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ABSTRACT: Simulating nucleation of molecular crystals is
extremely challenging for all but the simplest cases. The challenge
lies in formulating effective order parameters that are capable of
driving the transition process. In recent years, order parameters
based on molecular pair-functions have been successfully used in
combination with enhanced sampling techniques to simulate
nucleation of simple molecular crystals. However, despite the
success of these approaches, we demonstrate that they can fail
when applied to more complex cases. In fact, we show that order
parameters based on molecular pair-functions, while successful at
nucleating benzene, fail for paracetamol. Hence, we introduce a
novel approach to formulate order parameters. In our approach,
we construct reduced dimensional distributions of relevant
quantities on the fly and then quantify the difference between these distributions and selected reference distributions. By
computing the distribution of different quantities and by choosing different reference distributions, it is possible to systematically
construct an effective set of order parameters. We then show that our new order parameters are capable of driving the nucleation
of ordered states and, in particular, the form I crystal of paracetamol.

1. INTRODUCTION

Crystallization plays an important role in many industrial
processes ranging from food production1 to the preparation of
pharmaceutical drugs.2−4 It is thus unfortunate that our
understanding of the earliest stages of crystallization, the so-
called nucleation stage, is incomplete. This lack of under-
standing is perhaps not surprising, however, as studying
nucleation is challenging from both the experimental and the
computational points of view. The experimental study of
nucleation is difficult because the onset of nucleation involves
exceedingly small time and length scales. As a result, any
experimental technique needs to meet stringent resolution
criteria to be applicable, which makes the direct experimental
characterization of nucleation extremely difficult.5−7 One might
be tempted to think that computer simulations with full
atomistic potentials are the ideal tool to provide insight into the
mechanism of nucleation. Unfortunately, however, the typical
time scale for the occurrence of a random fluctuation that leads
to a nucleation event can easily be on the order of hours in
realistic conditions, which is several orders of magnitude larger
than the time scales that are accessible in molecular dynamics
(MD) simulations. Consequently, a simple brute force
approach to study nucleation is unfeasible, and enhanced
sampling techniques8−26 are a necessity. Most of these

techniques use low-dimensional descriptors of the state of the
system called order parameters (OPs), or collective variables.
While enhanced sampling techniques are incredibly useful from
a simulation standpoint, in practice it can often be difficult to
find a set of OPs that are able to distinguish between the
various metastable states of the system of interest, and the
transition state regions connecting them, without a detailed
prior understanding of where in phase space these metastable
regions and transition states lie.
The formulation of OPs for the nucleation of molecular

crystals is particularly difficult, and it has only recently become
possible to perform simulation studies of nucleation from the
melt27−31 and from solution32,33 for relatively simple molecular
crystals. In these studies, OPs based on parametrized models of
molecular pair-distribution functions were used. These pair-
function based OPs classify individual molecules as belonging
to a crystal state if the distances and/or relative orientations
between them and their neighbors are commensurate with
those in a target crystal form of interest.34,35 In this way, when
many molecular pairs have relative distances and/or orienta-
tions that are characteristic of the crystal, the system is
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considered to be in a crystal-like state. These OPs have been
successfully applied in studies of simple molecular crystals;
however, as we show in a paradigmatic case, they can fail for
systems of higher complexity. To address this issue, we
introduce a novel approach for the construction of OPs for the
nucleation of molecular crystals, which is based on comparing
distributions. Since any ordered state is characterized by the
emergence of long-range order correlations that are themselves
manifested through the presence of peaks in the distribution of
selected structural quantities, we define new OPs by measuring
the difference between the instantaneous distribution of
selected structural quantities of the system and well-chosen
reference distributions. Using our approach, it is not only
possible to quantify the “distance” between the instantaneous
distribution of the system and the distribution of a specific
crystal form of interest but also to formulate OPs that
distinguish between an ordered state and a disordered, or less
ordered, state. Our approach is systematic in that it allows one
to construct OPs of increasing complexity and to include
multiple distributions of relevant structural quantities in the
description.
The rest of this work is organized as follows. We first

investigate whether the OPs that have been used thus far for
studying nucleation in molecular crystals can be used with
metadynamics to drive benzene and paracetamol to nucleate
from the melt. In particular, we demonstrate for paracetamol
that when these OPs are used to accelerate the sampling, no
ordered configurations are visited. We then show how our new
approach can be used to construct systematically a set of OPs.
We start by constructing an OP aimed at distinguishing ordered
arrangements of molecular centers from disordered ones. When
this OP is incorporated into metadynamics simulations
together with one of the OPs based on pair-functions, there
is a dramatic increase in the efficiency of the exploration of
phase space, and the system thus visits numerous metastable
ordered states that were previously inaccessible. Finally, we
consider different structural quantities of the system, and we
show how more complex OPs can be built and refined using
our approach, and how these OPs can drive nucleation of the
form I crystal of paracetamol.
For the sake of clarity, we also note that the purpose of the

simulations discussed in this work is to demonstrate that OPs
constructed using our approach are effective at driving
nucleation in a very challenging case. We do not aim to
provide detailed insight into the nucleation mechanism in
realistic conditions as this will be the subject of future work.

2. ENHANCED SAMPLING SIMULATIONS USING
PAIR-FUNCTION BASED ORDER PARAMETERS

The configuration of a system of small molecules is defined by
the complete set of positions of all the atoms of every molecule.
However, it can be reduced and simplified through the
introduction of what is called a point molecule representation.34

This consists of a center for each molecule, which can be for
instance its center of mass or the position of one of its atoms,
and a set of one or more molecule-centered vectors that
accounts for the orientation of the molecule in space (see
Figure 1). [If needed, a set of internal degrees of freedom
accounting for the internal structure of the molecule can also be
defined.]
When characterizing a molecular crystal structure, not only

are the positions of the centers of the molecules important but
also their orientations. In particular, the underlying periodicity

and order of a molecular crystal ensures that a crystal form is
characterized by a specific set of values of relative distances and
angles between the molecules. Pair-distribution density
functions provide a natural framework to characterize this
property as is highlighted in Figure 2. The first and second
panels show the probability density of relative distances and
angles between pairs of benzene molecules in the liquid and
crystal phases, respectively. These joint distributions were
computed from MD simulations at 250 K. Notice that the
distribution for the liquid state is quite broad while the
distribution for the crystal state displays sharp peaks.
The properties of molecular pair-distributions, or more

generally of molecular pair-functions, imply that they can be
easily used to construct OPs that try to classify ordered states.
In fact the OPs that have been used with enhanced sampling
techniques to study the nucleation of molecular crystals identify
crystalline states based on an analysis, through pair-functions, of
the relative distances and/or orientations between neighboring
molecules.34,35 For clarity, we use the term pair-function to
refer to a localized function that is substantially different from
zero only on a compact domain. Simple examples are a
Gaussian function or a sum of Gaussians. Santiso and Trout34

introduced a systematic method for developing these pair-
distribution function based OPs. Their approach allows one to
define per-molecule OPs that account for the degree of
crystallinity in the surroundings of each molecule. These OPs
can then be averaged over the whole system, or over portions of
it, to build global OPs.
A number of approaches that are similar to Santiso and

