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Abstract

The error or variability of machine learning algorithms is often assessed
by repeatedly re-fitting a model with different weighted versions of the
observed data. The ubiquitous tools of cross-validation (CV) and the
bootstrap are examples of this technique. These methods are powerful
in large part due to their model agnosticism but can be slow to run on
modern, large data sets due to the need to repeatedly re-fit the model.
In this work, we use a linear approximation to the dependence of the
fitting procedure on the weights, producing results that can be faster than
repeated re-fitting by an order of magnitude. This linear approximation is
sometimes known as the “infinitesimal jackknife” in the statistics literature,
where it is mostly used as a theoretical tool to prove asymptotic results. We
provide explicit finite-sample error bounds for the infinitesimal jackknife
in terms of a small number of simple, verifiable assumptions. Our results
apply whether the weights and data are stochastic or deterministic, and so
can be used as a tool for proving the accuracy of the infinitesimal jackknife
on a wide variety of problems. As a corollary, we state mild regularity
conditions under which our approximation consistently estimates true leave-
k-out cross-validation for any fixed k. These theoretical results, together
with modern automatic differentiation software, support the application
of the infinitesimal jackknife to a wide variety of practical problems in
machine learning, providing a “Swiss Army infinitesimal jackknife.” We
demonstrate the accuracy of our methods on a range of simulated and real
datasets.

1 Introduction

Statistical machine learning methods are increasingly deployed in real-world
problem domains where they are the basis of decisions affecting individuals’
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employment, savings, health, and safety. Unavoidable randomness in data
collection necessitates understanding how our estimates, and resulting decisions,
might have differed had we observed different data. Both cross validation (CV)
and the bootstrap attempt to diagnose this variation and are widely used in
classical data analysis. But these methods are often prohibitively slow for
modern, massive datasets, as they require running a learning algorithm on many
slightly different datasets. In this work, we propose to replace these many runs
with a single perturbative approximation. We show that the computation of
this approximation is far cheaper than the classical methods, and we provide
theoretical conditions that establish its accuracy.

Many data analyses proceed by minimizing a loss function of exchangeable
data. Examples include empirical loss minimization and M-estimation based on
product likelihoods. Since we typically do not know the true distribution gener-
ating the data, it is common to approximate the dependence of our estimator
on the data via the dependence of the estimator on the empirical distribution.
In particular, we often form a new, proxy dataset using random or determin-
istic modifications of the empirical distribution, such as randomly removing k
datapoints for leave-k-out CV. A proxy dataset obtained in this way can be
represented as a weighting of the original data. From a set of such proxy datasets
we can obtain estimates of uncertainty, including estimates of bias, variance, and
prediction accuracy.

As data and models grow, the cost of repeatedly solving a large optimization
problem for a number of different values of weights can become impractically large.
Conversely, though, larger datasets often exhibit greater regularity; in particular,
under fairly general conditions, limit laws based on independence imply that an
optimum exhibits diminishing dependence on any fixed set of data points. We
use this observation to derive a linear approximation to resampling that needs to
be calculated only once, but which nonetheless captures the variability inherent
in the repeated computations of classical CV. Our method is an instance of
the infinitesimal jackknife (IJ), a general methodology that was historically a
precursor to cross-validation and the bootstrap [Jaeckel, 1972, Efron, 1982]. Part
of our argument is that variants of the IJ should be reconsidered for modern
large-scale applications because, for smooth optimization problems, the IJ can
be calculated automatically with modern automatic differentiation tools [Baydin
et al., 2017].

By using this linear approximation, we incur the cost of forming and inverting
a matrix of second derivatives with size equal to the dimension of the parameter
space, but we avoid the cost of repeatedly re-optimizing the objective. As
we demonstrate empirically, this tradeoff can be extremely favorable in many
problems of interest.

Our approach aims to provide a felicitous union of two schools of thought. In
statistics, the IJ is typically used to prove normality or consistency of other esti-
mators [Fernholz, 1983, Shao, 1993, Shao and Tu, 2012]. However, the conditions
that are required for these asymptotic analyses to hold are prohibitively restric-
tive for machine learning—specifically, they require objectives with bounded
gradients. A number of recent papers in machine learning have provided related
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linear approximations for the special case of leave-one-out cross-validation [Koh
and Liang, 2017, Rad and Maleki, 2018, Beirami et al., 2017], though their
analyses lack the generality of the statistical perspective.

We combine these two approaches by modifying the proof of the Fréchet
differentiability of M-estimators developed by Clarke [1983]. Specifically, we
adapt the proof away from the question of Fréchet differentiability within the
class of all empirical distributions to the narrower problem of approximating
the exact re-weighting on a particular dataset with a potentially restricted
set of weights. This limitation of what we expect from the approximation is
crucial; it allows us to bound the error in terms of a complexity measure of
the set of derivatives of the observed objective function, providing a basis for
non-asymptotic applications in large-scale machine learning, even for objectives
with unbounded derivatives. Together with modern automatic differentiation
tools, these results extend the use of the IJ to a wider range of practical problems.
Thus, our “Swiss Army infinitesimal jackknife,” like the famous Swiss Army
knife, is a single tool with many different functions.

2 Methods and Results

2.1 Problem definition

We consider the problem of estimating an unknown parameter θ ∈ Ωθ ⊆ RD,
with a compact Ωθ and a dataset of size N . Our analysis will proceed entirely
in terms of a fixed dataset, though we will be careful to make assumptions that
will plausibly hold for all N under suitably well-behaved random sampling. We
define our estimate, θ̂ ∈ Ωθ, as the root of a weighted estimating equation. For
each n = 1, . . . , N , let gn (θ) be a function from Ωθ to RD. Let wn be a real

number, and let w be the vector collecting the wn. Then θ̂ is defined as the
quantity that satisfies

θ̂(w) := θ such that
1

N

N∑

n=1

wngn (θ) = 0. (1)

We will impose assumptions below that imply at least local uniqueness of θ̂(w);
see the discussion following Assumption 2 in Section 2.3.

As an example, consider a family of continuously differentiable loss functions
f (·, θ) parameterized by θ and evaluated at data points xn, n = 1, . . . , N . If we

want to solve the optimization problem θ̂ = argmin
θ∈Ωθ

1
N

∑N
n=1 f (xn, θ) , then we

take gn (θ) = ∂f (xn, θ) /∂θ and wn ≡ 1. By keeping our notation general, we
will be able to analyze a more general class of problems, such as multi-stage
optimization (see Section 6). However, to aid intuition, we will sometimes refer
to the gn (θ) as “gradients” and their derivatives as “Hessians.”

When equation (1) is not degenerate (we articulate precise conditions below),

θ̂ is a function of the weights through solving the estimating equation, and we
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write θ̂(w) to emphasize this. We will focus on the case where we have solved
equation (1) for the weight vector of all ones, 1w := (1, . . . , 1), which we denote

θ̂1 := θ̂ (1w).
A re-sampling scheme can be specified by choosing a set W ⊆ RN of weight

vectors. For example, to approximate leave-k-out CV, one repeatedly computes
θ̂(w) where w has k randomly chosen zeros and all ones otherwise. Define Wk

as the set of every possible leave-k-out weight vector. Showing that our approxi-
mation is good for all leave-k-out analyses with probability one is equivalent to
showing that the approximation is good for all w ∈Wk.

In the case of the bootstrap, W contains a fixed number B of randomly

chosen weight vectors, w∗b
iid∼ Multinomial

(
N,N−1

)
for b = 1, . . . , B, so that∑N

n=1 w
∗
bn = N for each b. Note that while wn or w∗bn are scalars, w∗b is a vector

of length N . The distribution of θ̂ (w∗b ) − θ̂ (1w) is then used to estimate the

sampling variation of θ̂1. Define this set W ∗B = {w∗1 , . . . , w∗B}. Note that W ∗B is
stochastic and is a subset of all weight vectors that sum to N .

In general, W can be deterministic or stochastic, may contain integer or
non-integer values, and may be determined independently of the data or jointly
with it. As with the data, our results hold for a given W , but in a way that will
allow natural high-probability extensions to stochastic W .

2.2 Linear approximation

The main problem we solve is the computational expense involved in evaluating
θ̂(w) for all the w ∈ W . Our contribution is to use only quantities calculated

from θ̂1 to approximate θ̂(w) for all w ∈ W , without re-solving equation (1).

Our approximation is based on the derivative dθ̂(w)
dwT

, whose existence depends
on the derivatives of gn (θ), which we assume to exist, and which we denote as

hn (θ) := ∂gn(θ)
∂θT

. We use this notation because hn (θ) would be the Hessian of
a term of the objective in the case of an optimization problem. We make the
following definition for brevity.

Definition 1. The fixed point equation and its derivative are given respectively
by

G (θ, w) :=
1

N

N∑

n=1

wngn (θ)

H (θ, w) :=
1

N

N∑

n=1

wnhn (θ) .

Note that G
(
θ̂(w), w

)
= 0 because θ̂(w) solves equation (1) for w. We define

H1 := H
(
θ̂1, 1w

)
and define the weight difference as ∆w = w−1w ∈ RN . When

H1 is invertible, one can use the implicit function theorem and the chain rule to
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show that the derivative of θ̂(w) with respect to w is given by

dθ̂(w)

dwT
|1w∆w = −H−1

1

1

N

N∑

n=1

gn

(
θ̂1

)
∆w

= −H−1
1 G

(
θ̂1,∆w

)
.

This derivative allows us to form a first-order approximation to θ̂(w) at θ̂1.

Definition 2. Our linear approximation to θ̂(w) is given by

θ̂IJ (w) := θ̂1 −H−1
1 G

(
θ̂1,∆w

)
.

We use the subscript “IJ” for “infinitesimal jackknife,” which is the name
for this estimate in the statistics literature [Jaeckel, 1972, Shao, 1993]. Because

θ̂IJ depends only on θ̂1 and ∆w, and not on solutions at any other values of w,
there is no need to re-solve equation (1). Instead, to calculate θ̂IJ one must solve
a linear system involving H1. Recalling that θ is D-dimensional, the calculation
of H−1

1 (or a factorization that supports efficient solution of linear systems) can
be O

(
D3
)
. However, once H−1

1 is calculated or H1 is factorized, calculating our

approximation θ̂IJ (w) for each new weight costs only as much as a single matrix-
vector multiplication. Furthermore, H1 often has a sparse structure allowing
H−1

1 to be calculated more efficiently than a worst-case scenario (see Section 6 for
an example). In more high-dimensional examples with dense Hessian matrices,
such as neural networks, one may need to turn to approximations such as
stochastic second-order methods [Koh and Liang, 2017, Agarwal et al., 2017] and
conjugate gradient [Wright and Nocedal, 1999]. Indeed, even in relatively small

or sparse problems, the vast bulk of the computation required to calculate θ̂IJ is
in the computation of H−1

1 . We leave the important question of approximate
calculation of H−1

1 for future work.

2.3 Assumptions and results

We now state our key assumptions and results, which are sufficient conditions
under which θ̂IJ(w) will be a good approximation to θ̂(w). We defer most proofs
to Appendix A. We use ‖·‖op to denote the matrix operator norm, ‖·‖2 to
denote the L2 norm, and ‖·‖1 to denote the L1 norm. For quantities like g
and h, which have dimensions N ×D and N ×D ×D respectively, we apply
the Lp norm to the vectorized version of arrays. For example, 1√

N
‖h (θ)‖2 =√

1
N

∑N
n=1

∑D
i=1

∑D
j=1 [hn (θ)]

2
ij which is the square root of a sample average

over n ∈ [N ].
We state all assumptions and results for a fixed N , a given estimating equation

vector g (θ), and a fixed class of weights W . Although our analysis proceeds
with these quantities fixed, we are careful to make only assumptions that can
plausibly hold for all N and/or for randomly chosen W under appropriate
regularity conditions.
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Assumption 1 (Smoothness). For all θ ∈ Ωθ, each gn (θ) is continuously
differentiable in θ.

The smoothness in Assumption 1 is necessary for a local approximation like
Definition 2 to have any hope of being useful.

Assumption 2 (Non-degeneracy). For all θ ∈ Ωθ, H (θ, 1w) is non-singular,

with supθ∈Ωθ

∥∥∥H (θ, 1w)
−1
∥∥∥
op
≤ Cop <∞.

Without Assumption 2, the derivative in Definition 2 would not exist. For
an optimization problem, Definition 2 amounts to assuming that the Hessian is
strongly positive definite, and, in general, assures that the solution θ̂1 is unique.
Under our assumptions, we will show later that, additionally, θ̂(w) is unique in

a neighborhood of θ̂1; see Lemma 6 of Appendix A. Furthermore, by fixing Cop,
if we want to apply Assumption 2 for N →∞, we will require that H1 remains
strongly positive definite.

Assumption 3 (Bounded averages). There exist finite constants Cg and Ch such
that supθ∈Ωθ

1√
N
‖g (θ)‖2 ≤ Cg <∞ and supθ∈Ωθ

1√
N
‖h (θ)‖2 ≤ Ch <∞.

Assumption 3 essentially states that the sample variances of the gradients
and Hessians are uniformly bounded. Note that it does not require that these
quantities are bounded term-wise. For example, we allow supn ‖gn (θ)‖22 −→N→∞

∞,

as long as supn
1
N ‖gn (θ)‖22 remains bounded. This is a key advantage of the

present work over many past applications of the IJ to M-estimation, which
require supn ‖gn(θ)‖22 to be uniformly bounded for all N [Shao and Tu, 2012,
Beirami et al., 2017].

In both machine learning and statistics, supn ‖gn(θ)‖22 is rarely bounded,

though 1
N ‖g(θ)‖22 often is. As a simple example, suppose that θ ∈ R1, xn ∼

N (0, 1), and gn = θ− xn, as would arise from the squared error loss fn (xn, θ) =
1
2 (θ − xn)

2
. Fix a θ and let N → ∞. Then supn ‖gn(θ)‖22 → ∞ because

supn |xn| → ∞, but 1
N ‖g(θ)‖22 → θ2 + 1 by the law of large numbers.

Assumption 4 (Local smoothness). There exists a ∆θ > 0 and a finite constant

Lh such that,
∥∥∥θ − θ̂1

∥∥∥
2
≤ ∆θ implies that

‖h(θ)−h(θ̂1)‖
2√

N
≤ Lh

∥∥∥θ − θ̂1

∥∥∥
2
.

The constants defined in Assumption 4 are needed to calculate our error
bounds explicitly.

Assumptions 1–4 are quite general and should be expected to hold for many
reasonable problems, including holding uniformly asymptotically with high
probability for many reasonable data-generating distributions, as the following
lemma shows.

Lemma 1 (The assumptions hold under uniform convergence). Let Ωθ be
a compact set, and let gn (θ) be twice continuously differentiable IID random
functions for n ∈ [N ]. (The function is random but θ is not—for example,
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E [gn(θ)] is still a function of θ.) Define rn (θ) := ∂2gn(θ)
∂θ∂θ , so rn (θ) is a D×D×D

tensor.
Assume that we can exchange integration and differentiation, that E [hn (θ)] is

non-singular for all θ ∈ Ωθ, and that all of E
[
supθ∈Ωθ

‖gn (θ)‖22
]
, E
[
supθ∈Ωθ

‖hn (θ)‖22
]
,

and E
[
supθ∈Ωθ

‖rn (θ)‖22
]

are finite.

