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Abstract—Compilers and performance engineers use hardware
performance models to simplify program optimizations. Perfor-
mance models provide a necessary abstraction over complex
modern processors. However, constructing and maintaining a per-
formance model can be onerous, given the numerous microarchi-
tectural optimizations employed by modern processors. Despite
their complexity and reported inaccuracy (e.g., deviating from
native measurement by more than 30%), existing performance
models—such as IACA and llvm-mca—have not been system-
atically validated, because there is no scalable machine code
profiler that can automatically obtain throughput of arbitrary
basic blocks while conforming to common modeling assumptions.

In this paper, we present a novel profiler that can profile
arbitrary memory-accessing basic blocks without any user in-
tervention. We used this profiler to build BHive, a benchmark
for systematic validation of performance models of x86-64 basic
blocks. We used BHive to evaluate four existing performance
models: IACA, llvm-mca, Ithemal, and OSACA. We automat-
ically cluster basic blocks in the benchmark suite based on
their utilization of CPU resources. Using this clustering, our
benchmark can give a detailed analysis of a performance model’s
strengths and weaknesses on different workloads (e.g., vectorized
vs. scalar basic blocks). We additionally demonstrate that our
dataset well captures basic properties of two Google applications:
Spanner and Dremel.

Index Terms—Cost/performance, Measurement techniques,
Modeling techniques, Benchmarking

I. INTRODUCTION

Processor performance models are analytical tools that stat-
ically predict program performance without execution. They
can simplify compiler optimizations such as auto-vectorization
and instruction scheduling, giving compiler writers an abstrac-
tion over the machines they are targeting. Performance models
can also guide manual optimization by showing potential
program bottlenecks.

An inaccurate performance model can misguide optimiza-
tions. For instance, Mendis and Amarasinghe [1] show that
in automatic vectorization, an inaccurate performance model
can cause performance regression—even with an optimal
solution relative to the performance model. Pohl et al. [2]
show that predictions made by the vectorization cost model
of LLVM only weakly correlate with measurements, with a

Pearson correlation coefficient of 0.55. There has been no
comprehensive evaluation of existing performance models.

In this work, we focus on validating the prediction of
performance models that run on a single basic block. To
do so, we collect an extensive dataset of basic blocks—
along with reference timings—that represent a wide variety
of characteristic workloads: scientific computing, databases,
data compression, machine learning, compilers, and graphics.

A. Automatically Profiling Basic Blocks

A key technical challenge with collecting a large basic block
dataset is that there is no existing approach to profile an
arbitrary basic block that has been removed from its program
context. Specifically, a basic block is likely to attempt to
access memory and crash unless it is run in an appropriately
created execution context that includes appropriately allocated
memory. Additionally, one also needs to ensure that the basic
block’s execution conforms to common modeling invariants
that performance models typically assume, such as that all
memory accesses hit the L1 cache. However, existing machine
code profilers [3, 4] delegate the responsibility of ensuring a
basic block’s successful execution to the user and make no
attempt to ensure that the block accesses memory without
crashing or that its execution conforms to common modeling
assumptions. For instance, we modified Agner Fog’s Perfor-
mance Test script [3] (a standard benchmarking tool) to be
slightly more robust1, and found that it could only profile
16.65% of basic blocks in our dataset without crashing.

B. Contributions

In this paper, we present a novel profiler that automatically
profiles the throughput—the average number of cycles it takes
to execute a basic block in steady-state—of arbitrary basic
blocks, and develop a dataset to support performance model

1The script uses several general-purpose registers for bookkeeping and
assume that they are not used by the code that it’s benchmarking. For a
fair comparison, we modified the script so it could profile programs that use
these registers.
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validation. Specifically, we make the following contributions
in this paper:

• We present a profiler for arbitrary, memory-accessing
basic blocks. The profiler creates an appropriate execution
context for a basic block by mapping virtual pages
accessed by it to a single physical page, thus legalizing
all memory accesses and preventing cache misses. Our
profiler automatically profiles more than 90% of the basic
blocks collected in our dataset.

• We present BHive, a benchmark suite of over 300,000
basic blocks collected from applications that cover a wide
range of domains such as numerical computation (e.g.,
OpenBLAS), databases (SQLite), machine learning (Ten-
sorFlow), and cryptography (OpenSSL).

• We present an approach for basic block clustering that
leverages Latent Dirichlet Allocation [5] to automat-
ically cluster basic blocks into categories that reflect
their execution port usage. We show that the clusters
we identify generalize to two data-center applications,
Google’s Spanner [6] and Dremel [7], demonstrating that
our open source data set is representative of unseen data.

• We evaluate four existing performance models—
IACA [8], llvm-mca [9] (which exposes LLVM’s per-
formance model used for instruction scheduling), OS-
ACA [10], and Ithemal [11]—on three recent Intel mi-
croarchitectures: Ivy Bridge, Haswell, and Skylake. Using
our execution port usage clustering, we analyze the
strengths and weaknesses of the performance models on
different categories of basic blocks.