Trout’s have since been developed, and we would refer the
interested reader to a thorough discussion in Appendix A. Here
we will only discuss the specific expressions that we have used
in this work. In the case in which a point molecule
representation is characterized by the position of its molecular
center and only one orientation vector, the per-molecule OP
takes the form

Figure 1. Point molecule representation for benzene, on the left, and
paracetamol, on the right. The centers of the molecules and the
vectors accounting for the orientation of molecules in space are shown
as black dots and colored arrows, respectively. Due to molecular
symmetry only one vector per molecule is defined for benzene while
two vectors define the orientation of a paracetamol molecule. The
distance vector separating the center of molecule i from that of
molecule j is labeled rij.
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where ri and vi are the position of the center of molecule i and
the vector representing its orientation, respectively. In the
equation above, M is the number of peaks in the joint
distribution of distances and angles that are being considered.
The center of every peak is specified by a parameter for every
attribute, e.g., θα for one relative angle and dα for the modulus
of the distance, while σ is a free parameter that defines the
width of the Gaussian that is used to represent a peak. In the
outermost summation in eq 1, j runs over all the molecules
different from i and s is a smooth switching function that selects
only the pairs of molecules that are within a certain distance
cutoff of each other. In addition, ni = ∑j≠i s(|ri − rj|) is a
smoothed version of the coordination number for molecule i
that acts as a normalization factor. A possible choice for the
explicit form of the function s is
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where r0, n, and m are free parameters. The third panel of
Figure 2 shows how this works in practice. Two-dimensional
unnormalized Gaussians, such as those in the α sum of eq 1, are
used to reproduce the positions of the peaks in the distribution
that is shown in the second panel. The rationale behind the
construction of these OPs is that a molecule in the crystal phase
will typically have relative distances and orientations with most
of its neighboring molecules in proximity to one of the M peaks
in the reference distribution, and thus the sum over all the
molecules will yield a high value. By contrast, a molecule in the
liquid phase will have its neighbors distributed more randomly.
In particular, the majority will have values for the relative
distance and orientations that are away from the peaks in the
reference distribution. The summation in the OP will thus give
a lower value when it is computed for molecules in the liquid
phase. In the case in which the point molecule representation is

defined using two vectors, the per-molecule OP easily
generalizes to
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Enhanced sampling techniques such as metadynamics14 or
TAMD/d-AFED18,19 that use OPs to drive continuously the
full configuration of the system from one metastable state to
another have the advantage of highlighting deficiencies of the
OPs. A good set of OPs ensures reversible transitions between
the metastable states with clear and sufficient separation
between the states. High hysteresis, overlap between the
metastable states, or worse failure to drive the system to the
desired states are hallmarks of a nonadequate set of OPs. Since
all of these potential problems become apparent when using
these kinds of simulation techniques, we have decided to use
one of these techniques (metadynamics) to test rigorously the
capabilities of the OPs considered in this work.
We have considered, as test cases, simulations of nucleation

from the melt in two small systems, 144 benzene molecules and
96 paracetamol molecules. Benzene is a small nonpolar
molecule, and its nucleation process has been already
investigated using different methods.27−29 Paracetamol is a
molecule of great relevance for the pharmaceutical industry.
Successful simulation of nucleation of paracetamol from
solution would pave the way for a rational in silico approach
to the improvement of the industrial crystallization process and
would allow one to investigate heterogeneous nucleation and
epitaxy under various conditions.36−42 However, even simu-
lation of nucleation from the melt is yet to be accomplished. In
fact, the complexity of the crystal structure, the strong polar
character of the molecule, and the high viscosity of the liquid
makes the simulation of nucleation extremely challenging.
The paracetamol molecule is composed of an aromatic ring

with an OH group attached to one of the carbons and a short
eight-atom tail attached to the carbon opposite to the OH
group (see Figure 1). The center of the point molecule

Figure 2. Probability density of distances and relative angles between benzene molecules in the liquid (first panel) and form I crystal (second panel)
state. Due to molecular symmetry the relative angle between vectors ranges from 0 to 90°. The distribution for the liquid state is quite broad while
that for the crystal displays narrow peaks. The third panel shows a sum of Gaussians that approximately reproduces the position of the peaks in the
second panel.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01027
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acs.jctc.7b01027


representation was thus set so that it coincides with the center
of mass of the molecule, while the first vector, v1, was chosen to
be the vector that connects the OH carbon to the center of
mass. The second vector, v2, was then set to be orthogonal to
the plane defined by the atoms in the carbon ring.
The most stable form of paracetamol at room temperature

and pressure conditions is crystal form I, which is characterized
by a monoclinic unit cell. The joint probability distribution for
the intermolecular distances and relative angles between the
first vectors is shown in the first panel of Figure 3. This
distribution was computed using configurations that were taken
from a MD simulation of the form I crystal at 298 K. Some
peculiarities of the crystal structure can be noticed from this
distribution. Four different relative orientations between the v1
vectors of the molecules are possible, but only one occurs at
very short distances. This is because every molecule has its
nearest neighbor at a distance of about 3.9 Å, and within these

pairs the first vectors, v1, in our point molecule representations
are oriented in an antiparallel fashion so that the whole pair
forms a sort of dimeric entity. The second panel of Figure 3
shows this dimeric subunit and highlights its presence in the
crystal structure. In addition, in comparing the joint distribution
of paracetamol in Figure 3 with that of the joint distribution of
the crystal state of benzene in Figure 2, we see that the
paracetamol crystal has significantly more peaks, which suggests
that it has a much more complex crystal structure than benzene.
In Figure 4, we show the results of a metadynamics

simulation of benzene that was biased using the global average

of the OPs defined in eq 1; i.e., Γ = ∑ Γrv
N i i

rv1 , with N = 144

being the total number of molecules. From Figure 4, it is
evident that the system undergoes reversible transformations
between various metastable states. Direct inspection of the
trajectory reveals that some of the metastable states, marked C1

Figure 3. (Left panel) Probability density for the modulus of the distance and the relative angle between the v1 vectors that was obtained from an
MD simulation of paracetamol in crystal form 1. (Right panel) Pictorial representation of the mutual arrangement of paracetamol molecules in the
perfect form I crystal at different levels of detail. Two molecules in an arrangement corresponding to the shortest distance peak (around 4 Å and
180°) in the probability density of the first panel are shown in red and blue. Their disposition in a particular slice of the crystal parallel to the (100)
plane (top) and in the full crystal structure (bottom) viewed orthogonal to the (001) plane are also shown.

