a rather inefficient one. Incorporating the earlier suggestion that the recursion be
restarted every m periods rather than at every period would reduce running times

by at least a factor of
K+1

-(_I-(/—nm ~m
A value m=10 (2 1/2 hours), which is approximately the minimum time a typical
aircraft would have between successive visits to hubs, would reduce running times
by a factor of 9 (for K = 80 periods). This improvement alone would bring the
running times of the algorithms into the same range as simulation. The reduction
is important for the general problem because the number of simulations necessary
cannot be known in advance. However, at least in this test case, the simulation
procedures themselves, based on the same ideas of the original Markov and semi-

Markov capacity models, offer a third approach to understanding network effects.
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Chapter 6

Conclusion

The main contribution of the thesis has been the development of queueing models
which are appropriate for congestion at hub airports and in hub-and-spoke systems.
Because of the need to describe the transient behavior of such systems, these mod-
els depart considerably from traditional queueing theory methods. In this chapter
we summarize the main results of the models and indicate possibilities for further

research.

6.1 Summary of Main Results

We summarize the principal results of the thesis as follows.

1. Development of a recursive algorithm for single airport. The recursive compu-
tational scheme presented in Chapter 3 adequately models the principal uncer-
tainty in the landing queue (capacity) while retaining tractability in treating
transient behavior. The key to the algorithm’s success lies in the division of
time into short intervals where computation is simple and the provision of a
capacity model which unifies the behavior in these individual intervals into a

coherent whole.

2. Adaptation of diffusion approzimation. In Chapter 3 we also introduced an

adaptation of the classical diffusion approximation for a single queue with
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correlated service times.

. Insights about queue behavior from test runs. The experimental runs of the
recursive model, both in Chapter 3 and in Chapter 4, underscore several im-
portant features of this kind of queueing system: high variability, strong mem-
ory of starting conditions (due to capacity correlation), and slow approach to

steady state.

. Study of interaction belween airlines at hubs. The study of the schedule at
Dallas-Fort Worth in Chapter 4 suggests that when there is more than one
principal carrier at a hub, schedule positioning plays a role in allocating queue-
ing delay. Our analysis in particular implies that Delta would benefit by
scheduling greater slack between itself and preceding American Airlines banks

at the busiest times of day.

. Effects of demand smoothing policies. In Chapter 4 we also studied the rela-
tionship between the smoothing of demand and delays. Our results indicate
that small amounts of traffic smoothing at DFW may lead to substantial re-
ductions in day-to-day congestion delay, wkile further smoothing of traffic

exhibits rapidly diminishing benefits and increasing costs.

. Evaluation of decomposition algorithms for networks. In Chapter 5 we devel-
oped and tested two queueing algorithms which take into account the network
effects at hub airports. We showed that these decomposition approaches work
fairly well, although tests against a simulation procedure show them to under-

estimate the true spreading of demand which takes place because of delays.

. Study of hub-and-spoke network queueing effects. In airline networks, delays
can have a smoothing effect on demand, which in heavy traffic situations
may actually work to alleviate higher delays. This effect may be important

at airports which have extended periods of heavy traffic or narrowly spaced
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banks. At DFW, ample separation between the highest banks makes it less of

an issue.

8. Ezamination of hub isolation policies. At the close of Chapter 5 we addressed
the issue of hub isolation as a strategy for reducing the disruptions in the
network caused by delays at a chronically congested hub. Qur results suggest
that by isolating the problem hub, a carrier eliminates schedule disruption at
the other hubs in the system, but the cost may be a worsened performance at

the congested hub itself.

6.2 Directions for Further Research

Because much of the work we have undertaken here represents a new approach to
a difficult problem, there are numerous ways in which it can be extended. These
are grouped here into four categories: model validation issues, queueing theoretic

questions, improvements in implementation, and new applications.

1. Model validation. As we have indicated in Chapters 4 and 5, our valida-
tion procedures for both the single-queue and network models are incomplete,
mainly because of the unavailability of appropriate data. The best way to
calibrate the model and obtain a clearer measure of its performance would be
to implement it in practice. The same holds for the network models, where

the degree of approximation is greater still.

2. Queueing theoretic issues. The discussions of Chapters 3 and 5 raise several
interesting questions. One concerns the slow convergence to steady state for
the single queue model. Odoni and Roth [29] have indicated such slow conver-
gence in systems where service times are purely independent. In our model,
service times within intervals are exactly equal, while across intervals they have
positive correlation. We conjecture that these characteristics further slow the

approach to steady state, but obtaining more definitive analytical results to
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prove or disprove this conjecture is an open problem. A second theoretical
issue concerns the extension of the diffusion approximation to time-varying
demand rates. With such an extension, the method would become a serious
alternative for the network problem, where its faster running time would be a

distinct advantage.

