
USING GENETIC ALGORITHMS TO SELECT AND CREATE

FEATURES FOR PATTERN CLASSIFICATION

b

Eric I-Chao Chang

Submitted to the Department of
Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements
for the Degrees of

Bachelor of Science and Master of Science

at the

Massachusetts Institute of Technology

May 1990

© Eric I-Chao Chang, 1990
The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author _ _ Signature redacted)

Department of Electrical Engineering and Cloraputer Science
A li June 1990

Signature redacted
Certified by _u ~ —— EE

Dr. Richard P. Lippmann
Staff at Lincoln Laboratory

pr Thesis Supervisor
Signature redacted

Certified by __ : < een I

{ Dr. David W. Tong
Electrical Engineer, GECorporate Research and Developirient

x im _ “ThesisSupervisor

Signature redacted
Accepted by(____ ER oo

Arthur C. Smith
Chairman, Department Committee on Graduate Students

MASSACHUSETTS nar:
OF TECHNOLOGY UF

AUG 10 1990

JY

Acknowledgements

[would like to thank Dr. Richard Lippmann and Dr. David Tong for their en-
thusiastic support and helpful criticisms. Without their generous encouragement,
this research would not have been completed. I am grateful for the knowledge and
insight I received from them about the research topic, the proper way to conduct
and present one’s research, and life in general! I also enjoyed fruitful discussions
with William Huang, Kenneth Ng, Dr. Ben Green, and Dr. Henzer Chen. Dr.
Henzer Chen and William Huang also graciously provided data for me to conduct
the experiments. I appreciate the good fortune of working with wonderful colleagues
at GE Corporate Research Center and Lincoln Laboratory who made this research
experience educational, enjoyable, and memorable. Finally, thanks to my parents, Mr.
and Mrs. Ying-Fu Chang, for their faith in me. Although they may not understand
the concepts in this thesis or what I learned at M.I.T., they supported my studies
with understanding and trust. May the completion of this thesis give them as much
pride and joy as they have given me.

)

USING GENETIC ALGORITHMS TO SELECT
AND CREATE FEATURES FOR PATTERN

CLASSIFICATION

Eric I-Chao Chang

Submitted to the Department of Electrical Engineering and
Computer Science on June 1990 in partial fulfillment of the

requirements for the Degrees of
Bachelor of Science and Master of Science

Abstract

Genetic algorithms were used to select and create features and to select reference
exemplar patterns for machine vision and speech pattern classification tasks. On
a 15-feature machine-vision inspection task, it was found that genetic algorithms
performed no better than conventional approaches to feature selection but required
much more computation. For a speech recognition task, genetic algorithms required
no more computation time than traditional approaches but reduced the number of
features required by a factor of five (from 153 to 33 features). On a difficult artificial
machine-vision task, genetic algorithms were able to create new features (polynomial
functions of the original features) which reduced classification error rates from 19%
to almost 0%. Neural net and nearest neighbor classifiers were unable to provide such
low error rates using only the original features. Genetic algorithms were also used to
reduce the number of reference exemplar patterns and to select the value of k for a k
nearest neighbor classifier. On a 338 training pattern vowel-recognition problem with
10 classes, genetic algorithms simultaneously reduced the number of stored exemplars
from 338 to 63 and selected k without significantly decreasing classification accuracy.

In all applications, genetic algorithms were easy to apply and found good solutions
in many fewer trials than would be required by an exhaustive search. Run times were
long, but not unreasonable. These results suggest that genetic algorithms may soon
be practical for pattern classification problems as faster serial and parallel computers
are developed.

by

Thesis Supervisor: Dr. Richard P. Lippmann
Title: Staff at Lincoln Laboratory

Thesis Supervisor: Dr. David W. Tong
Title: Electrical Engineer, GE Corporate Research and Development

Contents

Acknowledgements

Abstract 5

«+ INTRODUCTION 12

1.1 Pattern Classification . . .) ae LD

1.2 What's a Good Feature? . 14
1.3 Feature Selection . . . STG

1.3.1 Traditional Heuristically Guided Search Approaches .. 18
1.3.2 Genetic Search 22

1.4 Feature Creation . . | . A ADA

1.5 Thesis Outline. . 28

2 GENETIC ALGORITHMS 30
2.1 Introduction’... 30

2.1.1 Four Stages in Genetic Algorithms o.oo... 30
2.1.2 A Simple Example ROE les TE ||

2.2 Methods a tp ae 3

2.2.1 Introduction Als a al bir

2.2.2 Static Population Model . , oe ww SY

2.2.3 Ranked Based Selection . . rad oped). 35

2.2.4 Crossover Operators Se

2.2.5 Mutation Operator . SE 2 ok ahite 38

2.3 Initial Exploratory Experiments ru aba dared oe 39

2.3.1 The Exponent Guessing Problem . . oo co. 392.3.2 The Linear Combination Guessing Problem A:¥2.4 Summary | 50

NEAREST NEIGHBOR PATTERN CLASSIFICATION 52
3.1 Introduction . . a ew wage OB

3.2 The K Nearest Neighbor Classifier a B he D222.saHistory....ieD23.2.2 Description . re wenn an ohn memes a se we mbamle os dbeBots D3

3.2.3 Efficiency Improvements Co 54

5

CONTENTS

FEATURE SELECTION 61
41 Introduction i. a. 5. .. 81

4.2 Methods RE ANG]

4.2.1 Representation and Evaluation AE AT
4.2.2 Feature Reduction . 52
4.2.3 Reshuffling. . siete 53

4.3 Experiments . . . oe

4.3.1 The NMR Problem rani, Bb
4.3.2 The Parallel Vector Problem CL. .. 89

4.3.3 The 9 E-Set Words Speech Recognition Problem . sed 72
4.4 “Summary. 80

. FEATURE CREATION 85
51 Introduclion:.:... EE -S 5
5.2 Methods. n.oL 8, EE RE

5.3 Experiments Ia kh lt

5.3.1 The Parallel Vector Problem . Lee mw 29

5.4 Summary Se. 90

5 INCREASING THE COMPLEXITY OF CREATED FEATURES 95
6.1 Introduction ee oka won OB

6.2 Methods eR OD

6.3 Experiments Co RR ot en 6

6.3.1 The Parallel Vector Problem . dt oh ol DG

6.3.2 The Vowel Problem . . . Re ne nl we 9)

6.4 Summary 102

EXEMPLAR SELECTION 103
7.05 Introduction. =. DL. 163

7.2 Methods E05
7.2.1 Using Bonus to Reduce the Number of Patterns Dea HOS
7.2.2 Using Genetic Algorithms to Select ¥ . = 05

7.3 Experiments oo oo | 100

7.3.1 The Vowel Problem . . =. =. Co... 106

7.4 Summary 118

8 CONCLUSIONS ;

5

List of Figures

[.1 A set of rectangles and triangles that may be inputs to a pattern classifier. 15
1.2 Decision boundaries of a nearest neighbor classifier (a) using both z

and y as features and (b) using only the z feature. . 7
1.3 Classification error rate versus the number of training patterns used to

train a nearest neighbor classifier for the feature set of (z,y) and the
feature'set'oflonlyiz i ob... . 19

1.4 Decision boundaries of a nearest neighbor classifier (a) using both z
and y features and (b) using the (z/y) feature to classify points on a
diagonal line. . . BY:

1.5 Classification error rate versus the number of training patterns used to
train a nearest neighbor classifier for the diagonal line problem. . . . 26

2.1 A comparison of the distribution of probability of reproduction with
selective pressure values of 0.05 and 0.25 and population size of 100. . 37

3.1 Cumulative distribution of the number of features out of 153 used to
calculate Euclidean distances in a k-nn classifier with 90 input and
exemplar patterns from the TI 46 word problem. . . 85

3.2 Variation in estimated accuracy (percentage correct) of a nearest neigh-
bor classifier as more training exemplars are classified using a leave-
one-out for the parallel vector problem. . . . bi)

4.1 Fitness (percentage correct plus a bonus of 5 for every feature not used)
versus the number of recombinations for the NMR problem. 66

4.2 Genetic algorithms’ progress in searching feature subsets for the NMR
problem, (a) lowest error rate and (b) minimum number of features. . 67

4.2: Forward and backward sequential search results for the NMR problem. 70
4.4 The parallel vector problem. . 71
4.5 Forward and backward sequential search results on the training set for

the vector problem. . 73

4.6 Forward and backward sequential search results on the training set for
the TI F1 problem. . . 76

4.7 GA’s progress in searching for feature subsets with high classification
accuracy and few features for the TI F1 problem. . 19

4.2 Forward and backward sequential search results on the training set for
the TI F1-F4 problem. . re

SE

20

<1

3 LIST OF FIGURES

4.9 GA’s progress in searching for feature subsets with high classification
accuracy and few features for the TI F1-F4 problem. . ,

5.1 A block diagram of the feature creation process in which local search
is used to eliminate features that are noise. . . . 88

5.2 Scatter plot of training patterns for parallel (+) and non-parallel (OD)
vectors using slope features for the vector problem. . . 91

5.3 Scatter plot of training patterns for parallel (4) and non-parallel (O)
vectors using genetic algorithm features for the vector problem. . .. 92

5.4 Creating features from original input features to provide better classi-
fication accuracy for the parallel vector problem. . . . 93

6.1 Creating features out of created features to improve classification ac-
curacy for the parallel vector problem. . C93

6.2 Distribution of the training patterns belonging to parallel and non-
parallel classes when the feature ((dy./dy:1)/(dz2/dz,)) is used for the
parallel vector problem. 100

6.2 Creating higher order polynomial features to reduce classification error
rate for the vowel problem. . . . 102

7.1 Progress of genetic reduction of exemplars for the vowel problem with
k = 1 and “only-the-best” bonus policy, (a) classification error rate,
and (b) the number of exemplars used. . 109

7.2 Progress of genetic reduction of exemplars for the vowel problem with
k = 8 and “only-the-best” bonus policy, (a) classification error rate,
and (b) the number of exemplars used. . 110

7.3 Progress of genetic reduction of exemplars for the vowel problem with
k = 1 and “bonus-above-the-threshold” policy, (a) classification error
rate, and (b) the number of exemplars used. LY

7.2 Progress of genetic reduction of exemplars for the vowel problem with
k = 8 and “bonus-above-the-threshold” policy, (a) classification error
rate, and (b) number of exemplars used. . . E72

7.5 Progress of genetic reduction of exemplars for the vowel problem with
k selected by genetic algorithms to be 7 and “only-the-best” bonus
policy, (a) classification error rate, and (b) the number of exemplars
used. , . 114

7.6 Progress of genetic reduction of exemplars for the vowel problem with k
selected by genetic algorithms to be 6 and “bonus-above-the-threshold”
policy, (a) classification error rate, and (b) the number of exemplars
used. . . . 1..

LISE OB FIGURES

7.7 Decision boundaries of a nearest neighbor classifier for the vowel prob-
lem, k = 1 and 338 exemplars. . . . 116

7.8 Decision boundaries of a nearest neighbor classifier for the vowel prob-
lem, k = 1 and 43 exemplars selected using genetic algorithms. 117

fA

List of Tables

1.1 Possible Features of a Set of Shapes. . .

2.1 Number of Recombinations until the Correct Solution Was Found with
an Uniform Crossover Operator for the Exponent Problem. 41

2.2 Number of Recombinations until the Correct Solution Was Found with
a Two Points Crossover Operator for the Exponent Problem. 41

2.3 Number of Recombinations until the Correct Solution Was Found with
an One Point Crossover Operator for the Exponent Problem. 42

2.4 Number of Recombinations until the Correct Solution Was Found with
an Unit Based Crossover Operator for the Exponent Problem. 49

2.5 The Average and Median Number of Recombinations until the Correct
Solution Was Found Required by Different Operators for the Exponent
Problem. . . . oo

2.6 Number of Recombinations until the Correct Solution Was Found with
a Two Points Crossover Operator for the Exponent Problem Using a
Traditional Approach. . . . CL

2.7 Number of Recombinations until the Correct Solution Was Found with
a Two Points Crossover Operator for the Linear Problem. 47

2.8 Number of Recombinations until the Correct Solution Was Found with
a New Two Points Crossover Operator for the Linear Problem. 47

2.9 Number of Recombinations until the Correct Solution Was Found with
an One Point Crossover Operator for the Linear Problem. . . 48

2.10 Number of Recombinations until the Correct Solution Was Found with
an Uniform Crossover Operator for the Linear Problem. . 48

2.11 Number of Recombinations until the Correct Solution Was Found with
an Unit Based Crossover Operator for the Linear Problem. . . . 49

2.12 The Average and Median Number of Recombinations Until the Correct
Solution Was Found Required by Different Operators for the Linear
Problem. . . . Lo 4

2.13 The Average and Median Number of Recombinations until the Correct
Solution Was Found Required by Different Operators for the Linear
Problem using Mutative Pressure of 0.25. . 5

4.1 Average Number of Recombinations Needed to Find the Best Feature
Subset for the Vector Problem. . . 3

4.2 Comparison between Sequential Search and Genetic Algorithms for the
TI F1 Problem. . . . 77

14

2

10

LIST OF TABLES 1

4.3 Features Selected by Genetic Algorithms for the TI F1 Problem (“Y”
means the feature is used, a blank means the feature is not used). =. 78

4» Comparison between Sequential Search and Genetic Algorithms for the
T1 F1-F4 Problem... . 80

4.5 Features Selected by Genetic Algorithms for the TI F1-F4 Problem
'“Y” means the feature is used, a blank means the feature is not used). 82

6.1 Classification Error Rate for the Vowel Problem as New Features Are
Created. . . . 101

7.1 Summary of Using Genetic Algorithms to Select Exemplars. 118

i

Chapter 1

INTRODUCTION

Feature selection and feature creation are two of the most important and difficult

tasks in the field of pattern classification. Good features improve the performance

of both conventional and neural network pattern classifiers. There is no good theory

guiding the creation of good features, and only some theory in selecting good features.

This thesis explores the application of genetic algorithms to both problems.

1.1 PATTERN CLASSIFICATION

The goal of pattern classification is to classify a set of patterns into different classes

based on distinguishing characteristics. A pattern may be the outline of a fish, a

bark from a dog, or the flag of a nation. Patterns from different classes are made up

of features which differentiate the different classes. A feature can be any distinctive

characteristic. For example, the U. S. flag has the following features: it has fifty stars,

it has 13 alternating strips, and its colors are red, white, and blue.

In designing a pattern classification system, examples of the patterns in each class

are typically used to “train” the pattern classifier. These patterns are called the

training patterns. Features in patterns can be viewed as defining points in an input

space. Providing more training patterns usually results in a better description of

decision regions in the input space, resulting in a more accurate classifier. Decision

regions are partitions of the input space into regions where patterns are classified as

19

1.1. PATTERN CLASSIFICATION

one particular class. For example, the input space illustrated in the left of Figure 1.2

has two decision regions. Input patterns which fall into the white region are classified

as O class, while input patterns which fall into the shaded region are classified as

the + class. After a classifier is trained, it must be tested with a different set of

patterns called the testing patterns. When a classifier performs well on the testing

set, generalization is high. Boundaries between different classes learned from the

training patterns are accurate enough so that even a new set of patterns, the testing

patterns, can be accurately classified.

It is important to have separate sets of training and testing patterns in order to

confidently estimate the accuracy of a classifier. The performance of a classifier on

training patterns can be overly optimistic since some classifiers, such as nearest neigh-

bor classifiers, store all training patterns and can classify them perfectly. Accurate

estimation of classification performance in real situations requires testing on patterns

not used during training.

If the total number of patterns is too small to separate the patterns into training

and testing sets that adequately characterize the classes, cross validation can be

used[5]. In cross validation, a portion of the available patterns is randomly chosen

to be used for training, with the remaining patterns used for testing. By averaging

the classifier accuracy over different random partitions of training and testing data,

a better estimation of the classifier’s accuracy can be obtained.

With enough training patterns, similar low error rates can be provided using

almost any type of neural net or conventional classifier[10]. However, the number of

patterns available is often limited by the cost or the difficulty of obtaining more data.

It 1s thus important to select and create good features that provide good performance

with a limited number of training pattern.

13

CHAPTER 1. INTRODUCTION

Table 1.1: Possible Features of a Set of Shapes.

class-id | number of sides | area | x-proj | y-proj |
[iam 3/078) 156) 1]
Lol 4/054: 11 054]Dey, 4] 0.18|0.18i| T-2 300.3% 1 0.64 |

T-3 310.97 1 1.94 |i

1.2 WHAT'S A GOOD FEATURE?

Deriving a good set of features using genetic algorithms is one major goal of this

study. An understanding of the relationship between features and classifier accuracy

is thus essential. A good feature should make the task of distinguishing between

different classes easier without requiring more training patterns.

A feature’s usefulness depends on the classification task. For example, suppose the

triangles and rectangles shown in Figure 1.1 need to be distinguished . A good feature

is the number of sides in the object. Other possible features such as dimension and

enclosed area provide no additional information for this task. The number of sides

alone is the best feature, all other features are unnecessary and can be considered

noise. Conversely, to separate out the objects by their size, the enclosed area of each

object is the important feature.