Figure 4. Results from a metadynamics simulation of benzene biasing the molecular pair-function based OP considering both distances and angles,

Γ = ∑ Γrv
N i i

rv1 . The Gaussians defining the peaks are those shown in the third panel of Figure 2. The σθα and σdα parameters were chosen to be

about 17° (0.3 rad) and 0.3 Å for every α. We used a switching function s of the form of eq 2 with parameters r0 = 10 Å, n = 10, and m = 20. The
metadynamics bias potential was constructed by deposing Gaussians every 8 ps with a height of 2 kJ/mol and a σ of 0.001. The evolution of the OP
in time is shown on the left. The green (black) dashed line represents the typical value of the OP in the crystal (liquid) state. Labels mark the
different metastable states visited during the simulation. On the right, two different projected views of a configuration marked as C1 and one as C2 are
shown. The C1 configuration was visited around time t = 68 ns. The molecular arrangement is that typical of form I. The presence of defects causes
the value of the OP to be lower than the reference value for the crystal (green dashed line). The C2 configuration was visited around time t = 256 ns
and is characterized by a disposition of molecules different from that of form I.
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in the picture, are characterized by a molecular arrangement
typical of form I even though the values of the OP are lower
than the reference OP value for the crystal state (dashed green
line in Figure 4) calculated from the unbiased MD simulation.
This discrepancy is due to the presence of a few defects as can
be seen in the upper right panel of Figure 4, where a
configuration visited around time t = 68 ns is shown. A different
ordered state, marked C2 and characterized by a more planar
relative orientation between the molecules, is also visited during
the simulation. Even though the system visits the crystal and
liquid states multiple times, the substantial amount of overlap
between the values taken by the OP in the liquid (marked L)
and crystalline states indicates that the OP cannot completely
resolve these states.
In Figure 5, we show the results of the application of a pair-

function based OP approach to the paracetamol system. The

simulation was run biasing two OPs with metadynamics. We
used the global average of OPs of the form of eq 3,
Γ = ∑ Γrv v

N i i
rv v11 2 1 2, defined with different ranges and cutoff

distances (see caption of Figure 5 for details). Both OPs get to
values that are compatible with those in the crystal state (shown
as dashed lines) at the same time. However, unlike our
simulations of benzene, no relevant metastable state or ordered
minimum is ever visited. This is a clear signal of the fact that
the two OPs are not able to describe the transition and are not
even refined enough to define the target crystal state
unequivocally. In Appendix B we show some examples of
configurations of both systems sampled during the simulations
that are misclassified by the OPs and comment on the reason
why such misclassifications occur. Finally, we note that, for
both the systems considered, we have also verified (data not

shown) that varying the values of the parameters and the
specific set of attributes involved in the definition of the OPs
does not qualitatively change the behavior of the simulations.

3. ORDER PARAMETERS BASED ON RELATIVE
INFORMATION ENTROPY BETWEEN
DISTRIBUTIONS

The OPs described above are indicator functions used to
characterize the degree of crystallinity of a system. They have
the advantage of being local so that a degree of crystallinity can
be assigned to each molecule and not just to the system as a
whole. However, as discussed above, since they are para-
metrized on a specific crystal polymorph, they are sensitive only
in the vicinity of this crystal state. There is no guarantee that
other crystal polymorphs can be distinguished from the liquid
state nor between each other. Another drawback is that because
these OPs are based on simple pair-functions, they are prone to
degeneracies. In other words, very different configurations can
give similar values for the OP, which in turn, leads to
misclassification of the sampled configurations. For example,
there is in fact no guarantee that a large value of the pair-
function based OP actually corresponds to a configuration that
is the target crystal of interest.
We present here a new approach that is based on the analysis

of the distributional properties of a system. It is in fact the
distribution of certain structural quantities, rather than the
occurrence of their single specific values, that classifies a
particular ordered state. In other words, it is the emergence of
long-range correlations that discriminates an ordered state from
a disordered state. In our approach, to construct an OP, we
select one or more relevant quantities and we build the relative
probability density p on the fly. This instantaneous probability
distribution is then compared with a suitable chosen reference
distribution q.
A natural way of comparing probability distributions, that is

also particularly appealing from the physical point of view, is
provided by information theory and amounts to computing the
relative entropy, also known as Kullback−Leibler divergence43-
(KLD), from the probability distribution p to the distribution q:

∫|| =
⎛
⎝⎜

⎞
⎠⎟KL q p q x

q x
p x

x( ) ( ) ln
( )
( )

d
(4)

The KLD is always non-negative and is zero if and only if q(x)
= p(x), ∀x. In fact, it is often referred to as the distance between
two probability densities, even though, being nonsymmetric, it
is not strictly a distance metric. To construct a differentiable
OP starting from eq 4, one needs first to build smooth
probability densities p and q. This can be done through the use
of a kernel density estimate44 (KDE). In practice, instead of
binning the data as would be normally done with a histogram,
one associates to every data point a localized kernel function
that is centered on the data point itself. Here, we use Gaussian
kernels and approximate the probability density as

≈
∑ | − |

∑
p x

w x g x x

w x
( )

( ) ( )

( )
i i i

j j (5)

where the sum runs over the elements of the data set, g is a
normalized Gaussian function in one or more dimensions, and
the weights, w, of the data points may be nonidentical. The sum
in eq 5 then gives the desired smooth probability density
estimate, the derivatives of which are well-defined with respect