Then limN→∞ P (Assumptions 1–4 hold) = 1.

Lemma 1 follows from the uniform convergence results of Theorems 9.1 and
9.2 in Keener [2011]. See Appendix A.4 for a detailed proof. A common example
to which Lemma 1 would apply is where xn are well-behaved IID data and
gn(θ) = γ(xn, θ) for an appropriately smooth estimating function γ(·, θ). See
Keener [2011, Chapter 9] for more details and examples, including applications
to maximum likelihood estimators on unbounded domains.

Assumptions 1–4 apply to the estimating equation. We also require a bound-
edness condition for W .

Assumption 5 (Bounded weight averages). The quantity 1√
N
‖w‖2 is uniformly

bounded for w ∈W by a finite constant Cw.

Our final requirement is considerably more restrictive, and contains the
essence of whether or not θ̂IJ(w) will be a good approximation to θ̂(w).

Condition 1 (Set complexity). There exists a δ ≥ 0 and a corresponding set
Wδ ⊆W such that

max
w∈Wδ

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

(wn − 1) gn (θ)

∥∥∥∥∥
1

≤ δ and

max
w∈Wδ

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

(wn − 1)hn (θ)

∥∥∥∥∥
1

≤ δ.

Condition 1 is central to establishing when the approximation θ̂IJ (w) is

accurate. For a given δ, Wδ will be the class of weight vectors for which θ̂IJ(w)
is accurate to within order δ. Trivially, 1w ∈ Wδ for δ = 0, so Wδ is always
non-empty, even for arbitrarily small δ. The trick will be to choose a small δ
that still admits a large class Wδ of weight vectors. In Section 3 we will discuss
Condition 1 in more depth, but it will help to first state our main theorem.

Definition 3. The following constants are given by quantities in Assumptions
1–5 .

CIJ := 1 +DCwLhCop

∆δ := min

{
∆θC

−1
op ,

1

2
C−1

IJ C
−1
op

}
.

Note that, although the parameter dimension D occurs explicitly only once
in Definition 3, all of Cw, Cop, and Lh in general might also contain dimension
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dependence. Additionally, the bound δ in Condition 1, a measure of the set
complexity of the parameters, will typically depend on dimension. However,
the particular place where the parameter dimension enters will depend on the
problem and asymptotic regime, and our goal is to provide an adaptable toolkit
for a wide variety of problems.

We are now ready to state our main result.

Theorem 1 (Error bound for the approximation). Under Assumptions 1–5 and
Condition 1,

δ ≤ ∆δ ⇒ max
w∈Wδ

∥∥∥θ̂IJ (w)− θ̂(w)
∥∥∥

2
≤ 2C2

opCIJδ
2.

We stress that Theorem 1 bounds only the difference between θ̂IJ(w) and θ̂(w).

Theorem 1 alone does not guarantee that θ̂IJ(w) converges to any hypothetical
infinite population quantity. We see this as a strength, not a weakness. To
begin with, convergence to an infinite population requires stronger assumptions.
Contrast, for example, the Fréchet differentiability work of Clarke [1983], on
which our work is based, with the stricter requirements in the proof of consistency
in Shao [1993]. Second, machine learning problems may not naturally admit
a well-defined infinite population, and the dataset at hand may be of primary
interest. Finally, by analyzing a particular sample rather than a hypothetical
infinite population, we can bound the error in terms of the quantities CIJ and
∆δ, which can actually be calculated from the data at hand.

Still, Theorem 1 is useful to prove asymptotic results about the difference∥∥∥θ̂IJ (w)− θ̂(w)
∥∥∥

2
. As an illustration, we now show that the uniform consistency

of leave-k-out CV follows from Theorem 1 by a straightforward application of
Hölder’s inequality.

Corollary 1 (Consistency for leave-k-out CV). Assume that Assumptions 1–5
hold uniformly for all N . Fix an integer k, and let

Wk := {w : wn = 0 in k entries and 1 otherwise} .
Then, for all N , there exists a constant CK such that

sup
w∈Wk

∥∥∥θ̂IJ (w)− θ̂(w)
∥∥∥

2
≤ CK

‖g‖2∞
N2

≤ CK
max {Cg, Ch}2

N
.

Proof. For w ∈Wk,
‖∆w‖2√

N
=
√

K
N . Define Cgh := max {Cg, Ch}. By Assumption

3, ‖g‖2 /
√
N ≤ Cgh and ‖h‖2 /

√
N ≤ Cgh for all N . By Hölder’s inequality,

sup
w∈W

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

(wn − 1) gn (θ)

∥∥∥∥∥
1

≤ sup
w∈W

‖w − 1w‖1 sup
θ∈Ωθ

‖g‖∞
N

= K
‖g‖∞
N

≤ K Cgh√
N
,
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with a similar bound for ‖h‖2. Consequently, for N large enough, Condition 1 is

satisfied with Wδ = Wk and either δ = K
‖g‖∞
N or δ = K

Cgh√
N

. The result then

follows from Theorem 1.

3 Examples

The moral of Theorem 1 is that, under Assumptions 1–5 and Condition 1,∥∥∥θ̂IJ − θ̂ (w)
∥∥∥ = O

(
δ2
)

for w ∈Wδ. That is, if we can make δ small enough, Wδ

big enough, and still satisfy Condition 1, then θ̂IJ (w) is a good approximation

to θ̂ (w) for “most” w, where “most” is defined as the size of Wδ. So it is
worth taking a moment to develop some intuition for Condition 1. We have
already seen in Corollary 1 that θ̂IJ is, asymptotically, a good approximation for
leave-k-out CV uniformly in W . We now discuss some additional cases: first, a
worst-case example for which θ̂IJ is not expected to work, second the bootstrap,
and finally we revisit leave-one-out cross validation in the context of these other
two methods.

First, consider a pathological example. Let Wfull be the set of all weight

vectors that sum to N . Let n∗ = maxn∈[N ]

∥∥∥gn
(
θ̂1

)∥∥∥
1

be the index of the

gradient term with the largest L1 norm, and let wn∗ = N and wn = 0 for n 6= n∗.
Then

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

(wn − 1) gn (θ)

∥∥∥∥∥
1

= sup
θ∈Ωθ

∥∥∥∥∥gn∗ (θ)− 1

N

N∑

n=1

gn (θ)

∥∥∥∥∥
1

≥
∥∥∥gn∗

(
θ̂1

)∥∥∥
1
.

(The last inequality uses the fact that G
(
θ̂1, 1w

)
= 0.) In this case, unless the

largest gradient,
∥∥∥gn∗

(
θ̂1

)∥∥∥
1
, is small, Condition 1 will not be satisfied for small

δ, and we would not expect θ̂IJ to be a good estimate for θ̂ (w) for all w ∈Wfull.
The class Wfull is too expressive. In the language of Condition 1, for some
small fixed δ, Wδ will be some very restricted subset of Wfull in most realistic
situations.

Now, suppose that we are usingB bootstrap weights, w∗b
iid∼ Multinomial

(
N,N−1

)

for b = 1, ..., B, and analyzing an optimization problem as defined in Section 2.1.
For a given w∗b , a dataset x∗1, ..., x

∗
N formed by taking w∗b,n copies of datapoint

xn is equivalent in distribution to N IID samples with replacement from the
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empirical distribution on (x1, ..., xN ). In this notation, we then have

1

N

N∑

n=1

(w∗b − 1) gn (θ) =

1

N

N∑

n=1

∂f (θ, x∗n)

∂θ
− 1

N

N∑

n=1

∂f (θ, xn)

∂θ
.

In this case, Condition 1 is a uniform bound on a centered empirical process
of derivatives of the objective function. Note that estimating sample variances
by applying the IJ with bootstrap weights is equivalent to the ordinary delta
method based on an asymptotic normal approximation [Efron, 1982, Chapter
21]. In order to provide an approximation to the bootstrap that retains benefits
(such as the faster-than-normal convergence to the true sampling distribution
described by Hall [2013]), one must consider higher-ordered Taylor expansions

of θ̂(w). We leave this for future work.
Finally, let us return to leave-one-out CV. In this case, wn − 1 is nonzero

for exactly one entry. Again, we can choose to leave out the adversarially-
chosen n∗ as in the first pathological example. However, unlike the pathological
example, the leave-one-out CV weights are constrained to be closer to 1w—
specifically, we set wn∗ = 0, and let w be one elsewhere. Then Condition 1
requires supθ∈Ωθ

∥∥ 1
N gn∗ (θ)

∥∥
1
≤ δ. In contrast to the pathological example, this

supremum will get smaller as N increases as long as ‖gn∗ (θ)‖1 grows more slowly
than N . For this reason, we expect leave-one-out (and, indeed, leave-k-out for

fixed k) to be accurately approximated by θ̂IJ in many cases of interest, as stated
in Corollary 1.

4 Related Work

Although the idea of forming a linear approximation to the re-weighting of an
M-estimator has a long history, we nevertheless contribute in a number of ways.
By limiting ourselves to approximating the exact reweighting on a particular
dataset, we both loosen the strict requirements from the statistical literature
and generalize the existing results from the machine learning literature.

The jackknife is often favored over the IJ in the statistics literature because
of the former’s simple computational approach, as well as perceived difficulties in
calculating the necessary derivatives when some of the parameters are implicitly
defined via optimization [Shao and Tu, 2012, Chapter 2.1] (though exceptions
exist; see, e.g., Wager et al. [2014]). The brute-force approach of the jackknife is,
however, a liability in large-scale machine learning problems, which are generally
extremely expensive to re-optimize. Furthermore, and critically, the complexity
and tedium of calculating the necessary derivatives is entirely eliminated by
modern automatic differentiation [Baydin et al., 2017, Maclaurin et al., 2015].

Our work is based on the proof of the Fréchet differentiability of M-estimators
of Clarke [1983]. In classical statistics, Fréchet differentiability is typically used
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to describe the asymptotic behavior of functionals of the empirical distribution
in terms of a functional [Mises, 1947, Fernholz, 1983]. Since Clarke [1983]
was motivated by such asymptotic questions, he studied the Fréchet derivative
evaluated at a continuous probability distribution for function classes that
included delta functions. This focus led to the requirement of a bounded
gradient. However, unbounded gradients are ubiquitous in both statistics and
machine learning, and an essential contribution of the current paper is to remove
the need for bounded gradients.

There exist proofs of the consistency of the (non-infinitesimal) jackknife that
allow for unbounded gradients. For example, it is possible that the proofs of
Reeds [1978], which require a smoothness assumption similar to our Assumption
4, could be adapted to the IJ. However, the results of Reeds [1978]—as well
as those of Clarke [1983] and subsequent applications such as those of Shao
and Tu [2012]—are asymptotic and applicable only to IID data. By providing
finite sample results for a fixed dataset and weight set, we are able to provide a
template for proving accuracy bounds for more generic probability distributions
and re-weighting schemes.

A number of recent machine learning papers have derived approximate linear
versions of leave-one-out estimators. Koh and Liang [2017] consider approxi-
mating the effect of leaving out one observation at a time to discover influential
observations and construct adversarial examples, but provide little supporting
theory. Beirami et al. [2017] provide rigorous proofs for an approximate leave-
one-out CV estimator; however, their estimator requires computing a new inverse
Hessian for each new weight at the cost of a considerable increase in computa-
tional complexity. Like the classical statistics literature, Beirami et al. [2017]

assume that the gradients are bounded for all N . When ‖g‖2∞ in Corollary 1 is
finite for all N , we achieve the same N−2 rate claimed by Beirami et al. [2017] for
leave-one-out CV although we use only a single matrix inverse. Rad and Maleki
[2018] also approximate leave-one-out CV, and prove tighter bounds for the error
of their approximation than we do, but their work is customized to leave-one-out
CV and makes much more restrictive assumptions (e.g., Gaussianity).

5 Simulated Experiments

We begin the empirical demonstration of our method on two simple generalized
linear models: logistic and Poisson regression.1 In each case, we generate a
synthetic dataset Z = {(xn, yn)}Nn=1 from parameters (θ, b), where θ ∈ R100 is a
vector of regression coefficients and b ∈ R is a bias term. In each experiment,
xn ∈ R100 is drawn from a multivariate Gaussian, and yn is a scalar drawn from
a Bernoulli distribution with the logit link or from a Poisson distribution with
the exponential link.

1Leave-one-out CV may not be the most appropriate estimator of generalization error in
this setting [Rosset and Tibshirani, 2018], but this section is intended only to provide simple
illustrative examples.
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Figure 1: Simulated data: accuracy results.

For a ground truth, we generate a large test set with N = 100,000 datapoints
to measure the true generalization error. We show in Fig. 1 that, over 50
randomly generated datasets, our approximation consistently underestimates
the actual error predicted by exact leave-one-out CV; however, the difference is
small relative to the improvements they both make over the error evaluated on
the training set.

Fig. 2 shows the relative timings of our approximation and exact leave-one-out
CV on logistic regression with datasets of increasing size. The time to run our
approximation is roughly an order of magnitude smaller.

6 Genomics Experiments

We now consider a genomics application in which we use CV to choose the degree
of a spline smoother when clustering time series of gene expression data. Code
and instructions to reproduce our results can be found in the git repository
rgiordan/AISTATS2019SwissArmyIJ. The application is also described in detail
in Appendix B.

We use a publicly available data set of mice gene expression [Shoemaker et al.,
2015] in which mice were infected with influenza virus, and gene expression was
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Figure 2: Simulated data: timing results.

assessed several times after infection. The observed data consists of expression
levels ygt for genes g = 1, . . . , ng and time points t = 1, . . . , nt. In our case
ng = 1000 and nt = 14. Many genes behave the same way; thus, clustering the
genes by the pattern of their behavior over time allows dimensionality reduction
that can facilitate interpretation. Consequently, we wish to first fit a smoothed
regression line to each gene and then cluster the results. Following Luan and Li
[2003], we model the time series as a gene-specific constant additive offset plus a
B-spline basis of degree 3, and the task is to choose the B-spline basis degrees of
freedom using cross-validation on the time points.

Our analysis runs in two stages—first, we regress the genes on the spline basis,
and then we cluster a transformed version of the regression fits. By modeling
in two stages, we both speed up the clustering and allow for the use of flexible
transforms of the fits. We are interested in choosing the smoothing parameter
using CV on the time points. Both the time points and the smoothing parameter
enter the regression objective directly, but they affect the clustering objective
only through the optimal regression parameters. Because the optimization
proceeds in two stages, the fit is not the optimum of any single objective function.
However, it can still be represented as an M-estimator (see Appendix B).

We implemented the model in scipy [Jones et al., 2001] and computed all
derivatives with autograd [Maclaurin et al., 2015]. We note that the match
between “exact” cross-validation (removing time points and re-optimizing) and
the IJ was considerably improved by using a high-quality second-order optimiza-
tion method. In particular, for these experiments, we employed the Newton
conjugate-gradient trust region method [Wright and Nocedal, 1999, Chapter 7.1]
as implemented by the method trust-ncg in scipy.optimize, preconditioned
by the Cholesky decomposition of an inverse Hessian calculated at an initial
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approximate optimum. The Hessian used for the preconditioner was with respect
to the clustering parameters only and so could be calculated quickly, in contrast
to the H1 matrix used for the IJ, which includes the regression parameters as
well. We found that first-order or quasi-Newton methods (such as BFGS) often
got stuck or terminated at points with fairly large gradients. At such points our
method does not apply in theory nor, we found, very well in practice.

