
Static and Dynamic Communication in Parallel

Computing
»

Emmanouel A. Varvarigos

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1992

©) Massachusetts Institute of Technology 1992. All rights reserved.

Sighature redacted
Author

Department of Electrical Engineering and Conder Science
~~ — August 9, 1992

inet Olgnature redacted
Dimitri P. Bertsekas

Professor of Electrical Engineering and Computer Science
7) _—Thesis Supervisor

Signature redacted-
Accepted by....... o Cees

— C—" Arthur C. Smith

Chairman, Departmental Committee on Graduate Students
ge
 ILARCHIVES ermaE

OCT 30 1992
IIRBARIES

Static and Dynamic Communication in Parallel Computing

“mmanouel A. Varvarigos

Submitted to the Department of Electrical Engineering and Computer Science
on August 9, 1992, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Communication efficiency seems to be the key to the broad success of massively
parallel computation. We introduce several static and dynamic communication al-
gorithms, and evaluate their performance. In particular, the first part of the thesis
proposes several static communication algorithms, which execute optimally generic
communication tasks in a number of regular network topologies. The second part of
the thesis deals with dynamic or stochastic communication tasks. We propose and
analyze routing schemes and protocols that work in stochastic environments, while
satisfying at the same time some performance guarantees. We consider both one-

to-one and one-to-many communication tasks. We also propose a novel switching
scheme for multiprocessor communications and analyze it for the case of the hyper-
cube. Most of the static and dynamic algorithms combine optimality properties with
ease of implementation.

Thesis Supervisor: Dimitri P. Bertsekas
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

I wish to thank my advisor, Professor Dimitri Bertsekas. In everybody’s life there

1s a teacher that has a significant impact on him, and Dimitri was such a teacher

(dackalos) for me. Equally important, Dimitri was an invaluable friend and a con-

stant source of wise advice.

I am thankful to my thesis readers, Professors Bob Gallager, Tom Leighton, and

John Tsitsiklis for their genuine interest in my work. Through our discussions I have

learned a great deal. I also want to thank John for his friendship and support during

my four years at MIT.

The professors, staff and students have made the Laboratory for Information

and Decision Systems an excellent place to work. Special thanks go to Muriel

Medard,Rajesh Pankaj, Abhay Parekh, Yannis Paschalides, Lakis Polymenakos, Jane

Simmons, George Stamoulis, Bruno Suard, Emre Teletar, Paul Tseng, and Petros

Voulgaris. With my officemates, Murat Azizoglu and John Young we shared a lot

and we had a lot of fun: after their graduation the office has become a less pleas-

ant place to be. Constantine Boussios, Nick Lainis, Marios Papaefthymiou, Costakis

Patrikios, Gregory Poulis, and the other members of the infamous “table” made the

quality of life outside MIT better than I would have imagined. I wish all of them

good luck.

My fiancee Aristea was a constant reminder that there are things more important

than MIT courses. My parents Andreas and Kassiani, and my sisters Dora and Rea

have given me love and support that I can never repay. This thesis is devoted to

them.

This research was supported in part by NSF under Grant NSF-DDM-8903385 and by

the ARO under Grant DAAL03-86-K-0171.

Contents

1. Introduction

1.1. Parallel Processing Systems .

1.2. Communication Aspects of Parallel Processing .

1.3. Static Communication Tasks .

1.4. Dynamic Communication Tasks

1.5. Topologies

1.6. Thesis Qutline-Contributions

p. 6.

p. 8.

p. 10

p. 13

p. 13

p. 16.

PART I. STATIC TASKS

2. Isotropic and Nearly Isotropic Tasks
2.1. Introduction

2.2. The Task Matrix . .

2.3. Symmetric Routing Algorithms .

2.4. Optimal Completion Time Algorithms

2.5. Transposition of Banded Matrices - An Example of a Nearly Isotropic Task p. 34.

2.5.1. Column to Processor Assignment and Transposition Task Matrix p. 35.

2.5.2. The Transposition Algorithm p. 37.

2.6. A Universal Lower Bound on the Minimum Time to Transpose a Banded Matrix . . p. 40.

2.7. Several Simultaneous Banded Matrices Transpositions .p. 44

2.8. Embedding Sparse Graphs in Hypercubes . . .

2.9. Embedding Block Diagonal Matrices in Hypercubes

. Pp. 22.

p. 29.

Dp. 28.

3. Partial Multinode Broadcast and Partial Exchange Algorithms for Hypercubes and

Meshes

3.1. Introduction

3.2. Some Preliminary Results .

3.3. Packing and Monotone Routing for Meshes .

3.4. Partial Multinode Broadcast in d-dimensional Tor1 and Arrays .

3.4.1. A Near-optimal PMNB Algorithm with Splitting of Packets .

p. 48.

p. ol.

Dp. 54,

D. 56.

Pp. AT.

3.4.2. A Near-optimal PMNB Algorithm without Splitting of Packets

3.5. Partial Exchange in 2-Dimensional Arrays

3.6. Partial Multinode Broadcast in a Hypercube . .

3.6.1. A Suboptimal PMNB Algorithm for the Hypercube

3.6.2. A Near-optimal PMNB Algorithm with Splitting of Packets

3.6.3. A Near-optimal Hypercube PMNB Algorithm without Splitting of Packets . p. 76.

3.7. Partial Exchange in a Hypercube . .

3.8. Window Multinode Broadcast in a Hypercube

. p. 64.

p. 65.

p. 68.

p. 70-

DART II. DYNAMIC TASKS

4. Dynamic Broadcasting Algorithms for Hypercubes and Meshes
4.1. Introduction

4.2. Dynamic Broadcasting Schemes

1.3. Analysis of the Dynamic Broadcasting Scheme .

4.3.1. Limited Service Gated Reservation System with Shared Reservations

4.3.2. Main Proof

4.4. Performance of the Dynamic Broadcasting Scheme for Hypercubes

1.5. Performance of the Dynamic Broadcasting Scheme for d-Dimensional Meshes

»

D . Performance of Hypercube Routing Schemes With or Without Buffers

5.1. Introduction . . .

H.2. Description of the Schemes

5.3. The Simple Scheme . . .

5.3.1 Analysis of the Simple Scheme Without Buffers

5.3.2. Analysis of the Simple Scheme With Buffers

5.3.3. Asymptotic Behavior of the Throughput

5.4. The Priority Scheme

5.4.1. Analysis of the Priority Scheme Without Buffers

5.4.2. Analysis of the Priority Scheme with Buffers

5.5. Quality of the Approximations, and Simulation Results

5.6. Comparison with Deflection Routing

5.6.1. The Deflection Schemes, and the Stochastic Model

p. 89.

p. 88.

p. 91

p. 92.

p. 96.

98.

. . p. 101.

p. 104.

p. 107.

p. 110.

p. 110.

p. 113.

p. 119.

p. 121.

p. 121.

p. 124.

p. 127.

p. 131.

D. 132.

5.6.2. Steady State Throughput of the Deflection Schemes p. 134.

5.7. Distribution of Packet Distances to Destination in Shortest Path Routing Schemes p. 136.

6. A Conflict Sense Routing Protocol and its Performance for Hypercubes

6.1. Introduction

6.2. Description of the CSR Protocol

6.3. A Hypercube CSR Protocol .

6.3.1 The Hypercube Node Model and Routing Algorithm

6.3.2 Superimposition of the CSR Protocol on the Hypercube Routing Algorithm

65.4. Performance Analysis of the CSR Protocol for Hypercubes . . .

5.5. Comparison with other Switching Formats and Routing Schemes

p. 139.

p. 142.

p. 146.

p. 146.

p. 148.

p. 150.

p 156

DART III. TOPOLOGIES

7. Routing Properties and Algorithms for Some Hypercube Related Networks

7.1. Network Definitions p. 164.

7.2. Internode Distance and Properties of the Pseudo-Cube and Enhanced-Cube Networksp. 167.

7.3. Communication Algorithms for Permutation-Cubes

7.4. Optimal Communication Algorithms for Folded-Cubes

7.5. Layout Algorithms for the Networks Proposed .

7.6. Conclusions

p. 172.

pn. 175.

p. 177.

p. 180.

8. Conclusions and Directions for Future Research

8.1. Importance of the Problems . . .

8.2. Contributions and Future Research Directions

p. 181.

p. 182.

References

CHAPTER ONE

Introduction

There are many reasons to seek more computational power than existing computers can give. Large

computational problems (PDEs, fluid dynamics, image processing, weather prediction), simulations,

optimizations, and Al applications are some of the fields that can use all the computational power they

can get. At the same time it seems that the increase in computational power that can be achieved by

improvements in the switching times of electronic devices alone is approaching a limit posed by physical

constraints. Parallel computation promises faster computers by taking a different approach. Instead of

[ocusing on a single processor to make it more powerful, it tries to create organizations of processors,

which can efficiently cooperate on the same problem. We could say that the relation of the field of

parallel computation to processors is similar to the relation of sociology to human beings.

The work that 1s asked from a computer is decomposed into subtasks, each of which is executed by

a processor. For example, an image 1s decomposed into regions, with each processor responsible for the

computations related to one of the regions. Then it is plausible that the task will be executed faster

than if a single processor was used. Although this idea has been common ground for the past thirty

years, only recently have multiprocessor computers become commercially available. The trigger for this

evolution was the impressive advances in VLSI technology; extremely sophisticated parallel machines

are now feasible due to the fact that very complex systems can be implemented on a single chip, which

can 1n turn be copied at little cost.

There are parallel computers today that have up to 65,000 processors. Such numbers make people

believe that Gigaflops or even Teraflops will be almost free in the near future. However, the “infinity”

in total processing power does not necessarily carry to a corresponding “infinity” in real computational

power. Sometimes the time required to communicate the results of a calculation is larger than the time

needed to obtain them. Multiprocessor computers are communication bandwidth limited. It is quite

possible that in the future the power of computers will be measured in “Gigasends” and Gigafetches”

per second rather than Gigaflops.

The great promise of massively parallel computers has motivated a large amount of research that

aims at reducing the communication overhead. This research can be divided into three broad categories.

The first deals with the design of algorithms that exploit the parallelism inherent in many problems.

T'he second category of research deals with choosing a topology for the multiprocessor network. The

topology should either fit a specific problem at hand (special purpose architectures), or, if we are

interested in a more versatile system, it should be easily reconfigured to match a class of problems.

For example, an array of processors could be the best topology possible for some image processing

application and totally unsuitable for a symbolic, or an AI application due to its large diameter. When

choosing a topology we are interested in predicting performance measures of the system such as the

diameter, the mean throughput and delay, how well it can simulate other topologies, and its performance

for benchmark communication tasks (e.g., permutations, broadcasts etc.). The third major research

concentration 1s in the area of routing and organizing the movement of data within a computer in a

way that achieves high (often close to 100%) and efficient utilization of the communication resources.

For example, by identifying traffic patterns (scenarios) that arise often in applications, we can create

a library of efficient communication algorithms that are called as “communication primitives” when

needed.

These three categories of research have had considerable interaction and influence on each other. For

example, when designing parallel algorithms one should have in mind the underlying topology and the

traffic patterns that can be routed efficiently. Similarly, when trying to find efficient ways to move data,

one should know the topology and have some knowledge of the algorithms that will run on it. The

rapld progress of parallel processing in the 1980s and 1990s owes a lot to the interaction of research in

these three categories.

The focus of this thesis falls into the second and the third categories above. We look at several

network topologies and we analyze their behavior under various traffic conditions. We also propose

communication algorithms, rules, or protocols to organize the communication within a multiprocessor

network. When doing so we are sometimes motivated by the underlying computations that give rise

1.1. Parallel Processing Systems

to the information exchange between the processors. In other cases we adopt probabilistic models for

the traffic and analyze the performance of the networks based on these models. Most of the work is

related to the hypercube and the mesh networks of processors, which are currently the two most popular

topologies for multiprocessor systems. In many cases the particular network is of no interest and the

rules that we propose have much:broader applicability. Also, the methodologies that we use can often.

be transferred to other networks, or other problems.

Some of the research in this thesis takes the viewpoint of a parallel computation theorist. Most of the

problems addressed, however, are directly related to practical applications. We hope that sometime,

the communication algorithms, rules, and protocols that we propose will be implemented in actual

multiprocessor systems.

i.1. PARALLEL PROCESSING SYSTEMS

There are several issues that have to be resolved when designing a parallel machine, including

she following;

» fine versus coarse granularity

» multiple versus single instruction streams

® shared memory versus message passing

We will comment on these issues to the extent that it is necessary to place our work in the

general framework. |

There 1s a tradeoff between the size and the number of processors. The fine grained, or

massively parallel machines (examples being the Connection Machine model CM-2, and the

DAP) have thousands or tens of thousands of small (even one-bit), and relatively inexpensive

processors. In such machines a problem 1s decomposed into thousands of pieces each of which

1s executed by a small processor. Usually fine grained machines come in conjunction with a

host computer, which is a conventional computer; the host computer performs the serial work

that would be inefficient to assign to a small processor. The opposite and more conservative

approach, whichisclosertotheVonNeumannprinciples,istakenbythecoarsegrainedparallel

systems, such as the Encore and the Alliant computers, which have some tens or hundreds of

fairly powerful processors.

1.1. Parallel Processing Systems

This thesis 1s implicitly inclined towards fine grained multiprocessor systems for two reasons.

The first is that such systems can achieve speedups of several orders of magnitude compared

to conventional computers. Coarse grained systems on the other hand achieve much smaller

speedups. Such small speedups would also be welcome of course, but they would still leave

many applications in need of more computational power. A second reason is that in fine

grained machines, the communication part, which is the subject of this thesis, becomes more

significant due to the larger size of the network and the information exchange that has to take

place. In fine grained machines we expect a reference to a variable that is located at a different

processor to take place every few instructions; this makes the communication requirements

much stricter, and the issues addressed in this thesis more significant.

A second question when designing a parallel computer 1s whether the control should be local

or global. There are two extreme options here, and many intermediate alternatives. A Multiple

Instructions Multiple Data (MIMD) machine (examples being the Encore, Sequent, Ametek

N-cube, BBN Butterfly, Intel Hypercube) 1s a collection of connected, but loosely coupled,

autonomous computers, each capable of executing its own program. In a Single Instruction

Multiple Data (SIMD) machine (Connection Machine model CM-2, DAP) all processors are

controlled from a single instruction stream, which is broadcast to all the processors. Each

processor has the option of executing an instruction or ignoring it, depending on its internal

state. In MIMD machines synchronization is not given (although it may be built), while SIMD

machines are synchronous by definition. Both modes of operation have their advantages, but

since each of them can emulate the other, the philosophical issue of which to choose becomes

a question of which 1s easier to build and operate. The results of our thesis apply to both

MIMD and SIMD machines, but they are more useful for SIMD machines. The first reason is

that SIMD machines usually employ fine grained parallelism, which as we explained makes the

communication aspects of parallel processing more significant. A second reason is that in SIMD

machines all processors execute the same instructions; this makes the resulting communication

pattern more regular, easily describable, and predictable. This leaves more space for clever

organizations of the data movement. Part I of our thesis which deals with creating a library of

some standard static communication tasks is more directly applicable to SIMD machines.

Parallel processing systems are also distinguished with respect to whether the processors

exchange information through a global shared memory, or through message passing. Shared

memory machines contain a global memory that can be addressed by all processors, usually

via a bus. Processors communicate by leaving messages at prespecified memory locations,

1.2. Communication Aspects of Parallel Processing

which other processors can read. Shared memory can support some tens of processors (Encore,

Sequent, Alliant). The processors of message passing machines on the other hand have local

memory and communicate through the exchange of messages (Illiac 4, DAP, Connection Ma-

chine models CM-2 and CM-5, Intel Hypercube, Ametek N-cube). Usually there is software

that presents“the programmer with the illusion of a shared memory environment. This is a

dangerous illusion, however, and the programmer should not ignore the message passing nature

of the machine. When a processor reads a variable from its local memory, it is like addressing

a cache memory location In a conventional computer, while when it reads a variable stored in

another processor, it is similar to fetching something from a disc.

This thesis focuses on message passing machines. The reasons are again that such systems

can offer a higher degree of parallelism, and that their communication aspects are more impor-

tant. The network topologies that we examine are prime candidates for use in message passing

machines.

L.2. COMMUNICATION ASPECTS OF PARALLEL PROCESSING

N processors working on some problem do not necessarily solve it N times faster than a single

processor working alone. A major cause of inefficiency is, as we explained, the communication

overhead. Processors, when doing computations, often have to exchange intermediate results.

In many cases, the time required for routing the messages is much more than the time spent

by the processors doing computations. Thus, at least with current technology, communication

seems to be the bottleneck of parallel computation. One can see that by looking at the current

success stories of parallel processing, which are limited to applications that use fine grained

parallelizations, or fit very well into a particular topology (e.g., image processing applications).

In order to move to massively parallel computation, and be able to solve more general problems.

it 1s important to reduce the communication delay. Even if optical fibers are used for the

interconnections, the communication delay will still be present in the form of processing and

propagation delay.

In order to quantify the effect of the communication overhead, the communication penalty

was defined in [BeT89] as the ratio

T
Op — TOTAL

T~amp

1.2. Communication Aspects of Parallel Processing

where Trorar 1s the total time to solve the problem, and Toopmp is the time that would be

required if all communications were instantaneous. The communication penalty is always larger

than one. The general direction of our thesis is to make the communication penalty closer to

one, by decreasing the numerator of the above ratio.

communication Delay Components

T'he time required for the transmission of a packet over a link can be decomposed as follows:

» communication processing time, needed to prepare the information for transmission; this is

usually considered constant for all packets.

» transmission time, which is inversely proportional to the capacity of the links (or the number

of wires implementing a link) and proportional to the length of the packet

» propagation time, which 1s the time that elapses between the transmission of a bit and its

reception at the other end of a link; this 1s usually considered a constant or some function

of the length { of the link (proportional to log! for small I and linear in { for large I)

T'he communication delay for internode communication in a parallel computer includes:

» queueing delays,

» delays due to retransmissions, either because a packet was dropped or an error was detected;

the latter rarely happens in multiprocessor computers, where transmission of information

over a link is generally considered reliable, and

» delays due to the number of hops between the origin and the destination of a packet.

The reduction of the time required for transmission over a link is beyond the scope of this

thesis; this pertains to the fields of solid state and VLSI implementation of devices. The

communication delay that 1s due to the last three reasons can be improved by cleverly choosing

the topology of a parallel computer, and the communication rules, algorithms and protocols

that are built in it.

Communication Model

I'hroughout most of the thesis we assume that information is transmitted in the form of

packets, each of which requires one unit of time to be transmitted over a link. This is usually

1.3. Static Communication Tasks

a realistic assumption. It also constitutes an abstraction that enables us to focus on the many

remaining lssues involved in the design of communication algorithms. This abstraction provides

a way to measure the performanceofcommunicationalgorithms,and compare it with lower

and upper bounds. Some authors ([SaS89b], [JoH89]) divide the delay required for a packet

:ransmission over a link into two parts: a start-up delay which is the same for all packets, and a

part which 1s proportional to the length of a packet. We believe that such a distinction obscures

the picture without providing any additional insight. In any case, appropriate modifications

can always be made with little effort to convert the complexity results that we obtain to the

other model.

We assume that packets are transmitted in a store and forward fashion. This leaves out

the option of wormhole routing (called cut-through routing in data network circles), which

has recently received a great deal of attention in the parallel computation literature ([KeK79],

[DaS87], [Dal90b]). In wormhole routing a packet starts being transmitted before it has been

fully received at a node. In this way, the packet delay is reduced due to pipelining of the packet

bits over several links. Most of the static algorithms that we will propose achieve utilization

close to 100% of some critical communication resource, and therefore they cannot be improved

by using wormhole or some other kind of routing. Wormhole routing becomes very interesting

when the load in the network is light and the messages are relatively long. In Chapter 6 we

will compare wormhole routing to a number of other schemes, while elsewhere we will pause to

discuss how wormhole routing can, or cannot help in a particular case.

1.3. STATIC COMMUNICATION TASKS

There are some traffic patterns that frequently arise in applications. It is desirable to de-

vise standard communication algorithms that execute these typical patterns in the minimum

number of steps. These algorithms are used as communication primitives by the programmer

or the compiler, in the same way that subroutines implementing standard functions are called

from a library of functions in a conventional computer. The time required to execute the proto-

type tasks can also be used as a performance measure in comparing multiprocessor computers

[BeT89], [Hsu90]).

I'he simplest of all tasks 1s the one-to-one or one-shot communication, where a node sends

1.3. Static Communication Tasks

a packet to some other node. This corresponds to a processor accessing a non-local memory

location. The relevant performance criteria in this case are the diameter and the mean internode

distance of the network.

Aslightly more complicated task is the single node broadcast (SNB for brevity) where the
same packet is sent (copied) from a given node to all other nodes. A single node broadcast

can be accomplished by transmitting the packet along a spanning tree rooted at a given node.

[t corresponds to a variable being read by all processors simultaneously. A dual task is the -

single node accumulation (SNA), where a packet is sent to a given node from every other node;

here, we assume that the packets can be combined on a link, with the combined transmission

time being equal to the transmission time of a single packet. The operator used in combining

the packets can be any associative operator, such as +, -, min, max, and others. The SNA

implements a concurrent write from all nodes to a single memory location. The spanning tree

used for the SNB with the arcs reversed can be used for the SNA task as well; thus, the time

complexity of both tasks is equal to the diameter of the network. A problem slightly more

general than the SNB is the single node multicast, where the same packet is sent from a given

node to some, but not necessarily all, other nodes ([LEN90]). A problem more complex than

the previous ones is the single node scatter (and its dual single node gather), which involves

sending (respectively, receiving) a separate packet to (or, from) every other node.

In all the previous tasks, there was a single node which is executing a command and is sending

packets to (or receiving packets from) one or more nodes. Generalizations of the previous tasks,

where the same action 1s taken by many or perhaps all processors, also appear very frequently

in applications. For example, in SIMD machines where all processors are controlled by the

same Instruction stream (each processor has, of course, the option of ignoring a command) we

sxpect the same task to be executed by all or a large subset of the nodes. Even in MIMD

machines, there are many algorithms, which require the tasks described above to be executed

by many or all nodes.

A generalized, multinode version of the one-to-one communication is the permutation task,

where every processor sends a packet to some other node, with no two destinations being

the same. Partial permutations and h-relations (which are the concatenation of h successive

permutations) have also appeared in the literature. The permutation task is considered a

benchmark task in parallel computation theory. It is also a measure of how well a given parallel

architecture can simulate an “ideal parallel machine”, in which all processors can concurrently

write to, or read from a different processor.

1.3. Static Communication Tasks

A generalized version of the single node broadcast task is the multinode broadcast (or MNB).

In the MNB each node wishes to broadcast a packet to all the other nodes. A task more general

than the MNB is the partial multinode broadcast (or PMNB) where an (arbitrary) subset of the

processors wanttobroadcastapacket.ThePMNBtask,alongwithbeingimportanton.its

own merit (see Chapter 3 for examples),isalsoa critical component of the dynamic broadcast

algorithms that we propose in Chapter 4 (see also the next section).

A generalization of the single node scatter is the total exchange task, where each node sends

a separate (personalized) packet to every other node. An even more general task than the

total exchange is the partial exchange (or PE), where a (arbitrary) subset of the nodes of an

N-processor system sends a separate packet to each of the N — 1 other processors. A dual of

the partial exchange task is the partial multinode gather (or PMNG), where each node in a

subset of nodes of the network receives a separate packet from every other node of the network.

Examples where the MNB, TE, PMNB, PE, and PMNG tasks arise are given in Chapter 3. The

PE 1s the highest problem in hierarchy among the previously described problems in terms of

difficulty. An algorithm for the PE can execute all the other tasks that we presented, although

usually not efficiently.

A last class of communication tasks that we will examine are the isotropic tasks, first defined

in [Var90] and [VaB90a]. These are tasks defined on regular networks (as are most of the

networks used in parallel computation), which are characterized by a type of symmetry with

respect to each origin. A precise definition will be given in Chapter 2 of the thesis. The

total exchange task described above is a particular case of an isotropic task for hypercubes,

d-dimensional meshes, folded-cubes, permutation-cubes (the latter class of networks will be

defined in Chapter 7), and other networks.

All the tasks described above are static in the sense that there is some work to be performed

once and for all. The packets that each node has to send are available at time ¢ = 0, although

usually some condition milder than that is required (e.g., for the isotropic tasks). All the

nodes know which task they execute, and they are synchronized to start at the same time;

the only objective is to finish the job as fast as possible. Except for the static tasks, where

conditions are rather favorable, one can envision situations where communication requests are

not deterministic, but they are generated at random instants. We call such an environment

dynamic. The execution of asynchronous computation algorithms is one such situation, but it

1s reasonable to expect that in many systems a dynamic, largely unpredictable environment

may be the rule and not the exception. Section 1.4 describes this dynamic setting.

1.5. Topologies

1.4. DYNAMIC COMMUNICATION TASKS

In the static setup, which we described in the previous section, our focus is on designing

algorithms that execute certain prototype deterministic communication tasks in the minimum

number of steps. Thus the problem is equivalent to scheduling packet transmissions, given the

exact communication pattern in advance. In a dynamic setup the situation is much less pre-

dictable. Communication requests of the one-to-one (one-shot) or the one-to-many (broadcast)

type are generated at random instants. In such a situation, the only reasonable target can be

the design of communication rules and protocols that work well in stochastic environments.

The performance criteria could be the mean number of communication requests that are exe-

cuted per unit of time, and the mean delay to serve a request. The communication rules and

protocols can only be useful if they are on-line, distributed, and easy to implement.

The fact that the communication requests are generated in a random way does not neces-

sarily imply that they should be executed in a greedy, unorganized way. For example, in the

case where broadcast requests are generated at random instants at each node, we will find that

some global information (e.g., the total number of outstanding requests) is very helpful. Such

information can be gathered on line at very little cost, and can be used to organize the packet

transmissions. “Reservations” and “on-line scheduling” will be central in many dynamic com-

munication algorithms that we will propose. Other issues that are important in the dynamic

setup are the switching format, the flow control, and the feedback mechanism used. In Chapter

6 .-we. will propose a hybrid of packet and circuit switching which we call the Conflict Sense

Routing protocol.

1.5. TOPOLOGIES

The choice of topology is a central issue in the design of a multiprocessor system for obvious

reasons. Numerous topologies have been proposed and analyzed including the hypercube, the

mesh of trees, the d-dimensional mesh (with or without wraparound), the butterfly, the tree, the

ring, and the linear array (a good survey of topologies can be found in [Fen81]). The hypercube

and the mesh (especially the 2-dimensional) are the most popular topologies in terms of actual

1.5. Topologies

implementations. They are also the ones of greatest interest in this thesis.

Che Hypercube

The hypercube graph (Fig. 1.1) comes in various sizes. In particular there is a hypercube ofN

nodes for every N which is a power of 2. Each node of an N = 24-node hypercube 1s represented

by a unique d-bit binary string wg_jwg_s--- ws. Two nodes are connected via a link if they

differ in one bit of their representation (i.e. if w = wg_1wq_3---wo and vw’ = w)_ jw}, w}

and w; = w], for all i except for a single j for which w; = 1 — w;). Nodes and links of a

hypercube graph correspond to processors and wires of a hypercube multiprocessor computer.

We will assume, unless otherwise stated, that the links are bidirectional, and each processor

can send and receive messages over all its incident links at the same time. The computing

power of the hypercube is partly derived from the fact that there are d disjoint paths of length

d + 1 or less linking any pair of nodes.

The Hamming distance between two nodes is the number of bits in which their identities

differ. The number of links on any path connecting two nodes cannot be less than the Hamming

distance of the nodes. Furthermore, there is a path with a number of links which is equal to

the Hamming distance, obtained, for example by switching in sequence of bits in which the bit

representations of the nodes differ (equivalently, by traversing the corresponding links of the

hypercube). Such a path is referred to as a shortest path. Given two nodes s and t, s@t denotes

the result of their bitwise exclusive OR operation and is called the routing tag between the two

nodes. The number of ones of the routing tag is obviously the Hamming distance between the

two nodes.

The d-dimensional Mesh

The d-dimensional mesh consists of N = p? processors arranged along the points of a d-

dimensional space with integer coordinates. Along the ith dimension, obtained by fixing coor-

dinates zg_1,..., Zi+1, Ti-1,..., Zo there are p processors with identities (zg_1,...,%;,..., Zo),

z;, =0,1,...,p—1. Two processors (£q_1,...,%i,...,%0) and (Yd—1,.-.,¥%,..., Yn) are connected

by a duplex link if and only if for some 7 we have |z; — y;| = 1, and z; = y; for all j #4. In

1.5. Topologies

110 111
- = BE

[011

/

010

100
_ 01

7

300 00*

Figure 1.1: A hypercube with N = 8 nodes.

(0,00 (0,1) (0,2)

(1,0) lo (1,2)
LT 1)

eoon|e]|
 TLTD

Figure 1.2: A 2-dimensional wraparound mesh with N = 9 nodes.

addition to these links, in the d-dimensional mesh with wraparound there also exist links of the

type ((2a—1,...,@iy1,0,2,_1,..., 20), (Za-1,...,Zi+1,p — 1,%i_1,...,T0)). Figure 1.2 illustrates

a 2-dimensional mesh with wraparound (also called torus).

Among the advantages of the hypercube are its logarithmic diameter, the simplicity of the

routing algorithms, its versatility (many other topologies can be embedded in it; see [BeT89]

and [Lei92a]), the variety of algorithms designed for it (see [Lei92a] or [RaS90] for a collection),

its recursive and other mathematical properties, and its large bisection width (e(ely)). The

bisection “width 1s the minimum number of links that have to be removed to separate the

hypercube into two parts, each with equal number of nodes. The large bisection width becomes

1.6. Thesis Qutline - Contributions

a disadvantage in the physical layout of the hypercube. The hypercube requires O(N?) area

for layout, which 1s more than we would desire; most of this area is wires ([Dal90a]). The

logarithmic degree is also a potential problem, because of the pin limitations of a chip, and the

burden that it places on the processor to handle all links at the same time. These disadvantages

may become significant as we move towards larger systems: a hypercube computer having a

million processors may just be impossible to build. However, for the parallel computers of today

and probably those that will be built in the next decade this is not a problem. Constant degree

networks, such as the cube connected cycles, the De Bruijn graph, and the shuffle exchange,

which can simulate a hypercube with only logarithmic slow-down, have been popular in the

literature, but not in practice (except for the butterfly).

Recently, there is a trend in the industry towards low dimensional meshes. Low dimensional

meshes have larger diameter than the hypercube, but they fit better, and in a more natural way

In the two dimensions (or perhaps three with future technology) available on a silicon wafer

(see [Dal90a] and [LeL89]).

The question of which topology is better for a general purpose parallel computer has not been

answered yet. In Chapter 7 we propose some networks, structurally related to the hypercube,

which have interesting routing properties.

1.6. THESIS OUTLINE - CONTRIBUTIONS

The thesis is organized as follows. In Chapter 2, we describe the class of isotropic tasks for

hypercubes. By introducing the notion of task matrices we transform the problem of scheduling

isotropic tasks into a matrix decomposition problem. Solving the transformed problem, we

obtain simple distributed rules that execute any isotropic task in strictly minimum number of

steps. The rules found for the isotropic tasks give rise to a number of optimal algorithms for

the total exchange task, which is a special case of an isotropic task.

Motivated by the simplicity and the nice properties of the routing algorithms for isotropic

tasks, we extend the results to other, “nearly isotropic” tasks. We focus on the particular

problem of storing by columns, and transposing a banded matrix in a hypercube network of

processors. We propose an assignment of matrix columns to hypercube processors for which

the transposition task becomes an almost isotropic task. We then present communication

1.6. Thesis Outline - Contributions

algorithms to transpose a single banded matrix, or multiple banded matrices concurrently.

We also prove a lower bound on the time required to transpose a banded matrix for any

assignment of matrix columns to hypercube processors. The lower bound shows the optimality

of our-algorithm for a large range of matrix bandwidths. The fastest previous algorithm that

we know of for transposing a banded matrix is the one given in [McV87]; which is worse by a

factor of log N compared to ours. Using the results on banded matrices we propose a way to

embed arbitrary sparse graphs in a hypercube topology. We also present a way to store block

diagonal matrices in a hypercube network of processors.

In Chapter 3 wefirst introduce the partial multinode broadcast and the partial exchange

tasks. We propose several algorithms to execute these tasks in hypercubes and d-dimensional

meshes. Near-optimal algorithms, or algorithms of optimal order are found for both tasks and

both networks considered. The algorithms are distributed, on-line, and assume no information

about the location of the active nodes. We consider two different communication models: in

the first model packets can be split at the origin and be recombined at the destination, while in

the second model this is not allowed. We also present results on the simulation of meshes with

wraparound by meshes without wraparound, on the packing and isotone routing problems for

d-dimensional meshes, on the window multinode broadcast in hypercubes, and on other routing

problems. The partial multinode broadcast has been considered independently in [Sta91] for

the hypercube network, where an algorithm having roughly twice the complexity of ours was

proposed. The other problems with which we deal in Chapter 3 are considered for the first

time.

Starting with Chapter 4 we turn our attention to dynamic communication algorithms. In

Chapter 4 we consider the problem where broadcast requests are generated at each node ac-

cording to a Poisson process, independently of the other nodes. We propose a simple and

natural scheme to execute the broadcasts. The scheme consists of alternating reservation and

broadcast intervals. In the reservation intervals some minimal global information is gathered

at each node, and nodes that have a packet to broadcast reserve their participation in the next

oroadcast interval. At the same time the packets are moved to more favorable intermediate

nodes. In the broadcast interval the packets are broadcast from the intermediate nodes to all

other nodes. The scheme can be used in hypercubes, d-dimensional meshes and tori, and, in

general, any network for which PMNB algorithm with certain properties can be found. Since

the partial multinode broadcast algorithms of Chapter 3 are very efficient for both hypercubes

and meshes, and the reservation overhead is small, the proposed scheme turns out to be very

1.6. Thesis Outline - Contributions

efficient. In particular, we set two objectives for a dynamic broadcasting scheme: (1) stability

for as big a load as possible, and (2) average delay which is of the order of the diameter for any

fixed load in the stability region. Our scheme has an asymptotically optimal stability region,

and an asymptotically optimal average delay in-terms-of the size of the network for any fixed

load in the stability region. The only other work related to the problem of dynamic broadcasts

was done by Stamoulis in [Sta91]. The two algorithms of Stamoulis that are most interesting

from a theoretical point of view are the non-idling direct scheme with priority rule (or simply,

direct scheme), and the indirect scheme. The stability objective described above is met by the

direct scheme, but the average delay analysis of the direct scheme is approximate. The indi-

rect scheme meets the delay objective, but its stability region is roughly 2/3 of the maximum

possible. Therefore the two schemes do not provably satisfy both performance objectives. Qur

algorithm and analysis are of a completely different philosophy, and apply to any network for

which efficient PMNB algorithms can be found. The results in [Sta91] are particular to the

hypercube topology.

In Chapters 5 and 6, we shift our focus to multiple one-to-one communications in hyper-

cubes, under a stochastic environment. The problem with which we deal in Chapter 5 is the

following. Packets having a single destination are generated at each node of a hypercube in a

stochastic way. This is similar to the setup of Chapter 4 with the difference that now one-to-

one communication requests are generated instead of broadcasts. The packet destinations are

assumed to be uniformly distributed over all nodes. We are interested in distributed routing

schemes that will work well in such a stochastic environment. One-to-one routing has been

analyzed extensively in the literature for a variety of topologies. Valiant [Val82], and Valiant

and Brebner [VaB81] have proposed randomized routing as a way to route uniformly any per-

mutation in a hypercube in logarithmic time with high probability. Their work was improved

by Upfal [Upf84] who achieved similar performance by using a constant degree network, and

Pippenger [Pip84] who used queues of constant size. Mitra and Cieslak [MiC87], Hajek and

Cruz [HaC87], and Greenberg and Leiserson [GrL89], have extended these results to other

topologies, namely the Extended Omega, and the Fat Tree network. We do not know, however,

of any parallel computer that uses randomized routing (it must be hard to persuade managers

fo use probability theory).

In the field of deterministic routing schemes for one-to-one communications, Greenberg and

Goodman [GrG86] gave an approximate numerical analysis of deflection routing in mesh net-

works. Greenberg and Hajek ([GrH90]) approximately analyzed (but not numerically) a de-

1.6. Thesis Qutline - Contributions

flection routing scheme for hypercubes. Dias and Jump [DiJ83] used approximate analysis

to evaluate the performance of buffered Delta networks. Stamoulis [Sta91] analyzed a greedy

routing scheme in a hypercube with infinite buffers. He analyzed a closely related Markovian

network. with ‘partial servers and used the results to bound the performance of the hypercube

scheme. ‘Maxemchuk [Max89] used simulations to compare deflection routinginashuffle ex-

change and in a Manhattan network. Varvarigos in [Var90] introduced a priority deflection

routing scheme for hypercubes, and used a Markov chain to analyze it approximately, and to

evaluate its performance numerically.

We propose two different routing schemes and evaluate their steady state throughput for

various traffic loads. The schemes are simple and require simple, low-cost switches at the

hypercube nodes, instead of crossbar switches. The one of the two schemes uses a priority rule to

resolve conflicts over a link. The priority rule is found to increase the throughput significantly.

For both routing schemes we examine the effect of the buffer size on the throughput. The

results obtained are approximate, but very accurate as simulation results indicate, and they

are given in particularly interesting forms: they are either in parametric form involving a

single parameter, or they are obtained by a recursion of finite order equal to the dimension

of the hypercube. The effect of the buffer space on the throughput of hypercubes, which we

examine 1n this chapter, has not been adequately addressed in the literature. Also, we are

not aware of any other analysis of priority routing schemes for hypercubes, with the exception

of the priority deflection scheme analyzed in [Var90]. We also use simulation to evaluate the

performance of two deflection schemes, called the simple and the priority deflection schemes.

These schemes, which use crossbar switches at the nodes, have very satisfactory throughput;

in fact, the priority deflection scheme is conjectured to have shrouglpub asymptotically equal

to the maximum possible.

In Chapter 6 we focus on an issue ignored in the previous chapters and, in fact, in most of the

parallel computation literature. This has to do with the switching format used in multiprocessor

communications. We propose a new switching format, which we call the Conflict Sense Routing

Protocol (or CSR protocol). This is a hybrid of packet and circuit switching, and combines most

of their individual advantages. We initially present the CSR protocol in a way that is applicable

to a general topology. The CSR protocol efficiently resolves data link control issues, such as

the link and buffer space allocation strategy, the feedback mechanism, and the retransmission

protocol. We then present an implementation of the CSR protocol in a hypercube network.

We approximately analyze the performance of the hypercube implementation assuming that

1.6. Thesis Outline - Contributions

packets having a random destination are generated at random instants at each node. We find

that the CSR protocol provides very satisfactory throughput, together with a number of other

advantages. We conclude the chapter by making a comparison of the hypercube CSR protocol

with several other switching formats and schemes. PF girs
a eR Re

In Chapter 7 we define some new classes of network topologies, which are structurally related

to the hypercube topology. Our interest for studying these networks comes from two obser

vations. The first is that the hypercube does not have a particularly small diameter given its

degree. In a network of N = 2¢ nodes, each having degree d, we would hope for a diameter of

the order © (d/ log d) instead of d. Even though we are unable to calculate the diameter of the

proposed networks analytically, simulation results indicate that their mean internode distance

1s rather small. The second observation is that most of the properties that have made the

hypercube popular are closely related to its recursive properties. From our point of view the

nice routing properties of the hypercube are due to the single fact that it can be decomposed

into two parts of the same kind, and each node in the one half has a neighbor in the other half.

The networks proposed share with the hypercube this property, which is adequate to guarantee

simple, self-routing algorithms. In addition, we show that static communication tasks, such

as the total exchange, can be efficiently executed in some of the proposed networks, by using

ideas similar to those used for the hypercube. We also consider a variation of the hypercube,

called the folded cube (proposed in [AdS82]), and present the first strictly optimal MNB and

TE algorithms for this topology, improving on previous results by [Ho90]. In order to support

our opinion that the networks examined are viable multiprocessor topologies, we propose ways

to layout these networks. We find that all the proposed networks when placed on silicon require

area O(N?), which is of the same order of magnitude with the hypercube.

Networks structurally related to the hypercube have often appeared in the literature. The

bridged hypercube ([EIL90]), the folded-cube ([AdS82] and [Ho90]), the incomplete hypercube

([Kat88]), the Fibonacci cube ([Hsu90]) are some examples. Our work differs from these works

because it focuses on the recursive properties of the hypercube (and in fact of other parallel

computing networks) that simplify routing, and ignores other, less essential we believe, prop-

erties.

CHAPTER TWO

Isotropic and

Nearly Isotropic Tasks

We consider a broad class of communication tasks, which we call isotropic, in a hypercube network of

processors. These tasks are characterized by a type of symmetry with respect to origin node. We show that

executing such tasks in a minimum number of steps is equivalent to a matrix decomposition problem. We

ase this propertytoobtainminimumcompletion time algorithms for any isotropic task. We then turn our

attention to communication tasks which are “nearly isotropic”. In particular, we consider the problem of

transposing a sparse matrix of size N x N with a diagonal band of size 2°*! + 1, which is stored by columns

(or rows) in a hypercube network of N = 2¢ processors. We propose an assignment of matrix columns to

hypercube nodes such that the transposition task becomes a “nearly isotropic” task, that is, it looks “almost

identical” to all nodes. Under this assignment, an algorithm is found to transpose the matrix in 2° steps. We

also find a lower bound on the minimum number of steps required to transpose a banded matrix, which holds

for any possible assignment of matrix columns to hypercube processors. In the case that 2°t! +1 = O(N)

for some constant ¢ > 0, the completion time of our transposition algorithm is proven to be of the same

order of magnitude with the lower bound. We further show that |d/3| banded matrices, each of bandwidth

21 1 1, can be stored by columns in a hypercube so that all of them can be concurrently transposed in 2°*!

steps. ‘We also give a heuristic algorithm to embed arbitrary sparce graphs with small dilation in hypercubes,

and we present a way to store block-diagonal matrices in hypercube networks.