Figure 5. Metadynamics simulation of the paracetamol system. Pair−
function based OPs that consider the occurrence of both distances and
angles for both v1 and v2 vectors at the same time were used. The red
series represents the evolution of Γrv1v2. This OP uses all the peaks in
the joint probability density up to 12 Å. The two dashed red lines
represent the reference values for the crystal (higher value) and liquid
(lower value) state. The second OP is of the same kind as the first but
uses only the very first peak in the joint density corresponding to the
dimeric entity discussed earlier and characterized by a distance of
about 4 Å. Its evolution is shown in blue, and the dashed lines
represent reference values for the crystal and the liquid states. The
distance switching function used was of the form of eq 2 with
parameters n = 10 and m = 20. We set r0 to 11.5 and 5 Å in the two
cases. The metadynamics bias potential was constructed by deposing
Gaussians of height 6 kJ/mol every 8 ps and using a width of 0.026 for
both OPs.
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to any of the data points. To avoid numerical instabilities that
can arise when p is very small, a typical numerical workaround45

can be used: p is regularized with respect to q; i.e.,

|| +( )( )KL q p q1
2

1
2

is computed instead of KL(q∥p). This

quantity is still zero if and only if p = q. Finally, to compute the
integral numerically, the KDE must be evaluated on a grid.
Hence, the OP we compute takes the final form

∑
+

⎛
⎝⎜

⎞
⎠⎟q m

q m
p m q m

S( ) ln
( )

( ( ) ( ))/2
d

m (6)

where m runs over the points of the grid and dS is the measure
of the volume element associated with every grid point.
The idea of comparing distributions using the KLD has been

previously used for the inverse design of interactions in
colloidal systems.46 In addition, Gimondi and Salvalaglio47 have
recently used a similar approach to compare unidimensional
distributions of relative orientations between molecules as an
analysis tool to detect ordered states in nanopore confined
simulations of carbon dioxide. However, to the best of our
knowledge, none of these approaches have been used to drive
the sampling in any study of molecular crystal nucleation.
3.1. Order Parameters To Distinguish Order From

Disorder. The formulation for the construction of OPs just
introduced and based on the KLD ensures high flexibility. In
fact, one can choose the distribution of any set of quantities and
there is ample freedom in the choice of the reference
distribution q. Furthermore, one can limit the calculation of
the distribution to a subset of molecules or to a particular
spatial portion of the system. Quantifying how much the
instantaneous distribution of some structural quantities of a
system differs from any chosen reference leads naturally and
directly to the formulation of OPs aimed at distinguishing a
generally ordered phase from a disordered one. In fact, while it
is obviously possible to use as reference the distribution for a
particular crystal form of interest, it is also possible to use a
uniform distribution, or the distribution of the liquid state. Such
an OP would be extremely difficult, if not impossible, to
formulate using the approach based on pair-functions.
Furthermore, the transition from a disordered to an ordered
phase is, by definition, characterized by a change in the entropy
of the system, i.e., by the emergence, and subsequent
concentration, of peaks in the distribution of some of the
relevant properties of the system, not by their specific location.
Very recently, the idea of using entropy as an OP has been

used, alongside enthalpy, to study the nucleation of monatomic
crystals.48,49 In particular, the authors introduced an OP that
builds on the radial distribution function and is an
approximated version of the excess entropy per atom. OPs of
this kind are of particular interest as they do not make any
specific assumption about the nucleation pathway. Starting
from the same motivations and following the considerations
outlined at the beginning of this section, our approach can also
be used to formulate OPs that distinguish order from disorder.
In our case, however, we are able to build OPs that use
distributions based on a large variety of structural quantities,
rather than just the modulus of the distances between atoms, as
is the case with the radial distribution function. Therefore, our
approach allows one to systematically construct OPs of
increasing complexity which is a necessary requirement when
treating molecular systems. We now illustrate, as an example,
how to construct an OP that accounts for what we term

positional ordering, i.e., the degree of order in the arrangement
of the centers of the molecules in space. We will label the
resulting OP KLr .̂ Starting from the point molecule
representation, we consider the set of distance vectors between
the centers of the molecules {ri − rj|i,j ∈ 1, ..., N;i ≠ j}, where N
is the total number of molecules. Moreover, we limit ourselves
only to distance vectors between neighboring molecules. This
can be achieved, preserving differentiability, using a smooth
switching function for the weights (w in eq 5). For this purpose
we use a switching function of the form in eq 2, with r0 = 7 Å.
At this point, instead of constructing a weighted KDE for the
vectors distribution, we consider the set of normalized distance
vectors rîj = (ri − rj)/|ri − rj|, i.e., points on the unit sphere. For
every normalized distance vector we compute the azimuthal
angle θ of rîj with the z-axis, and the dihedral angle ϕ between
the zrîj-plane and the xz-plane. We then compute the KDE of
the distribution of the two angles on a two-dimensional grid
with domain [0,180] × [−180,180] using Gaussian kernels of
width 5.73° (0.1 rad) and 11.46° (0.2 rad) for θ and ϕ,
respectively. The ϕ angle is not well-defined for θ = 0 or 180,
and thus its derivatives can become numerically problematic
when the value of θ is close to one of the poles. To regularize
the behavior of the derivatives of ϕ, we therefore multiply it by
a switching function that acts on θ. This switching function has
a value of 1 when θ is more than 10° from one of the poles, i.e.,
when 10 ≤ θ ≤ 170, and a value of zero when θ is within 5°
from the poles. Between these limits the value of the switching
function varies smoothly from 0 to 1.
The value of KLr ̂ is computed according to eq 6 using the

uniform distribution as the reference distribution, q. In general,
one could also use the distribution for the liquid state as the
reference distribution. However, in the event that this
distribution is not particularly structured, using a uniform
reference works as well. We also note that by substituting the
set of normalized distance vectors between the centers with the
orientation vectors, it is possible to build an OP, KLv, that
accounts for the degree of order in the orientations of the
molecules.
The upper panels of Figure 6 show the intermolecular