Our dataset provides a new benchmark for evaluat-
ing performance models and holds out the promise of
a future for performance modeling research that rests on
large-scale, quantitative comparisons with other state-of-the-
art techniques. Our tool and dataset are open-source at
https://www.github.com/ithemal/bhive.

II. BACKGROUND

A. Existing Performance Models

Broadly speaking, there are two types of performance
models: microarchitecture simulators that can produce an
interpretable execution trace—a timeline detailing when each
instruction is issued or retired—in addition to throughput pre-
dictions (e.g., IACA [8]); and per-instruction latency/through-
put lookup tables (e.g, a spill-cost estimator used by a register
allocator).

IACA [8] (Intel Architecture Code Analyzer) is a static
analyzer developed by Intel. It has support for Intel microar-
chitectures since Nehalem. Given a machine code snippet,
IACA estimates the average number of cycles it take to execute
the given basic block in an infinite loop. Unlike its alternatives,
IACA takes advantage of its knowledge of Intel’s proprietary
processor optimization—such as zero-idioms and micro-op
fusions—to make better predictions. Intel discontinued IACA
in April 2019.

llvm-mca [9] is a similar tool inspired by IACA. Imple-
mented as an out-of-order super-scalar microarchitecture simu-
lator, it uses parameters (e.g., instruction throughput) supplied
by LLVM [12]’s backend scheduling model. The reuse of the
scheduling model is an explicit design choice made to expose
LLVM’s cost model for testing. Thus the accuracy of llvm-mca
has a bearing on that of LLVM’s scheduling model.

OSACA [10] is an open-source alternative to IACA. Similar
to llvm-mca, it is implemented as a parametrized out-of-order
simulator—in this case, the parameters come from the mea-
sured throughput and latency data for individual instructions.

Ithemal [11] is a basic block throughput predictor im-
plemented as a deep neural network. Unlike other models
discussed so far, Ithemal is blackbox: it outputs a single
throughput prediction for each input basic block, but does not
report an interpretable execution trace.

Production compilers such as LLVM [12] and GCC typi-
cally use cost models to guide optimizations. Unlike models
such as IACA or llvm-mca, compiler cost models typically
model the costs at the instruction level, rather than at the
basic block level. These compilers also use multiple cost
models. LLVM, for instance, uses at least three cost models: a
generic, per-instruction IR (Intermediate Representation) cost
model for its target-independent optimizations [13]; one for
instruction scheduling (the scheduling model [14] is also used
by llvm-mca); and another one for register allocation [15].
GCC employs analogous models [16, 17]. To our knowledge,
out of the models discussed so far, the scheduling model of
LLVM is the only one exposed by an interface for testing in
isolation from its client optimizations.

B. Machine Code Profilers

Several tools enable users to perform low-level microbench-
marking and to validate performance models by hand. Agner
Fog’s script [3] profiles small code snippets. The script reports
the number of cycles taken to execute the code, as well as
performance statistics such as the number of cache misses.
nanoBench [4] is a profiler similar to Agner Fog’s [3], with
two notable improvements. It allows the user to specify
which processor-specific performance counters to measure, in
addition to the cycle counter. It also supports profiling in
kernel-mode, removing potential noise due to context-switches
and interrupts.

Unrolling. The basic strategy these tools take to measure
basic block throughput is to unroll a basic block multiple
times and divide the latency of the unrolled basic block by the
unroll factor.2 Measuring the execution of multiple iterations
serves two purposes: 1) a large iteration count marginalizes the
latency of the first few iterations, when the processor is still
warming up to its steady-state behavior, and 2) it diminishes
the overhead of collecting performance counters. The formula
for estimating throughput using this approach is shown in

2We use IACA’s definition of throughput: the average number of cycles
required to execute a basic block at a steady state. Note that this definition is
the reciprocal of the textbook definition of throughput.
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Equation 1, where n is the unroll factor3 and cycles(b, n) is
the number of cycles taken to execute basic block b unrolled
n times:

throughput(b) ≈ cycles(b, n)

n
(1)

Compared to running the basic block inside a loop, unrolling
has an advantage in that the measurements are not tainted
by the control overhead incurred by looping. However, if the
unroll factor is too large, then the execution may encounter
a significant number of L1-instruction cache misses that then
taint the measured latency.

Abel and Reineke [18] suggest an alternative approach to
address these issues. Equation 2 shows the formula they use
to derive basic block throughput:

throughput(b) ≈ cycles(b, n)− cycles(b, n′)

n− n′
(2)

Essentially, instead of using a single large unroll factor, they
measure basic blocks with two unroll factors, n and n′. They
then measure the latency of the two unrolled basic blocks,
calculate the difference in the measurements, and divide it by
the difference of the unroll factors. The resulting number is
the throughput of the basic block.