. Improvements in implementation. There are numerous implementation im-
provements which can be made in the one-hub and network models. First
of all, we note that much of our analysis has focused on moments, especially
expected values. Because queue length and waiting time variances are high,
however, our focus could overlook important variability phenomena. Further
experimentation with approximate distributions is warranted. With respect
to the network algorithms, there is considerable room for improvement. Al-
gorithm 2 in particular has considerable flexibility which could and should be
exploited. Further testing of the procedures for a more widely varying set of

networks and schedules is also warranted.

. Further application areas. Finally, there is a need for further research on ap-
plications. Within air transportation, an issue of substantial current interest
is that of planning ground holds to match demand with forecasted capaci-
ties. There have been a number of static and dynamic optimization schemes
proposed, but none of these explicitly accounts for the queueing effects. In-
corporating the congestion models of this work is one possible further use
of the models we have developed here. Another potential application is in
manufacturing. While the majority of models in the literature deal only with
steady-state analysis of manufacturing queues, our method offers a way to
track transient behavior. Of particular interest are systems where service
times are dependent on an external stochastic phenomenon (e.g. machine
breakdown). The exploration of such modeling possibilities is clearly an im-

portant and relevant task for future research.

142



Bibliography

[1] STEPHANIE F. ABUNDO. An Approach for Estimating Delays at a Busy Air-
port, Master’s Thesis, Operations Research Center, Massacusetts Institute of
Technology, Cambridge, MA, 1990.

[2] AIRBORNE INSTRUMENT LABORATORIES, INC. Operational Evaluation of Atr-
port Runway Design and Capacity, Report 7601-6, January 1963.

[3] AIRBORNE INSTRUMENT LABORATORIES, INC. Airport Capacity: a Handbook
for Analyzing Atrport Design and to Detlermine Practical Movement Rates and
Atrcraft Operating Costs, June,1963.

[4) G. ANDREATTA AND G. ROMANIN-JACUR. “Aircraft Flow Management Under
Congestion,” Transportation Science 21:4, 249-53 (1987).

[5] ELizaBETH E. BAILEY, DavID R. GRAHAM, AND DANIEL P. KAPLAN. Jereg-
ulating the Airlines, M.I.T. Press, Cambridge, MA, 1985.

[6] ArNoLD BARNETT, TopD CURTIS, JESSE GORANSON, AND ANDREW
PaTricK. “Better Than Ever: Nonstop Jet Service in an Era of Hubs and
Spokes,” Sloan Management Review 33:2 (1992).

[7) Dimitris J. BERTSIMAS, JULIAN KEILSON, DAISUKE NAKAZATO, AND HONG-
TA0 ZHANG. “Transient and Busy Period Analysis of the GI/G/1 Queue: So-
lution as a Hilbert Problem,” Journal of Applied Probability 28, 873-85 (1991).

[8] DimiTRIs J. BERTSIMAS AND DAISUKE NAKAZATO. “Iransient and Busy Pe-
riod Analysis of the GI/G/1 Queue: The Method of Stages,” Queueing Systems
10, 153-84 (1992).

[9] ALFRED BLUMSTEIN. An Analytical Investigation of Airport Capacity, Cornell
Aeronautical Laboratory Report TA1358-6-1, Cornell University, Ithaca, NY,
June, 1960.

[10] THOMAS Cook, President, American Airlines Decision Technologies. Talk de-
livered at Operations Research Center, Massachusetts Insitute of Technology,
November 15, 1990.

143



[11] UNITED STATES GENERAL ACCOUNTING OFFICE. Airline Competition:
Higher Fares and Reduced Competition at Concentrated Airports, Report to
Congressional Requesters, July 1990.

[12] E. GELENBE AND I. MITRANI. Analysis and Synthesis of Computer Systems,
Academic Press, Inc., London, 1980.

(13] EuGeNE GILBO. “Arrival-Departure Capacity Estimates for Major Airports,”
ATMS/ETMS Project Memorandum, UNISYS Corporation, Cambridge, MA,
November 1, 1990.

[14] W.K. GRrASSMANN. “Transient Solutions in Markovian Queueing Systems,”
Computers and Operations Research 4, 47-56 (1977).

[15] DoNALD GRross AND CARL M. HARRIS. Fundamentals of Queueing Theory,
2nd Edition, John Wiley and Sons, New York, NY, 1985.

(16] J.M. HAMMERSLEY AND D.C. HANDscoMB. Monte Carlo Methods, Methuen,
London, 1964.

[17) DanNieL P. HEYMAN AND MATTHEW J. SOBEL. Stochastic Models in Opera-
tions Research, Vel. I, McGraw-Hill, Inc., New York, NY, 1982.