2.1. Introduction

2.1. INTRODUCTION

Routing algorithms have been studied by several authors under a variety of assumptions on

the communication network contacting the processors of a parallel computing system. Saad and

Shultz [SaS89a), [SaS89b] have introduced a number of generic communication problems that

arise frequently in numerical and other methods. For example they consider the problem where

each processor is required to send a separate packet to every other node; following [BeT89], we

call this the total exchange problem. Saad and Schultz have assumed that all packets take unit

time to traverse any communication link. Processors can either transmit along all their incident

links simultaneously or they can transmit along a single incident link at any one time. Johnson

and Ho [JoH89] have developed minimum and nearly minimum completion time algorithms

for similar routing problems as those of Saad and Schultz but using a different communication

model and a hypercube network. Their model quantifies the effects of setup time (or overhead)

per packet, while it allows packets to have variable length, and to be split and be recombined

prior to transmission on any link in order to save on setup time. In the model of [JoH89].

each packet may consist of data originating at different nodes and/or destined for different

nodes. The extra overhead for splitting and combining packets is considered negligible in the

model of [JoH89]. Bertsekas et al [BOS91], and Bertsekas and Tsitsiklis [BeT89) have used the

communication model of Saad and Shultz to derive minimum completion time algorithms for

several communication problems in a hypercube. In particular, they have given an algorithm

for the total exchange problem that executes in a minimum number of steps (N/2 for an N-

processor hypercube). Several other works deal with various communication problems and

network architectures related to those discussed in the present chapter; see [BhI85], [DNS81],

Eded1], [HHL8S], [Ho90], [Joh87], [KVC88], [McV87], [Ozv87], [SaS88], [StW87], and [Top85]

In this chapter, we introduce a class of communication tasks, called isotropic, which are

characterized by transmission requirements that are symmetric with respect to origin node (a

precise definition will be given later). For example, the total exchange problem is an isotropic

;ask; the communication problem “looks identical” to every node. The structure of isotropic

tasks can be exploited particularly well in networks that have themselves a symmetric struc-

ture, such as a hypercube, a wraparound mesh, a folded-cube,.a permutation-cube, and other

networks. In this chapter, we restrict attention to the hypercube network. Algorithms for

isotropic tasks in wraparound meshes can be found in [VaB90a], while relevant results for the

2.1. Introduction

folded-cube and the permutation-cube are given in Chapter 7. We use the Saad and Schultz

communication model, but as we will show in Section 2.4, our minimum completion time re-

sults are essentially independent of the communication model used. The idea is that to achieve

minimal completion time, some critical network resource must be used 100% of the time; and

this constraint is limiting for any communication model.

A central result 1s that executing isotropic tasks on a hypercube (and a number of other

regular topologies; see comment above) is equivalent to solving a matrix decomposition problem.

We use this result to characterize the class of algorithms that execute such tasks in minimum

time. Within this class one can identify simple and easily implementable algorithms with further

optimality properties, such as minimum or nearly minimum average packet delay, memory

storage, and transient storage requirements. For algorithms which are optimal with respect to

the latter performance crireria we refer the reader to [VaB90a], where algorithms simultaneously

achieving various kinds of optimality are described; the only performance criterion considered

in this chapter is the completion time of an algorithm. Earlier works in data communications

([BCW81] and [Wan88]) have also shown the equivalence of certain optimal time slot allocation

problems and matrix decomposition problems. However, these works involve a very different

context where there 1s one transmitter, and several receivers connected with a direct link to

the transmitter; network situations are not addressed and symmetry plays no role.

Beginning with Section 2.5 we turn our attention to “nearly isotropic” tasks. The quotes are

used to indicate that this is a class of tasks with no specific or rigorously defined borders. The

term is used in a heuristic way to refer to communication tasks for which the tools, algorithms,

and 1deas developed for isotropic tasks can also be useful. Loosely speaking a “nearly isotropic”

task is a task which looks almost identical to all nodes.

We focus on a particular “nearly isotropic” task, namely the transposition of a banded

matrix stored by columns (or by rows) in a hypercube network. We show that for a particular

assignmentofmatrixcolumnsto hypercube nodes the task is close to being isotropic. We then

give an algorithm to transpose a 2¢+! + 1-diagonal matrix in 28 steps. This is a factor of log N

improvement over the best previous banded-matrix transposition algorithm that we know of

([McV8T]).

We have not proved that our banded-matrix transposition algorithm is optimal over all

possible column-to-processor assignment for any matrix bandwidth. It is strictly optimal for

the column to processor assignment that we propose, but it is possible that a better assignment

exists. We have derived, however, a lower bound showing that when the bandwidth B is of the

2.1. Introduction

order ©(N¢) for some constant ¢ > 0, the complexity of our algorithm is of the optimal order of

magnitude, where optimality is considered over all possible column-to-processor assignments,

and over all transposition algorithms for each particular assignment. The case ¢ = 1/2 is

particularly interesting in practice, since it arises, for example, in the discretization of elliptic

partial differential equations. Our transposition algorithm is also of optimal order when the

bandwidth B is O(1). We extend our results to show that |d/#| matrices, each of bandwidth

2A+1 + 1, can be transposed concurrently in time 28+!. When |d/3| > 2 the improvement

in efficiency obtained in this way may be significant. The results on banded matrices suggest

heuristic ways to embed arbitrary sparse graphs in hypercubes, with small dilation. This is a

difficult problem for which very few things are known.

There are two main results in this chapter. The first is to relate the routing problem, which

1s a scheduling problem with a combinatorial character, with a matrix decomposition problem,

which 1s a problem in linear algebra. Such a connection is new and quite unexpected. It

provides a simpler and more powerful characterization of optimal routing algorithms for the

total exchange and other related problems than in earlier works (e.g. [BOS91]). It also allows

simple and elegant analyses of minimum average delay algorithms and near-optimal greedy

algorithms; we will not deal with these issues in this thesis and we refer the reader to [VaB90a).

The second main result of the chapter is to introduce isotropic tasks and “nearly isotropic”

tasks as practically important and analytically interesting classes of communication problems.

It 1s clear that there is an incentive to formulate new routing problems in terms of isotropic or

‘nearly isotropic” tasks, whenever this is reasonable, to take advantage of the corresponding

simple and elegant analysis.

The chapter is organized as follows. Sections 2.2 through 2.4 deal with the isotropic tasks,

while Sections 2.5 through 2.7 deal with the banded-matrix transposition task. Section 2.2

defines the class of the isotropic tasks and introduces the key notion of the task matrix. A

lower bound for the completion time of both isotropic and non-isotropic tasks is also given.

Section 2.3 deals with the evolution of the task matrix when symmetric routings are used. It

also transforms the problem of minimizing the task’s execution time into the problem of writing

the task matrix as the sum of a minimum number of permutation matrices. The solution to the

matrix decomposition problem is given in Section 2.4. Section 2.5 describes the banded-matrix

transposition algorithm. A lower bound on the time required to transpose a banded matrix, and

the optimality of our algorithm for a broad range of matrix bandwidths are proved in Section

2.6. In Section 2.7 we give an algorithm to transpose many banded matrices simultaneously. In

2.2. The Task Matrix

Section 2.8 we describe a heuristic algorithm to embed sparse graphs in hypercubes. Finally,

in Section 2.9 we present a way to embed block diagonal matrices in hypercubes.

2.2. THE TASK MATRIX

We first introduce some terminology. Given a hypercube with 24 nodes, the j-type link (or

j-link) of node s = (sg_1...5;...50) is the link connecting node (sq—1...s;...50) with node

(8d-1...55...50). (We denote by Z the complement of the binary number z, that is, z = 1—=z.)

Given two nodes s and t, the node s ®t is the node with binary representation obtained by a

bitwise exclusive OR operation of the binary representations of nodes s and ¢.

Information is transmitted along the hypercube links in groups of bits called packets. In the

algorithms in this section we assume that the time required to cross any link is the same for all

packets, and is taken to be one unit. We assume that packets can be simultaneously transmitted

along a link in both directions, and that their transmission is error free. Only one packet can

travel along a link in each direction at any one time; thus, if more than one packet are available

at a node and are scheduled to be transmitted on the same incident link of the node, then only

one of these packets can be transmitted at the next time period, while the remaining packets

must be stored at the node while waiting in queue. We assume that all incident links of a node

can be used simultaneously for packet transmission and reception. Finally, we assume that

each of the algorithms proposed is simultaneously initiated at all PrOCESSOIS.

We now define the communication tasks that are the subject of this chapter.

Definition 1: A communication task G is defined as a set of triplets (s1,s2,k), where s; is

a node (source), sz 1s a node (destination), and % is an integer (the number of packets whose

source is s1 and whose destination 1s ss).

Definition 2: A communication task G is called isotropic if for each packet that node s; has

to send to node sq, there is a corresponding packet that node s; ® has to send to node s; ® z,

where s1, so, and z are arbitrary nodes. Mathematically:

(s1,82,k) €G = for all nodes =z we have (si ® zs: ®@z,k) EG

An example of an isotropic task 1s the total exchange, where G consists of all the triplets

2.2. The Task Matrix

(s1,82,1) as s1 and s; range over all the pairs of distinct nodes [one packet for every origin-

destination pair (s1,s2)].

In the algorithms that we propose, the packets carry with them a d-bit string called a routing

tag. The routing tag of a packet:is initially set at si @ sz, where s; is the source and ss is

the destination of the packet. As the packet is transmitted from node to node, its routing tag

changes. If at time ¢ a packet resides at a node s; and has s; as destination, then its routing

tag is s1@ s2. For example, a packet which is currently at node 001010 and is destined for node

101000, has routing tag 100010.

An important data structure that will be used by our routing algorithms is that of the task

matriz of node s at time ¢, which will be denoted by Ti(s). The task matrix Ti(s) is defined

for both isotropic and non-isotropic tasks and is a binary matrix whose rows are the routing

tags of all the packets that are queued at node s at time ¢. The routing tags appear as rows of

the initial task matrices To(s) in some arbitrarily chosen order. The rows of subsequent task

matrices Ti(s), t > 0, retain the relative order that the corresponding packets had in Tp(s).

When no packets are queued at node s at time ¢, the task matrix Ti(s) is by convention defined

to be a special matrix denoted Z. A task is said to be completed at time ¢ if T(s) = Z for all

s. The smallest ¢ for which the task is completed under a given routing algorithm is called the

completion time of the algorithm.

A communication task can equivalently be defined in terms of its initial task matrices Tp(s),

s =0,...,N — 1. The task 1s isotropic if and only if the task matrices Tp(s) are the same for

all nodes s. In what follows, whenever there is no reason to distinguish among the nodes, we

simply denote the task matrix at time ¢ with 73. When such a notation is used, we implicitly

mean that Ti(s) = Tj, for all s. The initial task matrix for the total exchange problem is

illustrated in Fig. 2.1.

We will now derive a lower bound for the completion time of any communication task

‘isotropic or non-isotropic).

Theorem1:Let7be the completion time of any algorithm that executes a task with initial

task matrices To(s), s = 0,1,..., N — 1. Let also r;(s) (or ¢;(s)) denote the sum of the elements

of the ith row (or column. respectively) of the task matrix To(s). Then the following inequality

holds
N-1

I> M3RIax (% 2 ¢;(s), max no) ;
where the outer maximization is carried out over all rows ¢z and columns j.

2.2. The Task Matrix

EK 1 1

0 1 |

 EN ER

lo
1] oo |o
oO | 1 0

0 1

Figure 2.1: The task matrix for the total exchange problem has N — 1 rows and d columns.

The figure illustrates the case where d=3.

Proof: The column sum c;(s) of the jth column of Tp(s) is equal to the number of packets

that reside at node s at time t = 0 and have the jth bit of their routing tag equal to 1. To arrive

at their destination, these packets have to use a j-link at some future time. Thus,)__ c¢;(s)

packets are going to use j-type links during the execution of the task. Since each node has only

one j-link, there are only N links of j-type in the hypercube. Taking into account that no two

packets can be transmitted on the same link in the same time slot, we conclude that

rs 2608)

for all columns j. Therefore,

1 N-1
T>— 3 ;2% 2% > i) (2.1)

On the other hand, the packet corresponding to the ith row of Ty(s) is at a Hamming distance

ri(s) from its destination. Thus the time 7 required to complete the task is at least r;(s) for

all rows 7 and nodes s. This gives

T > maxis).
1,8

 1)

By combining Eqs. (2.1) and (2.2), we finally obtain

 =,

max max (2 2 ¢j(s), max (5) ,

2.3. Symmetric Routing Algorithms

where the maximization is carried out over all rows 7 and columns 5. Q.E.D.

The preceding lower bound cannot always be attained by some algorithm. The following

Corollary 1 specializes this lower boundfor the case of isotropic tasks. As we will show later

there 1s always an algorithm that achieves the lower bound of Corollary 1.

Definition 3: The critical sum h of a matrix is equal to max, ;(ri, cj), where r; is the sum of

the entries of row i, ¢; 1s the sum of the entries of column j, and the maximization is performed

over all rows 7 and columns j. A row or column with sum of entries equal to h is called a

critical line.

Corollary 1: Let an isotropic communication task have initial task matrix 7p and h be the

critical sum of 75. Then a lower bound for the tune 7 required to complete the task is h.

Proof: Using Theorem 1 and the fact that for isotropic tasks we have To(s) = Tb, ¢;(s) = ¢;,

ri(s) =r; for all nodes s = 0,1,..., N — 1, we obtain 7 > max; ;(c;,r;) = h, for any algorithm

that executes the task. Q.E.D.

2.3. SYMMETRIC ROUTING ALGORITHMS

In this section we will be interested in isotropic tasks and a class of routing algorithms that

satisfy a certain symmetry condition.

Definition 4: Given a task matrix Ti(s) for each node s at time %, a swilching scheme with

respect to Ti(s) is a collection of matrices {Si(s) | s = 0,...,N — 1} with entries 0 or 1. The

matrix Si(s) has the same dimensionsasTi(s),satisfiesSi(s) < Ty(s) (i.e. if an entry of Ti(s) is

a zero, the corresponding entry of Si(s) must also be zero), and has at most one nonzero entry

in each row or column. The switching scheme 1s called symmetric if for for every ¢ the matrices

Si(s) are independent of s, that is, if for some matrix Sy we have Si(s) = S; for all s.

Given a.time t > 0 and a task matrix Ti(s) for each node s;-a switching scheme {Si(s) | s =

0,...,N — 1} with respect to T3(s) defines the packet (if any) that will be transmitted on each

link at the time slot beginning at time {. In particular, if the (7, j)th element of Si(s) is a one,

2.3. Symmetric Routing Algorithms

the packet corresponding to the th row of T3(s) will be transmitted on the jth link of node s.

The requirement that each column of Si(s) contains at most one nonzero entry guarantees that

at most one packet 1s scheduled for transmission on each link.

The task matrices atagiven time slot together with a corresponding switching scheme; define

the task matrices for the next time slot. Given a communication task defined by the task matri-

ces To(s), s =0,...,N —1, a routing algorithm can be defined as a sequence {So(s), Si(s),...},

such that So(s) is a switching scheme with respect to the task matrix To(s), Si(s) is a switching

scheme with respect to the task matrix 73(s) (which is defined by T5(s) and So(s)), and, recur-

sively, Sit+1(s) 1s a switching scheme with respect to the task matrix Ti+1(s) (which is defined

by Ti(s) and Si(s)).

The key fact, proved in the following theorem, is that if at some time ¢, the task matrices

are the same for all nodes s, and a symmetric switching scheme with respect to Ti(s) is used,

then the next task matrices Ty+1(s) will be the same for all nodes. As a result, for an isotropic

task, one may use a routing algorithm defined by a sequence of symmetric switching schemes.

Such a routing algorithm will be called symmetric. Its action is specified at a single node and 1s

essentially replicated at all the other nodes; this 1s a very desirable property for implementation

purposes.

Theorem 2: Assume that for a given routing algorithm, at some time t we have a set of

nonzero task matrices Ty(s), which are the same for all nodes s. Then if Si, a symmetric

switching scheme with respect to Ti(s) is used by the algorithm at time ¢, the task matrices

Ti+1(s) will be the same for all s. In particular, we have

Ti(s) = Tq, for all s = Ti+1(s) = Ti41, for all s,

where Ti41 1s a task matrix consisting of the nonzero rows of the matrix 7; — Si, except if

I} = Si in which case Tiy1 1s equal to the special matrix Z and the algorithm terminates.

Proof: Suppose that at time slot ¢, node s sends a packet with routing tag xq_1---2;---@o

over its j-link to nodes@e;. Then by the symmetry assumption, node s @ e; also sends

a packet with routing tag zg-1---z;--zoover its j-link to node (s ® ¢;) ® e; = s. This

packet arrives at node s with routing tag z4_1---%;---@0. Thus each row of the task matrix

Ti, which corresponds to a packet transmitted at slot ¢, 1s replaced by a row z4—1---T;--- xo

if £41: Tj: ®o.1s nonzero and is discarded otherwise; see Fig. 2.2...Since.the transmitted

packets (if any) on the j-link correspond to the nonzero entry of the jh column of the matrix

Si, we conclude that z; = 1 and, therefore, Z; = 0. Thus the routing tag x41 ZF; - 2g is

2.3. Symmetric Routing Algorithms

packet 5

packet 4

packet 3

packet2
packet1

R_o £ mT TT ow

ERR
ey
Rope
 a
RENAE

[nn
- RA

0 ERsEn
Sr
BCR

‘

_ink-=>

ET

)]packet 5 1 Of 11]

packet 4 | 0[1]1[1
packet 3[1fo]o]o]
packet 2 fof]
packet 1 ofofof|

Packet 1 is transmitted on link 2 and packet!
3 is transmitted on link 4

Figure 2.2: The change in the task matrix due to packet transmissions (packets 1 and 3 are

transmitted on links 2 and 4, respectively).

either zero or else it 1s a row of the matrix 77 — Sj.

By symmetry, at the beginning of slot ¢ there 1s a packet with routing tag xq4_1---z;--- ao

at each node, and this packet will be replaced (if transmitted) by a packet with routing tag

Tg-1---Tj---xo at the end of the slot t if x41 ---T;--- zo is nonzero and will exit the network

otherwise. Thus the task matrix will change in the same way for each node. Q.E.D.

From Theorem 2 we see that if the communication task is isotropic with initial task matrix

In, we can specify a symmetric routing algorithm by a sequence of symmetric switching schemes

So, S1,... as follows:

Symmetric Routing Algorithm Specification:

The initial task matrix To of the isotropic task is given. Fort = 0,1,..., given the task matrix 73,

S; must be a symmetric switching scheme with respect to Ij; the task matrix 77,3 is then specified

by the nonzero rows of Tj; — Sy, unless I; = S; in which case the algorithm terminates.

We see therefore that a symmetric routing algorithm that terminates after k 4+ 1 time slots

amounts to a decomposition of the initial task matrix 7p into a sum

To=So+S1+ + St.

where each Si, i = 0,...,k, is a binary nonzero matrix with the same dimension as Tp, and

with at most one nonzero element in each column or row. The corresponding switching schemes

Si, i=0,...,k, consist of the nonzero rows of the matrices S;, i = 0,..., k, respectively.

Thus, by restricting attention to symmetric routings, our original problem of finding optimal

2.4. Optimal Completion Time Algorithms

routings for isotropic communication tasks has been reduced to the simpler problem of “clear-

ing” the Tp matrix (i.e. making all its entries equal to 0) in a minimum number of steps. At

each step we are allowed to make 0 up to d entries, provided that these entries do not belong

to the same row or column. The entries should not belong-to the same row becauseateach

step a packet cannot be transmitted on more than one link. The entries should not belong

to the same column so that no two packets will use the same outgoing link. We will derive

optimal algorithms within this class. These algorithms will be shown to attain the lower bound

of Theorem 1, so they are guaranteed to be optimal within the class of all routing algorithms.

2.4. OPTIMAL COMPLE«+1ON TIME ALGORITHMS

We consider the problem of clearing the task matrix in the minimum number of steps. At

cach step we are allowed to clear at most one entry from each row or column. Our analysis

will use some theorems and tools that were also used in [BCW81] and [Wan88] in a different

context. We first introduce some more definitions. For any matrix, we use the term line to

refer to a row or column of the matrix.

Definition 5: A perfect matrix is a square matrix with nonnegative integer entries and with

the property that the sum of the entries of each line is the same for all lines.

Definition 6: A permutalion matrix is any matrix with entries equal to 0 or 1 with the

property that each line of the matrix has at most one nonzero entry.

It can be noted that the nonzero entries of a permutation matrix form an independent set

of entries in the sense that no two of them belong to the same line. As a result, a set of entries

of the task matrix which form a permutation submatrix can be cleared during the same step.

[n particular a permutation matrix S can be used as a switching scheme for any node at any

time as long as the task matrix at that node and time satisfies S < T' (see Definition 4). An

important result for our purposes is Hall’s Theorem (see [Rys65], and [Ber91] p. 120), which

states that a perfect matrix can be written as a sum of h permutation matrices, where Ah is the

sum of the entries of its lines. The following two theorems slightly extend Hall’s Theorem.

Theorem 3: Given any nonnegative integer square matrix M with critical sum h, there exists

a nonnegative integer matrix £ such that M + EF 1s a perfect matrix with critical sum A.

2.4. Optimal Completion Time Algorithms

Proof: We give a constructive proof. Let 7; (c¢;) be the sum of the entries of row ¢ (column j).

We augment each element M,; of the matrix such that ry < h and ¢; < A by min(h — ri, h — cj)

one at a time and update M after each change, thus obtaining a matrix with at least one more

critical line and line sum equal to h. At the end of this process we will have added:to M-a

nonnegative integer matrix £, thereby obtaining a matrix M + E with critical sum h and such

that for each pair (7, j) either row i is critical or column j is critical. For this to be true, either

all rows of M + E must be critical or else all columns must be critical. Assume without loss of

generality that all rows are critical. Then, the sum of the elements of M + FE is mh, where m

18 the number of rows and columns, while each column sum is at most h. It follows that each

column sum of M + E is exactly equal to h, so each column 1s critical, and M + E is perfect.

Q.E.D.

Theorem 4: A nonnegative integer matrix with critical sum h can be written as the sum of

h permutation matrices.

Proof: Let T' be a nonnegative integer matrix with dimensions m x d. We assume, without

loss of generality that m > d. We can extend T' to a square matrix M = [T | 0] by adding

m — d zero columns. Then, by Theorem 3, M can be augmented to a perfect matrix M + E

with line sums equal to h. By Hall’s theorem we conclude that M + E can be written as a sum

Sr, Pj of h permutation matrices Pi, P,... P,. Since E has nonnegative integer entries, M

can also be written as a sum Y_r_, P; of square permutation matrices Bi, P,... Py; each By is

obtained by setting to zero some of the entries of P;. Since M = [T'| 0], T can be written as a

sum of A permutation matrices of dimension m xd. Q.E.D.

The following 1s the main result of this section

Theorem 5: The optimal completion time for an isotropic communication task is equal to the

critical sum h of its task matrix.

Proof: From Theorem 4 we know that the initial task matrix 7p can be written as the sum

Sr, Si of permutation matrices Si,S53,...,55. Consider the symmetric switching scheme

{Si}, where for k = 1,...,h, Si is obtained from Si by removingthezero.rows.Thenthe

bask matrix at times ¢ with 1 < t < h consists of the nonzero rows of To — 5 ;_, Sk, and at

2.4. Optimal Completion Time Algorithms

time ¢ = h 1s equal to Z. Hence the communication task is completed after h steps. Since, by

Theorem 1,h1s also an upper bound, the corresponding symmetric routing must be optimal.

Q.E.D.

 It 1s easy to see that if at-any step we clear one entry from each critical line of the matrix 7}

matrix, we can clear the task matrix within the optimal number of steps. On the other hand

we cannot clear the matrix in h steps if we are not clearing an entry from each critical line at

each step. In order to see this, let h; be the critical sum of the task matrix 7. We observe

that the critical sum of the task matrix can decrease by at most 1 at each step (hi > hi—1-1).

Thus, if during slot ¢ there 1s a critical line which 1s not served, then hy = hy_;1 and it is not

possible to clear the matrix in ho = h steps. Thus, we conclude that a symmetric switching

scheme achieves optimal completion time if and only if it adheres to the following rule:

Optimal Completion Time Rule (abbreviated OCTR):

At each step an entry is cleared from each critical line of the task matrix

We finally note that if the initial task matrix contains a column, say the jb, which is critical,

then the j-type links constitute a critical resource in the sense that they must all be used 100%

of the time during the execution of any optimal completion time algorithm. Under these

circumstances 1t 1s impossible to reduce the optimal completion time by using an algorithm

that allows packets to be split and be recombined during its course. In the less usual case

where the only critical lines are rows, the optimal completion time could be reduced under a

different communication: model, e.g. wormhole routing [KeK79], [DaS87]-

We will now use the preceding results to find optimal algorithms for two isotropic tasks.

Cotal Exchange

In the total exchange task (see Subsection 1.3), we have initially N —1 packets with different

routing tags queued at each node. The tags are different because each node has to send N —1

distinct packets, one to each node of the hypercube. The critical sum of the initial task matrix

15, and therefore. also the optimal completion time, is N/2. (To see this, note that if we add

the 00...00 string as an Nth row of Tg, half of the entries of each column will be equal to 0 and

half of them will be equal to 1.) Any algorithm that works according to the OCTR is optimal

2.5. Transposition of Banded Matrices

as far as completion time is concerned, and there are at least (4)! of them.

‘K,L) Neighborhood Exchange

In this task, every node s has to send a packet to all the nodes » whose Hamming distance

from s satisfies K <Ham(s,r) < L. For K = 1 and L = d we get the total exchange problem

but for K # 1 and/or L # d, this task apparently has not been discussed elsewhere. The initial

task matrix Tp has as rows all the d-long binary strings with ¢ ones, where K < 1 < L. The

critical sum of this matrix 1s

h = max (139)

To see this, note that for each ¢, K <i < L, the task matrix has (4) rows with ¢ ones. Since by

symmetry the d columns have equal column sums, each column sum will be equal to SE K Gr,

By Theorem 5, the critical sum Ah 1s the time required to execute the task.

2.5. TRANSPOSITION OF BANDED MATRICES - AN EXAMPLE OF A NEARLY

ISOTROPIC TASK.

Beginning with this section we focus on the problem of transposing a 26+! + 1-diagonal

matrix of size N x N stored by columns (or rows) in a hypercubeofN=24 processors. We

propose an assignment of the columns of the matrix to the hypercube nodes that makes the

transposition a “nearly isotropic” task, and present algorithms to execute the task.

A 2°+! 4 1-diagonal matrix, where # is a nonnegative integer, is a matrix with entries aj,

hj =20,1,....N — 1, such that a;; =0whenever 28 < |i — j| < N — 28 (see Fig. 2.3). We

assume that the matrix is stored in a hypercube of N = 2% nodes, so that each processor stores

a column of the matrix. We are free to choose the way in which the columns are assigned to

the processors. We are interested in assignments and corresponding communication algorithms

that make the communication time required to transpose the matrix small.

..In.general,theproblemoftransposingamatrixstoredbycolumnsinanetworkofprocessors

is equivalenttothetotalexchange communication task. This is because each processor i has

to send the entry a;; to processor j, for all 7 and 7 # ¢, which 1s a total exchange. The total

2.5. Transposition of Banded Matrices

NL0~
oD

O \

ty

N
A

Figure 2.3: A B-diagonal matrix.

exchange task requires time N/2 and is the most communication intensive task among the pro-

totype tasks described in Chapter 1. When, however, the matrix is banded the communication

requirements become considerably less. Since the zero entries do not have to be communicated,

the processor that stores the #*! column has to send a message to the processor that stores the

jt column only if |i — j| < 28 or |i — j| > N — 27. The sparsity pattern of banded matrices

makes possible the use of transposition algorithms which are much faster than total exchange

algorithms.

2.5.1. Column to Processor Assignment and Transposition Task Matrix

The communication requirements that arise during the transposition of a banded matrix

depend on the way the columns are assigned to processors. If we do it in the natural way and

assign column ¢ to processor i, then the communication pattern that arises does not seem to

have a structure that we can exploit to execute the communications fast. In this subsection

we present an assignment that makes the transposition task “nearly isotropic”. In the next

subsection we will give an efficient communication algorithm to transpose the matrix.

We will use a kind of codes, called Gray codes, which are well known in Information Theory.

A Gray codeoflengthkisasequenceof2*distinctbinarynumbersofkbitseach,withthe

property that successive numbers in the sequence differ in exactly one bit. Furthermore, the

first and the last number 1n the sequence also differ 1n exactly one bit. A way to construct a

2.5. Transposition of Banded Matrices

-1critical sum 2 A

gq

has only 2 nonzero strips

/
—

C (60)

3

|

00000
11111

i

! I

oF

00000
11111

|
Pe

A O
| 00000

O
ie— fr ©XK

7 3

J B-
critical sum 2

Figure 2.4: The initial task matrix T'(c1Gc,) of node c1Ge,.

particular type of Gray code, called reflected Gray code (or RGS), is described in [BeT89].

Let p(c) be the processor where column c is stored, and let ¢1 (or cz) represent the J least

significant (or d — # most significant, respectively) bits of c, that is, ¢ = cac;. The assignment

that we propose consists of storing column ¢ at the processor with binary representation

p(c) = c1Ge,

where G., is the ci* number of the Gray code of length d — 3. We call this assignment Binary-

Gray assignment.

We denote by 08 (or 18) the binary string of length § whose entries are all 0 (or 1, re-

spectively). To transpose the matrix, processor p(c) has to send a personalized packet to all

processors p(j) such that |c — j| < 28 or |c — j| > N — 28. Thus, processor c1G, has to send a

different packet to each one of the 26+1 + 1 processors of the following set:

N(a1Ge,) ={a1G,,1, (a1+1)G, 24, vey 18G,, 4,

08G.,,. vay © 0ps . LH 18G,,

0G, 505. (e1—1)G,, 11, aGe 1}

The operation + (or —) refers to modulo 24-8 addition (respectively, subtraction). The opera-

tion + (or —) refers to modulo 28 addition (respectively, subtraction).

2.5. Transposition of Banded Matrices

Let T'(w) be the initial task matrix of node w that corresponds to the transposition task for

the Binary-Gray assignment. The rows of the task matrix T'(¢1G.,) are found by forming the

bitwise exclusive OR operation between node c1G., and the nodes in the set A(e1Ge,) of Eq.

(2.3). Ordering appropriatelytheroutingtags,thetaskmatrix T'(¢;G,) can be written in the

form shown in Fig..2.4. By convention, we let-the exclusiveORoperationbetweennodec1G,
and the nodes 08G,,,...,18G,, of N(c1G.,) form the lower half part

| 46.) Osos]
of the task matrix T'(c1G.,), where Op, (4g represents the all zero 28 x (d — 3) matrix. It

can be seen that the submatrices A(c1G.,) are the same for all nodes ¢1G.,; we refer to them

as submatrices A, dropping the subscript. The bitwise exclusive OR operation between ¢:G,

and nodes c1G,,4,(c1+1)G,,24, oH 18G 21, 08G 14, (a—1)G,11,C1Gorisformsthe upper
half part

|B(e1Ga) ClerGa)]
of T'(c1Ge,). Again it can be seen that the submatrix B(c;G,,) is the same for all nodes ¢;G,,;

we refer to 1t as submatrix B omitting the subscript.

BothAandBhaveasrowsallthe binary strings of length 3. However, he upper right

submatrix C(c1Ge,) of T(c1Ge,) 1s different for each node. Since G¢, differs from G,,-; and

G41 1n a single bit, submatrix C(c1Ge,) has only one nonzero element per row, and only two

nonzero columns, called strips. The strips appear at different positions for each node.

Submatrices A and B will be referred to as the isotropic part of the transposition task matrix.

If C(c1Ge,) were zero, the task matrix T'(c1Ge,) would be identical for all nodes, and the Binary-

Gray assignment would make the transposition task isotropic. Because of C(c1G¢,), however,

the task matrices are not identical for all nodes; thus, our column-to-processor assignment

has made the transposition task nearly isotropic. Nearly isotropic tasks are easy to handle,

aspeclally in view of the results of Sections 2.2-2.4.

2.5.2. The Transposition Algorithm

.Inthissubsection we.giveanalgorithmtotransposea banded matrix-stored in a hypercube in

the way described in Subsection 2.5.1. The algorithm will be strictly optimal for the particular

column-to-processor assignment that we use (and for some other natural assignments). In

2.5. Transposition of Banded Matrices

Section 2.6 we will show that the algorithm is of optimal order over all possible assignments

for a broad range of matrix bandwidths.

If the task matrices were identical for all the nodes, ‘a symmetric routing scheme could

execute the task. The next lemma indicates a way to make the task matrices identical.

Lemma 1: If each packet that corresponds to a nonzero entry of the submatrix C(e1Ge,),

c; € {0,1}8,¢2 € {0,1}4-8 is transmitted over its preferred link corresponding to the nonzero

entry of C'(¢c1G.,) then the task matrices become identical for all nodes.

Proof: First, note that the lemma does not follow from any of the results for isotropic tasks

of Sections 2.1 through 2.4 (for example, from Theorem 2), because neither the task matrices,

nor the switching assignments corresponding to the transmissions mentioned in the lemma are

the same for all nodes.

To prove the lemma note that node ci; (., receives a packet with routing tag ¢ either from

node (c1 ®1)G,,i,orfrom node (¢1 ®t)G,,:;. Thus, all the nodes receive a packet with routing

tag ¢, for all ¢ € {0,1}4, while at the same time they transmit all the packets which have

different routing tags. Q.E.D.

The clearance of the C submatrices involves packet transmissions on links of dimensions

0,1,...,d— 08 —1. On the other hand, clearing the isotropic part of the task matrices requires

the use of dimensions d—3,d—F+1,...,d—1 only. Thus, packet transmissions associated with

entries of A can take place simultaneously with packet transmissions associated with entries of

C(c1Ge,). The clearance of the submatrices C'(e1Ge,) corresponds to packet transmissions on

links of the form (c1Ge,, 1G, 21) and (a1G,,21,¢1Ge,). For a specific ¢1 and varying cz these

links belong to the ring ¢1Go,c1G1,...,c1Gy-g. Therefore, the clearance of C(c1Ge,) involves

communication among nearest neighbors on these rings. For ¢; # ¢; the rings corresponding

;0 ¢1 and é; are disjoint.

Since each processor has to send a total of 28 + 1 packets to its neighbors on the ring (not all

of them to the same one), the submatrix C(c1G.,) can be cleared in 28 steps. At the same time

with C'(¢1G.,), submatrix A can also start getting cleared by employing a symmetric routing

scheme as described in Section 2.4. Since the critical sum of A is 26-1, the new task matrix

T(c1Ge,) of node ¢1G,, after 28-1 steps will be of the form illustrated in Fig. 2.5. By that

step, submatrix A will have been cleared, and a new submatrix A will have been formed in

its position. The rows of the lower part A 0] of the task matrix will be the former rows of

2.5. Transposition of Banded Matrices

'B C(c1G¢,)] whose non-isotropic part was cleared. The rows of the upper part B Cart, will

be former rows of [B C(c1Ge,)] whose non-isotropic part has not been cleared yet.

\

has 2 nonzero strips at most

critical sum Nat most 2 B2

Figure 2.5:

Ya
A

<
7

t

C(eGo)

A 0
I

J
critical sum at least 2

3 —-2

The task matrix T'(c1Ge,) of node ¢1G., after step 2°!

B-!
72 +1

When clearing C(c1G.,) we insist on the following rule: the entries of C(c1G.,) that are

cleared at each step are those that correspond to routing tags with the largest number of ones.

In this way isotropic work is created at the largest possible rate to keep the links of dimensions

d—0,...,d —1 busy. With this rule, the task matrix C(e1Ge,), at the end of the 28-1th step

will have at most 28-1 ones; during the same step the critical sum of A will be at least 28-2

and the critical sumof |B A will be 26-1, Following this rule for a total of 28 — 1 steps, the

task matrices takes the form illustrated in Fig. 2.6. One additional step is then required to

finish the task. Thus we have shown the following theorem:

Theorem 6: The time required to transpose a 28+! 4+ l-diagonal N x N matrix stored by

columns (or.rows).in.an N-processor hypercube in the way-described above, is equal to 25
 KR Nit

2.6. A Universal Lower Bound

p d-3

—

00000
00000

10000
01000
00100 |

00010 |
00001

0
er—

Figure 2.6: The task matrix of node ¢; Gc, at time 28 — 1

In the next section we find a lower bound on the time required to transpose a banded matrix

ander any possible assignment of columns to hypercube processors.

2.6. A UNIVERSAL LOWER BOUND ON THE MINIMUM TIME TO TRANSPOSE

A BANDED MATRIX

In the previous section we described a way to store a 26+! + 1- diagonal matrix by columns

in a hypercube, and we gave a communication algorithm that executes the transposition task

in T' = 28 steps. Using Theorem 1, which holds for both isotropic and non-isotropic tasks,

we can see that the given algorithm is optimal for the Binary-Gray assignment of columns

to processors. The question that arises is whether there exists another column-to-processor

assignment that results in a faster transposition algorithm.

For § = 0 (tridiagonal matrix) our algorithm requires a single step, and is optimal for any

assignment of columns to processors. For 3 = d — 1 (full matrix) we get T = N/2, which is

again optimal for any assignment of columns to processors. In what follows we will examine

the efficiency of the proposed algorithm for values of the bandwidth that are between these two

extremes. We will derive a universal lower bound on the minimum number of steps required

to transpose a banded matrix, which holds for any possible assignment of matrix columns to

hypercube nodes. When B = @(N¢) for some constant ¢ > 0, the universal bound will turn out

to be of the same order of magnitude as the completion time of our algorithm. The case ¢ = 1/2

2.6. A Universal Lower Bound

1s particularly interesting since the discretization of elliptic partial differential equations in two

dimensions by finite element or finite difference methods leads to matrices with bandwidth

about gN1/2, where g is the degree of the finite elements used for the discretization ([McV8T]).

Our algorithm is obviously of optimal order when B = O(1), which is another practical case.

We have not proved optimality of our algorithm with respect to all possible embeddings for all

bandwidths B. The efficiency, however, of our algorithm for the two most extreme cases, and

a broad range of intermediate cases suggests that it is a practical one,

In what follows we prove a lower bound on the completion time of a banded-matrix trans-

position algorithm that holds for all possible embeddings. Let p(c) represent the hypercube

node which stores column c¢. Suppose that there is a way to assign columns to nodes so that

for each column ¢, the B—1 columns j that satisfy |c—j|<28,or lc—j| > N — 28 are assigned

to B — 1 hypercube nodes which are closest to node p(c). Such an assignment, although not

always possible, would result in a minimum number of packet transmissions, and therefore it

can provide a lower bound on the minimum number of steps required to transpose a banded

matrix for any possible column to processor assignment.

Let 7 be the distance from node p(c) to the farthest of its B — 1 closest nodes. Then

> ()sss3()
[his relation gives

r<x(O@-S O06 14 £)

B
~ <B(d-r1/2,d)

where B(m,p, K) is the probability that we get more than m successes in KX independent

Bernoulli trials with p being the probability of success for each trial. The Chernof bound gives

see e.g. [VaB81]) that

B d d—r d\"
— < | —— — |, forr<d/2,v= (5a) (o) orr<d/f2

B gf f d< ren . » : . .

— (d — p)d-rpr ' or r < /2

Letting 7 = Ad, the previous relation is transformed to

B < ! = (!) for A < 1/2= {1 =X)d=r)r (1 = A)-AN of

2.6. A Universal Lower Bound

which yields

0g: 5 <HO).

H(A) = —Alog, A — (1 — A) log,(1—A)

being the entropy (base 2) function (see Fig. 2.7). If we restrict H(A) to A < 1/2, then H-1 is

well defined and monotonically increasing. Therefore, we can write

r = Ad > nun Cs (Rl) 4/2)

In the case where B = N¢ for some ¢ > 0, we get that

Ir - min (dH-1(c),d/2) = O(d),

Fi A)

c > 0.

,

A

Figure 2.7: The entropy function H(A)

The following lemma gives a lower bound on the number of transmissions required to trans-

pose a banded matrix.

Lemma 2: Let W be the total number of transmissions required for the packets that are sent

(or received) by the node p(c) in order to arrive at their destination. Then

W =$(Br), forr > .

2.6. A Universal Lower Bound

Proof: The mean number of transmissions required by the packets sent by processor p(c)
satisfies

Ww imo dsrT
B= Tio

dT (8)
Zia (5)

435% (7)
io (5)

dL)
IRE YEIOTO HE

Let X(4) be the sum of d independent Bernoulli random variables with mean 0.5, and let X(d-1)

be the sum of the first d — 1 of them. Then

5 > Sr > Pr (XD <r—2|X@ <r_1)
The conditional probability in the preceding equation is always greater than or equal to (r—1)/d.

This is because if X(4) < r—1 then X(d-1) < »—2 always, while if X(@) = r—1 then X (4-1) <r-2

with probability (r — 1)/d [given that we had exactly » — 1 successes in d independent trials,

the probability that the last trial was a success is (r—1)/d]. Combining the previous equations

we get that

A Sr) = Q(Br), for
-

El

Since the packets sent by a node require a total of Q(Br) transmissions, and each node has

d links, a lower bound on the minimum time T required to transpose the banded matrix is

Br
T=Q —(Zr) (2.6)

Equation (2.6) holds when 7 > 1, or else B > log N. Combining Eqs. (2.5) and (2.6) we obtain

the following theorem.

Theorem 7: When B = ©(N¢) for some ¢ > 0, then

T =Q(B) =Q(N¢e).

The transposition algorithm of the previous section requires (B —1)/2 = O(B) steps. The-

orem 7 shows that when B = N¢ our algorithm is of the optimal order of magnitude under

2.7. Several Simultaneous Banded Matrix ‘Transpositions

any possible assignment of columns to processors. In particular, the ratio of the lower bound

to the complexity of our algorithm is roughly min(0.5, H~!(c)). Theorem 7, combined with the

optimality of our algorithm in the cases B = 1 and B = N, is an indication of the algorithm’s

efficiency.

The next section deals with the storage and the concurrent transposition of several banded

matrices in a hypercube. It will be shown that performing more than one banded matrix trans-

positions simultaneously increases the link utilization and the efficiency of our transposition

algorithm when |d/3] > 2 (or equivalently, B < N1/2).

2.7. SEVERAL SIMULTANEOUS BANDED MATRIX TRANSPOSITIONS

In this section we present a way to store |d/3| matrices each of bandwidth B = 26+1 +1 in a

hypercube, and transpose them simultaneously in B = 28+! + 1 steps. This does not contradict

Theorem 7 since in the case B = N¢ we have d/3 = ¢, and the improvement in efficiency is a

constant factor. If B is of smaller order of magnitude [e.g., if B is ©(1), or ©(d)] then d/8 — x

as d — 00, and the improvement is even more significant.

The main idea of the section can be summarized as follows. The tranposition algorithm

of Section 2.5 uses mainly # hypercube dimensions. say dimensions d — 1,...,d — 3. Thus, a

second banded matrix can be stored in the hypercube so that its transposition uses mainly the

dimensions d — # — 1,...,d — 23, and this can be extended to a total of ld/3]| matrices. Of

course, 1n this case, it may no longer be possible to pipeline the 1sotropic with the non-isotropic

part of the task. This results in an increase of the completion time by a factor of two, which is

offset by the improvement in efficiency if ld/3] > 2.

The matrices are stored in the hypercube in the following way. Let < mo, m1,...,74_1 > be a

permutation of {0,1,...,d—1}. Given a binary number s of length d let < mo, m1, . . . , Td—1 > (8)

be the binary number whose 7!! bit is equal to the it bit of 5. Let Lj :=Leftj(<0,1,...,d=1>

) be the permutation obtained from < 0,.1,....d —1 > by cyclically shifting it j positions to

he left, and let ci, ¢2 and Gc, be defined as in Section 2.5. We assign column ¢ of the jth

panded matrix to the hypercube node

!
La (e1Ge,) i=12..]5]. !=01,....N—1

2.7. Several Simultaneous Banded Matrix Transpositions

 in
 oon)

poet So
BY . non-zero part of the task matrix

Bie

Shad

: f

Ce Fy

“}

3% |

lll

wlbadr —
7

oq

Figure 2.8: A typical task matrix at a node for the case d/3 = 3.

The transposition is viewed as a single task and it is done simultaneously for all matrices.