Limitations. Although it is possible to calculate throughput
for individual basic blocks, these profilers are in general
unsuitable for automatically profiling a large set of arbitrary
basic blocks for systematic validation. They require user
intervention to profile arbitrary basic blocks. Specifically, users
must provide code to allocate memory and initialize memory-
addressing registers to prevent crashing from invalid accesses.

III. PROFILING ARBITRARY BASIC BLOCKS

Our goal is to profile arbitrary basic blocks—without re-
quiring manual intervention—such that the measured through-
put corresponds to the definitions and invariants commonly
assumed by performance models. The key challenge is en-
abling these basic blocks to access arbitrary memory addresses
without crashing.

A. Handling Arbitrary Memory Accesses

Most basic blocks access memory. Directly applying exist-
ing tools to profile these basic blocks out of their original
program context is likely to result in crashes.

Consider the basic block in Figure 1, which Gzip uses
to compute a CRC code. Highlighted instructions show the
flow of pointer values: essentially, bits of %rdx are used to
index into a lookup table, the content of which is then used
in the next iteration to update %rdx. This basic block can
only execute successfully in an execution context that allocates
memory at 0x4110a. Furthermore, since the index (%rax)
of the table at 0x4110a is also XOR’d every iteration with
the contents of a second array addressed by %rdi, one would
also need to coordinate the initialization of the second array
with the one at 0x4110a, so that the pointer always points
to a valid memory address.

add $1, %rdi
mov %edx, %eax
shr $8, %rdx
xor -1(%rdi), %al
movzx %al, %eax
xor 0x4110a(, %rax, 8), %rdx
cmp %rcx, %rdi

Fig. 1. The inner loop of updcrc from Gzip. This basic block cannot be
directly executed because of its memory accesses.

function monitor
numFaults← 0
mappedPages← ∅
while numFaults < maxNumFaults do

pid← launch(measure(mappedPages))
if exitSuccess(pid) then

break
end if
memAddr ← interceptSegFault(pid)
if isMappableAddr(memAddr) then

mappedPages.add(getPageAddr(memAddr))
numFaults← numFaults+ 1

end if
end while

end function
function measure(pagesToMap)

mmapToPhysPage(pagesToMap, ...)
initialize

. Wait for preceding instructions to finish
serialize
begin← readPerformanceCounters
initialize
executeUnrolledBasicBlock

. Wait for the basic block to finish
serialize
end← readPerformanceCounters
analyzeAndReportCounters(begin, end)

end function

Fig. 2. Pseudocode of the profiling routines.

Our technique works by mapping all virtual memory pages
accessed by a basic block to a single physical page, so that all
data resides in the L1 cache. The basic block can then execute
without crashing since all of memory accesses are valid virtual
addresses. This allows us to execute 97% of basic blocks.

Remapping Virtual Pages. Figure 2 shows the algorithm
we use to remap virtual pages. We first unmap all virtual
pages—this forces all subsequent memory accesses to trigger
a segfault—except the pages containing the basic block’s in-
structions. We then execute an unrolled basic block in a forked
process monitored by a parent process using ptrace. Each

3A typical unroll factor is 100 [11, 18]
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access of an unmapped virtual page triggers a segmentation
fault, which is intercepted by the monitoring process. The
monitor process then instructs the executing process to create
the appropriate mapping and to restart execution.

Memory Initialization. We initialize the single physical
page—which is shared by all active virtual pages—to be filled
with a moderately sized constant (we used 0x12345600
in our experiments) to accommodate for indirect memory
accesses. To see why this is necessary, consider a basic block
that first loads a pointer p from memory and then de-references
p. If the value of p is too low (e.g., 0) or too high (i.e., bigger
than the highest address that a user space program is allowed
to address), we cannot map the virtual page addressed by p.
All general-purpose registers are initialized similarly.

Virtual page aliasing. Under our page mapping scheme,
two virtual addresses differing by a multiple of page
size get mapped to the same physical address. Such
aliasing can introduce extra memory dependences and
cause slowdown. Consider the following code snippet:
*p = x; y = *(p + page_size). Whereas in a stan-
dard execution context the load can be executed independently
from the first store, in this context the load can only be issued
after the store finishes, due to page aliasing introduced by
our profiler. We remove basic blocks whose execution that
could be affected by page aliasing out of our analysis. There
are 20,729 (6.28%) such basic blocks. Because there is no
hardware counter that tracks accesses serialized due to page
aliasing, we trace all addresses accessed during profiling and
mark a basic block if, within a conservative window, there
are any loads following an aliased store. We note that we can
reduce the occurrence of page aliasing by mapping the set of
virtual pages to a larger range of physical memory (e.g., two
pages instead of one).

B. Overall Profiling Workflow

Our profiler computes the throughput of a basic block by
repeatedly measuring the block, filtering measurements that
violate modeling invariants, then calculating throughput using
the filtered measurements.

