
MIT Open Access Articles

Rigid foldability is NP-hard

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Akitaya, Hugo A. et al. “Rigid foldability is NP-hard.” Journal of Computational
Geometry, 11, 1 (2020): 93-124 © 2020 The Author(s)

Persistent URL: https://hdl.handle.net/1721.1/128807

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/128807
https://creativecommons.org/licenses/by/4.0/

JoCG 11(1), 93–124, 2020 93

Journal of Computational Geometry jocg.org

RIGID FOLDABILITY IS NP-HARD

Hugo A. Akitaya,∗Erik D. Demaine,†Takashi Horiyama,‡Thomas C. Hull,§ Jason S. Ku,¶

and Tomohiro Tachi‖

Abstract. We prove NP-hardness of deciding rigid foldability, that is, whether a sheet of
material can be folded by bending only at prescribed creases while all regions between the
creases undergo a rigid motion, like rigid plates connected at hinges. First, given a degree-4
flat-foldable crease pattern, deciding whether exactly those creases can be flexed (with every
specified crease bending nontrivially), up to a given ε accuracy, is weakly NP-complete by a
reduction from Partition. Second, given a crease pattern, deciding whether there is a rigid
folding bending at any nonempty subset of those creases (i.e., where each crease is optional)
is strongly NP-hard by a reduction from Positive 1-in-E3 SAT. Both results hold when just
looking for a small motion adjacent to the unfolded 2D state, where there is no potential
for self-intersection of the material. Thus our results are quite unlike existing NP-hardness
results for flat foldability of crease patterns, where the complexity originates from finding a
layer ordering that avoids self-intersection. Rather, our hardness proofs exploit the multiple
combinatorial behaviors of rigid foldings locally at each vertex. These results justify why
rigid origami has been so difficult to analyze mathematically, and help explain why it is often
harder to fold from an unfolded sheet than to unfold a folded state back to 2D, a problem
frequently encountered when realizing folding-based systems such as self-folding matter and
reconfigurable robots.

Keywords. rigid origami, computational complexity, crease pattern

1 Introduction

Informally, rigid origami consists of rigid polygonal panels connected at rotational edge
hinges; refer to Figure 1. Given such an assembly, a rigid folding motion is a continuous
deformation that just translates or rotates each panel (thus not deforming each panel, folding
only at the hinges) and that maintains connectivity at the hinges (thus not pulling apart
two hinged-together panels). Rigid foldability is the problem of deciding whether a given

∗Department of Computer Science, Carleton University, Ottawa, Canada, hugoakitaya@gmail.com
†Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vas-

sar St., Cambridge, MA 02139, USA, edemaine@mit.edu
‡Faculty of Information Science and Technology, Hokkaido University, N14W9, Kita-ku, Sapporo,

Hokkaido, 060-0814, Japan, horiyama@ist.hokudai.ac.jp
§Department of Mathematics, Western New England University, 1215 Wilbraham Road, Springfield, MA

01119, USA, thull@wne.edu
¶Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77

Massachusetts Ave., Cambridge, MA 02139, USA, jasonku@mit.edu
‖Department of General Systems Studies, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo

153-8902, Japan, tachi@idea.c.u-tokyo.ac.jp

http://jocg.org/
hugoakitaya@gmail.com
edemaine@mit.edu
horiyama@ist.hokudai.ac.jp
thull@wne.edu
jasonku@mit.edu
tachi@idea.c.u-tokyo.ac.jp

JoCG 11(1), 93–124, 2020 94

Journal of Computational Geometry jocg.org

 Mountain Valley Not in use

Figure 1: Left: a single vertex origami that is rigidly foldable using all creases. The pattern
can be folded using all creases (top) as well as using a subset of creases (bottom). Right: a
single vertex origami that is rigidly foldable with optional creases, but not using all creases.

rigid origami has any such motion, other than a trivial global translation or rotation (which
does not rotate any of the hinges).

Practically, rigid origami is a mechanism whose flexibility does not rely on irreversible
deformation of materials; it relies only on rotations around predefined hinges. It therefore has
broad applications in different fields with various materials at different scales, for example,
self-folding mechanisms of microscopic material [27], foldable packaging [9], transformable
adaptive architecture with thick panels [29], and deployable space structures [26].

Despite its usefulness, we have few general mathematical results about rigid foldabil-
ity. We have an efficient characterization of rigid foldability for single-vertex crease patterns
(where all creases/hinges emanate from a common vertex) [1], and positive results for certain
families of crease patterns [28]. But there is no efficient characterization or hardness result
for characterizing rigid foldability of arbitrary crease patterns. This status is in contrast
to flat foldability (deciding whether a given crease pattern can be instantaneously folded
into a flat state that bends all creases by ±180◦, ignoring folding motions), which has been
well-studied since the first paper on computational origami [5]: we have an efficient charac-
terization of flat foldability for single-vertex crease patterns [19, 11], and NP-hardness for
general crease patterns [5, 3] even when the crease pattern is a subset of a square grid with
diagonals [3].

Our objective is to determine the computational complexity of rigid foldability for a
general crease pattern on a planar sheet of material (defined by a planar graph drawn with
noncrossing straight-line edges on a polygon of material). Specifically, we distinguish and
analyze two types of rigid foldability:

Rigid foldability with optional creases: As described informally above, a rigid folding
motion of a crease pattern is a continuous transformation of the sheet of material (i.e.,
a continuous mapping from points on the material and times in [0, 1] to points in R3)
that is extrinsically isometric (a rigid-body motion of R3) when restricted to each face
of the crease pattern (region outlined by creases and/or material boundary). A crease
pattern is rigidly foldable with optional creases if it has a rigid folding motion that is
not a global rigid-body motion of R3.

http://jocg.org/

JoCG 11(1), 93–124, 2020 95

Journal of Computational Geometry jocg.org

Which creases? Crease pattern family Precision Lower bound Upper bound
Optional creases General Exact Strongly NP-hard ∃R
Optional creases Degree-4 flat-foldable Exact NP
Optional creases Degree-4 flat-foldable Finite precision Weakly NP-hard NP
All creases General Exact ∃R
All creases Degree-4 flat-foldable Exact NP
All creases Degree-4 flat-foldable Finite precision Weakly NP-hard NP

Table 1: Summary of our results.

Rigid foldability using all creases: A crease pattern is rigidly foldable using all creases
if there is a rigid folding motion such that the fold angle at every crease strictly changes
(increases or decreases) throughout the entire motion.

For example, the single-vertex crease pattern in Figure 1, left, can be rigidly folded along
the line of two creases (leaving two creases unfolded), but also in a different mode that folds
along all four creases. Thus it is rigidly foldable using all creases. On the other hand, the
single vertex with four perpendicular lines in Figure 1, right, can rigidly fold along either
a vertical or horizontal line, but cannot fold using all four creases. So it is rigidly foldable
with optional creases, but not using all creases.

Abel et al. [1] gave a simple and efficiently checkable necessary and sufficient condi-
tion for single-vertex rigid foldability using all creases. The conjunction of this single-vertex
condition locally at every vertex in a general crease pattern leads to a necessary but, sadly,
insufficient condition for general rigid foldability: as we will see, the combination of multiple
vertices induces a global constraint system of folding speeds.

In this paper, we prove one NP-completeness result and one NP-hardness result about
deciding rigid foldability of a general crease pattern in the two models described above; refer
to Table 1. First, for the special case of degree-4 flat-foldable crease patterns, we prove in
Section 2 that both rigid foldability problems are in NP, even in newly introduced finite-
precision variations where we ask for an “approximate” rigid folding motion (up to some
error/accuracy ε, and assuming zero-thickness paper). Next, we show in Section 3 that
deciding finite-precision rigid foldability of a given degree-4 flat-foldable crease pattern using
all creases is weakly NP-hard, by a reduction from Partition, and thus weakly NP-complete.
Finally, we show that deciding (exact) rigid foldability with optional creases is strongly NP-
hard, by a reduction from Positive 1-in-E3 SAT in Section 4. Unlike flat foldability whose
complexity [5, 3] originates from the difficulty of layer ordering and possible self-intersection
of the material, we show that rigid foldability is hard even for small motions from a planar
state where there is no potential self-intersection. Rather, the complexity of rigid foldability
comes from the combinatorial behavior of the different possible rigid folding configurations
at each vertex (such as the two modes in each of Figure 1, left and right).