Figure 3: Genomics data: accuracy results.

Fig. 3 shows that the IJ is a reasonably good approximation to the test set
error.2 In particular, both the IJ and exact CV capture the increase in test error
for df = 8, which is not present in the training error. Thus we see that, like
exact CV, the IJ is able to prevent overfitting. Though the IJ underestimates
exact CV, we note that it differs from exact CV by no more than exact CV itself
differs from the true quantity of iterest, the test error.

The timing results for the genomics experiment are shown in Fig. 4. For this
particular problem with approximately 39, 000 parameters (the precise number
depends on the degrees of freedom), finding the initial optimum takes about 42
seconds. The cost of finding the initial optimum is shared by exact CV and the

2In fact, in this case, the IJ is a better predictor of test set error than exact CV. However,
the authors have no reason at present to believe that the IJ is a better predictor of test error
than exact CV in general.
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Figure 4: Genomics data: timing results.

IJ, and, as shown in Fig. 4, is a small proportion of both.
The principle time cost of the IJ is the computation of H1. Computing and

inverting a dense matrix of size 39, 000 would be computationally prohibitive.
But, for the regression objective, H1 is extremely sparse and block diagonal, so
computing H1 in this case took only around 360 seconds. Inverting H1 took
negligible time. Once we have H−1

1 , obtaining the subsequent IJ approximations
is nearly instantaneous.

The cost of refitting the model for exact CV varies by degrees of freedom
(increasing degrees of freedom increases the number of parameters) and the
number of left-out points (an increasing number of left-out datapoints increases
the number of refits). As can be seen in Fig. 4, for low degrees of freedom and
few left-out points, the cost of re-optimizing is approximately the same as the
cost of computing H1. However, as the degrees of freedom and number of left-out
points grow, the cost of exact CV increases to as much as an order of magnitude
more than that of the IJ.

7 Conclusion

We recommend consideration of the Swiss Army infinitesimal jackknife for modern
machine learning problems. The large size of modern data both increases the
need for fast approximations and renders such approximations more accurate.
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Furthermore, modern automatic differentiation renders many past practical
difficulties obsolete. By stepping back from the strict requirements of classical
statistical theory, we can see that the value of the infinitesimal jackknife extends
beyond its traditional application areas, while retaining desirable generality in
other respects.
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A Detailed assumptions, lemmas, and proofs

A.1 Tools

We begin by stating two general propositions that will be useful. First, we show
that a version of Cauchy-Schwartz can be applied to weighted sums of tensors.

Proposition 1. Tensor array version of Hölder’s inequality. Let w be an array
of scalars and let a = (a1, ..., aN ) be an array of tensors, were each an is indexed
by i = 1, . . . , DA (i may be a multi-index—e.g., if A is a D ×D matrix, then
i = (j, k), for j, k ∈ [D] and DA = D2). Let p, q ∈ [1,∞] be two numbers such
that p−1 + q−1 = 1. Then

∥∥∥∥∥
1

N

N∑

n=1

wnan

∥∥∥∥∥
1

≤ D
1
p

A

N
‖w‖p ‖a‖q .

In particular, with p = q = 2,

∥∥∥∥∥
1

N

N∑

n=1

wnan

∥∥∥∥∥
1

≤
√
DA
‖w‖2√
N

‖a‖2√
N
.

Proof. The conclusion follows from the ordinary Hölder’s inequality applied
term-wise to n and Jensen’s inequality applied to the indices i.

∥∥∥∥∥
1

N

N∑

n=1

wnan

∥∥∥∥∥
1

=

DA∑

i=1

∣∣∣∣∣
1

N

N∑

n=1

wn (an)i

∣∣∣∣∣

≤ 1

N

DA∑

i=1

∣∣∣∣∣∣

(
N∑

n=1

|wn|p
) 1
p
(

N∑

n=1

|(an)i|
q

) 1
q

∣∣∣∣∣∣
(Hölder)

=
1

N
‖w‖p

DA

DA

DA∑

i=1

(
N∑

n=1

|(an)i|
q

) 1
q

≤ 1

N
‖w‖pDA

(
1

DA

DA∑

i=1

N∑

n=1

|(an)i|
q

) 1
q

(Jensen applied to i)

=
1

N
‖w‖pDA

(
1

DA

N∑

n=1

‖an‖qq

) 1
q

=
1

N
‖w‖pD

1− 1
q

A ‖a‖q

=
D

1
p

A

N
‖w‖p ‖a‖q .
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Next, we prove a relationship between the term-wise difference between
matrices and the difference between their operator norms. It is well-known that
the minimum eigenvalue of a non-singular matrix is continuous in the entries of
the matrix. In the next proposition, we quantify this continuity for the L1 norm.

Proposition 2. Let A and B be two square matrices of the same size. Let∥∥A−1
∥∥
op
≤ Cop for some finite Cop, and Then

‖A−B‖1 ≤
1

2
(Cop)

−1 ⇒
∥∥B−1

∥∥
op
≤ 2Cop.

Proof. We will use the results stated in Theorem 4.29 of Schott [2016] and the
associated discussion in Example 4.14, which establish the following result. Let
A be a square, nonsigular matrix, and let I be the identity matrix of the same
size. Let ‖·‖ denote any matrix norm satisfying ‖I‖ = 1. Let D be a matrix of
the same size as A satisfying

∥∥A−1
∥∥ ‖D‖ ≤ 1. (2)

Then

∥∥A−1 − (A+D)−1
∥∥ ≤

∥∥A−1
∥∥ ‖D‖

1− ‖A−1 ‖D‖‖
∥∥A−1

∥∥ . (3)

We will apply equation (3) using the operator norm ‖·‖op, for which ‖I‖op = 1

and with D := B −A. Because
∥∥A−1

∥∥
op
≤ Cop, A is invertible.

Assume that ‖A−B‖1 ≤ 1
2 (Cop)

−1. First, note that

∥∥A−1
∥∥
op
‖D‖op =

∥∥A−1
∥∥
op
‖B −A‖op

≤
∥∥A−1

∥∥
op
‖B −A‖1 (ordering of matrix norms)

≤ Cop
1

2
(Cop)

−1 (by assumption)

=
1

2
< 1, (4)

so equation (2) is satisfied and we can apply equation (3). Then

∥∥B−1
∥∥
op
≤
∥∥B−1 −A−1

∥∥
op

+
∥∥A−1

∥∥
op

(triangle inequality)

≤
∥∥A−1

∥∥
op
‖B −A‖op

1− ‖A−1‖op ‖B −A‖op
∥∥A−1

∥∥
op

+
∥∥A−1

∥∥
op

(equation (3))

≤
1
2

1− 1
2

∥∥A−1
∥∥
op

+
∥∥A−1

∥∥
op

(equation (4))

≤ 2Cop. (by assumption)
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Next, we define the quantities needed to make use of the integral form of the
Taylor series remainder.3

Proposition 3. For any θ ∈ Ωθ and any w̃ ∈W ,

G(θ, w̃)−G(θ̂1, w̃) =

(∫ 1

0

H(θ̂1 + t(θ − θ̂1), w)dt

)(
θ − θ̂1

)

Proof. Let Gd(θ, w̃) denote the d-th component of the vector G(θ, w̃), and define

the function fd(t) := Gd(θ̂1 + t(θ̂1 − θ), w̃). The proposition follows by taking
the integral remainder form of the zero-th order Taylor series expansion of fd(t)
around t = 0 [Dudley, 2018, Appendix B.2], and stacking the result into a
vector.

The Taylor series residual of Proposition 3 will show up repeatedly, so we
will give it a concise name in the following definition.

Definition 4. For a fixed weight w and a fixed parameter θ, define the Hessian
integral

H̃(θ, w) :=

∫ 1

0

H(θ̂1 + t(θ − θ̂1), w)dt.

A.2 Lemmas

We now prove some useful consequences of our assumptions. The proof roughly
proceeds for all w ∈Wδ by the following steps:

1. When δ is small we can make
∥∥∥θ̂ (w)− θ̂1

∥∥∥
2

small. (Lemma 3 below.)

2. When
∥∥∥θ − θ̂1

∥∥∥
2

is small, then the derivatives H (θ, w) are close to their

optimal value, H
(
θ̂1, 1w

)
. (Lemma 4 and Lemma 5 below.)

3. When the derivatives are close to their optimal values, then H (θ, w) is
uniformly non-singular. (Lemma 6 below.)

4. When the derivatives are close to their optimal values and H (θ, w) is

uniformly non-singular we can control the error in θ̂IJ − θ̂ (w) in terms of
δ. (Theorem 2 below.)

We begin by showing that the difference between θ̂ (w) and θ̂1 for w ∈Wδ can
be made small by making δ from Condition 1 small. First, however, we need
to prove that operator norm bounds on H(θ, w) also apply to the integrated
Hessian H̃(θ, w).

3We are indebted to Pang Wei Koh for pointing out the need to use the integral form of
the remainder for Taylor series expansions of vector-valued functions.

21



Lemma 2. Invertibility of the integrated Hessian. If, for some domain Ω and

some constant C, supθ∈Ω

∥∥H(θ, w)−1
∥∥
op
≤ C, then supθ∈Ω

∥∥∥H̃(θ, w)−1
∥∥∥
op
≤ C.

Proof. By definition of the operator norm,
∥∥∥H̃(θ, w)−1

∥∥∥
−1

op
= min
v∈RD:‖v‖2=1

vT H̃(θ, w)v

= min
v∈RD:‖v‖2=1

∫ 1

0

vTH(θ̂1 + t(θ − θ̂1), w)vdt

≥
∫ 1

0

min
v∈RD:‖v‖2=1

vTH(θ̂1 + t(θ − θ̂1), w)vdt

≥ inf
θ∈Ω

min
v∈RD:‖v‖2=1

vTH(θ, w)v

≥C−1.

The result follows by inverting both sides of the inequality.

Lemma 3. Small parameter changes. Under Assumptions 1—3 and Condition
1,

for all w ∈Wδ,
∥∥∥θ̂ (w)− θ̂1

∥∥∥
2
≤ Copδ.

Proof. Applying Proposition 3 with θ = θ̂ (w) and w̃ = 1w gives

G
(
θ̂ (w) , 1w

)
= G

(
θ̂1, 1w

)
+ H̃

(
θ̂ (w) , 1w

)(
θ̂ (w)− θ̂1

)
.

By Assumption 2 and Lemma 2, supθ∈Ωθ

∥∥∥H̃(θ, 1w)−1
∥∥∥ ≤ Cop. In particular,

H̃(θ, 1w) is non-singular. A little manipulation, together with the fact that

G
(
θ̂ (w) , w

)
= G

(
θ̂1, 1w

)
= 0 gives

θ̂ (w)− θ̂1 = H̃
(
θ̂ (w) , 1w

)−1 (
G
(
θ̂ (w) , 1w

)
−G

(
θ̂ (w) , w

))
.

Taking the norm of both sides gives

∥∥∥θ̂ (w)− θ̂1

∥∥∥
2

=

∥∥∥∥H̃
(
θ̂ (w) , 1w

)−1 (
G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

))∥∥∥∥
2

≤
∥∥∥∥H̃

(
θ̂ (w) , 1w

)−1
∥∥∥∥
op

∥∥∥
(
G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

))∥∥∥
2

≤ Cop
∥∥∥G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

)∥∥∥
2

(Lemma 2)

≤ Cop
∥∥∥G
(
θ̂ (w), 1w

)
−G

(
θ̂ (w), w

)∥∥∥
1

(relation between norms)

≤ Cop sup
θ∈Ωθ

‖G (θ, 1w)−G (θ, w)‖1

≤ Copδ. (Condition 1).
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Because we will refer to it repeatedly, we give the set of θ defined in Lemma
3 a name.

Definition 5. For a given δ, define the region around θ̂1 given by Lemma 3 as

BCopδ :=
{
θ :
∥∥∥θ − θ̂1

∥∥∥
2
≤ Copδ

}⋂
Ωθ.

In other words, Lemma 3 states that Condition 1 implies θ̂ (w) ∈ BCopδ when
w ∈Wδ.

Next, we show that closeness in θ will mean closeness in H (θ, w).

Lemma 4. Boundedness and continuity. Under Assumptions 1–5 and Condition
1,

for all θ ∈ B∆θ
, sup

w∈W

∥∥∥H (θ, w)−H
(
θ̂1, w

)∥∥∥
1
≤ DCwLh

∥∥∥θ − θ̂1

∥∥∥
2
.

Proof. For θ ∈ B∆θ
,

sup
w∈W

∥∥∥H (θ, w)−H
(
θ̂1, w

)∥∥∥
1

= sup
w∈W

∥∥∥∥∥
1

N

N∑

n=1

wn

(
hn (θ)− hn

(
θ̂1

))∥∥∥∥∥
1

(by definition)

≤ D sup
w∈W

‖w‖2√
N

∥∥∥h (θ)− h
(
θ̂1

)∥∥∥
2√

N
(Proposition 1)

≤ DCw

∥∥∥h (θ)− h
(
θ̂1

)∥∥∥
2√

N
(Assumption 5)

≤ DCwLh
∥∥∥θ − θ̂1

∥∥∥
2

(Assumption 4 and θ ∈ B∆θ
).

We now combine Lemma 3 and Lemma 4 to show that H (θ, w) is close to its

value at the solution H
(
θ̂1, 1w

)
for sufficiently small δ and for all θ ∈ BCopδ.

Lemma 5. Bounds for difference in parameters. Under Assumptions 1–5 and
Condition 1, if δ ≤ ∆θC

−1
op , then

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, 1w

)∥∥∥
1
≤
(
1 +DCwLhCop

)
δ.

Proof. By Lemma 3, δ ≤ ∆θC
−1
op implies that Copδ ≤ ∆θ and so BCopδ ⊆ B∆θ

.
Consequently, we can apply Lemma 4:

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, w

)∥∥∥
1
≤ sup
θ∈B∆θ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, w

)∥∥∥
1

≤ DCwLh
∥∥∥θ − θ̂1

∥∥∥
2

(Lemma 4)

≤ DCwLhCopδ (because θ ∈ BCopδ).
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Next, we can use this to write

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, 1w

)∥∥∥
1

= sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H (θ, 1w) +H (θ, 1w)−H
(
θ̂1, 1w

)∥∥∥
1

≤ sup
θ∈BCopδ

sup
w∈Wδ

‖H (θ, w)−H (θ, 1w)‖1 + sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, 1w)−H
(
θ̂1, 1w

)∥∥∥
1

≤ sup
θ∈Ωθ

sup
w∈Wδ

‖H (θ, w)−H (θ, 1w)‖1 + sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, 1w)−H
(
θ̂1, 1w

)∥∥∥
1

≤ δ + sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, 1w)−H
(
θ̂1, 1w

)∥∥∥
1

(Condition 1)

≤ δ +DCwLhCopδ.

The constant that appears multiplying δ at the end of the proof of Lemma 5
will appear often in what follows, so we give it the special name CIJ in Definition
3.

