
Providing Intrinsic Support for User Interface Monitoring
4 .

Jolly Chen
B.S., Massachusetts Institute of Technology (1989)

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Science in Electrical Engineering and Computer Science

at tha

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1990

© Jolly Chen, 1990

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature redacted
Signature of Author fmt _

Department of Electri¢gal Engineering and Computer Science
4 May 11, 1990

. ’ zl -

Signature redacted
Certified bys \wpury ~- sepeng _

Robert W. Scheifler
Principal Rosedesh Associate, Laboratory of Computer Science

Thesis Supervisor

Signature redacted
Certified by___ — Le oe _

David Pollock
po rr. LL _—Proje¢t Manager, Hewlett-Packard

Signature redacted tei
Accepted by____ “TC =

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 10 1930
LIBRARIES

ARKIVE ~

SV

3 .

vile

Providing Intrinsic Support for User Interface Monitoring
1

Jolly Chen

Submitted to the Department of Electrical Engineering and Computer Science
on May 11, 1990, in partial fulfillment of the

requirements for the degrees of

Master of Science in Electrical Engineering and Computer Science

Abstract

Sophisticated graphical user interfaces are both difficult and time consuming to create. Re-
searchers now believe that user interfaces must be designed iteratively. Iterative design
involves constructing prototypes of user interfaces, evaluating those prototypes, and iter-
ating the process until an acceptable interface is reached. Evaluation of user interfaces
requires effective means of recording and analyzing human-computer interactions.

This thesis examines how monitoring mechanisms can be added to user interface archi-
tectures to provide intrinsic support for recording human-computer dialogue. The key to
this approachis inspection of the communication channels within an interactive program.
Dialogue information recorded by intrinsic monitoring differs from dialogue data obtained
from low level input capture and high level application-specific recording schemes. Intrinsic
monitoring is shown to be useful for answering many of the questions that arise in the
evaluation of a user interface. The use of a built-in monitoring mechanism also allows an
interactive program to be monitored without modifying application source code.

The Xt Intrinsics of the X Window System was modified as a sample implementation
of this monitoring approach. In addition, a tool was developed to analyze the recorded
dialogue data.

Thesis Supervisor: Robert W. Scheifler
Title: Principal Research Associate. Laboratory of Computer Science

Thesis Supervisor: David Pollock
Title: Project Manager, Hewlett-Packard

J

2

Acknowledgments

I would like to express my thanks to my advisor Bob Scheifler for his guidance and patience

in reading over drafts of this thesis. I am also grateful to Dave Pollock, my advisor at HP, for

his support of myefforts, especially his willingness to let me pursue my research interests

during my co-op assignment at HP. I would also like to express my thanks to Howard

Sumner, John Marold, Frank Richichi, and other members of the Clinical Information

Systems team at HP for their help and friendly support over the years. I wish also to thank

Chris Peterson, Donna Converse, and Ralph Swick for the feedback they gave me during

the formulation of my topic and for answering many of my questions about X. I would like

to thank Dave Duis and Judy Chen for their humor and wit throughout this whole ordeal.

(Isn’t it amazing we actually finished?)

In addition, I wish to thank my family and friends for their steadfast love and encour-

agement. I am thankful most of all for the love and grace of my Lord Jesus Christ and for

His gentle reminders of the things eternal and the futility of things temporal.

11

Contents

1 Overview

Introduction

2.1 Problem: building good user interfaces . . nt !

2.2 Structural model of user interfaces SR 5

2.3 Iterative design . . . Sm mim pee 7

2.4 An evaluation example R

2.5 The focus of this thesis . NL Af]

2.6 Related work : Er TE

2.6.1 Specification of user interfaces Ae 13

2.6.2 User interface monitoring tools 12

. Dialogue recording 15

3.1 Incidents. . o- 15

3.2 Questions to be answered —. 2

3.3 Need for intrinsic monitoring 16

. Instrumenting the architecture 18

4.1 Architectural requirements . eS

4.1.1 Separation of user interface and application . bor Te AR

4.1.2 Accessible communication channels . a

4.1.3 Identification of incidents . . . nla 20

4.2 Implementation requirements . . SA

4.3 Providing intrinsic monitoring . . =. 21

5 Implementation

|

Holt Intrinsics. : . or

5.2 A modified Xt Intrinsics . . Lima

5.3 Analysis tool . . 30

6 Example of use — Xmh 32

6.1 Instrumenting Xmh : 32

6.2 Reasoning about the interface . . 52

* Conclusions 35

7.1 Contributions . Tr 35

7.2 Limitations and future work . . 35

J"

® ®

List of Figures

2-1 A simple model of an interactive program . . : Ee 5

2-2 Logical model of a user interface . RS NE Wa 6

2-3 xmh user interface . EE Wp {

2-4 Targets of user interface recording FER. wT 10

5-1 The software structure of Xt Intrinsics-based applications 23

5-2 The logical structure of Xt-based user interfaces . SE SIC ae a LE

5-3 Analvsis tool interface . Co . 31

Chapter 1

.Overview

The goal of this thesis is to demonstrate that user interfaces can be effectively monitored

by adding appropriately designed recording mechanisms to the underlying software archi-

tecture. The thesis shows how dialogue data recorded by intrinsic monitoring mechanisms

help answer many of the questions a human evaluator asks when assessing an interface. The

main emphasis of this research is to suggest a new strategy by which dialogue information

can be collected. The work does not attempt to address all the issues surrounding how well

a user interface realizes a particular user model.

The motivation for this new monitoring strategy is the inadequacy of current moni-

toring approaches. Current monitoring schemes record dialogue information at one of two

extremes: low level input capture or high level application-specific recording. Low level

input capture yields information that is not at a high enough level to be useful in reasoning

about the user interface. Application-specific recording forces the application programmer

to carry the burden of adding hooks for instrumentation. In addition, monitoring mecha-

nisms placed outside of the user interface code cannot see interactions that do not reach

the application code.

These shortcomings can be overcome by an intrinsic monitoring mechanism. Something

that is intrinsic is inherent or built-in. In this case, the approach is to make the monitor-

ing mechanism an inherent part of the user interface architecture. In this work, the term

architecture refers broadly to the software framework on top of which the user interface is

constructed. Such an architecture includes mechanisms by which interaction objects can

be constructed and mechanisms by which interaction objects and application objects can

communicate. The architecture does not include the underlying windowing system or var-

ious libraries of specific interaction objects. The user interface architecture is the prime

location for placing monitoring mechanisms because it has access to interobject communi-

cation. If the monitoring mechanism resides in the architecture, it is transparent to both

specific interaction objects as well as the application.

The key to providing intrinsic monitoring is examining the communication channels

between the application objects and the interaction objects. The information communicated

at this level does not capture the full semantic intent of the user but it does offer a higher

level view of the user’s action than that which can seen from low level event recording. It

allows the user interface evaluator to analyze and reason about the interface in ways that

were not previously possible. For example, instead of knowing only that the mouse button

was pressed at location (100,300), the evaluator would rather know that the second item on

the menu was selected. If a user interface architecture satisfies certain requirements. then

this monitoring mechanism can be easily added.

A sample implementation of an intrinsic monitoring mechanism and a tool to analyze the

dialogue data show the merits of this approach. The tools are designed to help user interface

designers profile and reason about the user interface. In [12], Hartson and Hix pointed out

the increasingly important role of the dialogue designer. Knowledge of both human factors

and computer science is needed to construct effective user interfaces. Similar expertise is

necessary in order to evaluate a user interface. Although the role of the user interface

designer should be more clearly defined, in practice, the task is shared by implementors of

the interaction objects and implementors of the application objects. Thus, the monitoring

tools will be used by builders of interaction abstractions as well as application programmers.