A feature is good if it separates classes accurately with as few examples as possible.

Going back to the object separation example, Table 1.1 lists some possible features

of the objects.

If the number of sides is used as one feature, classes R and T (Rectangle and

Triangle) can be specified with only two examples, one from class R and one from

14

1.2. WHAT'S A GOOD FEATURE?

TI

oe R1

RZ
7% |

7

Figure 1.1: A set of rectangles and triangles that may be inputs to a pattern classifier.

13

CHAPTER 1. INTRODUCTION

class T. The number of sides is thus a very efficient feature to use for classifying objects

into rectangles and triangles. On the other hand, if all features are considered, the

area of each each object is also a reasonable feature, since for this given set, all

objects with area greater than 0.6 are triangles and most objects with area below 0.6

are rectangles. However, since area is not fundamentally related to the shape of each

object, the area feature would not provide reliable classification with new objects.

This will only be evident, however, if many training patterns are provided.

1.3 FEATURE SELECTION

The problem of having too many input features, also known as the “curse of dimen-

sionality” [1], makes pattern classification problems difficult. The problem is that

as the number of input features increases, the number of training patterns required

to maintain good generalization also often increases rapidly and performance with

limited training patterns may degrade. When there are many features, more training

patterns are needed to fully describe the distribution of the different classes in the

multidimensional space spanned by the input features. Since there is always a limit

to the number of training patterns available, if there are too many input features,

there may not be enough training patterns to design a good pattern classifier. Feature

selection (dimensionality reduction) is often required to select the subset of features

that best separates classes.

Figure 1.2 demonstrates the effect of feature selection when training data is

limited. In this problem, the first class consists of all points with z coordinate

value greater than 3.5. The y coordinate value is random and is not important for

classification. A nearest neighbor classifier was used to demonstrate the concept of

decision regions. This classifier stores all reference training patterns (called exemplar

16

1.3. FEATURE SELECTION :

(a) TWO ORIGINAL FEATURES (b) X FEATURE ONLY
r - . Lo

& A 1 i

i : 7 yr | i i ; Wita mlm.|wl——LeNegreewschendIE.PyesetelcalBielwdc=reeTE] oF
/ po i y Lor i Wr

o NA : : > aRENEE Re NL Be o-88f --- §0aF-—ne is
: : [

| sfezy . one SE Ea)

ft - J: hn
Oo 7 ’ .

| rT |
A Le i, oo Te

-10 -5 U : -10 - - - 10

Figure 1.2: Decision boundaries of a nearest neighbor classifier (a) using both z and
y as features and (b) using only the z feature.

patterns) and classifies an unknown input to be in the class of the nearest exemplar

pattern (Euclidean distance is used to determine the nearest neighbor). When a

nearest neighbor classifier is used with the 16 training patterns shown, the boundary

between the two classes, shown on the left side of the figure, is inaccurate because

the extra y dimension creates unnecessary sparseness between training patterns. If

y coordinate is eliminated through feature selection, then the boundary between

two classes becomes much more accurate as shown in the right side of Figure 1.2.

Figure 1.3 plots the error rate of a nearest neighbor classifier for this problem as the

number of training patterns varies from 0 to 500. Each curve is the average of 10

different random trials. Error rates are much lower when only the z feature is used,

and an error rate of under 1% was achieved with less than 50 training patterns. On

the other hand, using both features, the error rate is still above 1% even after the

number of training patterns is increased to 500. This clearly demonstrates the benefit

{7

10

Zt

. I = ' 0 ov 1) + .

CHAPTER 1. INTRODUCTION

of selecting good features.

Feature selection is difficult because the number of possible combinations of fea-

tures grows exponentially with the number of original features. Searching for the

optimal subset of features is an NP complete problem. For a moderate size problem

with 64 features, there are 2% possible subsets of features. Clearly an exhaustive

evaluation of each possible combination is impossible. Frequently finding a near

optimal feature subset is adequate. Many methods exist for finding near optimal

solutions. There are two general approaches: heuristically guided search and Monte

Carlo approaches. Siedlecki et. al. present an overview of these search techniques[17].

Heuristically guided search techniques such as sequential search, dynamic program-

ming, and branch-and-bound search utilize heuristics to determine which solutions

are to be examined. Monte Carlo approaches such as simulated annealing and genetic

algorithms rely on selectively added randomness in the search to efficiently search for

near optimal solutions.

1.3.1 Traditional Heuristically Guided Search Approaches

Sequential forward search and sequential backward search are the simplest and most

widely used of the heuristically guided search techniques[17]. Sequential forward

search starts with an empty feature subset, examines each feature’s classifier accuracy

individually, and puts the best performing feature into the current feature subset.

Sequential forward search then looks at all the combinations that include the current

feature subset and one of the remaining features and picks the best combination as

the new current feature subset. At each cycle the number of features in the feature

subset increases by one while the number of feature pairs examined reduces by one.

The process repeats until the feature set grows to the original feature set size or a

18

1.3. FEATURE SELECTION

sO CLASSIFICATION ERROR RATE USING A NEAREST NEIGHBOR CLASSIFIER

wk

305

v
«|
2 |

84} :
20 |}

, Using two input features (x and y)

ai
 Using one input feature (x)

le # a me
G “n =

Number of training patterns

Figure 1.3: Classification error rate versus the number of training patterns used to
train a nearest neighbor classifier for the feature set of (z,y) and the feature set of
only z.

19

lee ih - - ls —————

n 100 200 200 400 S00

CHAPTER 1. INTRODUCTION

preset size. A full sequential forward search of a feature set of size N examines roughly

(N? 4+ N)/2 feature subsets and the number of computations grows as O(N?).

The backward sequential search is similar to the forward sequential search except

that the search starts with a full feature set. Backward sequential search tries taking

out features individually and at each step removes the feature which degrades classifier

accuracy the least. At each cycle the number of features in the feature subset is

reduced by one while the number of feature combinations examined is also reduced

by one. A full sequential backward search of a feature set of size N also examines

roughly (N? + N)/2 feature subsets and the number of computations again grows as

O(N?).

Both sequential forward search and sequential backward search are non-optimal

search procedures in that they are not guaranteed to select the best feature subset.

They may fail because good individual features do not necessarily combine to form

best feature subsets[4]. The sequential search methods can thus miss the best feature

subset because they have already deleted or added individual features that were good

by themselves but which do not belong in the optimal feature subset.

There are two feature selection methods, dynamic programming [3] and branch-

and-bound search[6], which find the optimal feature subset if certain conditions are

met. Dynamic programming is similar to forward sequential search except that it

keeps several feature subsets instead of keeping only one. For an original feature

set of size IV, the dynamic programming approach starts with N feature subsets,

each containing one original feature. Individual features are then combined with all

feature subsets that do not contain the feature and assigned to the feature subset

which performs the best with the individual feature. The process is repeated until

all subsets have grown to the desired feature set size. For a feature set of size N,

20

1.3. FEATURE SELECTION

the dynamic programming approach examines N% x (N — 1)/2 feature subsets. The

number of subsets examined grows as O(/N?). The dynamic programming approach

uses more than the O(N?) evaluations required by sequential search methods and

much less than O(2V) evaluations required by exhaustive search.

The dynamic programming approach always finds the optimal feature subset

when classifier accuracy increases monotonically and when the classifier accuracy

of a feature subset is a linear function of classifier accuracies using the individual

features within the feature subset. The first requirement, monotonicity in classifier

accuracy, states that as the number of features increases, classifier accuracy can only

increase or stay the same. As shown in Figure 1.3, this assumption is not always

correct. Depending on the type of the classifier used, extra features may degrade

accuracy. The second requirement, separability, states that classifier accuracy on a

subset of features and on individual features does not interact. Classifier accuracy

of the combined feature set must be a linear function of the individual classifier

accuracies. This requirement is also often not met. The dynamic programming

approach is thus not frequently used[14, 17].

Fukunaga’s branch and bound procedure finds the optimal subset of features

when the monotonicity requirement is met{12]. By assuming that as the number

of features is reduced, the error rate of a classifier can only increase or stay the same,

branches that have very high error rates in a search tree can be disregarded because

reducing more features in that subset will not reduce the error rate. The algorithm

can thus concentrate on only promising branches and find the optimal feature subset

given sufficient time. In many real life problems, however, reducing the number

of features may actually reduce the classifier’s error rate, thus, these problems are

not monotonic[4, 7]. This restriction and the complexity of the branch and bound

21

CHAPTER 1. INTRODUCTION

procedure with high input dimensionality again have limited its application.

1.3.2 Genetic Search

Genetic algorithms have recently been applied with good results to NP complete

problems such as the traveling salesman problem and job scheduling problems[2].

They take advantage of “implicit parallelism” to efficiently search for good solutions|§]

and depend on the generation-by-generation development of possible solutions, with

selection eliminating bad solutions in future generations and allowing good solutions

to be replicated and modified. It has also been shown that genetic algorithms are

effective in optimizing multi-modal and noisy functions[8]. In these applications,

each solution manipulated by genetic algorithms represents one possible location

of the maxima of a complex function. Solutions specified by bit strings are first

randomly generated, then evaluated, and finally manipulated to produce new strings.

A suitable function needs to be found for evaluating the fitness of each solution.

The selection and the search for a better solution is directly affected by the fitness

function, thus the fitness function should be linked tightly to the eventual goal. In

pattern classification problems, the usual criterion for success is the percentage of

patterns classified correctly. It is thus logical to use the actual classification accuracy

as the fitness function of a given subset of features instead of other possible functions,

such as the variance of data with respect to the subset of features.

The “training on testing data” problem[5] may appear when the percentage of

training patterns classified correctly is used as the fitness function. If the classifier

accuracy on the training set is used as the fitness evaluation function, then as better

subsets are created at each generation, the feature subsets will gradually be selected

according to how they perform according to the testing patterns; in essence, testing

39

1.3. FEATURE SELECTION

patterns have been used as training patterns. There is a danger of finding selections

that are good for a particular set of testing patterns yet bad for the general distri-

bution of patterns. This testing on training data problem can be delayed through

using the “leaving one out” method and cross validation. A different portion of the

training patterns is tested at each generation and the feature subsets’ performance

on this portion of patterns is used for fitness evaluation. However, a separate set of

“pure” testing patterns is used to test the performance of feature subsets once feature

selection is over. The feature subsets’ performance on the pure test patterns is used

to verify that feature subsets provide good generalization.

Siedlecki has recently successfully applied genetic algorithms to select features

for high dimensional problems[19]. However, most of the studies he performed used

artificially generated data. The only problem with real data consisted of 150 patterns

with input dimension of 30. Because the number of training patterns was small,

apparently the training set consisted of all 150 patterns and no testing set result was

reported. As mentioned previously, without checking for the generalization ability of

a given set of features, the result obtained on the training set by genetic algorithms

may be highly misleading since the genetic feature selection method can overfit the

training data.

This thesis compares the genetic search approach with the forward and backward

sequential search approaches in efficiency and success of selecting features for several

real problems. The sequential approaches were chosen as a basis of comparison

because they are the most efficient of traditional approaches and they frequently

perform well. Determining the practicality of genetic feature selection is the focus of

this research.

923

CHAPTER 1. INTRODUCTION

(a) TWO ORIGINAL FEATURES (b) X/Y FEATURE ONLY
of Lp a

no
gp =

: 4 ©

SE 5° dl
As -— i

§ Gt "y
| Te \ .
= Lee — -

. ~~ pi 1
ri. s
| Le” .

3. Lei ! \ por== -

nh

Figure 1.4: Decision boundaries of a nearest neighbor classifier (a) using both z and
y features and (b) using the (z/y) feature to classify points on a diagonal line.

1.4 FEATURE CREATION

Feature creation is one of the most important and difficult parts of pattern classi-

fication. Created features are normally highly specific to the problem domain. For

example, in speech recognition, the distribution of spectral energy may be useful

features. In machine vision problems, corners or edges may be useful features. Finding

the right features may demand extensive experimentation, yet without good features,

it is impossible to provide high classification accuracy. Sometimes higher order

functions of original features can dramatically reduce the number of training patterns

needed and improve classification accuracy. One example is a pattern classification

problem where all points having equal z and y coordinates form one class and all

other points form another class, as illustrated in the left side of Figure 1.4.

The decision boundaries shown in the figure were formed using a nearest neighbor

classifier as in Figure 1.2. Using the original features, shown in the left side of

24

10 0) S 10 10 V) | 10
IY

1.4. FEATURE CREATION

Figure 1.4, provides good generalization only if there are many training patterns which

cluster together on the diagonal line. However, since there are only a limited number

of training patterns, there will very likely be gaps between points on the diagonal line

so that a testing pattern in that gap will be classified incorrectly. Recognizing that

higher order functions of the z and y features are more informative would provide

better use of the limited training patterns. In this problem, the ratio between the z

and y coordinates distinguishes between the classes. Suppose a new system, shown in

the right side of Figure 1.4, is created where only the ratio of the z and y coordinates

is used as the feature. In this case, many fewer training patterns are needed to

provide good classification accuracy. All patterns which have a ratio of one belong

in the diagonal class and are bounded within the narrow shadowed zone, while all

other patterns belong in the non-diagonal class. In this case, it is impossible for a

diagonal class pattern to be misclassified using a nearest neighbor classifier because all

diagonal class patterns are on the same point. The chance of non-diagonal patterns

being misclassified is greatly reduced as well.

Figure 1.5 plots the error rate of a nearest neighbor classifier versus the number of

training patterns for this problem. It is clear that by using a good feature (the ratio

of z/y) less than 20 training patterns are required to have an error rate of roughly 2%.

On the other hand, using just the z and y features, even with 500 training patterns,

the error rate of the classifier is still well above 2%.

Many feature creation techniques are available to create new features that are

linear combinations of a given set of features. Fisher’s linear discriminant approach

creates new features in the direction of greatest intra-class variance. Features are thus

generated with the hope that they will more clearly separate the classes[5]. Using a

Karhunen-Léeve expansion, the original features are transformed into a new set of

98

CHAPTER 1. INTRODUCTION

oo CLASSIFICATION ERROR RATE USING A NEAREST NEIGHBOR CLASSIFIER
che A : 1

53 F

40 &

®
|

& 30 i+.
& :

§

20 |
, Using two input features (x and y)

10 }-

Using one input feature (x/y) h —

¥
GC 200 Bu .

Number of training patterns

Figure 1.5: Classification error rate versus the number of training patterns used to
train a nearest neighbor classifier for the diagonal line problem.

26

50

2

1 Ie
\ 100 NG 400 S500

1.4. FEATURE CREATION

features with the aim of reducing the correlation between the new features as much

as possible. By removing the correlation between features, it is hoped that the new

features with the greatest variance will be the truly useful features. These approaches

can reduce the number of input features to a classifier if only the most useful features

are kept. They work well on problems where the patterns are linearly separable in

the new feature space. In real problems, it is difficult to know a priori whether a

set of patterns are linearly separable in some new feature space. Also, both of these

methods examine the statistical properties of the training patterns which may not

relate directly to the classifier accuracy.

Much research still needs to be done on creating higher order nonlinear features.

For example, given a feature set of z and y, one can readily create a feature z = az+by

with the coefficients a and b calculated using the methods described above. Few

methods have been found, however, which effectively create higher order nonlinear

features such as z = z/y or xy. The number of possible higher order features grows

exponentially with the number of original features. For example, given a problem

with three original features x, 25, and z3, the number of unique combinations of these

three variables taken two at a time is 3. If the number of variables is increased to six,

the number of unique combinations increases exponentially to 15. The exponentially

growing characteristic of the problem makes an exhaustive search for even a moderate

size problem computationally infeasible. Only searches of near optimal solutions can

be attempted. Tenorio et. al. have applied simulated annealing and a tree-based

approach to search for the near optimal solutions[20]. Other methods such as the

Group Method of Data Handling (GMDH)[11] and non-linear regression can also be

used to find higher order features. These methods rely on local pruning to reduce the

number of combinations to be searched. For example, the GMDH approach builds

27

CHAPTER 1. INTRODUCTION

complex functions out of the original features by keeping function subblocks which

fit the desired output function closely. It can encounter local minima and build very

complicated functions when a simpler higher order function would be better because

the local pruning falsely eliminates necessary function subblocks.

This thesis explores the use of genetic algorithms to search the space of possible

features and find good new high order features that are nonlinear combinations of

original input features. Such higher order features will improve the efficiency of

pattern classification if the correct problem-specific feature can be found.

Higher order terms can take many forms, and the multiplicative form chosen

here is only a small portion of all possible higher order terms. For example, the

multiplicative forms can represent new features such as z%x*y; however, other possible

new features, such as z * In(y) and (z + y)/(z — y), can not be found using only

a polynomial representation. The type of higher order terms that provide best

performance will be problem dependent. For example, in time series problem, the

Fourier transform of inputs or the cepstrum may be the correct feature to use. In

general, any nonlinear function can be chosen by the user to be created and searched

using genetic algorithms.