Note that Lemma 5 places a condition on how small δ must be in order for
our regularity conditions to apply. Lemma 3 will guarantee that θ̂ (w) ∈ BCopδ,
but if we are not able to make δ arbitrarily small in Condition 1, then we are not
guaranteed to ensure that BCopδ ⊆ B∆θ

, will not be able to assume Lipschitz
continuity, and none of our results will apply.

Next, using Lemma 5, we can extend the operator bound on H−1
1 from

Assumption 2 to H (θ, w)
−1

for all w ∈Wδ.

Lemma 6. Uniform invertibility of the Hessian. Under Assumptions 1–5 and
Condition 1, if δ ≤ min

{
∆θC

−1
op ,

1
2C
−1
IJ C

−1
op

}
, then

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)
−1
∥∥∥
op
≤ 2Cop.

Proof. By Assumption 2,

∥∥∥∥H
(
θ̂1, 1w

)−1
∥∥∥∥
op

≤ Cop. So by Proposition 2, it will

suffice to select δ so that

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, 1w

)∥∥∥
1
≤ 1

2
C−1
op . (5)

When we can apply Lemma 5, we have

sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H (θ, w)−H
(
θ̂1, 1w

)∥∥∥
1
≤ CIJδ.

So H (θ, w) will satisfy equation (5) if we can apply Lemma 5 and if

δ ≤1

2
C−1
op C

−1
IJ .
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To apply Lemma 5 we additionally require that δ ≤ ∆θC
−1
op . By taking δ ≤

min
{

∆θC
−1
op ,

1
2C
−1
op C

−1
IJ

}
, we satisfy equation (5) and the result follows.

Next, we show that a version of Lemma 5 also applies to the integrated
Hessian H̃(θ, w) when θ ∈ BCopδ.

Lemma 7. Bounds for difference of the integrated Hessian. Under Assumptions
1–5 and Condition 1, if δ ≤ ∆θC

−1
op and θ ∈ BCopδ,

sup
w∈Wδ

∥∥∥H̃ (θ, w)−H(θ̂1, 1w)
∥∥∥

1
≤
(
1 +DCwLhCop

)
δ.

Proof.

sup
w∈Wδ

∥∥∥H̃ (θ, w)−H(θ̂1, 1w)
∥∥∥

1

= sup
w∈Wδ

∥∥∥∥
∫ 1

0

(
H(θ̂1 + t(θ − θ̂1), w)dt−H(θ̂1, 1w)

)∥∥∥∥
1

(Definition 4)

≤ sup
w∈Wδ

∫ 1

0

∥∥∥H(θ̂1 + t(θ − θ̂1), w)−H(θ̂1, 1w)
∥∥∥

1
dt (Jensen’s inequality)

≤ sup
θ∈BCopδ

sup
w∈Wδ

∥∥∥H(θ), w)−H(θ̂1, 1w)
∥∥∥

1

≤
(
1 +DCwLhCop

)
δ (Lemma 5)

With these results in hand, the upper bound on δ will at last be sufficient to
control the error terms in our approximation. For compactness, we give it the
upper bound on δ the name ∆δ in Definition 3.

Finally, we state a result that will allow us to define derivatives of θ̂ (w) with
respect to w.

Lemma 8. Inverse function theorem. Under Assumptions 1–5 and Condition
1, and for δ ≤ ∆δ, there exists a continuous, differentiable function of w, θ̂ (w),

such that, for all w ∈W , G
(
θ̂ (w) , w

)
= 0.

Proof. This follows from Lemma 6 and the implicit function theorem.

By definition, θ̂ (1w) = θ̂1.

A.3 Bounding the errors in a Taylor expansion

We are now in a position to use Assumptions 1–5 and Condition 1 to bound
the error terms in a first-order Taylor expansion of θ̂ (w). We begin by simply

calculating the derivative dθ̂ (w) /dw.
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Proposition 4. For any w ∈W for which H
(
θ̂ (w) , w

)
is invertible, and for

any vector a ∈ RN ,

dθ̂ (w)

dwT
|wa = −H

(
θ̂ (w) , w

)−1

G
(
θ̂ (w) , a

)
.

Proof. Because G
(
θ̂ (w) , w

)
= 0 for all w ∈W , by direct calculation,

0 =
d

dwT
G
(
θ̂ (w) , w

)
|wa

=

(
∂G

∂θT
dθ̂

dwT
+

∂G

∂wT

)
|
w
a

= H
(
θ̂ (w) , w

) dθ̂

dwT
|wa+

(
∂

∂wT
1

N

N∑

n=1

wngn (θ)

)
|wa

= H
(
θ̂ (w) , w

) dθ̂

dwT
|
w
a+

1

N

N∑

n=1

gn

(
θ̂ (w)

)
a

= H
(
θ̂ (w) , w

) dθ̂

dwT
|
w
a+G

(
θ̂ (w) , a

)
.

Because H
(
θ̂ (w) , w

)
is invertible by assumption, the result follows.

Definition 6. Define

θ̂IJ (w) := θ̂1 +
dθ̂ (w)

dwT
|1w (w − 1w)

= θ̂1 −H−1
1 G

(
θ̂1, w

)
. (because G

(
θ̂1, 1w

)
= 0)

θ̂IJ (w) in Definition 6 is the first term in a Taylor series expansion of θ̂ (w)

as a function of w. We want to bound the error, θ̂IJ (w)− θ̂ (w).

Theorem 2. Under Assumptions 1–5 and Condition 1, when δ ≤ ∆δ,

sup
w∈Wδ

∥∥∥θ̂IJ (w)− θ̂ (w)
∥∥∥

2
≤ 2C2

opCIJδ
2.

Proof. Applying Proposition 3 with θ = θ̂ (w) and w̃ = w, we have

0 = G
(
θ̂ (w) , w

)
= G

(
θ̂1, w

)
+ H̃

(
θ̂ (w) , w

)(
θ̂ (w)− θ̂1

)
.

Because δ ∈Wδ, Lemma 3 implies that θ̂ (w) ∈ BCopδ so, Lemma 6 and Lemma
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2 imply that H̃
(
θ̂ (w) , w

)
is invertible and we can solve for θ̂ (w)− θ̂1.

θ̂ (w)− θ̂1 = −H̃
(
θ̂ (w) , w

)−1

G
(
θ̂1, w

)

=

(
−H̃

(
θ̃, w

)−1

+H
(
θ̂1, 1w

)−1

−H
(
θ̂1, 1w

)−1
)
G
(
θ̂1, w

)

=

(
H
(
θ̂1, 1w

)−1

− H̃
(
θ̂ (w) , w

)−1
)
G
(
θ̂1, w

)
+ θ̂IJ (w)− θ̂1.

Eliminating θ̂1 and taking the supremum of both sides gives

sup
w∈Wδ

∥∥∥θ̂IJ (w)− θ̂ (w)
∥∥∥

2

= sup
w∈Wδ

∥∥∥∥
(
H
(
θ̂1, 1w

)−1

− H̃ (θ, w)
−1

)
G
(
θ̂1, w

)∥∥∥∥
2

= sup
w∈Wδ

∥∥∥∥H̃
(
θ̂ (w) , w

)−1 (
H̃
(
θ̂ (w) , w

)
−H

(
θ̂1, 1w

))
H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

≤ 2Cop sup
w∈Wδ

∥∥∥∥
(
H̃
(
θ̂ (w) , w

)
−H

(
θ̂1, 1w

))
H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

(Lemma 2)

≤ 2Cop sup
w∈Wδ

∥∥∥H̃
(
θ̂ (w) , w

)
−H

(
θ̂1, 1w

)∥∥∥
op

∥∥∥∥H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

≤ 2Cop sup
w∈Wδ

∥∥∥H̃
(
θ̂ (w) , w

)
−H

(
θ̂1, 1w

)∥∥∥
1

∥∥∥∥H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

(ordering of matrix norms)

≤ 2CopCIJδ sup
w∈Wδ

∥∥∥∥H
(
θ̂1, 1w

)−1

G
(
θ̂1, w

)∥∥∥∥
2

(Lemma 7)

≤ 2C2
opCIJδ sup

w∈Wδ

∥∥∥G
(
θ̂1, w

)∥∥∥
2

(Assumption 2)

= 2C2
opCIJδ sup

w∈Wδ

∥∥∥G
(
θ̂1, w

)
−G

(
θ̂1, 1w

)∥∥∥
2

(because G
(
θ̂1, 1w

)
= 0)

≤ 2C2
opCIJδ

2 (Condition 1).

A.4 Use cases

First, let us state a simple condition under which Assumptions 1–4 hold. It will
help to have a lemma for the Lipschitz continuity.

Lemma 9. Derivative Cauchy Schwartz. Let a (θ) = (a1 (θ) , ..., aN (θ)) be an ar-

ray of tensors with multi-index i ∈ [DA], and let ∂a(θ)
∂θ =

(
∂
∂θa1 (θ) , ..., ∂∂θaN (θ)

)

be an array of tensors of size D ×DA. Then
∥∥∥∥
∂

∂θ
‖a (θ)‖2

∥∥∥∥
2

≤ DA

∥∥∥∥
∂a

∂θ

∥∥∥∥
2

.
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Proof. By direct calculation,

∥∥∥∥
∂

∂θ
‖a (θ)‖22

∥∥∥∥
2

2

=

D∑

r=1

(
∂

∂θr

N∑

n=1

DA∑

i=1

an,i (θ)
2

)2

=

D∑

r=1

(
N∑

n=1

DA∑

i=1

2an,i (θ)
∂an,i (θ)

∂θr

)2

≤
D∑

r=1


2

DA∑

i=1

(
N∑

n=1

an,i (θ)
2

) 1
2
(

N∑

n=1

(
∂an,i (θ)

∂θr

)2
) 1

2




2

≤
D∑

r=1


2D2

A

(
1

DA

DA∑

i=1

N∑

n=1

an,i (θ)
2

) 1
2
(

1

DA

N∑

n=1

(
∂an,i (θ)

∂θr

)2
) 1

2




2

= 4D2
A ‖a‖22

D∑

r=1

∥∥∥∥
∂a

∂θr

∥∥∥∥
2

2

= 4D2
A ‖a‖22

∥∥∥∥
∂a

∂θ

∥∥∥∥
2

2

.

By the chain rule,

∥∥∥∥
∂

∂θ
‖a (θ)‖2

∥∥∥∥
2

2

=
1

4 ‖a (θ)‖22

∥∥∥∥
∂

∂θ
‖a (θ)‖22

∥∥∥∥
2

2

≤ D2
A

∥∥∥∥
∂a

∂θ

∥∥∥∥
2

2

.

Lemma 10. Let a (θ) ∈ RD×D be a continuously differentiable random matrix
with a D ×D ×D derivative tensor. (Note that the function, not θ, is random.
For example, E [a (θ)] is still a function of θ.) Suppose that E [‖a (θ)‖2] is finite
for all θ ∈ Ωθ. Then, for all θ1, θ2 ∈ Ωθ,

|E [‖a (θ1)‖2]− E [‖a (θ2)‖2]| ≤

√√√√E

[
sup
θ∈Ωθ

∥∥∥∥
∂a (θ)

∂θ

∥∥∥∥
2

2

]
‖θ1 − θ2‖2 .
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Proof. For any tensor a with multi-index i,

∥∥∥∥
∂

∂θ
‖a‖22

∥∥∥∥
2

2

=

D∑

r=1

(
∂

∂θr
‖a‖22

)2

=

D∑

r=1

(
∂

∂θr

DA∑

i=1

a2
i

)2

=

D∑

r=1

(
2

DA∑

i=1

ai
∂ai
∂θr

)2

≤ 4

D∑

r=1

DA∑

i=1

a2
i

DA∑

i=1

(
∂ai
∂θr

)2

(Cauchy-Schwartz)

= 4

DA∑

i=1

a2
i

D∑

r=1

DA∑

i=1

(
∂ai
∂θr

)2

= 4 ‖a‖22
∥∥∥∥
∂a

∂θ

∥∥∥∥
2

2

.

Consequently,

∥∥∥∥
∂

∂θ
‖a (θ)‖2

∥∥∥∥
2

2

=

∥∥∥∥
1

2 ‖a (θ)‖2
∂

∂θ
‖a (θ)‖22

∥∥∥∥
2

2

=
1

4 ‖a (θ)‖22

∥∥∥∥
∂

∂θ
‖a (θ)‖22

∥∥∥∥
2

2

≤ 4 ‖a (θ)‖22
4 ‖a (θ)‖22

∥∥∥∥
∂

∂θ
a (θ)

∥∥∥∥
2

2

=

∥∥∥∥
∂a (θ)

∂θ

∥∥∥∥
2

2

.

So for any θ1, θ2 ∈ Ωθ,

|E [‖a (θ1)‖2]− E [‖a (θ2)‖2]| ≤ E [|‖a (θ1)‖2 − ‖a (θ2)‖2|]

≤ E
[(

sup
θ∈Ωθ

∥∥∥∥
∂

∂θ
‖a (θ)‖2

∥∥∥∥
2

)]
‖θ1 − θ2‖2 (θ is not random)

≤ E
[(

sup
θ∈Ωθ

∥∥∥∥
∂a (θ)

∂θ

∥∥∥∥
2

)]
‖θ1 − θ2‖2

≤

√√√√E

[
sup
θ∈Ωθ

∥∥∥∥
∂a (θ)

∂θ

∥∥∥∥
2

2

]
‖θ1 − θ2‖2 .

The result follows. Note that the bound still holds (though vacuously) if

E
[
supθ∈Ωθ

∥∥∥∂a(θ)
∂θ

∥∥∥
2

2

]
is infinite.
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Proposition 5. Let Ωθ be a compact set. Let gn (θ) be twice continuously
differentiable IID random functions. Define

hn (θ) :=
∂gn (θ)

∂θ

rn (θ) :=
∂2gn (θ)

∂θ∂θ
,

where rn (θ) is a D ×D ×D tensor. Assume that

1a) E
[
supθ∈Ωθ

‖gn (θ)‖22
]
<∞;

1b) E
[
supθ∈Ωθ

‖hn (θ)‖22
]
<∞;

1c) E
[
supθ∈Ωθ

‖rn (θ)‖22
]
<∞;

2) E [hn (θ)] is non-singular for all θ ∈ Ωθ;
3) We can exchange expectation and differentiation.
Then limN→∞ P (Assumptions 1–4 hold) = 1.

Proof. The proof follows from Theorems 9.1 and 9.2 of Keener [2011]. We will
first show that the expected values of the needed functions satisfy Assumptions
1–4 , and then that the sample versions converge uniformly.

By Jensen’s inequality,

E
[

sup
θ∈Ωθ

‖gn (θ)‖2
]

= E

[√
sup
θ∈Ωθ

‖gn (θ)‖22

]
≤
√
E
[

sup
θ∈Ωθ

‖gn (θ)‖22
]
.

Also, for the ith component of gn (θ)

E
[

sup
θ∈Ωθ

|gn,i (θ)|
]
≤ E

[
sup
θ∈Ωθ

‖gn (θ)‖∞
]
≤ E

[
sup
θ∈Ωθ

‖gn (θ)‖2
]
.