The monitoring mechanism and analysis tool were implemented within the framework of

the Xt Intrinsics on top of the X WindowSystem ! Version 11 Release 4. The Xt Intrinsics

is an example of a user interface architecture that can be enhanced to provide built-in

monitoring. (The proper noun Intrinsics, referring to the Xt Intrinsics, should not to be

confused with the word intrinsic, used throughout this document to mean “built-in”.) Xmbh,

a mail handler interface, was used as a sample application for evaluating this monitoring

approach.
Chapter 2 discusses the problem of building user interfaces and presents a structural

'X Window System is a trademark of the Massachusetts Institute of Technology

model for user interfaces. Chapter 3 lists some questions that an interface designer might

ask when evaluating an interface and explains why intrinsic monitoring is necessary in

order to answer those questions. Chapter 4 describes the architectural and implementation

requirements that must be met in order to provide intrinsic monitoring support. Chapter

5 describes the modified Xt Intrinsics as a sample implementation. Chapter 6 shows how

data gathered from intrinsic monitoring can be used to evaluate the Xmh user interface.

Chapter 7 summarizes this work and points out some limitations and directions for further

research.

2

Chapter 2

°Introduction

2.1 Problem: building good user interfaces

As computing power continues to increase rapidly, the usefulness of computers will be mea-

sured not only by their ability to compute but also by their ability to interact with human

users. Whereas in the past, users typically interacted with computers through textual in-

terfaces on character-based terminals, today’s users have at their disposal economical and

powerful microcomputers and workstations that support high resolution graphical displays.

More powerful CPU’s, cheaper memory, and more sophisticated display hardware have con-

tributed to high expectations for user interfaces. Today’s interactive programs are expected

to provide powerful yet easy to use, “user-friendly” graphical interfaces. These user inter-

faces must often support output devices that can display numerous pixels in a variety of

colors and auxiliary input pointer devices such as mice and trackballs.

In general, user interfaces are both time-consuming and difficult to create; graphical

ones are even more so. In [6], Cardelli gives three broad reasons for this. First of all. the

appearance of an interface must be satisfactory. The size and type of font, the set of

colors, the layout of the graphical objects on the screen, etc. are all important concerns in

building an interface. These issues cannot be easily resolved in paper designs. Secondly, the

user interface must be functionally smooth; the user interface must have a proper “look

and feel.” The kinds of menus employed, the ways that dialog boxes pop up and down,

the availability of keyboard accelerators, etc. make up the feel of the interface. Users are

attracted to programs with a familiar user interface feel because they are easier to navigate.

Thirdly, there is a heavy programming burden involved in creating user interfaces. The

external internal
deer oo mp User og, —& Application

dialogue ogists dialogue

Figure 2-1: A simple model of an interactive program

interface designer must be familiar with the details of the underlying graphical system.

Frequently, the user interface must handle asynchronous events from a number of input

devices. In addition, user interfaces typically must meet performance requirements in order

to maintain an acceptable degree of system responsiveness.

The user interface can account for a substantial fraction of the total code size of the

interactive application. In some artificial intelligence applications, 40 to 50 percent of the

code and runtime memory is devoted to the interface[4]. The interface code is often complex

and cumbersome. In manycases, tight coupling of user interface code and application code

results in interactive programs that are hard to debug and modify. Traditional approaches

to software design are inadequate in addressing the difficulties specific to the development

of interactive programs. Only recently have some methods, techniques and tools been

developed to support construction of complex user interfaces.

2.2 Structural model of user interfaces

A structural model is an abstract description of the logical structure of a user interface.

The user interface is one piece of the overall interactive program. A simple model of an

interactive program is show in Figure 2-1.

This model is fundamental in that it partitions the interactive program into two com-

ponents: application and user interface. The user interface is the software and hardware

that supports human-computer dialogue. It includes graphical displays, keyboards, pointer

devices as well as windowing systems and window managers. In this work, however, the

Loci

r

; application

- presentation — control [+1 interface foto application
user interface oo

Figure 2-2: Logical model of a user interface

focus is on the software aspects of user interface. Therefore, the external dialogue can be

considered communication between the input/output hardware and the user interface soft-

ware. The application component manages data and performs computations. The internal

dialogue is the communication between the user interface and the application.

This model can be refined by examining each of its components. The user can be

described abstractly by a task model. A user has a number of tasks he wishes to accomplish.

These tasks involve entities that the user is familiar with and may be divided into subtasks.

An example of a task is checking one’s mail. This task can be broken down into the subtasks

of looking in one’s mailbox and opening each piece of mail that is there. The task model

corresponds to the conceptual layer in the linguistic model[8, 23, 31]. The application

component can be described by a model of objects and operations. These objects and

operations correspond to data and procedures that the user interface can access. The

application ob jects and operations are usually designed by the programmer to be similar to

tasks that the user wishes to accomplish. For example, the objects in a mail handler program

are mailboxes, messages, addresses, etc. A mailbox object could have operations such as

open and close. A message object supports operations such as read, send, and forward.

In this way, the subtask of reading a piece of mail corresponds to the read operation of a

message ob ject.

The logical model of a user interface that is similar to the Seeheim model[26] is shown in

Figure 2-2. The presentation component is the “look” of the interface. It is responsible for

reading the input devices and generating the proper output responses on the screen. The

LISel

presentation component processes input from the user into meaningful units called tokens.

Dialog boxes, command buttons, and menus are some examples of presentation objects. The

control component determines the “feel” of the user interface. It receives tokens from the

presentation component and sends commands to the application interface. Commands map

to objects and procedures in the application interface. The application interface specifies

how the control component can interact with the application. This user interface model is

quite general and can be represented by a variety of different notations.

Although the division into three logical components seems justified, researchers disagree

as to how closely those components should be connected. Interaction objects can remain

strictly in the presentation component or they can handle presentation as well as control.

The control component can bypass the application and send responses directly to the pre-

sentation to efficiently provide certain kinds of feedback. On the other hand, the control

component and the application interface sometimes need to be tightly linked. The ad-

vantages of maintaining a strict logical separation are modularity and modifiability. Some

forms of feedback, however, may require application information to be shared across all

components.

2.3 Iterative design

Researchers now believe that quality user interfaces can only be constructed by using an

iterative design strategy[5]. An effective user interface cannot be produced after a single

design pass; there are often subtle design flaws that cannot be detected without the use of

prototypes. Iterative design involves constructing prototypes, evaluating those prototypes,

and then modifying the design based on the evaluation. The process is repeated until an

acceptable user interface is reached.

Tools are now becoming available that enable the interface designer to rapidly construct

prototypes; however, few automated tools exist that help the designer evaluate those user

interface prototypes. Evaluation of a user interface involves recording dialogue information

and using that information to make design changes. An evaluation tool must efficiently

record useful dialogue data and allow the designer to analyze the user interface based on

that data. Current tools predominantly monitor dialogue at too low a level. As a result, the

burden of adding instrumentation to monitor human-computer dialogue is usually placed

Folder) (Table of Contents) (Message) (Sequence) (View) (Cptions)
Compose Message |

: = View Next Message —&-
7 ’ 5‘arne) (Ep-Archive) (4 view Previous

== —

Belete
- pT ET Tr

. 01/12 kit@expo. lcs. Move installed fcsh in fusc/local
© 02/08 JimBexpo. lcs. Copy put if into /frfelientsflister
© 02/21 kitBexpo.les. ; sal. <{Here is the first cut

> Urdfark] . a

; 03/01 converse@expo jeliversion svsilability —-~=
-03/06 johnsGhpwarf.' View In New | email address<<> John, > >
03/08 jim@expo. los. {Reply te rebuilt twm on our machine
B3/12 johnsBhpwarf.l pe. uard | emall address<<> > > The fo
P3/15 jimeexpo. les. | shia e to keep saber polite<<Tire

101 03/19 maryg@crl. dec US€ as Composition 4ge Research Lab Seminar Ser
11 03/20 swick@athena. {Print debate: XtClass & XtParent<<
1 03/20 rwsBexpo. lcs. WIT. €: help settle a debate: XtClass & XtPare
1.0 03/20 kat@expo.lcs. mit. Re: help settle a debate: XtClass & XtPar-

(Inc) (comp) (Reply) (Next) (Prev) (Delete)
A == a SEES

inbox: 3
cs Ee oo eo

-From: kit@expo. lcs. mit. edu (Chris D. Peterson)
Message-Id: <9002212156. Aa02503@expo. lcs. mit. edu
To: us

Subject: Resource Proposal.
Date: Wed, 21 Feb 90 16:56:35 -0500

Here 1s the first cut at the new resource manager proposal. If you can
take a look at it and send me comments I would be most appreciative

Proposal for a Consortium working group to examine and
update the current semantics of the X Resource Manager

Figure 2-3: xmh user interface

on the application programmer. Furthermore, current recording methods do not capture

all the right kinds of information. The evaluator usually does not have enough quantitative

data to measure the effectiveness of a user interface.