A typical initial task matrix is shown in Fig. 2.8. The transposition algorithm consists ‘of two

phases, which cannot in general overlap. In the first phase the 1sotropic part of the task matrices

1s cleared; this requires 24 steps. This is possible because the 1sotropic part of the task matrix

which corresponds to the j'h matrix requires the use of dimensions d — (7 — 1)3 -1,...,d—-j3

of the hypercube, and does not interfere with the transposition of the other banded matrices.

In the second phase the non-isotropic part is cleared. which requires at most 28 + 1 additional

steps. Thus, the total time 7" required to transpose |d/B]| banded matrices, each of bandwidth

B=28+1 41 is

I'=9+141=RB, for | | concurrent banded matrix transpositions.
i

2.8. Embedding of Sparse Graphs in Hypercubes

Remark 1: The results can be extended to the case where we have banded matrices with

different bandwidths By = 2% +1, k =0,1,...,p, where) 2_, Bx < d.

Remark 2: If we want to perform a multinode broadcast (or a multinode accumulation) in

each row involving only nodes whose columns fall within the same band (a standard operation

in many computation algorithms), then by using the embedding desribed earlier, the broadcasts

(or accumulations) can be executed for all the |d/#| banded matrices in time [B/F] + 1.

2.8. EMBEDDING SPARSE GRAPHS IN HYPERCUBES

A problem that arises in the design of algorithms for parallel computers is the mapping of a

guest graph to the underlying graph of the host machine. The problem has been studied exten-

sively in the literature for hypercube parallel computers (see [Lei92a] and references therein)

with partial success except for special cases of the guest graphs (e.g., meshes, trees, and rings;

see [BeT89], [JoH89]). The general case is considered a difficult problem, and there are few

results available even for rather restricted classes of guest graphs. In this section we describe

some preliminary ideas for the case where the guest graph is sparse. Since most large graphs

are sparse, the importance of this problem 1s evident.

We define the arc matriz A corresponding to graph G as the binary matrix whose (z, j)th

entry 1s equal to one ifzand j are connected through an arc in GG, and zero otherwise. Since

the guest graph GG is sparse the matrix A is also sparse. The pattern of the nonzero entries

of A depend on the labelling of the nodes of G. Our proposal is to label the nodes so that A

becomes a banded matrix with bandwidth as small as possible (relabelling of nodes corresponds

to row and column permutations in A). A matrix A = (a,;) 1s banded with bandwidth B if

a;; = 0 whenever |¢ — j| > (B — 1)/2 and there is no smaller B with this property. The

problem of reducing the bandwidth of a matrix is also a difficult problem, but it has been

studied extensively in the literature. A variety of methods (mainly heuristics) that decrease

the bandwidth (or the “average bandwidth”) of sparse matrices are available ([Pis84]). Any of

these algorithms can be applied to the arc matrix of G. Let L(A) be the arc matrix of GG after

the.relabellingof.thenodes,andletBbeitsbandwidth.Thenwe-canembedmatrixL(A)to

the hypercube in the way given in Section 2.5. The dilation of the resulting embedding of the

graph to the hypercube 1s equal to log, B.

2.9. Embedding Block Diagonal Matrices in Hypercubes

2.9. EMBEDDING BLOCK DIAGONAL MATRICES IN HYPERCUBES

In this section we present a way to store a block diagonal matrix of size 24 x 24 in a d-

dimensional hypercube Hy. We assume that the matrix has K blocks, denoted by By, Ba, ..., Bx A

and each block B; has size 2 x 2.

Each block B; is embedded in a I; - dimensional subcube Hj, of H. For the embedding to

be 1-1 (one column of the matrix to one processor) the subcubes H; must be disjoint. The

problem is equivalent to partitioning a hypercube with 2¢ nodes in hypercubes Hi, ..., Hx of

sizes 201,...,2Ik| respectively, with

9d.>
1—1

>

For any string s of length d — I, we let

represent the [-dimensional subcube of Hy obtained by fixing the d — { last bits to be equal to

s. The embedding that we propose is the following. The block B; of the matrix is mapped to

subcube

H;. — (*h zy),

where z; is a binary string of length d — I;. The subcubes H;, are disjoint if and only if the

strings z,;, 1 = 1,2,..., K satisfy the prefiz condition, that is, no string 1s a prefix of any other

string. To show that we can choose binary strings x; of length d —I;, i = 1,2,..., K, so that

the prefix condition is satisfied let d, = d — I,. Equation (2.7) gives

Kk

1 = yo 9d;
1=1

Thus, Kraft’s inequality holds. This shows that there exists a set of strings of lengths d;,7 =

1,2,...,K, which satisfy the prefix condition. Gallager [Gal68] (p. 48) describes a way to

obtain such a set of strings.

CHAPTER THREE

PMNB and PE Algorithms

for Hypercubes and Meshes

In this chapter we consider the partial multinode broadcast and the partial exchange communication

tasks in hypercubes and d-dimensional meshes. The partial multinode broadcast in an N-processor network

is the task in which each of M < N arbitrary nodes broadcasts a packet to the remaining N — 1 nodes.

Correspondingly, in the partial exchange there are M < N nodes which wish to send a separate, personalized

packet to each of the other nodes. We propose algorithms for the hypercube and the d-dimensional mesh

networks that execute the partial multinode broadcast and the partial exchange in near-optimal time. No

assumption concerning the location of the M source nodes is made. All the communication algorithms

proposed are “on line” and distributed.

3.1. INTRODUCTION

I'wo of the most frequent communication tasks are the multinode broadcast (MNB) and the

total exchange (TE). The first task involves broadcasting a packet (the same packet) from every

node to all the other nodes. It arises, for example, in iterations of the form

r= f(z), (3.1)

where each processor computes.an entry (or some entries) of the.vectorz.At.theend of each

iteration 1t is necessary that each processor broadcasts the updated value of the component

that 1t computes to all other processors in order to be used at the next iteration.

3.1. Introduction

The total exchange (see also Chapter 2) is the communication task where each node has to

send a personalized (different) packet to each one of the other nodes. An example where the

total exchange arises is the transposition of a matrix, when each processor stores, say, a column

of the matrix. Then every processor i has to send the (i, k)th entry of the matrix to processor

k, for all k, which is a total exchange.

In iterations of the kind given in Eq. (3.1) it is probable that only some of the components

of the vector x change appreciably during an iteration. As these iterations approach their

convergence point, fewer and fewer of the processors need to broadcast the updated values

of the components of z that they compute. This gives rise to a task, where a strict (but

unpredictable) subset of the processors have to broadcast a packet. We call this task a partial

multinode broadcast (or PMNB for brevity). The PMNB task, aside from being important on its

own merit, 1s also a critical subroutine of the dynamic broadcast schemes that we will propose

in the next chapter. The PMNB task arises also in clustering algorithms (see [RaS90], Chapter

5, where the M nodes that store the coordinates of the centers of the clusters broadcast them

after each iteration), and other problems. Because of its many applications we believe that the

PMNB deserves a position among the prototype tasks of a communication library.

Similarly, during the transposition of a matrix that has both sparse and dense columns, it is

more efficient if the nodes storing sparse columns do not participate in the TE, but send instead

their packets as ordinary traffic through the 1-1 routing algorithm used by the machine. Since

most large problems involve sparse matrices one can see that this situation arises frequently,

giving rise to the partial exchange task (PE), where only M nodes send a (separate) packet

to every other node. In other words, a partial exchange is the simultaneous execution of a

single node scatter (see Section 1.3) by M arbitrary nodes. A task which is dual to the PE

is the partial multinode gather (PMNG) task. In this task, M arbitrary nodes have to receive

a (different) packet from every other node of the network (combining packets originated at

different nodes is not allowed). Note that the PMNG task is dual to the PE task; if we find an

algorithm to execute the PE we immediately get an algorithm of the same time complexity that

executes the PMNG. In the transposition of a matrix stored by columns in a multiprocessor

network, a PMNG arises when the matrix has only M dense rows. By combining a PE and a

PMNG algorithm we get an algorithm that transposes a matrix which has M; dense columns

and M; dense rows. The dense rows and columns can be arbitrary. This sparsity pattern arises

very frequently in applications. The smaller M is, the less efficient a full MNB or TE algorithm

would be and the more necessary it becomes to employ algorithms that are specially designed

3.1. Introduction

for partial tasks.

The main focus of the chapter is to propose optimal and near-optimal communication algo-

rithms for the partial multinode broadcast and the partial exchange tasks in hypercubes, and

d-dimensional meshes: with or without wraparound. PMNB algorithms for hypercubes have

previously been studied in [Sta91]. Our hypercube PMNB algorithm has roughly half the time

complexity of the one given in [Sta91]. The PMNB problem for d-dimensional meshes, and the

partial exchange problem for both hypercubes and meshes, are considered for the first time

here. In the course of solving the mesh PMNB problem, we formulated and solved two prob-

lems, called the mesh packing and monotone routing problems, which are of broader interest.

In what follows, to avoid confusion, we call a (d-dimensional) mesh with wraparound a torus

and a mesh without wraparound an array.

We will say that an algorithm is near-optimal if the potential loss of optimality with respect

to completion time is of strictly smaller order of magnitude than the optimal completion time

itself. We generally prove that an algorithm is near-optimal by showing that the leading term

of 1ts worst case time complexity (including the corresponding constant factor) is the same as

the leading term of an expression which is a lower bound to the time required by any algorithm.

We generally derive the optimal completion time by deriving a lower bound to the completion

time of any algorithm and by constructing an algorithm that attains the lower bound; this

latter algorithm is said to be optimal. We will say that an algorithm is of optimal order if its

worst case time complexity is asymptotically within a constant factor of the optimal value.

One of the main contributions of the chapter is the development of near-optimal algo-

rithms for a partial multinode broadcast in a hypercube, in a d-dimensional torus, and in

a d-dimensional array. We propose algorithms for two different communication models. In

the first model, packets can be split and recombined at the destination without any overhead.

[n the second model the splitting is not allowed, and messages are always transmitted as one

packet. We also present the first partial exchange algorithm of optimal order for hypercubes,

and 2-dimensional arrays.

The organization of the chapter is the following. Section 3.2 shows how a mesh without

wraparound can simulate a mesh with wraparound, and presents the first (strictly) optimal

multinode broadcast algorithm for 2-dimensional meshes without wraparound. We also present

a theorem concerning arbitrary broadcasts in rings and linear arrays.-In Section 3.3 we de-

fine and solve the packing and the monotone routing problems, in a d-dimensional mesh. In

Section 3.4 we present near-optimal algorithms to execute a partial multinode broadcast in d-

3.2. Some Preliminary Results

dimensional meshes. In particular, in Subsection 3.4.1 we give an algorithm where packets can

be split, while in Subsection 3.4.2 we give an algorithm that avoids the splitting of packets. In

Section 3.5 we present an algorithm of optimal order for a partial exchange in a 2-dimensional

array. Section 3.6 describes three different algorithms to execute a partial multinode broadcast

in a hypercube. The first algorithm is a practical, but suboptimal one. The second and third

algorithms are optimal, and each of them uses a different communication model. In Section 3.7

we present a partial exchange algorithm of optimal order for the hypercube. Section 3.8 deals

with a new communication task for hypercubes, which we call window multinode broadcast.

3.2. SOME PRELIMINARY RESULTS

The d-dimensional mesh, denoted by My, consists of N = p? processors arranged along

the points of a d-dimensional space that have integer coordinates numbered from 0 to p —

1. Along the #*h dimension, obtained by fixing coordinates (Z4—1,...,&s+1, Ty—1,...,Lo) there

are p processors with identities (zq-1,...,&4,...,20), & = 0,1,...,p — 1. Two processors

(€d=1y- +s &4,...,20) and (Ya-1,...,%,..., yo) are connected by a (two-directional) link if and

only if for some ¢ we have |, — y,| = 1 and 2; = y; for all j # ¢. In addition to these links in

the d-dimensional mesh with wraparound (also called a torus), all links of the type

((a-1,...,%i+1,0, 24-1, ... yZ0), (Zd=1y. 1 E141, P — 1,zy-1,...,20))

are present. The latter links do not exist in the d-dimensional mesh without wraparound

‘also called an array). The set of nodes of an array (or torus) whose identities differ from

the identity of node # = (@g—1,...,&1+1,&4~1,...,20)onlyinthe #*h digit is called the i-level

linear array (or ring, respectively) of node x, and is denoted by (Zg—1,...,&st1,*, &s-1,..., To).

The node with identity (zg_1,24-2,...,%0) is also represented by the base p number of the

form # = x4_1Z4_2---xo. The 0th digit is considered the least significant digit of the above

representation. A link connecting two nodes which differ only in the ith digit is called a link of

dimension i.

Packets can be simultaneously transmitted along a link in both directions. Only one packet

can travel along a link in each direction at any one time: thus, if more than one packet are

available at a node and are scheduled to be transmitted on the same incident link of the node,

37

3.2. Some Preliminary Results

then only one of these packets can be transmitted at the next time period, while the remaining

packets must be stored at the node while waiting in queue. Each node is assumed to have infinite

storage space. All incident links of a node can be used simultaneously for packet transmission

and reception. Each packet requires one unit of time for transmission over a link. We consider

both a model where packets can be split at the origin, and be recombinedatthedestination,

and a model where packets cannot be split; in the first model if a packet is split in d parts,

cach of them requires 1/d units of time to be transmitted over a link.

We start by describing how a torus can be simulated by an array. A linear (i.e. one-

dimensional) array can simulate a ring of the same size with a slowdown factor of two. This

can be done as indicated in Fig. 3.1. By using this fact, a torus of any dimension can be

simulated by an array of the same size and dimension with a slowdown factor of two as shown

again in Fig. 3.1.

Ta;
 2? 4 -

C

(1.1) A C2 Naf 1,n 5 0.2 0,4 03
 4p[laaf171 7
sphTTF 11

AL] da|
es) | | do >9”

(41) Tb1 4,3)
 dds | qd

(3, Jw
 3p A eal [pe
\/] 5 J

5.1) |s.5) |s.2) b5,4) (5,3)

2) 24) 2.3)

(4.3)

(3.1) os) (3,2) (3,4) (3,3)

Figure 3.1: The upper part of the figure shows how a ring can be simulated by a linear array

withafactoroftwoslowdown.Thisideaiseasilyextendedto the simulationofad-dimensionaltorus by a.
d-dimensional array. as can be seen from the lower part of the ficwre.

3.2. Some Preliminary Results

The optimal time T},5to execute a (full) multinode broadcast in a p x p torus was found

in [BeT89] to be equal to
pp? N

Tung =7=7
f p 1s even and

Tian = pP-L N-1
 EB ——A

if pis odd.

The following theorem gives a corresponding result for the MNB task in a 2-dimensional

array.

Theorem 1: The minimum time TT}, yp required to execute a (full) multinode broadcast in a

2-dimensional array 1s exactly twice the minimum timeTinB required to execute a multinode

broadcast in a 2-dimensional torus of the same size, that is

. N
Tying = 2T NB = 7] ©.)\

Proof: As we indicated earlier, a mesh without wraparound can simulate with a slowdown

factor of two a mesh with wraparound of the same size. Each step of a torus can be simulated

in two steps by an array even if all the links of the torus are simultaneously used. This gives

the inequality Tf vp < 2T3,yp- Since node (0,0) has only two neighbors and receives N — 1

packets we have Th yp > (N — 1)/2. This together with the fact that 7%, has to be integer

proves that
N

(YinB = 2Tyn = >

2) Dy

The next theorem deals with arbitrary broadcasts in rings and arrays.

TCheorem 2: Consider a linear (one-dimensional) array of p nodes, where each node has a

certain (not necessarily the same) number of packets to broadcast to all other nodes. Let K be

the total number of packets in the array. Then the broadcasts can be completed in time less

than or equal to

K+p—1

In a ring of the same size, the task requires half this time, provided that packets can be split

into two parts without additional overhead.

3.3. Packing and Monotone Routing for Meshes

Proof: Consider the following algorithm. Each node immediately transmits over its left

(right) neighbor every packet that it receives from its right (left) neighbor. Whenever, a node

does not receive anything from its left (right) neighbor it sends one of its own packets to the

right (left). In other words, each node passes in the same direction the packets that come to

It, and inserts a packet of its own whenever it sees an empty slot. Note that a packet is never

delayed after it starts getting transmitted. In order to evaluate the time complexity we can

focus on one direction, say the one going from left to right. Since there are K packets in the

linear array, the packet can be delayed at most I times before starting transmission in this

direction, and after at most p — 1 slots it will have arrived to all the nodes in that direction.

To prove the result about the ring, we can split each packet in two parts, each requiring 0.5

anits of time. The ring can be viewed as two edge-disjoint unidirectional linear arrays, and by

similar arguments, applied to each direction, the result follows. Q.E.D.

Remark: In the case where each node of the linear array has at most one packet, all the nodes

can broadcast their packet in time p — 1 (see [BeT89]). In the case of a ring the same task

requires time |p/2], if the packets cannot be split, and (p— 1)/2 if the packets can be split into

two parts without overhead.

3.3. PACKING AND MONOTONE ROUTING FOR MESHES

In this section we present some new results on routing in meshes. These results will be useful

in the PMNB algorithms to be given later, but they are also interesting on their own right.

The problems to be addressed will be referred to as the packing and the monotone routing

problems. We expect these results to be useful in a variety of algorithms, given the wide use

that corresponding results for butterfly networks have had (see, e.g., [Lei92a], pp. 524-538).

Theorem 3 (Mesh Packing Routing Theorem): Let s{¥, i =0,1,...,K — 1, be nodes of

a d-dimensional array such that s(9 < s{1) < ... < s(K-1), Consider the communication task,

where each node s(*) sends a packettoprocessor¢.This can be:done without-conflicts through

a greedy scheme in time d(p — 1). This greedy scheme uses only links of dimension j during

steps jp,jp+1,.. .,3p+p—-1,7=0,...,d—-1

3.3. Packing and Monotone Routing for Meshes

Proof: The greedy routing consists of d phases, each of which has duration ezactly p—1steps.

During phase I, I =0,1,...,d — 1, the packet generated at node s(*) corrects its Ih digit to be

equal to the I*h digit of¢by crossing in the natural way the links of dimension /. Thus, at the

beginning of phase ! the packet is at node si) sb), Co $i ia -- 19, and at the end of phase

| the packet is at node ss), LJ si arin . +. 1g, where $0 $0, ‘os st and ig_114_g --- 1g are

the identitiesofs(*)and ¢, respectively.

We will prove that with this routing scheme no two packets are at any time at the same

node. We will use induction on d. For d = 1 (linear array) this is obvious. Assume that it is

also true for d — 1-dimensional arrays. Observe that s(t) —s(s) > i—5.At the end of phase 0 two

packets s(*) and sU), with s() > s(3), can be at the same node only if their base p representations

differed only at the Ot digit. In this case we have s(*) — s(7) < p — 1, which gives i —j <p — 1.

Therefore 7 and j also differ in the 0th digit. Since at the end of phase 0 the two packets will be

at nodes s0) 58, “es st94 and si) $0) fon sti with 70 # jo, they cannot be at the same node.

Consider now the p subarrays So, S1,...,Sp-1 of dimension d — 1 defined as follows;

Skt =1{s|s0o=k}.

During phases 1,2,...,d— 1 the packets will remain at the same one of the above submeshes at

which they were at the end of phase 0, because no links of dimension 0 are crossed. Focusing on

one of these subarrays and forgetting about the 0th digit, which is of no significance any more,

we see that the routing problem within each of these arrays is a packing problem of dimension

d — 1. Using the induction hypothesis, we see that packets are not at any time at the same

node during phases 1,2,...,d — 1 either. Q.E.D.

The next theorem treats a more general routing problem, which we call the mesh monotone

routing problem.

Theorem 4 (Mesh Monotone Routing): Let s(*) and v(*), 1 = 0,1,...,K —1, be nodes of a

d-dimensional array such that s(% < s(1) < ... < s(K-1) and v(®) < (1) < ... < v(KE-1), Consider

the communication task, where each node s{*) has to send a packet to processor v(*), This can

be performed through a greedy scheme, without conflicts, in time 2d(p—1). The greedy scheme

uses only links of dimension j during steps jp,jp+1,...,jp+p—1, with 0 <j <d-1, and

only links of dimension 2d — during steps jp,jp+1,...,jp+p—1, with d <j < 2d — 1.

Proof: For each: :=0,1,...,K — 1, we initially send the packet of node sl) to the inter-

mediate node i. This is a packing problem and takes time d(p — 1) (Theorem 3). In a second

3.4. PMNB in d-dimensional Tori and Arrays

phase, called unpacking phase, the packet of node ¢ is sent to node v(!). This is the reverse

of a packing problem and can be done by crossing the dimensions in the opposite order (from

higher to lower dimensions) in time d(p — 1) again. Q.E.D.

Theorems 3 and 4 assume -that packets s(*) know their-rank i. The rank can be computed

in time 2(p — 1)dty, where t; is the time required for a single parallel prefix step, througha

parallel prefix operation as explained in various references (see e.g. [Lei92a), pp. 37-44), and

described briefly in Phase 1 of the PMNB algorithm given in the next section.

3.4. PARTIAL MULTINODE BROADCAST IN D-DIMENSIONAL TORI AND ARRAYS

In this section we consider the problem where M arbitrary nodes of a d-dimensional mesh

with NV = p? nodes want to broadcast a packet to all the other nodes. We call these M nodes

active nodes. Let Th,, vp be the optimal time required for the partial multinode broadcast in a

d-dimensional torus, and T8),,yp be the corresponding time for a d-dimensional array. Thy np

and T3,,yp may actually depend on the identities of the M nodes that want to broadcast. A

lower bound, however, 1s always

M—1
Temng2—57—

. M1

T3mnB > —

3)

(3.4)

where d 1s the dimension of the mesh. To see that, note that in a d-dimensional array (or torus)

node 00 ---0 has only d input ports (or 2d input ports, respectively), and has to receive at least

M — 1 packets.

One way to execute the partial multinode broadcast is to perform a full multinode broadcast

‘with dummy packets for the nodes that have nothing to broadcast). The optimal completion

time of the MNB in a d-dimensional torus with N = p? nodes, when each packet requires one

time unit (or slot) to be transmitted over a link is [%£3*] time slots. Thus an upper bound for

Th ing 18
N-1" ans < [VtPMNB = 2d

3.4. PMNB in d-dimensional Tori and Arrays

Since a d-dimensional array can simulate a d-dimensional torus with a slowdown factor of two,

an upper bound on Tg, yg 1s

. N-1Teunp <2 A
When M << N the previous algorithms are inefficient as the gaps between the upper and

the lower bounds suggest. In this section we present communication algorithms that execute

the PMNB task in d-dimensional meshes with or without wraparound in near-optimal time.

In Subsection 3.4.1 we present an algorithm which assumes that packets can be split at the

origin, and be recombined at the destination without any overhead. This algorithm executes

the PMNB task in time

MN-1
eto seeper— = 1.5(p —1dN + 2d(p — 1)tp+ 1.5(p)

ipSi)

for a d-dimensional torus with N = p4 nodes, and in time

MN -1 (3.6)

for a d-dimensional array of the same size, where ?, is the time required for a single parallel

prefix step. For the case where the splitting of packets is undesirable (because of the over-

head introduced, and the cost of packet reassembling), we will present in Subsection 3.4.2 an

algorithm that avoids the splitting of packets, and executes the PMNB task in time less than

TM 1 p—1| N-1 p— !—| — || — —Dd+d|—|+4(p—1)dt

for a d-dimensional torus and in time

M |

vl + 2(p—1)d — 1+ 4(p — 1)dt,, (3.8)

for a d-dimensional array. Comparing Eqs. (3.5) and (3.7) and Egs. (3.6) and (3.8) with the

lower bounds (3.3) and (3.4), respectively, we see that the leading terms of the corresponding

right hand sides have the same coefficient. So, the algorithms to be proposed are near-optimal.

3.4.1. A Near-optimal PMNB Algorithm with Splitting of Packets

The algorithm in this section assumes that packets can be split at the origin, and recombined

at the destination without any overhead. Each packet requires one time slot for transmission

3.4. PMNB mm d-dimensional Tori and Arrays

over a link. If a packet is split in d parts, each of these parts requires 1/d time units to be

transmitted over a link.

Let s1,82,...,smM, M < N, be the active nodes. The rank of a packet located at node s.is

defined as

TT: > ry -— 1,
1<s

where x; 1s equal to one if processor t has a packet to broadcast and zero otherwise.

We will first present a suboptimal partial multinode broadcast algorithm for the d-dimensional};

mesh, with or without wraparound. This algorithm will not make full use of the links of a mesh.

We will then modify the algorithm to achieve efficient link utilization and near-optimal com-

pletion time. The suboptimal algorithm consists of three phases:

Phase 1 (Rank Computation Phase):

The rank r, (0 < ry < M —1) of each active node s is computed. This can be done in 2(p— 1)d

steps for a d-dimensional array or a torus by performing a parallel prefiz operation (see [Lei92al,

pp. 37-44) on a tree P, called parallel prefix tree, embedded in the mesh. The 7th leaf of the

tree from the left is the ith node of the mesh. The operation is described in Fig. 3.2 for a linear

array and a mesh with p = 3 and d = 2. Note that during each step only links of a particular

dimension are used. The packets involved in a parallel prefix operation are small (one byte of

information), and require only ¢, time units to be transmitted over a link. Thus it is reasonable

to assume that t{, < 1, where one time unit is the time required to transmit a whole packet

over a link; in fact it is reasonable to expect that in many parallel machines we have t, << 1

Thus Phase 1 takes 2(p — 1)dt, time units to be completed.

Phase 2 (Packing Phase):

The packet of node s and rank r; is sent to processor ry, where 7, is interpreted as a p-ary

number. This is a mesh packing problem, and can be performed in (p—1)d time units according

to Theorem 4.

Phase 3 (Broadcast Phase):

The broadcast phase consists of d subphases | = 1,2...,d. During each subphase !, every

node r = rg_jrg_g.--- ro broadcasts (in any order) to all the nodes in the ring or linear array

(depending on whether we are considering a mesh with or without wraparound) (rg_1 - + Pa_jp1#

ra_i—1---7To), the packets that were located at the node at the beginning of Phase 3 plus the

3.4. PMNB in d-dimensional Tori and Arrays

Pa

3

Step 1-1
nodei yi

S 6="j=0%

Step i oo

oo i+ {+1(+) So" =% 0X;
a): Forward phase of a parallel
orefix operalion in a linear array.

Notalion: $1=Zha Xi 8=(2,2)

LK

#€00.2) i 5=(1,2)
& 8=(2,2)

0 / \ 0 2 0 2

0=(0,0) 2=(0,2) 3=(1,0) 5=(1,2) 6=(2,0) 8=(2,2)
T=(0,1) 4=(1,1) 7=(2.1)

LY

Forward Phase
 nh 8 _

ss =M
u*

-

" So

So So S§ Ss} s,s; sis, Sé { °
(c) {d)

2
So X»

Reverse Phase

3

>

AANA AA
Figure 3.2: Fig. 3.2a illustrates the operation of each node during a (forward) parallel prefix
operation in a linear array. The partial sums > reo xi are obtained at each node 7 in time p —1. Figs. 3.2b-f

illustrate the parallel prefix operation in a mesh with d = 2 and p = 3. It consists of two phases (forward

and reverse), each of which consists of d subphases. Each subphase is a parallel prefix operation in a linear

array and requires p — 1 steps. The total duration of the operation is 2d(p — 1) steps. More precisely, Fig.

3.2b illustrates what we call tree representation of a mesh. An intermediate node is a root of a subtree

whose leaves form a submesh of the original mesh. At the end of subphase [of the forward phase a node of

level | from the bottom forms the partial sum of the values of the leaves under it. The notation s! stands
for S! = SI Zk. During the forward phase information moves from the bottom to the top, and from the

left to the right. In the reverse phase, information moves from the top to the bottom and from the right to

the left.

packets that the node has received during all the previous subphases. The broadcast algorithms

3.4. PMNB in d-dimensional Tori and Arrays

used are those described in Theorem 2.

During subphase 0 the nodes have (at most) one packet and this is the only one they

broadcast. Phase3iseasy to implement since the current subphase is easily known.

To prove that: the: algorithm delivers the packets to all the nodes, it is useful to introduce

some new notation. Let PB = Ba_1P4-2--- Bo be a p-ary number of length d. We denote by

S1(B) = (*!Ba—i—1Pa-i-2 - + - Bo) the submesh of the nodes whose d — I less significant digits are

equal to the d — { less significant digits of 5.

I'he next theorem proves that the previous algorithm actually executes the PMNB task.

Theorem 5: For each # € {0,1,...,p—1}¢, at the end of subphase ! of Phase 3,1 =1,2,...,d,

each node in submesh Si(3) has received a copy of every packet located at the beginning of

Phase 3 at some node in Sj(#), completing a PMNB within each of these submeshes.

Proof: The proof will be done by induction onl. For / = 0 (i.e., at the beginning of Phase 3 of

the algorithm) it holds trivially since every node has its own (if any) packet. Assume it is true for

some [. Every submesh Si(4) is composed of the p submeshes Sj—1(B4—1--- Ba—i+108a_1-1- -- Bo).

$1-1(Ba—1--- Ba—i411Ba-i-1--- Bo), - + ., Si=1(Ba-1 + Ba=ix1(p — 1)Ba-i—1 - - - Bo). During subphase

[every node in one of these submeshes broadcasts to all nodes in its (d — {)-level linear array

(or ring) all the packets it has received during the previous subphases, together with its own

packet. This together with the induction hypothesis proves the theorem. Q.E.D.

Letting | = d we find that at the end of subphase d each packet has been broadcast to all

he nodes, and therefore, the PMNB has been completed.

The next lemma calculates the time complexity of Phase 3.

Lemma 1: Phase 3 of the algorithm requires at most

N-1M (p=1)d
N ¥ ~

time units, where ¥ = 1 for the d-dimensional array, and v = 2 for the d-dimensional torus.

Proof: We denote by 7; the duration of subphase I, and we let m = [log, M|. At the

beginning of Phase3onlynodes0,1,...,M — 1 have a packet.FromTheorem5weknow

that just before the beginning of phase /, node s = sq_154-2 --- so has received all the packets

originally located at nodes in the submesh (¥-1s4_;54_;1_; -- + so). The number of these packets

3.4. PMNB in d-dimensional Tori and Arrays

1s equal to the cardinality of the set

Wis) ={w=wagqwg_a---wo | 0 Sw <M —1, wy = 84-1, Wg_j—1 = 84_1_1,..., Wp = sp}.

During subphase I, node s will broadcast these packets to the nodes in its (d — {)-level linear

array or ring. Since a multinode broadcast in a linear array requires. p — 1 steps, while in a ring

it requires (p — 1)/2 steps (see the remark following Theorem 5), we have

Ty < p—1_— max [Wi(s)]
where v = 1 for d-dimensional arrays, ¥ = 2 for d-dimensional tori, and | - | denotes the

cardinality of a set. Let s' = sq_jpd-T+ s4_i_1p¢=1-1 +--+ sg. The cardinality of Wi(s) is equal

to the number of integers between 0 and M — 1 — 5’, which are divisible by pd-i+1, Thus

M-1-3¢g M
max |[Wi(s)| < max Et < B=

[he total duration of Phase 3 satisfies

2 p—1[M
Duration of Phase 3 = IR — B=2 vy 2 p—i+1

p—1 1
—— |d+ M —

—1)ded,30,1)’ Y Pp

Q.:A| 5
 a Ba,

Adding up the duration of Phases 1, 2 and 3 we obtain the following lemma:

Lemma 2: The partial multinode broadcast task can be executed in a d-dimensional torus

with N = p? processors in

MN-1
Tpmns < 5 tT 2dp—1)tp + 1.5(p — Va

time units, where M 1s the number of active nodes. Similarly, the PMNB task can be executed

in a d-dimensional array with N = p? processors in

N —-1
Igyng SM—— + 2d(p—1)t, + 2(p — 1)d

time units

3.4. PMNB in d-dimensional Tori and Arrays

The PMNB algorithm that we described so far is not of optimal order as the gap between

the lower bounds of Eqs. (3.3) and (3.4), and the results of Lemma 2 indicate. In fact, they

are suboptimal by a factor of roughly d. This is due to the fact that at each step only links

of a particular dimension are used. In the next theorem we modify the algorithms so that all

dimensions are used at the same time, and near-optimal completion time is achieved. =

Theorem 6: The partial multinode broadcast task can be executed in a d-dimensional torus

with NV = p? processors in

Temnp <pe it + Vi
;ime units, where M is the number of active nodes. and

Vi=2d(p— Dt, + 1.5(p— 1)

Similarly,thePMNBtaskcanbe executed in a d-dimensional array with N = p? processors in

MN -1
I3mnp < TN + Va (3.10)

ime units, where

Vea =2d(p—1)t, +2(p—1)

Proof: We call the PMNB algorithm analyzed in Lemmas 1 and 2 algorithm Ag. At each

step of Phases 1, 2, and 3 of Ag, only links of a particular dimension are used. Indeed, it can be

seen from Fig. 3.2 that during each step of the parallel prefix phase only links of a particular

dimension are used. Similarly, in the packing phase, only links of a particular dimension are

used at each step, as indicated in Theorem 4. Finally, during subphase ! of the broadcast phase

only links of dimension d — | are used.

For any c, consider now another PMNB algorithm, referred to as algorithm A.. According

to Ac a packet is transmitted over the link of dimension (I + ¢) mod d of its current location,

whenever the same packet would be transmitted under the Ag algorithm over the I-dimensional

link of its current location. Since A. is identical to Ap after appropriately renaming the mesh

dimensions (and the nodes), and since 4g performs the PMNB independently of the location

of the M active nodes, we conclude that .A. also executes the PMNB task, and requires the

same amount of time as Ag. 3

3 In the algorithm A. the rank of an active node is defined in the following way. On the p-ary numbers

of length d, we first define the order with respect to class ¢, ¢c € {0,1,....d — 1} (denoted by <.) as

3.4. PMNB in d-dimensional Tori and Arrays

Using simultaneously all the algorithms Ao, A, ..., Ag4_1 we can find a new algorithm which

requires the amount of time claimed in the theorem. In particular, each packet is split into

d parts, called mini packets. Each mini packet is assigned a distinct integer ¢ between 0 and

d—1, called class. The mini packets of class ¢ are routed according to algorithm A,. Packets of

different classes use different mesh dimensions at any time. According to our communication:

model, a mini packet requires 1/d time units for transmission over a link. Therefore, the

theorem follows from Lemma 2. Q.E.D.

The terms Vi and V, in Eqs. (3.9) and (3.10), respectively, are growing linearly with the

dimension d. In practice, however, 2d(p — 1)t, is small, since t, is very small. Indeed, at

each step of a parallel prefix operation only one byte has to be transmitted between neighbors.

Some parallel computers, such as the Connection Machine model CM-2 of Thinking Machines

Corporation; the IBM/RP-3, and the NYU Supercomputer, have very efficient implementa-

tions of the parallel prefix, otherwise called “scan” operation ([TuR88], [Ble86]). Theoretically,

however, the parallel prefix operation takes time proportional to the diameter.

No upper ceilings are needed in Eqs. (3.9) and (3.10), since we allow fragmented slots. Note

also that under the communication model used in this section (which allows the splitting of

packets in d parts), a broadcast from a single node requires ©(p) time units, instead of (dp)

which is the diameter. A near-optimal PMNB algorithm which does not use the splitting of

packets 1s presented in the next subsection.

foll>ws:

s <ctif right shift of s by ¢ positions < right shift of ¢ by ¢ positions.

[he rank with respect to class ¢ of a packet located at node s is then defined as

Lu
[4d o

Ty -—— |

where z, 1s.equal to one.if processor ¢ has a packet to broadcast and zero-otherwise:- The parallel prefix

ree P¢ used in the calculation of r§ is the same with P, but with the digits of the nodes shifted by ¢

positions.

3.4. PMNB In d-dimensional Tori and Arrays

3.4.2. A Near-optimal PMNB Algorithm without Splitting of Packets

In this subsection we modify the previous algorithms in order to avoid the potential draw-

‘backs of packet splitting. This is done at the expense of a slight increase in the complexity.

Messages. in this section require one timeslot in order to be transmitted over alink, and are-

always transmitted as one packet.

The algorithm consists of two parts.

Class Computation Part:

Therankr,, 0 <r, <M —1,s € {s1,s3,...,5a}, of each packet is computed through a parallel

prefix operation. This requires 2d(p — 1)¢, time units. The packet of node s is assigned a class

number ¢ = r, mod d.

Main Part: |

The packets of class ¢ are routed according to algorithm .A.. Recall that algorithm A. consists

of three phases: the rank computation, the packing, and the broadcast phase. Only packets of

class c take part in the rank computation phase, or in any other phase of A..

Each class has at most [M/d] packets. Lemma 1 has been proved under the assumption

that a packet can be split into two parts. When packets cannot be split, it can be shown (by

a proof similar to that in Lemma 1) that algorithm A. requires time less than or equal to

PR IE EEp—=11 ~ N Y

where M' is the number of packets that participate in A, v = 1 for d-dimensional arrays, and

y = 2 for d-dimensional tori. Substituting [M/d]| instead of M’, and adding the time required

for the parallel prefix operations and the packing phase, we get

IrmnB < EH hy = Le +(p—-1)d+d = + 4(p — 1)dtp.
The algorithm just presented for the PMNB task gives rise to an efficient algorithm for the

MNB task. Indeed, a multinode broadcast.can be treated as a partial multinode broadcast with

M = N. The class computation part and the rank computation phase are not necessary any

more, since the class number and the rank of each packet are known in advance. The packing

and the broadcast phases alone can execute the MNB in time less than or equal to

75 [A rem naa]
which 1s near-optimal for tori with p odd or arrays, and of optimal order for tori with p even.

This MNB algorithm is apparently new.

or

3.5. Partial Exchange in 2-Dimensional Arrays

3.5. PARTIAL EXCHANGE IN 2-DIMENSIONAL ARRAYS

In this sectionwepresentanalgorithmtoexecutethepartialexchangetaskinapxparray

(and, therefore,inapxp torus). In particular, we initially assume that there are M nodes;

called active, that want to send a personalized packet to each of the other nodes. The algorithm

to be presented has time complexity which 1s of optimal order.

a

L

1 >Tr

Na %:
- NR

Figure 3.3: Position (a) of the active nodes corresponds to the first lower bound, while position

(b) corresponds to the second lower bound.

We first present lower bounds on the minimum time required to execute the partial exchange

in 2-dimensional array. Let us denote

m = | M2]

First, consider the case where m? of the M active nodes are in the m x m subarray Mo, where

Moo = {(i,§) | 0<i<m—1,0<j<m—1}.

Then m?(N — m?) packets have to cross the 2m links connecting Moo to the rest of the array

(since there are no wraparound links). This gives

m(N — m?Tpp >ml—m)

Lhus,

Top>TV1 for M < N/2

We next consider the case where M > N/2, and all the active nodes are at the left side of

the mesh (see Fig. 3.3). Consider the packets that pass from left to right through the cut that

3.9. Partial Exchange in 2-Dimensional Arrays

bisects the mesh. At least N2/4 packets cross the p links of this cut. Thus,

Tpp > SF > TN for M > N/2

[he previous. bounds show that

Ipr >myT= Q(MI2N)

Before describing the algorithm, we introduce some notation. The nodes of the mesh are

represented as pairs (i,j) with 0 < ¢,j < p — 1. The row sum (or column sum) of node (7,7)

is defined as the number of active nodes of row i (or column j) and is denoted by ; (or cj,

respectively).

We now describe the algorithm. It consists of two phases:

Phase 1 (Parallel Prefix Phase):

The row sums r; and column sums ¢; are computed. All »’s and ¢;’s can be found in p steps

by concurrently performing a parallel prefix operation within each row and column. A row or

column 1s a linear array, and can be viewed as a tree rooted at a median node of that linear

array of depth |p/2|. The parallel prefix operation is performed with value equal to one for

active nodes and zero for the other nodes. Phase 1 requires pt, time units, where tp <1 is the

time required for a single parallel prefix step.

Phase 2 (Exchange Phase):

The set of active nodes is partitioned into the two sets R and C where

R= {(3, 7) active | ry < cit, C= (4,9) active | ry > cj)

The nodes in R or in C send each of their packets along the unique shortest path that first

crosses horizontal (respectively, vertical) links exclusively, and then crosses vertical (respec-

"ively, horizontal) links exclusively. The order of transmission of the packets at each link is

arbitrary subject to two restrictions:

a) Packets originating at nodes of R (or of C') have priority on the horizontal (respectively,

vertical) links over packets originating at nodes in C' (respectively, R).

b) Transmission is non-wasting in the sense that no link remains idle if there is a packet waiting

at the queue of the link.

We have the following lemma:

3.0. Partial Exchange in 2-Dimensional Arrays

Lemma 3: The number of nodes of R that belong to the same row are at most m.

Proof: Our proofis by contradiction. Suppose that for some 7, the nodes (3, j;), (2,72), (2,72)2

belong to R, and ¢ > m. Then by the definition of the set Rycj, > ry, > 2 > m for all

k=1,2,...,2. This implies that there are > m + 1 columns, each of which has at leastz

active nodes. This is a contradiction since there are only M < (m+1)? active nodes. - Q.E.D.

We claim that Phase 2 requires at most 2m(N — p) + 2(p — 1) time units. To see this, we

first note that the number of packets originating at nodes of R that must cross at least one

horizontal link of any given row ¢ is at most m(N — p). The reason is that by Lemma 3 there

are at most m active nodes from R in row 7 and each of these nodes has a total of N —p packets

to send to nodes that belong to a different column. Since each packet increases the delay of

another packet by at most one unit along the horizontal path, we see that the time required

for all the packets originating at nodes in R to traverse completely the horizontal portion of

their path is at most m(N — p) + (p — 1). Similarly, the time required for all the packets

originating at nodes in C to traverse completely the vertical portion of their path is also at

most m(N — p) + (p — 1).

Let us make the worst-case assumption that packets originating at nodes of R (or C) are

delayed after completing their horizontal (respectively, vertical) transmissions so that their

transmission starts after exactly m(N — p) + (p — 1) time units. We will show that at most

m(N —p) + (p—1) additional time units are needed to complete Phase 2. Indeed, at the end of

the first m(N — p) 4+ (p—1) time units, each node has at most m(p — 1) packets originating at

nodes In R to send over the vertical links. Therefore, at most m(p — 1)p such packets remain

to traverse the links of 1ts column. This requires at most an additional m(N —p) + (p— 1) time

anits.

Adding up the times required for each phase, and taking into account that N = p? and

m = | M12], we find that the time Tpp required for the partial exchange in a 2-dimensional

array satisfies

Ter <2|MY2|(N =p) + 2(p—1) + pt,

Comparing this inequality with the lower bound found earlier, we see that our algorithm is of

optimal order (within a factor of roughly 8 of being optimal).

3.6. Partial Multinode Broadcast in a Hypercube

3.6. PARTIAL MULTINODE BROADCAST IN A HYPERCUBE

Beginning with this section we focus on a hypercube network of processors. In particular,we

consider the partial multinode broadcast problem, where M arbitrary nodes of an. N-processor

hypercube have to broadcast a packet to all the other nodes. We call these nodes active nodes.

Let Tppmnp be the optimal time required for a partial multinode broadcast in a hypercube.