Our results help explain why it is harder to fold from an unfolded sheet of material
than to unfold a folded state back to a plane, a problem frequently encountered when
realizing rigid folding systems such as self-folding matter and reconfigurable robots [27,
16]. Real-world folding systems face the challenge of how to actually execute a specific
rigid folding motion, as the flat state in particular is a singular point in the configuration

http://jocg.org/

JoCG 11(1), 93–124, 2020 96

Journal of Computational Geometry jocg.org

space having multiple incident rigid folding motions [30]. Usually these folded states are
distinguished by different mountain–valley and mode assignments; our results show that
finding even one valid such assignment is computationally intractable.

2 Rigid Origami Basics

Before diving into our hardness results, we start with basic definitions and simple results
for rigid origami.

2.1 Mathematical Model

First we define a formal model of rigid folding, using the standard concept of isometric
foldings as introduced by Robertson [25]; see also [11]. For simplicity, our definitions allow
self-intersection (which cannot occur in small foldings from an unfolded state).

Definition 2.1 (Crease Pattern and Isometric Folding). Given a manifold M with or with-
out boundary (representing the material, e.g., M ⊆ R2), a crease pattern is a set C ⊂ M
partitioningM into a finite cell complex. Given two manifoldsM,N with or without bound-
ary (e.g., N = R3), an isometric folding (or folded state) is a piecewise-differentiable function
f : M → N if f maps any curve in M to an equal-length curve in N . Such an isometric
folding is necessarily continuous. If dimM = dimN = 2, we call f a flat folding (although
higher dimensions for dimM = dimN are possible; see [25]). Any isometric folding f defines
the set C(f) ⊆ M of points where f is not differentiable; assuming f is finitely-piecewise
differentiable, C(f) is a crease pattern called the folded crease pattern of f . We call f a
folding of C if C(f) ⊆ C.

Definition 2.2 (Rigid Origami Folded State). Let f : M → R3 be an isometric folding
where M ⊂ R2 is a closed polygon (representing the sheet of material) and the folded crease
pattern C(f) is a planar straight-line finite graph embedded on M . If each 2-cell of C(f)
maps via f to a polygon in R3, then we call f a rigid origami folded state.

Let C ⊇ C(f) be a crease pattern on M . We call f a rigid origami folded state of C.
Each interior 1-cell ci of C is called a crease line, and its fold angle ρi is the signed angle
between the normal vectors of the two polygons to which f maps the two 2-cells incident to
ci. We call ci a valley (respectively mountain) crease if ρi > 0 (respectively ρi < 0). The
information of which creases are mountain (M) and which are valley (V) can be thought of
as a mapping from the crease lines to the set {M,V, 0}, which is called the mountain–valley
assignment of the rigid origami folding. The label “0” is reserved for the case of optional
creases which have a fold angle of ρi = 0.

Let Rci(ρi) denote the rotation matrix in R3 about a crease line ci ∈ C by angle ρi
if we imagine M to be embedded in the xy plane of R3. Now let γ be any simple, closed,
vertex-avoiding curve drawn on M that crosses, in order, the crease lines c1, c2, . . . , cn in C.
A necessary condition for f to be a rigid origami folding is

Rc1(ρ1)Rc2(ρ2) · · ·Rcn(ρn) = I (1)

http://jocg.org/

JoCG 11(1), 93–124, 2020 97

Journal of Computational Geometry jocg.org

for all such curves γ (see [4]). In fact, this condition is also sufficient [20].

Definition 2.3 (Rigid Folding Motion and Configuration Space). A rigid folding motion of
a crease pattern C is a continuous function (homotopy) F : M × [0, 1] → R3 such that, for
any fixed t ∈ [0, 1], the map ft : M → R3 defined by ft(x) = F (x, t) is a rigid origami folded
state of C. We call F a rigid folding motion from f0 to f1.

Equivalently, a rigid folding motion of C is a path in the configuration space consisting
of all rigid origami folded states of C. Fixing one 2-cell of C in R3 to prevent global translation
and rotation, the configuration space can be parameterized by the vector v of fold angles of
the crease lines of C.

2.2 Computational Model

To formally state the computational problems we consider, we need to deal with the limi-
tation of digital computers which cannot exactly represent real numbers. Thus, we need to
specify a finite digital representation of crease patterns, and we may need to tolerate some
error in deciding whether a rigid motion is actually valid. For now, we define exact versions
of the problems (with no error), and leave approximate versions for Definition 2.11.

Definition 2.4 (Rigid Foldability from Flat State). We define two decision problems. In
both cases, we are given a straight-line planar graph drawing G on a polygon M ⊂ R2,
where all vertex coordinates are specified by rational numbers.

1. Rigid foldability using all creases: Is there a rigid folding motion from the trivial
(unfolded) folding f = identity to an isometric folding g : M → R3 (f 6= g) whose
homotopy Ht satisfies C(Ht) = G for all t ∈ (0, 1] and every fold angle of the crease is
strictly increasing or strictly decreasing?

2. Rigid foldability with optional creases: Is there a nonempty subset G′ ⊂ G with a
positive (“yes”) answer to the rigid foldability problem using all creases in G′?

2.3 Degree-4 Flat-Foldable Vertex

The building block of our constructions is the degree-4 flat-foldable vertex, a crease-pattern
vertex with four creases ci (i = 0, 1, 2, 3 mod 4) in counterclockwise order with supplemen-
tary opposite sector angles, i.e.,

(θ0,1, θ1,2, θ2,3, θ3,0) = (α, β, π − α, π − β)

(0 < α, β < π) where θi,i+1 is the sector angle between creases ci and ci+1. Recall that
ρi denotes the fold angle of crease ci. The supplementary opposite sector angles satisfy
Kawasaki’s Theorem [22] and thus the vertex is flat-foldable, meaning that it has a folded
state where the fold angles of the creases are all ±π.

This type of origami vertex is known to satisfy the interesting and useful property
that tangent of half fold angles tan ρi

2 = ti are proportional to each other [7, 17, 12, 28].
Since this result is fundamental to our main result, we present an explicit proof not given
in the references.

http://jocg.org/

JoCG 11(1), 93–124, 2020 98

Journal of Computational Geometry jocg.org

ρ1=−ρ3

ρ2=ρ0

ρ3

ρ0α
β π−β

π−α

α
β π−β

π−α

c0
c1

c2

c3

−p−

p−
−1

p−

−p−
−1

c0
c1

c2

c3

ρ2=−ρ0

ρ3

ρ1=ρ3ρ0

speed coefficients
in mode +

speed coefficients
in mode −

−p+
−1

−p+

p+
−1

p+

c0
c1

c2

c3

c0
c1

c2

c3

Figure 2: Kinematics of degree-4 flat-foldable vertex. Note that a single vertex has two
modes of one-DOF motions (+) and (−).

Theorem 2.5. Any degree-4 flat-foldable vertex is rigidly foldable. The configuration space
of such a vertex, represented by the tangent of half the fold angles, i.e, ti = tan(ρi2), is the
union of configurations satisfying:

(t0, t1, t2, t3) =

{
(t,−tp+, t, tp+) (“mode +”),
(−tp−, t, tp−, t) (“mode −”),

(2)

where t ∈ [−∞,∞] and p+ and p− are constants defined by

p+ = p+ (α, β) =
1− tan α

2 tan β
2

1 + tan α
2 tan β

2

, (3)

p− = p− (α, β) =
tan β

2 − tan α
2

tan β
2 + tan α

2

. (4)

Figure 2 shows modes + and −. Note that 0 ≤ |p+| < 1 and 0 ≤ |p−| < 1. Also, if
α is strictly smaller than other sector angles, 0 < p+ < 1 and 0 < p− < 1.

To prove Theorem 2.5, we use the following lemma:

Lemma 2.6. The fold angles of a degree-4 flat-foldable vertex must satisfy

(ρ0 = ρ2 and ρ1 = −ρ3) or (ρ1 = ρ3 and ρ0 = −ρ2).