distance vectors that are smaller than 8 Å, suitably normalized,
for a specific configuration of the benzene system in the crystal
and liquid phases, respectively. These distributions on the unit
sphere clearly reveal the order in the crystal phase and the
disorder in the liquid phase. The lower panels of Figure 6 show
the corresponding KDE probability density estimate in θ and ϕ.
In Figure 7, we show the value of KLr ̂ computed from the
trajectories of the benzene and paracetamol simulations in
which the pair-function based OPs were biased and that were
discussed in the previous section. For the benzene simulation, it
can be seen that there is good separation between the crystal
and liquid states, i.e., between ordered and disordered states.
Hence, the OP seems to identify an aspect of the transition
process that is not detected by the Γrv OP. Consistent with its
intent, KLr ̂ also classifies the alternative structure C2 as an
ordered state. In addition, we note here that we have verified
that metadynamics simulations of benzene using KLr ̂ alone and
together with Γrv lead to the nucleation of multiple ordered
states, one of which is the form I crystal. In these simulations
two different kinds of nucleation pathways are sampled. The
first pathway is characterized by an initial stage during which
the molecules arrange approximately in planes and acquire
similar orientations. In other words, the distribution of the
orientations becomes less random and the system displays
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orientational ordering. This orientational ordering is then
followed by a transition to the form I crystal. In pathways of the
second kind, the positions of the molecular centers become
ordered first; i.e., the system displays positional ordering. This
positional ordering stage is then followed by a transition to the
form I crystal. In contrast, when using only pair-function based
OPs to bias the simulations, we only observe nucleation
pathways of the first kind.

In the case of paracetamol, the evolution of KLr ̂ in Figure 7
shows clearly that during the simulation in which Γrv1v2 was
biased, the system does not visit any ordered phase. In fact, the
value of the general positional ordering changed only minimally
during the simulation. Motivated by these results, we decided
to run new metadynamics simulations of paracetamol biasing
the KLr ̂ and Γrv1v2 OPs. During the simulation time of 1.6 μs, the
system visited several ordered states multiple times. Some of
these states are very similar to the form I crystal. Examples of
the ordered configurations sampled during the simulation are
shown in Figure 8 and Figure 9. In Figure 8, every column
shows two different views of the same configuration. The first
column shows two different views of the perfect crystal for
reference; the second and third columns show two form I-like
configurations; and the fourth column shows an example of a
different ordered phase.
The configuration shown in the second column has a value of

KLr ̂ that is compatible with that of the reference crystal, but the
value of Γrv1v2 is somewhat lower than the reference value due to
residual disorder in the mutual orientations between the
molecules, which can be seen in the picture. By contrast, the
configuration shown in the third column is characterized by a
higher degree of orientational order and values for both the
OPs that are compatible with those of the crystal state. In the
picture, the centers of the molecules are arranged in rows of
horizontal planes. In each of these planes, most of the
molecules have orientations that are similar to those of the
molecules in the planes that are found in the perfect crystal
structure. Although most of the configuration is crystalline, it is
evident in the background of the picture that in each of these
planes some molecules have orientations that are characteristic
of those in the plane above or below. This is an effect often
seen in the simulation. It is caused in part by an interplay
between the finite size of the system and the periodic boundary
conditions. In our simulations, we do not force the system to
nucleate in a particular direction, and therefore, the crystal

Figure 6. (Top left and right panels) Intermolecular distance vectors
of magnitude smaller than 8 Å, suitably normalized, for a typical crystal
and liquid configuration of benzene, respectively. (Lower panels)
Corresponding KDE probability density estimate in the space of
azimuthal and dihedral angles computed using kernels as described in
the main text. The contour levels and the color code for the two plots
are the same.

Figure 7. Calculation of the value of KLr ̂ on the trajectories that were obtained from the metadynamics simulations in which pair−function based
OPs were biased. In every panel the typical value of the relative OP in the liquid and crystal states is represented by dashed lines.
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formed does not necessarily fit correctly within the periodic
boundary conditions since these are commensurate with the
reference crystal. This also explains in part the relative difficulty
for the system to get to high values of both the OPs at the same
time (see Figure 9). A difference between the reference crystal
structure and both of the configurations shown in the second
and third columns of Figure 8 is that the lattice spacing
between the molecules is incorrect. A significant consequence

of this mismatch is that the corresponding intermolecular
hydrogen bond network is not correctly formed. Even
considering the influence of finite size effects and periodic
boundary conditions, these results suggest that the pair-
function based OP Γrv1v2, even when used in combination
with the KLr ̂ OP, is not adequate to correctly describe the
nucleation of paracetamol. Despite these issues, it is clear that
the addition of the KLr ̂ OP greatly improves the sampling and
that this OP is able to drive the system to ordered
configurations.

3.2. Relative Information Entropy Order Parameters
for Paracetamol Form I Nucleation. The purpose of the
simulations described in the previous section was to test
whether a combination of the KLr ̂OP and the pair-function OP
could lead to nucleation of the form I crystal of paracetamol.
Ideally, the KLr ̂ OP would drive the system to a configuration
with a high degree of positional order, and the pair-function OP
would then drive this ordered configuration to the form I
crystal. However, our results demonstrate that biasing the
simulation with this combination of OPs is not sufficient to
nucleate the form I crystal. On a more positive note, we can
conclude that the increase in configuration space exploration is
largely a result of biasing with the KLr ̂ OP, since previous
simulations in which only the pair-function OPs were biased
did not sample any ordered configurations. In light of these
results, we decided to formulate a more refined set of OPs
based solely on the KLD framework. Since our approach is
general, any probability distribution of the system can be
constructed on the fly, and the corresponding KLD can be
utilized to quantify the distance between this instantaneous
distribution and a reference distribution of interest. This is
advantageous in multiple ways. First it allows one to build
systematically more complex OPs that utilize distributions of
additional structural quantities of the system in order to drive
nucleation. This is fundamental in a more complex system such
as paracetamol. A second advantage is that distributions of a
target crystal state can be used as reference. In an effort to
nucleate the form I crystal of paracetamol, we have taken
advantage of both these possibilities, and we have constructed
OPs using distributions of several different structural quantities

Figure 8. Examples of sampled configurations from the simulation of paracetamol. The first column shows two different views of the reference
crystal structure. The other columns show configurations sampled in the metadynamics simulation where KLr ̂ and Γrv1v2 were used. The second
column shows an example of configuration that is similar to form 1. The value of Γrv1v2 for this configuration is lower than that of the crystal reference
due to the presence of some residual orientational disorder. The third column shows a more ordered form 1-like configuration. It can be noticed,
however, that part of the crystal is misaligned. The fourth column shows an example of an alternative ordered structure visited by the system during
the simulation.