Tpymyp may actually depend on which are the M nodes that want to broadcast. A lower bound,

however, is always

TpunB 2 BA (3.11)

where d is the dimension of the hypercube. This can be seen by arguing that each node has

to receive M — 1 or M packets, and has only d input ports. If the splitting of packets is not

allowed then a slightly stronger lower bound holds:

M-1
TppmNB > max (a 2) ,

where by [2] we denote the smallest integer which is greater than or equal to =. This is because

when packets are not split, the diameter of the network is a lower bound on the broadcast delay.

One way to execute the partial multinode broadcast is to perform a full multinode broadcast

(with dummy packets for the nodes which have nothing to broadcast). The optimal completion

time of the MNB in an d-dimensional hypercube with N = 24 nodes, when each packet requires

one time unit (or slot) to be transmitted over a link, was found in [BOS91] (see also [BeT89])

to be [41] time slots. Thus an upper bound for Try np is

N—-1
Trung < 7

When M << N the MNB algorithm is inefficient as the gap between the preceding inequality

and the lower bound of Eq. (3.11) suggests. In the three subsections of this section we will

provide three communication algorithms to execute the PMNB task in a hypercube. The first

algorithm, presented in Subsection 3.6.1, has time complexity

I on < EE + 2d + 2dt,—m.Tppung < m

in the case M = 2™ for some integer m, where t, is the time required for a single parallel prefix

step (tp < 1). If M is not a power of 2 then m should be replaced in the above expression by

3.6. Partial Multinode Broadcast in a Hypercube

[log M| and M by 2M MI. This algorithm is not of optimal order [except if M = ©(Nc¢) for

some positive constant ¢, or if M = O(log N)], but it is a simple and practical algorithm, as

numerical examples indicate.

The second and the third algorithms, to be described.in Subsections.3.6.2 and 3.6.3, respec:

tively, execute the PMNB in near-optimal time. In particular the second algorithm, which we

call near-optimal PMNB algorithm, executes the task in time

N-1M
(3.12)

independently of the value of M and the location of the active nodes. This is the best existing

algorithm for the PMNB task, having roughly half the complexity of the PMNB algorithm given

in [Sta91]. Comparing Eq. (3.12) with the lower bound (3.11) we see that the leading terms of

the right hand sides have the same coefficient. The algorithm assumes that packets can be split

at the origin and recombined at the destinations. For the case where this is undesirable we

modify the algorithm to achieve near-optimal completion time without the need of splitting and

recombining the packets. This gives rise to a third PMNB algorithm, which will be presented

in Subsection 3.6.3. We call it near-optimal PMNB without splitting of packets and its time

complexity can be bounded above by

for any M. Note that the MNB is a special case of the PMNB with M = N. The latter PMNB

algorithm gives rise to a very efficient MNB algorithm with complexity [N/d] + 2d — 1, which

does not use the splitting of packets. This MNB algorithm has not appeared in the literature

sefore,

The benefits of using a partial multinode broadcast instead of a full multinode broadcast

algorithm can be best illustrated by a numerical example.

Example:

We consider both the cases where t,=1 and {, = 0. The case t, = 0 corresponds tothe

situation where {; << 1 (a realistic assumption for computers which have an efficient imple-

mentation of the parallel prefix operation), or to the situation where the position of the active

nodes 1s known in advance. Consider a hypercube of N = 216 nodes and a PMNB task in it

involving M = 21% active nodes. A full MNB would take 4096 steps. Algorithm I requires 157

time units (or only 125 if t, = 0). The near-optimal algorithm which allows splitting of packets

requires 98 time units (or only 66 time units if ¢, = 0). The near-optimal PMNB algorithm

3.6. Partial Multinode Broadcast in a Hypercube

without splitting of packets requires 160 time units (96 if {, = 0). The lower bound for the

PMNB in this case 1s 64.

3.6.1. A Suboptimal PMNB Algorithm for the Hypercube

This algorithm consists of four phases. (There can be some pipelining between the phases,

but we do not try to exploit this because the gain in completion time is small).

Let s1,82,...,8, M < N, be the active nodes. The rank of a packet located at node s is

defined as

Pe — > a ~ 1,
1<

where x; 1s equal to one if processor t has a packet to broadcast, and zero otherwise.

Phase 1 (Rank Computation Phase):

The rank 7, (0 < r, < M — 1) of each active node s is computed. This can be done in 2d

steps by performing a parallel prefiz operation (see [Lei92a)) on a tree P, called parallel prefix

tree, embedded in the hypercube. The ih leaf of the tree from the left is the th node of the

hypercube. The operation is described in [Lei92a], pp. 37-44. During each step only links of

a particular dimension are used. The packets involved in a parallel prefix operation are small

(one byte of information), and require only ¢, time units to be transmitted over a link. Thus

Phase 1 takes 2d?, time units to be completed. It is reasonable to assume that ¢, < 1, where

one time unit is the time required to transmit a whole packet over a link; in fact it is reasonable

to expect that in many parallel machines we have ¢, << 1. Note that if the active nodes are

known in advance their ranks are also known and Phase 1 can be omitted.

Phase 2 (Packing Phase):

Processor s sends its packet to processor »,. This is known in the literature as the packing

problem (see [Lei92a] for the case of a butterfly network), and can be done in d steps by using

the following greedy algorithm; a packet during the ith step of the packet phase is transmitted

over an ¢-dimensional link if the th bit of its routing path is a one, or stays at the current

node otherwise. Packets in the packing phase use disjoint paths. This can be seen by noting

that when the dimensions of the hypercube are travelled in an ascending order, the hypercube

resembles a butterfly, and using the well-known results for the packing problem in butterflies

3.6. Partial Multinode Broadcast in a Hypercube

(see, for example, [Lei92a)], pp. 524-538).

At the end of the second phase the 2™ nodes with the smallest identities have a packet. In

the last two phases, each of these packets will be broadcast to all the other processors. Note

that the M = 2™ nodes with the smallest identities form a subcube of dimension m, namely,

the one obtained by fixing the d — m most significant bits to 0.

0000 10001 hada L::%O
0100] 0101 0110 0111]

es 7001 1 10101 1011
D

15 | i PX 1111#h Oo

Packing
Phase

O

a

oO ola
—— -

Subcube SNB Phase

¢
oo|od|onloe
0®|(0®|0e|0e So

OD OD ODO | @® ©|[Subcube MNBoglecleslocti "0 1g. ol
OD 0000

0®08|0e[0®
08(0© 090d
okJoX RloX 2ioX. ole! gle

r

Figure 3.4: The first (suboptimal) PMNB algorith for hypercubes (N = 16, M = 4). Each
column or row corresponds to a subcube.

Phase 3 (Subcube Single Node Broadcast Phase):

Processor rr, 0 <r, &< 2m — 1, broadcasts its packet to the d — m dimensional hypercube

3.6. Partial Multinode Broadcast in a Hypercube

(*¥¢-mr,) obtained by fixing the m less significant bits to equal the binary representation of r.

This 1s a single node broadcast in a (d — m)-dimensional hypercube, and requires d — m steps.

Phase 4 (Subcube Multinode Broadcast Phase):

At the beginning of this phase all processors wry, w = 0,1,...,249-m have received the packet

originating at node s. During Phase 4 processor wr, broadcasts the packet to all the nodes in

the subcube (wx™). This is a full MNB in each one of these m-dimensional disjoint subcubes,

and requires time [#=1] (see [BeT89], Section 1.3).

Adding up the durations of Phases 1 through 4 we get

Tune < B= +2d + 2dt, —m.

Figure 3.4 shows how the preceding algorithm works for a 4-dimensional hypercube and M = 4

active nodes.

3.6.2. A Near-optimal PMNB Algorithm with Splitting of Packets

In this subsection we present a near-optimal algorithm to execute the partial multinode

oroadcast task in a hypercube. We will show that the time required by the algorithm satisfies

N-1M
Tens S —— 7 +24: +2,

where 1, 1s the time required for a single parallel prefix step.

T'he algorithm in this section assumes that packets can be split at the origin and recombined

at the destination without any overhead. Each packet requires one time slot in order to be

transmitted over a link. If a packet is split in d parts, each of these parts requires 1/d time units

to be transmitted over a link. In the next subsection, we will present another near-optimal

partial multinode broadcast algorithm, which does not require the splitting of packets.

We will start by presenting a suboptimal partial multinode broadcast algorithm. This algo-

rithm will not make full use of the links of a hypercube. We will then modify the algorithm to

achieve efficient link utilization and near-optimal completion time. The suboptimal algorithm

consists of three phases:

Phase 1 (Rank Computation Phase):

3.6. Partial Multinode Broadcast in a Hypercube

Tha rank r, of each active node 1s computed. This computation is done through a parallel

prefix operation as in Phase 1 of the algorithm of the previous subsection. It requires time

2dtp, where 1, is the time required for a single parallel prefix step.

Phase 2 (Packing Phase):

The packet of node s and rank r, is sent to processor ry. This 1s done in d steps as described

in Phase 2 of the algorithm of the previous subsection.

Phase 3 (Broadcast Phase):

The broadcast phase consists of d subphases I = 1,2...,d. During subphase {, every node

r = rqg_174—2 --- rp transmits to its (d — [)-neighbor in any order the packets that were located

at the node at the beginning of Phase 3 plus the packets that the node has received during all

the previous subphases.

During subphase 0 the nodes have (at most) one packet and this is the only one they

broadcast. Phase 3 is easy to implement since the current subphase [is easily known.

To prove that the algorithm delivers the packets to all the nodes, it is useful to introduce

some new notation. Let 8 = Ba_18a_2--- fF be a binary number of length d. We denote by

Si(B) = (*¥'Ba—i—1Pd-1—2--- Bo) the subcube of the nodes whose d — | less significant bits are

equal to the d — [less significant bits of 3.

The next theorem proves that the previous algorithm actually executes the PMNB task.

Theorem 7: For each # € {0,1}4, at the end of subphase ! of Phase 3,1 =1,2,...,d, each

node in subcube Si(#) has received a copy of every packet located at the beginning of Phase 3

at some node in Si(F), completing a PMNB within each of these subcubes.

Proof: The proof will be done by induction onl. For I = 0 (i.e., at the beginning of Phase 3 of

the algorithm) it holds trivially since every node has its own (if any) packet. Assume it is true for

some [. Every subcube Si(8) is composed of the two subcubes St-1(8a-1-- Ba-1+108a—i—1 - - - Bo)

and Si_1(Ba-1--- Ba-i+11Bd-1-1--- Bo). During subphase ! every node in one of these subcubes

sends to its (d — !)-neighbor all the packets it has received during the previous subphases,

together with its own packet. This combined with the induction hypothesis proves the theorem.

Q.E.D.

Letting | = d we find that at the end of subphase d each packet has been received by all the

3.6. Partial Multinode Broadcast in a Hypercube

nodes, and therefore, the PMNB has been completed.

The next lemma calculates the time complexity of Phase 3.

Lemma 4: Phase 3 of the algorithm requires at most

N —

-3 M+d

steps.

Proof: We denote by T; the duration of subphase I, and we let m = [log M|. At the beginning

of Phase 3 only nodes 0,1,..., M —1 have a packet. From Theorem 7 we know that just before

the beginning of phase I, node s = sg_154_5 + - 59 has received all the packets originally located

at nodes in the subcube (*!-1s4_1sq4_j_1---s9). The number of these packets is equal to the

cardinality of the set

Wi(s) ={w =wg_1wg_2-- wo | 0 Sw <M —1, wy = 8g—i, Wa—i—1 = Sd—i-1,...,Wq = So}

During subphase {, node s will send these packets to its d — {-neighbor. Therefore, we have

Ti < max |[Wi(s)|

where | - | denotes the cardinality of a set. Let s' = 54329! + s5_;_129-1-1 4+ ... 4+ 55. The

cardinality of Wi(s) is equal to the number of integers between 0 and M — 1 — s’, which are

divisible by 2¢-1+1, Thus

M-1-¢ M 7

max [Wi(s)| < max ee S or]
Che total duration of Phase 3 satisfies

d d

Duration of Phase 3 = > 5 < > f=
i=1 =1

d
1

Sd+M)ry|

=d+ M (1-+)- N

Q.:.D.

Adding up the duration of Phases 1, 2 and 3 we obtain the following lemma:

3.6. Partial Multinode Broadcast in a Hypercube

Lemma 5: The partial multinode broadcast task can be executed in a d-dimensional hypercube

In
N -1

Tpmne < M—— + 2dt, 4 2d

time units, where M is the number of active nodes.

The PMNB ‘algorithm that we described so far is not of optimal order as the gap between

the lower bound (3.11), and the result of Lemma 5 indicates. In fact, it is suboptimal by a

factor of roughly d. This is due to the fact that at each step only links of a particular dimension

are used. In the next theorem we modify the algorithm so that all dimensions are used at the

same time, and near-optimal completion time is achieved.

Theorem 8: The partial multinode broadcast task in a d-dimensional hypercube can be

executed 1n
MN-1

T = ——-+VPMNB TN + Vi

time units, where M 1s the number of active nodes, and

Pa

v 9)

1s the time required for the first two phases.

Proof: We call the PMNB algorithm analyzed in Lemmas 4 and 5 algorithm Ao. At each

step of Phases 1, 2, and 3 of Ag, only links of a particular dimension are used. Indeed, in the

parallel prefix or the packing phase only links of a particular dimension are used at each step.

Similarly, during subphase [of the broadcast phase only links of dimension d — I are used.

For any c, consider now another PMNB algorithm referred to as algorithm A.. According to

A. a packet 1s transmitted over the link of dimension ({+¢) mod d of its current location, when-

ever the same packet would be transmitted under the Ap algorithm over the I-dimensional link

of its current location. Since A, is identical to Aq after appropriately renaming the hypercube

dimensions (and the nodes), and since Ap performs the PMNB independently of the location

of the M active nodes, we conclude that A. also executes the PMNB task, and requires the

same amount of time as Aj.

Using simultaneously all the algorithms Aq, Ai, ..., A4-1 we can find a new algorithm

which requires the amount of time claimed in the theorem.Inparticular,eachpacketissplit

into d parts, called mint packets. Each mini packet 1s assigned a distinct integer ¢ between

0 and d — 1, called class. The mini packets of class ¢ are routed according to algorithm A..

3.6. Partial Multinode Broadcast in a Hypercube

Packets of different classes use different hypercube dimensions at any time. According to our

communication model, a mini packet requires 1/d time units for transmission over a link. The

duration of the packing and the broadcast phase is thus reduced by a factor of d, while the

duration of the parallel prefix phase remains the same. Therefore, the theorem follows from

Lemma 5. Q.E.D.

No upper ceilings are needed in Eq. (3.13), since we allow fragmented slots. Note also that

under the communication model used in this section a single multinode broadcast requires 2

time units, the same time that would be required if cut-through routing ([KeK79]) was used.

A near-optimal PMNB algorithm that does not require the splitting of packets is presented in

the next subsection.

3.6.3. A Near-optimal Hypercube PMNB Algorithm without Splitting of Packets

In this subsection we modify the algorithm of the preceding section in order to avoid the

potential drawbacks of packet splitting. This is done at the expense of a slight increase in the

complexity. Messages in this section require one time slot in order to be transmitted over a

link, and are always transmitted as one packet.

The algorithm consists of two parts.

Class Computation Part:

The rank ry, 0 <r <M —1,s € {s1,52,...,sm}, of each packet is computed through a parallel

prefix operation. This requires 2dt, time units. The packet of node s is assigned a class number

¢ = rs mod d.

Main Part:

The packets of class ¢ are routed according to algorithm A. described in the proof of Theorem

8. Recall that algorithm A. consists of three phases: the rank computation, the packing, and

the broadcast phase. Only packets of class ¢ take part in the rank computation phase, or in

any other phase of A..

Each class has at most [M/d] packets. Using Lemma 5 with [M/d] instead of M, we get

that the main part of the previous algorithm requires time less than [4] +2d— 1+2dt, (we have

taken into account that the duration of the main part, excluding the parallel prefix operation,

3.7. Partial Exchange in a Hypercube

1s an integer). Thus the total duration of the algorithm satisfies

TH vp < Ee + 2d + 4dt, — 1.

The algorithm just presented for the PMNB task gives rise to an efficient algorithm for the

MNB task. Indeed, a aliindde broadcast can be treated as a partial multinode broadcast with

M = N. The class computation part and the rank computation phase are not necessary any

more, since the class number and the rank of each packet are known in advance. The packing

and the broadcast phases alone can execute the MNB in time less than or equal to

N[2] 424-1
which 1s optimal within 2d — 1 time units. This MNB algorithm is apparently new.

The table of Fig. 3.5 summarizes the results on the PMNB task.

PMNBMod dl | Hypercube |
Splitting N-1M

of packets Nd Tate?

NoSplitting
of packets M] +2d+4dt,-1

dim ensio nal array]

SU 2(p- 1+ 2d(p- 1t,

[M] +3d(p-1)+4d(p- Dt,-1

Eigur~ 3.5: A table of the results for the PMNB task.

N-1M | 1.5(p-1)+2d(p-1)t,
N 2d

Lely] +d(p-1)+d[B}+d(p-1t,

3.7. PARTIAL EXCHANGE IN A HYPERCUBE

In this section we present an algorithm of optimal order to execute a partial exchange in a

hypercube with N = 24 nodes in optimal time. We assume that M = 2™ nodes, called again

active nodes, want to send a personalized packet to each one of the other nodes (therefore.

each node sends a total of N — 1 packets). No assumption on the location of the active nodes

s1,82,...,5y 1s made, and the splitting of packets is not allowed. The worst case execution

time of the algorithm that we will present is

Vv N
Y v2] + 2dt, + m +1,
2 d—m

3.7. Partial Exchange in a Hypercube

where 1, is the time required for a single parallel prefix step. This algorithm is of the optimal

order of magnitude since, as it will be shown, a lower bound on the time ITpp required to

execute the task 1s
M NTpp=0Q (max a)

We first prove the lower bounds. Since the diameter of the hypercube 1s d and the splitting

»f packets is not allowed we immediately get that

Tpp > d (3.14)

I'he minimum total number of transmissions required for the PE can be calculated to be equal

to dN M/2. Since there are dN unidirectional links in the hypercube, we get that

Tpp > a
5 (3.15)

To get a third lower bound consider the case where all the active nodes belong to the m-

dimensional subcube H,,(0) = (¥#™0%™) obtained by fixing the d — m least significant bits of

the node adress to be equal to 0. Subcube H,,(0) has M nodes and is connected to the rest of

the hypercube via (d — m)M links. Since the (N — M)M packets that are destined for nodes

outside H,,(0) have to pass through these links we have that

Top > rouI~1 (3.16)

If M > N/2 then Eq. (3.15) gives that Tpp = O(N). Next consider the case where M < N/2,

and all the active nodes are outside H,,,(0). Then M?2 packets will have to enter H,,(0) through

the (d — m)M links, which gives

" M

Ipp > 2 for M < N;2d—m (3.17)

fLquations (3.14)-(3.17) together with the relation max(z,y) > (z+ y)/2 = Q(z + y) give;

M N
Tpp =| — +——PE (H+ Ava). (3.18)

[n the rest of the section we present a distributed, “on-line” communication algorithm which

ts. of optimal order. The algorithm consists of four phases.

Phase 1 (Rank Computation Phase):

3.7. Partial Exchange in a Hypercube

The rank of each active node is computed as in Phase 1 of the algorithm presented in Subsection

3.6.1. This requires at most 2dt, time units, where ?, 1s the time of a single parallel prefix step.

Let »; be the binary representation of the rank of active node s;.

Phase 2 (Isotone Routing Phase):

Before describing this phase we give some definitions and notations.

For any node w, we denote by Ry_m(w) = (wi-1 + wig_m**™) the subcube of dimension

d — m obtained by fixing the mm most significant bits of w. Restricting attention to Ry_,,(w), we

define the single node scatter tree Ty_,(w) rooted at w and belonging to Ry_p,(w) as in [BOS91].

We let e; be the unit vector whose th entry is one. Then the node wde,, 7 € {0,1,...,d—m—1},

is the root of a subtree T%_,_(w) of Ty_m(w). Since Ty_m(w) is a completely balanced tree each

of the subtrees Ts, (w), 1 =0,1,...,d—m — 1, contains at most

5=|
nodes. We denote by Wj(-) the operator which when applied to a node address yields the k

least significant bits of the address.

Phase 2 of the PE algorithm goes as follows. Node s,, = 1,...,M, sends a packet with

destination t ¢ (¥™Wa_n(si)) to node riWy-_m(si) ® e;, where j is chosen so that 7,Wa_.(t) €

T3(m Wa-m(si)), and a packet with destinationt€ (*™Wy_,(si)) to node r,Wy_,(si). Therefore,

source s; sends at most MS packets (for a total of N — M packets) to each of the nodes

rWa_m(si) ® ez, jE {0,1,...,d — m — 1}, and sends M packets to node r;Wy_,,(s;). The

paths followed by these packets are the following. The dimensions are travelled in ascending

order, starting with dimension 0. If a packet does not want to traverse one of the dimensions

d—m,...,d — 1, then the packet spends the corresponding slot without being transmitted

idling). Packets sent from s; to the same node (node r;Wy_,,,(s,) ® e; for some 7, or node

riWa_m(si)) are sent one after the other (pipelined).

We claim that

Lemma 6 Packets do not collide at any slot during Phase 2.

Proof: Packets sent one after the other by node s; to a specific node (r;Wy_n(s;) & e; or

riWa—m(si)) donot collide with each other, because they use different dimensions during a slot.

Packets sent from node s; do not collide with packets sent from sj if they started transmission

at different times, because they are tranversing different hypercube dimensions at each slot.

3.7. Partial Exchange in a Hypercube

Packet sent from source s; do not collide with packets that started transmission from source

node s; at the same time, becauseoftheproperties of isotone routing. In order to see this,

assume that the packet from node s; (or node si) is sent to node r;Wy_(si) ® ej, (or node

rsWa_m(5k) @® €5,), respectively). Assume also, without loss of generality, that s; > s;. Then

ri > ri,-and, therefore, 7iWa_ (si) ® ej, > re Wa_m(sk) ® ej,. These two packets cross links of

the same dimension during the same slot, in the order from lower to higher dimensions. Thus,

these packets would collide only if they would collide in a corresponding butterfly with the

usual greedy routing. Since the relative order of the sources of these packets is the same with

the relative order of their destinations, these packets do not collide in a butterfly; thus they do

not collide in the hypercube either. The last thing to prove is that a packet P: sent from s;

to ri Wa_m(s:) ® ej, does not collide with a packet P; sent from s; to riWa_,. (si) @ ej, or with

a packet Pi sent from s; to 7; Wy_a(s;). This is indeed the case since the first dimension that

P; will cross is dimension 7; (and it will never cross dimension jz), the first dimension that Ps

will cross is j2 (and it will never cross dimension j;), and P; will not cross (in Phase 2) any

of these dimensions; since packets Pi, Pz, and P; have the same origin, they will not collide

because after their first transmission they will be travelling in different subcubes. Q.E.D.

Che duration of Phase 2 1s equal to

MS+m+1

In particular, MS is the time when the last packet starts transmission, and m +1 1s the length

of the path that the packet has to travel (plus the idle slots).

At the end of phase 2, all the packets originated at node s; are in hypercube Ry_p,(ri04-m),

where 0 < r; < 2m. Note that these hypercubes are disjoint. Furthermore, a packet whose

final destination is node t is located at the neighbor r,Wy_, (si) De; of node riWy_pm(si), where

i is such that 7, Wy_,,(t) € T;(riWy_n(si)). Each of these neighbors has at most SM packets.

Also, the packets with destinations in subcube (*™Wg_,,(si)) are located at node 7 Wy_a(s:).

Phase 3 (Subcube Scattering Phase):

In this phase M consecutive single node scatters are performed in each one of the d — m

dimensional disjoint subcubes Rg_,, (704), »; = 0,1,...,M — 1. A packet with final desti-

nationtis sent to node 7, Wy_(¢); thus, node riWy_,(t) receivesM-packets(thoseoriginated

at ¢ and destined for the nodes in H,,(t)). Such a packet will be located at the beginning

of Phase 3 at the root of the subtree Tj(r;Wy_,.(si)) where node r;Wy_,,(t) also belongs.

DOO -

DO Ix =

N1pa=

QOu wm

NY Iw

10=»

10 1® +

BERLE.

M00" -

00mm

Dinw

1000=

ARLE

| Ym

TRE

wanpDO wmu(p "mE 0 new]

J Ls -T[

| “IE
—Chant4
 aeLh
a 1"

§

|
y-

y

Tua aap RE—
- n

|
 SN mem

(a

teop wns0l weno wend

oalo|alos
e | © alo

alo|a]o
elo |a]s
olo]alo,

mle)

2)ae o| ®
“A

DQOn =

npiu=

010mm

100"=

 “M1 1us

10m=

01™

11m

o00u~

O01»

510=

ou»

N11»

iMygs

11 jum

3.7. Partial Exchange in a Hypercube

==n00 mum] "ed 10 "ee

| |

| “BL
 HE |

A

5 |
i " — -

)
El

fe

|

1|
J

3 r

|
 iE1B

J

La_ _- |
hg

'-

Figure 3.6: The hypercube PE algorithm for N = 32. The parallel prefix phase is not indicated.

Each square in figures (a), (b), and (c) represents four packets (whose destination belongs to the same

horizontal subcube). Only the packets with origin at the node with rank one are indicated. In going from

(b) to (c) the single node scatter tree rooted at node 00001 (with subtrees rooted at nodes 00101, 01001,

and 10001) has been used.

3.8. Window Multinode Broadcast in a Hypercube

Node riWu_m(si) ® ej, 7 € {0,1,...,d — m — 1} sends the packets downstream on its sub-

tree T5(riWa_m(s:)), starting with packets going to nodes which are furthest away. The time

required for Phase 3 can then be found to be

2N fp]i. —m){(d —m —1)

if m <d—1. In the case that m = d — 1, Phase 3 is not necessary

Phase 4 (Subcube Total Exchange Phase):

At the beginning of this phase node r;Wy_,(t) of subcube H,,(t) has the packets originated at s,

whose destination belongs to H,»(¢). Thus a total exchange within each of these m-dimensional

subcubes completes the task and requires time

b/

Adding up the times required for each phase we find that the time Ipg required to execute the

partial exchange for m < d — 1 satisfies

M N/M —1 N<—4+M | — _Ipr < 5 + | To | +8 | smog | + 2d +m + 1,

Im<d—9

Irp <0.75N + 2dt, +d,

if m=d-1,and
TN

Tep < ~— +2d; +d — 1,
if m = d— 2. Of course, in the cases m = d —1 or m = d it is preferable to use a total

exchange algorithm, which requires only N/2 steps. The preceding equations give that for any

M=2m < N/2 we have Tpg = O(F£). Comparing this relation with the upper bound found

earlier we see that the proposed algorithm is of the optimal order of magnitude within rather

small multiplicative factors.

3.8. WINDOW MULTINODE BROADCAST IN A HYPERCUBE

In this section we consider a window multinode broadcast (or WMNB) in a hypercube, defined

as follows. We are given an m-dimensional subcube S of a d-dimensional hypercube H. We

3.8. Window Multinode Broadcast in a Hypercube

want to perform a multinode broadcast involving the nodes of &, and we are allowed to use all

links of H. In other words, we want each node of § to broadcast a packet to every other node

in §, but packets can also get outside S.

The window multinode broadcast task has not been considered previously in the literature,

despite the fact that.it arises often in applications. For example, when multitaskingisused.in

a hypercube parallel computer, each task (or user) is allocated a subcube of the hypercube.

Then the WMNB task arises in all the situations where a MNB arises. A WMNB arises also

when an array is embedded in a hypercube so that each row of the array is embedded in a

subcube of the hypercube (see [BeT89]). Then a MNB within a row or column of the array is

a WMNB.

In what folows we give an algorithm that executes the WMNB in near-optimal time. Without

loss of generality we assume that § is the subcube ofHobtainedby fixing to zero the d—m most

significant bits of the node addresses, that is, § = (09—™*™). A way to execute the WMNB is

to perform a MNB within §, using only links in §. This requires (M — 1)/m units of time (if

we allow the splitting of packets), compared to (M — 1)/d, which is the obvious lower bound.

The question that arises is if we can do better by using the links in % — S. The algorithm that

we will give executes the WMNB in (M + 1)/d units of time, which is only 2/d time units more

than the lower bound. The algorithm consists of three phases and assumes that packets can

be split and recombined without any overhead.

Phase 1: Every packet is split into d parts, called mini-packets, each of which is assigned

a distinct class number ¢ between (0 and d — 1. A mini-packet requires 1/d time units for

transmission over a link. In phase 1 of the algorithm each mini-packet with class ¢ € {m, m +

l,...,d— 1} is transmitted over the c-dimensional link of its source node. This phase requires

1/d time units.

Phase 2: This phase consists of m subphases. During subphase {, I = 0,1,...,m — 1, each

node transmits over its | + ¢ mod m link, if ¢ € {0,1,...,m — 1}, or over its { link, if ¢ €

{m,m+1,...,d — 1}, all the packets that it received during the previous subphases. Phase 2

equires

S124 4 2men) =
M-1

[ime units.

Phase 3: In this phase, every node outside § which has received a packet of class ¢ transmits

3 8. Window Multinode Broadcast In a Hypercube

‘+ over its c-dimensional link. This would normally require pl time units, but since 1t can

be pipelined with Phase 2 (every packet 1s sent over the c-dimensional link as soon as it 1s

received), it requires only 1 /d additional time units.

The WMNB algorithm requires Mab time-steps, which 1s near-optimal. The previous WMNB

algorithm can be modified using the ideas of Subsection 3.4.2 or 3.6.3 to avoid the splitting

of packets, at a slight increase In the time complexity. We finish by noting that 1t may be

interesting to consider a Window Total Exchange task, where a total exchange within § 1s

performed and links outside S can be used. Algorithms for the WTE problem appear to be

more complicated than WMNB algorithms.

CHAPTER FOUR

Dynamic Broadcasting Algorithms
for Hypercubes and Meshes

S50 far we have dealt with static routing problems. Beginning with this chapter we turn our attention

to routing algorithms that work in a dynamic environment. In the present chapter we consider the problem

where broadcast requests are generated at random time instants at each node. In particular, in our model

packets arrive at each node of a network according to a Poisson process, and each packet has to be broadcast

to all the other nodes. Based on the partial multinode broadcast algorithms found in the previous chapter, we

propose an on-line decentralized routing scheme to execute the broadcasts in this dynamic environment. We

focus on the hypercube and the d-dimensional mesh (with or without wraparound) networks of processors;

however, the results that we obtain for the dynamic broadcasting scheme apply to any topology, regular

or not, for which partial multinode broadcast algorithms with certain properties can be found. We find an

upper bound on the average delay required to serve a broadcast request, and we evaluate its stability region.

We then apply the results to the case of a hypercube and a d-dimensional mesh network of processors. The

stability region of the corresponding dynamic scheme tends to the maximum possible as the number of nodes

of the hypercube or mesh tends to infinity. Furthermore, for any fixed load in the stability region, the average

delay for both networks is of the order of the diameter of the network.

4.1. INTRODUCTION

In the previous chapter we considered static broadcasting tasks, that is we assumed that

at time ¢ = (0 some fixed, but unspecified nodes have to broadcast a packet once and for

4.1. Introduction

all, and we proposed optimal algorithms to execute this task. Static broadcasting tasks in

multiprocessor networks have been studied extensively in the literature ([BeT89], [BOS91],

'Ho90], [JoH89], [LEN90], [VaB90b], [Sta9l]). In this chapter we will consider the dynamic

version of the: broadcasting problem. We assume that broadcast requests are generated at

each node accordingtoaPoissonprocesswith rate A, independently of the other nodes. We

propose routing algorithms that work under such a dynamic environment, and we evaluate

their performance. The Poisson assumption is made only because the mathematics of the

analysis require it and is inessential for the schemes that we present. We are interested in

two performance criteria. The first is the average delay, that is, the average time between the

arrival of a packet at a node, and the completion of its broadcast. The second criterion is the

stability region of the scheme, that is, the maximum load that it can sustain with the average

delay being finite. We set two objectives for a dynamic broadcasting scheme: stability for as

big a load as possible, and average delay which is of the order of the diameter for any fixed

oad in the stability region.

The dynamic broadcasting problem is important for a variety of reasons. First, consider the

case where iteration (3.1) takes place asynchronously. Each processor i computes at its own

speed without waiting for the others, and broadcasts the updated value of =; whenever it is

available. Asynchronous parallel computation naturally results in a dynamic communication

environment like the one we are considering. Asynchronous computation algorithms are in-

creasing In importance (see e.g. [BeT89]) as a way to circumvent the synchronization penalty.

The latter is a major cause of inefficiency in parallel computers, especially when the processors

are not equally powerful, or when the load distribution is not balanced. In such a case, static

algorithms, for example the MNB, become inefficient, since a fast processor would have to wait

for all the other processors before starting a MNB. A second reason that makes algorithms for

static tasks difficult to use is that the task must be detected and identified by the compiler,

or the corresponding communication subroutine must be called explicitly by the programmer.

(t 1s plausible that the programmer and the compiler may fail to identify such communication

tasks. Even more importantly, broadcasts may be generated in run-time, during the execution

of a program. This poses a problem because in order to use precomputed static communi-

cation algorithms we must know the communication pattern in advance. Multitasking and

time-sharing make the communications even less predictable, and the use of static communica-

tion algorithms more difficult. The preceding reasons motivate dynamic broadcasting schemes

that will run continuously, and execute on-line the broadcast requests.

4.1. Introduction

The only previous work on dynamic broadcasting we know of is that of Stamoulis [Sta91] for

the hypercube network. There are two algorithms of Stamoulis that are most interesting from

a theoretical point of view: the direct scheme, and the indirect scheme given in Chapters 6 and

7 of [Stad1], respectively.Inthe:directscheme,d spanning trees, where d is the dimension, of

the hypercube, are defined for each node, having the nodeas a root. A packet that arrives at.a

node selects at random one of the d trees of the node, and is broadcast on it. The direct scheme

meets the stability objective described above, but its average delay analysis is approximate. In

the indirect scheme, d spanning trees are defined in the hypercube. A packet that arrives at

some node selects at random one of these trees. It is then sent to the root of that tree, and

from there it is broadcast to all the other nodes using links of the tree. The indirect scheme

meets the delay objective, but its stability region is not the maximum possible. Therefore, the

two hypercube schemes of [Sta91] do not provably satisfy both performance objectives. Both

the direct and the indirect schemes require less syncronization than our scheme. Also, if the

splitting of packets is not allowed and the traffic is very light, the direct scheme has provably

optimum delay.

Our dynamic broadcasting scheme has a fundamentally different philosophy: it relies heavily

on finding efficient PMNB algorithms of the kind given in Chapter 3, that are used as a

subroutine of the dynamic scheme. Furthermore, our scheme is very general: it applies to

any network for which efficient PMNB algorithms can be found. For the hypercube and the

d-dimensional mesh networks, our scheme has a stability region that tends to the maximum

possible as the number of nodes tends to infinity, while its average delay for any fixed load in

the stability region is of the order of the diameter of the network. Thus, our scheme compares

favorably with Stamoulis’ hypercube algorithms none of which meets optimally the stability

and the delay objective.

Our dynamic broadcasting scheme and the corresponding performance analysis apply to any

network for which we can find communication algorithms that execute the PMNB communi-

cation task in time

XM+4V,

where M is the number of nodes that have a packet to broadcast, called active nodes, and

X, V are scalars that are independent of M (they may depend on the size of the network).

For networks where-such PMNB algorithms exist, we can easily devise corresponding dynamic

broadcasting schemes that satisfy some average packet delay and stability guarantees. The

dynamic broadcasting scheme consists, merely, of executing successive PMNB algorithms, each

4.2. Dynamic Broadcasting Schemes

starting after the previous one has finished. Our scheme is modelled after reservation and

polling schemes for multiaccess communication. The network is viewed as a channel, and the

nodes as users of the channel. For analytical purposes, the first V time units of the PMNB

algorithm are considered as a reservation interval, where some organizational work is performed,

and-the following MX time units-asadatainterval,where-userswithreservations-transmit-a

packet.

Our dynamic broadcasting scheme requires the existence of a partial multinode broadcast

algorithm with certain properties. In Chapter 3, we have already presented such partial multin-

ode broadcast algorithms for the hypercube and the d-dimensional mesh networks. The PMNB

algorithms of Subsections 3.6.2 or 3.6.3 for hypercubes, and of Subsections 3.4.1 and 3.4.2 for

d-dimensional meshes, have the required properties, and the corresponding dynamic schemes

meet our stability and average delay objectives.

The structure of the chapter is the following. In Section 4.2 we describe the dynamic broad-

casting scheme in a given network, assuming that a PMNB algorithm with certain properties is

available for that network. We also state the dynamic broadcasting theorem, which is the main

result of the paper. In Section 4.3 we evaluate the performance of our dynamic broadcasting

scheme. In particular, in Subsection 4.3.1 we describe an auxiliary queueing system, which we

will use to prove the dynamic broadcasting theorem. In Subsection 4.3.2 we prove the dynamic

broadcasting theorem, which gives an estimate on the average packet delay of the dynamic

broadcasting scheme. Section 4.4 applies the dynamic broadcasting theorem to the case of the

hypercube, while Section 4.5 applies it to the case of the d-dimensional mesh.

4.2. DYNAMIC BROADCASTING SCHEMES

In this section we will describe the dynamic broadcasting scheme for a general network. We

will assume that an algorithm that executes the PMNB task in that network is given, and that

it requires XM + V time units, where M is the number of active nodes, that is, the nodes

that have a packet to broadcast, and X, V are scalars independent of M. We also assume that

during.the PMNB algorithm each node learns the numberofactivenodesM.

Our scheme is merely a repetition of successive partial multinode broadcast algorithms, each

starting when the previous one has finished (see Fig. 4.1). The time axis is, therefore, divided

4.2. Dynamic Broadcasting Schemes

into PMNB intervals. Within each PMNB interval, a PMNB is executed, involving exactly

one packet from each of the M nodes that are active at the start of the interval. Each PMNB

interval 1s divided into two parts. The first part is called reservation interval. Its duration can

be upper bounded by a known constant V that depends only on the size of the network, and 1s.

independent of the number of active nodes M. During the reservation interval each active node

s can be viewed as making a reservation for the broadcast interval. In the PMNB algorithms for

the hypercube and the d-dimensional mesh of Chapter 3 this is done simply by setting z, = 1

in the rank computation phase. Usually, in the reservation interval some global information

1s gathered at the nodes (e.g., the total number of active nodes M, and other information),

and some additional organizational work is performed. For example, in the PMNB algorithms

described in Subsections 3.6.2 and 3.6.3 for the hypercube, and in Subsections 3.4.1 and 3.4.2

[or the d-dimensional mesh, the packets move during the reservation interval to more favorable

intermediate locations. The second part of a PMNB interval is called broadcast interval. Its

duration 1s equal to XM, and is therefore known once M is known. The broadcast interval

is empty if there are no packets to broadcast (A = 0). Thus, even though the duration of

each partial multinode broadcast is random (because packet arrivals are random), it is known

to all the nodes of the network, because each node learns during the broadcast interval the

number M of active nodes and, from there, the duration of the following broadcast interval.

Therefore, if the nodes initiate the dynamic broadcast scheme at the same time, no further

synchronization is needed. Even if the clocks of the processors are not accurate, a node can

count how many packets it has received and detect local termination of the current PMNB

period when their number equals M. The forward subphase of the parallel prefix phase serves

as a termination detection mechanism (see [BeT89)], pp. 571-579), and the reverse subphase as

a way to announce the termination to the nodes. However, if the transmission time 1s different

for each link, perfect global synchronization cannot be achieved, and one should expect some

degradation in the performance (mainly in the duration of the monotone routing phase, since

the broadcast phase is rather tolerant to synchronization errors). For the PMNB algorithms

proposed in Chapter 3, in the broadcast interval the packets are broadcast from the intermediate

locations to all other nodes. The details of the broadcast interval are, however, irrelevant, and

all that matters for our purposes, is that the duration of the broadcast interval is less than or

equal to MX.

For the optimal PMNB algorithm for NV = 29-processor hypercubes described in Subsection

3.6.2, the reservation interval is taken to consist of the parallel prefix and the isotone routing

4.2. Dynamic Broadcasting Schemes

phases, and requires Vj, = 2dt, + 2 time units. Similarly, in the optimal PMNB algorithm for

N = p?-processor meshes of Subsection 3.4.1 the reservation interval consists of the first two

phases, and requires at most Vi; = 2d(p — 1)t, + (14 1/7)(p — 1) time units for a mesh, where

y = 2 for a mesh with wraparound, and 7 = 1 forameshwithout wraparound. It is important

that V3; .and V,, are constant, in-other words independent of the number of active nodes.

—0 D
7 pe

iy Ld
Ad 3 PMNB PMNB

 atPv ——

MX MX 1X
 —_— — - —> 4p

\/V

An

bs Y
He[5% ara

~~
RORht
ran nner[EE »]

HO

Figure 4.1: The dynamic broadcasting scheme. Each PMNB interval consists of two intervals:

a reservation interval (marked by gray) of duration V, and a broadcast interval of duration MX, where M
1s the number of active nodes at the start of the PMNB interval.

It 1s important for the performance of the dynamic scheme that the duration of the PMNB

algorithms is linear in the number of active nodes M, with the constant of proportionality

being the smallest possible. In the hypercube case the constant of proportionality was equal to

IN -1
TN

while for the d dimensional meshes it was

1 N-1
yd N

which are both the smallest possible.

I'he main theorem that we prove in the paper is the following.

Dynamic Broadcasting Theorem: Assume that for a given N-processor network there

exists an algorithm that executes the PMNB communication task in time

XM+V.

where M 1s the number of nodes that have a packet to broadcast and X, V are scalars that

are independent of M (they may depend on the size of the network). Assume that during the

4.3. Analysis of the Dynamic Broadcasting Scheme

PMNB algorithm each node learns the value of M. Then the dynamic broadcasting scheme that

uses this PMNB algorithm as described above has the following performance characteristics. If

the packets to be broadcast arrive at each node of the network according to a Poisson process

with rate A, independently of the other nodes, the average packet delay T satisfies =.

T = W+X+aNX<W+ X + min (Ex, ow) # a

1
»

 —_— pX (1-p)V (1—pa—AV)V
Vom Tao Iw

0 ATX

and a 1s a scalar satisfying

M+M-DEM-M) 1 _ _1 1
INM 2N — — 2 2N’

wh -

M = ANY
1—0p

and M is the smallest integer which is strictly larger than M

Note that the dynamic broadcasting scheme is stable for p < 1— AV, or by using the relation

A = p/(NX)

+ V/(NX)

The dynamic broadcasting theorem is proved in the following section

4.3. ANALYSIS OF THE DYNAMIC BROADCASTING SCHEME

In this section we will prove the dynamic broadcasting theorem. We first describe an auxiliary

queueing system that will be used in the main proof given in Subsection 4 3.2.

4.3. Analysis of the Dynamic Broadcasting Scheme

4.3.1. Limited Service Gated Reservation System with Shared Reservation and

Data intervals

In this subsection we describe an auxiliary queueing system, called limited service gated

reservation system with shared reservation and data intervals, which is a reservation system for

multiaccess communication. We are interested in the average delay required to serve a packet

in this system. This average delay will be used in the next subsection to evaluate the average

packet delay of the dynamic broadcasting scheme. The analysis of the auxiliary queueing

system 1s based on unpublished research by D. P. Bertsekas and R. G. Gallager. We will give

this analysis in detail, since it is important for our purposes and it does not appear anywhere

else.