1.5 THESIS OUTLINE

The remainder of this thesis is organized as follows: Chapter 2 describes the theory

and practice of genetic algorithms. Experimental results of applying genetic algo-

rithms on two simple problems are also presented. Chapter 3 describes the k nearest

neighbor classifier and some improvements made to improve efficiency. Chapter 4

focuses on feature selection. Experimental results on real and artificial problems are

presented. Chapter 5 describes methods and results of applying genetic algorithms

IR

1.5. THESIS OUTLINE

to feature creation. Chapter 6 describes enhancements that increase the complexity

of features created. Chapter 7 presents results of experiments which used genetic

algorithms to reduce the number of exemplars needed by k nearest neighbor classifiers.

Finally, Chapter 8 provides an overview and discusses future research directions.

29

Chapter 2

GENETIC ALGORITHMS

2.1 INTRODUCTION

Genetic algorithms were first proposed by John Holland in 1967 to optimize functions.

Since then, they have been applied to many different types of problems, such as

pipeline control, computer aided design, and classifier design[8]. Genetic algorithms

emulate Darwin’s theory of evolution. A group of possible solutions are judged accord-

ing to a “fitness” function, which is explicitly related to the objective function to be

maximized. Better solutions are chosen and random elements are exchanged between

two chosen solutions to generate new possible solutions. The new solutions then

undergo mutation, where the bits of the solutions are randomly altered. Afterwards,

these new solutions replace members of the old population. If the combination of two

partially good solutions yields better solutions, then genetic algorithms will efficiently

find near-optimal solutions.

2.1.1 Four Stages in Genetic Algorithms

There are four stages in the genetic search process: creation, selection, crossover, and

mutation. In the creation stage, a group of possible solutions is randomly generated.

In most genetic algorithm applications, each solution is a string of 0’s and 1’s. Each

string is created by randomly placing 0’s and 1’s in the string.

After the creation stage, each solution is evaluated and assigned a fitness value.

30

2.1. INTRODUCTION

This is followed by a selection stage, where the fitter solutions are given more chance

to reproduce. This stage gives the fitter solutions more and more influence over the

changes in the population so that eventually fitter solutions dominate.

A crossover operation occurs after two fitter solutions (called parent solutions)

have been chosen to reproduce. During crossover, portions of the parent solutions are

exchanged. This operation is performed in the hope of generating new solutions which

will contain the useful parts of both parent solutions and be even better solutions.

Crossover is responsible for generating most of the new solutions in genetic search.

When all the solutions are similar, the crossover operation loses the ability to

generate new solutions since exchanging portions of same solutions generates the

same solutions. Mutation is performed on each new solution to prevent the whole

population from becoming similar. However, mutation does not generally improve

solutions by itself. The combination of both crossover and mutation is required for

good performance.

2.1.2 A Simple Example

A simple feature selection problem can be used to demonstrate the basic concepts of

genetic algorithms. A string of 0’s and 1’s is used to indicate whether a given feature

is used. Assume that for a given subset of features, fitness is the percentage correct

score of a nearest neighbor classifier using this particular subset of features. The goal

is to find the optimal feature subset with as few tries as possible. Suppose the ideal

feature subset and its fitness value are:

10000 90%

To find a good feature subset, four procedures of genetic algorithms are performed,

creation, selection, crossover, and mutation. In the creation stage, a finite set of

11

CHAPTER 2. GENETIC ALGORITHMS

possible solutions is randomly generated. For example, in a particular experiment

the following initial population may be created:

10110 74%

01101 80%

01011 80%
. Initial set of solutions

01010 78%

00011 78%

11110 82%

After this initial set has been generated and evaluated as shown above, two

solutions are selected to create new strings. This is the process of selection. Just

as in nature where the fittest tends to survive, fitter solutions are more likely to be

selected. However, weak solutions still have a chance to become parents. Suppose

the following two solutions are selected:

01101 80%
Two selected solutions

01011 80%

Portions of these solutions are exchanged in order to create new solutions. By

performing the crossover operation, new solutions can be created which retain the

traits of the parents. A simple type of crossover operation is picking a random point

along the solution string and exchanging the solutions’ second portion. An example

is shown below:

_)

01111 78%
7 The new solutions after crossover

01001 82%

39

2.1. INTRODUCTION

The two selected solutions are crossed over to create two new solutions. The lines

above and below the two strings are used to distinguish the string portion of one

selected solution from that of the other.

After crossover, the newly created solutions are randomly mutated. This is

necessary because sometimes all the solutions in the population are very similar.

Even exchanging portions of different solutions creates no new solutions. With a

small amount of mutation, however, new solutions are created to introduce more

diversity into the population.

In our example, suppose the first new string is randomly changed at one position

identified by the ~ sign:

01011 80% J tutated solution

In this case the mutation was fortuitous, because it improved the modified solu-

tion’s fitness value from 78% to 80%. This does not always happen and is not the

main purpose of performing mutation. Mutation’s chief contribution is preventing

premature convergence of the whole population of solutions, i.e, the whole population

having similar solutions. Without mutation, once premature convergence occurs, ge-

netic search stops. This process of selection, crossover, and mutation would normally

be continued through many generations in this problem until an acceptable solution

was found. As can be seen by this example, many new strings may need to be created

because there is no guarantee that crossover and mutation will always lead to fitter

stri:

33

CHAPTER 2. GENETIC ALGORITHMS

2.2 METHODS

2.2.1 Introduction

There are many varieties of genetic algorithms. In the original simple models, all

members of a population completely reproduce at every generation. In more compli-

cated models, “niches” are formed in the population and “migration” is allowed within

niches[8]. This study used an incremental approach that has been used successfully

in other areas and was found to work well in initial exploratory experiments.

2.2.2 Static Population Model

The relatively new incremental static population model proposed by Darrel Whitley

[22] was used in all experiments. In the regular genetic algorithm model, the whole

population undergoes selection and reproduction, with a large portion of the strings

replaced by new strings. It is thus possible for good strings to be deleted from the

population. In the static population model, the population is ranked according to

fitness. At each recombination cycle, two strings are picked as parents according

to their fitness values, and two new strings are produced. These two new strings

replace the lowest ranked strings in the original population. This model automatically

protects the better strings in the population, so that the best string found so far always

stays in the population. Also, since changes in the population are incremental, a large

portion of the population is never replaced by worse strings (this can conceivably

happen in the regular generation model).

34

2.2. METHODS

2.2.3 Ranked Based Selection

Genetic algorithms rely on the fact that better strings are more likely to reproduce

to increase search efficiency. In the experiments performed, a ranked based selection

approach was used to select parents. In the typical genetic algorithm model, the

probability of a string ¢ becoming the next parent, p(i), is calculated as follows:

p(i) ~ cx f(i)/f(avg). Here f() is the fitness of the string ¢, f(avg) is the average

fitness of the whole population, and cis a constant selected by the user. If the fitness

of string ¢ is ten times greater than the average fitness, it would be ten times more

likely than a average string to reproduce.

This selection scheme can fail due to the large differences between fitness values.

For example, if the average fitness value is 10, yet two strings have the fitness values

of 90, clearly these strings will be selected most of the time. When both of the

parents are the same, the crossover operator has no effect and gradually the whole

population becomes duplicates of the fittest strings. No new strings are created and

the search halts. This phenomenon defeats the purpose of genetic algorithms search

and is similar to the phenomenon of “inbreeding” noted by biologists.

To prevent superbly fit individuals from dominating a population, various scaling

schemes have been proposed. For example, the value of ¢ can be periodically adjusted

when the probability of reproduction is assigned. In the beginning of the search, when

a few strings are more likely to have a high fitness value relatively to the average fitness

value, the constant c is adjusted lower. At the latter part of the search, when the

difference between the best string’s fitness value and the average string’s fitness value

is smaller, the constant c is increased to ensure that the best strings do get more

chances to reproduce.

There are many problems in using the fitness values themselves to directly compute

35

CHAPTER 2. GENETIC ALGORITHMS

the probability of reproduction. By using the rank-based selection scheme, all these

problems can be avoided[22]. In a rank-based system, all the strings within the

population are ranked according to their fitness value. A variable called selective

pressure is used to determine how much the top strings are favored. The probability

to reproduce is computed with the following iterative equations:

p(1) = 1.0 * selective pressure,

p(i +1) = (1.0 = > p(j)) * selective pressure,
J=1

where string 1 is the most fit solution and probabilities are assigned to the fittest

solution first. This scheme gives exponentially more reproduction opportunity to

fitter strings. Also, since only the relative rank of the strings affects the probability

of reproduction, changes in the distribution of fitness values have no effect as genetic

search progresses. An additional benefit is that bias toward good strings can be

controlled by varying the selective pressure variable. For example, Figure 2.1 shows

that the distribution of the chance to reproduce changes visibly when the selective

pressure is changed from 0.05 to 0.25.

2.2.4 Crossover Operators

There are many different techniques that can be used to create new strings by crossing

over old strings. A uniform crossover operator, one point crossover operator, two

points crossover operator, or unit based operator can be used. With the uniform

operator, random bits of each string are independently chosen to be crossed over.

26

2.2. METHODS

PROBABILITY OF REPRODUCTION AT SELECTIVE PRESSURE OF 0.05 AND 0.25

| Pa ETTE——T——— ee ! v 1 rT

: Sclective Pressure = 0.05

3

Selective Pressure = 0.25

0 10 20 30 40 50 60 70 L. 90 100
Rank in the Population

Figure 2.1: A comparison of the distribution of probability of reproduction with
selective pressure values of 0.05 and 0.25 and population size of 100.

37

0 RO

CHAPTER 2. GENETIC ALGORITHMS

With the one point crossover operator, a random point is chosen in the string and

the substring starting from the chosen point until the end of the string is exchanged.

With the two points crossover operator, two random points are picked within the

strings and the substring between the two chosen points is exchanged. With the unit

based crossover operator, substrings are exchanged in unit lengths which relate to

the encoding of the string. For example, suppose a string 12 bits long represents 4

numbers, with three bits representing each number. Using the unit based crossover

operator, the substring exchanged between strings can only start at 1, 4, 7, 10, and

end at 3, 6, 9, 12. Since the bit string encoding is ultimately translated back to

integer values, it may be more efficient to exchange substrings between strings only

in the unit of integers. The unit based operator keeps each integer represented in the

bit string intact even after crossover.

After some initial comparison of crossover operators in solving simple problems,

the two points crossover operator and the uniform crossover operator appeared most

consistent in providing good results. Both were used as crossover operators in the

rest of the experiments.

2.2.5 Mutation Operator

Mutation increases the diversity of strings in a population. In the standard genetic

algorithm, the mutation probability is usually set in the range of 0.01 to 0.001. By

using low mutation values, the genetic search depends on the crossover operation to

create new strings that are yet unexplored. An adaptive mutation rate approach sug-

gested by Whitley[23] was used in all experiments. This approach uses the hamming

distance between the two parents as a measure of their similarity. If the hamming

distance is large, then the mutation rate is reduced. If the hamming distance is small,

38

2.3. INITIAL EXPLORATORY EXPERIMENTS

then the mutation rate is increased. More specifically, the mutation rate is calculated

with the following equations:

 putabyepressure if hamming distance > 1. amming distance

p(mutation) = $
mutative pressure if hamming distance = 0

Since the crossover operation depends on exchanging portions of the parent strings

that are different, the adaptive mutation rate ensures that when parents are very

similar, different strings are still produced. When the crossover operator becomes

ineffective as a mean of generating new strings, the mutation operator becomes more

influential in generating new strings.

2.3 INITIAL EXPLORATORY EXPERIMENTS

2.3.1 The Exponent Guessing Problem

Problem Description

The effectiveness of genetic algorithms in searching for functions was tested using

two artificial problems. The first problem was an exponent guessing problem which

evaluated the ability of genetic algorithms to select parameters of a function. A four

variable function t(a,b,c,d) = a' x & * c* * d' was used as the target function. Each

individual string within the population contained 12 bits, with three bits identifying

the exponent of each variable, ranging from -3 to 3 (with 0 being represented twice).

The difference, 8, between the desired function ¢() and the function guessed by genetic

algorithm was summed over the integer range {i 0 5,00 <50<c<50<

d < 5). The ratio 1/(}° 6 + 0.001) was used as the fitness function to evaluate the

fitness of each individual string. The small value 0.001 was added to the overall sum

39

CHAPTER 2. GENETIC ALGORITHMS

to avoid dividing by zero when the correct function is found.

This experiment was performed to see whether genetic algorithms were able to find

the correct function which maximizes fitness. When creating features, as described

in Chapter 5, different high order functions of basic features are searched, it is thus

important to test genetic algorithms’ ability to create functions. There had been no

previous results on using genetic algorithms to create functions, and it was uncertain

whether genetic algorithms would work well on this problem.

Results

Sets of experiments using different crossover operators, mutative pressure, and selec-

tive pressure were run. The results are shown in Tables 2.1 to 2.4. Ten independent

trials were run for each combination of selective pressure, mutative pressure, and

crossover operator. The numbers shown in the tables are the average number of

recombinations over 10 trials required before the perfect answer was found. Each

trial was stopped once the number of recombinations reached 1001. The original

population size was 100; therefore, 100 evaluations for the original population plus

the number of recombinations equals the total number of evaluations used before the

correct function was found.

The bit strings in this problem were 12 bits long. One of the exponents to be

guessed was zero, which could be represented with two distinct combinations (000

and 100), so the total number of distinct strings was 2'!, or 2,048. An average of

1,024 evaluations would thus be needed in a random search procedure. Tables 2.1

to 2.4 show that as long as a selective pressure of 0.0 or a mutative pressure of 0.0

was not used, genetic algorithms always required fewer evaluations than the random

search procedure. Furthermore, except when mutative pressure or selective pressure

40)

2.3. INITIAL EXPLORATORY EXPERIMENTS Al

Table 2.1: Number of Recombinations until the Correct Solution Was Found with a
Uniform Crossover Operator for the Exponent Problem.

Mutative Pressure . 0.0 0.251 0.5 | 0.75 | 1.0.
Selective Pressure |0.00 | 387|247|452it|| 0.05 | 387|109=320|2440.10 i 713|70|2191423|449& 0.15 1 705|282]137]300|169| 0.20 |! 804 293|374|305|025902 212 [172 225 [373]

Table 2.2: Number of Recombinations until the Correct Solution Was Found with a
Two Points Crossover Operator for the Exponent Problem.

~ Mutative Pressure 0.0 | 0.25 | 0.5 | 0.75| 1.0 |
Selective Pressure© 0.00) 447] 432] 648] 664|442|0.05 I 9021 374 . 231|374|© 0100 809] 1591334 | 203322| 0.151 901] 160] 134|397|446|025 l1001|2465891389|285

4

CHAPTER 2. GENETIC ALGORITHMS

Table 2.3: Number of Recombinations until the Correct Solution Was Found with a
One Point Crossover Operator for the Exponent Problem.

 Mutative Pressure 0.0 | 0.25 | 0.50.75 | 1.0
Selective Pressure

0.00 1 406 | 451] 373| or] 453 |oy ee on | 374] 385 |
010] 906] 174 id 250 | 180 |a 0.15 al i 177|280|342|0.20 1001|106|248|5400251 901! 378179|358|474|

Table 2.4: Number of Recombinations until the Correct Solution Was Found with a
Unit Based Crossover Operator for the Exponent Problem.

" Mutative Pressure | 0.0 | 0.25 | 0.5] 0.75 1.0 |
Selective Pressure

0.00 | 504 | 459 [436 | 509|603|

- 0.05 1 721] 312[125 | ih0.10! 704|165]316]342]3730.20 1 902|2361297|fi0.251 7011 278 1 266 358|343

49

2.3. INITIAL EXPLORATORY EXPERIMENTS

Table 2.5: The Average and Median Number of Recombinations until the Correct
Solution Was Found Using Different Operators for the Exponent Problem.

Operator Average Median ;

Pr | 236.3 i
Two Points 300.4 — 98]|OnePoint~~285.2266|Unit Based~~272.7266equaled 0.0, there was no general trend in the number of recombinations required for

different selective and mutative pressure values. Genetic algorithm search appeared

to be robust to the values chosen and worked better than a random search for a wide

range of values.

Table 2.5 lists the average and the median number of recombinations for a mutative

pressure range of 0.25 to 0.75 and a selective pressure range of 0.05 to 0.25 required

by each crossover operator. The uniform operator required fewer recombinations than

the two points crossover operator, however, the difference was small. No crossover

operator performed an order of magnitude better than other operators. All operators

required more than a factor of three less evaluations than would be required by an

average random search.

Another set of experiments was performed using the traditional generation model

on the same exponent guessing problem. Three sets of experiments, each consisting

of ten independent trials, were performed. The population size was also 100, the

probability of reproduction was 60%, and the mutation rates were 0.001, 0.01, and

0.10 respectively. In any given generation, 60% of the strings were likely to be

reproduced. The expected number of recombinations per generation was thus 60.