Raw Measurement. The profiler first creates an execution
context so the basic block executes without crashing, using
the page mapping algorithm in Figure 2. The profiler then
measures the unrolled latency using the unrolling heuristics
described in Section II-B. It uses 100 and 200 as the unroll
factors for basic blocks smaller than 100 bytes; 50 and 100
for basic blocks between 100 bytes and 200 bytes; and finally
16 and 32 for basic blocks larger than 200 bytes.

Filtering. Performance models typically model an idealized
execution of the code in which all data resides in L1 cache,
and rare performance-degrading events do not occur. We have
designed our measurement tool to deliver measurements that
are consistent with such an idealized execution.

• L1 Cache Misses. Our measurement tool monitors in-
struction cache and data cache misses with hardware
counters and rejects any measurements with a cache miss.

• Unaligned Loads. Unaligned memory accesses can be
slower than aligned accesses. In particular, accesses
straddling a cache line boundary can cause an order
of magnitude slowdown. Our measurement tool detects
(using a hardware counter) unaligned loads and rejects
any measurements with a non-zero number of such loads.
We removed 553 (0.183%) basic blocks that are affected
by unaligned accesses from our dataset.

• Subnormal Floating Point. Floating-point computations
on subnormal numbers can be up to 20x slower than
for normal numbers. We configured the MXCSR register
to disable gradual underflow. We found 334 (0.1%)
basic blocks that would have been affected by gradual
underflow if we had not taken this measure.

• Context Switches. We profile all basic blocks with hyper-
threading disabled and monitor context switches during
execution using a system-call provided by Linux. We
reject all measurements with a detected context switch.

If the profiler rejects more than 6 of the measurement at-
tempts due to violations of its idealized execution model, then
it fully rejects the basic block. In addition, if the coefficient
of variation—i.e., standard deviation divided by mean—of
the measurements is more than 10%, then it also rejects the
block because there is residual measurement variance that the
measurement methodology is unable to eliminate.

Throughput Calculation. If the block survives filtering,
then the profiler uses the minimum latency of the recorded
measurements to calculate throughput according Equation 2.

Environment Variance. It is possible for the profiler to
encounter random but consistent noise that pollutes our latency
measurements. E.g., a basic block (say unrolled 100 times)
with a latency of 500 cycles would yield a measured latency
of around 700 cycles consistently for 16 consecutive runs.
Such noise occurs about 6% of the time. To overcome this,
we profile the throughput of a basic block at least five times
(i.e., each basic block is measured at least 5× 16 times), and
the minimum of the five is the throughput we report.

C. Portability to Other Architectures

We briefly discuss how to port our profiling technique to
other architectures. Our profiler requires being able to map
multiple virtual pages to a few physical pages, detecting cache
misses, and detecting or disabling floating-point underflow. To
our knowledge, recent implementations of x86-64 (AMD and
Intel) and ARM satisfy these requirements.

Page Mapping. We require the ability to map multiple virtual
pages to a few physical pages without incurring a performance
penalty due to unnecessary cache invalidation (i.e., when two
aliased virtual addresses are mapped to different cache entries,
the cache evicts one entry to ensure coherence). We therefore
require that the target processor has a physically tagged data
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TABLE I
Source applications of BHive’s basic blocks. Note that the basic blocks
collected from each application are not necessarily unique. For instance,

most applications use the same libc implementation.

Application Domain # Basic Blocks

OpenBLAS Scientific Computing 19032
Redis Database 9343
SQLite Database 8871
GZip Compression 2272
TensorFlow Machine Learning 71988
Clang/LLVM Compiler 212758
Eigen Scientific Computing 4545
Embree Ray Tracing 12602
FFmpeg Multimedia 17150
Total 330018

cache. If the cache is virtually indexed, we additionally require
that the page size is small enough so the indexing bits are
not affected by address translation. These two conditions are
sufficient to establish that any two aliased virtual addresses
are always mapped to the same cache entry.

IV. BASIC BLOCK DATASET

Table I shows the applications from which we extracted
basic blocks for BHive. We selected these applications with
the following goals. First, the set of applications should cover
a diverse range of domains to represent real-world workloads.
Second, their basic blocks should reflect usage that concerns
typical users of a performance model; compiler developers
deal with basic blocks from general-purpose programs, which
have different characteristics than those from, e.g., high-
performance kernels.

We selected Clang/LLVM [12] (compiler), Redis (in-
memory database), SQLite (database), and Gzip (compression)
to collect basic blocks representative of applications that are
written in general purpose languages like C and C++. These
are some of the most used applications today and they all use
sophisticated algorithms and data structures, yielding a large
source of diverse basic blocks.

Next, we chose the following applications that use hand-
optimized high performance kernels: OpenSSL [19] (cryptog-
raphy), OpenBLAS [20], Eigen [21] (scientific computing),
TensorFlow [22] (machine learning), Embree [23] (rendering),
and FFmpeg (multimedia). OpenSSL, OpenBLAS, and FFm-
peg use handwritten assembly for performance-critical inner
loops. Embree is written in ispc [24], a data-parallel language
designed specifically to target Intel’s vector extensions.