Figure 9. Metadynamics simulation of the paracetamol system
obtained biasing both KLr ̂ and Γrv1v2. Gaussians of height 6 kJ/mol
were deposed every 8 ps using a width of 0.007 and 0.01, respectively.
The evolution in time of the OPs is shown. Black arrows associate the
ordered configurations shown in columns 2, 3, and 4 of Figure 8 with
the portion of simulation during which they were visited.
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and compared them to the corresponding distributions of these
quantities for the form I crystal. For the sake of clarity, in what
follows, we will denote all the OPs that use a crystal reference
distribution with a subscript c.
To detect orientational order of the molecules, we begin by

constructing KLD based OPs using the orientation vectors of
the molecules, i.e., v1 and v2. To this end, we first built two
separate distributions on the unit sphere of the normalized
orientation vectors v1 and v2 for all of the molecules in the
system. Subsequently, we used the KLD to measure the
distance between each of these distributions and their reference
distribution in the form I crystal. We denote these quantities as
KLc

v1 and KLc
v2. To avoid the computational cost associated with

multidimensional biasing, we combined these two OPs into a
single orientational OP that we used to bias our simulations,
KLc

v1,v2 = (KLc
v1 + KLc

v2)/2. The intuitive idea behind this
combination is that it is the simplest way to include the
information contained within the two OPs when biasing the
system.
In addition to constructing OPs designed to drive the

orientational order of the molecules in the system, we also
wanted to take the hydrogen bond network into account since
it is critical for the stability of the paracetamol crystal and is
therefore important for nucleation. Hence, we used OPs to
drive the positional ordering of the donor and acceptor atoms
involved in hydrogen bonding so that the hydrogen bond
network will form naturally. To construct these OPs, we first
identified the network of hydrogen bonds present in the form I
crystal. These are shown in Figure 10 by the dashed lines drawn

between Oa−Ha···Ob and N−Hb···Oa, respectively. After
identifying the hydrogen bonds in the crystal, we built two
separate distributions on the unit sphere consisting of the
components of each of the normalized distance vectors,
denoted rÔO and rÔN, respectively. The rÔO distribution was
computed from pairwise distance vectors between Oa and Ob
atoms, while the rÔN distribution was computed from pairwise
distance vectors between Oa and N atoms. Consistent with the
procedure adopted before, we limited ourselves to distance
vectors between neighboring molecules. This was achieved
using the switching function in eq 2 with r0 = 7 Å, n = 10, and
m = 20. We then used the KLD to measure the distance
between each of these distributions and their reference
distribution in the form I crystal. We denote these quantities
KLc

rÔO and KLc
rÔN, and we combined these two OPs with the KLc

r ̂

OP, i.e., the one comparing the distribution of distances of the
centers of the molecule with the reference of form I. Hence, the

positional OP, used for our simulations, becomes KLc
r,̂rÔO,rÔN =

(KLc
r ̂ + KLc

rÔO + KLc
rÔN)/3.

In an attempt to speed up the simulation, we performed a
multiple walker metadynamics15 simulation with 10 walkers
utilizing the positional and orientational ordering OPs,
KLc

r,̂rÔO,rÔN and KLc
v1,v2 just described. Notice that because we

are using crystal reference distributions in the definition of our
OPs and because the KLD is zero if and only if the reference
distribution is identical to the one computed on the fly, these
OPs have low values when the system has a structure that is
similar to the form I crystal. The simulation was performed for
a total of 120 ns using the Parrinello−Rahman barostat at a
temperature and pressure of 298 K and 1 atm. The results from
our multiple walker metadynamics simulations are presented in
Figure 11, where the evolution of the OPs during a nucleating
trajectory as well as sampled configurations along the trajectory
are shown. Altogether, two of the walkers out of 10 nucleated in
a 120 ns time frame. Figure 11 shows that the nucleation event
begins around 20 ns where it is clear in the configuration that a
small nucleus of dimers has formed within the system. This
nucleus is highlighted in red in the figure. It is interesting to
note that the nucleation begins with a formation of dimers.
These correspond to the first peak (near 4 Å) in the joint
distribution in Figure 3 and represent the basic subunit of the
form I crystal. In addition, we observe that after this dimer
subunit has formed, the system rapidly orders, which is evident
by the nearly fully formed crystal present in the sampled
configuration at 60 ns. Also evident from Figure 11 is the
difference in the behavior and range of fluctuations in the time
series of the positional and orientational OPs. The positional
OP shows an overall downward trend, while the orientational
OP fluctuates between two basins. The first of these basins is
predominant during the first 30 ns, and the value of the OP is
higher when the system is inside this basin suggesting that the
structure is more disordered. The second basin, for which the
OP has a lower value, dominates during the later parts of the
simulation. The wide range of fluctuations of the orientational
OP is at least partially due to the fact that the distributions of
orientation vectors are inherently more noisy as fewer data
points are used to construct the distributions that measure the
orientational order. Only one orientation vector per molecule is
used to construct the distributions for the orientational OP
whereas multiple bond vectors per molecule are used to
construct the distributions for the positional OP.
The very slow evolution of the positional OP toward low

values suggests that this OP identifies a key bottleneck in the
nucleation of the system. After analyzing the time series of the
three OPs that comprise the positional OP, we observed that
the KLc

rÔO and KLc
rÔN OPs are the slowest evolving OPs. Given

that these OPs drive the positional ordering of the donor and
acceptor atoms involved in hydrogen bonding, this suggests
that formation of the correct hydrogen bond network is the
rate-limiting step in the nucleation. In addition, hydrogen
bonding seems to play an active role in the formation of the
nucleus. We noticed numerous times throughout a nucleation
trajectory that once one of the hydrogen bonds formed
between adjacent paracetamol molecules in the correct
direction and orientation, the hydrogen bond seemed to
anchor the paracetamol molecules together, stabilizing the
forming complex for a period of time before random
fluctuations allowed it to overcome the large rotational energy
barriers present in the system (and incorporate into the crystal
lattice). Given the importance of the hydrogen bond network,

Figure 10. Example of the two unique hydrogen bonds between
molecules in the form 1 crystal.
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inclusion of the KLc
rÔO and KLc

rÔN OPs in the positional OP is a
necessary component to drive nucleation in the system.
However, despite the fact that hydrogen bonding is very
important for nucleation, we observed that the dimer subunit is
the first part of the crystal that is visibly evident during
nucleation, and interestingly enough, there are no hydrogen
bonds present between adjacent molecules in the dimer
subunit. It is unclear whether or not this dimer subunit is
stabilized through van der Waals interactions or by hydrogen
bonds from surrounding molecules. Consequently, the
nucleation mechanism is more complex than would appear
and requires a further detailed study to get a complete
molecular level understanding.