The average number of recombinations required for the three sets of experiments is

43

? CHAPTER 2. GENETIC ALGORITHMS

Table 2.6: Number of Recombinations until the Correct Solution Was Found with
a Two Points Crossover Operator for the Exponent Problem Using a Traditional
Approach.

* Mutative Pressure | Avg. # Recomb. St. Dev.

0.001 540| 180
0.01 1020 | 300
0.10 840 180 |

listed in Table 2.6.

The generation approach was not as efficient as the static population model

approach. For example, the average number of recombinations with the two points

crossover operator and the static population model was 300, yet all three trials of

the generational model required more than 500 recombinations. This difference in

efficiency is due to the fact that many new strings are generated in each generation,

so a good string can reproduce many times in one generation. This excessive repro-

duction results in homogeneity in the population and premature convergence. In this

experiment, the best string was always kept in the population, further increasing the

chance of premature convergence.

2.3.2 The Linear Combination Guessing Problem

Problem Description

This problem tested the ability of genetic algorithms to find a combination of functions

simultaneously. In feature creation, a set of features may need to be found at the

same time in order for the classifier to benefit from them. To test the effectiveness of

genetic algorithms in guessing a set of functions, the second problem was designed to

14

2.3. INITIAL EXPLORATORY EXPERIMENTS

be a search of a linear combination of functions.

In this problem, genetic algorithms were used to find the variables and exponents

of the function t() = zi! * yI* + «2 * y3® + 232 x y3°. The z and y variables could be

any of the four variables a, b, ¢, and d. The exponent of each variable was either 1 or

-1. Two bits were used to identify the variable and one bit was used to indicate the

exponent of the variable. Each of the terms in the equation thus required 6 bits to

represent. The whole equation required a total of 18 bits.

The actual function to be guessed was t() = a* b+ a x c+ b/d. Again the fitness

function used was 1/(3° § 40.001), the inverse of the difference é between the function

guessed by genetic algorithms and the actual function over the range of 0 to 5 for

each variable. To prevent dividing by zero when the perfect solution was found, a

very small value (0.001) was again added to the sum of differences. The fitness value

of the perfect string is thus 1,000.

Results

Experiments were again performed using different selective pressure, mutative pres-

sure, and crossover operators. The average numbers of recombinations required

before the correct solution was found are listed in Tables 2.7 to 2.11. The total

number of evaluations used was the initial population size (100) plus the number

of recombinations. This linear combination problem had an encoding length of 18

bits. However, there are some redundant solutions, for example, the term a * b is the

same as the term bx a. The actual number of distinct solution is (2%)3, or 32,768.

Out of the 32,768 solutions, there are 3! correct solutions because the three terms in

the target equation can be rearranged. The probability of successfully guessing the

correct solution in a random trial is then 6/32768. The expected number of trials

45

CHAPTER 2. GENETIC ALGORITHMS

required in a random search procedure is 1/2 * 6/32768 = 2730.

Table 2.7 lists the number of recombinations required when the original two points

crossover operator is used. As long as a mutative pressure of 0.0 or 1.0 and a selective

pressure of 0.0 is not used, the average number of recombinations is 446. After adding

100, the number of evaluations required for the starting population, the total of 556 is

still much less than 2,730. Genetic algorithms performed better than random search

for all four types of crossover operators.

The operator tested in Table 2.7 first uniformly picked a point, then picked a

second point uniformly between the first point and the end of the string. The portion

between the first point and the second point was exchanged. This operator differed

from an alternative form of two points crossover operator, where both points were

picked uniformly along the length of the string, with the smaller number becoming

the starting point.

The experiment with the second type of two points operator is shown in Table 2.8.

There is no significant difference between Table 2.7 and Table 2.8. There was also

no clear advantage in using the one point crossover operator (Table 2.9), the uniform

operator (Table 2.10), or the unit based operator (Table 2.11). An operator might

have been better at a particular setting of selective and mutative pressures, but no

operator was consistently better than all the others.

Table 2.12 shows the average and the median number of recombinations for the

mutative pressure range of 0.25 to 0.75 and selective pressure range of 0.05 to 0.25.

These ranges were chosen to remove the results of using extreme mutative and selec-

tive pressure values. Within the ranges, the two points crossover operator performed

the best and the uniform crossover operator performed the worst. The results differ

with the results shown in Table 2.5, when the uniform operator performed the best

16

2.3. INITIAL EXPLORATORY EXPERIMENTS

Table 2.7: Number of Recombinations until the Correct Solution Was Found with a
Two Points Crossover Operator for the Linear Problem.

Mutative Pressure 0.0 | 0.25 | 0.50.75 1 1.0"
Selective Pressure0.00 } 1106|478|285|735|961: BE 2413|449]317]336|599|oo 0.10 | 9711|313]337|634|4000.15 I 2704|355|544|493|945|0.20 2405 | 686 | 561 | 419|965|Rh 0.251 3001|309|558|382|866|

Table 2.8: Number of Recombinations until the Correct Solution Was Found with a
New Two Points Crossover Operator for the Linear Problem.

Mutative Pressure | 0.0 | 0.25 | 0510.75] 1.01
Selective Pressure' |=F eres 0.00 | 680|698562|i948Ti 1558|392|415|585|405|0.10 | 2403|614|506|511|7050.15 2703|303|453'691|5200.20 | 3001 | 369 E 640|510|025124021 5831517 "392615

47

CHAPTER 2. GENETIC ALGORITHMS

Table 2.9: Number of Recombinations until the Correct Solution Was Found with a
One Point Crossover Operator for the Linear Problem.

Mutative Pressure 0.0 | 0.25 | 0.5 | 0.75 | 1.0
Selective Pressure0.00|1088|564|671|522]1095|0.05 | 1855 Ed 808|8670.10} 2125|3412745]552© 0.153001|480]258]582523P20 A 334| 763|628|speed 3001|496|797|650|668

Table 2.10: Number of Recombinations until the Correct Solution Was Found with a
Uniform Crossover Operator for the Linear Problem.

“Mutative Pressure | 0.0] 0.25 | 051 0751 1.0
~ Selective Pressure

0.00 846] 4881721! 950 | 801]
7 0051 760] 271[5521 7621044 |

0102130] 20815337 703] 1480|
0.20 "2703 | 399 [491 | 569 1031 |: 0.25" 24021291|965|1142|1083|

18

2.3. INITIAL EXPLORATORY EXPERIMENTS

Table 2.11: Number of Recombinations until the Correct Solution Was Found with a
Unit Based Crossover Operator for the Linear Problem.

Mutative Pressure 0.0 | 0.25 | 0.50.75 | 1.0
Selective Pressure ~ 3 LL

0.00 | 864 | 458 | 462 | 385| 9070.05 |i 3001|416]364|505|5280.10 i 2117|353492465|699|| 0.15 | 2406|244|453*438|765|0.20 || 2406|371|507,546|9490.25 || 2403|328|815|990|902Table 2.12: The Average and Median Number of Recombinations Until the Correct
Solution Was Found Using Different Operators for the Linear Problem.

Operator) Average Median |
Uniform 584.3 533Two Points~~446.2382|New Two Points 502.9 506 |

One Point 502.4 180 |Unit Based~~556.5138|and the two points crossover operator performed the worst.

Table 2.13 shows the average and the median number of recombinations when the

mutative pressure is 0.25 and the selective pressure range is 0.05 to 0.25. In this table,

the new two points operator turned out to be the best in terms of average, while the

uniform crossover operator was the best in terms of median.

Depending on the selective and mutative pressure range, one operator may be

superior to another. However, no result convincingly shows one crossover operator to

419

CHAPTER 2. GENETIC ALGORITHMS

Table 2.13: The Average and Median Number of Recombinations until the Correct
Solution Was Found Required by Different Operators for the Linear Problem using
Mutative Pressure of 0.25.

’ Operator Average Median |

Uniform 365.2 298 |
Two Points 422.4 | 355|

New Two Points 252.2 | 392One Point~~374.0|341Unit Based 342.4 353

be better than other operators. In this thesis, the two points crossover operator was

used for feature selection and feature creation problems for consistency. On problems

with longer strings such as the experiments described in Chapter 7, the uniform

crossover operator was used. These choices were made based on the experience that

no one operator performed an order of magnitude better than the others. Performing

an complete analysis of the performance of all crossover operators for the type of

problems studied in this thesis would have taken too long, so no further studies on

the effect of using different operators were pursued.

2.4 SUMMARY

This chapter describes the genetic algorithm approach selected for this study and

the effect of using different mutative pressure, selective pressures, and crossover

operators. Although small differences exist between the performance of different

crossover operators, they are not large enough to favor selecting one operator over

another. No specific set of selective and mutative pressure values was good for all

50

2.4. SUMMARY

experiments but mutative pressures of 0.25 and 0.5 and selective pressures from 0.05

to 0.25 appeared to work well in all problems. The standard two points operator and

the uniform operator were used for further experiments with parameters chosen from

this range. With choices from these ranges, genetic algorithms on average found the

correct function for two artificial function selection problems in 1/5 to 1/2 as many

trials as would be required on average by a random search procedure.

51

Chapter 3

3.1 INTRODUCTION

Genetic algorithms for feature selection require a fitness function to estimate the

usefulness of a set of features. The most direct way of determining the usefulness

of a set of features is to actually use the features with a pattern classifier. In this

thesis, the percentage correct from a k nearest neighbor classifier was used as the

evaluation function. This chapter briefly describes the k nearest neighbor classifier

and the enhancements made to reduce computation requirements.

3.2 THE KNEAREST NEIGHBOR CLASSIFIER

3.2.1 History

The Ek nearest neighbor classifier has been used as a reference classifier by many

researchers in the neural networks field[10]. It has the advantage of not requiring a

training phase and providing good accuracy when there are sufficient training patterns

which are representative of the overall pattern distribution. It has been proven that

the error of the nearest neighbor classifier is bounded by twice of the Bayes error when

the number of training patterns is large[5]. Previous work has also demonstrated that

59

3.2. THE K NEAREST NEIGHBOR CLASSIFIER

the relative performance of a feature set found using a k nearest neighbor classifier is

closely related to the relative performance of other classifiers|7, 10].

3.2.2 Description

A k nearest neighbor classifier compares the Euclidean distance between a pattern

to be classified and all stored training exemplar patterns. The unknown pattern is

assigned the class label which occurs most frequently among the k nearest training

patterns. The only training required is storing all the training patterns in memory.

The procedures of training and using a k nearest neighbor classifier are:

» Training:

1. Store all training patterns in memory along with their class labels.

® Classification:

I. An unknown pattern is presented to be classified.

2. Find the k nearest neighbors of an unknown pattern by calculating the Eu-

clidean distance between the unknown pattern and the stored exemplars.

3. Assign to the unknown pattern the class label which occurs most frequently

among the k nearest neighbors. In case of a tie between classes, break the

tie randomly.

4. Ready to accept a new pattern to be classified.

Since genetic algorithms rely on trying out many possible solutions, the fact that

the k nearest neighbor classifier requires little training makes it attractive. A different

type of pattern classifier, the radial basis function classifier[11, 16], was also used as

53

CHAPTER 3. NEAREST NEIGHBOR PATTERN CLASSIFICATION

a pattern classifier in initial experiments. However, using the radial basis function

classifier took considerably longer and did not always provide large improvements in

accuracy. Thus, the k nearest neighbor classifier was used in all experiments. Since

computation requirements increase as k increases, k was set to 1 for all experiments

except when genetic algorithms were used to choose exemplars as described in Chapter

3.2.3 Efficiency Improvements

Although the k nearest neighbor classifier requires little training, the amount of time

required to classify input patterns is considerable, especially when there are many

example patterns and the input data has high dimensionality. When using “leave-

one-out” cross validation to estimate error rates[5], the Euclidean distance between

every exemplar pattern taken one at a time and other exemplar patterns must be

calculated. Computation thus increases as O(N?) where N is the number of exemplar

patterns. Two improvements were made to the basic nearest neighbor classifier to

reduce computation requirements.

Comparing Against the Shortest Squared Distance

Any method which can cut down the number of operations performed in distance

calculations will reduce the execution time of a k nearest neighbor classifier. One

such method which does not require much memory or time is to terminate distance

calculation on an exemplar if it can not be closer than the kth nearest neighbor found

so far. An algorithmic description of the method follows:

In calculating the distance to each exemplar pattern with d as the input dimension

and sum as the total squared distance to the exemplar,

or

3.2. THE K NEAREST NEIGHBOR CLASSIFIER

15 Sumi=10,% =i

2. Calculate d?, the squared difference between feature : of the exemplar pattern

and that of the input pattern.

3. Sum = Sum + d?

4. If Sum > minimum squared distance to the kth nearest neighbor found so far

then done for this exemplar.

5. FBlse¢ ="9'+ 1.

6. If 7 < d then go to 2.

7. Else done for this exemplar.

This distance calculation proceeds by iteratively summing the squared distances

between features in the input and the exemplar patterns, one feature at a time. When

the sum is greater than the squared distance to the kth nearest neighbor found so

far, then clearly the current exemplar can not be one of the k nearest neighbors and

the extra computation for the remaining features can be eliminated.

This method requires an extra comparison at each dimension. For low dimension

problems on a Sun 3/110 workstation with a Floating Point Accelerator, the time

used for performing the comparison may be larger than the amount of time saved by

avoiding more calculations in further dimensions. However, for problems with large

number of features, as the sum of squared differences is progressively increased, it

becomes more and more likely to be greater than the kth nearest squared distance

found so far. The chance of avoiding many calculations is high and the likely saving

in time 1s large.

55

56

H&S

. . 1

3 20 1G - 0 “00

CHAPTER 3. NEAREST NEIGHBOR PATTERN CLASSIFICATION

CUMULATIVE DISTRIBUTION OF THE NUMBER OF FEATURES
USED TO CALCULATE DISTANCES: TI 46 WORD PROBLEM

19 ~ - —_ - - a — = : m———=y

90 | ~

80} J |

> 70 - -
‘

a al
2 50
26

% |
. 40 :

30
©
Ln
£20

10 -
I0 | SE I rn oerrrSamet#4 ‘ 43 60 C- Too 120 140 160

N = Number of Features Used

Figure 3.1: Cumulative distribution of the number of features out of 153 used to
calculate Euclidean distances in a k-nn classifier with 90 input and exemplar patterns
from the TI 46 word problem.

3.2. THE K NEAREST NEIGHBOR CLASSIFIER

For example, for the Texas Instruments (TI) 46 word database problem described

in next chapter, there are 153 input features. If a k nearest neighbor classifier with k =

1 is used with 90 training patterns, each distance calculation requires 305 additions

plus subtractions and 153 multiplications per input pattern. With the modification,

the cumulative distribution of the number of features used to calculate distances is

shown in Figure 3.1. As can be seen, more than 50% of the distance calculations

were completed before calculation proceeded to 80 features. The average time used

by the modified version of the k nearest neighbor classifier in one experiment was 1.81

seconds. This is 44% less than the 3.21 seconds used by the unmodified version. All

times were measured on a Sun 3/110 workstation with a Floating Point Accelerator

in an experiment with 90 input patterns.

Conditionally Terminating Evaluation

While the above modification to the k nearest neighbor classifier does not introduce

new errors, another modification (conditionally terminating evaluations) can statis-

tically create new errors. However, the amount of time saved makes it worthwhile to

accept the small risk of not accurately estimating the classifier accuracy.

Before introducing the approach, the reason for its use needs to be explained. In

the experiments performed in this report, there were two classifier accuracies: the

accuracy on training set and the accuracy on testing set. The accuracy on training

set was the fitness function value used in the genetic search, while the accuracy on the

testing set was not used in the genetic search. Through separating the patterns into

the training set and the testing set, the generalization ability of the genetic search’s

solution can be checked. However, the k nearest neighbor classifier with & = 1 has an

accuracy of 100% on the training patterns because the nearest neighbor of a pattern

57

CHAPTER 3. NEAREST NEIGHBOR PATTERN CLASSIFICATION

is itself. To avoid this problem, the “leave-one-out” approach was used[5]. In this

approach, every pattern in the training set is classified using the training set with

itself removed. The overall accuracy on the training set is the number of correct

classifications divided by the total number of patterns in the training set.

In many problems the size of the training set is large, thus calculating the train-

ing set accuracy using the “leave-one-out” approach takes a long time. It requires

classifying each exemplar pattern using N(N — 1) Euclidean distance computations.