Lemma 2.6 can be proven using the spherical law of cosines on the spherical polygon
that the rigidly folded vertex cuts out of a sphere of radius 1 with the degree-4 vertex at its
center. (The spherical polygon needs to be triangulated by drawing a geodesic between the
corners made by c1 and c3. See [17, 18] for details.)

http://jocg.org/

JoCG 11(1), 93–124, 2020 99

Journal of Computational Geometry jocg.org

Proof of Theorem 2.5. It is straightforward to verify that the fold angles given in Equa-
tion (2) verify the rigid foldability condition in Equation (1), thus proving sufficiency of the
Theorem 2.5 conditions to rigidly fold a degree-4 flat-foldable vertex.

To prove necessity, suppose we have a rigidly-folded state of the vertex. Assume that
in the unfolded state our vertex is at the origin, the material lies in the xy plane in R3, and
c3 lies on the x-axis with c0, c1, and c2 proceeding counterclockwise from there. If we folded
the vertex into our given rigid state while leaving the sector between c2 and c3 fixed in the
xy plane, then we may consecutively rotate each sector angle through, and each fold angle
around, the positive x-axis to obtain a matrix equation as follows: Let Rx(θ) and Rz(θ)
denote the rotation matrices about the x- and z-axes by θ, respectively, i.e.,

Rx(θ) :=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 and Rz(θ) :=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
Then we have

Rz(π − β)Rx(ρ0)Rz(α)Rx(ρ1)Rz(β)Rx(ρ2)Rz(π − α)Rx(ρ3) = I.

We employ Lemma 2.6 and bring some matrices to the other side to obtain

Rz(π − β)Rx(ρ2)Rz(α)Rx(−ρ3) = Rx(−ρ3)Rz(−(π − α))Rx(−ρ2)Rz(−β).

The 1st row, 2nd column entry of this matrix equation simplifies to

(cos ρ2 − cos ρ3) sinα cosβ + (cos ρ2 cos ρ3 − 1) cosα sinβ + sin ρ2 sin ρ3 sinβ = 0.

Recall that ti = tan(ρi/2), which means that

sin ρi =
2ti

1 + t2i
and cos ρi =

1− t2i
1 + t2i

.

Substituting these into our condition and simplifying a bit we obtain

t22 − t23
(1 + t22)(1 + t23)

sinα cosβ +
t22 + t23

(1 + t22)(1 + t23)
cosα sinβ − 2t2t3

(1 + t22)(1 + t23)
sinβ = 0.

Multiplying both sides by (1 + t22)(1 + t23) and re-arranging further we get

2 sinβ
t3
t2

=

(
1−

(
t3
t2

)2
)

sinα cosβ +

(
1 +

(
t3
t2

)2
)

cosα sinβ,

from which we solve for t3/t2 to obtain two solutions:

t3
t2

=
cos
(
α+β

2

)
cos
(
α−β

2

) =
1− tan α

2 tan β
2

1 + tan α
2 tan β

2

and
t2
t3

= −
sin
(
α+β

2

)
sin
(
α−β

2

) =
tan β

2 − tan α
2

tan β
2 + tan α

2

.

Thus the fold angles of our rigidly folded state satisfy the Equation (2) formulas, where
Lemma 2.6 verifies that the mountain and valley creases must match one of the two modes
shown in Figure 2.

http://jocg.org/

JoCG 11(1), 93–124, 2020 100

Journal of Computational Geometry jocg.org

Theorem 2.5 implies that the fold angles of a degree-4 flat-foldable vertex are pro-
portional to each other when parameterized by the tangent of the half angle. Also, the
configuration space curves determined by Equation (2) share exactly one configuration point
t0 = t1 = t2 = t3 = 0 (the flat state). At this point the configuration space branches to two
rigid folding modes, each of which is one-DOF. We can determine the folding motion of the
vertex by specifying the mode and the fold angle of one of the creases.

Definition 2.7 (Speed coefficient). For a pair of incident creases ci and cj , we call p(i, j) :=
tan ρi

2 / tan
ρj
2 the speed coefficient from cj to ci.

The speed coefficients are also known as the fold-angle multipliers [12]. The choice
of modes + and − in Equation (2) (called the mode assignment) determine the speed coef-
ficients between creases:

(p(0, 1), p(1, 2), p(2, 3), p(3, 0)) =

{(
−p−1

+ ,−p+, p
−1
+ , p+

)
in mode +,(

−p−, p−1
− , p−,−p−1

−
)

in mode −.
(5)

In the special case of β = 90◦, the speed coefficients can be written using a single
variable:

(p(0, 1), p(1, 2), p(2, 3), p(3, 0)) =

{(
−p−1,−p, p−1, p

)
in mode +,(

−p, p−1, p,−p−1
)

in mode −.
(6)

where p = p(α) = p+(α, 90◦) = p−(α, 90◦) =
1− tan α

2

1 + tan α
2

.

In particular, if we chose α = arctan 3
4 , then we obtain p = 1

2 . We will use this setting in
Section 4.

In another special case, α = β, the speed coefficient can again be written using single
variable:

(p(0, 1), p(1, 2), p(2, 3), p(3, 0)) =

{(
−p−1,−p, p−1, p

)
in mode +,

(0,∞, 0,−∞) in mode −,
(7)

where p = p+(α, α) =
1− tan2 α

2

1 + tan2 α
2

= cosα and p−(α, α) = 0.

Theorem 2.5 gives us a continuously parameterized family of rigid origami foldings
for degree-4 flat-foldable vertices. Thus we have the following:

Lemma 2.8. A degree-4 flat-foldable vertex has exactly four mountain–valley assignments
(allowing 0 assignment to denote an unfolded crease) that are valid in the sense that there
is a rigid folding motion from the flat state consistent with the mountain–valley assignment.
Furthermore, each valid mountain–valley assignment restricts the configuration space to a
unique 1-parameter curve, i.e., 1-DOF mechanism, having uniquely determined speed co-
efficients between incident edges, which we call the speed coefficients induced by the valid
mountain–valley assignment.

http://jocg.org/

JoCG 11(1), 93–124, 2020 101

Journal of Computational Geometry jocg.org

Proof. The two binary options, (1) choice of modes + and − and (2) the sign of t, give four
folding paths, along which the signs of fold angles (assignment) are unchanged by Equa-
tion (2). The opposite paths in the same mode have reversed mountain–valley assignments
from each other, and the paths in different modes have different assignments because edges
0 and 3 have the same (nonzero) assignment in mode + and the opposite assignment in
mode −. So, each mountain–valley assignment gives a unique 1-parameter folding path in
the configuration space.

2.4 Assembly: Degree-4 Flat-Foldable Origami

We call a crease pattern composed solely of degree-4 flat-foldable vertices a degree-4 flat-
foldable mesh. (Such a mesh is really only locally flat-foldable.) For our hardness proof of
rigid origami, we will use a degree-4 flat-foldable mesh with optional creases. Determining
the rigid foldability of degree-4 flat-foldable meshes is a problem of assigning modes + or −
for each vertex in such a way that the folding speeds of the creases will not be in conflict.
Note that because we are only interested in rigidly folding our crease pattern a finite amount
from the flat, unfolded state, we do not need to worry about the possibility of different parts
of the material colliding or self-intersecting.

The following directly follows from Lemma 2.8 and the definition of speed coefficients.
(See also [12].)

Corollary 2.9 (Assignment Problem). For a mountain–valley assignment of a degree-4 flat-
foldable mesh, there is at most one folding path that forms a 1-manifold in the configuration
space.

Corollary 2.10 (Closure Condition). A mountain–valley assignment of degree-4 flat-foldable
mesh yields a rigid folding motion if and only if

1. for each vertex v, the mountain–valley assignment of the creases incident to v is valid
(according to Lemma 2.8);

2. for each k-gonal face surrounded by creases c0, c1, . . . , ck−1 (in cyclic order), the speed
coefficients pi = p(ci+1, ci) induced by the mountain–valley assignment at the shared
vertex between ci and ci+1 (according to Lemma 2.8) satisfy the following:∏

i=0,1,...,k−1

pi = 1. (8)

Equation (8) provides a natural metric for measuring error in a candidate rigid folding
motion.

Definition 2.11 (Finite-Precision Degree-4 Flat-Foldable Rigid Foldability). As in Defi-
nition 2.4, we define two decision problems whose primary input is a straight-line planar
graph drawing G on a polygon M ⊂ R2, where all vertex coordinates are specified by ra-
tional numbers. Now G is constrained to have all vertices be degree-4 flat-foldable and we
have an additional input ε > 0 (specified as a rational number).

http://jocg.org/

JoCG 11(1), 93–124, 2020 102

Journal of Computational Geometry jocg.org

1. Rigid foldability using all creases: Is there a mountain–valley assignment whose in-
duced fold-angle multipliers satisfy, at each vertex,∏

i=0,1,...,k−1

pi ∈ [1− ε, 1 + ε]? (9)

2. Rigid foldability with optional creases: Is there a nonempty subset G′ ⊂ G with a
positive (“yes”) answer to the finite-precision rigid foldability problem using all creases
in G′?