4. CONCLUSIONS

In this work, we have introduced a novel and general approach
for the construction of OPs that are capable of driving the
nucleation of molecular crystals. Our approach works by
constructing reduced dimensional distributions of relevant
quantities of the system and computing the relative information
entropy between these distributions and reference distributions.
We have shown how it is possible to construct OPs that
characterize order in a system without reference to a specific
crystal form. In this framework, once essential structural
quantities are identified, the system is considered to be ordered
when the distributions of these quantities become peaked, i.e.,
when there is a reduction in the system entropy. OPs of this

kind are particularly interesting as they do not make specific
assumptions about the mechanism of nucleation. In particular,
considering the specific case of nucleation from the melt of 144
benzene molecules, we have examined how an OP of this kind
distinguishes and correctly classifies ordered and disordered
states, highlighting aspects of the nucleation process that
remained hidden from the pair-function based OPs that have
been previously used to study this kind of transition. We have
also shown that in the case of paracetamol, the approach that
relies solely on pair-functions based OPs fails completely. On
the contrary, the addition of one OP based on our approach,
and aimed at detecting positional order, dramatically increases
the exploration of the phase space and allows the system to visit
ordered states. However, it does not induce nucleation to
crystal form I. Finally, thanks to the flexibility of our approach,
we were also able to target the nucleation of the form I crystal
by constructing OPs that used specific distributions of the
crystal as a reference state. These distributions were
constructed from specific molecular orientations, center of
mass positions, and the positions of donor and acceptor atoms
involved in hydrogen bonding. Inclusion of the latter of these
quantities was crucial for the nucleation.
Our approach significantly enlarges the spectrum and quality

of OPs that can be formulated to study the nucleation of
molecular crystals. Moreover, using relative information
entropy between distributions to formulate descriptors for the
study of nucleation is philosophically appealing since what

Figure 11. Nucleation trajectory obtained from a multiple walkers metadynamics simulation biasing the positional and orientational OPs, KLc
r,̂rÔO,rÔN

and KLc
v1,v2. The metadynamics bias potential was constructed by deposing Gaussians every 20 ps with a height of 5 kJ/mol with σ values of 0.015 and

0.02 for the KLc
r,̂rÔO,rÔN and KLc

v1,v2 OPs, respectively. The configurations in the upper panel are labeled by the time in which they were sampled from
the trajectory. In the configuration sampled at 20 ns, there is a small nucleus of dimers highlighted in red. This configuration represents the first point
along the trajectory where a portion of the crystal has visibly nucleated.
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characterizes the transition of a system from a disordered to an
ordered phase is the emergence of long-range correlations and
the decrease of entropy. Our approach is also versatile because
distributions of any set of structural quantities can be
considered and different levels of description can be combined
until the description is refined enough for the transition to be
elucidated. As our simulations of paracetamol show, the
possibility of formulating different, complementary levels of
description is a very important and often necessary feature to
guide the construction of OPs that are able to drive the
nucleation process in challenging cases.
The approach we have introduced is intrinsically global as the

distributions we compare are built using structural quantities
that are derived from all the molecules in the system. However,
to study nucleation in larger systems, it may be necessary to
track the degree of order in the system using an OP that has a
more local resolution. One way to achieve this would be to
limit the calculation of the distribution to a subset of the
molecules that occupy a particular, limited portion of space. It
would also be interesting to try to develop a per-molecule
version of these OPs using an approach similar to that of Piaggi
and Parrinello.49 Finally, we also note that even when pair-
function based OPs fail to drive nucleation in biased
simulations, they can still be used as an analysis tool in
postprocessing.

5. METHODS

All simulations discussed in this work have been run using
PLUMED 250 with GROMACS51 (version 4.6.7 for the
simulations described in section 2 and version 5.1.4 for all
the others) using the CHARMM36 CGenFF force field (the
point charge distribution was reparametrized in the case of
paracetamol41). All simulations were carried out using a time
step of 2 fs, and long-range electrostatic interactions were
treated with the particle mesh Ewald approach. All bonds were
constrained using the SHAKE52 algorithm, and the Nose−
Hoover thermostat53,54 was used to thermalize the system at
250 and 298 K for benzene and paracetamol, respectively. The
simulation box was orthorhombic in the case of benzene and
monoclinic for paracetamol. Crystal structures were down-
loaded from the CCSD database55 and equilibrated for 10 ns
using the Parrinello−Rahman barostat.56 The box size was then
kept fixed and all other simulations were run in NVT, unless
otherwise noted. To generate initial configurations for MD
simulations in the liquid state, we used PACKMOL57 and filled
the simulation box with 144 benzene molecules in one case and
with 96 paracetamol ones in the other. The resulting
configurations were then relaxed in NVT for 50 ns.

■ APPENDIX A: PAIR-FUNCTION BASED ORDER
PARAMETERS

Santiso and Trout34 introduced a systematic method for
developing pair-distribution function based OPs. Starting from
the point molecule representation, one builds an OP by
modeling a pair-distribution density function based on
distances and orientations and parametrizing it to a specific
crystal form. This parametrization is done by performing a MD
simulation of the reference crystal form and by fitting the pair-
function to the distribution generated by MD up to a given
cutoff distance from a molecule. The model pair-function used
takes the generic form

∑ ∑ ∏= =
α

α
α β

α
β β β

= = ∈

F x x f x x f x x( , ) ( , ) ( , )k l

M

k l

M

k l
1 1 (7)

where xk and xl denote the general point molecule
representation of the kth and lth molecules, α loops over the
M peaks within the selected distance cutoff in the pair-
distribution function, and fα is chosen to be a product of
independent distributions over the set of attributes of the
point representation that are being considered. A global OP is
then defined by summing over all pairs of molecules lying
within the range considered, while a local OP characterizing the
order around any given molecule i can be defined by summing
over all other molecules j within the cutoff. The explicit form of
such a local OP is

∑ ∑ ∑ ∏= ′ = ′
α β

α
β β β

≠ ≠ = ∈

G F x x f x x( , ) ( , )i
j i

i j
j i

M

i j
1 (8)

where the prime of the sum indicates the distance cutoff
restriction. This allows one to define a family of per-molecule
OPs by selecting only certain attributes of the point molecule
representation. For instance, if only the modulus of the distance
between molecule i and its neighbors is used, one obtains a
distance order parameter34