The auxiliary queueing system is defined as follows. Consider N traffic streams, each cor-

responding to a different user, which share a common channel. The channel is used both for

packet transmissions and reservations. In particular, the time axis is divided into data in-

tervals, where actual data is transmitted, and reservation intervals used for scheduling future

data. Each user has a separate queue, and the queues are served in cyclical order. Users make

reservations during the same reservation interval, and transmit at most one packet each in the

subsequent data interval. A packet can be transmitted in a data interval only if it arrived

before the beginning of the previous reservation interval. For this system the following theorem

holds.

Theorem 1: Let the arrival processes of packets at the users of the system be independent

Poisson processes, each with rate A. Let also X, X? be the first and second moments of the

packet transmission times and V, V2 be the first and second moments of the duration of a

reservation interval. Then the mean waiting time in queue for this system is

Wo ANX? . (1-p)V2 T (1—pa—AV)V
21—p—=AV) 2(1=-p=-AV)V 1—p-AV

where p = ANXis the utilization factor, and a satisfies

F+(-n@E-B 111
IN b ON — — 9 9N

vk£11

I
ANV
1—p

%)

is the average number of packets per data interval, and k is the smallest integer which is strictly

larger than k.

4.3. Analysis of the Dynamic Broadcasting Scheme

Proof: Consider the ith packet arrival into the system and suppose that the user associated

with packet 7 1s user j. This packet must wait in queue for the residual time R; until the end of

the current packet transmission or reservation interval. It must also wait for the transmission

of the N, packets that must be transmitted before packet i. Finally the packet must wait for

the duration of reservation intervals. Thus, the expected waiting time of packet 7 is A

E(W;) = E(R)) + E(N))X+E(Y}),

where Y; is the duration of all the whole reservation intervals during which packet i must wait

before being transmitted. The expected waiting time is therefore

Y im E(R;) + E(N)X+E(Y))

From Little’s law we get

E(N;) = ANW. (4.4)

Let Qi be the number of packets in the queue of user j found by packet 7 upon arrival, and m;

be the number (0 or 1) of packets of user j that will start transmission between the time of

arrival of packet ¢ and the end of the frame at which packet ¢ arrives. Then

EY)=(1+E(Q,)-E(m))V 5)

From Little’ law we have

Q = lim E(Qi) = MW. |
Ue6)

The mean residual time R = lim; ,o R; can be calculated as in [BeG87] to be

ANX?Z (1-p)V?
Rar+ ry 7)

Combining Eqs. (4.3)-(4.7) we get

— — AMNX? (1-p)V2

W = ANWX + (1+ W = lim E(m,)) V+ 252 4 LZAV2 \ “)

I'o find W, it remains to calculate lim, E(m;).

There are two possibilities regarding the time of arrival of packet 1.

1) packet¢arrivesduringareservationinterval.Thisevent,callitA,has steady state proba-
bility 1 — p

Eldy=1-»p

4.3. Analysis of the Dynamic Broadcasting Scheme

Since the ratio of the average data interval length to the average reservation interval length is

p/(1 — p) we see that the average steady state length of data interval is pV /(1 — p). Therefore,

the average steady state number of packets per user in a data interval is

pV AV
(1-pNX ~ 1-p

This also equals the steady state value of E(m; | A) in view of the symmetry with respect to

the users:

AV
lim E(m; | A) = =

>) Packet ¢ arrives during a data interval. This event, call it B, has steady state probability p:

wy

0

Jenote

a = lim E(m; B),

ar = lim E(m; | B, the data interval of arrival of packet i contains k packets).

Assuming k > 0 packets are contained in the data interval of arrival, there is equal probability

(/k of arrival during the transmission of any of these packets. Therefore

k
lk—n k-—-1

“=D FN = aN
Let P(k) be the unconditional steady-state probability that a data interval contains k packets,

and E(k) and E(k?) be the corresponding first two moments. Then we have by Bayes’ rule

kP(k)
lim P(The data interval of arrival of packet i contains k packets) = ER)

Combining the preceding equations we have

(1 —
~kP(k) _ o- P(b)k(k—1)_E(k?) 1
2Fw = 2E(k)N ~~ 2NE(k) 2N

We have already shown as part of the analysis of case a) above that

ANV
B(k) = $—

-

a’)

50 there remains to estimate E(k?). We have

E(k?) =

N

Y k2P(k).
L—1

ANy

4.3. Analysis of the Dynamic Broadcasting Scheme

If we maximize the quantity above over the distribution P(k), k = 0,1,..., N, subject to

the constraints 3», P(k) = 1, So kP(k) = E(k), and P(k) > 0 (a linear programming

problem) we find that the maximum is obtained for P(N) = E(k)/N, P(0) = 1—- E(k)/N, and

P(k)=0, k=1,2,...,N — 1. Therefore

E(k?) < NE(k).

Similarly if we minimize E(k?) subject to the same constraints we find that the minimum is

obtained for P(k —1) = k — E(k), P(E) = 1 — (k — E(k)) and P(k) = 0 for k # k — 1, k, where

t is the integer for which k —1 < E(k) < k. Therefore

E(k?) > (k— 1)2(k — E(k) + (8)? (1 — (k — E(k)

After some calculations this relation can also be written

E(k?) > E(k) + (k-1)(2E(k) —k) for E(k) el[k—-1,k), k=1,2,...N

Note that the lower bound above is a piecewise linear function of E(k), and equals (E(k))? at

the breakpoints k = 1,2,...,N. Summarizing the bounds we have

Ek) +(k-1DQREK)-k) 1 cael 1
2N E(k) 2N — — 2 2N'

where k is the positive integer for which

,

k—1< E(k) <k.

Note that as E(k) approaches its maximum value N (i.e., the system is heavily loaded), the

upper and lower bounds coincide. By combining the results for cases a) and b) above we have

AV
lim E(m,) = P(A) lim E(m, | A) + P(B) lim E(m; |B) =(1- P)T— + ap,

or fina.lv

lim E(m;) = AV + ap

where a satisfies Eq. (4.10). Using Eq. (4.8) and the expressions derived we obtain Eq. (4.2)

where E(K) is given by Eq. (4.9), and k satisfies £ — 1 < E(k) <k. Q.E.D.

Note that the formula for the mean waiting time becomes exact in the limit both as p — 0

(light load), and as p — 1 — AV (heavy load), in which case E(k) — N and a — 1/2 —1/(2N).

I'he formula is also exact if N = 1 ([BeG8T]).

4.3. Analysis of the Dynamic Broadcasting Scheme

4.3.2. Main Proof

We now complete the proof of the dynamic broadcasting theorem.

Proof of the Dynamic Broadcasting Theorem: In a PMNB period each node that has

a packet to broadcast at the start of the period participates with exactly one packet. Let M

be the number of such nodes at the start of a period. Each of these nodes can be viewed as

making a reservation during the reservation interval. The duration of the subsequent broadcast

interval is at most MX time units.

PMNB intervals
——"

\ Depatture for System b

arrival

seT—Y—
M M

2
y *— »>y 4—

5
U X |U v

N— . Ja
Reservation Phases

Departure for System a

Figure 4.2: Reservation and broadcast (or data) intervals for the network broadcasting scheme,
and the auxiliary queueing system.

The dynamic broadcasting scheme will be called system “b” (for “broadcast”). We also

consider the limited service gated reservation system with shared reservation and data intervals

presented in the previous subsection. This system will be called system “a” (for “auxihary”).

Let the reservation interval of system “a” be constant and equal to V, and the service time of

a packet be constant again and equal to X.

Consider the following analogy between systems “a” and “b”. Let a data interval of system

‘a” correspond to a broadcast interval of system “0”, a user of system “a” correspond to a node

4.3. Analysis of the Dynamic Broadcasting Scheme

of system “b”, and a packet arrival of system “a” correspond to a broadcast request arrival of

system “6”. Note the similarities between the two systems. During a data interval of system “a”

(or broadcast interval of system “b”) at most one packet (or broadcast request, respectively)

from each user (or node, respectively) can be served. It is easy to see that the probability

distributions of the length of the reservation intervals, the data ‘(or broadcast) intervals,.and

the number of users (or nodes) served in a data interval are identical for both systems. In

particular, the length of a reservation interval of both systems is equal to V by construction.

The length of a broadcast interval of system “0” is equal to MX, where M is the number of

active nodes. Similarly, the length of a data interval of system “a” is equal to MX, where

M 1s the number of non-empty queues. The only difference between the two systems is that

in system “b” a broadcast request completes service at the end of a PMNB period, while in

system “a” packets complete service at times jX, j = 1,2,...,M, from the beginning of the

data interval.

The waiting time W, in queue for a packet of the auxiliary system is given from Eq. (4.10)

of Subsection 4.3.1 with X, X2,V, V2 replaced by X, X2,V, V2, respectively. The average delay

(queueing plus service time) for the auxiliary system “a” is

TT. =W, + X.

Let Ui be the average time between the beginning of a data interval of system “a”, and the

time that a packet served in this data interval starts transmission (see Fig. 4.2). Similarly, let

Ua be the average time between the end of the transmission of a packet of system “a” and the

end of the data interval in which it is served. Then it can be proved by using arguments similar

to those used in the proof of Theorem 1 that

 =U =aNX < V1

{(t can also be seen that

Ui = Us < E(N)X = ANW,X = pW,

where Eq. (4.3) was used. The average packet delay T} of the broacasting scheme is

. (N—-1

Li=Ta+U2=Wa+ X+aNX <W,+X+min(2x,om.):

This completes the proof. Q.E.L.

(4.11)

(4.12)

4.4. Performance of the Dynamic Broadcasting Scheme for Hypercubes

Note that for light load (p =~ 0) the dynamic broadcasting theorem gives

T, <15V +X, p~0

Until now we did not have to assume any particular topology for the multiprocessor network.

The dynamic broadcasting scheme and the dynamic broadcasting theorem apply to any network

for which a PMNB algorithm with certain properties exists. In Chapter 3 we have presented

such algorithms for a hypercube and a d-dimensional mesh network of processors. We believe

that such algorithms exist for many other regular topologies (e.g., folded-cubes, and meshes

of trees). In the next two sections we will apply the dynamic broadcasting theorem in the

hypercube and the mesh network of processors.

1.4. PERFORMANCE OF THE DYNAMIC BROADCASTING SCHEME FOR HYPERCUBESI

In this section we evaluate the average packet delay of the hypercube dynamic broadcasting

scheme. It 1s easy to see that the PMNB algorithms of Subsections 3.6.2 and 3.6.3 both

satisfy the conditions of the dynamic broadcasting theorem. We assume that one of these

two algoritms is used as a component of the dynamic scheme, and we apply the dynamic

broadcasting theorem.

The reservation interval of the hypercube PMNB algorithm of Subsection 3.6.2 consists of

the rank computation and the packing phases, and has duration V = 2dt, + 2. If the near-

optimal PMNB algorithm of Subsection 3.6.3 that does not allow the splitting of packets is used

then the reservation interval consists of the class computation part, and the rank computation

and packing phases of the main part, and has duration 2d+4dt,. The analysis to be given can

be carried out for both cases. In what follows we will give the results for the case where the

PMNB algorithm of Subsection 3.6.2 is used; if the algorithm of Subsection 3.6.3 is used, V

should be replaced by 2d + 4dt, throughout this section. During the reservation interval every

node s that has a packet to broadcast makes a reservation for the broadcast interval by setting

zs = 1 in the parallel prefix phase of Subsection 3.6.2 (and in the class computation phase if

the algorithm -of Subsection 3.6.3 is used). In addition to that, during the packing phase the

packets move to more favorable intermediate destinations. Following each reservation interval,

there 1s a broadcast interval, which is the last phase of the algorithms of Subsection 3.6.2 (or

4.4. Performance of the Dynamic Broadcasting Scheme for Hypercubes

Subsection 3.6.3), and has duration

MN -1
d N

time units. Each node can participate with at most one packet per PMNB period, and this

packet must have arrived prior to the beginning of that PMNB period.

We define the hypercube utilization factor as

AN—1)
p=——"— (4.13)

For a given load, p 1s equal to the ratio of the average total number of transmissions per unit of

time necessary to execute the broadcasts (each broadcast requires N — 1 transmissions), over

the total number of links of the hypercube. To find a necessary condition for stability for any

broadcasting scheme, note that AN broadcast requests are generated on the average per unit

of time In the hypercube, each requiring at least N — 1 transmissions to be completed. Since

there are dN links, a necessary condition for stability is

A\N(N —1) < dN,

O A

As we will see, our scheme does not guarantee stability for any p < 1, but it does for p very

close to 1.

The PMNB algorithm of Subsection 3.6.2 satisfies the conditions required by the dynamic

broadcasting theorem to apply. Using the dynamic broadcasting theorem, and substituting X

by (N — 1)/(dN), we see that the average delay T}, of the hypercube dynamic broadcasting

scheme using the PMNB algorithm of Subsection 3.6.2 satisfies

a(N-1) N-11 1 (A“WH —L pc = =T,=W ~ —} N 7 <W+-+mn pW, 57 ,

 A
y 1

_ p N-1 (1-p)V (1—pa—-AV)V
V = d= p=) N Ta," l—p—AV

_N-1 p L Y(1:5-05p— pa — AV)
 ON 2d(1-p-=2V) 1—p— AV

iV _ 9.0 i- 92.

(15)

4.4. Performance of the Dynamic Broadcasting Scheme for Hypercubes

p is given by Eq. (4.13), and

M+ M —-1)2M — M) Cl er
NM 2N — — 2 2N

7 — pVd |
1—2p

where M is the smallest integer which is larger than M. (M is the average number of broadcast

requests served in a PMNB period).

For any fixed load which satisfies 1 — p — AV > 0, we can see from Eqs. (4.14) and (4.15)

that the average packet delay is ©(V) = ©(d -t,). For an almost empty hypercube, p =~ 0, Egs.

(4.14) and (4.15) give

Ty S18V +5 = 3d +3 + 7, 00

For light load it may be preferable to use for each node a spanning tree rooted at that node

(see [Sta9l]). For p ~ 0, conflicts will be rare and the delay will be equal to d units of time (if

packets are not split), or equal to 2 units of time (if packets can be split). The increase of the

delay for light load is a generic drawback of reservation schemes.

The following theorem gives the order of magnitude of the average delay of the scheme at

heavy load.

TFheorem 2: In the limit, as 1 — AV — p — 0, we have

V5=0 (17)

Proot: Let p=1-~AV —¢ with € — 0. Then, as shown in Subsection 4.3.1, a — 0.5—0.5/N.

Let a =0.5—0.5/N —6with § — 0. Then from Eq. (4.14)

1 < Po V(0.54+ e+ 0.5p/N + pé) N 1 + min (YO +4 0.5p/N+ps) N -1
2de € d 2d

Vv ?)o(Ls2).
where the asymptotics in the previous expression are taken with respect to e. Q.E.D.

As proved in [Sta9l], the average delay of any dynamic broadcasting scheme grows at least

as £2 ((1 — p)~1).--Since the term pdV/(N — 1) goes to 0 (very fast) as N — oo, our dynamic

broadcasting scheme has good behavior for heavy load (p close to 1) when the number of nodes

of the hypercube is large.

4.5. Dynamic Broadcasting Scheme for d-Dimensional Meshes

I'he hypercube broadcasting scheme is stable for

0S Ts+ (2dt, + 2)d/(N —- 1)’

which is very.close to the maximum p that can be accomodated by any scheme (which is the

unit), and ponds to oF N — oo. The reason we get this remarkable result is the efficiency of

the PMNB algorithm of Subsection 3.6.2, and the small overhead introduced by the reservation

intervals (parallel prefix and packing phases). A similar result would be true if the algorithm

of Subsection 3.6.3 were used; the corresponding stability region is given by

PS TTTRTT+ (2d + 2dt,)d/N

4.5. PERFORMANCE OF THE DYNAMIC BROADCASTING SCHEME FOR D-

DIMENSIONAL MESHES

In this section we evaluate the performance of the dynamic broadcasting scheme for d-

dimensional meshes (with or without wraparound) with N = p? nodes. The analysis will be

similar to that of the hypercube case.

For d-dimensional meshes we have found algorithms that satisfy the conditions of the dy

namic broadcasting theorem. The analysis to be given applies to both the case where the

PMNB algorithm of Subsection 3.4.1 (where packets are split), and to the case where the al-

gorithm of Subsection 3.4.2 (where packets are split) is used. In what follows we will assume

that the former algorithm 1s used.

The duration of the PMNB algorithm for a d-dimensional meshes with N = p? processors

was found in Subsection 3.4.1 to be equal to

IemMn=XM+V

Vr?

1 N-1
X= ——

~d N

V=2d(p—- 1), + (1 + 3) (p—1),

)

(17)

and v = 1 for the d-dimensional array and v¥ = 2 for the d-dimensional torus.

4.5. Dynamic Broadcasting Scheme for d-Dimensional Meshes

The average packet delay is bounded as in Eq. (4.1), where X and V are given by Eqs. (4.16)

and (4.17).

The scalar

p=iNx = 2D
~d (4.18)

1s called the mesh utilization factor, for reasons that will become evident soon. To find

necessary conditions for stability for any broadcasting scheme, consider a d-dimensional array

or torus, the outgoing links of node (00---0) and the traffic that passes through them. There

are 2d such links for the torus, and d for the array. Thus, for stability we must have

Al V

0

(19)

(4.20)

no matter what broadcasting scheme we use. For the torus (y = 2) and a given load, p is equal

to the ratio of the average number of transmissions per unit of time necessary to execute the

broadcasts (each broadcast requires N — 1 transmissions), over the total number of links of

the network. For the array (y = 1), which is not a symmetric network, p equals the average

fraction of time during which the links of node (00 -- - 0) have to be used under any broadcasting

scheme.

Our algorithm is guaranteed to be stable for p <1 — AV. Using Eqs. (4.18) and (4.17) we

and

p
v

Pa

N — 1
dV

I

d1+ y(2d(p-Dtp+(141/7)(p-1))
p® 1

(4.21)

The right hand side of the preceding inequality 1s very close to the maximum possible load

that a d-dimensional array or torus could sustain. Indeed, as the number of nodes p¢ tends to

infinity, d?p/p? tends to zero. Thus, the right hand side of Eq. (4.21) tends to one, which, in

7iew of Eq. (4.20), is the maximum utilization that can be accomodated by the network.

For any fixed p in the stability region, Eq. (4.1) gives

I'=0(V) = O(pdty, +p),

4.5. Dynamic Broadcasting Scheme for d-Dimensional Meshes

where we have used Eq. (4.17). Since the diameter of a d-dimensional mesh is ©(pd), the

previous relation gives T' = O(pdt, +p) = O(tp - diameter + p) for fixed p in the stability region.

[n particular, for light load (A =~ 0, p = 0) we get from Eq. (4.1) that

T<15V+X, (p=0)

CHAPTER FIVE

Performance of Hypercube Routing

Schemes With or Without Buffering

In this chapter two different hypercube routing schemes. called the simple and the priority scheme.

are analyzed. We consider both the unbuffered and the buffered version of each scheme, and evaluate their

throughput for random multiple node to node communications. The results obtained are approximate, but

very accurate, as simulation results indicate, and thev are given in particularly interesting forms. We find that

little buffer space (between one and three packets per link) is necessary and adequate to achieve throughput

close to the case where infinite buffer space is available. We also consider two deflection routing schemes.

called the simple and the priority deflection schemes. \We evaluate their throughput using simulations, and

compare 1t to that of the priority scheme. We also present some results on the probability distribution of

the distance of packets from their destination in shortest path routing algorithms in regular networks.

5.1. INTRODUCTION

The traffic environment under which the routing schemes are analyzed is stochastic. In

particular, we assume that packets having a single destination are generated at each node of

a hypercube according to some probabilistic rule. The destinations of the new packets are

uniformly distributed over all the hypercube nodes. Packets have equal length and require one

anit of time to be transmitted over a link. We are interested in the case where the packets are

generated over an infinite time horizon. and we want to evaluate the average throughput of the

5.1. Introduction

network when it reaches steady state.

One-to-one routing has been extensively analyzed in the literature for a variety of network

topologies. A line of research that has been pursued is related to the so-called randomized

algorithms. In randomized algorithms a packet is sent to some random intermediate node before

being routed to its destination. Randomized routing algorithms were first proposed by Valiant

[Val82], and Valiant and Brebner [VaB81] for the hypercube network. they were extended to

networks of constant degree by Upfal [Upf84], and they were improved to achieve constant queue

size per node by Pippenger [Pip84]. Later. Mitra and Cieslack [MiC87], and Hajek and Cruz

(HaC87] proved similar results for the extended Omega network, and Greenberg and Leiserson

(GrL89] for the fat tree network. The results on randomized routing are usually of the following

nature: 1t is proved that for sufficiently large size of the network. a permutation task can be

executed in time less than some multiple of the network diameter with high probability. A

disadvantage of this line of research is that the results obtained are of an asymptotic nature, and

apply only to permutation tasks (or partial permutations. and concatenation of permutations).

Another disadvantage is that the comununication task is proved to be executed within the

specified time with “high probability” instead of “always”.

A second line of research, which is closer to our work in this chapter, is the evaluation

of the throughput of a network in steady state. A routing scheme, called deflection routing,

has been analyzed by Greenberg and Goodman [GrG86] for mesh networks (numerically),

Greenberg and Hajek [GrH90] for hypercubes (analytically), Maxemchuk [Max87], [Max89] for

the Manhattan network and the Shuflle Exchange (numerically and through simulations), and

Varvarigos [Var90] for hypercubes (for a priority deflection scheme. through the formulation

of a Markov chain). The analysis in these works was approximate (also, usually numerical),

or 1t involved simulations. Since deflection routing 1s a way to circumvent the need for large

buffers, buffer size played a minor role in these analyses. Dias and Jump [DiJ81] analyzed

approximately the performance of buffered Delta networks. Stamoulis [Sta9l] analyzed a greedy

scheme in hypercubes and butterflies for infinite bufler space per node. Ile analyzed a closely

related Markovian network with partial servers, and used the results obtained to bound the

performance of the hypercube scheme. without using approximations.

The results obtained in this chapter for the simple and the priority hypercube schemes are

given in particularly interesting forms. The throughput of the simple scheme (with or without

buffers) 1s given in parametric form as a function of the generation rate of new packets. The

parametric solution involves a single parameter. and is very close to a closed form solution.

9.1. Introduction

The throughput of the priority routing scheme is obtained from a (backward) recursion of

only d steps, where d is the hypercube dimension. This is apparently the first such analysis

of a priority scheme in hypercubes, with the exception of the analysis of a deflection priority

scheme in [Var90]. Our results are approximate but as simulations indicate, very close to

being accurate. We will devote a large portion of the chapter in examining the quality of the

approximations.

In our schemes, packets follow shortest paths to their destinations. However, they may

remain at some node without being transmitted even if there is a free link which they want

to use (this phenomenon is called idling). The switch used at the nodes is simple, fast, and

inexpensive, and uses O(d) wires as opposed to the ©(d?) wires of a crossbar switch. Packets can

be dropped due to the unavailability of buffer space. In the simple scheme, packets competing

for the same buffer space have equal priority, except for the new packets, which have the lowest

priority. The priority scheme differs from the simple scheme in the way that contention over

buffer space is resolved. In the priority scheme, packets which have been in the network longer

have priority. The priority scheme has significantly larger throughput than the simple scheme.

especially when the buffer space is small and the load is heavy.

Limited buffer space is a serious consideration when designing parallel computers. One ex-

pects massively parallel machines to have very little buffer space per node. This is because

parallel and serial supercomputers must be built from the same number of components (the

restrictions posed by the VLSI technology are the same for the two types of computers), which

in parallel computers have to be divided among more processors. If we are using packet switch-

mg for the interprocessor communications then the only way to avoid packets being dropped is

deflection routing (another way is the CSR protocol that we will propose in Chapter 6). The

Connection Machine II, which with its 65.000 bit processors is the biggest parallel computer

currently available, uses deflection routing and has space only for the packets being transmit-

ted. In Section 5.6 we consider two deflection schemes, the simple and the priority deflection

scheme, and evaluate their throughput by using simulations. The deflection schemes outper-

form the unbuffered priority scheme for hvpercubes of large dimension. For uniform traffic, the

throughput of the priority deflection scheme seems to tend to the maximum possible when the

dimension of the hypercube increases. Deflection routing has, however, several disadvantages

see Section 6.5), and it requires the use of crossbar switches at the nodes.

In packet switching schemes, where the dropping of packets cannot be avoided. some feedback

and retransmission protocol has to be superimposed on the routing scheme, at least to handle

5.2. Description of the Schemes

the packets which are crucial for the execution of an algorithm. The retransmission strategy

1s not considered in this chapter, where we are only interested in the throughput and the

probability that a packet is dropped, for a given buffer space, as a function of the offered

traffic. The actual throughput may be smaller than what we will find, since we are neglecting

the effect of retransmissions. The results of Subsections 5.3.2 and 5.4.2 will indicate that one

or two buffers per link achieve throughput close to that of the infinite buffer case, even for high

load. Increasing the buffer space further increases the throughput only marginally, and may be

characterized as an ineffective use of the hardware resources.

The chapter is organized as follows. In Section 5.2 we describe the schemes, and the node

model. In Sections 5.3 and 5.4 we evaluate the throughput of the simple and the priority

scheme, respectively. The first subsection in each of these sections deals with the unbuffered

case, while the second deals with the buffered case. In Section 5.3.3 we look at the asymptotic

behavior of the throughput of the hypercube as the number of nodes increases, and the buffer

space per link is fixed. In Section 5.5 we comment on the quality of the approximations used,

and present simulation results. In Section 5.6 we define the simple and the priority deflection

schemes, present simulation results on their throughput, and compare it with the throughput

of the priority scheme of Section 5.4. In Section 5.7 we present an histogram of the packets

with respect to their distance to the destination in any shortest path routing scheme. Section

0.7 can be read independently of the other sections because its analysis 1s of a more general

nature.

5.2. DESCRIPTION OF THE SCHEMES

[n this section we introduce the node model, and describe the simple and the priority routing

schemes.

Each node has a queue for each of its outgoing links. The queue of node s that corresponds

to link 7 is called the i-th link queue, and is denoted by (5). A link queue is composed of two

buffers, which can hold k + 1 packets each. The first buffer is called the forward buffer and is

denoted by Q!(s). The forward buffer can be used only by packets whose routing tags have

the ith bit equal to one, that is packets that have to cross the ih dimension. The second buffer.

denoted by Q%(s), is called internal buffer. and can be used only by packets that do not have

5.2. Description of the Schemes

to cross the ith dimension. The case k = 0 corresponds to the situation where a packet received

during a slot is transnsmitted at the next slot (or 1t 1s dropped), and is called the unbuffered

case.

We denote by @ the bitwise exclusive OR operation between binary numbers. Then the

neighbor of node s along the ith dimension has binary representation s @ e;. The queues of

the nodes are linked in the following way: the internal buffer Q}(s) is connected (internally)

to queue Q;_1)mod a(s) of the same node, while the forward buffer Q,;(s) is connected to queue

Q(i—1)mod a(s D e;) of the neighbor node s @ e, (see Fig. 5.1). This router restricts the class

of switching assignments that can be made. It is, however, much simpler, faster, and less

expensive than a crossbar switch (see also relevant comments in Section 6.5).

Os) node s ahs
Jd li 3

- <KFi>c
1]

Faee \ link 1
a

CL]

1rs

node s+e,

CT Jefe

C1

——[_
Z|

1]

Each buffer has space for k+1 packets

—T i

|
_k

|

Figure 5.1: A node of the hypercube. For a comparison with other node (router) models. see
Fig. 6.7 of Section 6.5.

In both the simple and the priority scheme, the packets traverse the hypercube dimensions

in descending (modulo d) order, starting with a randomly chosen dimension. In particular,

consider a packet that arrives at queue Q,(s) (either from buffer Qi)mod 4(8) of the same

node, or from buffer Qs — mod a(s ® e,-1) of a neighbor node, or a new packet). Then the sth

bit of its routing tag is checked. Depending on whether this bit is a one or a zero, the packet

claims buffer Q}(s) in order to be transmitted during the next slot to queue Qii—1)mod d(5 PD €;)

5.2. Description of the Schemes

of the neighbor node s @ e,, or it claims buffer Q%(s) in order to be internally passed to the

next queue Q(i-1)mod 4(8) of the same node. In both cases collisions can arise because more

than one continuing and new packets may claim the same buffer of a link. When collisions

occur packets are dropped if there is inadequate space at the buffer.

In the simple scheme conflicts over buffer space are resolved at random, with the exception of

the newly generated packets which have the lowest priority. In the priority scheme the packets

that have been in the system longer have priority when they compete for buffer space, and the

packets that are dropped are those that have travelled less. If two packets have travelled an

equal number of links then one of them is dropped with equal probability. Continuing packets

have again absolute priority over new packets.

In the unbuffered case packets are removed from the network exactly d time units (slots)

after entering the network. Since the bits of the routing tag of a packet are cyclically made

equal to zero, packets are delivered to their destination with delay d, unless dropped on the

way. A packet may arrive at its destination earlier. but it is not removed before the dth slot;

during the last slots it may travel from link-queue to link-queue of the same node until the

time of its removal. However, in the buffered case, packets may wait in some buffers, thereby

potentially increasing their total travel to more than d time units.

We denote by po the probability that a new packet is generated during a slot and claims

a buffer Q!(s), j €1{0,1}, i € {1,2,...,d}. At most one new packet can claim a link buffer

during a slot. New packets denied acceptance to the network, or packets that are dropped are

not retransmitted (memoryless property). One can visualize this model for the arrival process

of new packets in the following way. Whenever a link is empty, a packet that wishes to use that

link 1s requested, and with probability po such a packet exists. If, for example po = 1/2, and a

link is empty 2/3 of the time, then the source inserts a packet 1/3 of the time. We will refer

to po as the probability of access. Other models for the arrival process can be incorporated in

our model, as long as the new arrivals at each link are independent from the arrivals at other

links, and pg can be calculated.

Note that for both schemes under investigation, the internal and the external links are

mathematically equivalent. In order to see this, consider a packet located at the th link queue

of a node s which does not have to cross dimension i, and is therefore passed to the i —1 mod d

queue of the same node. This event happens with probability equal to that of the event where

a packet has to cross dimension 7 and is sent to the i — 1 mod d queue of node s Be.

5.3. The Simple Scheme

5.3. THE SIMPLE SCHEME

In this section we evaluate the throughput of the simple scheme. The unbuffered case

1s analyzed in Subsection 5.3.1, while the buffered case is analyzed in Subsection 5.3.2. As

already mentioned, in the simple scheme all packets have equal priority, except for the new

packets which have the lowest priority. The analysis to be given is approximate, but Very

close to being accurate as Section 5.5 will indicate. We will find a parametric expression that

gives the throughput as a function of the probability of access po. The parametric solution

Involves a single parameter, and is almost as elegant as a closed form solution. We consider

this important, since most of the results found in the literature for the steady state throughput

of various networks and routing schemes were given in a less direct way (typically they were

numerical or simulation results).

A packet will be referred to as a packet of {ype i when it has been transmitted (on forward

or internal links) 7 times, including the current transmission. A packet received at a node with

type different than d is a continuing packet. This definition does not include packets that have

been received during previous slots, which are called buffered packets. Packets generated at a

node are called new packets.

5.3.1 Analysis of the Simple Scheme Without Buffers

In this subsection we consider the unbuffered case where each link buffer can hold at most

one packet, the one being transmitted (internally or to a neighbor node).

We denote by p,, i = 1,2,...,d, the probability that an 7-type packet is transmitted on a

particular link at time ¢. We also denote bv ¢ the probability that no packet is transmitted

over a link at time ¢. In steady state the p,’s and e are independent of ¢, and by symmetry

they are independent of the link. Clearlv. we have

d

c+) po=1
a|

(5.1)

Consider a particular link / (for example, the one connecting Q!(s) with Qi-1)mod d(s + €))).

Call {1 and ls the internal and the forward link. respectively, that lead to I (see Fig. 5.2). We

make the following approximating assumption

5.3. The Simple Scheme

Q 0s)

| Q,_,(s)

Q. (s)

L

Q _ (ste)A. (ste, 1 H
|

Jn

Figure 5.2: A link /, and the two links leading to it.

-

.

*__
»,

AN

\!
yV|

Approximating Assumption A.5.3.1: Events in /; are mdependent of events in /» during
the same slot.

In our schemes, a packet transmitted on /; and a packet transmitted on ls have used in

she past links belonging to different subcubes of the hypercube. However, events in I; are not

independent of events in ly, as will be explained in Section 5.5. Nonetheless, we believe that

the approximating assumption A.5.3.1 is a very good approximation, as will be explained in

Section 5.5 and supported by simulation results.

Let Ej, j = 1,2, be the event that a packet P of type © — 1 arrives on link /;, requests link I.

and gets 1t. Then, for i = 2,3,...,d, the probability p, that a packet of tvpe 7 is transmitted

on link ! at some slot is

pi = Pr(Ey) + Pr(Es) = 2Pr(E,

Che probability that a packet P of type i —1 arrives on ly 1s equal to p,_;, and the probability

shat this packet will request link / is 1/2. Thus.

pi = pi—1 Pr(P not dropped). 1=2,3.....d.

Under the approximating assumption A.3.3.1 the probability that a packet of type different

than d arrives op link I; and claims link 7 is equal to
5.3. The Simple Scheme

d-) oi;

Since collisions are resolved at random, such a packet will cause packet P to be dropped with
orobability 1 /2. Thus

d—

=i (12 Zips :
| 4 : rt =2,3,..4d

* 9)

Note that Pa does not appear 1n the Summation above because Packets of type d are removed
and do not clajm a link.

The probability p, that a packet of type 1 is transmitted on link 1s the product of two
probabilities:

(1) The Probability that po packet arrives oy {i or I, requesting link I: this happens with
probability

d— “

[1- Ein2

(2) The probability that a new packet is generated at {; this happens with probability Po.
Therefore, p,; is given by

yd, 2
P1 = pg t — Siti)

?)
Similarly, the probability e that a link is CMPpLy 1s equal to

 td —
o wm

d=1_ \ 2

(1 — po) [i ~ =2
~~ =

“i

l=py+e=1—
d—1

> Ps
i—=1 2)

where 4 will be treated as a free Parameter. Then Eqs. (3.2)-(5.5) give

Pd = 20 (1 +0)}(3 +6) d-]

J)

ft
IP (1 =pe)(1 +6)

5.3. The Simple Scheme

Adding Egs. (5.6) and (5.7), and taking into account that 6 = Pd + € we get

1 | 1

0 = pogg(1+ 0R(3 + 0) + (1 = po)(1 +01,

which
46 — (1 + 0)? :

Po= "17 234+ 0)!_(1+9)Fr (1+ 023 + 0) — (1+)
Equations (5.6) and (5.8) give the relationship between py and po in parametric form.

Since there are 2d (internal or forward) links per node, the throughput R per node is

R = 2dpy.

gives

(5.8)

An upper bound on R is two packets per node; this can be proved by using arguments similar

to those of Subsection 5.6.2.

Note that the feasible values of the parameter 0 range continuously from 1 (when py = 0,

which gives e = 1, pg = 0) to a small number (when po = 1, which gives e = 0 and pa less than

1/d). By giving values to 8 we can find the corresponding values of po and R. The fact that

the range of # is not the entire interval [0,1] does not create any problem, since the values of 4

which are not feasible give py > 1.

Figure 5.3 illustrates the results obtained for d = 11, by giving several values to 6 and

finding the corresponding values of po, and R. To evaluate the results it is useful to have in

mind typical values of the traffic load that appears in real systems. Measurements reported in

[HsB90] for numerical and simulation algorithms have given that in almost all cases links were

idle for more than 95% of the time. In our model such loads correspond to values of pg much

less than 0.051

5.3.2. Analysis of the Simple Scheme With Buffers

In this subsection we analyze the buffered version of the simple scheme. In particular, we

assume that each link buffer can hold up to & packets. in addition to the one being transmitted.

! This value is probably an overestimation. If the measurements reported in [[IsB90] corresponded

so uniform traffic, then the corresponding po would be less than 0.05/d; however, the communication

patterns in the measurements of [HsB90] may have had locality properties. Note also that even with

infinite buffers the case 2dpy > 2 would correspond to an unstable system, since 2 is the maximum

throughput that can be sustained.

5.3. The Simple Scheme

Simple Unbuffered Scheme, d=1|

3 |

NY 4

-»
-

0.3 ~
hut
D

fe
» 0.2

=

3)

]. nN
- ;

.
-

Y 9 ”

Figure 5.3: Sunple scheme without buffers (d=11).

The scheme is the same with that analyzed in Subsection 5.3.1 with the difference that when

packets collide one of them is transmitted and the other is stored, 1f there is enough space

in the buffer, or dropped, otherwise. Therefore, the analysis of Subsection 5.3.1 corresponds

to the special case ¥ = 0 of this subsection. Continuing packets have priority over buffered

packets or new packets when claiming a link. New packets are admitted in the network only

if the buffer where they enter is completely empty. A new packet 1s available at a link buffer

with probability po during a slot.

We will find a relationship between the throughput py per link and the probability of new

arrivals pg. The relationship will be given in parametric form. mvolving a single parameter.

Note that corresponding results in the literature are typically obtained through the use of

numerical methods and/or simulations ([DiJ31], [GrG86], [Dal90a). [Max89], [Var90], [Bra91]),
or they are of an asymptotic nature in the number of processors or in the buffer size ([GrH90],

Stad1l).

5.3. The Simple Scheme

In order to analyze the buffered version of the simple scheme, we need in addition to the

approximating assumption A.5.3.1, the following approximating assumption.

Approximating Assumption A.5.3.2: The arrivals of packets at a buffer during a slot are

independent of the arrivals at the buffer during previous slots. |

Independence approximating assumptions are found in most throughput analyses of buffered

routing schemes of direct or indirect multiprocessor systems.

We denote by b;, i = 0,1,...,k, the probability that there are ¢ packets at a buffer at the

beginning of a slot. The remainder of the notation used in this subsection 1s the same with that

ased in Subsection 5.3.1. Since there are two links (one forward and one internal) leading to a

buffer, at most two continuing packets may arrive at a buffer during a slot. Thus, for 7 # 0,4

we have

b; = b, Pr(one arrival only) + b;—1 Pr(two arrivals) + bi41 Pr{no arrivals). (5.9)

In getting Eq. (5.9) we have used the approximating assumption A.5.3.2 in the following way:

we have assumed that the events of one, two, or no arrivals at a buffer are independent of the

arrival process at previous slots, and therefore of the number of packets found in the buffer.

Calculating the probability of one, two or no arrivals of continuing packets at a link buffer, and

substituting in the preceding equation we obtain

d—-1 d-1 _ d-1 2 d-1 3
 = 2b; | LgmPi| LymPiLibs + bya poisP pon (5.10)

2 2 2 2

For bs and b; the equations are slightly different:

d—1 d—1 d—1 2
-1 1, i-1.

bo = 2bo (1 - Zoos2)Lily5+(ho + D1) g — =i2)

d-1 d—
bj. = 2b; | _ 2am Ps Toil S42 p; 22 2 + (br + bi-1) A ” La

7)

Letting
d-1

0 =pgt+e= 1-> ph
1=1

Eqs. (5.10)-(5.12) can be rewritten as

1401-16 AN 0°
hi = 2 bi + bis (+) + by +1 (4+) oi =1.2,...,k—1, wt

s)- ’

5.3. The Simple Scheme

14+01—4 1+6)°
bo = 2bo ———5— nin (ba + by) (12)

1+61-0 i)bp = 2p ———— + (bp + by) [| ——k Eo + (+ bua) (5
The quadratic equation corresponding to the second order recursion (5.13) is

1+0\? 1— 6?) 1-0)’2 (—— —_— =] — = 0. (55) + (33 (150) =o

(5.14)

L7H)

which has roots

f-

3 (3 ~ 2)72 \1+0

Thus the solutions to the recursion are of the form

1 — 0 if
b, = Rt, =0.1,...Lk —1a+ f (3 77) t= () 1

for some constants « and #. Taking into account Eqs. (5.14) and (5.15) we obtain after some

algebraic manipulation that

1—0 2
bi = b (122) } =)

0 140 1 1 =0,1,...,k%. (5.16)

To verify this equation, use it to express 4; in terms of bo in Eqs. (5.13)-(5.15), and see that

these equations hold identically for all 8. Since

,

56.=«1 :

we finally get that
\ 2

C_1- (3)
0 oh

1—- (=) 7)

for 8 € (0,1).

For k = 0 (unbuffered case) we have by = 1. For infinite buffer space and # # 1 we have

1-0\°bo=1- (120) k=0 127) for k = x. (5.18)

The probability that a buffered packet is of type t — 1, for 2 <i < d, is proportional to p,_,

because all the packets have the same priority during collisions. Therefore.

. . Dy —1

Pr(buffered packet is of type i — 1) = CE .
Yo yl

3.3. The Simple Scheme

A packet of type i = 2,3,...,d transmitted over a link is either a continuing packet or, if such

a packet does not exist, it is a packet that was buffered. The probability that a continuing

packet is transmitted over a link is given by Eq. (5.2). The probability that a buffered packet

1s transmitted as an i-type packet is the product of three probabilities: (i) the probability that

no continuing packet requested the link, (ii) the probability that the buffer was non-empty, and

(iii) the probability that the packet at the head of the buffer was of type : — 1. Thus.

d—1
Dr = Pi-1 1 _25-1Pj 54d 2

g 2 (1 ~ bo)

= pi-1 (te) + 0+1 2 | >ish pi
 >

A)

where the first term accounts for packets which arc received and transmitted at the immediately

following slot, and the second term accounts for packets which were buffered. Since new packets

are accepted in the network only when there are no continuing or buffered packets, we have

d—1 : »
: 2 Pn: 2

9.20)

A link is empty if there are no continuing, buffered or new packets that want to use it. Thus,

d—1 2 2
=1 Pj 1+0Y

= (1 — po)bo | ZsmiPi = (1 — po)bo at
2 2

“quations (5.19) and (5.20) give

_ pabo(8 +1) ((1+ 68)2\¢p= PCE (5404 1-0 E200
Adding the last two equations, substituting § = py + e and solving for po we obtain

ho(l + 0)? — 40

bo(1+0)2 = MUEHE (34g 4 (1 — ho) ill)

)21)

(5.22)

where bo 1s given by Eq. (5.17). Equations (5.21) and (3.22) give the relationship between py

and po In parametric form with parameter # The throughput per node is again

2— £1),

in the case of infinite buffer space. bg is given by Eq. (5.18), and Eq. (5.21) is simplified to

pa = pafl. for k = ~~",

5.3. The Simple Scheme

Simple Scheme with buffers (d=10)
k=buffer space

D
=
o

-

wt

a
 ~~

-—

 yr
| -

~

*

pf
spk

FN

A
~~

_—
J——
ll”

FE mT—

ere]
————{ll

 nH

a

X k=0

'® k=1

0 k=2

A k=3

HN k=4

|@ k=5

=

2)
 gy 0 U J. J.

'

& 3 -
—

»
p

1)

1)

Figure 5.4: Throughput per node of the suuple scheme for various buffer sizes.