Conditionally terminating evaluation is based on the idea that the eventual classifi-

cation accuracy on the training set can be adequately estimated using only a small

proportion of all the training patterns. At intervals of 50 training patterns, the

program estimates the error rate and calculates the expected deviation from the true

error rate with the following equation:

» ul LTA
n

In this equation p is the estimate of probability of correct classification obtained

so far and n is the number of samples tested so far. The value p is calculated with

the following equation:

Number of training patterns correctly classi fied so far
P="Number of training patterns classi fied S0 far

Every 50 patterns, the sum of p and 2 * o (two times the standard deviation) is

compared with the best performance obtained so far. If the sum of p and 2 x o is

less than the best accuracy so far, then testing is stopped and the program accepts

p*100 as the percentage correct. This procedure works because the percentage correct

usually stabilizes quickly as one goes through the patterns in the training set. Thus

the final percentage correct can be estimated from the percentage correct calculated

58

3.2. THE K NEAREST NEIGHBOR CLASSIFIER

with a smaller sample set size. For example, Figure 3.2 shows that as the number

of samples evaluated increases for the vector problem discussed in Chapter 4, the

percentage correct gradually stabilizes and the final percentage correct is not far from

the percentage correct calculated at n = 100. When n = 50, the estimated percentage

correct plus two standard deviations is greater than the best percentage correct found

so far, so the calculation continues. At n = 100, the estimated percentage correct

plus two standard deviations is below the best percentage correct found so far, so the

program would stop and accept the current estimated percentage correct as the final

value. Since the percentage correct is far from the best percentage correct found so

far, slight inaccuracy in classifier accuracy does not affect the genetic search.

Assuming that the deviation of p from the true percentage correct is a Gaussian

random value with a mean of 0, it can be shown that there is only a 2.3% chance of

having the true percentage to be greater than p + 2 * 0. There is thus only a one in

forty chance that the accepted percentage correct would be lower than the percentage

correct obtained when all patterns in the training set are classified.

When genetic algorithms are used for feature creation, the best feature subsets

are frequently outstanding compared to the average feature. The feature subsets that

have low percentage correct compared to the best feature subset encountered so far

thus do not require accurate estimations of their accuracy. By using this approach and

the above rule, the amount of computation required by the Parallel Vector problem,

described in the next chapter, was reduced by a factor of 6. Since genetic algorithms

took days to run, a reduction from 6 days to 1 day was significant. Accepting a 2.3%

probability of a large estimation error resulted in much shorter computation time and

made this research possible.

59

60

100

iO

1 1 I r

2D SO =O eh 250 2300

CHAPTER 3. NEAREST NEIGHBOR PATTERN CLASSIFICATION

ESTIMATED CLASSIFICATION ACCURACY FOR THE VECTOR PROBLEM
~ Te

90 ~

CL Best Percentage Correct So Far
Com Ch re iE ay er — i — — — — — —— — —— — — —— —— —— —— — —— = ———

80 tte, .

i NeHE ig nt -
70

60

i"

3 50 Percentage Correct
E
m

40 | 2

Percentage Correct + 2 Standard Deviation

300 -

20 +

RR

|

U 100 idu 200 - -

Number of Training Points Classified

Figure 3.2: Variation in estimated accuracy (percentage correct) of a nearest neighbor
classifier as more training exemplars are classified using a leave-one-out for the parallel
vector problem.

Chapter 4

4.1 INTRODUCTION

The problem of feature selection is to select that subset of features from a large

initial set that provides best classification performance. As mentioned previously,

for a problem with high dimensionality, conducting a full search through all the

possible feature subsets is infeasible. This thesis focuses on genetic algorithms and

uses forward and backward sequential search as a reference for comparisons.

4.2 METHODS

4.2.1 Representation and Evaluation

Every feature set or possible solution is represented by a bit string with d bits, where

d is the maximum input dimension. Each bit of a solution represents a feature.

If the bit is 1, then the feature is used, otherwise the feature is not used. Many

different evaluation functions have been suggested to differentiate between good and

bad feature subsets. Most are statistical and indirect and make strong assumptions on

data distributions[5, 14]. The accuracy of a nearest neighbor classifier was used as the

evaluation function in this study. The nearest neighbor classifier has the advantages

of requiring no training time and providing results directly related to performance.

(1

CHAPTER 4. FEATURE SELECTION

4.2.2 Feature Reduction

The goals of feature reduction are two fold: feature reduction and classifier perfor-

mance improvement. These two goals may conflict with each other, as in cases where

the full feature subset is actually the feature set to use if best classifier performance

is required. There are cases, however, when reducing the number of features is more

important than finding the best performing feature set possible. For example, the

storage of the extra features may be very expensive and the collection of additional

features may be time consuming. By reducing the number of features required, one

can directly reduce memory requirements and the expense of collecting training data.

If classifier performance is used as the fitness function, genetic search will find

a set of features with the best classifier performance and not necessarily reduce the

number of features used. There must be an incentive for feature reduction to take

place.

In the experiments performed in this study, feature reduction was an option that

could either be used or not used. When the feature reduction option was used, an

incentive in the form of a “bonus” was given to good strings which did not use many

features. The bonus was a constant multiplied by the number of features not used

and it was added to the classifier performance to derive the fitness value of the string.

Two different methods of giving the bonus were tried. In one policy called “only-

the-best”, only the string that performed better or equal to the best string so far

would receive a bonus. This policy had the effect of ensuring that classification

accuracy was not compromised for the sake of reducing the number of features used.

If the full feature subset turned out to be the best set, then it would still have higher

fitness value than other subsets which used fewer features but had lower classification

ACCUTEC"

62

4.2. METHODS

Another policy of giving the bonus was called “bonus-above-the-threshold.” With

this policy, the user specified an acceptable percent correct threshold. All strings

equaling or surpassing the standard would get a bonus proportional to the number

of features they did not use. By using this policy, the user could specify that feature

reduction was the more important goal once a certain minimum performance standard

had been achieved. With this policy, it was possible for a string with a lower

classification accuracy to have higher fitness value because it used fewer features.

This policy is useful if an acceptable threshold can be found. It may be difficult to

use if it is difficult to select a minimum performance threshold.

4.2.3 Reshuffling

The “only-the-best” policy has a problem in that the fitness function is time varying

because it depends on the best performance measured so far. This causes strings

evaluated earlier in the population to have an advantage over latter strings. Since the

first string to be evaluated is compared against a classification accuracy of zero, it

will definitely receive a bonus. It will be more difficult for latter strings to receive the

bonus. There will be cases where two identical strings, one evaluated at the beginning

and one evaluated near the end, have different fitness values.

To avoid biasing the population by favoring the strings evaluated earlier, a pro-

cedure called “reshuffling” took place periodically. When reshuffling was performed,

the classification accuracy of all the strings was compared with the best classification

accuracy obtained thus far. Reshuffling periodically was essential to rank all solutions

using the same fitness function.

63

CHAPTER 4. FEATURE SELECTION

4.3 EXPERIMENTS

4.3.1 The NMR Problem

Problem Description

The first data used for feature selection was from a GE Corporate Research and

Development database. The database contained 387 patterns, each with 15 features,

for four different classes of patterns. The 15 features were derived from the intensity

histogram of nuclear magnetic resonance (NMR) test images that were generated for

calibration and test purposes using a standard glass sphere. Within the data were 27

normal patterns, 72 chopped phase shift patterns, 144 spike patterns, and 144 phase

shift patterns. The latter three classes were defective images that would be obtained

from hardware faults in the image processor. With this database, the goal was to

distinguish between the patterns of the normal case and that of the three defective

case:

Results

The first 300 samples were used as the training set. The remaining 87 samples

were used as the testing set. A population size of 100, with selective pressure of

0.05, mutative pressure of 0.50, and “only-the-best” policy (weight per feature = 5)

were used with genetic search. An exhaustive search of all 32,768 possible subset

combinations of 15 features was performed for this problem to find the optimal

solution. This solution contained 8 features and had a classification error rate of

2.3% on the training set.

The progress of the genetic algorithm in searching for good feature subsets is shown

in in Figure 4.1. The maximum fitness increased in stages, while the average fitness

64

~Q

4.3. EXPERIMENTS

of the population increased gradually from recombination 1 to 1,100. The effect of

reshuffling can be seen at recombination cycle 1,200 of Figure 4.1, where maximum

fitness dropped abruptly. The best string up to that point was no longer the best

performing string, so it lost the bonus portion of its fitness function. The average

fitness of the population also dropped because many strings within the population

lost their bonus.

The amount of feature reduction achieved is shown in Figure 4.2. In this figure, the

best classification accuracy obtained thus far and the number of features used by the

best subset are shown. The top plot of Figure 4.2 shows that at recombination 1,200,

the training set accuracy increased slightly. This increase in accuracy was gained at

the expense of using three more features, as shown in the bottom plot. The tendency

of the search was to reduce the number of features as much as possible without

decreasing classifier accuracy. The search procedure favored low classification error

rate over feature reduction. The final best string is the optimal feature subset with the

classification error rate of 2.3% on the training set and 8 features. As a comparison,

the classifier error rate with the full set of 15 features was 4.3%. Experiments with

“only-the-best” policy using a weight per feature of 1 instead of 5 found the same

features but with roughly half the number of recombinations.

In a second experiment, the “bonus-above-the-threshold” policy was used. The

minimum acceptable classifier accuracy was chosen to be 92%. Once the minimum

performance standard was reached, a string using fewer features would have higher

fitness value. A string that used very few features would then be expected. The best

string found by this method used only three features. Its classification accuracy was

92.3% on the training set, just above the minimum standard.

The results of genetic algorithms search in the two cases demonstrates that genetic

65

66

es 1 J ! ;
500 pr “N00 ee “S500 "000

CHAPTER 4. FEATURE SELECTION

FITNESS DURING GENETIC SEARCH FOR THE NMR PROBLEM
[503s TT : ;

140 y -

a Best Fitness

130 _

120 + ;

110 - Average Fitness oo a

100 }- Co mT -
i’

© 90 l Sve Wi Ne ’ 7 - te, : .] © Da

a Fo a2 80 i Minimum Fitness =

70 + "

60 I Reshuffle =

50 }- -

40 | -

30 | —

20 -

10 i =
0 o_o SE

O i 10VV isyarr 2000 2 3.

Number of Recombinations

Figure 4.1: Fitness (percentage correct plus a bonus of 5 for every feature not used)
versus the number of recombinations for the NMR problem.

4.3. EXPERIMENTS

ye (a) CLASSIFICATION ERROR RATE FOR THE NMR PROBLEMEAJERIAESTrBERGER===5
i)

& 10

E J Testing Set

~ Training Set

il ey Mo ol oe

‘ (b) NUMBER OF FEATURES USED FOR THE NMR PROBLEM2iA——emfastTT—mf————
] Initial Number of Features

£10 L 3
- te Number of Features Used
£ '

©Reshuffle

ol A ee le ee
0 : 1000 1500 2000 25006743000

Number of Recombinations

Figure 4.2: Genetic algorithms’ progress in searching feature subsets for the NMR
problem, (a) lowest error rate and (b) minimum number of features.

67

0

7

: '

3500

CHAPTER 4. FEATURE SELECTION

algorithms do find a good solution. In fact, even complicated evaluation functions

involving logical operations can be used. Prior knowledge of the problem can thus be

used as part of the evaluation function and the genetic algorithm search can maximize

the function using the prior knowledge implicitly presented in the evaluation function

as a guide.

Genetic algorithms found the optimal solution within 1,500 recombinations. This

is considerably less than the average 16,384 evaluations (2!°/2) required in a random

search. However, simple backward sequential search and forward sequential search,

described in Chapter 1, were also performed. While the forward search procedure

did not find the optimal feature subset, the backward search procedure did. The

backward sequential search starts with all the features, tries all combinations with

one feature left out, selects the best feature subset among these subsets, and then

repeats the process. The backward sequential search can be observed looking from

right to left of Figure 4.3. The forward sequential search can be observed looking

from left to right of Figure 4.3. This procedure starts with subsets consisting of

only one feature, chooses the best subset, and then adds features one at a time,

choosing the best subset at each level. Since the sequential searches required only

120 evaluations for this 15 features problem, even performing both procedures took

an order of magnitude less time than using genetic algorithms. Genetic algorithms

were thus not required to select features for this problem.

Another major reason for feature selection is to eliminate features that are noisy.

The amount of noise contained in the data can be estimated by using the sequential

search methods to search for the best feature subsets. If the error rate of the best

feature subset curve does not have a deep minimum, then the amount of noise in the

data is not very large. On the other hand, if the error rate of the best feature subset

HR

4.3. EXPERIMENTS

curve dips when not all the features are used, then certain features are probably noise.

Figure 4.3 shows that the best feature subset curve did not increase substantially as

the number of features were increased. All of the features therefore probably contained

useful information.

4.3.2 The Parallel Vector Problem

Problem Description

A second artificial problem was designed to evaluate genetic algorithms with noisy

features. The problem, illustrated in Figure 4.4, was to determine whether two vectors

are parallel. The four z, y starting points and the four dz, dy components of two

vectors are the original input features. If the vectors are parallel, then the pair should

be classified as parallel. Otherwise the vectors should be classified as non-parallel.

The starting points of the vectors were randomly distributed between -150 and 150

and the lengths of the vectors varied uniformly between 0 and 100. The training set

contained 300 patterns while the testing set contained 100 patterns. The starting

points of the vectors, shown in Figure 4.4, do not carry information that determines

whether the vectors are parallel and can be considered noise. Good feature selection

should thus eliminate these four features.

Results

Genetic algorithms were used as described above to find the best feature subsets

with an initial population size of 100. In all trials, the genetic search procedure

found the optimal feature subset, consisting of the dz and dy of the two vectors.

In order to evaluate how effective genetic algorithms were in searching for the best

feature, a collection of experiments were performed. Each experiment consisted of

69

70

se

10

CHAPTER 4. FEATURE SELECTION

60 CLASSIFICATION ERROR RATE OF SEQUENTIAL SEARCHES FOR THE NMR PROBLEMEEEeeeeeeeTe|
hr Forward Sequential Search

Backward Sequential Search
y —— —— —— —— ——

he

«= 30 -8

E
&

20 +

10 +

“eel ARE

0 I I I | | | | I {ae
0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

Number of Features Used

Figure 4.3: Forward and backward sequential search results for the NMR problem.

4.3. EXPERIMENTS

Vector 1
1dyl

(x1, yl) dx1

Vel

Vector 2
dy2

(x2,y2) .

Figure 4.4: The parallel vector problem.

71

Ax?

CHAPTER 4. FEATURE SELECTION

Table 4.1: Average Number of Recombinations Needed to Find the Best Feature
Subset for the Vector Problem.

| — Experiment [i a I ilSelective Pressure | 0.05 | 0.10{0.10|0.05|______ Mutative Pressure | 0.50|0.250.25ooReduce Feature? YES|YES|NO|NO|Avg # of Recombinations
| Std. Dev. 70.3 36.3265 [76.9 |

10 independent trials using genetic algorithms to search for the best subset and each

trial ended only when the optimal feature subset had been found. The total number

of evaluations was 100 in addition to the number of recombinations. The results are

listed in Table 4.1. When the reduce feature option was used, the strings using fewer

features were rewarded with a bonus. In this case the “only-the-best” bonus policy

was used. Table 4.1 shows that the number of evaluations ranged from 125 to 157.

Using a selective pressure of 0.10 and a mutative pressure of 0.25 provided the best

result.

Sequential forward and backward procedures were also performed for this problem.

The results are shown in Figure 4.5. Both the forward sequential search and the

backward sequential search procedure successfully found the optimal feature set. Each

sequential search used 28 evaluations. One can also see that the amount of noise in the

original feature sets was large by observing that the error rate dipped substantially

when the number of features used was four. Error rates increased with the starting

point features because these four features are noise. As a comparison, the error rate

curves in Figure 4.3 have no significant dip in the middle because there were no purely

noisy features in the NMR problem.

72

4.3. EXPERIMENTS

CLASSIFICATION ERROR RATE OF SEQUENTIAL SEARCHES
FOR THE VECTOR PROBLEM

C1 ——— -— =TaosnlpadwilaAF~Exithgipanassy50 k-

ol
Sy -

5 30
E |

ml r

20
Forward Sequential Search

10 + Backward Sequential Search -alineAeraefoo0 i 2 3 4 5 6 7 8 gg
Number of Features Used

Figure 4.5: Forward and backward sequential search results on the training set for
the vector problem.

73

50

CHAPTER 4. FEATURE SELECTION

When the number of evaluations required by the different approaches are com-

pared, the performance of genetic algorithms is disappointing. Even choosing the best

experiment, the average number of evaluations was 125, with a standard deviation

of 26. Compared to 128 (the expected number of evaluations required in a random

search), genetic algorithms did not perform any better. Furthermore, both forward

and backward sequential search successfully found the optimal feature subset and

required only 28 evaluations.

In both the NMR problem and the parallel vector problem, genetic algorithms

found the optimal feature subset but were not more efficient than traditional feature

selection methods. This may not be true with more complex problems such as those

discussed in [7, 18] with non-monotonic improvement in performance as more features

are added. The next problem with 153 input feature dimensions provided a more

difficult problem domain.