Theorem 2.12 (Finite-Precision Rigid Foldability is in NP). Both finite-precision degree-4
flat-foldable rigid foldability problems are in NP, even with ε = 0 (exact precision).

Proof. First observe that we can confirm that the given crease pattern is flat foldable in P. At
each vertex u with neighbors v1,v2,v3,v4, we reflect v1−u through vi−u for i ∈ {2, 3, 4},
and then verify that the resulting vector is identical to v1−u. Here we use that the reflection
p′ of vector p through another vector q can be done with O(1) additions, multiplications,
and divisions:

p′ = p− 2
(p · q⊥)q⊥

q · q
, where (x, y)⊥ = (−y, x). (10)

Next we nondeterministically guess the mountain–valley assignment and, for the
optional-crease problem, the subset G′ of creases.

It remains to verify Inequality (9) at each vertex. Equations (3) and (4) represent
each pi term in the product as a rational function of tangents of half-angles. Recall the
tangent half-angle formula:

tan θ
2 = csc θ − cot θ.

The latter trigonometric functions can be represented by radical expressions on the vertex
coordinates, specifically, their absolute difference in x coordinates, their absolute difference
in y coordinates, and their Euclidean distance (which involves a square root). Therefore
the product of the pi’s at a vertex can be represented as a constant-complexity expression
involving addition, subtraction, multiplication, division, and square roots on the input ra-
tionals. Comparing such an expression to 1 ± ε (even with ε = 0) can be done exactly in
polynomial time; see, e.g., [8].

Note that rigid foldability of general origami with non-degree-4 or non-flat-fordable
vertices may not be in NP.

2.5 Square Twist Fold

Next we show a classic example of rigid folding, which we will use in our gadgets in Section 4.
Specifically, by combining four degree-4 flat-foldable vertices, we may obtain a rigid folding
version of the “square twist fold” with arbitrary minimum sector angle α (Figure 3). Unlike
the original square twist fold [13, 18], we choose the mountain–valley assignment to allow
rigid foldability. Such a system can fold in two ways if we take the symmetry into account
[12, 30].

http://jocg.org/

JoCG 11(1), 93–124, 2020 103

Journal of Computational Geometry jocg.org

1

p

1/p

1

1

p
p

1

+

+
− −

+
+

−
−

p
p−p−1

−p−1

p

p

−p−1 −p−1

(a)

(b)

α

Figure 3: Two different modes (a) and (b) of a square twist with minimum sector angle
α. The left two columns show the assignment of modes + and − to obtain the consistent
loop, which gives the mountain–valley assignments in the third column, which fold to the
3D state in the fourth column. The numbers 1, p, 1/p represents the absolute folding speeds
measured in tangent of half of fold angles of edges along the chain of opposite edges.

Lemma 2.13. There are only four mountain–valley assignments and thus two modes (up
to symmetry) that allow the square twist to fold rigidly, for any minimum sector angle α.
They are the ones shown in Figure 3 along with the relative folding speed coefficients of the
creases on the boundary.

Proof. Consider the central square composed of creases c0, c1, c2, c3. The problem of deter-
mining mountain–valley assignments is equivalent to assigning the speed coefficients

p(ci+1, ci) =

{
p(α) mode +,

− 1
p(α) mode −,

where p(α) is defined by Equation (6). Equation (8) is satisfied if and only if the number of
mode +’s is 2. The possible pattern is either + +−− or +−+− up to symmetry, as shown
in Figure 3.

3 Rigid Foldability using All Creases is Weakly NP-hard

Theorem 3.1. Finite-precision degree-4 flat-foldable rigid foldability using all the creases is
weakly NP-complete.

To prove this theorem, we reduce from Partition: given a multisetA = {a1, a2, . . . , an}
of n positive integers, is there a subset S ⊆ A that partitions the elements into two halves of
equal sum, i.e., Σ(S) =

∑
(A \ S) = 1

2Σ(A), where Σ(S) =
∑

x∈S x. This problem is known
to be weakly NP-hard [14, 21].

http://jocg.org/

JoCG 11(1), 93–124, 2020 104

Journal of Computational Geometry jocg.org

assignment for partition
S = {1,1,3,5} A \ S = {2,8}

+
++

−
−

−

assignment for partition
S = {2,3,5} A \ S = {1,1,8}

pattern corresponding to
A = {1,1,2,3,5,8}

folding of S = {1,1,3,5} A \ S = {2,8}

folding of S = {2,3,5} A \ S = {1,1,8}

+

++
−

−

+

1
1

2
358

α1

α2

α3

α4
α5α6

αr αr

Figure 4: Rigid origami realizing a given Partition instance with n > 4 integers by an (n+2)-
gonal closed chain of degree-4 flat-foldable vertices. The sector angles αi of n consecutive
vertices are designed from the set of integers, and two vertices form mirror-symmetric degree-
4 vertices (top-left). Partitioning corresponds to a mountain–valley assignment for each
vertex (top-middle and top-right). The pattern is rigidly foldable when the mountain–valley
pattern partitions the set into equal sums (middle and bottom rows).

Proof. Theorem 2.12 establishes membership in NP. To demonstrate the main idea in our
NP-hardness reduction, we first pretend that we can compute the needed real values exactly,
and second we take care of finite precision.

Consider a Partition instance A = {a1, a2, . . . , an} where n > 4. We construct a
crease pattern of an (n+2)-gonal closed chain of degree-4 flat-foldable vertices v0,v1, . . . ,vn+1;
refer to Figure 4. We start with n consecutive flat-foldable vertices v1,v2, . . . ,vn where vi
has α = αi ∈ (0◦, 90◦) and β = 90◦, so that

∑
i αi < 360◦. We split the remaining angle

360◦ −
∑

i αi into halves, and make the last two vertices v0 and vn+1 be mirror symmetric
and flat-foldable with α = β = αr = (360◦ −

∑
i αi)/2.

Now we consider the speed coefficients in a rigid folding. For 1 ≤ i ≤ n, by Equa-
tion (6), vertex vi has a speed coefficient of pi = p(αi) =

1−tan
αi
2

1+tan
αi
2

(mode +) or p−1
i (mode −).

Because αi ∈ (0, 90◦), tan αi
2 ∈ (0, 1), so pi and p−1

i are positive, meaning that the creases
vivi+1 for 0 ≤ i ≤ n all have the same mountain–valley assignment. By Equation (7), vertex
vn+1 has a speed coefficient of pr = p(αr, αr) =

1−tan2 αr
2

1+tan2 αr
2

(mode +) and ∞ (mode −), and

http://jocg.org/

JoCG 11(1), 93–124, 2020 105

Journal of Computational Geometry jocg.org

vertex v0 has speed coefficient of 0 (mode +) and p−1
r (mode −). In order that all creases

of vertices vn+1 and v0 fold simultaneously, vn+1 must chose mode + and v0 must chose
mode −, because pr is nonzero and finite.

Now we tweak αi properly so that choosing the vertices that folds in mode − is
equivalent to choosing the element of S from A, and the closure constraint (Equation (8))
is equivalent to the Partition problem. Specifically, we set the variables αi such that

ai
Σ(A)

= log p−1
i , (11)

for all i = 1, 2, . . . , n, and thus

tan
αi
2

=
1− pi
1 + pi

=
1− e−ai/Σ(A)

1 + e−ai/Σ(A)
= tanh

(
ai

2Σ(A)

)
. (12)

Then, by Equation (8), the formed pattern is rigidly foldable if and only if there exists a
subset S ⊂ A such that (∏

i∈S
p−1
i

) ∏
i∈A\S

pi

 prp
−1
r = 1, (13)

which, by taking the logarithm on both sides and multiplying by Σ(A), is equivalent to the
given Partition problem:

Σ(S)− Σ(A \ S) = 0. (14)

Now we show that the ranges of αi and αr are valid. Plugging in Equation (12), we have∑
i

αi =
∑
i

2 arctan

(
tanh

(
ai

2Σ(A)

))
. (15)

Because ai
2Σ(A) ∈ [0, 1

2], we have

arctan tanh
ai

2Σ(A)
∈
(

0.86
ai

2Σ(A)
,

ai
2Σ(A)

)
. (16)

Combining the previous two equations, we have∑
i

αi ∈ (0.86, 1) ⊆
(
π
4 ,

π
3

)
. (17)

Thus,
∑

i∈{1,2,...,n} αi ∈ (45◦, 60◦), so αr = (360◦ −
∑

i∈{1,2,...,n} αi)/2 ∈ (150◦, 157.5◦).