We compiled all applications with the highest optimization
settings defined by their build systems. Applications that
use handwritten assembly (e.g., OpenBLAS) allow users to
configure their builds to target specific ISA-extensions, and we
configured these applications to target machines with AVX2.

We extracted basic blocks from these applications using a
dynamic analysis implemented in DynamoRIO [25], which
allows us to record every basic block executed at runtime. We
used a dynamic analysis rather than static disassembly because

we discovered in our experiments cases of static disassemblers
unable to distinguish padding bytes from instructions. To simu-
late realistic execution when recording the basic blocks, we use
the official benchmarking input of these applications, with the
exception of FFmpeg and Gzip, which to our knowledge do not
have official benchmarks.4 We evaluated Eigen on two sparse
linear algebra workloads: sparse matrix-matrix multiplication
(SpMM) and sparse matrix-vector multiplication (SpMV).

V. BASIC BLOCK CLUSTERING

Some basic blocks are harder to model than others. For
instance, our results in Section VI-B demonstrate that basic
blocks with a memory dependence have higher prediction
errors than blocks without for all performance models in our
evaluation. We therefore present a technique that clusters basic
blocks based on their use of processor resources. The tech-
nique enables performance model designers and users to have a
finer-grained understanding of the behavior of the performance
model, enabling them to focus their development resources on
whole categories of blocks that pose challenges. For example,
a data-driven performance model such as Ithemal [11] could
be steered to oversample categories of basic blocks that it
poorly models.

A. Methodology

The approach we took to cluster basic blocks is as follows:
1) we map each basic block to a representation that reflects its
use of hardware resources; we then 2) cluster the basic blocks
based on this representation.

We compute a port-combination mapping for each instruc-
tion, using results from Abel and Reineke [18]. For instance,
the port-combination mapping for xor %rax, %rbx in
Haswell is {p0156→ 1} (using Abel and Reineke’s notation):
in other words, this instruction is implemented with a single
micro-op that can be executed at any of ports 0, 1, 5, or 6. In
Haswell, there are 13 unique port combinations for all user-
level instructions.

After translating each basic block to its port-mapping rep-
resentation, we used Latent Dirichlet Allocation (LDA) [5] to
build a topic model. A topic model in language processing
assigns a topic to each word based on the word’s frequency
in a set of documents. In our context, words are micro-
operations differentiated based on their port combinations,
topics are categories, and documents are basic blocks. We
therefore assign a category to each micro-operation based on
its port-combination frequency in a set of basic blocks. To
infer the category for each micro-op, we used SciKit Learn’s
default implementation of stochastic variational inference for
LDA [5], with six categories and the parameter values α = 1/6
and β = 1/13. We then computed the most common category
for each basic block, taking this to be the category of the
basic block itself.

4For these applications, we use inputs from https://openbenchmarking.org
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TABLE II
Description of basic block categories. Categories were discovered by LDA,

and category names are decided by manual inspection.

Category Description # Basic Blocks

Scalar Scalar ALU operations 85208
Vec Purely vector instructions 1267
Scalar/Vec Scalar and vector arithmetic 7710
Ld Mostly loads 121412
St Mostly stores 55879
Ld/St Mix of loads and stores 58540

B. Results

Table II presents the number of unique basic blocks in each
category discovered by our technique. Note that LDA does
not give names or descriptions to the categories; we manually
named the categories and developed their descriptions after
inspecting their constituent basic blocks. Table III shows an
example basic block for each category.

Figure 3 shows the unique basic block category patterns for
each application; we weigh each basic block by its runtime fre-
quency (which is determined by a sample-based profiler [26]).
As expected, applications with high-performance numerical
kernels such as TensorFlow and OpenBLAS are composed
primarily of vectorized basic blocks. The majority of SQLite
and LLVM’s basic blocks are not vectorized. OpenSSL and
Gzip have many bit-manipulation basic blocks, consistent with
our analysis.

C. Case Study on Data-Center Applications

We next demonstrate that our clustering generalizes to
unseen basic blocks, providing similar explanatory power for
two data-center applications that are not within our dataset:
Google’s Spanner [6] and Dremel [7]. The key observation is
that if our clusters generalize to these new applications, then
our dataset captures properties of unseen workloads.

Methodology. Spanner is a highly available, globally dis-
tributed database, designed to scale up to millions of machines
and trillions of database rows [6]. Dremel is a scalable,
interactive ad-hoc query system for analysis of read-only data,
capable of running aggregation queries over trillion-row tables
in seconds [7].

To evaluate our clustering’s ability to generalize to unseen
basic blocks, we use the following experiment. First, we
assigned each basic block in Spanner and Dremel to the
most appropriate cluster from our benchmark suite of open
source applications (Section V). We performed this assignment
using Blei et al. [5]’s unseen data classification technique as
implemented in Scikit Learn’s transform method. Second,
we created a new set of clusters from the combination of our
open source applications and Spanner and Dremel. Finally,
we compared the perplexity [5] of each clustering on the
Spanner and Dremel basic blocks. Perplexity is a measurement
of how successfully LDA can discriminate between different
data points in a data set, with lower being more successful.