4.3.3 The 9 E-Set Words Speech Recognition Problem

Problem Description

The data for this problem comes from the Texas Instruments (TI) 46-word speech

database. Although the full database contains speech patterns of 46 spoken words,

only the 9 spoken letters of the alphabets with the “E” sound (“B, C, D, E, G, P, T,

V, Z”) were chosen. The speech data of the FE words were taken from 16 speakers,

eight male and eight female. Waveforms were spectrally analyzed and encoded with

a hidden Markov Model speech recognizer as described in [9]. The features were

the average log likelihood distance and duration from all the hidden Markov nodes

determined using Viterbi decoding. There were a total of 8 nodes with the duration

and the average distance values from each node counting as two input features. The

74

4.3. EXPERIMENTS

final output of the hidden Markov model was also included in the feature set. This

resulted in 17 features per word class. Since there were 9 different word classes, the

total number of features was 153 (17 * 9). For each talker there were 10 patterns in

the training set and 16 patterns in the testing set per word class. All experiments

were talker dependent where classifiers were tested and trained using only data from

the same talker.

Results

A smaller scale experiment was first performed using only the data from one female

speaker (the F1 data set). A sequential forward and backward search for the best

feature subset was first performed. A large number of evaluations (11,781) was

required for each sequential search. The result of the sequential search, shown in

Figure 4.6, indicates that classifier accuracy improves when features are taken out of

the full feature set. Best performance (training set error rate = 2.2%) was found with

33 features.

Genetic algorithms performed comparatively better for this experiment. The size

of the population was 500, with selective pressure and mutative pressure set at 0.05

and 0.25 respectively. Figure 4.7 shows the progress of the genetic algorithm search.

The bottom plot shows that near recombination 12,100, the number of features used

was reduced to 15. The top plot shows that classification error rate on the training

set was 3.3% and on the testing set was 17.4%.

This testing set error rate is lower than the error rate of 18.8% provided by the

original HMM recognizer used to segment input speech tokens[9]. Genetic algorithm

feature selection thus improved the discrimination of the HMM recognizer. The

features selected by the genetic search are listed in Table 4.3. Features 1, 3, 5, 7,

75

CHAPTER 4. FEATURE SELECTION

CLASSIFICATION ERROR RATE OF SEQUENTIAL SEARCHES FOR THE TI FI PROBLEM

7]

40 |

Forward Search
EF — TT

&
Z 30
5

; Backward Search Ed
20 ¢t: TTT 4 -i

, | |

Oo: Co —

“ 60 90

Number of Features Used

Figure 4.6: Forward and backward sequential search results on the training set for
the TI F1 problem.

76

60

- ee 0 L-

+) 30 120 150

4.3. EXPERIMENTS

Table 4.2: Comparison between Sequential Search and Genetic Algorithms for the TI
F1 Problem.

| Error Rate

Method | Train| Test # ofFeatures # of Evaluations

Genetic Search |i ard 17.4%| L353 20,000 |Sequential Search|2.2%[185%3311,781|
9, 11, 13, and 15 are the durations from hidden Markov nodes 1, 2, 3, 4, 5, 6, 7,

and 8 respectively. Features 2, 4, 6, 8, 10, 12, 14, and 16 are log likelihood from

hidden Markov nodes 1, 2, 3, 4, 5, 6, 7, and 8 respectively. Feature 17 is the

hidden Markov model’s final output. Table 4.3 shows that features were selected

near the beginning of the words where spectral differences are greatest. Table 4.2

summarizes the comparison between the best feature subsets found by genetic search

and sequential searches. Genetic algorithms found a feature subset which not only

used fewer features but also had better generalization performance.

A second multi-talker experiment was performed using the data from four female

talkers (F'1, F2, F3, and F4) by combining the data from all talkers as if it came from

one talker. A sequential forward and backward search for the best feature subset

was first performed. Since the amount of data was four times the amount of data in

the first experiment, this experiment took approximately 16 times longer to perform.

Each sequential search still required 11,781 evaluations. Results from the sequential

search are shown in Figure 4.8. This figure shows a rather drastic example of a

problem with the forward sequential search. As the number of features increased, the

classification error rate actually increased to about 60% before dipping back to about

20%. The feature subset at the 60% point consisted of features 1, 3, 5, 7, 9, 11, 13,

77

CHAPTER 4. FEATURE SELECTION

Table 4.3: Features Selected by Genetic Algorithms for the TI F1 Problem (“Y”
means the feature is used, a blank means the feature is not used).

Word Class rrp ele] rapeFeatures | Lo |

1. Duration of node 1 ro |
2. Strength of node 1 i Yivly | Niu te iy |
3. Duration of node 2 | oo - | | BN

4. Strength of node 2 IY ¥ | | i |Y! F |
5. Duration of node 3 7] | [SLE
6. Strength of node| Y hn of eT
7. Duration of node 4 | |! |

8. Strength of node 4 ! a ES, = 5

9. Duration of node si i is sn i ll
10. Strength of node 5
11. Duration of node 6 ©) |

12 Strength of node 6
13. Duration of node 7
14. Strength of node 7 oo
15. Duration of node 8= |

16. Strength of node 8 | |) -7 Output of HMM =i ! } ! !

78

4.3. EXPERIMENTS

S (a) CLASSIFICATION ERROR RATE FOR THE TI F1 PROBLEM
YY) —_—— =

40 F

= 30 |

>
S ML Testing Set 7220 Fino ny iti A Ch

10

Training Set

enema0

200 (b) NUMBER OF FEATURES USED FOR THE TI F1 PROBLEM
yo :

180 I= =

160 i= _ Initial Number of Features 3

2140 |- -

£10 | ~

£100 |- -

© 80 br -
: ool :

401- 5

MN) 7 RE Number of Features Used _

F) reetoer reee LL LL

0 10000 20000
Number of Recombinations

Figure 4.7: GA’s progress in searching for feature subsets with high classification
accuracy and few features for the TI F1 problem.

79

Cc

CHAPTER 4. FEATURE SELECTION

Table 4.4: Comparison between Sequential Search and Genetic Algorithms for the TI
F'1-F4 Problem.

Error Rate

Method Train | Test 1 # of Features # of Evaluations

Genetic Geardl | hn 32 25,000Sequential Search ' 12.2% ET 19! 11,781|

and 15 from all the classes. Apparently the forward sequential search encountered a

local minima where even the best features could only provide 60% error rate. This

demonstrates the danger of using sequential search when the relationship between

accuracy and the number of features is not monotonic.

A genetic search was performed up to 25,000 recombinations. The parameters

for genetic algorithms were the same as the previous experiment. Figure 4.9 shows

the progress of the genetic search. The bottom plot shows that at recombination

9,600, the number of features used was reduced to 32. The top plot shows that the

classification error rate on the training set was 10.0% and on the testing set was

17.2%. The features selected are listed in Table 4.5. They again tend to cluster

around the beginning nodes. Table 4.4 compares the best feature subset found by

sequential searches with the one found by genetic search. In this experiment, genetic

algorithms found a feature subset which had slightly better accuracy on both the

testing set and the training set, however, this feature subset used 13 more features

than the feature subset found by sequential search.

20)

4.3. EXPERIMENTS

100 CLASSIFICATION ERROR RATE OF SEQUENTIAL SEARCHES FOR THE TI F1-F4 PROBLEM’ ’ |-rr—HA90 |- _

80 5
70 |

60
* f Forward Search
5,
« 50

> 3

&
R

= 40

30 | # Ne
4

A

0F" -
Co Backward Search i oh”

10 or TL _

0 LL : mn mane a

O 60 Yo -

Number of Features Used

Figure 4.8: Forward and backward sequential search results on the training set for
the TI F1-F4 problen:.

31

) Ae 3 : |
30 2 20 so> 120 150

CHAPTER 4. FEATURE SELECTION

Table 4.5: Features Selected by Genetic Algorithms for the TI F1-F4 Problem (“Y”
means the feature is used, a blank means the feature is not used).

Word Class 12] 8] 4] | | | | 9Features _

1. Duration of node 1 ST BRR yl
2. Strength of node 1 N | | Y|Y"
3. Duration of node2 J
4. Strength of node 2 YY t | Y | Y
5. Duration of node 3 | Co

6. Strength of node 3 TRY ve | Y | Y | y |
7. Duration of node 4 iC -
8. Strength of node 4 CO] N oy Y
gi Duration oi node 5 LE a
100 Strength of node 5 i vo
11. Duration of node6 er |
12. Strength of node 6
13. Duration of node 7)
14. Strength of node 7 oy!
15. Duration of node8) |
16. Strength of node 8 bo |ts TE TT 1 Fd

RI

4.3. EXPERIMENTS

gs (a) CLASSIFICATION ERROR RATE FOR THE TI F1 F4 PROBLEM
YJ r— -

10 |

= 30
%
: 20 k Testing Set =

Training Set10 r No

0 L Lo

(b) NUMBER OF FEATURES USED FOR THE TI F1 F4 PROBLEM
200 —

180 | -

160 |- Initial Number of Features -

7140 {- =

"1120 -

£100
» 80 |. _

: 60 :

“40 eee Number of Features Used -

20 -

0 - ;

0 12500 25000
Number of Recombinations

Figure 4.9: GA’s progress in searching for feature subsets with high classification
accuracy and few features for the TI F1-F4 problem.

83

C6

CHAPTER 4. FEATURE SELECTION

4.4 SUMMARY

This chapter presented the approach, methods, and results of using genetic algorithms

for feature selection. Traditional feature selection techniques were also compared with

genetic algorithms. In all experiments, genetic algorithms successfully found good

feature subsets. For small, low dimensionality problems, genetic algorithms took

longer than traditional approaches. The traditional sequential search approaches

found the good feature subsets as well in much less time.

For larger dimensionality problems, such as the nine F-set word problem with 153

input features, the genetic algorithm search procedure was more competitive. For

this problem, even the sequential search procedures took numerous evaluations, and

a full exhaustive search was clearly out of the question. Genetic algorithms were able

to find feature subsets with good classification accuracy while reducing the number

of features used from 153 to 15 for the one talker problem and from 153 to 32 for

the four-talker problem. For the single-talker problem genetic algorithm features

provided lower error rates than the original HMM recognizer used to segment input

speech tokens. Furthermore, genetic algorithms were able to find good results with

less than a factor of 2 more computation than more conventional sequential search

approaches. An interesting example of a problem with the simpler sequential search

approach was also provided when sequential search was used with the four speaker

problem.

34

Chapter 5

FEATURE CREATION

5.1 INTRODUCTION

Few methods have been developed to derive higher order polynomial features from

original features to enhance classifier performance. Most perform only a sequential

local search and may find complex features that provide poor generalization. Genetic

algorithms search non-sequentially and are less likely to be trapped by local minima.

The complexity of functions can be limited beforehand or included in the fitness

function, thus the system need not generate complex functions that overfit the training

data. Also, instead of using indirect statistical measures to determine which new

features are best, the performance of a nearest neighbor classifier with the new features

is used as the fitness criterion.

5.2 METHODS

New features were represented as a bit string consisting of substrings identifying the

original features used, their exponents, and the operation to be applied between the

original features. New features were generated as polynomials of original features

taken two at a time. This form was chosen admittedly with the experiment problem

in mind, because the parallel vector problem to be described below required new

features which were polynomials of two original features.

R5

CHAPTER 5. FEATURE CREATION

Each of the original features had a identifying bit string. The power of each

original feature and the operator to be used between two original features were also

identified with bit strings. For example, if feature 1 (f;) had identification bit string

00 and feature 2 (f;) had identification bit string 01, the string 00 1 01 1 01 represented

the new feature (f2 — f2). The first two bits (00) of the string identified the first

feature. Then one bit (1) was used to indicate the power of the feature. The same

decoding mechanism was used for the second feature. Finally, the last two bits (01)

identified the operator (-). The power of the original features was limited to either

1 or 2. The operators that could be used between original features were addition,

subtraction, multiplication, and division. It was hoped that with these limits on the

complexity of the created features, a more general set of features would be derived.

In actual problems, if specific knowledge on the likely form of a useful feature is

available, the operator set can be modified to take advantage of that knowledge.

The number of new features created was fixed a priori and the fitness function was

classification accuracy (% correct). Initially, a population of new features was ran-

domly generated. Each member of the population and was then evaluated according

to the following procedure:

1. New features and original features encoded in each member were searched

together using a forward sequential search to find the best subset of features. The

features were evaluated using a nearest neighbor classifier and leave-one-out cross-

validation.

2. If a newly created feature was used in the best subset of features, the part of

bit string representing it was left untouched. Otherwise that part of the string was

randomly scrambled. Since feature creation was highly random, randomly mutating

the part of the bit string representing useless new features increased the size of search

RB

5.2. METHODS

space and avoided premature convergence.

Figure 5.1 illustrates the whole process of creating new features and deciding

whether to keep the sub-string describing the new feature.

After the whole population had been evaluated, members of the population were

selected, recombined, and mutated using the same genetic algorithm that was used for

feature selection. In all experiments two new features were used. For many problems,

often only one new feature does not enhance classification accuracy, and multiple new

features must be used simultaneously.

Using a nearest neighbor classifier created a problem. The nearest neighbor

classifier accuracy was easily affected by noise and any original or new feature that was

essentially noise would decrease classification accuracy. For example, in a set of three

newly created features, suppose two of them are exactly the needed features, but the

third one is a random function of the original features. This third feature would be

noise and distort the distance measurements used by the nearest neighbor classifier.

After considering other classifiers that might be more noise tolerant (radial-basis

function and back-propagation networks) and the amount of time required to train

them, the nearest neighbor classifier was still chosen because it required no training.

However, to avoid the effect of noisy features, a local sequential forward search was

conducted on the set of original features and new features to select the best subset

of original and new features during the evaluation of every string. The effect of

noisy features could thus be eliminated and the search space was reduced. Without

sequential search, both the correct new features and the correct set of features must

be found at the same time using genetic algorithms, otherwise the usefulness of the

newly created features would not be apparent. With sequential search, good features

can be found one at a time and still have their usefulness not distorted by other

i

CHAPTER 5. FEATURE CREATION

Bit string describes the features

100101011010110

|

Decode the string to create new features

Combine new features and original features.
Pick the best feature subset through
forward sequential search

If the new feature is in the best
subset, keep its string intact,
else scramble its string

Return the newly modified string to the
population with the best feature subset
accuracy as the fitness value

Figure 5.1: A block diagram of the feature creation process in which local search is
used to eliminate features that are noise.

RK

5.3. EXPERIMENTS

noisy features. In cases where local search fails due to non-monotonicity, then the

correct features and correct set of features must be found simultaneously by genetic

algorithms.

5.3 EXPERIMENTS

5.3.1 The Parallel Vector Problem

Problem Description and Results

The artificial parallel vector problem described in the previous chapter was first used

as a test problem because higher order functions (slopes) are known to improve

performance. The starting point coordinates of the vectors were taken out of the

data set to reduce the size of the search space. Original features consisted of the four

dx and dy components of the vectors. In an experiment using the (+, -, *, /) operator

set, a population size of 200, and 300 training patterns, genetic algorithms successfully

found a useful set of features. In fact, genetic algorithms found a better set of features

than the slopes (dy; /dz, and dy,/dz;) that should be very good features. These slope

features with the nearest neighbor classifier provided a 6.7% error rate on the training

data. This compared favorably with the 18.7% error rate using only the four original

dx and dy features. It was also much better than the error rate obtained using

carefully tuned GMDH (13.3%) and radial-basis-function classifiers (8.3%) [11]. It

was clear that by having the correct features, the performance of classifiers could be

improved a great deal. Genetic algorithms, however, found the following set of new

features: dy,/dy;, and dz,/dz;.

The classification error rate using this set of features was 2.7% on the training

data. The reason for improved performance with these features is demonstrated in

RQ

CHAPTER 5. FEATURE CREATION

Figure 5.2 and Figure 5.3. Genetic search found regularity in the data which was

not at first apparent. The original data set was created with drl and dyl ranging

uniformly between -50 and 50, and then having dz; = kxdz,,dy; = k*dy,, k ranging

uniformly between 0.0 and 2.0. The slope can range from —oo to oo, with most

vectors clustering between -1 and 1. However, the features dy, /dy; and dz,/dz, were

bounded to be between 0.0 and 2.0. The parallel input patterns were thus clustered

more densely when dy,/dy; and dz,/dr, were used as features (Figure 5.3) instead

of using the slopes (Figure 5.2). This clustering improved the performance of the

nearest neighbor classifier.

Figure 5.4 shows the progress of genetic algorithms on the vector problem. The

curves shown are the average of 5 independent runs. The testing set performance is the

percentage correct rate on 100 test patterns that were not used by genetic algorithms

in finding new features. Good performance was achieved near recombination 1,500.

The total number of evaluations was (1,500 + 200) * 28 = 47,600, where 28 is the

number of evaluations required by forward sequential search. The number of possible

distinct solutions was 357,760 ((A2 + 3% K2 + 2x K)/6, K = 128). The expected

number of evaluations that were needed in a random search was half of that, 178,880.

Genetic algorithms took roughly 1/4 of the average number of evaluations required

in a random search. These 47,600 evaluations took 31 hours on a Sun 3/80.