Because αj ≤
∑

i αi, we also obtain αj ∈ (0, 60◦), and thus the central polygon
is convex. Thus we can always construct the (n + 2)-gon from the slope of each segment
derived from these turn angles. By Equation (6), the range on αj ensures pj ∈ (0.26, 1),
which will be useful later for avoiding close-to-singular vertices. By Equation (7), the range
αr ∈ (150◦, 157.5◦) ensures that pr ∈ (−0.93,−0.86), in particular, nonzero and finite,
proving the assumption.

http://jocg.org/

JoCG 11(1), 93–124, 2020 106

Journal of Computational Geometry jocg.org

ai

solve tanh in
precision εt // t̃i

round to
grid of εg // d̃i // tan α̃i

2
//
∏
p̃i

ti
&&

εt

ff

ww

O(εt+εg)
77

∏
pi
��

O(n(εt+εg))

OO

Figure 5: Sequence of rational approximations to the exact construction and their depen-
dencies. In general, x̃ denotes a computed approximation to the quantity x, and a quantity
ε on an arrow denotes an absolute error bound of |x̃− x| ≤ ε.

The rest of the proof addresses the requirement that the reduction must be computed
in polynomial time — i.e., (n log Σ(A))O(1) time — using finite precision, not arbitrary real
numbers. We will follow the exact construction above, but using rational approximations to
the relevant values. Figure 5 shows the sequence of approximations we will now describe.

The reduction algorithm first computes t̃i, an approximation to ti = tan αi
2 given

by Equation (12), but with precision εt, i.e., |t̃i − ti| ≤ εt, as follows. Specifically, we
set εt = 1

3cnΣ(A) for a constant c ≥ 1 defined below. We can compute each x = ai
2Σ(A)

exactly, represented as a rational. Then we approximate tanhx = e2x−1
e2x+1

= 1 − 2
e2x+1

to
within ±εt as follows. First we compute e2x to within ±εt, i.e., obtain a rational ap-
proximation ẽ2x ∈ [e2x − εt, e2x + εt]. Standard algorithms for approximating ex can do
so in O(log log 1

εt
) multiplications on O(log 1

εt
)-bit integers [6], each of which can be done

naively in O(log2 1
εt

) time or using the recent O(log 1
εt

log log 1
εt

) algorithm [15], for a total

of logO(1) 1
εt

= logO(1) nΣ(A) time (and thus polynomial time). Given ẽ2x, we can compute

t̃anhx and t̃i exactly using rational arithmetic, with total error given by

t̃i − ti =

(
1− 2

ẽ2x + 1

)
−
(

1− 2

e2x + 1

)
∈
[(
− 2

(e2x + 1− εt)
+

2

(e2x + 1)

)
,

(
− 2

(e2x + 1 + εt)
+

2

(e2x + 1)

)]
=

[
−2εt

(e2x + 1)(e2x + 1− εt)
,

2εt
(e2x + 1)(e2x + 1 + εt)

]
.

Using e2x > 1 and εt ∈ (0, 1), we can bound the error to show that t̃i ∈ (ti − εt, ti + εt):

2εt
(e2x + 1)(e2x + 1− εt)

<
2εt

2(2− εt)
<

2εt
2

= εt,

2εt
(e2x + 1)(e2x + 1 + εt)

<
2εt

2(2 + εt)
<

2εt
4
< εt.

Next the algorithm computes an approximation of the crease pattern, one vertex
at a time, with computed vertex ṽi approximating the ideal vertex vi. Refer to Figure 6.
Vertices ṽ0, ṽ1, . . . , ṽn will lie on a grid with resolution εg = εt = 1

3cnΣ(A) . First we compute

http://jocg.org/

JoCG 11(1), 93–124, 2020 107

Journal of Computational Geometry jocg.org

ṽ0
d̃0 d̃1

d
ñ · s̃

(v
0̃ − v

ñ) · s̃

s̃

b̃1

b̃0

c1̃

c0̃
b̃2

c2̃

d̃2

d̃n−1

d̃n

ṽ1
ṽ2

ṽn

ṽn+1

(0,0)

b̃n

b̃n+1

cñ

cñ+1

Figure 6: The actual construction step of rigid origami realizing the Partition problem.

difference vectors d̃i for 0 ≤ i ≤ n, whose coordinates are also multiples of εg. For i < n,
d̃i corresponds to ṽi+1 − ṽi (but i = n will behave slightly differently), so we can compute
ṽi for 1 ≤ i ≤ n via ṽi+1 = ṽi + d̃i, using ṽ0 = (0, 0) as a base case. We define d̃0 = (1, 0),
the unit rightward vector. Given d̃i−1, we compute d̃i by rotating the vector d̃i−1 by the
rotation matrix 1−t̃2i

1+t̃2i

−2t̃i
1+t̃2i

2t̃i
1+t̃2i

1−t̃2i
1+t̃2i

 , (18)

and rounding the resulting coordinates to the nearest integer multiples of εg. (Note that,
while we can compute the coordinates given by Equation (18) exactly, if we do not round
them to a common grid in each step, then the bit-length of the numbers will grow expo-
nentially as we compute each d̃i from the previous.) Finally, we compute ṽn+1. We want
ṽn+1 and ṽ0 to be exactly mirror symmetric through the bisecting vector s̃ of d̃n and −d̃0.
This bisecting vector is given by s̃ = 1

2(d̃n − d̃0). We check that ṽn + d̃n has a smaller dot
product than −ṽ0 does with the bisecting vector, so that we can make ṽn+1 − ṽn longer
than 1 unit. If this condition does not hold, we restart the entire algorithm with the order
a1, a2, . . . , an reversed. Then we set ṽn+1 to

ṽn +
(ṽ0 − ṽn) · s̃

d̃n · s̃
d̃n

(which is already on the grid of resolution εg, so needs no rounding).

http://jocg.org/

JoCG 11(1), 93–124, 2020 108

Journal of Computational Geometry jocg.org

Now we compute the boundary vertices b̃i, c̃i, connected via creases to ṽi, for each
i = 0, 1, . . . , n+ 1. For i = 1, 2, . . . , n, we use equations b̃i− ṽi = −d̃⊥i−1 and c̃i− ṽi = −d̃⊥i
(i.e., 90◦ right rotation of vectors d̃i−1 and d̃i), which make b̃i and c̃i remain on the grid of
resolution εg. For i = 0 and i = n+ 1, we use an extension of the segment ṽ0ṽn+1 to define
one boundary vertex, and use reflections to compute the other boundary vertex. Precisely,
we define c̃0 and b̃n+1 via

c̃0 − ṽ0 =
ṽ0 − ṽn+1

d‖ṽ0 − ṽn+1‖e
, b̃n+1 − ṽn+1 =

ṽn+1 − ṽ0

d‖ṽn+1 − ṽ0‖e
;

and define b̃0 and c̃n+1 via b̃0 − ṽ0 equalling the reflection of d̃0 through ṽ0ṽn+1, and
ṽn+1 − c̃n+1 equalling the reflection of d̃n through ṽ0ṽn+1. These coordinates are rational,
with numerators and denominators bounded by a polynomial in 1/εg.

Now we prove a sequence of claims about the constructed crease pattern in order to
show it is rigidly foldable up to precision ε.

First we claim that the crease pattern is exactly locally flat foldable. This claim
follows by construction: for each vertex ṽi, we constructed b̃i and c̃i exactly to guarantee
local flat foldability of ṽi. For i = 1, 2, . . . , n, we used 90◦ rotations to guarantee two right
angles; and for i = 0 and i = n+ 1, we used exact reflections.