As k — oo, Eq. (5.22) takes the indeterminate form 0/0. By using L’ Hospital’s rule we get

after some calculations that

Pp 1-5 for A0 = —, for hk =oSd=1) or x

Combining the last two equations and using the fact R = 2dp,; we obtain

2dpq
r= 2 = 4

13 old = 1) forkt= x

For po = 1 and infinite buffer space, the throughput RR is equal to two packets per node as

expected.

2.3. The Simple Scheme

In Fig. 5.4 we have plotted the throughput R per node as a function of po for several buffer

sizes k. It can be seen from this figure that a buffer space of two or three packets per link is

adequate to achieve throughput close to the maximum.

5.3.3. Asymptotic Behavior of the Thoughput

In this subsection we will examine the asymptotic behavior of the throughput of the hyper-

cube for a particular value of the buffer size k, as the number of nodes increases.

Combining Egs. (5.20), (5.21), and (5.17), we obtain after some calculations that

04

1

2g IL d--

(1+)? (122)? (L=g y+(3404+ = EE
(3)

(1”

 yy =
I,

140 4)

Then Eq. (5.23) can be rewritten after some calculations as

£8 = | 1 = mmStm—rtegeassP1 201+ y)(1 - a) (5.25)

Since the free parameter 4 ranges continuously from some small number to one, y can take all

the values from zero to some number close to one. We choose

1
yy = dd” EE (5.26)

This value of y corresponds to a fixed value of py: therefore, the corresponding throughput is

a lower bound on the maximum possible throughput. As d — oo, the right hand side of Eq.

5.23) tends to a positive constant ¢ = e—2. that is

hm Pd _¢> 0, for y chosen according to Eq. (5.26)
— xa D1 3.47)

For y given by Eq. (5.26) we get 1 — 8 = Sel pi =0 (a=). Since

Me Pct, fori=12...d-1
P1 P1

}

5.3. The Simple Scheme

we get In view of Eq. (5.27) that for y given by Eq. (5.26) we have p; = O(pg), fori =1,2,...,d,

and
1

ri=0 (or).JT TT
Therefore the maximum total throughput H of the hypercube is

= aap = :(log N) TI
(*.29)

In the case that y = o(d TET) we can similarly find that pg; = o (471m), and H =

0 (NV/(log NTT) In the case that y = Q(d™TT), where Q stands for strictly larger or-

der of magnitude, Eq. (5.25) gives pg/p1 — 0 as d — oo. These observations together with Eq.

(5.29) give

NYE:0 +1
(5.30)

For y = o(d™741) (or else, po = o (17a +71), 1.e. small load), we expect almost all of

the packets to succesfully reach their destination, while for y = O(d~ =) (or else, pg =

0 (17am) we expect a constant fraction of the packets to reach their destination. For

y = (d=) (or else, po = Q (1am), almost all of the packets are dropped (for large d).

The dependence of the total throughput of the hypercube on the buffer size per link 1s

a very interesting one. Having buffer space for k = 1 packet (in addition to the one being

transmitted) increases the throughput significantly. Increasing & further gives diminishing

returns. For k = oo, Eq. (5.27) gives H = O(N) as expected (in fact then we have H = 2N).

For the unbuffered case we have H = O(N /log NV).

It 1s useful to compare Eq. (5.30) with the throughput of another routing scheme, which we

will call greedy idling scheme, in a Q-dilated hypercube. A Q-dilated hypercube is a hypercube

whose links have capacity @, that is. each link can be used for up to @ packets. In the greedy

idling scheme, packets traverse the hypercube dimensions in descending order. starting always

with dimension d. This scheme has been analyzed by Koch in [Koc88] and [Koc89] (the case

where the capacity is equal to one was previously analyzed in [Pat81] and [KrS83]). The

maximum total throughput of the greedy idling scheme in a Q-dilated hypercube 1s given by

N

(log NV)@

From the preceding equation and Eq. (5.30), it seems (modulo our approximating assumptions,

since Koch’s result is rigorously obtained) that increasing the buffer space by a constant factor

5.4. The Priority Scheme

impoves the throughput significantly more than increasing the capacity of the links by the same

factor. This means that less packets are dropped when we have & buffer spaces per link than

when we have k& wires per link. This holds on the average, since we can find both scenaria

where buffer space helps most, and scenaria where capacity helps most ([Le192b]).

5.4. THE PRIORITY SCHEME

In this section we will evaluate the throughput of the priority scheme. Recall that in the

priority scheme the packets that have been in the system longer have priority when they compete

for a forward or an internal link. If two packets have travelled the same distance then one of

them 1s transmitted with equal probability. New packets are admitted at a link buffer only

when no continuing packet claims this buffer. We analyze the unbuffered priority scheme 1n

Subsection 5.4.1, and the buffered priority scheme in Subsection 5.4.2.

5.4.1. Analysis of the Priority Scheme Without Buffers

In this subsection we analyze the unbuffered case. Since packets which have travelled more

have priority when claiming the same link, the packets of type 7 are not affected by the existence

of packets of type 1,2,...,72— 1 or new packets. Let p, and ¢ be as defined in Subsection 5.3.1.

Consider a link [, and the two links /; and /» leading to 1t. Making again the approximating

assumption A.5.3.1 and reasoning as in Subsection 5.3.1 we find that

pi = pi—1 Pr (packet of type : — 1 not dropped) (5.31)

A packet P of type z — 1 that arrives on link /; 1s dropped if and only if one of the following

two events happens:

“vent 1: There was a packet of type i. 7+ 1,...,d—1 transmitted on link >» during the previous

slot and this packet had the corresponding bit of the routing tag such that [was chosen. This

can happen with probability
1 d-1

3 >_ Dis
—1

}

5.4. The Priority Scheme

Event 2: A packet of type i — 1 was transmitted on link /5 during the previous slot, the ith bit

of its routing tag was such that ! was chosen, and that packet was chosen (with probability

0.5) instead of P. The probability of this event is

D,
 29)

Since Events 1 and 2 are mutually exclusive, Eqs. (5.31)-(5.33) give

d—1
1 Pi-1 Ca=r (1-30-15). i=2.3.....d

j=

(5.34)

For pi; we have a slightly different equation:

d—1__\ 2

p1 = Po (1-222) i= 35)J

where po 1s the probability that no new packet 1s available and

d— 9

€ _ > LP)2

1s the probability that no continuing packet that wants to use link { arrives on ly or I». The

probability that a link 1s empty can be seen to be

d-1__ \ ’

e = (1— po) (1- Ezine) 7.30)

For a particulal value of pg we can use Eqs. (5.34)-(5.36) to find the corresponding unique

values of pg_1,...,po. This can be done by viewing Eq. (5.34) as a backward instead of a

forward recursion, solving with respect to p,~1, and keeping the solution that gives a legitunate

probability distribution (the other solution of the quadratic equation (5.34) gives p;—1 > 1) we

obtain
d—1 d—1 2

Y pi— (2-30) —4p,., 1=0... .d
Pt 7=1

For pg we have from Eq. (5.35) that

po = —
of — 2

(i - pt

(5.07)

bo)

Giving a value to pg we can obtain the corresponding value of po by solving the backward

recursion. The remaining performance parameters of interest (for example, the probability e

5.4. The Priority Scheme

Priority unbuffered scheme (d=11)

0

] R

3 A

- 4 i

0 2

4

© R: throughput per node

® ee: probability that a link is empty

i
“) La

0 - 1 J.6 0 io
D ~

Figure 5.5: Priority scheme without buffers (d=11).

that a link is empty, and the mean throughput per node R = 2dpy) can then be computed

easily. Figure 5.5 illustrates the results obtained for d = 11.

Let ps = F(po), where the function F is not known in closed form. We already presented a

simple recursion to compute ps = F~1(py) for each py. It can be proved by induction that F-1,

and therefore F', is monotonically increasing. This shows that F' is 1-1 (this is also evident from

the fact that Eq. (5.34) has a unique solution in the interval [0,1]), and the maximum of py

and R occurs for pp = 1. This is a desirable characteristic of the priority scheme. It indicates

that if we superimpose on it a retransmission scheme. then the system will behave well when

congestion arises. Recall that for the simple scheme the relationship between pg and pg is not

1-1 (at least for the unbuffered case), and the maximum throughput is attained for po much

less than one.

5.4. The Priority Scheme

5.4.2. Analysis of the Priority Scheme with Buffers

In this subsection we evaluate the throughput of the priority scheme when there is buffer

space at each link. In particular, we assume that each buffer can hold up to k packets in

addition to the one being transmitted. When two packets arrive at a node and request the

same link, one of them is transmitted over the link, and the other is either stored (if there is

enough space in the buffer), or dropped. The packet which is transmitted is the one that has

crossed more forward and internal links; if the two packets have travelled the same distance

one of them is selected at random. The analysis of Subsection 5.4.1 corresponds to the case

k = 0 of this subsection. Continuing packets have priority over buffered packets or new packets

when claiming a link. New packets are admitted in the network only if the buffer where they

enter is completely empty. The buffers are FIFO. and packets in the buffer that have higher

priority do not overtake packets of lower priority that are in front of them. If we were using a

priority discipline within the buffer then we could probably obtain higher throughput, but the

system would be more difficult to analyze.

In order to analyze the buffered priority scheme we make again the approximating assump-

sions A.5.3.1 and A.5.3.2.

Following the notation of Subsection 5.3.2, we denote by b;, + = 0,1,...,k, the probability

that there are ¢ buffered packets just before the beginning of a slot, and we define the parameter

0 = pa + e. The probability b, is given again by Eqs. (5.16) and (5.17), which we repeat here

for completeness:
1-8 2

by=bg|—— a=0.1.....k(155) t= 0,1 A

 1-5)
ho = ———

1 - (=)

 MD 39)

710)k «

with 6 € (0,1).

The probability that a buffered packet is of type i — 1, for 2 <i < d, is proportional to

> d—11—1Di-1 (2 + >) ;
j=

since only conflicts with packets of types i — 1,i....,d can put such a packet in the buffer.

Therefore, a buffered packet is of type i — 1 with probability

$e d—1 hm d—1 be d-1Pi-1 (Bi + Dim Ps) Pi-1 (25 + 3 imi pi) Pr-1 (252 + Dim pi)
di=1 bi (2 + D icis pi) 0.5 . [T4 pm))

5.4. The Priority Scheme

Priority Scheme with Buffers (d=11)
k=buffer size

A me ——— -

—e—LL

BN ap ——

—

-

 ————E—

1)

mt
v

8 k=0

[® k=1
| k=2

© k=3

 BH k=4

LL

=
—

El

n

UU) 0 1.0

Figure 5.6: The throughput of the priority scheme for various buffer sizes.

The probability that a packet of type ¢ > 1 1s transmitted over a link 1s

d—1 d— 7 Pi-1 d—1
 a. 1 — 3ii P; pia +(1- > ici Pj (1-5 yo 2 up pi)

Dv = Di—1 9 4 9) a 0.5 . (1 —- 0)?

(> 2) ps Pi-1 (1+0)* pii1 |cp (1mm pen) AHO, (PRLS is 5.41
P A 5 1 to ho) pr —1 5 rp 7 > ()

where the first term 1s the same with the right side of Eq. (5.34) and accounts for packets that

were received during the preceding slot, and the second term accounts for packets that were

buffered. Since new packets are accepted in the network only when there are no continuing or

buffered packets, we get

Saini) 1+0)°
pr=pobo | 1 = ——— | =pobo {——] .

2 2

The probability that a link 1s empty is equal to
d—1 2 7
=1 Dj 1+0\°

e = (1 = po)bo (, - Loin) = (1 = po)bo (2)

9.4. The Priority Scheme

Priority Scheme with Buffers (d=11)

| 2
<
os

1.0

p=

0.8

0 cl \

MMa
wrJ

 ao k=0

® k=1

| HB k=2
® k=3

. BR k=4

‘
3}
=

< 0.4.
 NW

ve
|

0.2
nd
-

3 a 0
1 0

Figure 5.7; Packets delivered to their destination as a fraction of those accepted in the network

for the priority scheme and various buffer sizes.

We used a Gauss-Seidel type of algorithm to find numerically p,’s that satisfy Egs. (5.41)

and (5.42). We did not prove the uniqueness of these solutions, but the results obtained for

different initial conditions were the same. The results obtained are shown in Figs. 5.6 and 5.7.

[n Fig. 5.6 we have plottted the throughput R = 2dpy per node as a function of py for several

buffer sizes k. Figure 5.7 illustrates the ratio py/p;. that is, the fraction of admitted packets

that arrive at their destination, for several values of the buffer size k. As is evident from these

figures, a buffer of size one or two is adequate in practice to achieve good throughput, and low

probability of a packet being dropped. For po < 0.05, which is the load region where we expect

systems to operate (see footnote in Subsection 5.3.2), having no buffers does not degrade the

performance significantly.

Comparing Fig. 5.4 with Fig. 5.6 we see that the priority rule increases the throughput

significantly. The priority rule is designed to decrease the waste of resources caused from

packets being transmitted many times and then being dropped. Note that our priority scheme

(especially the unbuffered version) is so simple that it can be implemented entirely in hardware.

5.9. Quality of the Approximations, and Simulation Results

A similar priority rule was examined in [Var90], and was found to improve the throughput of

deflection routing as well. The results on the priority deflection scheme will be outlined in

Section 5.6.

5.5. QUALITY OF THE APPROXIMATIONS, AND SIMULATION RESULTS

The unbuffered simple scheme is similar to the greedy routing scheme of a folded butterfly. A

folded butterfly is a butterfly where the nodes of the last stage are the same with the nodes of

the first stage (see Fig. 5.8). Each link of the folded butterfly has a buffer for exactly one packet.

the one being transmitted. All the nodes of the folded butterfly are seen as potential sources.

A new packet is available at a link buffer (including the links of the intermediate stages) with

probability po. An internal link in our schemes corresponds to a straight link of the folded

butterfly, that is, a link that connects a node of some stage with the node that Las the same

binary representation of the next stage. Similarly, a forward link in our schemes corresponds

to a cross link of the folded butterfly, that is. a link that connects a node of a stage with the

node whose binary representation differs in one bit of the next stage. The unbuffered priority

scheme also corresponds in a natural way to a priority greedy scheme in a folded butterfly.

Consider a link /, and the two links /; and Il» that lead to it. We want to investigate the

quality of the approximation A.5.3.1 used in the analyses of the unbuffered simple and priority

schemes. In particular, we are interested in the following questions:

l. Are the packet arrivals during a particularslot T on link /; independent of the packet arrivals

on link /3 during the same slot?

2. If they are dependent, where does the dependence come from, and how strong 1s 1t”

Lemma 1: Events on links /; and Il; at time 7’, are dependent only through events that

happened at time T — d and before.

Proof: By the symmetry of the system we can assume without loss of generality that the

links {; and I» are of dimension d.

The sequence of links traversed by a packet, together with the corresponding times will be

referred to as the fime-path of the packet. Let Py = {(x1.t1),(z2,t1 + 1),...,(l1,T)} be the

t{ime-path of a packet that passes from /; at time T. We use the same symbol P; to denote the

3.9. Quality of the Approximations, and Simulation Results

000

701

210

N11

Nn

0

1 0

"11

——

a
¥

 EE EEE E———.
>
. \ TT

AN Sl
eee———

epof

-Pernoulli arrivalsy 3

Pc 000
AMrrresssessnas eT ->

>= 001
NR - + pt ananemnananaveennanae TTS

A 4

NY pa = 010: LYNL Jz IS or
oo TREAD Zoo ttm tem mmm aan pees

 7 v |
) \/ 100

7 > ~ NL sT 101
TE eae) nl we Cdr

 N\ < a 110

=
tat wmmaw Ce cecavaaaeanat 1 1 a

we—

Figure 5.8: A folded butterfly.

event of a packet following that path. Let P» = {(y1,%2),(y2,22+1),...,(I2,T)} be a time-path

leading to link 2 at time 7". We are interested in the dependence between events P; and Ps.

Consider a packet p that entered the folded butterfly at time to at dimension i. During

slot © > to the packet traverses a link of dimension i, where i + ¢ mod d=i0 + #, mod d. This

is because packets travel dimensions in descending order and there is no buffering. Therefore,

the sum 7 + ¢ mod d of the time slot and the dimension traversed at that slot is a constant of

the packet (or of the corresponding time-path), and is called class of the packet. We denote

the class of packet p by ¢(p) = io + to mod d.

We will denote the dependence between two events A and B by A ~ B. It is easy to

prove that ~ is an equivalence relation. Two time-paths intersect (or equivalently, two packets

collide) only if they pass through the same link at some time. Only time-paths of the same

class may intersect, and only packets of the same class may collide. Dependencies are created

and spread only through the intersection of time-paths. For example, if time-path A intersects

time-path B. and B intersects time path C. then events A and C may be dependent. Events

corresponding to time-paths of different classes are independent.

Let Ho (or Hi) be the sub-butterfly that consists of the nodes whose least significant bit is

5.5. Quality of the Approximations, and Simulation Results

2qual to zero (or one, respectively). A time-path belongs to Ho (or Hi) if all the links that 1t

traverses belong to Ho (or Hi, respectively). The time-paths Pi and P» that lead to links li

and I; at time T satisfy

 BP € H,

P (5.43)

vio \
> 14%

\

Events P; and P: can be dependent only in the following two cases:

Case A: The time-paths P; and P: intersect before time 7°.

Case B: There is an integer k and time-paths Xi, Xa, X such that

P; intersects X71 at time 71 <T

X, intersects Xa at time 7h < T'

X._, intersects Xj at time Tj < T

X, intersects Ps at time Tj <T

Case A cannot happen because of Eqs. (5.43)-(5.44), and the fact that Ho and A are disjoint.

In view of Egs. (5.43) and (5.44), case B can happen, only if there is an ¢ € {1,2,...,k} such

that time-path X; crosses a link of dimension d (passing from Hp to Hi or vice versa) at some

time prior to T°. But

c(P) =c(X1) = =c(Xy) =c(Pr) =d+T mod d

because any two intersecting time-paths have the same class. Thus ¢(X,) = d+7mod d, which

means that packet X,; crosses dimension d at or prior to time 7' — d. Therefore, X, intersects

with either X;+1 or X,_1 prior to time T'~ d. This proves that the dependence between events

on links {; and I» is based on an event (collision or non-collision) that has happened before time

T-d Q.E.D.

Lemma 1 says that the approximating assumption A.5.3.1 is weaker than the following

assumption: “Events that happen at time T" are independent from events that happen at time

T' — &. The arguments of Lemma 1 are independent of the way conflicts are resolved. and

5.5. Quality of the Approximations, and Simulation Results

therefore hold for both the simple and the priority unbuffered scheme. Lemma 1 suggests that

the dependence between an event on link !; and an event on link [> at a given time is weak,

and the approximating assumption A.5.3.1 is very accurate.

Another way to see that the previous dependence is very weak 1s the following. Given that

the straight link /; has a packet of a particular type, the a posteriori probability that a cross

link of dimension d has a packet 1s the same for all cross links. Let

Ap(1) = Pr(l has a packet | I; has a packet of type i) — Pr(/ has a packet)

be the difference between the a priori and the a posteriori probabilities. We would like Ap(l2)

to be small in order for approximation A.5.3.1 to be accurate. However, we can see that

Ap(l) = Ap(lz) = Ap for all cross links ! of dimension d.

The mean total flow through dimension d conditioned on the presence of a packet on link I

differs by N -Ap units from its a priori value. It is reasonable to expect that the knowledge that

link {; has a packet will not change the mean flow through dimension d significantly because

the latter is a parameter of a global nature. Thus, Ap must be small.

We simulated the unbuffered simple scheme for various network sizes, and several values

of po. The difference between the analytical and the simulation results has been consistently

negligible for all network sizes and all po’s (see Table 5.1 for d = 8). This is a further indication

that the parametric equations obtained in Subsection 5.3.1 are very accurate.

Po

0.9983

0.9288

0.8045

0.6972

0.6042

0.5234

0.4871

0.3642

0.3142

0.2915

0.2145

Throughput/node (analytical) Throughput/node (simulations)
0.6325

0.6401

3.6539

0.6657

0.6754

0.6827

0.6853

0.6888

0.6859

0.6831

0.6331

0.6401

0.6540

0.6650

0.6744

0.6824

0.6843

0.6883

0.6852

0.6828

0.6628 0.6621

~wU

5.6. Comparison with Deflection Routing

0.1982

0.1094

0.0030

0.6552

0.5712

0.0448

0.6557

0.5721

0.0446

Table 5.1: Simulation and analytical results for the unbuffered simple scheme for d = 8.

We have also performed simulations for the buffered simple scheme. The results obtained

from the simulations were within 3% from the analytical results. Table 5.2 illustrates the results

obtained for d = 7 and &£ = 1.

po

0.931384

0.566517

0.302901

0.199937

0.169829

0.144199

0.103110

0.086444

0.052758

Throughput /node (analytical)

1.493738

1.477039

1.345433

1.189335

1.116160

1.038224

0.871355

0.783858

0.557855

Throughput/node (simulations)
1.451239

1.433139

1.354165

1.162777

1.092926

1.020776

0.861196

0.777389

0.554911

Table 5.2: Simulation and analytical results for the buffered simple scheme for d = 7 and

E=1

5.6. COMPARISON WITH DEFLECTION ROUTING

In this section we present some results on deflection routing from [Var90], and compare

them with corresponding results on the priority scheme of Section 5.4. In Subsection 5.6.1 we

describe the simple and the priority deflection schemes, and the stochastic model under which

they are examined. In Subsection 5.6.2 we present the results obtained.

5.6. Comparison with Deflection Routing

5.6.1. The Deflection Schemes, and the Stochastic Model

Each node has a queue which can hold up to d packets. During each slot the nodes transmit

all the packets of the queue, either by transmitting them on their preferred links, that is, links

that take the packets closer to their destination. or by simply transmitting them on an available

nk. We assume that new packets are always available, and for every packet that exits the

network at some node a new packet enters the network at the same node. At every slot, exactly

d packets are received by each node. Some of these packets exit the system because they have

arrived at their destination, and are replaced by an equal number of new packets. Under this

model the hypercube is a closed network since each node always has exactly d packets. The

destinations of the new packets are uniformly distributed over all nodes, except for their origin.

Before describing the priority deflection scheme, we give some definitions.

A partial switching assignment is a 1-1 match between packets and preferred links, where

each packet (or link) is matched to at most one link (or packet, respectively). A full switching

assignment is a match between all the d packets residing at the node and the d outgoing links

of the node. A partial switching assignment is wasting if there exists a packet that has not been

assigned to a preferred link, although one of its preferred links is free. By transmitting the

packet on this link the number of packets that are sent towards their destinations is increased

by one and the assignment remains feasible. In a non-wasting switching assignment such a

situation is not allowed. In Fig. 5.10, both a and b are non-wasting switching assignments,

while c¢ 1s not.

oor
ojafi]o
rfojofo
a] fofo

1 [o]ofL
ofrfi]o
1]ofolo
 on jafofo;

 4

jofolr
ofrlafo
1fofojo
 1[1]o]o

, t

Figure 5.10: Cases a and b correspond to non-wasting assignments, while c is a wasting

assignment

There are many ways to obtain a non-wasting assignment. A simple procedure is the fol-

lowing. At each slot, an order of the d packets (called processing order) is found in some way

5.6. Comparison with Deflection Routing

at each node. The packets are then picked in that order, and each of them is assigned to one

of its preferred links, provided that this link has not been assigned to any of the previously

considered packets. If more than one unassigned preferred links exist, one of them 1s chosen at

random.

A deflection scheme consists of two phases. During the first phase, called non-wasting

phase, a non-wasting partial switching assignment is found. This assignment matches some of

the packets with an equal number of links. We consider two deflection schemes corresponding

bo two different processing orders. In the simple deflection scheme the processing order is

random. In the priority deflection scheme the processing order is found as follows. The packets

are partitioned In priority classes, so that the ith priority class consists of the packets that are

currently located at a distance i from their destination. The order of the packets within the

same class is random; however, packets that are closer to their destination precede packets that

are far from their destination.

In general, the partial assignment found in the non-wasting phase will cover only z of the

d packets with z < d. In the second phase, called deflection phase the partial assignment 1s

extended to a full assignment. This extension is achieved by arbitrarily mapping the remaining

d — z packets to the d — z unreserved outgoing links. The d— z packets that are not transmitted

over preferred links, increase their distance to the destination. We will refer to such events

as packet deflections. Every time a packet is deflected, the number of links it has to traverse

Increases by two.

The rationale behind the priority deflection scheme is the following. In the random processing

order the packets that are at a distance one from their destination have a higher probability of

being deflected than packets at distance i > 1 from their destination. To see that consider a

packet which is one hop away from its destination. Such a packet has only one preferred link,

and the probability that this link will have already been assigned when the packet is processed

is large. In contrast, a packet at distance i > 1 from its destination has ¢ preferred links, and

will probably not be hurt if some of its preferred links have been assigned to other packets. A

packet at distance d from its destination is never deflected, and it is logical to assign it to a

link only after all the packets at distance 7 < d from their destination have been processed.

9.6. Comparison with Deflection Routing

3.6.2. Steady State Throughput of the Deflection Schemes

The steady state throughput of the simple and the priority deflection scheme has been cal-

culated in [Var90] through approximate numerical analysis, and simulations. In this subsection

we present the simulation results. Before doing so we give an upper bound on the throughput.

Let A be the mean total throughput of the hypercube. Since the number of packets in the

hypercube is constant and equal to Nd, Little’s theorem gives

Nd = IT

where T is the mean delay of a packet from the time it is accepted in the network until the

time 1t arrives at its destination. For uniformly distributed packet destinations we have

d N
yp

 =~ 9N _1

Combining the last two equations we ge:

N= 1)A <2(N \2 19)

Figure 5.11 illustrates the simulation results obtained for the simple and the priority deflec-

tion schemes, together with the analytical results obtained for the priority scheme (with buffer

size k = 0 and k = 1) of Section 5.4. Note that as the dimension of the hypercube increases

the throughput of the deflection schemes increases. However, for small dimensions the priority

scheme with k = 1 outperforms deflection routing. Thus, the priority scheme may be preferable

for small hypercube dimensions. If we take into account that the switch used at each node by

the priority scheme is simpler, faster, and less expensive than the crossbar switch used by the

deflection schemes, then the priority scheme may be preferable for large hypercube dimensions

as well.

The average delay of of the deflection schemes satisfies

d N |

T = YT + 2E (Number of Deflections), (5.46)

where E(Number of Deflections) is the average number of deflections suffered by a packet. The

first term of the right hand side of the preceding equation comes from the fact that the mean

delay of a packet when it 1s not deflected is equal to $A For the second term note that

every time a packet is deflected. its delay increases by two steps. Figure 5.12 illustrates the

5.6. Comparison with Deflection Routing

Model: new packets always available 1

2

8-

| 6=

» 1.2
D
=

1.0

0s

-r

 lt
=
Ct

0.6

J 4

J.?2

» +

adil,

® Priority Deflection

d Priority Scheme (k=0)

O Priority Scheme (k=1)

® Simple Deflection

0.0
nN 2 (

dimension d

Figure 5.11: Throughput per node of (1) the simple deflection scheme, (2) the priority deflection

scheme, (3) the unbuffered priority (idling) scheme, and (4) the buffered (k=1) priority (idling) scheme.

average number of deflections suffered by a packet in the priority deflection scheme. for various

dimensions d of the hypercube (the average number of deflections is obtained by Eq. (5.46) and

Little’s theorem by using the simulation results for the throughput A).

An interesting observation concerning Fig. 5.12 is the following. As d increases, the average

delay suffered by a packet also increases, but the E(Number of Deflections) seems to remain

almost constant (between 0.42 and 0.48 for d = 3,4, ...,13). If the average number of deflections

1s actually bounded above by a constant for every d, then the average delay T' of the priority

deflection scheme will be T' = $A + O(1). If in addition, the higher moments of the average

number of deflections are also O(1), then the throughput of the priority deflection scheme will

tend to the upper bound of two packets per node, which is the maximum possible for uniformly

distributed destinations. We could not prove this by a rigorous analysis, so we leave it as a

conjecture.

5.7. Distribution of Packet Distances to Destination

m Average number of deflections per packet

D 4¢

J.47

 74]

0.46

0.45wv

bY

—

>

0.494 «

A

[1

0.43

J.42

J.
NN

-—

) 1

Figure 5.12: Average number of deflections per packet for the priority deflection scheme.

5.7. DISTRIBUTION OF PACKET DISTANCES TO DESTINATION IN SHORTEST

PATH ROUTING SCHEMES

This section is independent from the previous sections, but includes some potentially 1n-

teresting results. We consider a shortest path routing algorithm in a regular topology where

packets are not dropped. We are interested in the probability =; that a packet randomly picked

from the head of some queue at some random instant, is at distance ¢ (1 < i < d) from its

destination.

Let m; be the probability that the destination of a new packet 1s at distance ¢ from its origin.

For example, for a d-dimensional hypercube, and uniform distribution of the destinations we

5.7. Distribution of Packet Distances to Destination

0)
T=

The analysis, however, can be carried out for any regular topology, any distribution m; of

the destinations and any shortest path routing scheme, under assumptions of “symmetry”

guaranteeing that all nodes and links are “equivalent” in a statistical sense.

We pick at random a packet located at the head of a queue. Then the probability that the

packet was originated at distance i from its destination is proportional to i (such a packet passes

» times from the head of a queue until its delivery; since the instant is random the probability

that the packet is picked is proportional to i), and is also proportional to m,. Thus

Pr(picked packet originated at distance i from source) = tm,
diameter -

yoo jm,

where a normalizing factor has been included. Note that

"tameler

> jm;
9=1

1s the mean number of hops that a packet has to travel. For uniformly distributed destinations

m 1s the mean internode distance of the network. The chosen packet is at distance 4 < j from

its destination with probability 1/5, for any i € {1,2,...,7}. Thus, the probability that a

packet randomly picked from the head of a queue is currently at distance i from its destination

1S

diameter
my

1 —
- 142:

11

(5.47)

A first observation is that this probability is not altered if the packet is picked from any position

of the queue (as long as a FIFO queuing discipline is used or, more generally, a discipline which

does not distinguish the packets according to their distance from the destination). A second

observation is that m; is decreasing with i. For i = 1 we get

ET)

I'his indicates that in any shortest path routing scheme in which packets are not dropped, the

throughput R per node is

R=il-e)md= L6)1

5.7. Distribution of Packet Distances to Destination

Mean number of packets

A

const 2/d

cone! 1/d

\
Current distance i

'

TE

9.

Figure 5.13: Histogram of the number of packets in a hypercube as a function of their current

distance from the destination, for uniform distribution of the destmations.

where e 1s the probability that a link is empty, and d is the degree of the network. We can

always achieve throughput of d/m, provided that we use shortest path routing, have infinite

buffers and new packets are always available.

For the hypercube network and uniform distribution of the destinations, Eq. (5.47) gives

i O66)”
For d large we can use the Gaussian approximation of the binomial distribution (Central Limit

Theorem) and get

where

 aw
The larger d is the better the approximation is. A histogram of the number of packets in the

hypercube as a function of their current distance from their destination is of the form indicated

in Fig. 5.13.

CHAPTER SIX

A Conflict Sense Routing Protocol

and its Performance for Hypercubes

In this chapter, we propose a new switching format for multiprocessor networks, which we call Conflict

Sense Routing Protocol. This switching format is a hybrid of packet and circuit switching, and combines

advantages of both. We initially present the protocol in a way applicable to a general topology. We then

present an implementation of this protocol for a hypercube computer and a particular routing algorithm.

We also analyze the steady state throughput of the hypercube implementation for random node to node

communications.

5.1. INTRODUCTION

There are two general switching formats, circuit switching and packet switching, that are

ased in network communications. Circuit switching combines many well-known advantages,

but is seriously inefficient. The inefficiency is related to the allocation of a link to a message

for more time than required. Packet switching on the other hand is efficient in terms of link

utilization since a link is used whenever there is a packet that wants to cross it, but has a

number of drawbacks. The queueing delays in packet switching are unpredictable and difficult

to control. Flow control mechanisms are needed to slow down transmissions when congestion

arises. The delayed feedback, the buffer space needed, and the possibility of dropped packets

are other considerations not in favour of packet switching. In multiprocessor systems with

6.1. Introduction

thousands of processors the buffer space per node is going to be small making the dropping of

packets a potential problem, as discussed in the preceding chapter.

A solution that has been proposed is the deflection routing scheme examined in Subsection

5.6 (see also [GrG86], [GrHI0], [Var90], [HaC90], [Haj91], and [Bra91]). With deflection routing

packets are misrouted instead of dropped. This works well for several networks (for example;-

hypercubes, Manhattan street networks), but not for all (for example,itsthroughputforthe

shuffle exchange network is low; see [Max89]), and has the disadvantage that packets do not

always follow shortest paths to their destination. Networks not having enough path redundancy

will most probably be unsuitable for deflection routing. Cui-through routing ([KeK79]), and its

variation wormhole routing ([DaS87]) have also been proposed for multiprocessor systems, but

many theoretical problems are still unresolved. The possibility of deadlock cannot be ruled out

for both deflection and wormhole routing, unless special precautions are taken. In practice, most

data networks and multiprocessor systems currently use packet or circuit switching. However,

for many applications, it 1s unclear which one of them is preferable, since each has relative

advantages at exactly the same areas where the other has disadvantages.

In this chapter we introduce a new switching format, which we call Conflict Sense Routing

Protocol (or CSR protocol). The CSR protocol is a hybrid of circuit and packet switching.

According to it, a packet can enter the network only after having reserved its route (links and

buffer space). This resembles circuit switching. A packet, however, reserves a resource only

for the slot (or slots) during which the resource will be used. This resembles packet switching

since the links and the buffer space are used on a demand basis.

The CSR protocol is more efficient than circuit switching, because in circuit switching the

entire path of a packet is reserved as the packet 1s travelling on any one link of the path, and

additional overhead 1s needed to “tear down” a circuit after all packet transmissions of the

circuit have been completed. A further advantage of the CSR protocol over packet switching is

that it avoids the waste of resources due to the dropping of packets which have been transmitted

for several hops. Still another advantage is that it provides a “built-in” flow control mechanism.

Flow control in a multiprocessor computer cannot be the same with the one of a general data

networks. One reason is the limited buffer space per node, which will cause packets to be

dropped. The flow control mechanisms designed for data networks, where the nodes are bigger

and the buffering is cheap, take buffer space for granted (for example, the go back n protocol; see

(BeG87]). Such protocols will not work well for multiprocessor computers with little buffer space

per node. On the other hand, it 1s inefficient to use the local memory of a processor to buffer

6.1. Introduction

packets, since then we are penalized with large start-up and software delays per transmission,

CPU interruptions, etc.. Another drawback of traditional data link control protocols when

applied to multiprocessor systems is their reliance on acknowledgements. In parallel computers

it 1s typically impossible to piggyback acknowledgementsontheoppositedirection traffic (in

a network.ofthousandsofprocessors a particular pair of processors rarely communicates);

while the use of separate acknowledgement packets increases the network load significantly.To

make things worse, acknowledgements may themselves be dropped increasing the delay and

complicating the implementation.

The feedback delay which is proportional to the diameter of the network is another draw-

back of traditional flow control algorithms, when applied to multiprocessor computers. A

transmission window of small size is inefficient when the roundtrip delay is large relative to the

transmission time of a packet. On the other hand a window of large size requires too much

buffer space for the storage of unacknowledged packets, which is a scarce commodity in parallel

computers, and an estimate of the roundtrip delay, which is not always easy.

In contrast to packet switching, the CSR protocol provides almost instantaneous feedback.

In fact, a packet knows before entering the network if it will be dropped, in which case it does

not enter the network (at the present slot). Note that the protocol guarantees that packets

are not dropped even when the buffer space 1s minimal. The virtually instantaneous feedback

makes the use of a size one window efficient, and the storage of packets not yet acknowledged

minimal. Furthermore, the processor gets to know very quickly if the packet will eventually

arrive at its destination, which is important for “send and wait” type of commands.

In this chapter we initially present the CSR protocol in its generality. The description

that we give 1s independent of the network topology, the routing algorithm used, and the

buffer space available. We then specialize the CSR protocol to the case of a hypercube

network of processors with buffer space only for the packet being transmitted. We focus on a

particular routing algorithm, where packets traverse the hypercube dimensions in descending

order. The throughput under various traffic loads is evaluated and found very satisfactory,

although the routing algorithm assumed is not the best possible (it involves idling). The

results are, we believe, indicative of the improvements that can be obtained by superimposing

the CSR protocol on other routing algorithms and networks. For the routing algorithm and

puffer that we assume,theprotocolguaranteesthateverypacketthatentersthenetworkarrives

at 1ts destination after d slots, where d is the diameter of the hypercube.

The organization of the chapter is the following. In Section 6.2 we describe the CSR. protocol

6.2. Description of the CSR Protocol

in 1ts generality. In Section 6.3 we describe an implementation for a particular routing scheme

in a hypercube network of processors. In Section 6.4 we evaluate the throughput of the hy-

percube implementation of the CSR protocol. In Section 6.5 we compare the CSR hypercube

implementation to other switching formats and routing schemes, we discuss implementation

issues, ‘and we conclude the chapter.

6.2. DESCRIPTION OF THE CSR PROTOCOL

In this section we present the CSR protocol for a general topology, and describe the data

structures that are necessary for its implementation. A pair (s,!) will represent the It! link of

processor s, and d will represent the diameter of the network. We assume the existence of a

routing algorithm which, for each source s and destination v, finds a path leading from s to

v, and provides a way to resolve conflicts among packets requiring the same link. The only

property that the routing algorithm has to satisfy is that the links traversed by a packet P,

and the time instants these links are used do not depend on packets that entered the network

after P. We call such a routing algorithm future oblivious. The routing algorithm can be

deterministic, probabilistic, distributed, and even adaptive, provided that it is future oblivious.

For example, an algorithm that gives priority to a given packet over packets that entered the

network earlier is not future oblivious, while one that gives priority to a packet over packets

that entered later (and perhaps for packets that entered at the same time, it gives priority to

those that are closer to their destination) is future oblivious.

Each link (s,!) of the network is assumed to have a link buffer and an entry buffer, denoted

by Qf and & respectively. Entry buffers form the interface of a processor with its router and

can store only new packets. A packet enters (or ts accepted to) the network when it moves from

an entry buffer to the corresponding link buffer. A link buffer can be used only by packets

already accepted to the network, and can hold up to K} packets, in addition to the packet

being transmitted. We assume that all packets require one time unit for transmission over a

link, and a single buffer space for storage.

Following the terminology of [Dal90b] we define a flit (from “flow control unit”) as the

smallest number of bits which can contain routing information, or else the minimum number of

bits which can be accepted or rejected by a link buffer. A typical size of a flit is 64 bits. Flits

6.2. Description of the CSR Protocol

are used in parallel computers that support wormhole routing (for example the J-machine, see

[Dal90b]), and are similar to the set-up messages used in circuit switching. We assume that a

node has a way to distinguish control flits from actual data.

A packet stored at an entry buffer sends a flit before entering the network in ordertoreserve

the resources that it’ will need. This flit reserves a resource (link or buffer) only for the slots

during which it will need it. *A flit generated at an entry buffer follows the same path that

the packet would follow, that is the path provided by the underlying routing algorithm of the

network. Flits are treated one at a time by a link, and conflicts concerning the order in which

they are considered are resolved in a manner determined by the routing algorithm, for example

at random.

Let # be an upper bound on the time required for a flit to travel a distance of 2d links,

where d 1s the diameter of the network. The unit of time 1s taken as the time required for a

packet transmission over a link. We can take

Fg=2kd (2 +7).
where I" 1s the length of a flit in bits, W is the bandwidth of a link measured in bits per unit

of time, ¥ is an upper bound on the propagation and processing delay of flits, and % is the

>uffer size for packets per link. This 1s because if a flit 1s not blocked, at most £ — 1 flits are

;ransmitted ahead of it on a link during a control interval.

The time axis is divided into alternating control intervals of length # units of time, where

flits are routed and reservations are made, and {ransmission intervals of length equal to one

unit of time where packet transmissions actually take place. A control interval is divided into

a forward and a backward phase, each of length #/2. During the forward phase flits travel from

cheir source to their destination, reserving links and buffer space. Flits that fail to reserve a link

are blocked on the spot. After 3/2 time units all flits have either arrived at their destination

or have been blocked. In the backward phase flits travel in the opposite direction, carrying

feedback informationtothesource. A way to ensure that flits will not collide on links in

the backward phase, is to transmit a flit on a link at time (2kd — 7)F/W in the backward

phase, 1f 1t was transmitted on the same link (in the opposite direction) at time ¢F/W in

the forward phase. Therefore, the feedback is 100% reliable. For a general network, and a

general routing algorithm storage space for kd flits per link is required. For the hypercube

CSR 1mplementation that we will give in Section 6.3, we will see that storage space for just

one flit per link 1s adequate. Flits that have been blocked carry negative acknowledgements

6.2. Description of the CSR Protocol

(or NACKSs for brevity), while flits that have made all the necessary reservations carry positive

acknowledgements (or ACKs). A NACK prevents the packet from entering the network during

the transmission interval of the current slot. This saves bandwidth since such a packet would

be dropped, if transmitted, at exactly the same link where the flit was blocked. This is the

reason we call the protocol conflict sense routing protocol:itsensesaconflictbeforeitactually

happens. The control interval serves as a “microscopic”, inexpensive rehearsal of what would

happen if the packet was transmitted. In this way, after a feedback delay of #8 time units, each

entry buffer knows whether the packet (if any) that it holds can be transmitted without being

dropped, or not.

The way the reservations are made and the data structures required for this purpose are

described next. For every link queue @Q; there is a list £;, called reservation list, whose elements

represent future transmission intervals. The first element represents the next transmission

interval. At the end of a transmission interval, the first element of the list is deleted. The

element of £; which corresponds to the t*h transmission interval (transmission intervals are

counted with respect to the present control interval) is denoted by £[t], and is composed of

two fields, denoted by L{[t]-link and L{[t]-buf fer. In case there is no buffer space at the links

except for the packets currently under transmission, the two fields collapse into one. The field

C3[t]-link is equal to one if the link (s,!) has already been reserved for the t'h transmission

interval, and zero otherwise. The field £}[t]-buf fer takes integer values between zero and the

buffer size Kj. It is equal to the number of buffer spaces of Q] already reserved for the tth

transmission interval.

Each flit f carries with it a counter, denoted by cf. The counter of a flit generated at an

entry buffer is originally set to one. In the forward phase of a control interval the flit travels on

the path provided by the routing algorithm from the source to the destination. Let £§ be the

reservation list of link (s,{), respectively, at the time when f 1s considered by link (s,!), where

(s,1) 1s a link on the path of f. We define T" as the minimum integer that satisfies

C¢I

C3[T) link = 0.

Li[t]l-buffer < Kf forallte {cs,cp+1,...,T —1}.

If such a T' exists, the link (s,!) is reserved for the Th transmission interval by f. A buffer

space at QF 1s also reserved for the intervals cf up to T'— 1. At the same time the reservation

6.2. Description of the CSR Protocol

list of (s,{) and the counter of f are updated according to

cp :=1 +1.

Cilt)link = 1,

Li[tl-buf fer := Li[t]-buffer +1 Vt e€ {cscs +1,...,T—1}.