2.4 An evaluation example

Consider the mail handler interface in Figure 2-3. This particular user interface provides

a number of different ways to accomplish the same task. For instance, to view the next

mail message, the user may 1) click on the command button labeled Next with any mouse

button, 2) click on the appropriate message in the list of message headers with the middle

“hrs

button, 3) chose the View Next Message option from the Message menu, or 4) use Meta-

space as a keyboard accelerator. A question that an interface designer may ask is: which

of the four ways to view the next mail message does the user use most? He may wish to

get a breakdown of percentage of use of each of the four ways. This is the an example of a

question that cannot be answered from quantitative data gathered with current recording

tools. With a low level capture tool, he could record every single pointer movement and

buttonpress. Information at that level of detail, however, is not sufficient to determine when

the user intended to perform a view next message operation. An alternative would be to

add a hook to the application code at the place where the view operation is performed.

Adding explicit instrumentation becomes extremely tedious when manydifferent aspects of

the interface need to be recorded. Even instrumenting the application fails to capture some

information. For example, if the interface designer wanted to find out how many Folder

menu items were highlighted and not selected as the user scanned for the right folder, he

could not merely record from the application end because the application is only notified

when a menu item has been selected, not when it is highlighted.

Another question that an interface designer may ask is: what is the next mail action

that the user does after he views the piece of mail? Again, this is a question that cannot

be easily answered with current tools. The difficult comes not only from discerning when

the user has viewed a message but also in finding the next mail action. It is not interesting

to know that the user has moved a pointer to a certain location. It is much more useful

to know that 50% of the time the user files the message, 35% of the time the user discards

the message, 9% of the time the message the user replies to the message, and 1% of the

time the user forwards the message. If that were the breakdown, the user interface could be

altered so that there is an easy way for the user to save a message. Similarly, the forward

command could be moved from a top level button to an item in a pulldown menu because

it is rarely used.

These questions and other like them are examples of ways that the user interface designer

would to like reason about the interface. Such questions about the user interface will be

discussed more generally in Section 3.2.

0

. intrinsic —-
monitoring |

l r r=

: y v|application||riZr presentation control interface + application

\ ; Co }

| user interface /
————— existing recording methods ——— /

Figure 2-4: Targets of user interface recording

2.5 The focus of this thesis

This work focuses on recording user interfaces: specifically, how to efficiently monitor user

interfaces by building recording capabilities into the user interface architecture itself. Exist-

ing tools only record communications outside the user interface block as seen in Figure 2-4.

The aim is to show that intrinsic monitoring support can be added to obtain dialogue in-

formation that is not otherwise accessible with current tools. This information corresponds

to communication between the presentation, control, and application interface components.

This type of dialogue information is valuable in answering many of the questions that an in-

terface designer asks. A modified Xt Intrinsics and an evaluation of the Xmh mail interface

are presented as a sample implementation and use of this approach.

2.6 Related work

Although there has been a significant amount of work done in the area of user interface

specifications and user interface development tools, relatively little has been done in the way

of providing automated support for user interface monitoring. Current methods of moni-

toring human-computer dialogue center around either very lowlevel, fine grain recording

or high level application-oriented recording.

aSe

1A

2.6.1 Specification of user interfaces

Researchers have proposed a number of different notations for specifying user interfaces.

Special-purpose languages of various forms have been designed for use with user interface

development systems. The notations include state-transition diagrams[15, 35], context-free

grammars[24], event languages[10, 13], and object-oriented languages[2, 32]. Some user

interface development systems allow graphical specification via direct layout and direct

manipulation. Examples include Cardelli’s dialog editor[6], Peridot[20], TAE+[33], and

Garnet[21].
In the transition network model, the user interface is represented as a set of states.

Transitions between states are associated with certain input tokens. The state transitions

can also invoke application procedures and cause output to be displayed. One problem

with this approach is that the application interface is not very clean. Connections between

the states and the application procedures are made through global variables associated

with transitions. Another problem with transition networks is that they do not represent

modeless, highly interactive interfaces well. For instance, if the user can request help at any

time in the interface, every state must have a transition to the help state. In order to add

intrinsic monitoring to transition network systems, recording mechanisms should be added

at the primary communication channel, the transitions themselves.

Most grammar-based systems use an extended Backus-Naur form notation. The gram-

mar specifies the structure of the dialogue; the tokens in the grammar correspond to user

actions and program actions are associated with productions in the grammar. Grammar-

based systems suffer some of the same shortcomings as transition networks. Intrinsic moni-

toring can be added to grammar based systems by instrumenting the parser to record when

productions are used.

In the event model, input devices are sources of events. Events are sent to event han-

dlers that can call application procedures, generate output events, or change the state of the

system by enabling/disabling other event handlers. In [11], Green shows that the transition

network and grammar models can be converted to the event model and that the event model

has the greatest descriptive power. The event model is quite central to the monitoring ap-

proach in this thesis and will be revisited in Chapter 3. Object oriented systems are similar

to event based systems except they provide more structure and framework through the use

of encapsulation, class hierarchy, and inheritance. Object orientation is also important to

Bt

the intrinsic monitoring approach of this work.

2.6.2 User interface monitoring tools

Although much work is being done in the area of user interface development systems, few

systems allow monitoring of user interfaces. In a sampler of twelve representative UIMS’s

selected for breadth and variety of approach, only four supported interface monitoring,

one of which supported only keystroke capture[12]. The interface monitoring tools that do

exist predominantly perform fine grain low level input capture or operate outside the actual

interface.

Low level capture

Keystroke capture has been apopular method of recording human-computer dialogue at a

fine grain of detail. In earlier, character-based user interfaces, keystrokes could be recorded

and played back for analysis[22]. Later, as other input devices became more popular, input

capture mechanisms were extended to handle pointer devices. The X Window System

Version 11 Release 3 distribution contained a document describing a proposal for an input

synthesis extension[37]. This extension facilitates monitoring, recording, and testing at

the level of events like pointer movements and keypresses. The extension has since been

implemented and commercial vendors have experimented with enhancements on it[16]. This

extension only applies to low level event capture and has been used mainly to test the

efficiency of X servers.

Two systems that go beyond low level input capture are RAPID/USE[35] and the

Z0G[38].

RAPID /USE

RAPID/USE[35] is a transition network based UIMS that supports evaluation with input

logging. A transition network can be represented as a set of nodes and arcs that represent

user interface states and results of user actions. For example, each selection in a menu

would be associated with an arc leaving the menu node. Two forms of logging are available:

a raw keystroke file and a transition log which records transition, input, output, action, and

time stamp for each state transition. Transition logs can be “replayed” to serve as test data.