Therefore, our experimental hypothesis is that if the perplexity
of our open source data clustering is the same as that of
our combined data clustering, then our open source clustering
generalizes because the Spanner and Dremel basic blocks are
well captured by the clusters in our open source applications.

TABLE III
Example basic blocks for each category identified in Table II

Scalar Vec

movzbl 2(%rdi), %eax
shrb $2, %al
andl $31, %eax
cmpl $1, %eax

vmovss -4(%rax), %xmm2
vmovaps %xmm2, %xmm3
vmovss (%rax), %xmm1
vxorps %xmm4, %xmm3,

%xmm3
vucomiss %xmm3, %xmm1

Scalar/Vec Ld

movsd (%rcx), %xmm1
movsd (%rsi), %xmm0
movaps %xmm1, %xmm2
movaps %xmm0, %xmm3
mulps %xmm14, %xmm0

...
addps %xmm1, %xmm0
subps %xmm3, %xmm2
movlps %xmm0, (%rsi)
movlps %xmm2, (%rcx)
addq $8, %rsi
addq $8, %rcx
subq $2, %rdi

movq (%rbp), %rax
movq %rbx, %rsi
movq %rbp, %rdi
popq %rbx
popq %rbp
popq %r12
movq 32(%rax), %rax

St Ld/St

pushq %r14
movq %rdi, %r14
leaq 8(%rdi), %rdi
pushq %r13
pushq %r12
pushq %rbp
pushq %rbx

movq (%rbp), %rax
movq %rbx, %rsi
movq %rbp, %rdi
popq %rbx
popq %rbp
popq %r12
movq 32(%rax), %rax

Results. We found that, when trained just on the open source
data, our clustering achieved a perplexity of 5.23, versus a
perplexity of 5.26 for the clustering additionally trained with
the Google data. This small increase of 0.5% shows that the
perplexity of the clusterings are nearly the same, and that the
basic blocks in the open-source data are diverse enough to
cover previously unseen applications.

Figure 4 shows Spanner’s and Dremel’s basic block cate-
gories inferred by the clustering from our benchmark dataset
(Section V). The two applications spend almost half of the
time executing load instructions—40% and 50% respectively.
Compared to similar applications from our data set, Spanner
and Dremel spend significantly more time—12% and 9%,
respectively—executing vectorized basic blocks, compared to
5.0% and 0.2% for SQLite and Redis respectively.
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Fig. 3. Breakdown of applications by basic block categories. The Y-axis is the total runtime frequency of the basic blocks in a given category (specified on
the X-axis). We define the category of a basic block as the most common category of micro-ops contained in the block.
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VI. PERFORMANCE MODEL EVALUATION

We evaluate four existing basic block-level performance
models on three recent Intel microarchitectures: Ivy Bridge,
Haswell, and Skylake.

A. Methodology

We evaluated IACA [8], llvm-mca [9], Ithemal [11], and
OSACA [10]. In Section II-A, we present a more detailed
discussion regarding their design and usage. For Skylake and
Haswell, we used IACA 3.0; and for Ivy Bridge we used IACA
2.0 because IACA discontinued its support for Ivy Bridge after
version 2.0. For llvm-mca, we used version 8.0.1. OSACA is
currently under development, and we took the latest version at
the time of writing this paper. For Ithemal5, we used commit

5https://github.com/ithemal/Ithemal

cb5fd79f6 from the master branch and retrained its model
using the dataset described in [11], but timed with our profiler.
We note that only 22% of the basic blocks in our dataset
appear in Ithemal’s dataset. Therefore our dataset is a valid
test because it has limited exposure to the risk that Ithemal
overfits on its own dataset.

Dataset. We evaluated the performance models using the
basic block dataset discussed in Section IV. Some basic
blocks in our dataset contain AVX2 instructions, which are
not implemented in Ivy Bridge. These basic blocks are not
included in the Ivy Bridge evaluation.

Platforms. For the Ivy Bridge measurements, we used a
server with the Intel(R) Xeon(R) CPU E5-2695 v2 CPU and
128 GB of memory. For the Haswell measurements, we used
a server with the Intel(R) Xeon(R) CPU E5-2680 v3 CPU and
128 GB of memory. Finally, for the Skylake measurements,
we used a server with the Intel(R) Xeon(R) W-2123 CPU and
64 GB of memory.

Evaluation Metrics. Given a measured throughput t and a
predicted throughput t′, we define error in this paper as the
relative error: err(t, t′) =

∣∣∣ t−t′t

∣∣∣. We report the prediction
errors of the performance models in three different ways.

• Overall error: We report the average error of all basic
blocks in our dataset on a given microarchitecture.

• Per-application error: We report the average error of all
basic blocks in a given application on a given microar-
chitecture.