If a T' that satisfies the previous relations does not exist, the flit is blocked, and the reservation

falls. During the backward phase of the control interval such a flit returns to its source entry

buffer by using the reverse path, carrying a negative acknowledgement (NACK) and freeing

the links and buffer space it has reserved in the forward phase. A packet which receives a

NACK does not enter the network at the next transmission interval and will retry to make the

necessary reservations at some subsequent control interval. If on the other hand a flit manages

to reach 1ts destination reserving all the necessary resources, then at the backward phase it

returns to 1ts source entry buffer as a positive feedback. The corresponding packet will enter the

network at the immediately following transmission interval, and will arrive at its destination

after several transmission intervals by using the links and buffer space already reserved for it.

If a packet that receives a NACK always retries at the next control interval, then the protocol

preserves the order of the packets.

A last issue that has to be dealt with is the method of recording which packet reserved a

link for a particular slot. One way is to store that information at the intermediate nodes, by

having a third field at £][t] which will record the sequence number of the packet that reserved

.s, 1) for the tth slot. A different approach is to have the bookkeeping information attached to

the packet. This is done by having the flit record the sequence of values eh that it takes after

each hop 7 (or, even better, the differences 2 — 7). In the case where there is buffer space

only for the packet being transmitted the book-keeping information is not needed. Note that

it 1s not necessary to know which packet reserved which particular buffer space, since buffer

spaces can be organized as a pool.

For light load and large #, the CSR protocol has larger delay than packet or circuit switching.

For a packet that has to travel & hops the delay is equal to k units of time with packet switching,

k + B with circuit switching, and &£(1 + #) with the CSR protocol. For heavy:load or small 3,

the CSR protocol is expected to have smaller delay than circuit or packet switching, because it

uses links more efficiently (which means higher throughput and smaller input queueing delay).

6.3. A Hypercube CSR Protocol

6.3. A HYPERCUBE CSR PROTOCOL

In this section we will describe a hypercube implementation of the CSR protocol. We

assume a particular outing algorithm, which is future oblivious, and superimposeon.it the

CSR protocol.. The routing algorithm is simple, similar to the algorithms examinedinChapter

0, and assumes simple inexpensive switches for the nodes. This makes the throughput of the

CSR implementation directly comparable to the throughput of the packet switching schemes

of Sections 5.3 and 5.4. We start by describing the model assumed for a hypercube node, and

the routing algorithm used.

6.3.1 The Hypercube Node Model and Routing Algorithm

Each link of a node has an entry buffer, which can hold one new packet. The entry buffer

of link ¢ of node s is denoted by &;(s). The entry buffer is ready to accept a new packet only if

the previous packet has reserved the links it will need, and positive feedback has been received.

A packet that receives a NACK retries to make the reservations at the next control interval.

An entry buffer holding a packet for which no positive feedback has been received is said to be

backlogged. New packets arrive at the entry buffer of a link. New packets arriving at backlogged

entry buffers are discarded.

Each node s has d queues, each of them associated with a link of the node. The link queue

of link ¢ of node s is denoted by @,(s). A link queue is composed of two buffers which can

hold only one packet each. The first buffer is called forward buffer, denoted by Q!(s), and

is used only by packets which want to cross the i** dimension. The second buffer, denoted

by Q%(s), is called internal buffer, and is is used only by packets which do not want to cross

the 7%» dimension. The queues of the nodes are linked in the following way; the internal

buffer @%(s) is connected to link queue Q(1—1jmodd($s)ofthesame node and the forward buffer

Q,(s) is connected to queue Qpi_1ymodda(s ® ei) of the neighbor node s & e; (see Fig. 6.1). This

router organization results in node switches which are simpler, faster, and less expensive than

cross-bar. switches (see the comments on the node model in Section 6.5).

The routing algorithm is the following. A new packet generated at a node selects a link,

say link {, with equal probability independently of its destination and competes for one of the

6.3. A Hypercube CSR Protocol

2 5)

NU
7 link 4at | ><

e— | 7 | |

1
AS FE]

[link 1
Ron: | [

tl _—om link O

Q gs)

"gq)

mp

node s+e,
link 4 |

—\ Q 4 s+e)
|p

1 #8
| | ;

tose 1 p=

1 FE

— LX)

entry buffers

Figure 6.1: A node of the hypercube,

two buffers of the I» link queue, Qf(s) or QY(s), depending on whether it wants to use the

I'* dimension or not. The packet traverses the dimensions in descending (modulo d) order,

starting from the random dimension !. In particular, consider a packet which arrives at queue

Qi(s) of node s, either from buffer Qli—1)moda (5) of s, or from buffer Qli—1)moaa(® ei-1) of

the neighbor node s @ e;,_1, or from the entry buffer &£(s). The i* bit of its routing tag is

checked, and depending on whether it is equal to one or zero, the packet claims buffer Q}(s)

in order to be transmitted to queue Q(;_1ymoaa(s ® ei) of the neighbor node s @ e;, or it claims

buffer @%(s) in order to be internally passed to the next link queue Q(i—1)modd(8)ofthesame

node. If two packets require the same link and there 1s not enough buffer space at the link,

one of them 1s dropped. We will only analyze the case where each link buffer has space for

only one packet, the one being transmitted. Note that when the CSR protocol is superimposed

on the routing algorithm packets are dropped due to collisions: the flit of one of the packets

that collide returns to its source carrying a NACK, preventing the packet from entering the

aetwork.

. The proposed routing schemeisoftheidlingtype,becauseof the internal transmissions

that it employs. Under this routing scheme internal and forward links are mathematically

equivalent. In the case of no buffering, packets are removed exactly d slots after entering the

6.3. A Hypercube CSR Protocol

network. If a packet arrives at its destination node earlier, it travels within the node until the

time of its removal comes.

5.3.2 Superimposition of the CSR Protocol on the Hypercube Routing Algorithm.

In this subsection we describe how the CSR protocol is superimposed on the hypercube

routing scheme of the previous subsection. The unit of time is taken as the time required for

the transmission of a packet over a link. Let # be the time (in units of time) required by a flit

to travel a distance of 2d links. Then

Fp=2(k +7).
where F' is the length of a flit in bits, «v is the processing and propagation delay for flits, and

W 1s the bandwidth of a link measured in bits per unit of time. The time axis is divided into

slots, each of which has duration 1+ #2 units of time. During the first 3 time units, the flits are

transmitted to make reservations for the new packets that want to enter the network. During

the remainder of the slot the old packets and the new packets that have made the necessary

reservations are transmitted one hop.

An entry buffer holding a packet that wants to enter the network (a new packet or one

that 1s being retransmitted) sends a flit to the packet’s destination, containing the packet’s

routing tag. A flit originated at link { 1s transmitted during the ith step over the I — 7 mod d

dimensional forward (or internal) link of a node, if the ih bit of its routing tag is a one (or

a zero, respectively), provided that this link has not been reserved by another packet. At the

same time the flit makes a reservation of that link for the ith slot (only). When two flits try to

reserve a link at the same time and for the same transmission interval, one of them is selected

at random to make the reservation, and the other is blocked. Flits that find a link already

reserved are also blocked.

When all flits have been blocked or have arrived at their destination, which happens after

at most #/2 time units, a backward phase begins. In the backward phase each flit which was

blocked follows the reverse route to its origin carrying a negative acknowledgement (NACK),

and freeing the links .that it had reserved. The NACK will prevent the corresponding packet

from entering the network during the transmission interval of the current slot. Flits which

reserve all the links to their destination, return in the backward phase to their origin following

6.3. A Hypercube CSR Protocol

the reverse path than the one followed in the forward phase, and carrying a positive feedback

{ACK). A flit is transmitted over a link at step 2d—i in the backward phase if it was transmitted

on the same link at the opposite direction during the ¢*h step of the forward phase. In this way

there are no conflicts between flits in the backward phase. After a packet enters the network,

it follows its path knowing that: it will.not collide with any other packet; the only information

1t needs 1s its routing tag. If an entry buffer receives a negative feedback,ittriesto make the

necessary reservations at one of the next control intervals. If we require only ACKs to return

to their origins (in this case after a constant delay of # time units, a NACK is assumed), then

even with storage for just one flit per link, ACKs never get lost. This is because the paths of

the flits that made it to their destination have the same length.

The preceding hypercube implementation indicates some of the typical advantages of a CSR,

protocol. First, packets that are going to be dropped are not allowed to enter the network.

This does not allow congestion to feed on itself. Second, the feedback is obtained as soon as

possible. This makes the use of a window of size one possible and efficient at the same time,

and reduces the required buffer space for new packets to just one packet. All packets accepted

to the entry buffer (router) arrive at their destination with constant delay. Whenever a packet

1s successfully transmitted, the corresponding entry buffer enables the processor to insert a new

packet. Resources are reserved for as long as they are needed and yet all the advantages of

circult switching are maintained. The hypercube CSR protocol example indicates that by using

capabilities available in multiprocessor systems, namely the possibility to efficiently route flits

through the knowledge of the topology, the flow control mechanism becomes easy and efficient.

Figure 6.2:

1 slot
_——

+epeep

\
| unit of time

 oa

The time axis divided into slots.

The control flits can also be transmitted “off” channel. In a VLSI implementation of parallel

6.4. Performance Analysis of the CSR Protocol for Hypercubes

computers, there are usually many wires for each link, and the bandwidth of the link is pro-

portional to the number of these wires. In such systems several bits are transmitted in parallel

over a link during a clock cycle. In an implementation of the CSR protocol, one would probably.

choose to dedicate one of these wires to the control flits in order to simplify the design. This

corresponds to a kind. of FDMA multiplexing as opposed to-a-TDMA multiplexing of control
information and data.

6.4. PERFORMANCE ANALYSIS OF THE CSR PROTOCOL FOR HYPERCUBES

In this section we present an approximate analysis of the throughput of the hypercube CSR

protocol described in the previous section. We assume that packets having a single destination

are generated at each node, and the destinations of the packets are uniformly distributed over

all the hypercube nodes. Packets are being generated over an infinite time horizon, and require

one unit of time for transmission over a link. We are interested in the average throughput when

the network reaches steady state. We will limit our attention to the case where the link buffers

have space only for the packet being transmitted.

Assuming that both the control flits and the data packets are using the same channel, a slot

1s defined to be equal to 1 + © units of time. The probability that the entry buffer of a link

bries to insert a new packet during a slot is called attempt rate and will be denoted by po. The

attempt traffic is the result of the merging of newly generated packets and retransmissions. Let

m be the ratio of the number of backlogged entry buffers to the total number of entry buffers.

Let also g, be the probability of a new packet arrival at an entry buffer of a link, and gr be the

probability with which a blocked packet retries to enter the network (by making the necessary

reservations) during a control interval. Then the attempt rate is

Po(m) = (1 — mga + my,
(6.1)

If retransmissions are sufficiently randomized, it is plausible to approximate the process of at-

tempted reservations from an entry buffer, by an independent Bernoulli process with parameter

po(m), where m is the fraction of backlogged entry buffers in the system. If-retransmissions

are not attempted from the same entry buffer, but from another avallable entry buffer of the

same node, then more randomization 1s added, and the Bernoullj approximation is expected

a.

6.4. Performance Analysis of the CSR Protocol for Hypercubes

to be more accurate even for ¢, = 1. This approximating assumption is reminiscent of the

approximating assumption used in the analysis of various multiaccess systems (for example the

Aloha protocol, see [BeG8T7]), where the aggregate traffic of new arrivals and retransmissions

Is modelled as a Poisson process.

The system that we analyze has some similarities with a multiaccess system (for example,

an Aloha system). Conflicts over links or buffer space correspond to collisions in a multiaccess

system. An important difference is that packets in the CSR protocol collide when they request

the same link for the same slot, while in Aloha whenever two nodes transmit simultaneously

there 1s always a conflict. Another difference is that in our system whenever a conflict appears

one of the packets is granted the link (or buffer), while in Aloha whenever a collision happens

all transmissions are destroyed. The feedback in our system requires # time units, while in

multiaccess systems it 1s usually assumed instantaneous. The CSR protocol also has similar-

ities with the Carrier Sense Multiaccess protocol, since they both “sense the channel” before

;ransmitting, in order to avoid collisions.

It 1s possible that a flit reserves a link | during some control interval and frees it later in the

same control interval due to its failure to reserve the remaining of its path. We will refer to

such a reservation as a ghost reservation, as opposed to a confirmed reservation where the flit

after reserving link /, it also reserves the rest of its path. Let p(t —: + 1,¢:1),i=1,2,...,d,

be the probability that a particular link { is reserved (by a confirmed or a ghost reservation)

on the t — ¢ + 1th control interval for the ¢*htransmission interval. Assuming that the system

eventually reaches steady state, the following limit exists and is independent of I:

pi=limpt—i+1,t:0), i=12....d

Note that we have p, 1; <p, foralli€{0,1,2,...,d—1}. Since p(t —7+1,% : 1) is independent

of | for any ¢ (and not only in steady state), we will sometimes omit the I.

Consider two flits f; and fo corresponding to packets P; and P;, which try to make the

necessary reservations during control intervals ¢; and ta, starting with dimensions d; and dj,

respectively. Packets P; and P2 may request link { for the same slot ¢ (¢ > max(¢1,%2)) only

if { is on their path, all links needed prior to slot ¢ have been reserved, and ¢; + dy mod d =

t2 + d2 mod d. If t; < ?5 then Pj 1s not affected by the presence of Ps, since its attempt to

.make the reservations-is made at a control interval prior to Po’s arrival. .In-this case, fi can

reserve link [only if fi fails to reserve all of its its path. If ¢; = ¢3 (and di = dz) then fi; and

f2 will claim the same link provided that it is on their path and they have reserved all other

6.4. Performance Analysis of the CSR Protocol for Hypercubes

"9D bg

Figure 6.3: The two links !/; and ls leading to {.

links they need prior to I. If the link 1s free, then it is allocated to one of them arbitrarily.

We want to calculate the steady-state probability that link / is reserved (either by a ghost

reservation or a reservation which is confirmed) during the control interval t+ — 7 + 1 for the

transmission interval t, for ¢ > 1. Let {i and lz be the internal and forward links, respectively,

that lead to {. Link { may be reserved either by a flit f; coming on [;, or by a flit fo coming on

lo. Link [can be reserved during the t — 7 + 1th control interval for transmission interval ¢ by a

flit coming on {; only if:

e a reservation was made for /; for the t —1 transmission interval during control interval t —i +1;

this happens with probabilityp(t—i+1,1— 1: ly),

» link / 1s on the flit’s path (given that /; is on the flit’s path); this happens with probability

1/2,

e no confirmed reservation has been made for ! during a previous control interval, and no

reservation (confirmed or ghost) has been made by a flit coming on {> during the same control

interval for transmission interval ¢.

Thus.

ot —i+ 14:0) =P ELIT) py py), i=2,3,....d, (6.2)

where

A 1s the event that a confirmed reservation has been made for link ! for transmission interval

t during a previous control interval, or a reservation has been made during the current control

interval for transmission interval¢by a flit coming on 3, and

B 1s the event that fi reserved link /; for the transmission interval # — 1 during control interval

! — 141.

I'he factor 2 in Eq. (6.2) accounts for the fact that [can be reserved either by a flit coming on

6.4. Performance Analysis of the CSR Protocol for Hypercubes

l1, or by a flit coming on I>. Given that event B occured, we know that no confirmed reservation

has been made for [for the transmission interval ¢ by a flit coming from !;. Therefore, the

probability of the event A is equal to the (conditional on B) probability that some flit fa reserved

l; for the transmission interval ¢ — 1 during control interval t — j +1 with j = i+ 1, ...,d,

it chose link [, and 1ts reservation: was finally confirmed. Ignoring the conditional on. B, this
probability can be approximated by

1 « t—j+1,t—j+d

3 2 pit bi- LET Sand
The rm

p(t—j+1,t—j+d)/p(t—j+1,7)

in Eq. (6.3) is the probability that the reservation of | by fo was finally confirmed.

 The probability that a flit f» claims link { during the same control interval t —: + 1 with f;.

and for the same transmission interval ¢, and 1t 1s granted the link can also be approximated,

ignoring the conditional on B, by

1 :

Pl—i+1,t—1:10) (6.4)

[he factor 1/4 is the probability that f, requests link [- (given that it reserved lz), and it is

selected instead of f;. Combining Eqs. (6.3) and (6.4) we get

d Lo :

1 PE —-J+1Lt—j+4d) 1
Pr(A| B) = 3 2 7 -J+1Lt-1: Try + p(t —i+ 1,1 =1:10).

The preceding equation, together with Eq. (6.2) gives

p(t —i+ Lt:)=pt—i+1,t—1:10)

[1 <2 p—j+1t—j4+d) plt—i+1,t-1:10h)
1 —— t—j+1lt-1:bh) —=2 | i=2,3,...,d.\ 3 2H ! A LO)

(6.5)
Taking the limit ¢ — oo and using the symmetry with respect to the links we obtain from Eq.

6.5) that
d—1

59 Pd PilDy = Di— 1——= rs J1 2 a, LE 4 for 1 2.3,....d, 6)

which vields

d—1 d—1 2
Ps ¢ Ps ;Pi-1 =2—pa eesar 2 — pd 2) —4p; fori=2,3,...,d.2pin Il 25 73

6.4. Performance Analysis of the CSR Protocol for Hypercubes

Regarding the reservations made during control interval¢forthe (following) transmission in-

terval¢(1.e., the case : = 1), we have

p1=po(l—(d—1)pa), (6.8)

where (d —1)pq is the probability that a'confirmed reservation: exists. for a link at the beginning
of the control interval (the probability that a confirmed reservation has been made on the link

for the immediately next transmission interval by a packet of type 7, 7 = 2,...d, is equal to

pa), and po is the probability that a new packet is available.

For a particular value of pg, we can use Eq. (6.7) to find p, in terms of piy1,..., ps for each

i, and then Eq. (6.8) to find the corresponding ps. Repeating this for various values of py

we obtain a curve that gives py as a function of the attempt rate pa. It is possible to prove

inductively that pg 1s a monotonically increasing (and 1-1) function of pe.

Figure 6.4 illustrates the results obtained for d = 11. The horizontal axis corresponds to

both the fraction m of backlogged entry queues and the attempt rate po, which are related by

the linear equation (6.1). The vertical axis corresponds to the throughput per node (curve).

which 1s

R = 2dp,,

and the arrival rate of new packets per node (straight lines). The throughput and the arrival

rate are measured in packets per 1 + # units of time. For each value of the probability of

a new arrival gs, the maximum throughput is obtained for retransmission probability ¢, = 1

unlike Aloha). From Fig. 6.4 we see that there is a single stable point in a CSR system, which

corresponds to quite high throughput. The two straight lines which we have plotted correspond

to ga = 0.05 and gs = 1/d. Both values of ¢, represent unusually high loads. In particular,

the case qo = 1/d corresponds to two new arrivals per node per slot. Two packets per node

1s the maximum throughput that a hypercube network can sustain for uniformly distributed

destinations.

We have performed simulations in order to assess the accuracy of the analysis. The simulation

results obtained for d = 7, together with the corresponding analytical results, are shown in Table

6.1. The relative difference between the simulation and the analytical results is less than 2%.

po -Throughput/node (analytical) Throughput/node (simulations)
0.011666 0.140000

0.027465 0.280000

0.142795

0.283746

6.4. Performance Analysis of the CSR Protocol for Hypercubes

D
a

CSPR Protocol (d=11)
e Throughput R per node

200

1.5

A

~N
\. Load line (q;=1/d, q=1)

1.0 -

i

n

E_

pli
Cot

~~
al

>

/05 -N

r
0.0

JJ

Loadline (q0.05,q=1)

Nl (+

D N= (1-m)gqgq+ mqr

f

l-m)g_a

 Nn RK

- rr

1

Figure 6.4: Throughput and stable point of the hypercube implementation of the CSR
protocol. The probability with which a new packet is available at the entry buffer during a slot is g,, and

she probability of a retrial is gr. The ratio of backlogged entry queues to the total number of entry queues

is denoted by m. The throughput per link cannot be greater than min(2, 2dq.) (=1.1 for g. = 0.05).

0.048996

0.078620

0.119931

0.178584

0.263852

0.391796

0.592309

0.927213

1.000000

0.420000

0.560000

0.700000

0.840000

0.980000

1.120000

1.260000

1.400000

1.422100

0.418328

0.558200

0.693059

0.831379

0.965929

1.104581

1.242851

1.388006

1.400178

Table 6.1: Simulation and analytical results for the hypercube implementation of the CSR

6.5. Comparison with other Switching Formats and Routing Schemes

protocol for d = 7.

6.5. COMPARISON'WITHOTHERSWITCHINGFORMATSANDROUTINGSCHEMESH

The CSR protocol can be applied to various topologies and routing algorithms as a way to

perform scheduling and resource management in a synchronous multiprocessor computer. In

this section we will compare the hypercube CSR implementation of Section 6.3 to some other

switching formats and schemes. The results concerning the switching formats and schemes to be

considered are not always directly comparable. Therefore, the comparison is not intended to be

a rigorous one, but we believe it will give insight into the relative advantages and disadvantages

of each scheme.

We will refer to the saturation point of a routing scheme as the ratio of the maximum

throughput of the schemeforuniformlydistributedtrafficover the maximum possible through-

put that the network can sustain. In other words, the saturation point is the maximum fraction

of the capacity of the network that performs useful work, where the maximum is taken over all

possible loads. A link is not doing useful work when (1) it is idle, (2) the packet transmitted

on it will be eventually dropped, (3) the packet transmitted on it is being deflected, or it had

previously been deflected on a link of the same dimension. Figure 6.5 indicates the saturation

point for the hypercube implementation of the CSR protocol (Sections 6.3 and 6.4), the sim-

ple and the priority deflection schemes (Section 5.5), the unbuffered simple scheme (Section

5.3), the unbuffered (k = 0) and the buffered (k = 1) priority scheme (Section 5.4), and the

wormhole routing scheme proposed in [KeK79] and [Dal87], and analyzed in [Dal90a].

In order to interpret Fig. 6.5 the following comments are necessary:

USER Protocol: The saturation point for each hypercube size is obtained from the approximate

analysis of Section 6.4 (which is within 2% from simulation results), and correspond to the

unbuffered implementationofSection6.3. The routing algorithm on which the CSR protocol

1s superimposed assumes a very simple switch at the nodes. Other implementations would

probablygiveahighersaturationpoint,buttheywouldrequiremoreexpensivenodes(seethe
comments below on the node cost).

Deflection Routing: The results of Fig. 6.5 on the simple and the priority deflection scheme

6.5. Comparison with other Switching Formats and Routing Schemes

have been obtained through simulations. For the evaluation of the saturation point of both

deflection schemes we have taken the probability of access po to be equal to one, that is, we

have assumed that packets are always available and enter the hypercube whenever there is an

available. empty slot. This does not necessarily result in the maximum possible throughput, but

the difference 1s of the order of 1-2%, which is within the statistical error of our simulations,

and 1s in any case negligible.

Simple and Priority Scheme: The results of Fig. 6.5 for the simple and the priority scheme

have been obtained from the approximate analysis of Sections 5.3 and 5.4, respectively. The

results for the unbuffered version (k = 0) of these schemes are very close to simulation results

(see section 5.6). For the buffered (k = 1) priority scheme, the relative difference between the

analytical and the simulation results is larger, but less than 3%. The buffered priority scheme

1s not directly comparable to the other schemes, because it assumes one buffer space per link

in addition to the packet being transmitted; it is included in Fig. 6.5 to show the way buffer

space improves performance.

Wormhole Routing: The curve shown in Fig. 6.5 refers to the blocking version of wormhole

routing (see [Dal90a] and [Dal90b]). According to this version, when a conflict over a link occurs

one of the packets1sblocked(instead of being dropped), and when the link is freed it proceeds

from the point where it was blocked. The saturation curve of the (blocking) wormhole scheme

1s obtained by using the analysis of [Dal90a]. This analysis was carried out for k-ary d-cubes,

and uses rather crude approximations. The results obtained are within 10% from simulation

results, as stated in [Dal90a], although we believe that for hypercube networks the difference

may be somewhat larger. The analysis of [Dal90a] uses a continuous (Poisson) model for the

arrivals.

The remainder of the section is devoted in examining advantages and disadvantages of each

scheme when applied to the hypercube network, and to other topologies

Saturation Throughput, and Congestion

[gnoring the buffered priority scheme (because it assumes more buffer space than the other

schemes),theschemesthatarethemostinterestingintermsofsaturationthroughputarethe

two deflection schemes (especially the priority deflection scheme), and the CSR scheme. One

reason the CSR scheme does not achieve 100% utilization of the capacity of the network is

6.5. Comparison with other Switching Formats and Routing Schemes

-

* 0.8]

3

-—t 0.64

a
‘a4

 ~~

»

—
iy

-———

priority deflection

HB priority scheme (k=1)

- ® simple deflection

4 CSR (one implementation)
=
vf

& 0.4

n
—_t @ priority scheme (k=0)

~ 0 wormhole (blocking version)

~ A simple scheme (k=0)

a
‘ry

J

0 Zz

Hypercube Dimension d

Figure 6.5: ~The saturation point as a function of the dimension of the hypercube for: (1) the

hypercube implementation (Section 6.3) of the CSR protocol for 3 = 0 (for other values of 3 the saturation

point should be divided by 1+ 8), (2) the priority deflection scheme, (3) the simple deflection scheme, (4)
the unbuffered (k = 0) priority scheme, (5) the buffered (k = 1) priority scheme, (6) the unbuffered (k = 0)
simple scheme, and (7) the wormhole routing scheme (the curve is subject to significant error).

source blocking: if a packet does not make the necessary reservations then the corresponding

entry buffer is backlogged, and the packets behind it do not have access to the network. A

second reason is related to the “segmentation” of the available link capacity: some links may

be free, but if put together they may not form a whole path (d links form a path only when

their link dimensions appear in descending order). This segmentation is not inherent in the

CSR protocol, and 1s mainly due to the simple node switches assumed, which are not cross-

bar switches, and do not permit arbitrary switching assignments. The saturation throughput

of the CSR scheme has to be divided by 1 + #3, since each slot is equal to 1 + #8 units of

6.5. Comparison with other Switching Formats and Routing Schemes

time. For example, if @ = 0.5 then the curve that corresponds to the CSR protocol has to be

multiplied by 2/3. It is, however, important that the CSR protocol does not require additional

acknowledgement packets, while the simple, the priority, and the wormhole schemes do require.

The two deflection schemes also require the use of acknowledgements for reasons to be explained

later, but to- a lesser extent. Therefore, for all the schemes there is some overhead not taken

into account in Fig. 6.5. | SE

A disadvantage of the unbuffered simple scheme is that, after some point, increasing the

offered load decreases the throughput (see Fig. 5.3 of Chapter 5). This makes necessary the

existence of a mechanism for controlling the transmission rate of the nodes (probably using

the acknowledgements to obtain feedback information about the congestion, and to control

the system). This is less of a problem for the priority scheme (buffered or unbuffered), the

buffered simple scheme, the simple deflection scheme, and the blocking wormhole scheme (for

the version of wormhole routing where packets are dropped the problem is also significant).

In the latter schemes the throughput at the saturation point is somewhat smaller than the

throughput when the attempted trafic is the maximum possible, but this difference is small

(less than 5% for hypercube dimension less than 13). The simulations of the priority deflection

scheme, and the approximate analysis of the CSR scheme have indicated that their throughput

mcreases monotonically when the offered load creases.

The results of Fig. 6.5 assume uniform traffic. If the traffic is not uniform then congestion

may become a serious problem for deflection routing, as results in [Max90] indicate. Congestion

feeds on itself since it forces packets to take longer paths, increasing the utilization, and making

other packets to take even longer paths. If the topology is not regular, congestion may become

an even more serious problem. In regular topologies which have a severe penalty for deflections

for example, the shuffle exchange network; see [Max89], and [Max90]) deflection routing can

be very inefficient in terms of throughput. The CSR protocol behaves better in congestion, is

apparently least affected by the choice of the topology.

Packet Delay

yw [gnoring input queueing delay(inotherwords,iftheloadisvery-light)wormholeroutingseems

to have the smallest delay of the routing schemes examined. The reason is the pipelining that 1t

achieves between the transmission delay of a packet, and the delay due to the several hops that

6.5. Comparison with other Switching Formats and Routing Schemes

the packet has to travel. If, however, the input queueing delay is significant (in other words,

if the load is not light) then the two deflection schemes and the CSR scheme (for small 3)

have the smallest delay. The CSR protocol, deflection routing (ignoring the live-lock problem

decribed below), and the blocking version of wormhole routing (ignoring the deadlock problem)

have the additional advantage that when a packet enters the network, 1t is guaranteed to arrive

at its destination. This 1s equivalenttoafastfeedback, which results in smaller delay under

heavy load (when packet transmissions fail the cost of each retransmission is proportional to

the feedback delay, since a node waits for that amount of time before retransmitting).

Node _ ost

Deflection Touting requires a d x d cross-bar switch at each node of a hypercube, which has

cost ©(d?). The simple and the priority schemes, as well as the hypercube implementation of

Section 6.3 of the CSR protocol require a much simpler switch. This switch, which we call

descending-dimenstons switch, 1s illustrated in Fig. 6.6. The cost of the descending-dimensions

switch is only ©(d). A cross-bar router is larger and slower, and results in a slower network

(the processing time at a node and the clock cycle is larger). The switching assignments

possible with the descending-dimensions switch are of course more restricted, and suffer from

internal message collisions (the collisions on the internal links of the node model of Fig. 6.1).

This results in a degradation in performance, which in the case of the CSR protocol was not

severe. Since the descending-dimensions switch uses simple 2:2 switch/merge switches, it can

be made to operate very quickly, which may offset the degradation in the performance due to

the restrictions in the routing algorithm (see [Dal91]). If the CSR protocol were used with a

cross-bar switch, it would probably outperform deflection routing (if we ignore the 1+3factor);

however, we believe that the improvement would not be worth the additional cost. One of the

advantages of the CSR protocol 1s that it performs well even with very simple switches.

Live-lock, and Deadlock

The live-lock problem-is unique to deflection routing (see [Max90]):-Itoccurswhenpackets

are transmitted continuously without any chance of reaching their destination. This problem

cannot be removed by an end-to-end control, since such packets do not reach their destination.

6.5. Comparison with other Switching Formats and Routing Schemes

dxd crossbar switch dxd ascending-dimensions switch

$<

ar:x
2

or

 NEN
| M

«¥ l
»

~,

Ir
“

J

Wa S ”~

"elLv — |

"\

AL]
Hn

for]
> S/M |

S: 1:d switch

M: d:1 merge

S/M: 2X2 cross-bar

Figure 6.6: A d X d cross-bar switch, a d X d descending-dimensions switch, and the modules

out of which they are composed.

If routing decisions are made deterministically then scenaria can be found where a live-lock

persists forever. The problem could be overcome by having each packet count the number

of hops it traverses, and be dropped when this number exceeds some limit. This is, however.

undesirable, because it increases the processing time at the nodes, complicates the implementa

tion, and makes the use of acknowledgements necessary. Of cource, if decisions are randomized

then live-locks are eventually broken. However, we believe that it would be costly to randomize

every switching decision, and therefore this should not be considered as a solution.

Wormhole routing is subject to a similar problem, called deadlock (see [Dal90b]). A deadlock

arises Whenever there is a cycle of packets requiring a resource that another packet in the cycle

1s employing. Deadlocks can happen quite frequently in wormhole routing when the buffer

space 1s small. The solution that has been proposed in [DaS87] involves virtual channels and

complicates the implementation.

6.5. Comparison with other Switching Formats and Routing Schemes

Fairness

All the schemes examined, with the exception of the CSR protocol, can cause the system to

operate unfairly. The first source that has access to the empty slots takes all the slots that

it requires, while the sourcr-that follows takes what is left over. Figure 6.7illustrates how a

source can be locked out with the priority deflection scheme (even with randomized decisions).

The CSR protocol is fair because if two nodes try to insert packets during a control interval,

and are claiming the same link for the same slot, then the conflict is resolved randomly.

nN 1

00

"

~

| O

Figure 6.7: Node 00 continuously sends two packets per slot to node 11, and node 11 sends two

packets per slot to node 00. Then if the priority deflection scheme is used, both nodes 01 and 10 cannot

insert any packets. The situation where only some (not all) of the links of a node are blocked arises even
more frequently.

Packet Resequencing

The CSR protocol can easily guarantee that packets arrive at their destination in sequence. On

the other hand, the need for resequencing packets is inherent in deflection routing, and cannot

be avoided. An implication of that is that resequencing buffers may overflow, dropping packets,

and making the use of acknowledgements necessary. To avoid acknowledgements (which might

impose a big burden on the network) it may be better to deflect packets that arrive at a

destination node whose resequencing buffer is full. If the size of the resequencing buffers is

small, congestion may increase significantly, because with deflection routing packets will often

arrive out of sequence.

6.5. Comparison with other Switching Formats and Routing Schemes

Processing at the Nodes

I'he simple and the priority shortest path schemes are the easiest to implement. The hardware

required for these schemes is very simple (see Fig. 1 for the node model). Deflection routing

requires more processing at each node, especially if we want to address the live-lock and the

fairness problems. Also, a cross-bar switch is slower than an descending-dimensions switch. The

priority deflection scheme requires slightly more processing time at the nodes than the simple

deflection scheme. The CSR protocol can be implemented easily in a synchronous system. In

the unbuffered case, the state of each link can be described by a binary number of length d (at

any time reservations may exist for the next d slots at most), which should not he a problem.

Synchronization

The CSR scheme, the priority scheme, and the two deflection schemes are best suited for

synchronous systems. The simple scheme and the wormhole routing scheme can also be imple-

mented in an asynchronous system. Synchronous systems have a number of advantages which

have resulted in an almost universal use (see [Dal90b]). Asynchronous systems are potentially

faster (the slower component does not have to dominate the speed of the system), and avoid the

problem of the distribution of the clock to all the chips with as small a clock-skew as possible.

at the expense of a much more complicated implementation.

CHAPTER SEVEN

Routing Properties and Algorithms

for some Hypercube Related Networks

In this chapter we examine some classes of networks, which are structurally related to the hypercube, and

present routing algorithms to execute certain communication tasks in them. The network classes discussed

are the pseudo-cube, the enhanced-cube, the permutation-cube, and the folded-cube. These networks, with

the exception of the folded-cube, are first introduced here. The proposed networks have recursive properties

and self-routing algorithms similar to those of the hypercube. Simulation results indicate that the mean

internode distance for these networks is considerably less than that of a regular hypercube with the same

number of nodes. For the permutation-cube we prove that any “reasonable” deterministic algorithm executes

the total exchange task in less than IN steps. For the folded-cube network we find the first strictly optimal

multinode broadcast and total exchange communication algorithms. Finally we show that the layout of the

proposed networks is simple, and requires area of the same order of magnitude with the regular hypercube.

7.1. NETWORK DEFINITIONS

The d-dimensional hypercube has N = 2¢ nodes, degree and diameter equal to d, and

mean Internode distance equal to d/2. Despite its nice recursive properties and the easy self-

-routing-algorithms,which have made hypercubes popular, itsvdiameter -and mean internode

distance are not particularly good. In a network of degree d, one could hope for a diameter

and mean internode distance of the order of O(log, N) as pointed out in [Upf84]. In this

7.1. Network Definitions

chapter we examine several networks of logarithmic degree, which are structurally related to

the hypercube graph. These networks have recursive properties similar to those of a hypercube,

but smaller diameter and mean internode distance. The interconnections of these networks

are made according to easily describable rules, which is important for the feasibility.oftheir

construction. ‘Simple self-routing algorithms ‘can be employedinthesenetworks,but better

(although more complicated) routing algorithms also exist. The rules that define the networks

leave many degrees of freedom; therefore, for each size, the proposed networks are actually

classes of networks rather than individual networks. We will use the same name to refer to a

network, and to the corresponding class of networks.

Each of the networks proposed has N = 2¢ nodes, where d is the dimension of the network.

A node is represented by a distinct integer between 0 and NV — 1, or, equivalently, by the binary

representation of this integer. A link connecting node s to node t is represented by (s,s ®1),

where © denotes the bitwise exclusive OR binary operation. When no confusion about the

origin of a link can arise we denote the link between s and ¢ by the binary string | = s © ¢.

We also denote by L(s) the set of links of node s, and by e; the binary number whose #*t bit

1s equal to 1 and the other bits are equal to 0. The first class of networks that we introduce is

the following:

Definition 1: The d-dimensional pseudocube Sy is a class of networks, each member of which

has N = 29 nodes. The set of links leaving each node consists of d links of the form 04-114,

t=0,1,...,d—1, where each * is either a 0 or a 1, and «*, (z € {0,1,+},k € {0,1,...,d— 1h),

is the concatenation of k z’s.

The link 09-*-114' is called a link of dimension i. A d-dimensional pseudocube can be divided

nto two sub-pseudocubes. Each node in one of the sub-pseudocubes has a (unidirectional) link

leading to a node in the other; this does not necessarily happen in a 1-1 way. The #’s can be

different with each other not only when they appear in links of the same node, but also for links

of different nodes. Thus, for d = 3, if (5,101) is an outgoing link of node s, it is not necessary

that (2,101) is an outgoing link of node t # s.- If this were the case then the network would be

isomorphic to a hypercube, since instead of using the e,’s as a base of the space {0,1}4, another

linearly independent base would be used. The outdegree of each node of the d-dimensional

pseudocube is d, but the indegree is not the same for all nodes. If the *’s are chosen randomly,

independently of each other and equal to 0 or 1 with probability 1/2, then the outdegree of

each node is a random variable with mean d. The class S; can also be viewed as a random

7.1. Network Definitions

graph, where the *’s are chosen at random. The pseudocubes are not necessarily symmetric

(although this can be enforced if desired), in the sense that when there is a link from node s

to node ¢, there is not necessarily a link from¢to s. It is easy to see that the pseudocube 1s a

connected graph with diameter at most d.

The secondclassofnetworksthatwewillexamineistheclassofenhancedcubes,definedas

follows:

Definition 2: The d-dimensional enhanced-cube £; is a class of networks each member of which

has 2¢ nodes. The set of links leaving each node consists of d + 1 links: d links are of the form

ei, t=0,1,...,d — 1, and one link is of the form 9.

The enhanced-cube is a hypercube with one additional outgoing link per node leading to a

random node. The outdegree of each node is equal to d 4 1. If the *’s are chosen equal to 0 or

| with probability 1/2, the indegree ofanodeis a random variable with mean d + 1.

Definition 3: The d-dimensional permutation-cube Py is the subclass of d-dimensional pseu-

docubes with the property that each node has exactly one incoming link per dimension.

A permutation-cube of dimension d can be divided into two sub-permutation-cubes, each of

dimension d — 1. The sub-permutation-cubes are not necessarily identical. For every nodeIn

one of the sub-permutation-cubes, there is a unidirectional link leading to a node in the other

sub-permutation-cube, with no two of them leading to the same node.

Often 1t is desirable for a multiprocessor network to be symmetric, so that locality of com-

munication can be achieved easier when assigning tasks to processors. For each of the classes

of networks described above, we can define its symmetric subclass to consist of the networks

with the property that whenever there is a link from node s to node ¢, there is also a link from

node t to node s.

In all the previous networks, a self-routing algorithm similar to that of the hypercube exists.

The algorithm for the enhanced-cube is obvious since it contains the hypercube as a subgraph.

A self-routing algorithm for the pseudocube is obtained as follows. Consider a packet currently

located at node s with final destination ¢. Let i be the most significant bit in which s and ¢

differ. Then the next transmission of the packet is over the -link of node s. Therefore, after

the ith step, 2 = 1,2,...,d, the binary representations of the current location and the final

destination of a packet agree in at least the ¢ most significan bits. This routing algorithm is

based on the fact that a pseudocube of dimension of the packets m is divided into two (not

7.2. Mean Internode Distance and other Properties of Pseudocubes and Enhanced-Cubes

identical in general) sub-pseudocubes of dimension m — 1, with each node in one of them having

a link leading to the other. Thus, the routing of a packet to its destination is done in a divide

and conquer way. Based on the same idea, one can devise many other networks which have such

seli-routing algorithms (e.g., a k-dimensional pseudomesh-ofp*processorscouldbe defined as

having the property that it-can-be dividedinpequal sub-pseudomesh, with each node in a

sub-pseudomesh connected to a node in each one of two neighbor pseudomeshes). Note that in

the self-routing algorithm, packets do not necessarily follow shortest paths to their destinations;

however, they are guaranteed to arrive at their destination in less than d steps.

The previous three classes of networks are introduced for the first time here. The folded

hypercube defined next was first introduced in [AdS82].

Definition 4: The folded d-dimensional cube has 2¢ nodes. The d + 1 links leaving each node

are of the forme,, i = 0,1,. ..,d—1, and 19.

A folded hypercube is a hypercube with additional links connecting each node s to its bitwise

complement 5. The diameter of the folded hypercube is [d/2].

Note that the folded hypercube is a particular case of an enhanced-cube. Also the class of

permutation-cubes is a subclass of the pseudocubes, and the hypercube itself is a special case

of a permutation-cube.

In the remainder of the chapter we examine routing properties of the previously defined

networks, and present algorithms to execute standard communication tasks in them. In par-

ticular, Section 7.2 examines the mean internode distance and other routing properties of the

pseudocube and the enhanced-cube. Section 7.2 deals with routing properties of permutation-

cubes, and proposes algorithms for the total exchange task. In Section 7.3 we propose the first

optimal algorithms to execute a multinode broadcast and a total exchange in a folded-cube.

Section 7.3 focuses on layout algorithms for the networks proposed.

7.2. MEAN INTERNODE DISTANCE AND OTHER PROPERTIES OF PSEUDOCUBES

AND ENHANCED-CUBES

In this section:wepresentsimulationresultsforthemeaninternodedistanceofthepseu-

docube and the enhanced-cube classes of networks. We find that the mean internode distance

is significantly less than d/2, the mean internode distance of a hypercube. We then calculate

7.2. Mean Internode Distance and other Properties of Pseudocubes and Enhanced-Cubes

what we call the mean “greedy routing distance” in the pseudocube for a simple routing scheme,

which does not always use shortest paths. We also show that for any set of M permutations

with M < > (2)*, it is possible to find an enhanced-cube that routes (uniformly) all these

permutations in ©(log N) time, using a greedy routing scheme. |

Wecalculatedby simulation ‘the mean. internode distance of the.classes of pseudocube and

enhanced-cube networks. In particular, we generated randomly some thousands of these net-

works, with all networks being equally probable, and calculated the mean internode distance

for each of them. Fig. 7.1 illustrates the mean internode distance of the class S; of pseudocube

networks for dimensions up to d = 20. The mean is taken over all pairs of nodes and over all

network members of §3. There are pseudocubes, which have mean internode distance less than

what 1s indicated in Fig. 7.1, because there are also pseudocubes which have internode distance

greater than the mean (an example being the regular hypercube). For the network sizes that

we simulated the mean internode distance in $y was close to d/4 + 0.9. This is significantly

less the mean internode distance d/2 of the hypercube, and is attained at no additional hard-

ware complexity compared to the hypercube (see Section 7.5 for the layouts of the networks

proposed).

In Fig. 7.2 we indicate the mean internode distance for the enhanced-cube class of networks.

The improvement over the hypercube is again significant. Note that the mean internode dis-

tance of Sg 1s significantly smaller than that of &;, although the networks in &; have outdegree

d+ 1 as opposed to d for the networks in Sy.