Although transition logs are useful, the way the dialogue information is accumulated and

| ©)

presented can be improved. An example is given in [35] where the letters “err” are included

in every node name that represents a user error so that the designer can later search for

and tabulate all the occurrences of the string “err” in the log file. Clearly, this data can

be presented and manipulated in a better way. The recording mechanism in RAPID /USE

is also closely linked with the transition network based approach. It cannot be used with

interfaces that were not designed and built with RAPID /USE.

Z

Z0G was a general-purpose human-computer interface developed at the Carnegie-Mellon

University Computer Science Department. ZOG was based on the concept of hierarchical

frames. In [38], Yoder, McCracken, and Akscyn described how the ZOG user interface was

instrumented to collect data about system performance and user behavior. The intrinsic

monitoring approach in this thesis was influenced by the “instrumentation” approach used

in ZOG. While the ZOG instrumentation was suitable for frame-based ZOG interfaces, a

more general mechanism is needed for today’s graphical user interfaces. ZOG dealt only

with menu-driven, modal interfaces. Today’s interfaces operate via direct manipulation and

the user has freedom to perform a number of tasks at any point. The ZOG instrumentation

recorded program activations because menu choices were associated with program execu-

tions. In graphical user interfaces, those activations are not always program executions.

Sometimes user actions generate feedback directly from the user interface component and

not the application.

Other evaluation tools

Some evaluation tools do not interact directly with the user interface. Examples of these

include video cameras and questionnaires. Videotaping a user session has the advantage

of recording a user’s reactions and verbal comments. It provides a qualitative method

of evaluation. It is difficult, however, to obtain quantitative data from a video-recorded

session. (Questionnaires are also helpful in gathering user feedback. Users may encounter

difficulties that software designers did not foresee. Questionnaires give the end user a

chance to point out some of these problems. Although questionnaires can be quantitative

in nature, they do not serve well in providing such data as how often a particular menu

was selected, how long the user hesitated, etc. The questionnaires themselves may also be

0G

‘9

quite complex. Research shows that questionnaires, like user interfaces, may need to be

iteratively designed[27]! Tools like video cameras and questionnaires are useful, but they

must be complemented by monitoring tools that work directly with the user interface.

Chapter 3

Dialogue recording

This chapter describes the kind of information that intrinsic monitoring is intended to

record. The first section introduces the concept of incidents. The second section lists some

questions that can be answered by recording incidents. The third section explains that

incidents are best recorded with a built-in recording mechanism.

3.1 Incidents

An incident is defined as a unit of information communicated between the presentation.

control, and application interface components. It includes tokens passed from the presen-

tation to the control components as well as the commands passed from the control to the

application interface. Because these three components may not always be strictly separated,

incidents also include presentation to presentation and control to control communication.

In actual implementations, a single object may handle functionality that belongs in two or

even three of the components in the user interface model. In those cases, incidents include

both intraobject and interobject communication.

Incidents differ from low level input events. Input primitives such as keypresses and

pointer motions are units of information communicated between the user and the presen-

tation. Incidents may consist of a sequence of input events. For example, a complete drag

gesture may include a button press, a number of motion events, and a button release. Those

events may constitute one incident that results in a call to an application procedure. On the

other hand, incidents are not the same as application operations, either. Several incidents

may be needed in order to specify the parameters in a call to an application procedure.

| R

3.2 Questions to be answered

The purpose of recording incidents is to answer questions that interface designers have

about the user interface. The need to record dialogue at the incident level stems from

the fact that these questions cannot be answered adequately {from data gathered by other

recording means. Below are some representative questions that serve as motivation for

incident monitoring.

o Howoften does a certain incident occur?

e How long does it take for the program to handle a certain incident?

e Howoften is a certain sequence of incidents invoked?

o Howoften is a certain class of tokens (double click, drag, etc.) used?

e What are the most {frequently occurring sequences of incidents?

oe What is the distribution of different tokens used to invoke the same command? The

same application action may be invoked by a button on the screen, an item in a menu,

or a keyboard accelerator. What is the relatively frequency of usage of these tokens

in relation to each other?

» When does the user go through long periods of waiting, confusion, or frustration?

Repeated errors or excessive idle time are indications of this.

» How often are alarm or alert situations triggered? What were the user’s responses

in those situation? These situations can be traced by examining when certain dialog

boxes are popped up.

3.3 Need for intrinsic monitoring

The questions above cannot be easily answered by merely examining low level input events.

For example, knowing that a mouse button was pressed at a certain coordinate is not enough

to determine if that button press occurred within a graphical button or within a menu item.

The low level event information is only useful if something is known about the state of the

screen at the time the event was recorded. Thus, the evaluators who examine the event

1

log must be intimately familiar with the the workings of the program and the layout of

the screen at any given point. Even then, it is very difficult to examine recorded event

information in isolation. Factors like system load can come into play. For example, on a

lightly loaded system, pop-up menus may appear almost instantaneously. The evaluator

would then assume that a button press at a certain coordinate corresponds to a certain

item on a pop-up menu. If the system load should change, the pop-up menu may appear

much later than expected. The user could have clicked prematurely on a menu that has

not appeared on the screen yet. It is almost impossible for the user interface evaluator to

distinguish between these two situations merely by examining the log of recorded events.

Similarly, it is difficult to recognize patterns of incidents. Just by examining raw input

events, it would be extremely difficult to determine howoften a certain menu item has been

selected. Itis also hard to measure how long it takes for the program to respond to a certain

incident.

In the same way, it is difficult to distinguish between incidents just by recording dialogue

information from the application component. By the time the application component is no-

tified of a user-initiated command, information may been lost concerning how that command

was invoked. Although recording at the application level is useful for determining which

commands were invoked, it provides an incomplete picture of how those commands were

invoked. This is especially true in cases where a command can be invoked in a number of

different but equivalent ways. Even in cases where the application is notified of what exact

events caused the incident, recording incidents from the application is difficult because there

are many entry points into the application from the user interface. If recording was to be

done at the application end, every interesting application procedure that can be called from

the user interface would need to be instrumented. Every one of those procedures would need

to have hooks to handle the dialogue data. That would be a tedious effort if more than a few

procedures are involved. Instead, the incident monitoring mechanism should be centralized.

Since a framework for communication already exists in the user interface architecture, the

best way to record incidents is to instrument the user interface architecture.

17

Chapter 4

® ®

Instrumenting the architecture

This chapter describes how a user interface architecture can be instrumented to provide

intrinsic support for monitoring. The first two sections outline the necessary architectural

and implementation requirements. The last section explains how the monitoring mechanism

can be added.

4.1 Architectural requirements

A user interface architecture must meet certain requirements in order to allow easy addi-

tion of intrinsic monitoring support. Fortunately, these requirements are already met by

many common architectures. They are also characteristics that will be prevalent in future

architectures.

4.1.1 Separation of user interface and application

The notion that an interactive program needs to be separated into a user interface compo-

nent and an application component is not new. Szekely[34] and Ciccarelli[7] both discuss

this issue at length. In [12], Hartson and Hix point out the need for dialogue independence.

Hurley and Sibert[14] present a model to describe the interaction between the user interface

and the application. Some researchers, however, question the strict separation imposed by

existing UIMS’s[17, 18, 28]. Application frameworks have been proposed as an alternative

to UIMS’s and toolkits[30, 36]. Regardless of their positions on the proper degree of separa-

tion between the user interface and the application, most designers would agree that some

sort of separation is required.

Va

If there were no separation between the user interface and the application, intrinsic mon-

itoring would become the same as explicit application instrumentation. One ma jor benefit

of intrinsic monitoring is the ability to record incidents without changing the application

source. If the user interface is intertwined with the application code, any code changes

would involve changing the application source. Programs that do not have some kind of

separation are difficult to monitor because every such program would need to be explicitly

refitted with recording hooks.

This first architectural requirement is simply that an architecture must be in place. A

user interface architecture provides means by which the application and the user interface

can communicate. An architecture is not to be confused with a library of interaction ob jects.