By Theorem 9.1 of Keener [2011], E
[
‖gn (θ)‖22

]
, E [‖gn (θ)‖2], and E [gn (θ)] are

continuous functions of θ, and because Ωθ is compact, they are each bounded.
Similar reasoning applies to hn (θ) and rn (θ). Consequently we can define

sup
θ∈Ωθ

E
[
‖gn (θ)‖22

]
=: Q2

g <∞

sup
θ∈Ωθ

E
[
‖hn (θ)‖22

]
=: Q2

h <∞.

Below, these constants will be used to satisfy Assumption 1 and Assumption 3
with high probability.

Because Ωθ is compact, E [hn (θ)] is continuous, E [hn (θ)] is non-singular,
and the operator norm is a continuous function of E [hn (θ)], we can also define

sup
θ∈Ωθ

∥∥∥E [hn (θ)]
−1
∥∥∥
op

=: Qop <∞.
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Below, this constant be used to satisfy Assumption 2 with high probability.
Finally, we turn to the Lipschitz condition. Lemma 10 implies that

|E [‖hn (θ1)‖2]− E [‖hn (θ2)‖2]| ≤
√
E
[

sup
θ∈Ωθ

‖rn (θ)‖22
]
‖θ1 − θ2‖2 .

Define

Λh =

√
E
[

sup
θ∈Ωθ

‖rn (θ)‖22
]
,

so that we have shown that E [‖hn (θ)‖2] is Lipschitz in Ωθ with constant Λh,
which is finite by assumption.

We have now shown, essentially, that the expected versions of the quantities
we wish to control satisfy Assumptions 1–4 with N = 1. We now need to show
that the sample versions satisfy Assumptions 1–4 with high probability, which
will follow from the fact that the sample versions converge uniformly to their
expectations by Theorem 9.2 of Keener [2011].

First, observe that Assumption 1 holds with probability one by assumption.
For the remaining assumption choose an ε > 0, and define

Cg :=
√
Q2
g + ε

Ch :=
√
Q2
h + ε

Cop := 2Qop

Lh :=
√
D4Λ2

h + ε.

By Keener [2011] Theorem 9.2,

sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22 − E
[
‖gn (θ)‖22

]∣∣∣∣∣
p−−−−→

N→∞
0.

Because

sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22

∣∣∣∣∣ > Q2
g + ε ≥ sup

θ∈Ωθ

E
[
‖gn (θ)‖22

]
+ ε⇒

sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22 − E
[
‖gn (θ)‖22

]∣∣∣∣∣ > ε,

we have

P

(
sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22

∣∣∣∣∣ ≥ Q
2
g + ε

)
≤

P

(
sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22 − E
[
‖gn (θ)‖22

]∣∣∣∣∣ ≤ ε
)
,
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so

P

(
sup
θ∈Ωθ

∣∣∣∣∣
1

N

N∑

n=1

‖gn (θ)‖22

∣∣∣∣∣ ≥ C
2
g

)
−−−−→
N→∞

0.

An analogous argument holds for 1
N ‖hn (θ)‖22. Consequently, P (Assumption 3 holds) −−−−→

N→∞
1.

We now consider Assumption 2. Again, by Keener [2011] Theorem 9.2 applied
to each element of the matrix hn (θ), using a union bound over each of the D2

entries,

sup
θ∈Ωθ

∥∥∥∥∥
1

N

N∑

n=1

hn (θ)− E [hn (θ)]

∥∥∥∥∥
1

p−−−−→
N→∞

0.

By the converse of Proposition 2, because
∥∥∥E [hn (θ)]

−1
∥∥∥
op
≤ Qop,

∥∥∥∥∥∥

(
1

N

N∑

n=1

hn (θ)

)−1
∥∥∥∥∥∥
op

> 2Qop = Cop ⇒

∥∥∥∥∥
1

N

N∑

n=1

hn (θ)− E [hn (θ)]

∥∥∥∥∥
1

>
1

2
Q−1
op .

Consequently,

P



∥∥∥∥∥∥

(
1

N

N∑

n=1

hn (θ)

)−1
∥∥∥∥∥∥
op

≥ Cop


 ≤

P

(∥∥∥∥∥
1

N

N∑

n=1

hn (θ)− E [hn (θ)]

∥∥∥∥∥
1

)
p−−−−→

N→∞
0,

and P (Assumption 2 holds) −−−−→
N→∞

1.

Finally, applying Lemma 10 to 1√
N
‖h (θ2)‖2,

∣∣∣∣
1√
N
‖h (θ1)‖2 −

1√
N
‖h (θ2)‖2

∣∣∣∣ ≤ sup
θ∈Ωθ

∥∥∥∥
∂

∂θ

1√
N
‖h (θ)‖2

∥∥∥∥
2

‖θ1 − θ2‖2

≤ D2

√
N

sup
θ∈Ωθ

‖r (θ)‖2 ‖θ1 − θ2‖2

= D2

√
sup
θ∈Ωθ

1

N
‖r (θ)‖22 ‖θ1 − θ2‖2 .
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Consequently,

∣∣∣∣
1√
N
‖h (θ1)‖2 −

1√
N
‖h (θ2)‖2

∣∣∣∣ ≥ Lh ‖θ1 − θ2‖2 ⇒

D2

√
sup
θ∈Ωθ

1

N
‖r (θ)‖22 ≥ Lh ⇒

sup
θ∈Ωθ

1

N
‖r (θ)‖22 − sup

θ∈Ωθ

E
[
‖rn (θ)‖22

]
≥ L2

h

D4
− sup
θ∈Ωθ

E
[
‖rn (θ)‖22

]
⇒

sup
θ∈Ωθ

∣∣∣∣
1

N
‖r (θ)‖22 − E

[
‖rn (θ)‖22

]∣∣∣∣ ≥
L2
h

D4
− Λ2

h = ε.

However, again by Keener [2011] Theorem 9.2,

sup
θ∈Ωθ

∣∣∣∣
1

N
‖r (θ)‖22 − E

[
‖rn (θ)‖22

]∣∣∣∣
p−−−−→

N→∞
0,

so P (Assumption 4 holds) −−−−→
N→∞

1.

B Genomics Experiments Details

We demonstrate the Python and R code used to run and analyze the experi-
ments on the genomics data in a sequence of Jupyter notebooks. The output
of these notebooks are included below, though they are best viewed in their
original notebook form. The notebooks, as well as scripts and instructions
for reproducing our analysis in its entirety, can be found in the git repository
rgiordan/AISTATS2019SwissArmyIJ.
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fit_model_and_save

February 21, 2019

1 Genomics experiment details.

We demonstrate the infinitesimal jackknife on a publicly available data set of mice gene expression
in Shoemaker et al. [2015].

Mice were infected with influenza virus, and gene expression was assessed several times after
infection, so the observed data consists of expression levels ygt for genes g = 1, ..., ng and time
points t = 1, ..., nt, where in this case ng = 1000 and nt = 42.

This notebook contains the first of three steps in the analysis. In this notebook, we will first load
the data and define a basis with a hyperparameter we wish to select with cross validation. We then
describe the two stages of our analysis: a regression stage and a clustering stage. We then save the
data for further analysis by the notebooks load_and_refit and calculate_prediction_error.

This notebook assumes you have already followed the instructions in README.md to install the
necessary packages and create the dataset.

2 Step 1: Initial fit.

In [1]: import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

import inspect

import os

import sys

import time

np.random.seed(3452453) # nothing special about this seed (we hope)!

In [2]: from aistats2019_ij_paper import regression_mixture_lib as rm_lib

from aistats2019_ij_paper import regression_lib as reg_lib

from aistats2019_ij_paper import sensitivity_lib as sens_lib

from aistats2019_ij_paper import spline_bases_lib

from aistats2019_ij_paper import transform_regression_lib as trans_reg_lib

from aistats2019_ij_paper import loading_data_utils

from aistats2019_ij_paper import saving_gmm_utils

from aistats2019_ij_paper import mse_utils

import plot_utils_lib
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2.1 The first stage: Regression

2.1.1 Load data

In [3]: # Set bnp_data_repo to be the location of a clone of the repo

# https://github.com/NelleV/genomic_time_series_bnp

bnp_data_repo = '../../genomic_time_series_bnp'

y_train, y_test, train_indx, timepoints = loading_data_utils.load_genomics_data(

bnp_data_repo,

split_test_train = True,

train_indx_file = '../fits/train_indx.npy')

Loading data from: ../../genomic_time_series_bnp/data/shoemaker2015reprocessed

In [4]: n_train = np.shape(y_train)[0]

print('number of genes in training set: \n', n_train)

n_test = np.shape(y_test)[0]

print('number of genes in test set: \n', n_test)

n_genes = n_train + n_test

test_indx = np.setdiff1d(np.arange(n_genes), train_indx)

gene_indx = np.concatenate((train_indx, test_indx))

number of genes in training set:

700

number of genes in test set:

300

Each gene yg has 42 observations. Observations are made at 14 timepoints, with 3 replicates at
each timepoints.

In [5]: n_t = len(timepoints)

n_t_unique = len(np.unique(timepoints))

print('timepoints: \n ', timepoints, '\n')

print('Distinct timepoints: \n', np.sort(np.unique(timepoints)), '\n')

print('Number of distinct timepoints:', n_t_unique)

timepoints:

[0, 0, 0, 3, 3, 3, 6, 6, 6, 9, 9, 9, 12, 12, 12, 18, 18, 18, 24, 24, 24, 30, 30, 30, 36, 36, 36, 48, 48, 48, 60, 60, 60, 72, 72, 72, 120, 120, 120, 168, 168, 168]

Distinct timepoints:

[ 0 3 6 9 12 18 24 30 36 48 60 72 120 168]

Number of distinct timepoints: 14
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Here is the raw data for a few randomly chosen genes.

In [6]: f, axarr = plt.subplots(2, 3, figsize=(15,8))

gene_indx = np.sort(np.random.choice(n_train, 6))

for i in range(6):

n = gene_indx[i]

this_plot = axarr[int(np.floor(i / 3)), i % 3]

this_plot.plot(timepoints, y_train[n, :].T, '+', color = 'blue');

this_plot.set_ylabel('gene expression')

this_plot.set_xlabel('time')

this_plot.set_title('gene number {}'.format(n))

f.tight_layout()

2.1.2 Define regressors

We model the time course using cubic B-splines. Let α be the degrees of freedom of the B-splines,
and this is the parameter we seek to choose using cross-validation.

For a given degrees of freedom, the B-spline basis is given by an nt × nx matrix Xd f , where the
each column of Xd f is a B-spline basis vector evaluated at the nt timepoints. Note that nx increases
with increasing degrees of freedom.

Note that we only use B-splines to smooth the first 11 timepoints. For the last three timepoints,
t = 72, 120, 168, we use indicator functions on each timepoint as three extra basis vectors. In other
words, we append to the regressor matrix three columns, where each column is 1 if t = 72, 120,
or 168, respectively, and 0 otherwise. We do this to avoid numerical issues in the matrix XTX.
Because the later timepoints are more spread out, the B-spline basis are close to zero at the later
timepoints, leading to matrices close to being singular.
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In [7]: # Simulate passing arguments in on the command line so that the notebook

# looks more like those in ``cluster_scripts``.

class Args():

def __init__(self):

pass

args = Args()

args.df = 7

args.degree = 3

args.num_components = 10

In [8]: regressors = spline_bases_lib.get_genomics_spline_basis(

timepoints, df=args.df, degree=3)

regs = reg_lib.Regressions(y_train, regressors)

We plot the B-spline matrix for several degrees of freedom below:

In [9]: f, axarr = plt.subplots(2, 3, figsize=(15,8))

i = 0

for df in [4, 5, 6, 7, 8, 9]:

_regressors = spline_bases_lib.get_genomics_spline_basis(

timepoints, exclude_num=3, df=df)

this_plot = axarr[int(np.floor(i / 3)), i % 3]

this_plot.plot(timepoints, _regressors);

this_plot.set_xlabel('time')

this_plot.set_ylabel('B-spline value')

this_plot.set_title('B-spliine basis when df = {}'.format(df))

i += 1

f.tight_layout()
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We display the regressor matrix below.

In [10]: plt.matshow(regs.x.T)

plt.ylabel('basis')

plt.xlabel('timepoint and replicate')

plt.title('The (transposed) regressor matrix when df = {}\n'.format(args.df));

With the regressor X defined above, for each gene g we model P
(

yg|βg, σ2
g

)
=

N
(

yg|Xβg, σ2
g

)
. In the second stage, we will want to cluster βg taking into account its uncer-

tainty on each gene. To do this, we wish to estimate the posterior mean E[βg|yg] and covariance
Cov(βg|yg) with flat priors for both βg and σ2

g .
For each gene, we estimate the posterior with a mean field variational Bayes (MFVB) approxi-

mation q
(

σ2
g , βg; η̂g

)
to the posterior P

(
βg, σ2

g |yg

)
.

In particular, we take q
(

σ2
g , βg; η̂g

)
= q∗

(
σ2

g

)
q∗ (βg

)
, where q∗

(
σ2

g

)
is a dirac delta function,

and we optimize over its a location parameter; q∗ (βg
)

is a Gaussian density and we optimize over
its mean and covariance.
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The optimal variational approximation has a closed form that is formally identical to the stan-
dard frequentist mean and covariance estimate for linear regression. Explicitly, the optimal varia-
tional distribution is,

q∗(βg) = N
(

βg

∣∣∣ (XTX)−1XTyg, τ̂g(XTX)−1
)

q∗(σ2
g) = δ{σ2

g = τ̂g}

where τ̂g = 1
nt−nx

∥yg − X(XTX)−1XTyg∥2
2.

The advantage of the MVFB construction is that η̂g for g = 1, ..., ng satisfies set of ng indepen-
dent M-estimation objectives, allowing us to apply our infinitesimal jackknife results. Specifically,
defining θreg :=

(
η1, ..., ηng

)
, we wish to minimize

Freg
(
θreg, α

)
=

ng

∑
g=1

KL
(

q
(

σ2
g , βg; ηg

)
||P
(

βg, σ2
g |yg

))

= −
ng

∑
g=1

Eq

[
log P

(
βg, σ2

g |yg

)]
+ Eq

[
log q

(
βg, σ2

g |ηg

)]

:=
ng

∑
g=1

Freg,g
(
ηg, α

)
.

Our M-estimator, then, is

∂Freg
(
θreg, α

)

∂θreg
= 0.

The class regs can calculate the optimal variational parameters for each gene. In particular, the
variational parameters ηg consist of a variational mean and covariance for βg, as well as a location
estimate for σ2

g .

In [11]: reg_time = time.time()

opt_reg_params = regs.get_optimal_regression_params()

reg_time = time.time() - reg_time

print('Regression time: {} seconds'.format(reg_time))

Regression time: 0.029132366180419922 seconds

Here are what some of the fits look like. Each regression produces a prediction ŷg := XEq
[
βg
]
,

plotted with the heavy red line above. The light red are predictions when βg is drawn from q∗(βg);
the spread of the light red is intended to give a sense of the covariance of βg.

In [12]: f, axarr = plt.subplots(2, 3, figsize=(15,8))

for i in range(6):

n = gene_indx[i]

this_plot = axarr[int(np.floor(i / 3)), i % 3]

plot_utils_lib.PlotRegressionLine(

timepoints, regs, opt_reg_params, n, this_plot=this_plot)

f.tight_layout()
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We also define and save data for the test regressions, which we will use later to evaluate out-
of-sample performance. The training regressions will be saved below with the rest of the fit.