5.4 SUMMARY

Genetic algorithms were used to create new high order polynomial features. Genetic

algorithms successfully found new features which reduced the error rate from 19%

to 3% on one artificial problem and were shown to be a promising search procedure

for finding higher order features. However, the amount of time required to utilize

90

5.4. SUMMARY

SCATTER PLOT OF TRAINING PATTERNS WITH SLOPE FEATURES
10 - =[

wf
A.

,Nr
aE.: EE rd In

: 0 Dogs 0
¥ 0 | 00g L En; 0 Ca YN Pri {Eh Che) |: re] te .

- FET: TeREH I]

Hitde

-]0 L iO
=17 0 - 10

Feature 1 (dy1/dx1)

Figure 5.2: Scatter plot of training patterns for parallel (+) and non-parallel (O)
vectors using slope features for the vector problem.

9]

0 =) 5

92 CHAPTER 5. FEATURE CREATION

SCATTER PLOT OF TRAINING PATTERNS WITH GENETIC

10 ALGORITHM FEATURES

0
0 !

Semmes mm mes em 5 cme fe mee

0
~ ' wr '

: a 0 Lr Ct er [Fl> I OJ EE
5 0. glam Chi a BEER rT mms

y CREE SE- 0= 0 RI HJ
£ SEE
< 0 LFiT + oli 0

8 femme eee Simos - Cn . met - a C= ——olo _. mee

=10 +
=10 T ~ TT

Feature 1 (dy2/dy1)

Figure 5.3: Scatter plot of training patterns for parallel (+) and non-parallel (O)
vectors using genetic algorithm features for the vector problem.

54. SUMMARY

CLASSIFICATION ERROR RATE DURING GENETIC SEARCH FOR THE VECTOR PROBLEM
30 ~ oT RE So

J

20 }-
‘

: I Population Average

0k

EE ~ Training Set

i a | Testing Set |
¢ _. 1000 3, 2000

Number of Recombinations

Figure 5.4: Creating features from original input features to provide better classifi-
cation accuracy for the parallel vector problem.

93

3 S500 "30

CHAPTER 5. FEATURE CREATION

this approach grows very quickly with the number of features. Even for the simple

problem presented in this chapter, run times were more than a day. Such times

are practical only for difficult problems when a good solution is essential. Shorter

run times achieved through parallelism or more powerful computers could make this

approach more practical.

04

Chapter 6

6.1 INTRODUCTION

The features created in the previous chapters had limited complexity. Each newly

created feature could only be composed of two original features, the exponent of each

original feature was limited to either one or two, and it was impossible to create

features from previously created features. There are cases, however, when it would

be useful to have more complex features than this allows. This chapter discusses

experiments in which increasingly more complex features could be created.

6.2 METHODS

The approach used to genetically search higher level features relied on a gradual

buildup of complexity over multiple stages. At each stage the complexity of created

features was limited. Once the accuracy of the classifier had converged at one stage,

another stage was begun where more complex high order features were allowed.

This improves generalization by creating simple features first and by creating more

complicated features only when simpler features are not satisfactory.

[t 1s difficult to define a condition that positively signals the successful completion

05

96CHAPTER 6. INCREASING THE COMPLEXITY OF CREATED FEATURES

of searching for good features of a limited complexity at one stage. The number

of recombinations since the last improvement in classifier accuracy was used as an

estimate of how well the search space has been explored during one stage. In the

beginning of the genetic search process, it is easy to find features which improve the

classifier accuracy, thus the number of recombinations since the last improvement is

frequently reset back to zero. After very good features have been found, it is increas-

ingly more difficult to find even better features, so the number of recombinations since

last improvement increases steadily, and eventually reaches a preset limit.

Once the limit is reached, the best features that were created thus far become

a part of the original feature set, and even newer features are created using the

original features and these previously created features. The complexity, or order, of

the created features can thus increase steadily. For example, suppose a necessary

feature is the sum of two created features. With this process, it is possible for this

feature to be created. Previously, with the limit on the complexity of the created

features, such features could not be created.

6.3 EXPERIMENTS

6.3.1 The Parallel Vector Problem

The parallel vector problem used to explore feature creation was again used. Fig-

ure 5.3 shows that with the right features, the parallel vector patterns are closely

clustered in the diagonal line from (0,0) to (2,2) in the feature space. The denser

one class of patterns clusters together, the less likely a nearest neighbor classifier will

make a mistake. It is therefore reasonable to assume that creating a new feature

consisting of the differences between the ratios may be a good feature. With this

6.3. EXPERIMENTS

feature, all parallel patterns would have a value of zero and cluster on one point.

Experiments were performed with a complexity interval limit set to 2,000, i.e.

the complexity of features created increased when there hadn’t been improvement in

classifier accuracy for 2,000 recombinations. The value of 2,000 was chosen since in

previous experiments, the ratio features were found within 2,000 recombinations. It

was therefore likely that when the complexity level is increased, the already created

features would be the correct ratio features. In other problems where the correct

setting is unknown, there would be a tradeoff between search thoroughness and

computation time.

Figure 6.1 shows the progress of the genetic search in finding more complicated

features. The ratio features were first found near recombination 700. After the error

rate had not changed for 2,000 recombinations, the complexity of the created features

was increased at recombination 2,700. At this point the two ratio features and the

four original features were treated as if they were six original features. The final

feature found after this point was (dz; * dy,)/(dz; * dy). Classification error rate for

the training set decreased to 0% with this feature. All parallel vector patterns have a

value of 1 for this feature and the whole parallel vector class has been clustered into

one point in the input feature space.

The classification error rate using the final created feature alone was 0% for for

both the training patterns and testing patterns. The original best classification error

rate was 3% for the training patterns and 0% for the testing patterns. This improve-

ment in training pattern performance was 3%, which is statistically significant. The

utility of the new feature can also be seen by observing the distribution of classes

provided by this feature as shown in Figure 6.2. Here it can be seen that all the

parallel vector patterns are on one point with feature value of one while most of

7

98CHAPTER 6. INCREASING THE COMPLEXITY OF CREATED FEATURES

CLASSIFICATION ERROR RATE WITH INCREASED FEATURE COMPLEXITY
FOR THE VECTOR PROBLEMne heA————————ry

20

&

3
E J. Population Average

Rd = : TT

ol

Training Set

Testing Set
one eee tre - 3— —

5 2000 3000

Number of Recombinations

Figure 6.1: Creating features out of created features to improve classification accuracy
for the parallel vector problem.

30

iC

1
' 1000 to 4000 S000

6.3. EXPERIMENTS

the non-parallel vectors are around 0. The separation between classes is thus very

distinct.

6.3.2 The Vowel Problem

The vowel database, originally collected by Peterson and Barney[15], was also used

to test feature creation. There were ten classes, each class being a word starting

with “h” and ending with “d”, with a vowel in between (“head”, “hid”, “hod”,

“had”, “hawed”, “heard”, “heed”, “hud”, “who’d”, and “hood”). The patterns were

collected from 67 speakers, including men, women, and children. A total of 338

patterns was used as the training set and 333 patterns were used as the testing set.

Each pattern consisted of two features which were the two formant frequencies of the

vowel determined by spectrographic analysis. A formant is a resonant frequency of

the speaker’s vocal tract. The two lowest formants were used in the database. Yuchen

Lee and Kenney Ng have also used this set of data to perform experiments on other

types of classifiers[10, 13].

A population of 200 was again used with selective pressure of 0.05, mutative

pressure of 0.25, and k of 5. In this experiment, all features were normalized within

the range of 0 to 1 by transforming the highest number within the feature to 1 and the

lowest number within the feature to 0. Results presented in Table 6.1 and Figure 6.3

show that classification error rates on both training and testing sets decreased as

genetic algorithms created more complex features. Three features (f, * fi, 1/f2,

and f?/f;) created near recombination 700 in addition to the second original feature

(f2) provided the lowest classification error rate during the first stage of creating

features (24.6% for the training set and 17.4% for the testing set). As a comparison,

classification error rates using only the original features are 27.2% for the training set

99

100CHAPTER 6. INCREASING THE COMPLEXITY OF CREATED FEATURES

HISTOGRAM OF THE DISTRIBUTION OF TRAINING PATTERNS
FOR THE PARALLEL VECTOR PROBLEM

Parallel
200 I 1

=
&

&
—
#

160 Nonparallel

i) ber = ———— .Hlrreee—Oo 5

((dy2/dy1) / (dx2/dx1))

Figure 6.2: Distribution of the training patterns belonging to parallel and non-parallel
classes when the feature ((dy2/dy;)/(dz2/dz)) is used for the parallel vector problem.

250

i. 10

6.4. SUMMARY

Table 6.1: Classification Error Rate for the Vowel Problem as New Features Are
Created.

Error Rate

Condition Train| Test . # of Features
Priginal 27.2%| 20% 2

After First Stage 24.6%|17.4%| 4 |
After Second Stage | 23.6%| 17.1%| Es |

and 20% for the testing set.

When additional complexity was allowed at recombination 3,100, two additional

higher order features (fZ * f2 and f¢/f}) were created where f3 is the first created

feature stored in the previous stage (f; * fi) and fs is another previously created

feature (fz/f2%). Using these two newly created features and the four features used

at recombination 700 results in the training set classification error rate of 23.6% and

the testing set classification error rate of 17.1%.

6.4 Summary

This chapter presented the results of using genetic search to gradually create more

complicated features after the created feature performance stabilizes. In the parallel

vector problem, a reduction of 3% in error rate was achieved. Genetic algorithms

also reduced classification error rate for the vowel problem. The gradual increase

of complexity allows the feature creation approach to be used on real problems.

The simpler fixed complexity approach was limited because the complexity of useful

features is often not known a prior: and might be too limited. Gradually increasing

complexity allows an incremental, albeit still limited, enlargement of the search space.

101

102CHAPTER 6. INCREASING THE COMPLEXITY OF CREATED FEATURES

CLASSIFICATION ERROR RATE WITH INCREASED FEATURE
COMPLEXITY FOR THE VOWEL PROBLEM

20 r=

——____TrainingSet20 -

| I Testing Set
Br rim EE
ai

or.
baEo10

=. SOY
o 2000 300 400 Sn 6(-

Number of Recombinations

Figure 6.3: Creating higher order polynomial features to reduce classification error
rate for the vowel problem.

x ’ L A 1
NN 1000 ONT NON O00 200

Chapter 7

EXEMPLAR SELECTION

7.1 INTRODUCTION

The performance of a k nearest neighbor classifier typically improves as more training

patterns are stored. This characteristic often makes a k nearest neighbor classifier

impractical because both classification time and memory requirements increase lin-

early with the number of training patterns[10]. A k nearest neighbor classifier with

many training patterns may thus need too much time or memory to provide real time

response.

Previous approaches to reducing the classification time of nearest neighbor classi-

fiers include using kd-trees and the Metric-Space Search Algorithm(AESA)[21]. Kd-

trees partition the input space so that not all training pattern distances need to be

calculated. The AESA creates a look-up table of intra-training-pattern distances

which also reduces the number of distance calculations required. Unfortunately, the

benefits of these approaches diminish dramatically when the input dimensionality is

high. A better way to reduce classification time of a k nearest neighbor classifier is to

directly reduce the number of training patterns stored. With fewer training patterns,

both classification time and memory requirement are reduced.

The number of exemplars stored can frequently be reduced a great deal without

sacrificing classification accuracy. For example, in Figure 6.2, there are actually

over 100 training patterns all with the value of 1 when only one would suffice. By

103

CHAPTER 7. EXEMPLAR SELECTION

carefully selecting training patterns, the number of training patterns can often be

reduced dramatically.

One sequential approach to selecting training patterns is called the condensed

nearest neighbor classifier[5]. This approach is outlined below:

1. Start with an empty set of training exemplars.

2. Select each individual training pattern sequentially.

3. Classify the selected training pattern using the current set of exemplar patterns.

If the pattern is classified incorrectly, keep the training pattern as an exemplar,

otherwise discard the training pattern.

4. Repeat steps 2 and 3 until all patterns have been selected.

One problem in using this approach is that it is biased. Training patterns evalu-

ated earlier are more likely to be included as exemplars. An alternative approach is

to use genetic algorithms to select the whole training set simultaneously. With this

approach the order of the training patterns does not affect the selection of training

patterns. Furthermore, if a given number of training patterns needs to be used

simultaneously in combination to improve classifier accuracy, the genetic algorithm

search procedure is more likely to find the group than a simple sequential search.

This is similar to the feature selection problem when two individually good features

would not necessarily be a good set of features.

104

7.2. METHODS

7.2 METHODS

7.2.1 Using Bonus to Reduce the Number of Patterns

The original feature selection and creation program was enhanced with the capability

of selecting training set patterns. Each bit in a string identified whether a particular

training pattern was used. To reduce the number of training patterns used, a “bonus”

system similar to the one described in section 4.2.2 was again used. The bonus was

calculated according to how many patterns were not used. A string received a bonus

of one point for each pattern that it did not use. There were two bonus policies, “only-

the-best” and “bonus-above-the-threshold.” With the “only-the-best” policy, bonus

was only given to the training set with the highest classifier accuracy. This policy

ensured that classifier accuracy was not sacrificed to reduce the number of training

patterns. With the “bonus-above-the-threshold” policy, all training sets with classifier

accuracy above a user-preset threshold received bonus points. The choice between

these two policies depends on the tradeoff desired between classification accuracy and

number of training patterns used. In general, the “bonus-above-the-threshold” policy

results in a smaller number of stored exemplars, but does not provide the highest

classification accuracy.

7.2.2 Using Genetic Algorithms to Select k

The number of training patterns also depends on the value k, the number of nearest

neighbors that are polled. For example, if k is 1, then a testing pattern would be

classified correctly as long as its nearest neighbor belongs in the correct class. On the

other hand, if k is 7, then a testing pattern would be correctly classified only when a

majority of its nearest seven neighbors are in the right class. As k increases, the need

105

CHAPTER 7. EXEMPLAR SELECTION

for training data also increases. But there are cases when it’s worthwhile to have a

large k. It has been shown that with infinite amount of training patterns, accuracy

increases as k increases[5].

There 1s thus a tradeoff between classifier accuracy and the number of training

patterns required when the value k is chosen. For a given problem, there is generally

no way of determining the proper value of k besides performing experiments. Since

the choice of k affects both the number of training patterns required and classifier

accuracy, the option of using genetic algorithms to select the value for k£ was added

to the genetic search algorithm.

The k value was encoded with three bits, thus k could vary from 1 to 8. These

three bits were attached to the end of each string and were separate from the other

bits that identified the usage of the training patterns. The whole combined string

was manipulated as before. Besides separate treatment in decoding, there was no

differentiation between the k bits and the pattern status bits when the string was

processed.

7.3 EXPERIMENTS

7.3.1 The Vowel Problem

Exemplar selection was tested using the vowel database described in Section 6.3.2.

This database was chosen because it was a real problem with complicated boundaries

between classes, it was thus more challenging to reduce the number of training

patterns without sacrificing classification accuracy. Also, there were only 338 training

patterns, the number of bits managed by genetic algorithms was therefore manage-

106

able.

7.3. EXPERIMENTS

The number of strings used in the population was set to 500. A uniform crossover

operator was used with the mutative pressure value set to 0.25 and the selective

pressure value set to 0.10. The uniform crossover operator performed quite well at

this setting for the linear guessing problem (Table 2.10), so it was decided to try using

it for this problem. Since each run of the program took about one day of computation

time, it was impossible to perform a significant comparison between different settings

of operators, selective pressure, and mutative pressure. Judging from the experience

gained in performing initial exploratory experiments described in Chapter 2, it is

unlikely for any setting to be an order of magnitude better than other settings.

Figure 7.1 shows the progress of genetic reduction of exemplars with ¥ = 1 and

“only-the-best” policy. After the initial evaluation of the 500 strings, the number of

exemplars is already reduced to 160. Then, by recombination 20,000, the number of

exemplars is reduced to 101. The training set classification error rate decreased to

12.3% while the testing set classification error rate stayed above 24.3%.

In previous studies[10] best recognition accuracy was provided when k was set

to 8. Experiments were performed with k set to 8 as shown in Figure 7.2. As

mentioned previously, a k nearest neighbor classifier with large k should require more

data to perform well, so the number of exemplars probably can’t be reduced as much.

Figure 7.2 illustrates this point. At recombination 30,000, the number of exemplars

was reduced to 147. This is 46 more exemplars than in the last experiment. The

training set classification error rate was 14.5% while the testing set classification

error rate was lower, 20.7%.

The other fitness policy, “bonus-above-the-threshold”, was also tried. With this

policy, once the performance above the threshold had been achieved, the goal of

the genetic search became reducing the number of exemplars as much as possible.