Such libraries allow common reuse of interactors but they do not necessarily define uniform

mechanisms for communication between interactors and the application.

4.1.2 Accessible communication channels

In order to record the information communicated between the user interface and the appli-

cation components, the communication channels of the user interface architecture must be

accessible. The architecture must not only support separation and communication between

the two components, but that communication must be “interceptable”. This means that

the communication channels must either be externally visible or sufficiently modularized

so that localized code modifications can be made. The communication channels must be

sufficiently accessible so that an external mechanism can be attached to monitor the stream

of information flowing between the user interface and the application.

In the best case, the monitoring mechanism is able to inspect not only what is being

passed but also who is sending and receiving the information. If the sender is known, the

monitoring mechanism can query it for more detail information about the incident. If the

receiver is known, more can be discerned about the meaning of the incident. Unfortunately,

the receiver is not always known because a user interface object does not have a good handle

on the name of the application object. Often the user interface object has only a pointer to

an application procedure and therefore, little knowledge of the identity of that procedure

and the purpose it serves. In those cases, the user interface designer needs to know a priori

which application objects are associated with which user interface objects when he analyzes

the dialogue data.

10

With respect to the user interface architecture, this requirement translates into the need

for either a central dispatcher for routing communication or a verylocalized portion of code

where communication is handled.

4.1.3 Identification of incidents

A third important requirement that an architecture must meet is the ability to identify and

name incidents. This requirement may be less obvious than the first two. If a monitoring

mechanism cannot distinguish between different incidents, it is still able to record them.

One option is to simply record all incidents that pass through the communication channels.

This is not completely satisfactory, however, because the designer should be able to select

the incidents he wishes to monitor. This ability to specify incidents is important in filtering

out unnecessary incidents because the volume of dialogue data generated is typically quite

large. User interface architectures that permit naming and classification of incidents are

the most suitable.

Related to the ability to identify incidents is the ability to identify the senders and

receivers. Identifying the sending and receiving objects is harder than identifying incidents

because not all objects can be named. Application procedures, for example, often do not

have names that are visible within the communication channels. Filtering, if possible, on

the senders and receivers will decrease further the volume of dialogue data recorded.

4.2 Implementation requirements

In addition to requirements for the user interface architecture, the implementation of the

monitoring mechanism must meet some practical implementation requirements.

oe Unobtrusiveness

The monitoring tool must be inconspicuous. The less an application program needs

to be modified in order to take advantage of the monitoring mechanism, the more

immediately useful the tool will be. If the monitoring support is completely contained

within the user interface architecture, the application code should not need to be

changed at all.

» Efficienrv

MN

The monitoring mechanism must be highlyefficient. Any performance overhead in-

curred must be low. Itis crucial that the instrumented interface resemble, in every

respect, the original interface. In particular, the responsiveness of the monitored in-

terface must be similar to the original interface. The more that the speed or feel of

the original interface is compromised, the less accurate the recorded dialogue data will

be.

e Storage management

Dialogue data measured at the incident granularity level grows in volume very quickly.

The monitoring mechanism must have some way of storing and managing this large

collection of data. The performance of the recording mechanism should not degrade

as the collection of data grows larger and larger.

» Ability to specify incidents

The monitoring tool should be able not only to access incidents but also to allow the

user interface evaluator to specify incidents of interest. The ability to specify incidents

will have secondary benefits with respect to the efficiency and storage management

capability of the tool.

4.3 Providing intrinsic monitoring

If the architectural requirements outlined above are met, the task of making modifications

to provide monitoring support becomes quite straightforward. The changes involve adding
an observer at the appropriate location in the communication channels. The automated

observer monitors the communications traffic and notes those incidents which have been

specified by the user interface designer. If an interesting incident passes, the observer

logs the information about the incident for later analysis. If the sender of the incident

is identifiable, the observer can query the sender for more detailed information about the

incident. An example of useful detail is the internal state of the interactor at the time

of the incident. The entire observer is directly grafted onto the communication channel

and becomes a part of the user interface architecture. Thus, the monitoring mechanism is

intrinsic to the architecture and not tied to specific interaction objects or the application

component.

BH

Chapter 5

.Implementation

This chapter describes a sample implementation of the intrinsic monitoring mechanism and

a post-processing analysis tool. The sample implementation is a modified version of the Xt

Intrinsics library. The first section gives a brief overview of the Xt Intrinsics architecture.

The second section discusses the modifications made. The third section explains some of

the functionality provided by the analysis tool.

5.1 Xt Intrinsics

The Xt Intrinsics[19] is a policy-free substrate on top of the basic X Window System library,

X1ib[29]. The Xt layer provides functions and structures for extending the basic program-

ming abstractions provided by Xlib. Xt is a base layer on top of which a wide variety of

toolkits and application environments can be built.

The main advantages of Xt are user interface abstractions called widgets, the conventions

by which these widgets can interoperate, and resource management. Xt supplies mecha-

nisms for both intercomponent and intracomponent interactions as well as a hierarchical

partitioning of widgets into classes. Each widget instance belongs to a widget class, and

widget classes may inherit features from their superclasses. Widgets have properties called

resources that can be easily customized with the X resource database.

The Intrinsics is intended to be “mechanism not policy” in that it does not mandate

a certain user interface style. Individual widget implementations and widget sets define

the style and consistency of the user interface. The Athena Widget Set[25], Motif*[9], and

steed tls of Oven Salewnie Prandation

9)

Application

Widget Set

Xt Intrinsics

Figure 5-1: The software structure of Xt Intrinsics-based applications

OPEN LOOK?[1], are examples of widget sets. Xt merely provides the architectural model

for constructing and composing widgets that can easily interact with each other and with

application components. A typical application would be built atop a widget set, a subset

of Xt Intrinsic functions, and a smaller set of Xlib functions. See Figure 5-1.

Xt provides a set of consistent mechanisms through which the application can interact

with the widget set. The communication channels in the Xt model are callbacks and actions.

A callback is a procedure associated with a widget that is invoked under certain pre-specified

conditions. For example, the PushButton widget in Motif has an activate callback that is

invoked when the user presses and releases the active mouse button. A callback is registered

with the widget by the application. Thus, callbacks are always used for communication

between user interface objects and application objects. An action is a procedure that is

invoked as a result of a certain sequence of events. Often a sequence of events triggers

a sequence of actions. An example of an action is the highlight action of the command

widget in the Athena Widget Set. When the pointer enters the window the command

widget, the foreground and background colors of the widget are reversed and the widget is

highlighted. Actions differ from callbacks in that the conditions under which callbacks are

invoked are fixed whereas the conditions under which actions are invoked are dependent on

DN 2GPEN LOOK Is = registered trademath ol AST

Xlib

translation tables. Translation tables are mappings of events into actions. Actions are also

different because each widget has some default actions that it can service. Callbacks must

be registered by the application but actions can be defined by both the widget set and the

application. The highlight action is an example of an action that is built into the command

widget. Highlighting a widget requires no intervention from application code.

The use of actions differs across widget sets. Because actions are flexible enough to

be used as interwidget communication as well as intrawidget communication, some widget

sets allow the application to use actions as part of the application interface. Other widget

sets maintain consistency by using only callbacks to communicate between widgets and

application objects. If actions and callbacks are both part of the application interface,

they must be recorded in order to provide a complete picture of the conversation between

the user interface and the application. On the other hand, if actions are not part of the

application interface, the user interface designer may or may not want to record actions

depending on his evaluation needs. As mentioned earlier, the user interface designer can be

considered both a widget designer and an application programmer. As a widget designer,

the evaluator would want to view all the intrawidget communication in the form of actions.

As an application programmer, however, he may not be interested in actions that never

reach the application.