In [13]: regs_test = reg_lib.Regressions(y_test, regressors)

test_regression_outfile = '../fits/test_regressions.json'

with open(test_regression_outfile, 'w') as outfile:

outfile.write(regs_test.to_json())

2.2 The second stage: fit a mixture model.

2.2.1 Transform the parameters before clustering

We are interested in the pattern of gene expression, not the absolute level, so we wish to cluster
ŷg − ¯̂yg, where ¯̂yg is the average over time points. Noting that the nt × nt matrix Covq

(
ŷg − ¯̂yg

)
is

rank-deficient because we have subtracted the mean, the final step is to rotate ŷg − ¯̂yg into a basis
where the zero eigenvector is a principle axis and then drop that component.

Call these transformed regression coefficients γg and observe that Covq
(
γg
)

has a closed form
and is full-rank. It is these γgs that we will cluster in the second stage.

We briefly note that the re-centering operation could have been equivalently achieved by mak-
ing a constant one of the regressors. We chose this implementation because it also allows the
user to cluster more complex, non-linear transformations of the regression coefficients, though we
leave this extension for future work.

We note that the transformations described in this section are done automatically in the GMM

class. We are only calculating these transformations here for exposition.

In [14]: # Get the matrix that does the transformation.

transform_mat, unrotate_transform_mat = \

trans_reg_lib.get_reversible_predict_and_demean_matrix(regs.x)

trans_obs_dim = transform_mat.shape[0]
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If T is the matrix that effects the transformation, then

Eq[γg] = TEq[βg]

Covq(γq) = TCovq(βg)TT

The transformed parameters are also regression parameters, just in a different space.

In [15]: # Apply the transformation

transformed_reg_params = \

trans_reg_lib.multiply_regression_by_matrix(

opt_reg_params, transform_mat)

We now visualize the transformed coefficients and their uncertainty.

In [16]: f, axarr = plt.subplots(2, 3, figsize=(15,8))

transformed_beta = transformed_reg_params['beta_mean']

transformed_beta_info = transformed_reg_params['beta_info']

for i in range(6):

n = gene_indx[i]

this_plot = axarr[int(np.floor(i / 3)), i % 3]

this_plot.plot(transformed_beta[n, :], color = 'red');

this_plot.set_ylabel('transformed coefficient')

this_plot.set_xlabel('index')

this_plot.set_title('gene number {}'.format(n))

# draw from the variational distribution, to plot uncertainties

for j in range(30):

transformed_beta_draw = np.random.multivariate_normal(

transformed_beta[n, :], \

np.linalg.inv(transformed_beta_info[n]))

axarr[int(np.floor(i / 3)), i % 3].plot(transformed_beta_draw,

color = 'red', alpha = 0.08);

f.tight_layout()
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The heavy red lines are the means of the transformed regression coefficients; shaded lines are
draws from the variational distribution.

It is these transformed coefficients, γg, that we cluster in the second stage.

2.2.2 Estimate an optimal clustering.

We now define a clustering problem for the γg. Let nk be the number of clusters, and µ1, ..., µnk be
the cluster centers. Also let zgkbe the binary indicator for the gth gene belonging to cluster k. We
then define the following generative model

P (π) = Dirichlet (ω)

P (µk) = N (µk|0, Σ0) for k = 1, ..., nk

P
(
zgk = 1|πk

)
= πk for k = 1, ..., nk; n = 1, ..., ng

P
(
γg|zgk = 1, µk, ηg

)
= N

(
γg|µk, Covq

(
γg
)
+ ϵInt−1

)
for k = 1, ..., nk; n = 1, ..., ng.

where ϵ is a small regularization parameter, which helped our optimization produce more
stable results.

We will estimate the clustering using the maximum a posteriori (MAP) estimator of θclust :=
(µ, π). This defines an optimization objective that we seek to minimize:

Fclust
(
θclust, θreg

)
= −

ng

∑
g=1

Eq∗
z

{
log P

(
γg|ηg, µ, π, zg

)
− log P(zg|π)

}
− log P (µ) − log P (π)

which, for every value of θreg, we expect to satisfy

∂Fclust
(
θclust, θreg

)

∂θclust
= 0.
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Note that θclust involves only the ‘’global” parameters µ and π. We did take a variational
distribution for the zgks, represented by independent Bernoulli distribution, but the optimal q∗

z
can be written as a function of µ and π. Hence, our optimization objective only involves these
global parameters.

In [17]: # Define prior parameters.

num_components = args.num_components

epsilon = 0.1

loc_prior_info_scalar = 1e-5

trans_obs_dim = regs.x.shape[1] - 1

prior_params = \

rm_lib.get_base_prior_params(trans_obs_dim, num_components)

prior_params['probs_alpha'][:] = 1

prior_params['centroid_prior_info'] = loc_prior_info_scalar * np.eye(trans_obs_dim)

In [18]: gmm = rm_lib.GMM(args.num_components,

prior_params, regs, opt_reg_params,

inflate_coef_cov=None,

cov_regularization=epsilon)

In our experiment, the number of clusters nk was chosen to be 10. We set ω to be the ones
vector of length nk. The prior info for the cluster centers Σ0 is 1e-05×I. ϵ was set to be 0.1.

Let us examine the optimization objective. First, we’ll inspect the likelihood terms. What
follows is the likelihood given that gene g belongs to cluster k.

In [19]: print(inspect.getsource(rm_lib.get_log_lik_nk))

def get_log_lik_nk(centroids, probs, x, x_infos):

loc_log_lik = \

-0.5 * (-2 * np.einsum('ni,kj,nij->nk', x, centroids, x_infos) +

np.einsum('ki,kj,nij->nk', centroids, centroids, x_infos))

log_probs = np.log(probs[0, :])

log_lik_by_nk = loc_log_lik + log_probs.T

return log_lik_by_nk

We can then optimize for q∗
z , which can be parametrized by its mean Eq∗

z [z]. We note that this
update has a closed form given θclust, so there is no need to solve an optimization problem to find
q∗

z (z). We additionally note that we do not use the EM algorithm, which we found to have exhibit
extremely poor convergence rates. Rather, we set q∗

z (z) to its optimal value given θclust and return
the objective as a function of θclust alone, allowing the use of more general and higher-quality
optimization routines.

In [20]: print(inspect.getsource(rm_lib.get_e_z))
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def get_e_z(log_lik_by_nk):

log_const = paragami.simplex_patterns.logsumexp(log_lik_by_nk, axis=1)

e_z = np.exp(log_lik_by_nk - log_const)

return e_z

With the optimal parameters for znk, we combine the likelihood term with the prior and en-
tropy terms.

In [21]: print(inspect.getsource(rm_lib.wrap_get_loglik_terms))

print(inspect.getsource(rm_lib.wrap_get_kl))

def wrap_get_loglik_terms(gmm_params, transformed_reg_params):

log_lik_by_nk = get_log_lik_nk(

centroids=gmm_params['centroids'],

probs=gmm_params['probs'],

x=transformed_reg_params['beta_mean'],

x_infos=transformed_reg_params['beta_info'])

e_z = get_e_z(log_lik_by_nk)

return log_lik_by_nk, e_z

def wrap_get_kl(gmm_params, transformed_reg_params, prior_params):

log_lik_by_nk, e_z = \

wrap_get_loglik_terms(gmm_params, transformed_reg_params)

log_prior = get_log_prior(

gmm_params['centroids'], gmm_params['probs'], prior_params)

return get_kl(log_lik_by_nk, e_z, log_prior)

This objective function is wrapped in the GMM class method get_params_kl.

In [22]: print(inspect.getsource(gmm.get_params_kl))

def get_params_kl(self, gmm_params):

"""Get the optimization objective as a function of the mixture

parameters.

"""

return wrap_get_kl(

gmm_params, self.transformed_reg_params, self.prior_params)

2.2.3 Optimization

For optimization we make extensive use of the autograd library for automatic differentiation and
the paragami library for parameter packing and sparse Hessians. These packages’ details are
beyond the scope of the current notebook.
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First, we do a k-means initialization.

In [23]: print('Running k-means init.')

init_gmm_params = \

rm_lib.kmeans_init(gmm.transformed_reg_params,

gmm.num_components, 50)

print('Done.')

init_x = gmm.gmm_params_pattern.flatten(init_gmm_params, free=True)

Running k-means init.

Done.

We note that the match between “exact” cross-validation (removing time points and re-
optimizing) and the IJ was considerably improved by using a high-quality second-order optimiza-
tion method. In particular, for these experiments, we employed the Newton conjugate-gradient
trust region method (Chapter 7.1 of Wright et al [1999]) as implemented by the method trust-ncg

in scipy.optimize, preconditioned by the Cholesky decomposition of an inverse Hessian calcu-
lated at an initial approximate optimum.

We found that first-order or quasi-Newton methods (such as BFGS) often got stuck or termi-
nated at points with fairly large gradients. At such points our method does not apply in theory
nor, we found, very well in practice.

The inverse Hessian used for the preconditioner was with respect to the clustering parameters
only and so could be calculated quickly, in contrast to the H1 matrix used for the IJ, which includes
the regression parameters as well.

First, run with a low tolerance to get a point at which to evaluate an initial preconditioner.

In [24]: gmm.conditioned_obj.reset() # Reset the logging and iteration count.

gmm.conditioned_obj.set_print_every(1)

opt_time = time.time()

gmm_opt, init_x2 = gmm.optimize(init_x, gtol=1e-2)

opt_time = time.time() - opt_time

Iter 0: f = -159.11834165

Iter 1: f = -159.67926278

Iter 2: f = -159.97782885

Iter 3: f = -160.15878320

Iter 4: f = -159.59447036

Iter 5: f = -160.19209687

Iter 6: f = -160.27259154

Iter 7: f = -160.29486553

Iter 8: f = -160.33460656

Iter 9: f = -160.34154288

Iter 10: f = -160.32382096

Iter 11: f = -160.34447865

Iter 12: f = -160.34634639

Iter 13: f = -160.34692896
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Next, set the preconditioner using the square root inverse Hessian at the point init_x2.

In [25]: tic = time.time()

h_cond = gmm.update_preconditioner(init_x2)

opt_time += time.time() - tic

The method optimize_fully repeats this process of optimizing and re-calculating the precon-
ditioner until the optimal point does not change.

In [26]: gmm.conditioned_obj.reset()

tic = time.time()

gmm_opt, gmm_opt_x = gmm.optimize_fully(

init_x2, verbose=True)

opt_time += time.time() - tic

print('Optimization time: {} seconds'.format(opt_time))

Preconditioned iteration 1

Running preconditioned optimization.

Iter 0: f = -160.34692896

Iter 1: f = -160.34694250

Iter 2: f = -160.34694250

Preconditioned iteration 2

Getting Hessian and preconditioner.

Running preconditioned optimization.

Iter 3: f = -160.34694250

Iter 4: f = -160.34694250

Converged.

Optimization time: 8.438910484313965 seconds

paragami patterns allow conversion between unconstrained vectors and dictionaries of pa-
rameter values. After “folding” the optimal gmm_opt_x, opt_gmm_params contains a dictionary of
optimal cluster centroids and cluster probabilities.

In [27]: opt_gmm_params = gmm.gmm_params_pattern.fold(gmm_opt_x, free=True)

print(opt_gmm_params.keys())

print(np.sort(opt_gmm_params['probs']))

odict_keys(['centroids', 'probs'])

[[0.01567608 0.04016882 0.06955236 0.07427946 0.09373695 0.0947442

0.09653288 0.12626624 0.15739176 0.23165127]]

Each gene’s regression line has an inferred cluster membership given by Eq∗
z [zg], and an ex-

pected posterior centroid given by ∑k Eq∗
z [zgk]µk. This expected posterior centroid can be un-

transformed to give a prediction for the observation.
It is the difference between this prediction line — which is a function of the clustering — and

the actual data that we consider to be the “error” of the model.
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In [28]: gmm_pred = mse_utils.get_predictions(gmm, opt_gmm_params, opt_reg_params)

f, axarr = plt.subplots(2, 3, figsize=(15,8))

for i in range(6):

n = gene_indx[i]

this_plot = axarr[int(np.floor(i / 3)), i % 3]

plot_utils_lib.PlotRegressionLine(

timepoints, regs, opt_reg_params, n, this_plot=this_plot)

plot_utils_lib.PlotPredictionLine(

timepoints, regs, gmm_pred, n, this_plot=this_plot)

f.tight_layout()

2.2.4 Calculating H1 for the IJ

We seek to choose the degrees of freedom α for the B-splines using cross-validation. We leave out
one or more timepoints, and fit using only the remaining timepoints. We then estimate the test
error by predicting the value of the genes at the held out timepoints.

To do this, we define time weights wt by observing that, for each g, the term
Eq

[
log P

(
βg, σ2

g |yg

)]
decomposes into a sum over time points:

Freg,g
(
ηg, α, w

)
:= −

nt

∑
t=1

wt

(
−1

2
σ−2

g
(
yg,t −

(
Xβg

)
t

)2 − 1
2

log σ2
g

)
+ Eq

[
log q

(
βg, σ2

g |ηg

)]
.

We naturally define Freg
(
θreg, α, w

)
:= ∑

ng
g=1 Freg,g

(
ηg, α, w

)
.
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By defining θ =
(
θclust, θreg

)
, we then have an M-estimator

G (θ, w, α) :=




∂Freg(θreg,w,α)
∂θreg

∂Fclust(θclust,θreg)
∂θclust


 = 0.

We can then apply the IJ to approximate the leaving out of various timepoints.
Note that what we call the “Hessian” for this two-step procedure is not really a Hessian, as it

is not symmetric. More precisely, it is the Jacobian of G, or what we defined as H1 in the text.
Calculating H1 is the most time-consuming part of the infinitesimal jackknife, since the H1

matrix is quite large (though sparse). However, once H1 is computed, calculating each θI J(w) is
extremely fast.

H1 can be computed in blocks:

H1 =

(
∇2

θreg
Freg 0

∇θreg∇θclust Fclust ∇2
θclust

Fclust

)

The code refers to ∇2
θclust

Fclust as the “GMM Hessian”. It refers to ∇θreg∇θclust Fclust as the “cross
Hessian”. And it refers to ∇2

θreg
Freg as the “regression Hessian”, which itself is block diagonal,

with each block an observation. Due to details of the implementation of block sparse Hessians
using forward mode automatic differnetiation in the class vittles.SparseBlockHessian, the code
below confusingly refers to each regression parameter as a “block”.

When the FitDerivatives class is initialized, it calculates these blocks separately and stacks
them into the attribute full_hess, which is a sparse matrix representing H1.

In [29]: # Even though $H_1$ is not a Hessian, by force of habit we call the time to

# compute it ``hess_time``.

hess_time = time.time()

fit_derivs = sens_lib.FitDerivatives(

opt_gmm_params, opt_reg_params,

gmm.gmm_params_pattern, regs.reg_params_pattern,

gmm=gmm, regs=regs,

print_every=10)

hess_time = time.time() - hess_time

print('Total hessian time: {} seconds'.format(hess_time))

Initializing FitDerivatives.