Second we claim that vertices ṽ0 and ṽn+1 are mirror symmetric with each other,
and each have two collinear creases (α = β), as needed by the Partition reduction. This
claim follows from the construction: the exact computation of the bisecting vector s̃ and
vertices c̃0 and b̃n+1. Thus these two vertices contribute p̃r and p̃−1

r respectively (for some
p̃r) to the closure-condition product (8), so they cancel and we can ignore them.

Third we claim that each vertex ṽi, for 1 ≤ i ≤ n, has β = 90◦ (exactly) and α = α̃i
satisfying tan α̃i

2 = t̃i±O(εg) = ti±O(εg + εt). That β = 90◦ follows from the construction
of b̃i and c̃i. To measure α̃i, we first analyze the lengths of d̃i: ‖d̃0‖ = 1, and d̃i is an
εg-grid rounding of a rotation of d̃i+1, so | ‖d̃i‖ − ‖d̃i+1‖ | ≤ 1√

2
εg, and therefore ‖d̃i‖ is

within ± n√
2
εg of 1. Because εg ≤ 1

3nΣ(A) <
1√
2n

, ‖d̃i‖ ≥ 1
2 . By construction, the angle α̃i at

ṽi is equal to the angle between vectors d̃i and d̃i−1. Because these vectors have length ≥ 1
2 ,

the angle change caused by rounding the rotated d̃i−1 is at most
√

2 εg (refer to Figure 7),
and thus

∣∣∣∣ α̃i2 − arctan t̃i

∣∣∣∣ ≤ 1√
2
εg.

Now

http://jocg.org/

JoCG 11(1), 93–124, 2020 109

Journal of Computational Geometry jocg.org

rotated d̃ i−1

d̃i

εg

1/√2 εg
‾

1/√2 εg
‾>1/2

< √2 εg
‾

Figure 7: Rounding the end point of vi to a grid causing a rotation of at most
√

2εg

∣∣∣∣tan
α̃i
2
− t̃i

∣∣∣∣ ≤ ∣∣∣∣tan

(
arctan t̃i +

1√
2
εg

)
− t̃i

∣∣∣∣
=

∣∣∣∣∣ t̃i + tan 1√
2
εg

1− t̃i tan 1√
2
εg
− t̃i

∣∣∣∣∣
=

∣∣∣∣∣(1 + t̃2i) tan 1√
2
εg

1− t̃i tan 1√
2
εg

∣∣∣∣∣
≤ 2(1 + t̃2i) tan 1√

2
εg,

because we claim that t̃i tan 1√
2
εg ≤ 1

2 . First, because αi ∈ (0, 60◦), we have ti ∈ (0, 1√
3
)

and thus t̃i ∈
(
−εt, 1√

3
+ εt

)
. Then the claim follows:

t̃i tan 1√
2
εg ≤

(
1√
3

+ εt

)
1√
2
εg ≤

(
1√
3

+ 1
3

)
tan 1

3
√

2
≈ 0.11 ≤ 1

2 .

Now we bound the terms in the formula above: because εt ≤ 1, we have 2(1 + t̃2i) = O(1);
and because 1√

2
εg ≤ 1

3
√

2
≈ 0.24 < π/2, we have 1√

2
εg = O(εg). Plugging these bounds in,

we obtain
∣∣∣tan α̃i

2 − t̃i
∣∣∣ = O(εg), so

∣∣∣tan α̃i
2 − ti

∣∣∣ = O(εg + εt).

Finally we claim that
∏
i∈S p̃i =

∏
i∈S pi±O(nεg+nεt), where p̃i =

1−tan
α̃i
2

1+tan
α̃i
2

. Similar

to the argument above, we show that p̃i = pi ±O(εg + εt):

|p̃i − pi| =

∣∣∣∣∣1− tan α̃i
2

1 + tan α̃i
2

−
1− tan αi

2

1 + tan αi
2

∣∣∣∣∣
=

∣∣∣∣1− ti ±O(εg + εt)

1 + ti ±O(εg + εt)
− 1− ti

1 + ti

∣∣∣∣
=

∣∣∣∣ ±O(εg + εt)

1 + ti ±O(εg + εt)

∣∣∣∣
= O(εg + εt),

by setting c larger than the constant c1 in the denominator O notation so that c1(εg+εt) ≤ 2
3 ,

so 1 + ti ± c1(εg + εt) ≥ 1
3 . Because pi ∈ (0.26, 1), we can convert this absolute error bound

http://jocg.org/

JoCG 11(1), 93–124, 2020 110

Journal of Computational Geometry jocg.org

into a relative error bound: p̃i/pi = 1±O(εg + εt). Therefore∏
i∈S

p̃i =
∏
i∈S

pi ±O(n(εg + εt)). (19)

This error bound gives us a lower bound on the precision ε in our output instance
of finite-precision degree-4 flat-foldable rigid foldability. Namely, if ε > εLB := c2n(εg + εt),
where c2 is the constant in the O notation in Equation (19), then the finite-precision rigid
foldability instance has a “yes” answer whenever

∏
p̃i = 1, i.e., when the Partition instance

has a “yes” answer.

It remains to prove that, if the Partition instance has a “no” answer, then the con-
structed crease pattern is a “no” instance to finite-precision rigid foldability. For this property
to hold, we need an upper bound on ε. Consider a candidate partition (S,A \ S), and sup-
pose that Σ(S) 6= Σ(A\S). Because A ⊂ N, |Σ(S)−Σ(A\S)| ≥ 1. Thus, for Inequality (9)
to (incorrectly) hold on the constructed crease pattern, we would need ε to be at least

ε′UB =

∣∣∣∣∣∏
i

p̃i − 1

∣∣∣∣∣
=

∣∣∣∣∣∏
i

pi − 1±O(n(εg + εt))

∣∣∣∣∣
=

∣∣∣∣ exp(Σ(S)/Σ(A))

exp(Σ(A \ S)/Σ(A))
− 1±O(n(εg + εt))

∣∣∣∣
=

∣∣∣∣exp

(
Σ(S)− Σ(A \ S)

Σ(A)

)
− 1±O(n(εg + εt))

∣∣∣∣
≥
∣∣∣∣exp

(
1

Σ(A)

)
− 1±O(n(εg + εt))

∣∣∣∣
≥
∣∣∣∣ 1

Σ(A)
±O(n(εg + εt))

∣∣∣∣ ,
where the last inequality is by the Taylor expansion of exp(1/Σ(A)). Assuming c ≥ c2 where
c2 is the (same) constant in the O notation, we have c2n(εg + εt) <

1
Σ(A) , so the absolute

value operation is unnecessary, and we obtain

ε′UB ≥
1

Σ(A)
− cn(εg + εt) =: εUB.

By setting ε < εUB (and thus < ε′UB), we guarantee that “no” answers are preserved.

To guarantee that εLB < εUB, we need that c2n(εg + εt) <
1

Σ(A) − c2n(εg + εt),
i.e., 2c2n(εg + εt) <

1
Σ(A) , which holds if c ≥ c2. Thus it suffices to set c to the integer

dmax{c1, c2}e, enabling us to compute and represent εg = εt = 1
3cnΣ(A) exactly as a rational

number.

Therefore, by setting ε = εLB+εUB
2 (also computable exactly as a rational number), we

obtain εLB < ε < εUB as needed for correctness of the reduction. All (rational) coordinates
in the reduction have numerator and denominator bounded by a constant-degree polynomial
in 1/εg = 3cnΣ(A), and thus so does the output number ε.

http://jocg.org/

JoCG 11(1), 93–124, 2020 111

Journal of Computational Geometry jocg.org

αr

αr

αr+θ

αr+θ

θ

θ

+

+

−

−

+

−+

−

:) :) :(:(

ṽ0
ṽ1

ṽn

ṽn+1

Figure 8: Fixing the crease pattern to avoid collinear creases.

Corollary 3.2. Finite-precision degree-4 flat-foldable rigid foldability with optional creases
is weakly NP-complete.

Proof. Again Theorem 2.12 establishes membership in NP. To prove weak NP-hardness, we
use a slight variation of the reduction in Theorem 3.1. Most vertices in the reduction have
the property that, if any incident crease strictly folds, then all four incident creases must
fold. The two exceptions are ṽ0 and ṽn+1, each having two creases such that all four of
these creases lie on a line. So the construction as is always has a rigid folding motion with
optional creases: fold along that line.