Xt-based applications follow the structural model given in Section 2.2. Interactive pro-

grams are separated into application and interface but widgets can encompass both presen-

tation and control aspects. Callbacks are the means by which the control and the application

interface communicate. The application interface is determined by what callbacks are reg-

istered with the widgets. Actions, because they can be application defined, can serve the

same function as callbacks. In addition, they constitute the dialogue between the presen-

tation and control. This dialogue becomes intra-widget communication when the widget

includes both the presentation and control. Figure 5-2 shows how Xt fits into the logical

model of a user interface. The widget boxes are representative of the many widget instances

that make the user interface. Arcs represent actions. The straight lines from the widgets

to the application interface represent callbacks.

This model assumes that applications never deal directly with X events. In this model,

X events correspond to units of information communicated between the user and the presen-

tation, and are thus not visible to the application. Xlib does not make any such restrictions

Sy

oT oo

© Widget

etl TEE
Widget = opplization a application

control;

il] user interface Ef Lan

Figure 5-2: The logical structure of Xt-based user interfaces

and in the absence of a user interface architecture like Xt, applications respond to events

directly. In such applications, events need to be considered incidents and the processing of

events needs to be monitored.

The Xt Intrinsics is an ideal architecture to target the sample implementation because

it meets the requirements specified in Section 4.1. It allows partitioning of application and

user interface because it provides a consistent interface for communication between the two.

Callbacks and actions are incidents and widgets, and application objects are senders and

receivers. The handling of callbacks and actions is contained within localized portions of

the Xt source code. Thus, it is easy to access and modify the communication channels.

Widgets in Xt are designed specifically as extensible abstractions. The X11R4 version of

the Xt library has special provisions for extending widget class structures. As a result,

query methods can be added to widget objects through extensions. These query objects

allow the observing mechanism to ask the sender of an incident for more detail. Finally,

incidents can be easily specified with resources because widget classes and widget instances

can be named in Xt.

user

5.2 A modified Xt Intrinsics

The Xt Intrinsics library was modified according to the intrinsic monitoring approach out-

lined in this thesis. The result was a new Xt library that could be easily relinked with

existing application programs. The modifications required only a small amount of code

changes. The changes and code additions are detailed below. Some familiarity of the

implementation of Xt in the X11R4 distribution is assumed.

Code Additions

The main monitoring hookis a pair of procedures called XtIncidentMonitor_Begin() and

XtIncidentMonitor End ():

/* procedure to call at the beginning of the incident */
Boolean XtIncidentMonitor_Begin(incidentType, widget, name, contextInfo)

XtEnum incidentType; /* CALLBACK_INCIDENT or ACTION.INCIDENT */
Widget widget;
String name; /* descriptive incident name */
IncidentContext contextInfo; /* context information about the incident *

/* the interpretation of this is dependent on the incidentType */

where IncidentContext is defined by:

typedef struct "IncidentContextRec
XtPointer value;
XrmQuark record type;
struct _IncidentContextRec* next;

IncidentContextRec. *IncidentContext;:

/* procedure to call at the end of the incident */
void XtIncidentMonitor_End()

These procedures are used to enclose the area of code that determine the behavior of

the incident; that is, they are to be called before and after the invocation of procedures

in a callback or action list. A pair of monitoring procedures is needed because widget

information as well as starting and ending times must be obtained. If a single monitoring

procedure was used, then it must be called after the end of the incident so that the ending

3

time can be calculated. In some situations. the widget information may be invalid at the end

of the incident. An example of this is the destroyCallback incident. Upon the completion of

the destrovCallback incident, the widget has been freed and the widget pointer is no longer

valid. Therefore, a pair of monitoring procedures is needed.

The functionality provided by these procedures constitute the heart of the intrinsic

monitoring mechanism. XtIncidentMonitor_Begin() checks to see if the incident being

monitored is one that has been requested. This checking is done through the standard Xt

resource management mechanism. Some optimization is done so that previous lookups are

cached. If a match is found, a call is made to CallQueryProc(). If a match is not found.

XtIncidentMonitor_Begin() returns false.

QueryProcs are query methods that are attached to widget classes. If a particular widget

class does not export a query method, then CallQueryProc() will look up the class hierar-

chy for a superclass that does. The InstallQueryProc() procedure is provided for conve-

nient attachment of query methods to existing widget classes. The widget set designer is the

one who would be writing and installing these query methods. InstallQueryProc() makes

use of the Xt class extension mechanisms. Below are the headers for CallQueryProc() and

InstallQueryProc().

Boolean CallQueryProc(w, call_data)
Widget w;
XtPointer call_data;

void InstallQueryProc(wClass, queryProc, closure)
WidgetClass wClass;
XtQueryProc queryProc;
XtPointer closure;

where XtQueryProc is:

.ypedef void (*XtQueryProc)(
+ Widget w;

XtPointer client_data;
XtPointer call_data

0)

The query method is responsible for storing information in the area pointed to by call_data.

This information will be stored along with other incident details given in the contextInfo

parameter to XtIncidentMonitor Begin(). The contextInfo parameter points to details

about what events caused the incident. More precisely, the contextInfo parameter contains

some pointers to the internal translation state from which the exact events can be extracted.

XtIncidentMonitor_Begin() also computes the starting time of the incident as part of the

incident information. All the incident information is actually stored on a stack awaiting

output by XtIncidentMonitor_End(). A stack is used to insure that nested incidents, i.e.,

an incident caused by the handling of another incident, will be recorded in order.

After the program responds to the incident, i.e., all the procedures in the callback

or action list have been invoked. XtIncidentMonitor_End() is called if XtIncidentMoni-

tor_Begin() returned true. If XtIncidentMonitor_Begin() returned false, that means the

incident in question was not requested and no further work needs to be done to store the

incident details. If XtIncidentMonitor Begin() returned true, XtIncidentMonitor_End()

is called. XtIncidentMonitor_End() computes the ending time of the incident. The start

and stop times are optimistic estimates of how long it takes for the application to respond

to the incident. The difference between the stop and start time is at least as long as the user

must wait before he can do something again. The user may need to wait even longer if there

are further delays through the user interface code. Presently, XtIncidentMonitor_End()

outputs ASCII text to an auxiliary process. The output can be further compressed and

reformatted by the auxiliary process. Currently, an awk[3] script performs some simple

compression, the most useful of which is to create a dictionary of commonly occurring

string phrases. That dictionary maps a long string into a small integer, thereby reducing

the size of the data. The incident details that are currently stored are incident name,

incident type, widget instance, widget class, start time, duration, time since last incident,

incident description, and widget description. The incident description is the sequence of

X events that caused the incident. The widget description is the information obtained by

querying the widget that sent the incident. It is a string that can contain any arbitrary

information about the widget state. The incident detail is shown in the bottom pane of the

main windowof the analysis tool (Figure 5-3).

Code Modifications

A small number of changes was made to the following Xt source files.

¢ Initialize.c

An addition was made to XtAppInitialize() to initialize the monitoring mechanism

along with the regular Xt initialization routine.

o Callback.c

Since all callbacks are eventually made in _XtCallCallbacks(), that is where the

monitoring mechanism sits. First, the name of the callback list, if there is one, is

determined. Then, a call is made to XtIncidentMonitor Begin(). Following that,

each callback in the list is invoked. Finally, XtIncidentMonitor_End() is called.

» TMstate.c

The changes are essentially the same as those in Callback.c except modifications are

made in two places in XtTranslateEvent(). Regular actions and accelerator actions

are handled slightly differently but with respect to incident monitoring, they are

essentially the same.

Incident specification

If a few simple conventions are followed, incidents can be specified just like regular Xt

resources. Resources are specified with a name/value pair. The name is the concatenation

of the application name, the widget name, and the resource name with a period between

each. The widget name is an instance, class, or instance/class hierarchy. The hierarchy

includes the widget and its ancestors. The asterisk symbol can be used as a wildcard.

Incidents should be specified by their callback or action instance name or class name.