Getting t Jacobian.

Getting full Hessian.

Getting GMM Hessian...

GMM Hessian time: 2.1917014122009277

Getting cross Hessian...

Cross Hessian time: 34.25235605239868

Getting regression Hessian...

Block index 0 of 66.

Block index 10 of 66.

Block index 20 of 66.

Block index 30 of 66.
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Block index 40 of 66.

Block index 50 of 66.

Block index 60 of 66.

Done differentiating.

Regression Hessian time: 121.74362897872925

Done with full Hessian.

Total hessian time: 169.59288716316223 seconds

2.2.5 Save results as a compressed file.

The results, including H1, are now saved. To calculate the exact CV, these results (including the
preconditioner) will be loaded and the model will be refit with timepoints left out. To calculate
the IJ, the same results will be loaded and H1 will be used to calculate the IJ.

In [30]: extra_metadata = dict()

extra_metadata['opt_time'] = opt_time

extra_metadata['reg_time'] = reg_time

extra_metadata['hess_time'] = hess_time

extra_metadata['df'] = args.df

extra_metadata['degree'] = args.degree

npz_outfile = '../fits/initial_fit.npz'

saving_gmm_utils.save_initial_optimum(

npz_outfile,

gmm=gmm,

regs=regs,

timepoints=timepoints,

fit_derivs=fit_derivs,

extra_metadata=extra_metadata)
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load_and_refit

February 21, 2019

1 Step 2: Refit.

In this notebook, we calculate the parameters used for exact CV by refitting the model initially fit
in step one, the notebook fit_model_and_save.

For expository purposes this notebook calculates the refit for only one weight vector. To com-
pute exact CV, one would perform the corresponding computation for all leave-k-out weight vec-
tors.

In [1]: from copy import deepcopy

import inspect

import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

import sys

import time

np.random.seed(3452453)

import paragami

from aistats2019_ij_paper import regression_mixture_lib as rm_lib

from aistats2019_ij_paper import saving_gmm_utils

from aistats2019_ij_paper import mse_utils

import plot_utils_lib

In [2]: # Load the initial fit.

# This file was produced by the notebook ``fit_model_and_save``.

initial_fit_infile = '../fits/initial_fit.npz'

full_fit, gmm, regs, metadata = \

saving_gmm_utils.load_initial_optimum(initial_fit_infile)

timepoints = metadata['timepoints']

Initializing FitDerivatives.

Using provided t_jac.

Using provided full_hess.
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First, choose some timepoints to leave out.

In [3]: # Simulate passing arguments in on the command line.

class Args():

def __init__(self):

pass

args = Args()

args.num_times = 1

args.which_comb = 1

args.max_num_timepoints = 7

The number of points left out (that is, k) is given by num_times, which is 1. The largest time-
point we leave out is given by max_num_timepoints, which is 7. Because later timepoints are not
affected by the smoothing, there is no reason to leave them out.

There are a certain number of ways to leave k out of 7 timepoints, and which_comb chooses
one of them in the order given by the function itertools.combinations. Of course, when k = 1,
which_comb simply chooses which timepoint to leave out. mse_utils.get_indexed_combination
maps which_comb to particular timepoints in a consistent way.

Full exact CV would run this script for all 7 choose k values of which_comb.
Because we have repeated measurements at each timepoint, leaving out a single timepoint will

correspond to leaving out multiple row of the observation matrix. Those rows are determined
by mse_utils.get_time_weight, which also returns a weight vector setting these observations’
weights to zero.

In [4]: lo_inds = mse_utils.get_indexed_combination(

num_times=args.num_times, which_comb=args.which_comb,

max_num_timepoints=args.max_num_timepoints)

new_time_w, full_lo_inds = mse_utils.get_time_weight(lo_inds, timepoints)

print('Left out timepoint: {}'.format(lo_inds))

print('Left out observations: {}'.format(full_lo_inds))

print('Leave-k-out weights: {}'.format(new_time_w))

Left out timepoint: [1]

Left out observations: [3 4 5]

Leave-k-out weights: [1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1]

We now re-optimize with the new weights.
Note that we could either start the optimization at the initial optimum (a “warm start”) or do

a fresh start from k-means. A fresh start is more time consuming but a more stringent test for the
accuracy of the IJ. We calculate both, but report results from the fresh start in the paper. In the
notebook examine_and_save_results, you can choose to examine either set of results.

Here, for consistency with the paper, we re-initialize with k-means.

In [5]: regs.time_w = deepcopy(new_time_w)

reg_params_w = regs.get_optimal_regression_params()
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gmm.set_regression_params(reg_params_w)

init_gmm_params = \

rm_lib.kmeans_init(gmm.transformed_reg_params,

gmm.num_components, 50)

init_x = gmm.gmm_params_pattern.flatten(init_gmm_params, free=True)

opt_time = time.time()

gmm_opt, init_x2 = gmm.optimize(init_x, gtol=1e-2)

print('\tUpdating preconditioner...')

kl_hess = gmm.update_preconditioner(init_x2)

print('\tRunning preconditioned optimization...')

gmm.conditioned_obj.reset()

reopt, gmm_params_free_w = gmm.optimize_fully(init_x2, verbose=True)

print(gmm_opt.message)

opt_time = time.time() - opt_time

print('Refit time: {} seconds'.format(opt_time))

Iter 0: f = -153.38003431

Iter 1: f = -152.49438715

Iter 2: f = -153.69147895

Iter 3: f = -153.83779915

Iter 4: f = -154.02397812

Iter 5: f = -153.41393391

Iter 6: f = -154.10396420

Iter 7: f = -154.14366282

Iter 8: f = -154.14261201

Iter 9: f = -154.16417745

Iter 10: f = -154.18307547

Iter 11: f = -154.20711481

Iter 12: f = -154.22118064

Iter 13: f = -154.27402715

Iter 14: f = -154.28739474

Iter 15: f = -154.33849929

Iter 16: f = -154.03580241

Iter 17: f = -154.35421130

Iter 18: f = -154.36910489

Iter 19: f = -154.36872458

Iter 20: f = -154.37238982

Iter 21: f = -154.37722095

Iter 22: f = -154.38186985

Iter 23: f = -154.38410992

Updating preconditioner...

Running preconditioned optimization...

Preconditioned iteration 1
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Running preconditioned optimization.

Iter 0: f = -154.38410992

Iter 1: f = -154.38423176

Iter 2: f = -154.38584092

Iter 3: f = -154.21889674

Iter 4: f = -154.42200228

Iter 5: f = -154.39603234

Iter 6: f = -154.39957947

Iter 7: f = -154.41374585

Iter 8: f = -154.43397491

Iter 9: f = -154.43484046

Iter 10: f = -154.43484816

Iter 11: f = -154.43484816

Preconditioned iteration 2

Getting Hessian and preconditioner.

Running preconditioned optimization.

Iter 12: f = -154.43484816

Iter 13: f = -154.43484816

Converged.

Optimization terminated successfully.

Refit time: 14.35115647315979 seconds

We now save the results.

In [6]: gmm_params_w = \

full_fit.comb_params_pattern['mix'].fold(

gmm_params_free_w, free=True)

refit_comb_params = {

'mix': gmm_params_w,

'reg': reg_params_w }

refit_comb_params_free = \

full_fit.comb_params_pattern.flatten(refit_comb_params, free=True)

In [7]: save_filename = \

'../fits/refit__num_times{}__which_comb{}.npz'.format(

args.num_times, args.which_comb)

print('Saving to {}'.format(save_filename))

saving_gmm_utils.save_refit(

outfile=save_filename,

comb_params_free=refit_comb_params_free,

comb_params_pattern=full_fit.comb_params_pattern,

initial_fit_infile=initial_fit_infile,

time_w=new_time_w,

lo_inds=lo_inds,

full_lo_inds=full_lo_inds)

Saving to ../fits/refit__num_times1__which_comb1.npz
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calculate_prediction_errors

February 21, 2019

1 Step 3: Calculate the IJ and prediction errors.

In this notebook, for a single weight vector, we calculate the IJ itself as well as the prediction
errors for exact CV and IJ. This notebook uses the output of the notebooks load_and_refit and
fit_model_and_save.

In [1]: import numpy as np

import paragami

import vittles

import scipy as sp

from scipy import sparse

import time

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

np.random.seed(3452453)

from aistats2019_ij_paper import regression_lib as reg_lib

from aistats2019_ij_paper import sensitivity_lib as sens_lib

from aistats2019_ij_paper import saving_gmm_utils

from aistats2019_ij_paper import mse_utils

import plot_utils_lib

In [2]: # Simulate passing arguments in on the command line.

class Args():

def __init__(self):

pass

args = Args()

args.num_times = 1

args.which_comb = 1

args.max_num_timepoints = 7
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In [3]: ###############################

# Load the original fit.

print('Loading original fit.')

initial_fit_infile = '../fits/initial_fit.npz'

full_fit, gmm, regs, initial_metadata = \

saving_gmm_utils.load_initial_optimum(initial_fit_infile)

opt_comb_params = full_fit.get_comb_params()

Loading original fit.

Initializing FitDerivatives.

Using provided t_jac.

Using provided full_hess.

In [4]: ###############################

# Load the test data

test_regression_infile = '../fits/test_regressions.json'

with open(test_regression_infile) as infile:

regs_test = reg_lib.Regressions.from_json(infile.read())

##########################################

# Load a refit as specfified by ``args``.

refit_filename = \

'../fits/refit__num_times{}__which_comb{}.npz'.format(

args.num_times, args.which_comb)

comb_params_free_refit, comb_params_pattern_refit, refit_metadata = \

saving_gmm_utils.load_refit(refit_filename)

time_w = refit_metadata['time_w']

lo_inds = refit_metadata['lo_inds']

full_lo_inds = refit_metadata['full_lo_inds']

assert(comb_params_pattern_refit == full_fit.comb_params_pattern)

comb_params_refit = comb_params_pattern_refit.fold(

comb_params_free_refit, free=True)

time_w = refit_metadata['time_w']

lo_inds = refit_metadata['lo_inds']

full_lo_inds = refit_metadata['full_lo_inds']

The objects named comb_params refer to both the regression and clustering parameters. The
name free refers to the unconstrained flat value for the parameters as calculated by paragami.

In [5]: print('Regression pattern: ',

comb_params_pattern_refit['reg'])
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print('Clustering pattern: ',

comb_params_pattern_refit['mix'])

Regression pattern: OrderedDict:

[beta_mean] = NumericArrayPattern (700, 10) (lb=-inf, ub=inf)

[beta_info] = PatternArray (700,) of PDMatrix 10x10 (diag_lb = 0.0)

[y_info] = NumericArrayPattern (700,) (lb=0.0, ub=inf)

Clustering pattern: OrderedDict:

[centroids] = NumericArrayPattern (10, 9) (lb=-inf, ub=inf)

[probs] = SimplexArrayPattern (1,) of 10-d simplices

1.0.1 Calculate the infinitesimal jackknife.

The vittles package makes it easy to calculate linear approximations to the sensitiv-
ity of M-estimators to hyperparameters, of which the IJ is a special case. Here, the
HyperparameterSensitivityLinearApproximation uses the sparse value of H1 calculated earlier.

Note that H1 is factorized during the initialization of weight_sens, and that it takes relatively
little time.

In [6]: # Note that if you don't cast the jacobian to a numpy array from

# a numpy matrix, the output is a 2d-array, causing confusion later.

weight_sens = vittles.HyperparameterSensitivityLinearApproximation(

objective_fun=lambda: 0,

opt_par_value=full_fit.comb_params_free,

hyper_par_value=regs.time_w,

hessian_at_opt=sp.sparse.csc_matrix(full_fit.full_hess),

cross_hess_at_opt=np.array(full_fit.t_jac.todense()))

We now use the weight_sens object to approximate the “free” value of the combined param-
eters at time_w. The IJ operates in unconstrained space, so we use paragami to fold the uncon-
strained vector back into a dictionary of parameters.

In [7]: # Get the infinitesimal jackknife for the refit weight vector.

lr_time = time.time()

comb_params_free_lin = \

weight_sens.predict_opt_par_from_hyper_par(time_w)

lr_time = time.time() - lr_time

print('Infinitesimal jackknife time: {}'.format(lr_time))

comb_params_lin = full_fit.comb_params_pattern.fold(comb_params_free_lin, free=True)

Infinitesimal jackknife time: 0.0011603832244873047

1.0.2 Calculate various prediction errors.

Recall that the prediction error is the difference between the data and the posterior expected clus-
ter centroid for a particular gene. Let us consider the original optimal clustering parameters,
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opt_comb_params['mix']. To get the test set error on gene g for these parameters, we need to do
the following steps:

1. Run the regression for gene g in the test set
2. Classify the regression, calculating Eq∗

z [zg]. This is a function of the clustering parameters
and the regression line for gene g.

3. Calculate the expected posterior cluster centroid for gene g, which is µ∗
g = ∑k Eq∗

z [zgk]µk.
4. Because the transformation discards the mean information, compare the de-meaned data to

the estimated centroid: errorgt =
(

ygt − 1
T ∑T

t′=1 ygt′
)

− µ∗
gt.

Note that step one could re-run the regression either with the original weights or the new
weights. We found that this decision does not matter qualitatively. Here and in the paper, we
simply classify the original regression, but the notebook examine_and_save_results can produce
results for oth the original and re-weighted regressions.

We will examine prediction error on the time points that are left out, that is, for observations
in full_lo_inds.

In [8]: print('Calculating prediction error.')

# Get the training set error on the full data.

train_error = mse_utils.get_lo_err_folded(

opt_comb_params,

keep_inds=full_lo_inds,

mse_regs=regs,

mse_reg_params=opt_comb_params['reg'],

gmm=gmm)

############

# Original fit.

# Get the optimal test set regressions.

reg_params_test = regs_test.get_optimal_regression_params()

# Get the test error for the original fit.

orig_test_error = mse_utils.get_lo_err_folded(

opt_comb_params,

keep_inds=full_lo_inds,

mse_regs=regs_test,

mse_reg_params=reg_params_test,

gmm=gmm)

orig_pred = mse_utils.get_predictions(

gmm, opt_comb_params['mix'], reg_params_test)

# Get the test error for the CV refit.

cv_error = mse_utils.get_lo_err_folded(

comb_params_refit,

keep_inds=full_lo_inds,
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mse_regs=regs_test,

mse_reg_params=reg_params_test,

gmm=gmm)

cv_pred = mse_utils.get_predictions(

gmm, comb_params_refit['mix'], reg_params_test)

# Get the test error for the IJ approximation.

ij_error = mse_utils.get_lo_err_folded(

comb_params_lin,

keep_inds=full_lo_inds,

mse_regs=regs_test,

mse_reg_params=reg_params_test,

gmm=gmm)

ij_pred = mse_utils.get_predictions(

gmm, comb_params_lin['mix'], reg_params_test)

Calculating prediction error.

1.0.3 Selected results.

We now make a cursory comparison of the results. For a more detailed analysis, including the
results that went into the paper, see the notebook examine_and_save_results.