To fix this, we simply rotate the incident terminal creases in a consistent way; refer
Figure 8. Specifically, we rotate ṽ0c̃0 and ṽ0b̃0 clockwise by angle θ ∈ (0, π − αr), and we
rotate ṽn+1c̃n+1 and ṽn+1b̃n+1 counterclockwise by the same angle θ. To ensure that this
rotation can be done exactly with rational coordinates, we set the tangent of half angle to
be rational and apply the rotation matrix of Equation (18), e.g., θ = 2 arctan 1

6 ≈ 18.9◦.
Because vertices ṽn+1 and ṽ0 are mirror symmetric, if the speed coefficient at vertex ṽn+1

is denoted by pr,+ (call this mode +) or p−1
r,− (call this mode −), then the speed coefficient

at vertex ṽ0 is pr,− (call this mode +) or p−1
r,+ (call this mode −). We can compute pr,+ and

pr,− by combining Equations (3)–(5) with α, β set to αr + θ, αr (see Figure 2, replacing L0

with ṽnṽn+1 and L3 with ṽn+1ṽ0):

pr,+ = p+(3, 0) = p+ (αr + θ, αr) =
1− tan αr

2 tan αr+θ
2

1 + tan αr
2 tan αr+θ

2

; (20)

pr,− = p−(3, 0) = −p− (αr + θ, αr) =
tan αr+θ

2 − tan αr
2

tan αr+θ
2 + tan αr

2

. (21)

We claim that the modes at ṽn+1 and ṽ0 need to be either (+,−) or (−,+) in order to
be rigidly foldable (Figure 8, middle two images). Assuming this claim, Equation (13) applies
and the rest of the proof follows. To prove the claim, we use that pr,+ < 0 and pr,− > 0 for θ ∈
(0, π − αr) and αr ∈ (150◦, 157.5◦) because tan αr+θ

2 > tan αr
2 > 1. Thus, mode assignment

(+,+) or (−,−) would induce a negative speed coefficient pr,+pr,− or p−1
r,+p

−1
r,−, respectively,

from crease ṽnṽn+1 to crease ṽ0ṽ1, i.e., the mountain–valley assignment switches between

http://jocg.org/

JoCG 11(1), 93–124, 2020 112

Journal of Computational Geometry jocg.org

the creases (Figure 8, right two images). This contradicts that the creases ṽiṽi+1 for 0 ≤
i ≤ n all have the same mountain–valley assignment. Therefore mode assignments (+,+)
and (−,−) are impossible, leaving only the desired assignments (+,−) and (−,+), so the
proof proceeds as before.

4 Rigid Foldability with Optional Creases is Strongly NP-hard

Theorem 4.1. Rigid foldability with optional creases is strongly NP-hard.

To prove this theorem, we reduce from Positive 1-in-E3 SAT : given a set ofm clauses,
each consisting of exactly three variables (without negation), decide whether the variables
can be set to true or false such that every clause has exactly one true variable (and exactly
two false variables). This problem is known to be NP-hard [23, 24]. Figure 9 shows the
crease pattern for such a Positive 1-in-E3 SAT reduction, i.e., the crease pattern is rigidly
foldable if and only if there is a set of binary variables that satisfy a given Positive 1-in-E3
SAT problem. The basic idea is that we describe binary variables by whether creases are
folded (true) or not (false). This binary information will be carried via sets of four parallel
creases, which we call wires. We then design gadgets, which are crease patterns connected
to wires that are designed to be rigidly foldable for certain desired binary patterns of wires.

Figure 10 shows a schematic diagram for the overall design of the crease pattern in
Figure 9, using iconography to represent different types of wires and gadgets. Each gadget
consists of a local crease pattern with rational vertex coordinates within a constant-size
rectangle, whose top and bottom sides connect to one vertical wire and whose left and
right sides connect to one or more horizontal wires. Specifically, we design a splitter gadget
(Figure 12) that copies a horizontal value to a vertical value and vice versa; a crossover gadget
(Figure 14 right) that enables a horizontal and vertical value to cross without influencing
each other; a suppressor gadget (Figure 14 left) that more simply crosses a horizontal and
a vertical while requiring a NAND constraint (not both are true);1 and a clause gadget
(Figure 16) that rigidly folds if and only if exactly one of three horizontal inputs are true.
The gadgets are arranged in the crease pattern as follows (see Section 4.2 for more detail):

1. The bottom n horizontal wires represent the input variables x1, x2, . . . , xn. Each vari-
able can be brought to each clause that uses it using two split gadgets, one to bend
the variable horizontal wire to a vertical wire, and the second to bring the vertical
wire to a horizontal wire of the clause.

2. Each set of four horizontal wires above the input variables section correspond to a
clause. The copied variables in the vertical lines are reflected horizontally using a
3 × 3 grid of gadgets composed of splitters and suppressors. These gadgets force at
most one of the three variables to be true, and the folding of the clause gadget itself
will ensure that exactly one of the horizontal wires must be true.

1The conceptual complexity of the reduction could be reduced by replacing every suppressor gadget with
a crossover gadget, at the cost of increasing the combinatorial complexity of the figures by a constant factor.

http://jocg.org/

JoCG 11(1), 93–124, 2020 113

Journal of Computational Geometry jocg.org

→x1

→x2

→x3

1 p2 p2 p2 p2 p2 p2

p

p

p

p

p

p3

p

p3

p

p3

p

p3

→x4

clause 1

variables

clause l

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙∙∙∙∙∙∙

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙∙∙∙∙∙∙

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙∙∙∙∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

∙∙∙

Figure 9: A crease pattern rigidly foldable if and only if a Positive 1-in-E3 SAT formula is
satisfiable.

To prove that this reduction works, we use the following strategy. For each gadget,
(1) we show that it successfully constrains the binary operations, i.e., it keeps wrong patterns
from folding (the “only if” part), and (2) we give one mountain–valley assignment and rigid
folding mode for each possible case of true and false (the “if” part). The first part ensures

http://jocg.org/

JoCG 11(1), 93–124, 2020 114

Journal of Computational Geometry jocg.org

splitter

crossover

staircase wire

gutter wire

1 p p2 p3

suppressor(NAND)

1-in-E3 clause

folding speed

V1

H1

H2

H3

H4

Hn

V2 V3l−1 V3l V3l+1V3 V4

H
n+1~H

n+4{

H
n+4l−3~H

n+4l {

x1

x2

x4

x3

xn

1-
in

-E
3(

x 1,
x 2,

x 4)
1-

in
-E

3(
x 1,

x 3,
x 4)

x1

x1 x1

x1

x3

x3

x4

x4

x2

x2

x4

x4

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙∙∙∙∙∙∙

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙∙∙∙∙∙∙

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙∙∙∙∙∙∙

∙∙∙
∙∙∙
∙∙∙
∙∙∙

∙∙∙

∙∙∙
∙∙∙
∙∙∙
∙∙∙

∙∙∙
∙∙∙
∙∙∙
∙∙∙

∙∙∙
∙∙∙
∙∙∙
∙∙∙

∙∙∙

∙∙∙
∙∙∙
∙∙∙
∙∙∙

∙∙∙
∙∙∙
∙∙∙
∙∙∙

Figure 10: Schematic diagram of gadget layout. Line thickness represents folding speed,
ranging from 1 (thinnest) to p3 (thickest).

that rigid folding of the pattern guarantees that Positive 1-in-E3 SAT can be solved, while
the second part shows that any solution to Positive 1-in-E3 SAT guarantees at least one
assignment that makes the pattern rigidly foldable.

4.1 Gadgets

4.1.1 Wires

A wire is represented by four parallel lines with small, large, small spacing as in Figure 11.
We call an optional-crease folding of this local crease pattern true if any of the four creases
fold, and false if none of the four creases fold.

http://jocg.org/

JoCG 11(1), 93–124, 2020 115

Journal of Computational Geometry jocg.org

1
1

1 1
1 1

p2

p2

1 1
p2

Figure 11: Two types of wire gadgets in true setting. Left: gutter wire. Right: staircase
wire. The numbers indicate relative folding speed.

For true values, we use two rigid folding modes of wires, called gutter and staircase
respectively; see Figure 11. Note that the folding speeds measured in tangents of half the fold
angles are different between two pairs of creases for a staircase wire. In our construction, we
will use a folding speed of p = 1

2 , and the relative speed of the pairs of creases in a staircase
will be p2 = 1

4 .