The words Callback and Action denote the respective classes. The incident is specified as if

1t were part of a larger application called XtMonitor. The actual application name follows

XtMonitor. The value of the incident resource can be either On or 0ff. Below are some

sample specifications and what they mean:

XtMonitor.Xmh*Action: On

monitor all actions in Xmh-class programs

20

XtMonitor.Xmh*comp*Callback: On

- monitor all callbacks in the comp widget and all its children in Xmh-class programs

XtMonitor.xmh.xmh.tocMenu.inc.callback: On

- monitor the callback in the inc button on the tocMenu menu

XtMonitor.Xmh*XmhIncorporateNewMail: Off

- do not monitor the action XmhlIncorporateNewMail in Xmh1tMonitor.xmh-jcktoc.ScroliBar*iction:iOn- monitor all actions of Scrollbar widgets inside the widget toc in the xmh-jc program.

5.3 Analysis tool

An analysis tool was implemented to process the data gathered from the instrumented

At Intrinsics. The tool was essentially a database designed specifically for storing and

manipulating incident details. The tool itself had a graphical user interface (Figure 5-3).

The tool’s main features are filtering and sorting capabilities. The analysis tool is able to

filter the data by any combination of data fields. Filtering of sequences of incidents is also

supported. For example, the designer can request all incidents that occurred in widgets of

the Text class that had duration greater than 0.5 seconds. Similarly, an interface designer

can request all three-incident sequences that begin with an incident named help and end

with an incident named cancel. Filtering is cumulative so successive filtering of the data is

possible. The tool also allows the interface designer to sort in any order by any field or any

combination of fields. In addition, the tool can provide summation information as well as

context information. Summation information indicates the total occurrences of each of the

different kinds of incidents. Context information indicates where in the overall sequence of

incidents a certain incident occurred.

These features are designed to assist the user interface designer analyze the recorded

dialogue data. The designer, by using various combinations of sorts and filters. can answer

the questions posed in Section 3.2 and thus, reason about the interface being evaluated. The

graphical interface helps makes it easy for the designer to define sorts and filters. Many

other features can be added to provide even more sophisticated analysis of the recorded

dialogue data.

IN

BE .Show All||Summary||Reorder||Quitshow all] [Swmnscy] [Reorder[[Quit]aIncident Name : [ANY Pa
Incident Type 27 _
Number of Occurrences : [ANY

Widget Instance {ANY
Widget Class :
Start Time :

Duration : [ANY

Time since last incident [ay
Incident Description |
Widget Description : [ANY ;

Filter Action : [sHov] Five
pr td Or TOA tt ttn

apply |: Dausiaboly Ber Res lL adabeh Bes ehdd Match Rec|[Clear Filter
sw 0.000001 highlight button? Bt]

0.000001 reset button <LeaveNot1
0.000001 highlight buttonZ {EnterNoti

| 0.000001 set button ButtonPres
1.360000 XmhComposeMessage button? {ButtonPres
0.000002 reset buttona .ButtonRelé
0.180001 callback textSource {KeyPress>
0.020002 insert-char comp (KeyPress>
0.019997 delete-previous-character comp KeyPress>I
0.000003 insert-char comp {KeyPress>
0.000002 delete-previous-character comp (KReyPress>l

21 0.200013 insert-char comp <KeyPress>:
i 0.060000 next-line Comp Ctrl<KevPr:

MATCHES: 862 (100.000%) TOTAL DURATION : 119.542280 (100.000%)
J SE mort ig Lm

‘Incident Name delete-previous-character
Incident Type ction
Number of Occurrences d
Widget Instance »anh. xh. xd. comp
Widget Class ApplicationShell TopLewvelShell.Paned. Text
Start Time 638742903.420000 (Thu Mar 29 15:35:03 1950

Duration 0.000002
Time since last incident : 0.639937
Incident Description <ReyPressdlialets: deleta-previous-character()

Figure 5-3: Analysis tool interface

)

Chapter 6

Example of use — Xmh

This chapter discusses how an application is actually evaluated with the instrumented Xt

[ntrinsics presented in Section 5.2. The Xmh mail handler was used as the target application.

Xmbhis the X interface to the Rand MH Message Handling System. Xmh, in most respects,

is only a graphical interface to MH. All the actual mail handling commands are handled by

calls to MH. The Xmh interface employs a rich variety of widgets ranging from command

buttons to pulldown menus to text widgets. It is built using widgets from the Athena widget

set built atop Xt. Thus, it serves well as a target for testing the modified Xt Intrinsics.

6.1 Instrumenting Xmh

Instrumenting Xmh was extremely easy because Xmh itself did not need to be changed.

To produce an instrumented version of Xmh, only a relink with the new Xt library was

necessary.

6.2 Reasoning about the interface

This section explains how the analysis tool can help answer some of the questions posed

in Section 3.2. For each question, the kind of filtering necessary will be described, but the

exact method of specifying that filter with the analysis tool will not be given in great detail

because the analysis tool is only a sample implementation. The important point is that the

recorded data can be manipulated to provide answers. Below are some sample questions.

oe How often does the incident XmhViewNextMessage occur?

39

A simple filter on the incident name will find all the occurrences of the Xmh ViewNext-

Message incident. By examining and totalling all such incidents found, the designer

can see howlong it took for the program to handle all such incidents.

» What tokens does the user use to invoke the command to view the next message?

This is a slightly different question from the previous one because the interface may

allow the user to compose messages in a number of different ways. The incident

XmhViewNextMessage may be associated with a certain command button or a certain

keyboard accelerator but an item in the Message menu also allows the user to view

the message. The menu does not use the same XmhViewNextMessage action to

communicate with the application. In such a case, the user interface designer must

filter not only by the incident name XmhViewNextMessage but also the next widget

in the messageMenu widget. The designer must know in advance the different ways to

invoke the same application command. A better user interface design would associate

the XmhViewNextMessage action with all possible ways to view the next message,

including selecting an item on the pulldown menu.

» What does the user do immediately after viewing a message?

To answer this, the interface designer can create a filter to search for five-incident

sequences that have as their first incident either the XmhViewNextMessage or the

messageMenu.next widget. This allows him to see the four incidents that occurred

right after user viewed a message. A subsequent filter can be used to show when the

user performed specific actions. In this way, the designer can tell, for example, that

5% of the time the user replied to the message viewed.

» How often does the user try to incorporate new mail when there isn’t any?

When the user tries to do this, a dialog box pops up to inform him of the error. A

search for an incident sequence that begins with the incident named XmhIncorporate-

NewMail followed by any other incident that occurs within a dialog widget will show

these occurrences.

» How often does the user perform drag gestures with the button 17?

This involves searching for incident sequences so that the first incident has the

<ButtonPress>1 event, arbitrary middle incidents have Buttonl<MotionNotify>

32

events, and the last incident has a <ButtonRelease>1 event. The events are part of the

incident detail description. These gestures can be recognized onlyif there are incidents

in place to respond to all parts of the gesture. In this case, if Buttonl<MotionNotify>

events never triggered any incidents, then this gesture cannot be detected.

e When does the user go through long periods of waiting?

The analysis tool calculates the time since the last incident. A sort can be done

by that field to show the incidents with the longest time since last incident. This

time is not always indicative of wait time because there is no way to know if the

user is actually sitting idle or has left the terminal. Still, this information can be

valuable if used in conjunction with other monitoring mechanisms suchas videotaping.

Although videotaping can show when the user is waiting, incident monitoring can

provide quantitative data on what the user does immediately after a long period of

waiting.

 /
=n

Chapter 7

C lust

7.1 Contributions

The main contribution of this thesis is a novel approach to acquiring dialogue information.