1

The mean internode distance shown in Fig. 7.2 is obtained when packets are routed through

shortest paths in an enhanced-cube. Evaluating and storing the shortest paths for every pair

of nodes may be undesirable if the nodes do not communicate often, or if they exchange

small messages. A greedy routing scheme with small storage and processing overhead is the

following. A node sends the packet to the one of its neighbors (including the one connected via

the “extra” link), which is at smaller Hamming distance (not necessarily smaller real distance)

from its destination. The mean greedy routing distance obtained in this way (the mean is taken

over all networksandallpairsofnodes)isindicatedinFig.7:3 for various network sizes. The

results in this figure were obtained by simulating a Markov chain formulated for this routing

scheme.

.An.mportant advantageofthe-enhanced-cubescanbe.seen by applying results of [Val82]

and [VaB81]. First, any particular permutation can be executed in time O(log, N) for the

majority of the enhanced-cubes. This can be done by first sending the packet over the extra

7.2. Mean Internode Distance and other Properties of Pseudocubes and Enhanced-Cubes

Pseudo-Cube

”
~~

4

D

&
nd
-y

AJ
1.

g!

-

EE : . CY TTT

2 10 11 12 13 14 15 16 i
-

dimension d

Figure 7.1: - Mean internode distance of Sy as a function of d.

link (view it as a random link), and then routing the packet to its destination in the greedy

way without using any extra links. This routing scheme consists of only one phase (instead

of two in Valiant’s work), and thus the constant in the © expression is half of that of [Val82].

A second observation is that worst case permutations for the regular hypercube are not worst

case permutations for the big majority of the enhanced-cubes. This is important because

the worst case permutations of the hypercube are very regular (because of the regularity of

the hypercube), and arise often in applications. An example is the bit reversal permutation,

where node s4-1--- s150 sends a packet to node sos; -- - sg_;. This permutation requires O(vN)

steps 1n a hypercube with the greedy routing, while it is performed in O(log N) steps for most

enhanced cubes. The class of enhanced-cubes is “uniformly good” for all permutations (Valiant

[Val82] used the relevant notion of “testability”),whilethe hypercube often performs badly for

«well structured permutations. A third, and more interesting, observation is given by the next

7.2. Mean Internode Distance and other Properties of Pseudocubes and Enhanced-Cubes

Enhanced-Cube

J

LJ)
Jr
-

“
rl

 =~

Ch
 ~~

wl

Pm

ES

a
well

ms
1,
- 4

“mg

[9 14
dimension d

1

Figure 7.2: Mean internode distance of £y as a function of d.

corollary to Valiant’s results:

Corollary 1: Given any constant KX > 2.5, and any set of M permutations, with

1 2M<—|—< 2d (e ’ (7.1)

there exists a network belonging to the class of enhanced-cubes, which executes in a greedy

way all these permutations in less than +l + 1 steps.

ree if
a

The greedy routing scheme mentioned mn the corollary 1s the one where a packet 1s sent at

the first slot over the extra link of its origin, and then crosses the hypercube dimensions in

some (particular) order. Thus, if the designer of the cube 1s given Af special permutations [with

M satisfying:Eq:(7:1)]y-whichhave:to.beimplementedefficiently,he.canfindanenhanced-

cube that always (and not with high probability) executes any of these special permutations in

©(d) steps using a greedy algorithm. Since AM is growing exponentially with d, and even more

7.2. Mean Internode Distance and other Properties of Pseudocubes and Enhanced-Cubes

Enhanced-Cube

-

h
—y

[=

A

 --
x,

i

A0

i.
x
LA 4 -

’
ad 14

dimension d

Figure 7.3: Mean “greedy routing” distance of the randomly enhanced cubes as a function of
its dimension d.

rapidly with K, the previous corollary leaves space for practical applications. A way to design

a “good” network is to generate randomly several enhanced-cubes, and test them for the M

special permutations in which we are interested. Then chances are that after a few trials we will

find a network that performs these permutations in time O(log N). The testing is used just in

case we are unlucky in the generation of the graph. Researchers have been trying to find which

networks execute well which permutations. The class of enhanced-cubes has “good” networks,

no matter which M permutations we consider. The practical issue of actually laying on silicon

such a network is discussed at the last section, where it is found that enhanced-cubes require

layout area ©(N?), which is of the same order of magnitude with that of a regular hypercube.

An Interesting. open problem is the following. Does there exist a network.belonging to the

class of enhanced-cubes that can route ell permutations in time ©(log N) by employing a greedy

routing scheme? We want the algorithm to be “on-line”, deterministic, and adaptive (a non-

7.3. Communication Algorithms for Permutation-Cubes

adaptive, or oblivious, routing scheme would not do in view of the results in [BoHB85]). If we

use only the regular hypercube links at most p(N!) permutations require time (log N) to be

executed, where p is decreasing exponentially in d. We call the set of such “bad” permutations

Sa. If we first use the extra link, again at least (1 — p)(N!) permutations are routed in time

O(log N).. Call the set of these “good” permutations So. If there exists an enhanced-cube such

that Sq 1s a subset of So, then this network can execute all permutations in O(log N) time.

Intuition suggests that similar arguments must apply to pseudocube and permutation-cube

networks.

7.3. COMMUNICATION ALGORITHMS FOR PERMUTATION-CUBES

In this section we consider the permutation-cube class of networks. Since the permutation-

cubes form a subclass of the pseudocubes the self-routing algorithms described earlier apply

to them as well. We used simulations to calculate the mean internode distance of a symmetric

permutation-cube (see Fig. 7.4). The results indicate that the permutation cubes have on the

average significantly less mean internode distance than regular hypercubes of the same size

(there is a 40% improvement for dimension d = 12). In what follows, we will show that generic

communication tasks, like the ones described in Section 1.3, can also be executed efficiently

in permutation-cubes. We will present a class of simple-minded algorithms, called “reasonable

algorithms”,‘whichperformthetotalexchangetaskinlessthanNsteps.Thesamealgorithm

can be used to execute the total exchange for the whole class of permutation-cube networks,

which is remarkable. We recall here that the optimal algorithm for the TE task in a regular

hypercube requires N/2 steps (see Section 2.4), and achieves 100% utilization of the links.

To find a TE algorithm, we restrict our attention to paths in which the dimensions are

traversed in descending order, that is, links in dimension ¢ with 7 > j are traversed before links

of dimensions j. In particular, a packet currently residing at node s and having node t as its

destination is sent over the i-link, where 7 is the most significant non-zero bit in the binary

number s ®t. We call such paths normal paths, A normal path is not necessarily a shortest

path; however; itis always of length less than or equal to d,and, if we assume that nodes s

and ¢ are randomly chosen with equal probability over all nodes, its mean length is d/2. We

define the normal relative address between a source node s and a destination node ¢ as the

7.3. Communication Algorithms for Permutation-Cubes

® Mean Internode Distance for Symmetric Permutation Cubes

”

Vv

i

»
 -—
 Ny

/4

Q

=
L
 a
A;

2
 |
i

<>
4,

lh

-

-

7

dimensi on i

Figure 7.4: Mean internode distance of symmetric permutation cubes as a function of their

dimension d. The straight line corresponds to the mean internode distance of the hypercubes.

binary ‘number of length d whose #t® bit is a one if an link is going to be used by the normal

path from s to t, and a zero otherwise. The relative address from node s to node ? 1s not mn

general equal to s ®t, as is the case for the regular hypercube. In fact, it is not even equal to

the relative address from node ¢ to node s.

Suppose now that we are given a communication task where each node s has to send packets

to all nodes in a set S. We define the task matrix T'(s) of that task at node s as the binary

matrix that has as rows the normal relative addresses of node s with respect to all nodes in S.

Then we have the following lemma.

Lemma 1: For the TE task the task matrices are the same for all nodes, and contain all the

binary numbers between 0 and N — 1.

Proof: Fach normal relative address corresponds to a path, and paths corresponding to two

7.3. Communication Algorithms for Permutation-Cubes

different relative addresses lead to different nodes (if ¢ is the first bit in which the relative ad-

dresses differ then the two nodes will always differ in this bit). Thus, there is a 1-1 correspon-

dence between the binary numbers of length d and the relative addresses of the permutation-

cube nodes with respect to a particular node. Q.E.D.

Using the ideas developed in Chapter 2 we can show that the execution of the TE task is

squivalent to clearing the task matrix according to the following rules:

» at most one entry from each row or column may be cleared at each step, and

e entries within a row are cleared from higher dimensions to lower dimensions; in other words,

an entry of the task matrix can be cleared only after all the entries of the same row that

correspond to higher dimensions have been cleared first.

The second rule is posed so that the paths followed are normal, in which case the relative

address of some node s with respect to node t corresponds to an actual path from s to ¢. We

are currently examining if the task matrix for the TE can be cleared in time N/2 (for all the

examples we have tried this was possible, but we have not found any systematic way yet). We

can prove, however, the following result.

Lemma 2: Any “reasonable” routing scheme can perform the total exchange (or equivalently

clear the task matrix entries) in time at most N. By the term “reasonable” we mean that if

there is a packet at node s and the most significant nonzero bit of its relative address is the

ith then the i-link of node s will not stay idle during the next slot.

Note: The routing does not have to be symmetric (see Subsection 2.3) for the result to hold.

Proof: After time N/2 at least the bits of the task matrices that correspond to dimension

d will have been cleared (some more transmissions may have also taken place). If only this

(minimum) amount of work is done the rest of the task is equivalent to two concurrent TEs in

different subcubes, each of dimension d — 1. Thus

Irp(N) <Trg(N/2) + N/2 < N.

The preceding proof can be made more rigorous. If we impose a FCFS discipline then TIgOT 1S

easy to achieve, but no such queueing discipline is actually needed for the result to hold).

7.4. Optimal Communication Algorithms for Folded-Cubes

7.4. OPTIMAL COMMUNICATION ALGORITHMS FOR FOLDED-CUBES

In this section we present communication algorithms to execute a multinode broadcast and

a total exchange in an d-dimensional folded-cube. The algorithms to be presented have strictly

optimaltimecomplexity.Ho[Ho90]proposedanoptimalalgorithmfortheMNB,andasub-

optimal algorithm for the TE in the folded-cube. The improvement in the time complexity

achieved by our TE algorithm is very significant. Also, we believe that the MNB which we give

is simpler than the one in [Ho90].

In what follows we will refer to a link connecting node s to node s@®e;, i =0,1,...,d — 1

as an i-link. We will also refer to the link connecting node s to its bitwise complement 5 as

a c-link. Note that any d of the binary strings eo, e1,...eq4_1,1¢ are linearly independent and

form a base of the space {0,1}. Therefore, a packet can be routed from any source to any

destination by using only d of the d + 1 dimensions of the folded-cube.

The algorithm for the MNB is based on the ideas developed in Chapter 3 , and will only be

outlined here. We define the algorithms 4, in the way we defined the corresponding algorithms

for hypercubes in Chapter 3 (Theorem 6), with the difference that c-links can be used. Each

of these algorithms uses only d out of the d + 1 available dimensions. The order in which the

dimensions are traversed may be < 0,1,...,d—=1>,<1,2,...,d=1,¢>,< 2,3,... yd—2,¢,0 >,

nor <e0,1,...,d —2 >. By splitting the packets into d + 1 parts and performing d + 1

disjoint MNBs we find that the time required to execute a MNB in a folded cube is

N-1

d4+1

This 1s optimal, since each node has d + 1 links and has to receive N — 1 packets.

For the TE communication task, Ho proved the following lower bound for the time Trg

equired to execute the task:

1 d \
Tpp > 26-1 — — = 2 (a/21)

fle also gave an algorithm with time complexity

dN

20d+1)

His algorithm requires each packet to be split in d + 1 parts. ‘The preceding-upper and lower

bounds are of the same order of magnitude. However, the gap between the two is quite impor-

tant in practice. For example, in the case d = 16 the lower bound is 26333 time steps, while

7.4. Optunal Communication Algorithms for Folded-Cubes

algorithm in [Ho90] executes the task in 30840.47059 steps. This is only slightly better than

the 32768 steps required for a TE in a regular 16-dimensional hypercube, which indicates that

the algorithm does not take full advantage of the extra c-links. In the remaining section we give

an algorithm with time complexity exactly equal to the lower bound. An additional advantage

of our TE algorithm is that it does not require the splitting of packets as Ho’s algorithm does.

Assume first that d is even. According to the algorithm we propose, a packet originated at

node s and destined for a node t, which is at Hamming distance less or equal to d/2 from s.

does not use any c-links and its routing tag is equal to 0(s ®t). A packet originated at node s

and destined for a node ¢, which is at Hamming distance greater than or equal to d/2 +1 from

s, will use a c-link and its routing tag is equal to 1(s@7),wherethebar represents the bitwise

complement. We define task matrices to have d + 1 columns (one for each link) and N — 1

rows (one for each packet). The task matrices are the same for all nodes. The critical sum of

the task matrix is equal to

max(7T.. 7.)

x 1-

d
d N 1/7 dLe= 2 (5) BP 3 (47)

1=d/2+1

1s the column sum of the task matrix that corresponds to the c-link, and

 4/2 d/2-1 412 d/2-1

1 3° dy. 1 5° d\ . d-1 3 d—1Ta ()i+3 1=0 ()i=2 (21) =] (i210) -
d/2-1 d/2—2 i]

— — FAY iY | —

(“7+ (TH =3+5-(== 1 (1a)2 J 2 j $74 \d/2-1 2 \ [d/2]

1s the column sum that corresponds to a regular link (that is, a link which is also present In

the regular hypercube). Using the results in Chapter 2 we find that for d even we have

Tes =T.= T= 21 — 3 d)2 \[d/2]

which equals the lower bound.

For d odd. now. a packet originated at node s and destined for a node ¢ at Hamming distance

less or equal to [d/2] — 1 from s will not use any c-links, and has routing tag equal to s & t.

A packet originated at node s and destined for a node ¢ at Hamming distance greater than or

equal to [d/2] + 1 from s will use a c-link and has routing tag equal to 1(s=f). The packets

chat are destined for nodes at Hamming distance [d/2] from s are split into two sets of equal

7.5. Layout algorithms for the Networks Proposed

cardinality, in the same way for all origins s; packets in the one set will use ¢-links and packets

in the other set will not. The task matrices will again be the same for all nodes and have

critical sum equal to

[11> 7 To).

d
d 1/ d N 1/ dwe5,0a) 3-3mm 2 \[d/2] 2 2\[d/2]

1s the column sum corresponding to the c-link, and

T. = Py (5)i+2(rar)=3(21)+2a(jate)=
lg
‘ d—1 1/ d N d-1 1/ d 1/ d

— — = e— — ge 9d-1 —— —2 2 (7) + 2am) = 3 (rar 21) + 2a (parm) 1 (refer)
1s the column sum that corresponds to a regular link. Thus for d odd, the algorithm executes

the total exchange in time

Tes =T.=T. = 2 — 3 d2\1a/21)°
which again equals the lower bound. Note that in the algorithm we propose packets follow

shortest paths to their destination and 100% utilization of all the links is achieved.

Based on the analysis in [VaB90a] one can also derive algorithms that minimize both the

average delay and the completion time of the task, and define “reasonable routing schemes”

that execute the TE in time less or equal to

1 d
2d-1 __ _(fig) +d-1

This 1s very close to the optimal complexity

7.5. LAYOUT ALGORITHMS FOR THE NETWORKS PROPOSED

In this section we will present layout algorithms for the networks considered in Chapter 7.

All these networks can be laid out as squares of area ©(N2), that is their layout area is of the

same order of magnitude with that of the hypercube.

7.5. Layout algorithms for the Networks Proposed

Folded-Cubes

We first lay out a hypercube as a square of area O(N?) (see [Ul84], p. 129). It remains to

Introduce links between each node and its complement. We create channels for each of these

pairs-as shown in [UlI84] (p. 97). We have to create at most 4N (unidirectional) horizontal

channels and 4N vertical channels. Thus the folded hypercube can be laid out as a square of

area at most O(N?) + 16N? = O(N?).

Permutation-Cubes

They can be laid out recursively, in exactly the same way with the hypercubes, since they have

the same node degree and the same separators (see [Ull84]). Thus the area required is O(N?).

Pseudocubes

I'he main problem here is the unbounded node degree, and especially the indegree of each

node, which can be as large as N (although the mean over all nodes and over all pseudocubes

of the indegree is equal to d). The Thompson grid layout model which we are using in this

section does not allow degree more than 4 (the hypercube as well as any other unbounded

degree network also need some modification of the Thompson model). We follow the approach

;ypically taken in such cases. We lay out each node as a tree with number of nodes equal to its

degree. Thus area O(maxzdegree) is required for each node, where mazdegree is the maximum

indegree of a node of the pseudocube. We now prove the folowing proposition.

Proposition 1: Every d-dimensional pseudocube can be laid out as a square of side at most

L(N,mazdegree) = 8N + ©(v/mazdegree)V/'N, where mazdegree is the maximum indegree
and N = 2¢ is the number of nodes.

Note: Since mazdegree < N we get that the side of the square is O(N) and the area O(N?).

Proof: The layout algorithm will be of the kind typically used for networks having suitable

separators (see [Ull84]). We assume that N is a power of 4.- This is not a real restriction and

In any case we can intoduce dummy nodes without affecting the bisection width of the network

(which is what counts as we will see) with the area being affected by a factor of at most 4. We

7.5. Layout algorithms for the Networks Proposed

replace each node by a binary tree of d + maxdegree = O(mazxdegree) nodes (each leaf is a

port of the node). Then each node can be laid out as a square of side O(v/mazdegree).

For N = 1 the proposition holds. Assume now that we can lay out a pseudocube with

N/4 nodes and degree d for each node in a square of side L(N/4,mazdegree) (we keep the

degree equal to mazdegree throughout the induction so that we do not have to add more ports

later). We place on the plane four such squares as shown in Fig. 7.5. Each of them represents

the layout of one of the subcubes Hy, = 00+, Ha = 01%, Hig = 10%, Hi; = 11%. In order

to obtain a layout for the d-dimensional psecudocube we just have to add the (unidirectional)

links connecting these subcubes. Let ['(H,. Hj) be the number of links connecting some node

in subcube H; to some node in H;. Then one can check that

['(Hoo, Hor) + T'(Hoo, H11) = ['(Hya, Hoo) + (Hi, Hor) =

= I'(H11, Hoo) + T(H11, Hoi) = I'(Io1, Hy) + ['(Hoi, Hii) = N/4

I'(Hoo, Hoy) —- ['(Hoi, Hoo) = I'(Hyp, Hip) = I'(Hui, Hie) — N/4.

Thus, a total of Dit I'(Hi, Hj) = 2N unidirectional links have to be created, which requires

the creation of at most 4V horizontal and 4.V vertical channels (the ports at the nodes are

already available). Therefore,

L(N,d) = 2L(N/4, mazdey ree) + 4N

which together with L(1, mazdegree) = O vinardegree) proves that the d-dimensional pseu-

docube can be layed out as a square of side

L(N,d) =8N + O(VAVN = O(N)

x

Enhanced-Cubes

Again the layout area required is O(V2). Que first lays out a hypercube with each node having

degree mazdegree (instead of d), where mardegree is the maximum degree of the enhanced-

cube. This is done in the way described for the case of a pseudocube. Then adding the extra

links increases the area by at most O(N?) as we explained for the case of the folded-cube.

7.6. Conclusions

L(IN/4,maxdegree) 4N
pomsmm
a|

H
00

hs
"0

H
0

~4

4N
i

Figure 7.5: Recursive layout of a pseudocube

7.6. CONCLUSIONS

The networks examined have routing properties similar, and sometimes superior to those of

the regular hypercube. For example, the multinode broadcast and total exchange algorithms

can be executed faster in a folded-cube than in a hypercube. The mean internode distance for

all the networks examined was considerably less than d/2. The networks proposed (with the

exception of the folded-cube) have the additional advantage that they tend to treat in a uniform

way all permutation tasks. They have recursive structure similar to the one of the hypercube

and require the same layout area. Easy recursive algorithms to layout these networks have

been proposed. The previous reasons indicate, we believe, that the proposed networks are not

only Interesting from a theoretical point of view, but they are also viable VLSI architectures.

8.1. Importance of the Problems

CHAPTER EIGHT

Conclusions -

Directions for Future Research

The thesis has dealt with a number of problems concerning communication aspects of parallel com-

putation. In this chapter we outline our contribution and discuss some problems that we consider

interesting for future research.

3.1. IMPORTANCE OF THE PROBLEMS

 TRG ul

Massively parallel computers is essentially a different way to organize and access the IMEIMOory

of a computer. The critical resources in a multiprocessor computer are the communication

bandwidth and the memory capacity. The importance of the communication bandwidth and

the memory capacity is underscored by the fact that they occupy more than 90% of the area

of a parallel computer (see [Dal90b], [Joh90]). Since all the components of a parallel computer

‘memory, processors, routers) are made with the same technology, the cost is proportional

to the area. Therefore; the processors are relatively cheap, -and there:is no great penalty for

processors being 1dle. The true waste occurs when the communication bandwidth and the

memory are not efficiently used.

8.2. Contributions

The idea behind parallel processing is to reduce the Von Neumann bottleneck that exists

whenever there is a single processor that has to fetch data from a memory in a sequential

way. By putting processors near the memory we are able to access it in parallel. Our ability

to access non-local memory locations fast is determined by the speed of the communication

network. Thus, the communication efficiencyisthekeytothe-broad success of massively parallel

computation. In order to use massively parallel computation for a broad range of applications,

communication problems like the ones considered in this thesis have to be addressed.

8.2. CONTRIBUTIONS

In this section we outline our contribution, and discuss a number of open problems and

directions to pursue, which are related to the content of our thesis. We also discuss some

potential research directions of a more general nature, which are relatively independent of the

work presented in this thesis, but concern ideas which arose during the course of the work.

‘In Chapter 2 we introduced the class of isotropic tasks. The theory developed there deals in

a unified way with this new and broad class of communication tasks, which can be defined in a

number of regular topologies (in addition to the hypercubes and the folded-cubes, considered

in Chapters 2 and 7, respectively, the results have been extended to d-dimensional meshes with

wraparound; see [VaB90a]). For all isotropic tasks and a variety of regular topologies, this

theory gives simple, optimal routing algorithms. The rules found for the isotropic tasks give

rise to a number of optimal algorithms for the total exchange task, which is a special case of an

isotropic task. We also considered the problem of storing by columns, and transposing a banded

matrix in a hypercube, We proposed an assignment of matrix columns to hypercube processors,

and a transposition algorithm for a single banded matrix, or multiple banded matrices. The

algorithm is faster by a logarithmic factor than the fastest previous algorithm. We also proposed

a way to embed arbitrary sparse graphs, and presented a way to store block diagonal matrices

(n hypercubes.

Although we proved that the banded transposition algorithmisofoptimalorder when the

bandwidth-B-is-©(N<)forsomeconstant¢€[0,1],wehave not proved optimality for any value

of B. We also believe that it would be interesting to identify other “almost isotropic” tasks so

that we can take advantage of the simple and elegant analysis of the isotropic tasks. The tools

8.2. Contributions

developed for isotropic tasks can be used for hypercubes, d-dimensional meshes, Manhattan

networks, and folded-cubes, and possibly other regular topologies. It would be interesting to

define the most general class of networks where the tools for isotropic tasks can be used.

In Chapter 3 we gave several algorithms to execute the partial multinode broadcast and the

partial exchange tasks in hypercubes and. d-dimensional meshes. Near-optimal algorithms,er

algorithms of optimal order were found for both tasks and both topologies, under two different

communication models. We also presented results on the simulation of meshes with wraparound

by meshes without wraparound, on the packing and isotone routing problems for d-dimensional

meshes, on the window multinode broadcast in hypercubes, and on other routing problems. The

partial multinode broadcast for hypercubes improves by a factor of roughly two previous results.

The other problems considered in Chapter 3 were introduced for the first time.

Since the PMNB task arises often in applications, and it is a critical component of the

dynamic broadcasting scheme of Chapter 4, it would be interesting to consider it for other

topologies of interest. We believe that efficient PMNB algorithms can be found for folded-cubes,

and meshes of trees by using some of the ideas of the corresponding algorithms for hypercubes

and meshes (what is important for the PMNB algorithms are the recursive properties of a

network). ‘Also, the Window Total Exchange problem, defined but not solved in Section 3.8

deserves some attention.

In Chapter 4 we consider the problem where broadcast requests are generated at each node

of a network stochastically. We proposed a simple scheme to execute the broadcasts, based on

reservation ideas. The scheme can be used in hypercubes, d-dimensional meshes and tori, and,

in general,in‘anynetworkforwhichPMNBalgorithmswithcertain properties can be found.

For the hypercube and the d-dimensional array or torus our scheme had asymptotically optimal

stability region, and asymptotically optimal average delay in terms of the size of the network

for any fixed load in the stability region.

A conclusion of our analysis is that static routing algorithms when properly adapted can

yield efficient algorithms for dynamic routing problems. This suggests that there is a connection

between static and dynamic problems. Algorithms developed for static tasks can form a basis

for effective routing algorithms in dynamic, stochastic environments. It might be fruitful to

examine what the existence of efficient solutions to a static problem means for the corresponding

dynamic problem.

In Chapter 5 we dealt with the problem where packets having a single destination are

8.2. Contributions

generated at each node of a hypercube in a stochastic way. We proposed two different routing

schemes, and evaluated their steady state throughput. The schemes are easy to implement,

and require simple, low-cost switches at the hypercube nodes. The priority rule used in one of

the schemes increases the throughput significantly and can be easily implemented in a parallel

computer..Wealsoexaminedthe.effect of the buffer space onthe throughput. The results on

the throughput were approximate, but very accurateassimulationresultsindicate,and they

were given in interesting forms. We also analyzed through simulations the performance of the

simple and the priority deflection schemes. These schemes, which use crossbar switches at

the nodes, were found to have very satisfactory throughput. The priority deflection scheme is

conjectured to have throughput asymptotically equal to the maximum possible. A challenging

problem 1s to analyze without approximations the simple and the priority scheme, and the two

deflection schemes. The fact that no progress has been made over the years in analyzing exactly

the simple deflection scheme shows that these problems are not easy.

In Chapter 6 we proposed a new switching format, which combines most of the individual

advantages of packet and circuit switching. The CSR protocol solves very efficiently data link

control issues, such as the link and buffer space allocation strategy, the feedback mechanism,

the retransmission protocol, and others. We also presented a hypercube implementation of the

CSR and analyzed it approximately. The CSR protocol provides satisfactory throughput, when

the corresponding parameter 3 is small, together with a number of other advantages.

An Interesting question 1s to analyze a hypercube implementation of the CSR protocol where

the hypercube nodes are crosshar switches, allowing more freedom in the switching assignments

permitted. We expect the throughput of such a hypercube CSR implementation to be better

than the throughput of any other hypercube scheme (for small enough 3). Another open

question 1s the analysis of the hypercube implementation of Sections 6.3-6.4 without the use of

approximations. It would also be interesting (and perhaps easier) to analyze the CSR protocol

for a 2-dimensional wraparound mesh or a Manhattan network where greedy shortest path

routing algorithms are used.

In Chapter 7 we defined several new classes of network topologies Simulation results indi-

cated that the mean internode distance of these networks was very satisfactory. The networks

proposed have nice recursive properties, and self-routing algorithms. We proved that the total

exchange task can be executed efficiently by greedy algorithms.in some of the proposed net-

works. We also presented the first strictly optimal MNB and TE algorithms for folded cubes.

We find that all the proposed networks when placed on silicon require area O(N?), which is of

8.2. Contributions

the same order of magnitude with the hypercube.

A main direction for future work 1s the implementation of some of the proposed static and

dynamic communication algorithms in actual parallel machines. The efficiency of many of these

algorithms together with their simplicity makes them, we believe, potentially interesting from

a practical point of view. Furthermore, the CSR protocol seems an interesting alternativeto

packet or circuit switching for muliprocessor networks; it remains to be seen how efficiently it

can be implemented in practice.

As we move towards fine-grained parallelization, communication problems will increase in

importance. Existing parallel machines have communication and synchronization overhead in

excess of 500 instruction times ([Dal90b]). Truly fine-grained parallelization will require this

overhead to drop to 10-20 instruction tunes. We hope that the results described in this thesis

will help in this transition.

References

REFERENCES

AdS82] Adams, G. B., and Siegel, H. G., “The Extra Stage Cube: a Fault-Tolerant Intercon-

nection Network for Supersystems,” IEEE Trans. Computers, 31(5), pp. 443-454, May 1982.

'‘BCW81] Bongiovanni, G., Coppersmith, D., and Wong, C. W., “An Optimum Time Slot

Assignment Algorithm for an SS/TDMA system with Variable Number of Transponders”, IEEE

Trans. Commun., Vol. COM-29, pp. 721-726, 1981.

iBra91] Brassil, J. T., Deflection Routing in Certain Regular Networks, Ph.D. Thesis, UCSD,

1991.

Ber91] Bertsekas, D. P., Linear Nelwork Optimization: Algorithms and Codes, M.I.T. Press,

Cambridge, MA., 1991.

'BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, N.J., 1989.

BeG87] Bertsekas, D. P., and Gallager R., Data Networks, Prentice-Hall, 1987

‘BeG91] Bertsekas, D. P., and Gallager R., personal communication.

[BOS91] Bertsekas, D. P., Ozveren, C., Stamoulis, G. D., Tseng, P., and Tsitsiklis, J. N.,

‘Optimal Communication Algorithms for Hypercubes,” J. Parallel Distrib. Comput., Vol. 11,

pp. 263-275, 1991.

(BhI85] Bhatt, S. N., and Ipsen, I. C. F., “How to Embed Trees in Hypercubes,” Yale University,

Dept. of Computer Science, Research Report YALEU/DCS/RR-443, 1985.

Ble86] Blelloch, G. ,E., “Scans as Primitive Prallel Operations,” Proc. Int’l Conf. Parallel

Processing, pp. 399-362, August 1986.

BoHB85] Borodin, A., and Hopcroft J. E., “Routing Merging and Sorting on Parallel] Models of

Computation,” J. Comput. Syst. Sci., 30:130-145., 1985.

'ChL89] Choudhury A., and Li, V. O. K., “Performance Analysis of Deflection Routing in the

Manhattan Street and Minimum-Distance Networks,” preprint.

‘ChS87] Chen, M-S., and Shin, K. G., “Processor Allocation in an N-Cube Multiprocessor

Using Gray Codes,” IEEE Trans. Computers, Vol. C-36, No. 12, December 1987.

(ChS89] Chen, M.-S:;.and Shin, K..G., “Task Migration in Hypercube Multiprocessors,” Proc.
16th Annual Int’l Symp. Computer Architecture, May 1989, pp. 105-111.

(ChT90] Chuang, P. J., and Tzeng, N.-F.,* Dynamic Processor Allocation in Hypercube Com-

References

puters”, IEEE 1990.

[Dal87] Dally, W. J., “Wire Efficient VLSI Multiprocessor Communication Networks,” Proc.

Stanford Conference on Advanced Research in VLSI. Paul Losleben, Ed., MIT Press, Cam-

bridge, MA, March 1987, pp. 391-415.

.Dal90a] Dally, W. J., “Performance Analysis of k-ary n-cube Interconnection Networks,” IEEE

Trans. Computers, 39(6), 1990.

[Dal90b] Dally, W. J., “Network and Processor Architecture for Message-Driven Computers,”

in R. Suaya, and G. Birtwistle (Eds.), VLSI and Parallel Computation, Morgan Kaufinann

Publishers, San Mateo, CA, pp. 140-222, 1990.

'DaS87] Dally, W. J., and Seitz, C. L., “Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks,” IEEE Trans. Computers, Vol. C-36, pp. 947-553, 1987.

[DNS81] Dekel, E., Nassimi, D., and Sahni, S.. “Parallel Matrix and Graph Algorithms,” SIAM

J. Comput., Vol. 10, pp. 657-673, 1981.

[DiJ81] Dias, D. M., and Jump, J. R., “Analysis and Simulation of Buffered Delta Networks,”

[EEE Trans. Computers, Vol. C-30, pp. 273-282, August 1981.

[Dud78] Dudley, R. M., “Central Limit Theorems for Empirical Measures,” Ann. Probability,

Vol.6, No.6, pp. 899-929, 1978.

[Ede91] Edelman, A., “Optimal Matrix Transposition and Bit Reversal on Hypercubes: All-to-

All Personaliced Communication,” J. Parallel Distrib. Comput., Vol. 11, pp. 328-331. 1991.

[EIL90] El-Amany, A., and Latif, S., “Bridged Hypercube Networks.” J. Parallel Distrib. Com-

put. 10, pp. 90-95, 1990.

Fen81] Feng, T. Y., “A Survey of Interconnection Networks”, IEEE Computer, pp. 12-27.

December 1981.

[Fra90] Fraigniaud, P., “Complexity Analysis of Broadcasting in Ilypercubes with Restricted

Communication Capabilities.” Report 90-16, ENS Lyon. France. May 1990.

|Gal68] Gallager, R. G., Information Theory and Reliable Communication. 1968.

(GrG86] Greenberg, A. G., and Goodman. J.. “Sharp Approximate Models of Adaptive Routing

in Mesh Networks,” in J. W. Cohen, QO. J. Boxma and II. Tyms (Eds.), Teletraffic Analysis

and Computer Performance Evaluation. pp. 253-270. Elsevier, Amsterdam, 1986, revised 1988.

[GrH90] Greenberg, A. G., and Ilajek. B.. “Deflection Routing in Hypercube Networks,” to

appear IEEE Trans. Communications, June 1989 (revised December 1990).

References

[GrL89] Greenberg, R. I., and Leiserson, C. E.,“Randomized Routing on Fat Trees,” Advances

in Computing Research, Vol. 5, pp. 343-374, 1989.

[HaC87] Hajek, B., and Cruz, R. L., “Delay and Routing in Interconnection Networks,” in A.R.

Odoni, L. Bianco, and G. Szago (Eds.), Flow Control of Congested Networks, Springer-Verlag.

[HaC90] Hajek, B., and Cruz, R. L., “On the Average Delay for Routing Subject to Independent

Deflections,” submitted to IEEE Trans. Information Theory, June 1990.

[Haj91] Hajek, B., “Bounds on Evacuation Time for Deflection Routing,” Distrib. Comput.,

5:1-6, 1991.

[HHL88] Hedetniemi, S. M., Hedetniemi, S. T., and Liestman, A. L., “A Survey of Gossiping

and Broadcasting in Communication Networks,” Networks, Vol. 18, pp. 319-349, 1988.

[Hil85] Hillis, W. D., The Connection Machine, Cambridge, MA: The MIT Press, 1985.

[Ho90] Ho, C. T., “Full Bandwidth Communications on Folded Hypercubes,” Research Report

RJ 7434 (69605), IBM Almaden Research Center, April 1990.

[HsB90] Hsu, J., and Banerjee, P., “Performance Measurements and Trace-Driven Simulation

of Parallel CAD and Numeric Applications on Hypercube Multicomputers,” in Proc. 17th Intl.

Sypm. Computer Architecture, Seattle, WA, May 1990.

[Hsu90] Hsu W. J., “Fibonacci Cubes-A New Computer Architecture for Parallel Processing,”

preprint, October 1990.

[Joh87] Johnsson, S. L., “Communication Efficient Basic Linear Algebra Computations on

Hypercube Architectures,” J. Parallel and Distr. Comput., Vol. 4, pp. 133-172, 1987.

[JoH89] Johnsson, S. L., and Ho, C. T., “Optimum Broadcasting and Personalized Communi-

cation in Hypercubes,” IEEE Trans. Computers, Vol. C-38, pp. 1249-1268, 1989.

[Joh90] Johnsson, S. L., “Communication in Network Architectures,” in R. Suaya, and G.

Birtwistle (Eds.), VLSI and Parallel Computation, Morgan Kaufmann Publishers, San Mateo,

CA, pp. 223-389, 1990.

[Kat88] Katseff, H. P. , “Incomplete Hypercubes,” IEEE Trans. Computers, Vol. 37, No. 5, pp.

604-607, May 1988.

(KeK79] Kermani, P., and Kleinrock, L., “Virtual Cut-Through: A New Computer Communi-

cating Switching Technique,” Comput. Networks, Vol. 3, pp. 267-286. 1979

[Koc88] Koch, R., “Increasing the Size of the Network by a Constant Factor Can Increase

Performance by More than a Constant Factor.” in 29th Annual Symposium on Foundations of

References

Computer Science, IEEE, pp. 221-230. October 1988.

(Koc89] Koch, R., An Analysis of the Performance of Interconnection Networks for Multipro-

cessor Systems, Ph.D. Thesis, MIT, May 1989.

KrS83] Kruskal, C., and Snir, M., “The Performance of Multistage Interconnection Networks

for Multiprocessors,” IEEE Trans. on Computers, C-32(12), pp. 1091-1098, December 1983.

[KVC88] Krumme, D. W, Venkataraman. K. N., and Cvbenko. G., “The Token Exchange

Problem,” Tufts University, Technical Report 88-2, 1988.

[Lei83] Leighton, F. T., Complexity Issues in VLSI, M.I.T. Press. Cambridge MA., 1983.

[Lei85] Leiserson, C. E., “Fat-Trees: Universal Networks for Hardware-Efficient Supercomput-

ing,” IEEE Trans. Computers, Vol. C-34, October 1985.

(Lei92a] Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays - Trees

Hypercubes, Morgan Kaufmann. San Mateo. CA. 1992.

[Lei92b] Leighton, F. T., personal communication, 1992.

LeL89] Leighton, F. T., and Leiserson. C. E.. Class notes for 6.845, 1989.

'LEN90] Lan, Y., Esfahanian, A.-I[., and Ni. L., “Multicast in Hypercube Multiprocessors.” J.

Parallel Distrib. Comput., Vol. 8, pp. 30-41, 1990.

Max87] Maxemchuk, N. I'., “Routing in the Manhatian Street Network,” IEEE Trans. Com-

mun., COM-35(5), pp. 503-512, May 1987.

[Max89] Maxemchuk, N. F., “Comparison of Deflection and Store-and-Forward Techniques in

the Manhattan Street and Shuffle-Exchange Networks.” in INFOCOM 89, Vol. 3. pp. 800-809,

April 1989.

'Max90] Maxemchuk, N. F., “Problems Arising from Deflection Routing: Live-lock, Lock-out,

Congestion and Message Reassembly,” Proceedings of NATO Workshop on Architecture and

High Performance Issues of High Capacity Local and Metropolitan Area Networks, France.

June 1990.

[McV87] McBryan, O. A., and Van de Velde, E. I., “Hypercube Algorithms and their Imple-

mentations,” SIAM J. Sci. Stat. Comput.. Vol. 8, pp. 227-287. 1987.

[MiC87] Mitra, D., and Cieslak, R. A.. “Randomized Parallel Communications on an Extension

of the Omega Network,” J. ACM, Vol. 3:1, pp. 802-824, October. 1987.

Ozv87] Ozveren, C., “Communication Aspects of Parallel Processing,” Laboratory for Infor

mation and Decision Systems Report LIDS-P-1721, M.I.T., Cambridge, MA, 1987.

References

[Pat81] Patel, J. H., “Performance of Processor-Memory Interconnection for Multiprocessors,”

[EEE Trans. Comput., Vol. C-30, pp. 545-550, April 1981.

[Pis84] Pissanetzky, S., Sparse Mairir Technology. pp. 106-109, Academic Press, Orlando,

Florida, 1984.

[Pip84] Pippenger, P., “Parallel Communication with Limited Buffers,” Proc. of the 25th

Annual IEEE Symposium on Foundations of Computer Science, pp. 127-136, 1984.

[RaS90] Ranka S., and Sahni S., Hypercube Algorithms with Applications to Image Processing

and Pailern Recognition, Springer-Verlag, New York, 1990. |

[Rys65] Ryser, H. J., Combinatorial Mathematics. The Mathematical Association of America,

Rahway, N.J., 1965.

[SaS88] Saad Y., and Schultz, M. H., “Topological Properties of Hypercubes,” IEEE Trans.

Computers, Vol. 37, pp. 867-872, July 1988.

[SaS89] Saad, Y., and Schultz, M. II., “Data Communication in Hypercubes,” J. Parallel and

Distr. Comput., Vol. 6, pp. 115-135, 1989.

[SaS89] Saad Y., and Schultz, M. H.. “Data Conununication in Parallel Architectures.” Parallel

Computing, Vol. 11, pp. 131-150, 1989.

([Sta91] Stamoulis, G., Routing and Performance Evaluation in Interconnection Networks, Ph.D.

Thesis, MIT, Report LIDS-TH-2035, May 1991.

'StT90] Stamoulis G., and Tsitsiklis J. N., “Efficient Routing Schemes for Multiple Broad-

casts in Hypercubes,” Laboratory for Information and Decision Systems, Report LIDS-P-1948,

February 1990.

[StW87] Stout, Q. F., and Wagar, B.. “Passing Messages in Link-Bound Hypercubes,” in Proc.

1986 Hypercube Conference. SIAM. Philadelphia, pp. 251-257, 1987.

[TBTS88] Tseng, P., Bertsekas, D. P.. and Tsitsiklis. J. N.. “Partially Asynchronous Parallel

Algorithms for Network Flow and Other Problems”.

‘Top85] Topkis, D. M., “Concurrent Broadcast [or [Information Dissemination.” IEEE Trans.

Software Engineering, Vol. 13, pp. 207-231. 1933.

[TuR88] Tucker, L. W., and Robertson, G. G.. “Architectures and Applications of the Connec-

tion Machine,” IEEE Computer, pp. 26-38. August 1988.

[Ul184] Ullman, J. D., Computational Aspects of VLSI, Computer Sciences Press, 1034.

[Upf84] Upfal, E., “ Efficient Schemes for Parallel Communication,” J. ACM. Vol. 31, pp.

References

007-517, 1984.

[VaB81] Valiant, L. G., and Brebner, G. J., “Universal Schemes for Parallel Communication,”

in Proc. of the 13th Annual symposium on Theory of Computing, pp. 263-277, 1981.

VaB90a] Varvarigos, E. A., and Bertsekas, D. P.. “Communication Algorithms for Isotropic

Tasks in Hypercubes and Wraparound Meshes,” Laboratory for Information and Decision Sys-

tems Report LIDS-P-1972, M.I.T., Cambridge. MA, March 1990, to appear In Parallel Com-

puting.

|IVaB90b] Varvarigos, E. A., and Bertsekas, D. P.. “Multinode Broadcast in Hypercubes and

Rings with Randomly Distributed Length of Packets,” Laboratory for Information and Decision

Systems Report LIDS-P-2006, M.I.T.. Cambridge, MA, November 1990, to appear in IEEE

Trans. on Paral. and Distrib, Systems.

[Val82] Valiant L. G., “ A Scheme for Fast Parallel Communication.” SIAM J. Comput., Vol.

11, pp. 350-361, 1982.

[Var90] Varvarigos, E. A. ,Optimal Communication Algorithms for Multiprocessor Computers.

MS. Thesis, Report CICS-TH-192, Center of Intelligent Control Systems, MIT, 1990.

'Wan88] Wang, E.Y., Traffic Control in a Mullichannel Optical Fiber Communication Network,

MS. Thesis, Lab. for Information and Decision Svstems Report LIDS-P-1784, MIT, 1988.