• Per-category error: We cluster the basic blocks in our
dataset into different categories (Section V) and report
the average error of all basic blocks in a given category
on a given microarchitecture.
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We additionally evaluated how each model preserves the
ordering of basic block throughput, using Kendall’s tau coeffi-
cient [27], which measures the fraction of preserved pairwise
ordering. Kendall’s tau coefficient can be more useful than
relative error, when the consumers of a performance model
are not so much concerned with the precise predictions but
the relative ordering of predictions—such as compiler opti-
mizations that needs to select the best of candidate programs.

B. Results

Table IV shows the overall error and Kendall’s tau coeffi-
cients for each model on different microarchitectures. Figures
5, 7, and 9 show the breakdown of the errors by application.
Figure 6, 8, and 10 show the breakdown of the errors by cate-
gory. The discrepancy between overall prediction error (Table
IV) and that of more specialized types of basic blocks such
as vectorized code (Figures 6, 8, and 10) highlights the need
of basic block clustering and per-category error reporting.

TABLE IV
Overall error of evaluated models. Kendall’s tau coefficient [27] measures
the fraction of pairwise throughput ordering preserved by a given model.

The bolded entry of each cell shows the best model.

Microarchitecture Model Average Error Kendall’s Tau

Ivy Bridge IACA 0.1664 0.8000
llvm-mca 0.2813 0.7544
Ithemal 0.0973 0.8442
OSACA 0.3299 0.6197

Haswell IACA 0.1790 0.8043
llvm-mca 0.2511 0.7829
Ithemal 0.0926 0.8544
OSACA 0.3566 0.6067

Skylake IACA 0.1566 0.8121
llvm-mca 0.2683 0.7745
Ithemal 0.0980 0.8516
OSACA 0.3573 0.6111

IACA is the second most accurate model for most cate-
gories. It is the best model at modeling purely vectorized basic
blocks. In its weakest categories—Scalar/Vec and Ld/St—it is
no worse than the most accurate model by more than 10%.

llvm-mca is considerably worse on all microarchitectures
compared to IACA and Ithemal, especially on modeling basic
blocks involving loads.

Ithemal [11] consistently outperforms other models, except
on vectorized basic blocks. Ithemal is also considerably better
than other models at modeling basic blocks with memory de-
pendence (Ld/St). The inconsistency between Ithemal’s overall
error and the error on vectorized basic blocks seems to be a
result of an imbalance in its training dataset, the majority of
which consists of non-vectorized basic blocks.

OSACA [10] is, on average, more accurate than llvm-mca
but considerably less than IACA [8] and Ithemal [11]. We note
that this has less to do with OSACA’s methodology than the
fact that its instruction parser is under active development.
During our evaluations, we found and reported five bugs

in OSACA’s instruction parser. In particular, OSACA does
not recognize several instruction forms; depending on the
cases, it either crashes or treats unrecognized instruction forms
as nops. One such instruction form is any instruction that
reads an immediate operand and writes to memory (e.g.,
add $1, (%rbx)). OSACA treats these instructions as
nops, thus underreporting the throughput of many basic blocks.

C. Examples of Modeling Bugs

We present a case study of three basic blocks where some
of the evaluated models behave poorly. These examples show-
case the microarchitectural complexity that these performance
models face. Table V shows these basic blocks, their measured
throughput (Haswell), and the throughput predicted by dif-
ferent models (Haswell). We manually inspected IACA’s and
llvm-mca’s predicted instruction schedules; OSACA and Ithe-
mal do not predict execution schedules. The first two examples
highlight cases in which a model’s prediction contradicts the
instruction throughput specified by the manual. The last ex-
ample shows a case where a model (llvm-mca [9] in this case)
can significantly mispredict throughput due to mis-scheduling
micro-ops, despite correct modeling of individual instructions.

Modeling bug due to unsigned division. The first example
in Table V is bottlenecked by a 64-bit by 32-bit unsigned
division. The throughput is bounded by the latency of the di-
vision (since it reads from and writes to %rax each iteration).
Intel’s manual [28] states that the latency of such a division
ranges from 20 to 26 cycles, which is consistent with our
measurement (21.62 cycles).

All models are wrong here. llvm-mca and IACA [8] sig-
nificantly over-predict; Ithemal [11] and OSACA [10] under-
predict—it appears that they ignore the data-dependence.

One can infer from llvm-mca’s and IACA’s predictions—
98 and 99 cycles—that they mistake this 64-by-32 division
(latency ≈ 12 cycles) with the 128-by-64 analog (latency
≈ 90 cycles). Their predictions would, however, still be
wrong due to the preceding xorl %edx, %edx, which
zeros %edx and enables a fastpath for the subsequent division
(latency ≈ 30 cycles).