This work shows that user interfaces can be effectively monitored by adding recording

mechanisms to the user interface architecture. A mechanism internal to the architecture

has access to communication information that would otherwise not be captured by low

level input or high level application-specific recording schemes. Intrinsic monitoring yields

dialogue information at the proper level of detail for answering the questions that arise

in evaluating an user interface. By making the recording mechanism a part of the user

interface architecture itself, benefits of dialogue monitoring can be realized without making

changes to the application source.

7.2 Limitations and future work

The main limitation of the intrinsic monitoring strategy presented here is its inability to

take into account incidents that originate from the application component. Output incidents

are completely ignored. Output incidents would be actions initiated by the application

component. Examples include popping up a widget on the screen, making an active menu

item inactive, and registering another callback to a pushbutton widget. Such incidents need

to be recorded in order to provide a clear picture of both directions of the human-computer

conversation. Just monitoring the input incidents forces the user interface designer to have

intimate knowledge of the application state in order to understand the dialogue data.

15

The current approach also does not support playback well. The prospect of playing back

incidents seems possible but exceedingly difficult. The entire user session cannot be replaved

without additional lower level event information as well as output incidents. Lower level

event information is needed to reproduce the user actions that did not trigger incidents,

and output incidents are necessary for synchronizing playback. Even so, it would be useful

to replay the incidents at some level even if the session cannot be completely reproduced.

A promising direction for {future research is integrating different kinds of recording tools

together. Intrinsic monitoring should be combined with low level and high level monitoring

mechanisms to provide a complete user interface evaluation tool. Monitoring tools should

be used not only to reason about interfaces in the way described in this thesis but also

to facilitate testing, profiling, and debugging of user interfaces. User interface evaluation

tools should reach a stage where the designer can use them as programmers now use debug-

gers. The quantitative data acquired by these tools should be used by experts in cognitive

psychology and human factors to study and understand how people use computers. Good

evaluation tools will enhance the productivity of user interface designers and enable them

to create better user interfaces in the future.

AR

e ®Bibliography

[1] An OPEN LOOK Toolkit for the X Window System.

[2] Creating User Interfaces with Open Dialogue. Apollo Computer, Inc, January 1989.

[3] A.V. Aho, B.W. Kernighan, and P.J. Weinberger. The Awk Programming Language.

Addison-Wesley, 1988.

[4] D.G. Bobrow, S. Mittal, and M.J. Stefik. Expert Systems: Perils and Promise. Com-

munications of the ACM, pages 8830-894, September 1986.

[5] W.A. Buxton and R. Sniderman. Iteration in the Design of Human-Computer Inter-

face. In Proceedings of the 13th Annual Meeting of the Human Factors Association of

Canada, pages 72-84.

[6] L. Cardelli. Building User Interfaces by Direct Manipulation. Technical Report 27,

DEC Systems Research Center, 1987.

[7] IV E.C. Ciccarelli. Presentation Based User Interfaces. Master’s thesis, Massachusetts

Institute of Technology, August 1984.

8] J. Foley and A. van Dam. Fundamentals of Interactive Computer Graphics. Addison-

Wesley, 1982.

[9] Open Software Foundation. Application Environment Specification (AES) User Enuvi-
ronment Volume. Prentice Hall, 1990.

[10] M. Green. The University of Alberta User Interface Management System. In Proceed-

ings of SIGGRAPH, pages 205-213. ACM SIGGRAPH, July 1985.

[11] M. Green. A Survey of Three Dialogue Models. ACM Transactions on Graphics,

5(3):244-275, July 1986.

lw

'12] H.R. Hartson and D. Hix. Human-Computer Interface Development: Concepts and

Systems. ACM Computing Surveys, 21(1):5-93, March 1989.

13] R.D. Hill. Supporting Concurrency, Communication, and Synchronization in Human-

Computer Interaction — The Sassafras UIMS. ACM Transactions on Graphics.

5(3):179-210, July 1986.

14] W.D. Hurley and J.L. Sibert. Modeling User Interface- Application Interactions. IEEE

Software, pages 71-77, January 1989.

[15] R.J.K. Jacob. A Specification Language for Direct-Manipulation User Interfaces. ACM

Transactions on Graphics, 5(4):283-317, October 1986.

[16] A.G. Jamison. Experiences Developing X Server Support for the Programmed Control

of a X Window Workstation. 4th Annual X Technical Conference, Boston MA, 1990.

17] M.A. Linton. J.M. Vlissides, and P.R. Calder. Composing User Interfaces with Inter-

views. IFEE Computer, pages 8-22. February 1989.

18] J.E. Lovgren. Are We Boxing Ourselves in with the UIMS Box? In Proceedings of the

31st Annual Meeting of the Human Factors Society, pages 22-24, 1987.

19] J. McCormack, P. Asente, and R. Swick. X Toolkit Intrinsics - C Language Interface.

X11R4 distribution.

20] B.A. Myers. Creating User Interfaces by Demonstration. Academic Press, 1988.

21] B.A. Myers. An Object-Oriented, Constraint-Based, User Interface Development En-

vironment for X in CommonLisp. 4th Annual X Technical Conference. Boston MA.

1990.

22] A.S. Neal and R.M. Simons. Playback: A Method for Evaluating the Usability of

Software and Its Documentation. In Proceedings of SIGCHI, pages 78-82, December

1983.

23] W. Newman and R. Sproull. Principles of Interactive Computer Graphics. McGraw-

Bill, 1670,

[24] D.R. Olsen, Jr. and E.P. Dempsey. SYNGRAPH: A graphical user interface generator.

Computer Graphics, pages 43-50, 1983.

125] C.D. Peterson. Athena Widget Set - C Language X Interface. X11R4 distribution.

26] G.D. Pfaff, editor. User Interface Management Systems. Springer-Verlag, 1983. Pro-

ceedings of the Workshop on User Interface Management Systems held in Seeheim,

FRG, Novemeber 1-3, 1983.

127] R.W. Root and S. Draper. Questionnaires as a Software Evaluation Tool. In Proceedings

of SIGCHI, pages 83-87, December 1983.

[28] M.B. Rosson, S. Maass, and W.A. Kellogg. Designing for Designers: An Analysis of

Design Practices in the Real World. In Proceedings of SIGCHI+GI, pages 137-142.

1987.

[29] R.W. Scheifler, J. Gettys, and R. Newman. X Window System - C Library and Protocol

Reference. Digital Press, 1988.

[30] K.J. Schmucker. MacApp: An Application Framework. Byte, pages 189-193, August
198¢

[31] B. Schneiderman. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. Addison-Wesley, 1987.

[32] J.L. Sibert, W.D. Hurley, and T.W. Bleser. An Object-Oriented User Interface Man-

agement System. In Proceedings of SIGGRAPH, pages 259-268. ACM SIGGRAPH,

August 1986.

[33] MLR. Szczur and P. Miller. Transportable Applications Environment {(TAE) PLUS, Ex

periences in “Object”ively Modernizing a User Interface Environment. In Proceedings

of OOPSLA, pages 58-70, 1988.

34] Pedro Szekely. Separating the User Interface from the Functionality of Application

Programs. PhD thesis, Carnegie-Mellon University, January 1988.

[35] A.I Wasserman and D.T. Shewmake. The Role of Prototypes in User Software Engi-

neering (USE) Methodology, volume 1, pages 191-210. Ablex, 1985.

41)

36] A. Weinand, E. Gamma, and R. Marty. Design and Implementation of ET++, a

Seamless Object-Oriented Application Framework. Structure Programming, 10(2):63-

87, 1989.

[37] L. Woestman. X11 Input Synthesis Extension Proposal. X11R3 distribution.

38] E. Yoder, D. McCracken, and R. Akscyn. Instrumenting a Human-Computer Interface

For Development and Evaluation. In Human-Computer Interactions — INTERACT

‘$4, pages 907-912. Elsevier Science Publishers B.V. (North-Holland), 1984.

~~ 7 fs Q Fr i?

1)