[18] D.L. IGLEHART AND W. WHITT. “Multiple Channel Queues in Heavy Traffic
I,” Advances in Applied Probability 2, 150-177 (1970).

[(19] D.L. IGLEHART AND W. WHITT. “Multiple Channel Queues in Heavy Traffic
II: Sequences, Networks, and Batches,” Advances in Applied Probab:ility 2, 355-
369 (1970).

[20) ApiB KANAFANI AND ATEF GHOBRIAL. “Airline Hubbing — Some Implica-
tions for Airport Economics,” Transporiation Research 19A:1, 15-27 (1985).

[21] JuLiaN KEILsON AND Davip M.G. WisHART. “A Central Limit Theorem for
Processes Defined on a Finite Markov Chain,” Proceedings of the Cambridge
Philisophic Society 60, 547-567 (1964).

[22] JuLiaN KEILsON AND DaviD M.G. WISHART. “Addenda to Processes Defined
on a Finite Markov Chain,” Proceedings of the Cambridge Philisophic Sociely
63, 187-193 (1967).

[23] F.P. KELLY. Reversibility and Stochastic Networks, John Wiley and Sons,
Chichester (U.K.)., 1979.

[24] HisasH1 KoBAvasHI. “Application of the Diffusion Approximation to Queue-
ing Networks II: Nonequilibrium Distributions and Applications to Computer
Modeling,” Journal of the Assoctation for Computing Machinery 21:3, 459-69
(1974).

144



[25] STEVEN A. MORRISON AND CLIFFORD WINSTON. “Intercity Transportation
Route Structures Under Deregulation: Some Assessments Motivated by Airline
Experience,” American Economic Review 75:2, 57-61 (1985).

[26] STEVEN A. MORRISON AND CLIFFORD WINSTON. The Economic Effects of
Atrline Deregulaiion, The Brookings Institution, Washington, D.C., 1986.

[27] GorpoN F. NEWELL. “Airport Capacity and Delays,” Transportation Science
13:3, 201-241 (1979).

[28] AMEDEO R. OpoN1. “The Flow Management Problem in Air Traffic Control,”
p. 269-288 in Flow Control of Congested Networks, A.R. Odoni, L. Bianco, and
G. Szego (eds.), Springer-Verlag, New York, 1987.

[29] AMEDEO R. OpoNI AND EMILY ROTH. “An Empirical Investigation of the
Transient Behavior of Stationary Queueing Systems,” Operations Research
31:3, 432-55 (1983).

[30] PEaT, MARWICK, AND MITCHELL, INC. Techniques for Determining Airport
Atrside Capacily and Delay, Report No. FAA-RD-74-124 prepared for the Fed-
eral Aviation Administration, June 1976.

[31] PEAT, MARWICK, AND MITCHELL, INC. Technical Report on Airport Capac-
ity and Delay Studies, Report No. FAA-RD-76-153 prepared for the Federal
Aviation Administration, June 1976.

[32] Octavio RICHETTA. Ground Holding Strategies for Air Traffic Control Un-
der Uncertainty, Operations Research Center Technical Report No. 198, Mas-
sacusetts Institute of Technology, Cambridge, MA, 1991.

[33] EMILY ROTH. An Investigation of the Transient Behavior of Stationary Queue-
ing Systems, Ph.D. dissertation, Operations Research Center, Massacusetts In-
stitute of Technology, Cambridge, MA, 1981.

[34] MARTIN J. ST. GEORGE. Congestion Delays at Hub Airports, Flight Trans-
portation Laboratory Report R86-5, Massacusetts Institute of Technology,
Cambridge, MA, 1986.

[35] M. TERRAB. Ground Holding Strategies in Air Traffic Control, Operations Re-
search Center Technical Report No. 196, Massacusetts Institute of Technology,
Cambridge, MA, 1990.

[36] REx S. ToH AND RicHARD G. HiGGINs. “The Impact of Hub and Spoke Net-
work Centralization and Route Monopoly on Domestic Airline Profitability,”
Transportation Journal 24:4, 249-53 (1987).

145



[37]

[38)

(39)

PETER B. VRANAS, DiMITRIS J. BERTSIMAS, AND AMEDEO R. ODpoONI1. The
Multi-airport Ground-holding Problem in Air Traffic Control, Operations Re-
search Center Working Paper No. OR263-92, Massacusetts Institute of Tech-
nology, Cambridge, MA, 1992.

PETER B. VRANAS, DiMITRIS J. BERTSIMAS, AND AMEDEO R. ObpoNI1. Dy-
namic Ground-holding Policies for a Network of Atrports, Operations Research
Center Working Paper No. OR265-92, Massacusetts Institute of Technology,
Cambridge, MA, 1992.

W. WHITT. “The Queuing Network Analyzer,” Bell System Technical Journal
62:9, 2779-2815 (1983).

146