Modeling bug due to zero-idioms. The basic block in the
second example in Table V is a single vectorized XOR of
%xmm2 with itself. At the end of executing this instruction,
the value of %xmm2 is always 0. All three microarchitectures
have fast-paths for such zero-idioms. IACA and Ithemal rec-
ognize this idiom and make predictions close to the measured
throughput, while llvm-mca and OSACA treat this instruction
as a regular vectorized XOR.

Modeling bug due to mis-scheduling. The third example in
Table V is a basic block whose instructions form a non-trivial
dependence-chain. On the surface, every instruction depends
on the previous one, but there is still some instruction-level
parallelism because the memory addressed by %rcx in the
third instruction does not depend on the rest of the computation
(in fact, it is constant).
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Fig. 5. Per-application error for each model on Ivy Bridge
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IACA is the most accurate model. Ithemal’s and OS-
ACA’s predictions—1 cycle per iteration—reveal that they
ignored the dependence altogether. Figure 11 shows the
schedules predicted by llvm-mca and IACA. The instruction
xorq (%rcx), %rax is dispatched noticeably earlier in
IACA’s schedule. llvm-mca delays dispatching xorq due to
its dependence on the previous computation, not recognizing
that that the micro-op of xorq (%rcx), %rax that loads
%rcx is independent and should be dispatched earlier.

TABLE V
Basic blocks and their predicted throughputs, demonstrating modeling bugs.

Basic Block Model Throughput

xorl %edx, %edx
divl %ecx
testl %edx, %edx

IACA 98.00
llvm-mca 99.04
Ithemal 16.28
OSACA 12.25
Measured 21.62

vxorps %xmm2, %xmm2, %xmm2

IACA 0.24
llvm-mca 1.00
Ithemal 0.27
OSACA 1.00
Measured 0.25

xorq 1000000(%rax), %rbx
movq %rbx, %rax
xorq (%rcx), %rax

IACA 7.83
llvm-mca 12.03
Ithemal 1.01
OSACA 1.00
Measured 7.23

A------------------------sdeeeew----R-------p   

A------------------------------sdw----R-------p

 

A-------------------------------w-----R-------p

s---cdeeeew---------------------------R-------p 

A-------------------------------sdw----R-------p

   A-------------------------------sdeeeew----R-------p

D================================eeeeeeER

 D=====================================eER

 D=====================================eeeeeeER

  D==========================================eeeeeeER

xorq 1000000(%rax), %rbx

  TYPE_LOAD (1 uops) 

  TYPE_OP (1 uops) 

movq %rbx, %rax

  TYPE_OP (0 uops) 

xorq (%rcx), %rax 

  TYPE_LOAD (1 uops) 

  TYPE_OP (1 uops)

xorq 1000000(%rax), %rbx

  TYPE_LOAD (1 uops)  

llvm-mca

IACA

xorq 1000000(%rax), %rbx

movq %rbx, %rax

xorq (%rcx), %rax

xorq 1000000(%rax), %rbx

Fig. 11. Schedules predicted by llvm-mca and IACA for an example
basic block. Each red window marks the boundary of a single iteration of
execution. The width of the windows represents the steady-state throughput.
As illustrated here, llvm-mca and IACA predicts two different schedules.
Notice that the bolded instruction is dispatched earlier in IACA’s schedule.

VII. CONCLUSION

We present a benchmark for validating performance models
of x86-64 basic blocks. We describe the techniques with
which we collected and profiled over 300,000 basic blocks
from real-world applications. Our benchmark can be used
to evaluate and tune performance models of x86-64 basic
blocks systematically. We evaluated four throughput prediction
models, including two recently published research models. Our
evaluation shows that even the best models we evaluated can
differ from the ground truth by more than 20%, and sometimes

more, for certain classes of basic blocks; in particular, we show
that existing throughput predictors have difficulty modeling
memory dependency and vectorized basic blocks reliably.
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APPENDIX A
MODEL PREDICTION ERRORS ON SPANNER AND DREMEL

Table VI shows the accuracy of IACA, llvm-mca, and
Ithemal’s prediction errors on these basic blocks. Figure 12
shows the per-category error analysis. We gather the validation
measurements on a Haswell machine. IACA’s predictions are
similar to those on our dataset. Ithemal’s predictions on the
two applications’ vectorized basic blocks are 3% better than
on our dataset, but its predictions on basic blocks in the Scalar
and Ld/St categories are 7% worse. llvm-mca, which has an
average prediction error of 25% on our benchmark, predicts
noticeably better; we note that llvm-mca still lags behind the
other models on vectorized basic blocks.

TABLE VI
Accuracy of models on basic blocks from Spanner and Dremel. Bolded

entries show the best models.

Application Model Average Error Kendall’s Tau

Spanner IACA 0.1892 0.7786
llvm-mca 0.1764 0.7623
Ithemal 0.1276 0.7890

Dremel IACA 0.1883 0.7835
llvm-mca 0.1777 0.7685
Ithemal 0.1316 0.7960
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Fig. 12. Per-category prediction error (vs. Haswell measurements) on Spanner
and Dremel’s basic blocks.
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