∑ ∑= ′ | − |
α

α
≠ =

G f r r( )i
r

j i

M
r

i j
1 (9)

where ri and rj are the Cartesian coordinates of the centers of
the point molecule representation of molecules i and j,
respectively, and fα

r can be modeled using a Gaussian function.
A more refined description can be obtained by adding relative
orientations between the vectors of the point representation

∑ ∑= ′ | − |
α

α α
≠ =

G f r r f v v( ) ( , )i
rv

j i

M
r

i j
v

i j
1 (10)

where vi and vj are the vectors (easily extendable to more than
one for each molecule) defining the orientation of molecules i
and j and fα

v can be parametrized, for example, by a von Mises

Figure 12. Average distribution over all the molecules of the values of
the per-molecule OP, Γi

rv, for the liquid and the crystal states. The
distributions for the liquid phase and crystal phase are separated. This
separation is the minimal requirement for a function to be a good OP
to describe the transition between the two phases.
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distribution.58 Other layers of description can be obtained by
using bond orientations or any internal degree of freedom, if
present.34 Summing over the molecules belonging to the
different cells of a spatial partition of the system, one can have a
set of spatially localized OPs. This approach has been used in
combination with the string method to study the nucleation of
benzene from the melt28,29 and other systems.59

Salvalaglio and co-workers35 have used a similar approach,
but instead of trying to accurately reproduce the pair-
distribution function, they opted to use a simple unnormalized
Gaussian for every peak. Moreover, they introduced a smooth
switching function, s, that acts on the intermolecular distances
and selects the pairs of molecules within the distance cutoff.
Following the spirit of their formulation [the formulation of
Salvalaglio and co-workers also includes a prefactor that acts as
a switching function of the coordination number that allows the

OP to be effective even in the case of nucleation from
solution;32,33 this prefactor is irrelevant when considering
nucleation from the melt, and we omit it throughout the rest of
the presentation], one can obtain an OP based only on relative
orientations:

∑ ∑ θ θ σΓ = | − | − −
α

α θ
≠ =

αn
s r r v v

1
( ) exp[ (( ( , ) ) /2 )]i

v

i j i
i j

M

i j
1

2 2

(11)

Extending this formulation to include the definition of peaks in
a multidimensional space leads naturally to the OPs defined by
eqs 1 and 3.
To better illustrate how these OPs can discriminate between

different phases, Figure 12 shows the average distribution over
all the molecules of the values of the per-molecule OP, Γi

rv of eq

Figure 13. Examples of states that are misclassified by pair-functions based OPs. In every panel the instantaneous joint distribution of distances and
relative angles is computed for a selected configuration of the system and is shown in shades of blue. Superimposed black contour lines represent the
reference distribution computed for the crystal state. Next to every probability density, a projected view of the corresponding configuration is shown.
The first panel shows an example of a disordered benzene configuration for which the corresponding value of Γrv is high. Even though it is
disordered, this configuration has a high value for the CV because its density is concentrated around the peaks rewarded by Γrv. The second panel
shows the joint density for a configuration of benzene in the C2 crystal state. None of the peaks in the instantaneous distribution overlap with those
typical of form I. The third panel shows the joint density for distances and angles between the first vectors v1 for a paracetamol configuration whose
value of Γrv1v2 is high. Even though the configuration is amorphous, its density is concentrated around the peaks typical of the distribution of form I.
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1, for benzene molecules in the liquid (red) and crystal (blue)
phases. It is evident from Figure 12 that the two distributions
are well-separated.

■ APPENDIX B: DEGENERACIES IN PAIR-FUNCTION
BASED ORDER PARAMETERS

The simulations discussed in section 2 show a number of
potential issues associated with the use of pair-function based
OPs. In Figure 13, we highlight some of the issues with these
OPs that we observed from our metadynamics simulations. In
Figure 13 every panel shows (in blue) the probability density in
distances and angles space for a chosen configuration of either
the benzene or the paracetamol system. For comparison, these
density distributions are overlaid with the reference density for
the form I crystal state, which is shown with black contour lines.
The top panel shows the probability distribution for a
configuration of benzene whose value of Γrv is large but
which is seen to be disordered upon visual inspection. The
density distribution for this configuration is concentrated in
areas overlapping with the peaks characterizing the form I
crystal, but not all of these are correctly populated. This
phenomenon is often seen in our metadynamics simulations. It
happens frequently because there are enumerable ways to
populate the peaks of the reference distribution that all give a
large value for the OP. In other words, there are a number of
configurations that have degenerate values of the OP, but only
one of these configurations actually corresponds to the form I
crystal. The middle panel shows the density for a configuration
of benzene in the alternative crystal form we have labeled C2.
Since the peaks in the joint distribution characterizing this
metastable state have a minimal overlap with those of the form
I reference distribution, it is clear why configurations in this
state have values of Γrv that are comparable and even smaller
than those observed for the liquid state. The bottom panel
shows the joint distribution of distances and angles between the
first vector v1 for a configuration of paracetamol characterized
by a large value of Γrv1v2 but which is nowhere near a crystal
phase. Also in this case, the distribution is concentrated around
some of the peaks characterizing form I, but most of the peaks
are not substantially populated.
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(17) Rosso, L.; Minaŕy, P.; Zhu, Z.; Tuckerman, M. E. On the use of
the adiabatic molecular dynamics technique in the calculation of free
energy profiles. J. Chem. Phys. 2002, 116, 4389.
(18) Maragliano, L.; Vanden-Eijnden, E. A temperature accelerated
method for sampling free energy and determining reaction pathways in
rare events simulations. Chem. Phys. Lett. 2006, 426, 168−175.
(19) Abrams, J. B.; Tuckerman, M. E. Efficient and direct generation
of multidimensional free energy surfaces via adiabatic dynamics
without coordinate transformations. J. Phys. Chem. B 2008, 112,
15742−15757.
(20) Ciccotti, G.; Meloni, S. Temperature accelerated Monte Carlo
(TAMC): a method for sampling the free energy surface of non-
analytical collective variables. Phys. Chem. Chem. Phys. 2011, 13, 5952−
5959.
(21) Van Erp, T.; Moroni, D.; Bolhuis, P. A novel path sampling
method for the calculation of rate constants. J. Chem. Phys. 2003, 118,
7762.
(22) Maragliano, L.; Fischer, A.; Vanden-Eijnden, E.; Ciccotti, G.
String method in collective variables: minimum free energy paths and
isocommittor surfaces. J. Chem. Phys. 2006, 125, 024106.
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