In [9]: cv_excess_error = cv_error - orig_test_error

ij_excess_error = ij_error - orig_test_error

def GetColDf(col):

return pd.DataFrame(

{'cv_error': cv_error[:, col],

'cv_excess': cv_excess_error[:, col],

'ij_error': ij_error[:, col],

'ij_excess': ij_excess_error[:, col],

'col': col})

result = pd.concat([ GetColDf(col) for col in range(len(full_lo_inds)) ])

If we simply look at the point-by-point error, CV and IJ are highly correlated.

In [10]: sns.jointplot(x='cv_error', y='ij_error', data=result);
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However, this is because the error in each point is dominated by the error at the original op-
timum. To meaningfully compare the IJ to CV, we should compare the difference between the
IJ and CV error and the error at the original optimum. The distribution of these “difference-in-
difference” errors is shown in the next plot.

Some clear outliers can be seen. However, note that, in this case, overplotting makes IJ looks
worse than it is – in the histograms you can see that most differences are very small.

In [11]: sns.jointplot(x='cv_excess', y='ij_excess', data=result);
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As you might expect from a linear approximation, the IJ does the worst when the predicted
change for CV is large.

In [12]: misfit = np.max(np.abs(cv_excess_error - ij_excess_error), axis=1)

abs_cv_excess_error = np.max(np.abs(cv_excess_error), axis=1)

sns.jointplot(abs_cv_excess_error, misfit)

Out[12]: <seaborn.axisgrid.JointGrid at 0x7f3f74fe1908>
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Finally, we visualize some of the genes where IJ badly misestimates the CV error. Clearly,
in these cases, re-fitting with the left-out points (shown with large dots) produced large changes
that the IJ did not capture. In general, it appears that the IJ errs relative to CV by not moving far
enough from the original optimum.

Despite the poor fit on these extreme genes, we stress that most genes exhibited small
changes in both CV and IJ. For these genes, IJ performs well enough to capture salient aspects
of the estimated out-of-sample error. For more detailed analysis of this point, see the notebook
examine_and_save_results.

In [13]: timepoints = initial_metadata['timepoints']

timepoints_stretch = np.sqrt(timepoints)

def PlotGenePredictions(gene_ind):

_, figs = plt.subplots(1, 3, figsize=(15,6))
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for i in range(3):

np.random.seed(42)

plot_utils_lib.PlotRegressionLine(

timepoints_stretch, regs_test, reg_params_test, gene_ind, this_plot=figs[i])

figs[i].plot(timepoints_stretch[full_lo_inds],

regs_test.y[gene_ind, full_lo_inds], 'o', markersize=10)

plot_utils_lib.PlotPredictionLine(

timepoints_stretch, regs_test, orig_pred, gene_ind, this_plot=figs[0])

figs[0].set_title('Gene {} original fit'.format(gene_ind))

plot_utils_lib.PlotPredictionLine(

timepoints_stretch, regs_test, ij_pred, gene_ind, this_plot=figs[1])

figs[1].set_title('Gene {} IJ fit'.format(gene_ind))

plot_utils_lib.PlotPredictionLine(

timepoints_stretch, regs_test, cv_pred, gene_ind, this_plot=figs[2])

figs[2].set_title('Gene {} CV fit'.format(gene_ind))

In [14]: worst_fits = np.argsort(-1 * misfit)

for gene in worst_fits[0:5]:

PlotGenePredictions(gene)
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examine_and_save_results

February 21, 2019

1 Detailed analysis of results.

This notebook loads the output of the scripts in the directory cluster_scripts (particularly, the
final script, run_slurm_pred_error.py). It produces the Rdata file that is used for the graphs in
the paper as well as a number of supplemental analyses.

In [1]: library(tidyverse)

library(gridExtra)

library(repr) # For setting plot sizes

source("load_python_data_lib.R")

py_main <- InitializePython()

Attaching packages tidyverse 1.2.1

ggplot2 3.1.0 purrr 0.2.5

tibble 1.4.2 dplyr 0.7.8

tidyr 0.8.1 stringr 1.3.1

readr 1.1.1 forcats 0.3.0

Conflicts tidyverse_conflicts()

dplyr::filter() masks stats::filter()

dplyr::lag() masks stats::lag()

Attaching package: gridExtra

The following object is masked from package:dplyr:

combine

Attaching package: reshape2

The following object is masked from package:tidyr:

smiths

In [2]: # Choose the initialization method.

init_method <- "kmeans" # This is the choice for the paper.
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#init_method <- "warm"

# Choose whether or not to re-run the regressions before calculating test error.

use_rereg <- FALSE # This is the choice for the paper.

#use_rereg <- TRUE

# This is the file that is used in the paper's knitr.

save_dir <- "../../fits"

save_filename <- sprintf("paper_results_init_%s_rereg_%s.Rdata", init_method, use_rereg)

1.0.1 Load the saved data for all dfs and k

In [3]: dfs <- list()

metadata_dfs <- list()

for (lo_num_times in 1:3) {

cat("lo_num_times ", lo_num_times)

for (df in 4:8) {

cat(".")

load_res <- LoadPredictionError(df, lo_num_times, init_method)

this_refit_err_df <- load_res$refit_err_df

this_metadata_df <- load_res$metadata_df

this_refit_err_melt <- MeltErrorColumns(this_refit_err_df)

dfs[[length(dfs) + 1]] <- this_refit_err_melt

metadata_dfs[[length(metadata_dfs) + 1]] <- this_metadata_df

}

cat("\n")

}

cat("Done.\n")

refit_err_melt <- do.call(bind_rows, dfs)

metadata_df <- do.call(bind_rows, metadata_dfs)

lo_num_times 1...

lo_num_times 2...

lo_num_times 3...

Done.

1.0.2 Metadata (timing, parameter dimensions)

Make a tidy dataframe with the metadata. The parameter length, Hessian time, and initial op-
timization time are all reported in the text of the paper. Their values will be derived from this
dataframe in knitr.

In [4]: metadata_df <-

metadata_df %>%

mutate(lr_hess_time=total_lr_time + initial_hess_time,

avg_lr_time=total_lr_time / num_comb,

avg_refit_time=total_refit_time / num_comb,
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param_length=gmm_param_length + reg_param_length)

print(names(metadata_df))

select(metadata_df, df, param_length) %>%

group_by(df) %>%

summarize(param_length=unique(param_length))

select(metadata_df, df, initial_hess_time, initial_opt_time) %>%

group_by(df) %>%

summarize(initial_hess_time=median(initial_hess_time),

initial_opt_time=median(initial_opt_time))

round(median(metadata_df$initial_opt_time), digits=-1)

[1] "num_comb" "total_lr_time" "total_refit_time"

[4] "initial_opt_time" "initial_reg_time" "initial_hess_time"

[7] "gmm_param_length" "reg_param_length" "df"

[10] "lo_num_times" "init_method" "lr_hess_time"

[13] "avg_lr_time" "avg_refit_time" "param_length"

df param_length
4 25325
5 31643
6 38661
7 46379
8 54797

df initial_hess_time initial_opt_time
4 275.7295 31.44656
5 295.0325 41.84182
6 359.6855 35.11145
7 478.7345 50.88843
8 584.4987 77.02919

40
Make a dataframe for the timing plot from the metadata.

In [5]: metadata_graph_df <-

metadata_df %>%

select(df, lo_num_times, total_refit_time, lr_hess_time, initial_opt_time) %>%

melt(id.vars=c("lo_num_times", "df"))

head(metadata_graph_df)

lo_num_times df variable value
1 4 total_refit_time 338.1638
1 5 total_refit_time 391.6006
1 6 total_refit_time 423.8322
1 7 total_refit_time 632.2635
1 8 total_refit_time 599.0894
2 4 total_refit_time 1123.7316
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In [6]: ggplot(metadata_graph_df) +

geom_bar(aes(x=lo_num_times, y=value, fill=variable, group=variable),

stat="identity", position=position_dodge()) +

facet_grid( ~ df)

1.0.3 Calculate prediction errors

Make summaries of prediction error for various methods and datasets.

In [7]: # In-sample IJ error.

lr_df <-

refit_err_melt %>%

filter(rereg==use_rereg, method=="lin", test==FALSE, measure=="err") %>%
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rename(error=value) %>%

mutate(output="lin_in_sample")

# In-sample CV error.

cv_df <-

refit_err_melt %>%

filter(rereg==use_rereg, method=="ref", test==FALSE, measure=="err") %>%

rename(error=value) %>%

mutate(output="cv_in_sample")

# In-sample training error (no points left out).

train_df <-

refit_err_melt %>%

filter(rereg==use_rereg, method=="ref", test==FALSE, measure=="train_err") %>%

rename(error=value) %>%

mutate(output="train_error")

# Out-of-sample test error.

test_df <-

refit_err_melt %>%

filter(rereg==use_rereg, method=="ref", test==TRUE, measure=="train_err") %>%

rename(error=value) %>%

mutate(output="test_error")

refit_for_df_choice <- bind_rows(

lr_df, cv_df, test_df, train_df)

In [8]: head(refit_for_df_choice)

test method comb rereg gene df lo_num_times time measure error output
FALSE lin 0 FALSE 0 4 1 0 err 1.0088933 lin_in_sample
FALSE lin 0 FALSE 1 4 1 0 err 0.1243607 lin_in_sample
FALSE lin 0 FALSE 2 4 1 0 err -0.4340983 lin_in_sample
FALSE lin 0 FALSE 3 4 1 0 err -0.2203431 lin_in_sample
FALSE lin 0 FALSE 4 4 1 0 err 1.9032786 lin_in_sample
FALSE lin 0 FALSE 5 4 1 0 err -0.2876837 lin_in_sample

Make a tidy dataframe for choosing df. The graph in the paper will be based on this dataframe.
Note that most of the signal for choosing df is already in the training data error. However,

there is an uptick in error in both CV and IJ for df=8 which is not captured by the training data
error.

In [9]: refit_err_summary <-

refit_for_df_choice %>%

group_by(output, df, lo_num_times) %>%

mutate(esize=abs(error)) %>%

summarize(med=median(esize),

mean=mean(esize),

n_obs=n(),

se=sd(esize) / sqrt(n_obs),

5

69



qlow=quantile(esize, 0.25),

qhigh=quantile(esize, 0.75))

ggplot(refit_err_summary) +

geom_line(aes(x=df, y=mean, group=output, color=output)) +

geom_errorbar(aes(x=df, ymin=mean - 2 * se, ymax=mean + 2 * se,

group=output, color=output)) +

facet_grid(~ lo_num_times) +

ggtitle(sprintf("%d times left out", lo_num_times))

1.0.4 Gene-by-gene accuracy measures.

In [10]: refit_err_plot <-

refit_err_melt %>%
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filter(rereg==use_rereg) %>%

dcast(df + lo_num_times + test + comb + rereg + gene + time ~ method + measure,

value.var=c("value"))

We now look at the correlation between the CV and IJ prediction errors across genes. For each
df and k, there are a number of different combinations of left-out points. We report the median,
min, and max correlation coefficients across these combinations of left-out points.

First, we show the correlation between the raw prediction errors. Although the correlation
is quite high, this is because the training error at the original optimum is the principle source of
variation in the errors across genes, and this quantity is common to both CV and IJ.

In [11]: err_corr <- refit_err_plot %>%

filter(test==FALSE, rereg==use_rereg) %>%

group_by(df, lo_num_times, comb) %>%

summarize(r=cor(lin_err, ref_err)) %>%

group_by(df, lo_num_times) %>%

summarize(med_r=median(r), min_r=min(r), max_r=max(r))

print("Correlation between error: ")

print(err_corr)

[1] "Correlation between error: "

# A tibble: 15 x 5

# Groups: df [?]

df lo_num_times med_r min_r max_r

<int> <int> <dbl> <dbl> <dbl>

1 4 1 0.974 0.949 0.984

2 4 2 0.975 0.902 0.992

3 4 3 0.967 0.871 0.991

4 5 1 0.963 0.856 0.983

5 5 2 0.966 0.860 0.984

6 5 3 0.947 0.759 0.981

7 6 1 0.980 0.807 0.985

8 6 2 0.968 0.835 0.986

9 6 3 0.929 0.759 0.983

10 7 1 0.962 0.794 0.974

11 7 2 0.952 0.737 0.976

12 7 3 0.914 0.599 0.974

13 8 1 0.962 0.703 0.971

14 8 2 0.941 0.663 0.974

15 8 3 0.829 0.251 0.958

A more meaningful measure is the correlation in the excess error for IJ and CV over the error
at the original fit.

In [12]: diff_corr <- refit_err_plot %>%

filter(test==FALSE, rereg==use_rereg) %>%

group_by(df, lo_num_times, comb) %>%
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summarize(r=cor(lin_e_diff, ref_e_diff)) %>%

group_by(df, lo_num_times) %>%

summarize(med_r=median(r), min_r=min(r), max_r=max(r))

print("Correlation between difference from train error: ")

print(diff_corr)

[1] "Correlation between difference from train error: "

# A tibble: 15 x 5

# Groups: df [?]

df lo_num_times med_r min_r max_r

<int> <int> <dbl> <dbl> <dbl>

1 4 1 0.483 0.0956 0.844

2 4 2 0.577 0.277 0.828

3 4 3 0.605 0.303 0.833

4 5 1 0.464 0.143 0.728

5 5 2 0.510 0.330 0.709

6 5 3 0.510 0.312 0.671

7 6 1 0.655 0.368 0.783

8 6 2 0.588 0.218 0.845

9 6 3 0.499 0.0701 0.737

10 7 1 0.660 0.512 0.760

11 7 2 0.564 0.224 0.863

12 7 3 0.491 0.0344 0.801

13 8 1 0.744 0.380 0.900

14 8 2 0.646 0.166 0.862

15 8 3 0.214 -0.226 0.767

For higher degrees of freedom, increasing the number of left-out points seems to decrease the
IJ’s accuracy, as you might expect.

In [13]: ggplot(diff_corr) +

geom_bar(aes(x=paste(df, lo_num_times, sep=","),

y=med_r, fill=as.character(df)), stat="identity")
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Plot the densities of the IJ and CV with points to show outliers. This is a graphical version of
the results summarized by the correlation tables above.

In [14]: # There are a few outliers, so limit the extent of the plot so that

# the bulk of the distribution is visible.

qlim <- quantile(refit_err_plot$ref_e_diff, c(0.1, 0.9))

options(repr.plot.width=4, repr.plot.height=20)

# This plot, or ones like it, is probably the best measure of

# the accuracy of the IJ.

ggplot(filter(refit_err_plot, test == FALSE, lo_num_times==1)) +

geom_point(aes(x=ref_e_diff, y=lin_e_diff), alpha=0.01) +

geom_density2d(aes(x=ref_e_diff, y=lin_e_diff)) +
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geom_abline(aes(slope=1, intercept=0)) +

facet_grid(df ~ rereg) +

xlim(qlim[1], qlim[2]) + ylim(qlim[1], qlim[2])

Warning message:

Removed 10770 rows containing non-finite values (stat_density2d).Warning message:

Removed 10770 rows containing missing values (geom_point).
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1.0.5 Save results for plotting in the paper.

In [15]: print(sprintf("Saving to %s", file.path(save_dir, save_filename)))

save(refit_err_summary,

metadata_df,

diff_corr,

err_corr,

file=file.path(save_dir, save_filename))

[1] "Saving to ../../fits/paper_results_init_kmeans_rereg_FALSE.Rdata"
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