107

CHAPTER 7. EXEMPLAR SELECTION

A greater reduction in exemplars should be expected. Figure 7.3 illustrates the

reduction of stored exemplars with the bonus above the threshold policy, k of 1,

and the threshold of 80%. The number of stored exemplars was reduced to 43 by

the end of the experiment. Using a higher k would result in a higher value, since

more exemplars are needed to correctly identify each input pattern. As shown in

Figure 7.4, such results were indeed obtained with £ = 8. While the classification

error rate on the training set fluctuated below 20%, the preset threshold, the number

of exemplars was steadily reduced to 79.

Section 7.2.2 described the process of using genetic algorithms to select both &

and the exemplars. Two experiments were performed using this approach, one with

the “only-the-best” policy and the other with the “bonus-above-the-threshold” policy.

Figure 7.5 shows the result of the experiment with the “only-the-best” bonus policy.

At recombination 30,000, the number of exemplars was reduced to 146, k was selected

to be 7, and the training and testing classification error rate were 14.5% and 21.3%

respectively.

The number of exemplars was again greatly reduced by using the “bonus-above-

the-threshold” policy with the threshold of 80%. Figure 7.6 illustrates the search.

The number of exemplars was reduced to 63 while 6 was chosen for k. The training

set classification error rate of 18.9% stayed barely below 20% as expected. The testing

set classification error rate was 20.1%.

Figures 7.7 and 7.8 illustrate the difference in decision boundaries when the 43

stored exemplars chosen with genetic algorithms were used instead of all 338 exem-

plars. The decision boundaries in Figure 7.8 are smoother and generalize well with

new data. On the other hand, using all 338 exemplars creates decision boundaries

(Figure 7.7) that provided perfect performance on the training patterns but performed

108

7.3. EXPERIMENTS

(a) CLASSIFICATION ERROR RATE FOR THE VOWEL PROBLEM
Cae —— 3

Testing Set _
Fl Baan Semen

1 : rh ratar i
_ 20 - er pT w/
®
z i
} yn Training Set
E TT -——
m 0k

on 1 1 1 a

(b) NUMBER OF EXEMPLARS USED BY A K-NN CLASSIFIER
400 - TT TO TT TT

350 + Initial Number of Exemplars

? 300 | =

7250 |
200 |- i

2 150]
ER Number of Exemplars Used

2 100 SR EN

50 - _

ol re
0 5000 10000 15000 20000 25000

Number of Recombinations

Figure 7.1: Progress of genetic reduction of exemplars for the vowel problem with
k = 1 and “only-the-best” bonus policy, (a) classification error rate, and (b) the
number of exemplars used.

109

30

CHAPTER 7. EXEMPLAR SELECTION

‘ (a) CLASSIFICATION ERROR RATE FOR THE VOWEL PROBLEM
30 ——— Sa ~ - er

Testing Set

20 PRs ATR Ta A° | b SC
S

& Training Set
. “rr—— Ep —

EZo

ok. A= HA. Ll. Ml

(b) NUMBER OF EXEMPLARS USED BY A K-NN CLASSIFIER
400 - Tas on oo

350 Initial Number of Exemplars i

5300 F

= 250 + :

. 200 | Number of Exemplars Used z

§
Z 100

50 -

0 Lo So rt
0 Io 10000 15000 20000 25000 30000

Number of Recombinations

Figure 7.2: Progress of genetic reduction of exemplars for the vowel problem with
k = 8 and “only-the-best” bonus policy, (a) classification error rate, and (b) the
number of exemplars used.

110

7.3. EXPERIMENTS To

2 (a) CLASSIFICATION ERROR RATE FOR THE VOWEL PROBLEM
- #-— T° - =v ToT 1 =

1 A A J 1 apy ro
Cao WNrT A TT
I

c
10 | Training Set

Testing Set

ol | fled le L

(b) NUMBER OF EXEMPLARS USED BY A K-NN CLASSIFIER
400 - — |

350 t- Initial Number of Exemplars ~

250|
©200 |

150
£
2 100 -

: Number of Exemplars Used

0 a FO piggmy ee LS i

0 STOO 10000 15000 20000 25000
Number of Recombinations

Figure 7.3: Progress of genetic reduction of exemplars for the vowel problem with
k = 1 and “bonus-above-the-threshold” policy, (a) classification error rate, and (b)
the number of exemplars used.

rs

nC

C0

CHAPTER 7. EXEMPLAR SELECTION

(a) CLASSIFICATION ERROR RATE FOR THE VOWEL PROBLEM
: — |

Pl To oR TRE

& \ =p? hn
a
E
im

10 Training Set

Testing Set

oL L 1 LO

(b) NUMBER OF EXEMPLARS USED BY A K-NN CLASSIFIER
400 ~ PERRET Tf se—ee———

350 - Initial Number of Exemplars i}

7 300

£250
t8 200
bid ;

> “
bet 150 3 5

Z

2 100 “ee Numberof Exemplars Used
50 _

0 i I a _

0 SU) 10000 15000 20000 25000 30000
Number of Recombinations

Figure 7.4: Progress of genetic reduction of exemplars for the vowel problem with
k = 8 and “bonus-above-the-threshold” policy, (a) classification error rate, and (b)
number of exemplars used.

41)

30

7.3. EXPERIMENTS ’

poorly on the testing patterns (25%). By carefully choosing exemplars, even using

a low value of k can provide low classification error rate. Selecting a good set of

exemplars can thus allow the use of a low k, with the benefit of shorter classification

time.

Table 7.1 summarizes the results of using genetic algorithms to select exemplars.

Using k of one resulted in lowest testing set accuracy. Using larger k resulted in

better and approximately equal testing set accuracies. However, the training set

performance differed according to the bonus policy used. If “only-the-best” policy

was used, then training set classification error rate was about 15%. With “bonus-

above-the-threshold” policy and a threshold of 80%, the training set classification

error rate was just below 20%. By using the “bonus-above-the-threshold” policy,

the number of exemplars was reduced by roughly a factor of 2 more than using the

“only-the-best” policy. This result suggests that the “bonus-above-the-threshold” is

the proper policy to use for reducing the number of exemplars.

Using genetic algorithms to select k resulted in classifiers that required fewer

exemplars while providing the same classification accuracy. This result suggests that

genetic algorithms can be used to select k without problems.

Ng recently studied the effectiveness of the condensed k nearest neighbor classifier,

described in Section 7.1, on this problem as well[13]. With k£ = 8, he obtained a stored

exemplar set with 152 exemplars. The classification error rates on the training set and

the testing set were 26.3% and 21.0% respectively. The number of exemplars is much

larger than 43 obtained by using the genetic algorithms approach. Furthermore, since

these 43 exemplars offered better classification performance while using only a k of 1,

a k nearest neighbor classifier using these exemplars would require less time due to

using both fewer exemplars and lower k value. The genetic approach however took

1.33

CHAPTER 7. EXEMPLAR SELECTION

30 (a) CLASSIFICATION ERROR RATE FOR THE VOWEL PROBLEM
- TT TT — 1 — 171

A Testing Set
rm PVFem me

o 20 panded -
!

= Training Set

5 10

pil. AL_NY(b) NUMBER OF EXEMPLARS USED BY A K-NN CLASSIFIER
400 —~—- — —— pe350 + Initial Number of Exemplars~~.= 300 | -

4 250 }

200
- Hoey a ee Number of Exemplars Used

£
Zz 100 + -

50 I 5

0 L _ _ ce sh, me torr :

0 S00 10000 15000 20000 25000 30000
Number of Recombinations

Figure 7.5: Progress of genetic reduction of exemplars for the vowel problem with k
selected by genetic algorithms to be 7 and “only-the-best” bonus policy, (a) classifi-
cation error rate, and (b) the number of exemplars used.

114

!

TOW

7.3. EXPERIMENTS

, (a) CLASSIFICATION ERROR RATE FOR THE VOWEL PROBLEM
30) r i 1 |

A i en
20 bj WN ~ rT } f= Sh ey rd tree

10 L Training Set

Testing Set

0 a L +

(b) NUMBER OF EXEMPLARS USED BY A K-NN CLASSIFIER
400 ~ Ee “ro - - Ee “T

350 + :

-- 300 Initial Number of Exemplars -

2250 i

“200F
: J
© 150 p Number of Exemplars Used -

3 100 |- [ea fre)

0 ES
0 SUI 10000 15000 20000 25000 30000

Number of Recombinations

Figure 7.6: Progress of genetic reduction of exemplars for the vowel problem with k
selected by genetic algorithms to be 6 and “bonus-above-the-threshold” policy, (a)
classification error rate, and (b) the number of exemplars used.

115

“re

CHAPTER 7. EXEMPLAR SELECTION

4000 DECISION BOUNDARIES FOR THE VOWEL PROBLEM, K=1 AND 338 EXEMPLARS

3000 — J a [J head
3 A X3 ion |ANA 1S A hid

2 ACR :fs Be so + ho
2000 - LALIT AC gr 2 XT bt

A AA 2
i I X x Ae hawed7 - +] } el

: [15 i TEX OC _ V heard
wo (1Z re \7 4 0 oo ’

- os ET C A + > heed
7s Tas O 4A] OoYi . VV Oona -l hud
UAE SAH

} bie pd ; \ who'd
0 5 LE 5 = .

7 ¢ 2 < hood

et, . . fs ;
; , "ng

= >. LL
RRs

soo Yo - _

0 500
BIC

Figure 7.7: Decision boundaries of a nearest neighbor classifier for the vowel problem,
k = 1 and 338 exemplars.

116

2 =

ne

F 1000 1400
Hp)

7.3. EXPERIMENTS ys

4000 DECISION BOUNDARIES FOR THE VOWEL PROBLEM, K=1 AND 43 EXEMPLARSDH ORAMIdh3000 [J head

alg A hid
' 0 J
: 3 + hod

2000 := 7 ~ x had
‘ hawedw/o

¢ vy > V heard
Fz (Hz) ' Ao) -

~ Yel NR : > heed
’ Yt + O hud

wt a
3 A who’d

1000 Y ~o
£ hood

500 L

Figure 7.8: Decision boundaries of a nearest neighbor classifier for the vowel problem,
k = 1 and 43 exemplars selected using genetic algorithms.

Lad

a

| u S00 1000 1400

¥1 (Hz)

CHAPTER 7. EXEMPLAR SELECTION

Table 7.1: Summary of Using Genetic Algorithms to Select Exemplars.

Error Rate

Ko Bonus Policy Train | Test | Number of Exemplars
J Only the Best | 12.4%| 24.3% | 101

1 | Above the Threshold | 19.2% | 20.4% | 43 |

8 Only the Best , 14.5% | 20.7% YT— at mint om or —— eee = ———

8 | Above the Threshold = 19.5% | 20.1% . 79

7 eal. Only the Best 14.5% 21.3% 146 |6 (GA)|AbovetheThreshold18.9%|20.1%63|two orders of magnitude longer than the condensed nearest neighbor approach (19,600

seconds versus 180 seconds). For a problem where reducing the number of exemplars

is important, the genetic approach may be well worth the extra time required.

7.4 SUMMARY

Genetic algorithms were used to reduce the number of exemplar patterns required by a

k nearest neighbor classifier. In experiments using a vowel database with 338 training

patterns, genetic algorithms reduced the number of stored exemplars to 43 without

significant loss of classification performance. Such results are much better than

those obtained using the simpler condensed k nearest neighbor algorithms. Based

on the success achieved with this problem, it is expected that genetic algorithms can

efficiently reduce the number of training patterns for other types of problems.

118

Chapter 8

CONCLUSIONS

Genetic algorithms were applied to both feature selection, feature creation, and

exemplar selection for various pattern recognition problems. In all cases, genetic

algorithms were able to find good solutions with far fewer evaluations than the

number required by an exhaustive search. In the case of feature selection, it was found

that simpler search procedures such as sequential forward and backward search were

equally effective on low dimensionality problems while requiring much less computa-

tion. Genetic algorithms were competitive when the dimensionality of the problem

was large, such as with the TI 46 word problem. When used for feature creation,

genetic algorithms successfully found good features which reduced the classification

error rate from 18.7% to 2.7% on the parallel vector problem. By increasing created

feature complexity, features were found which provided 0% error rate on this problem.

Using genetic algorithms to reduce the number of exemplars was also fruitful, with

the number of exemplars reduced by more than a factor of 8 without substantial

increasing classification error rate for the vowel problem.

Although genetic algorithms proved useful for feature selection, feature creation,

and exemplar reduction, this approach required long computation times. A compu-

tation time of days may not be acceptable for some applications. However, genetic

algorithms can be easily adapted to parallel machines to reduce run times. Even

single processor machines are becoming increasingly more powerful, making genetic

algorithms more practical for feature selection and exemplar reduction. Also, ge-

119

CHAPTER 8. CONCLUSIONS

netic algorithms proved to be a good search technique which is widely applicable

in pattern classification. Compared to tailoring a special search technique for each

type of searching problem, genetic algorithms offer the benefit of simplicity and good

performance on all problems.

More research is needed in quantifying the relationship between the parameters

of genetic algorithms and the problem size and problem type. Better measurements

of population convergence and optimality are also needed. Lastly, more experiments

need to be performed on other real problems to fully characterize the effectiveness

of genetic algorithms and understand their performance compared to other search

techniques.

120

Bibliography

[1] R. Bellman. Adaptative Control Processes: A Guided Tour. Princeton University

Press, Princeton, NJ, 1961.

[2] M. Brady. Optimization strategies gleaned from biological evolution. Nature,

vol. 317, 1985.

[3] C.Y. Chang. Dynamic programming as applied to feature selection in pattern

recognition systems. IEEE Trans. Systems, Man and Cybern., 3:166-171, 1973.

[4] T. M. Cover. The two best measurements are not the best two. IEEE Trans. on

System, Man, and Cybernetics, SMC-4:116-117, 1974.

5] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John

Wiley and Sons, New York, 1973.

[6] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,

New York, NY, 1972.

[7] A.S. Gevins and N. H. Morgan. Ignorance-based systems. In Proceedings IEEE

International Conference on Acoustics, Speech and Signal Processing, pages

39A.5.1 - 39A.5.4, New York, NY, April 1984.

8] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, New York, 1989.

19] William Y. Huang and Richard P. Lippmann. HMM speech recognition systems

with neural net discrimination. In proceedingss Neural Information Processing

1921

BIBLIOGRAPHY

Systems - Natural and Synthetic Conference, Denver, CO, November 1989. IEEE.

In Press.

[10] Yuchun Lee. Classifiers: Adaptive modules in pattern recognition systems.

Master’s thesis, Massachusetts Institute of Technology, Department of Electrical

Engineering and Computer Science, Cambridge, MA, May 1989.

[11] R. P. Lippmann. Pattern classification using neural networks. IEEE Communi-

cations Magazine, 27(11):47-54, November 1989.

[12] P. M. Narneda and K. Fukunaga. A branch and bound algorithm for feature sub-

set selection. In Proceedings Cybernetics and Society International Conference,

Wash. D.C., Washington, DC, 1976.

[13] Kenneth Ng. A comparative study of the practical characteristics of neural

network and conventional pattern classifiers. Master’s thesis, Massachusetts

Institute of Technology, Department of Electrical Engineering and Computer

Science, Cambridge, MA, May 1990.

[14] T. Parsons. Voice and Speech Processing. McGraw-Hill, New York, 1986.

[15] Gorden E. Peterson and Harold L. Barney. Control methods used in a study of

vowels. The Journal of the Acoustical Society of America, 24(2):175-84, March

1952.

[16] S. Renals and R. Rohwer. Phoneme classification experiments using radial basis

functions. In Proceedings International Joint Conference on Neural Networks,

pages [.461-1.467, Washington DC, June 1989. IEEE.

[17] W. Siedlecki and J. Sklansky. On automatic feature selection. International

Journal of Pattern Recognition and Artificial Intelligence, 2:197-220, 1988.

122

BIBLIOGRAPHY

[18] W. Siedlecki and J. Sklansky. Constrained genetic optimization via dynamic

reward-penalty balancing and its use in pattern recognition. In Proceedings Third

International Conference on Genetic Algorithms, Washington, DC, June 1989.

[19] W. W. Siedlecki. Feature Selection for Large Scale Problems. PhD thesis,

University of California at Irvine, 1989.

[20] Manoel F. Tenorio and Wei-Tshi Lee. Self organizing neural networks for the

identification problem. In D. S. Touretzky, editor, Advances in Neural Infor-

mation Processing Systems 1, pages 57-64. Morgan Kauffman, San Mateo, CA,
{4

[21] Enrique Vidal, Hecor Rulot, Francisco Casacuberta, and Jose-Migues Benedi. On

the use of a metric-space search algorithm (AESA) for fast dtw-based recognition

of isolated words. [EEE Trans. on Acoustics, Speech, and Signal Processing,

ASSP 36-5:651-660, 1988.

22] Darrel Whitley. The GENITOR algorithm and selection pressure: Why rank-

based allocation of reproductive trials is best. In Proceedings Third International

Conference on Genetic Algorithms, Washington, DC, June 1989.

23] Darrel Whitley. Optimizing neural networks using faster, more accurate genetic

search. In Proceedings Third International Conference on Genetic Algorithms,

Washington, DC, June 1989.

123

JQ