4.1.2 Splitters

Gutter Splitter Staircase Splitter

1
1

1
1

p p p pT

T

TT

F

F

FF

Widening Splitter

1 1 1 1

p3
p3

p
p

p2 p2 p2 p2

p3
p3

p
p

1

p p2

p3

p

1
p3

p

Figure 12: Splitter gadget allowing for (true, true) or (false, false) only.

http://jocg.org/

JoCG 11(1), 93–124, 2020 116

Journal of Computational Geometry jocg.org

arctan 63/16

arctan 3/4

16
16

63 63

63

63

126

252

126

6363126 252 126

63

63

84

84

Figure 13: Dimensions of widening splitter given as integers. All other gadgets are placed
along the same integer grid.

We define three types of splitter gadgets for connecting different types of wires; refer
to Figure 12. A gutter splitter is a 2 × 2 twist-fold tessellation consisting of four square
twist folds with a minimum sector angle of arctan 3

4 , where the left and right horizontal
wires are the input and the top and bottom vertical wires are the output (or the other way
around). Note that we may think of both the left and right wires as inputs (and both top
and bottom wires as outputs) because wire signals will always be unchanged as they travel
through the splitter, either horizontally or vertically. A standard splitter will have all of its
wires be gutters. A staircase splitter is a 90◦ rotation of the gutter splitter, but its wires
will have different modes so that the horizontal wire is a staircase and the vertical wire is
a gutter. A widening splitter uses a pattern with two pairs of twists with minimum sector
angles arctan 3

4 (at the bottom) and 2 arctan 7
9 = arctan 63

16 (at the top) to change the widths
of vertical wires. The folding mode of a widening splitter is designed to match with staircase
horizontal wires and gutter vertical wires.

These gadgets all have integer coordinates. Figure 13 gives the dimensions for a
widening splitter. The gutter splitter’s crease pattern is a reflection of the bottom half
of the widening splitter to replace the top half, so it also has integer coordinates. The
staircase splitter’s crease pattern is a 90◦ rotation of the gutter splitter, so it too has integer
coordinates.

We denote the binary values of a gadgets’ incident wires with the notation (X,Y)
where X is the boolean value of the horizontal wires and Y is the value of the vertical wires.

Lemma 4.2. A gutter splitter, staircase splitter, and widening splitter can fold only if they
copy the values in the input to the output, and thus the possible patterns are (true, true) and
(false, false).

Proof. All horizontal creases are connected to vertical creases via degree-4 vertices with
finite speed coefficients. If any of these creases fold, then every fold line in the gadget must
fold, forcing the input and the output wires to have the same value.

http://jocg.org/

JoCG 11(1), 93–124, 2020 117

Journal of Computational Geometry jocg.org

Lemma 4.3. A gutter splitter, staircase splitter, and widening splitter can rigidly fold in
the mode specified in Figure 12, where the numbers 1, p, p2, p3 (p = 1

2) assigned to the fold
lines are the absolute relative folding speeds measured in tangent of half the fold angles.

Proof. All splitters are composed of four rigid origami twists, as in Section 2.5. By consecu-
tively mirroring the square twist in mode (a) of Figure 3 across horizontal and vertical axes,
we obtain a gutter splitter with the folding mode described in Figure 12 (left two). Because
p(arctan 3

4) = 1
2 , the folding follows the specified speeds.

The staircase splitter is obtained by rotating the normal splitter, but then changing
some of the modes of the vertices (refer to Figure 2) so as to cascade the relative folding speed
p as shown in Figure 12. A widening splitter connects mode (a) of the square twist from
Figure 3 with another square twist with a different minimum sector angle. The consistent
folding mode is ensured by having the bottom and top twists connected through folds with
the same absolute speed and then having them mirrored with respect to the vertical line.
Now, because we chose p(arctan 63

16) = 1
8 for the top twists, the top two creases fold at p2

times the speed of the bottom two creases.

Remark 4.4. All vertical wires are gutters. In the gutter splitter, the speed of the vertical
wire is p times the speed of the horizontal wire. In the staircase splitter, the speed of the
vertical wire is p2 times that of the widening splitter (when we synchronize the horizontal
staircase wires of staircase and widening splitters).

4.1.3 Suppressor and Crossover Gadgets

Just overlaying two orthogonal wires (Figure 14 left, which has integer coordinates) makes
the vertical and horizontal wires suppress each other so that they cannot be rigidly folded
at the same time (a NAND constraint). We call this gadget a suppressor, which allows only
the patterns (false, false), (true, false), and (false, true).

Lemma 4.5. A suppressor leaves all four horizontal creases unfolded or all four vertical
creases unfolded.

Proof. Every horizontal crease crosses every vertical crease perpendicularly, forming a degree-
4 vertex with 90◦ sector angles. Because the speed coefficients are 0 at such a point, no
vertical crease can fold if any horizontal crease has fold angle in (0, 180◦), and vice versa.

We also need a crossover system to avoid logical interactions between unrelated
horizontal and vertical wires.

A crossover gadget (Figure 14, right) is realized by overlaying the crease pattern of
a splitter on top of a suppressor, where we line up the horizontal and vertical inputs. Thus
there are three different crossover gadgets, just like splitter gadgets (Figure 15). Because each
individual pattern has integer coordinates, their overlay has rational vertex coordinates. The
overlaying of patterns allows us to choose either pattern to be active, so we get the union of
the folding modes of splitters and suppressor, which complete four possible binary patterns.

http://jocg.org/

JoCG 11(1), 93–124, 2020 118

Journal of Computational Geometry jocg.org

Lemma 4.6. Crossover gadgets can fold into the four patterns (false, false), (true, false),
(false, true) and (true, true). The folding modes of the (true, false) and (false, true) patterns
follow those of the corresponding wires, and the folding mode of the (true, true) pattern
follows that of a splitter.

T

T

TT

F

F

FF

T

T

FF

F

F

TT

F

F

FF

T

T

FF

F

F

TT

suppressor crossover

11

pp

Figure 14: Suppressor (left) cannot achieve (true, true) pattern. Crossover gadget (right)
can realize any combination (false, false) (false, true), (true, false), (true, true).

1
1

1
1

p p p p 1 1 1 1

p3
p3

p
p

p2 p2 p2 p2

p3
p3

p
p

1

p p2

p3

p

1
p3

p

Figure 15: Three types of crossover gadgets corresponding to different combinations of wires
and folding speed.

http://jocg.org/

JoCG 11(1), 93–124, 2020 119

Journal of Computational Geometry jocg.org

1 1 1 1

p3

p3

p3

p3

p
p

p
p

p3

p3

p
p

p3

p3

p
p

True

→True

False

False

False

→True

False

False

False

→True

True True True

True True

Figure 16: Clause gadget. If the vertical wire is true, then this gadget can fold in three
ways. Each folding mode corresponds to horizontal wires (true, false, false), (false, true,
false), or (false, false, true), forcing exactly one of the horizontal wires to be true.

4.1.4 Clause Gadget

A clause gadget is designed by overlaying three widening splitters in vertical direction,
connected by one upside-down widening splitter on top (see Figure 16). Because each
individual pattern has integer coordinates, their overlay has rational vertex coordinates. We
consider the three bottom horizontal wires to be the literals, and the vertical wire gives
the satisfiability. The fourth (top) horizontal wire, which is connected to the upside-down
widening splitter, exists only for readjustment of widths to connect to the next clause on
top.

Lemma 4.7. A clause gadget folds only if exactly one of three inputs is true.

Proof. Assume that the second input wire (from the bottom) is true. Because every hori-
zontal crease in a clause gadget stops when it encounters a twist fold, all the twists must
be folded in the second wire section. The vertical wires above the twists are wide, and the
vertical wires below the twists are narrow. Therefore the twists connected to the first and

http://jocg.org/

JoCG 11(1), 93–124, 2020 120

Journal of Computational Geometry jocg.org

third input wires will be suppressed, and the clause must form a (false, true, false) pattern.
The same argument works for the first and third horizontal wires, so we obtain (true, false,
false) or (false, false, true) patterns. Because the bottommost vertical wire is narrow and
the topmost vertical wire is wide, the vertical wire is foldable only if it uses at least one of
the twists, but doing so will force us to choose one of three modes we have described.

Lemma 4.8. Clause gadget can fold in the three modes specified in Figure 16, which follows
the folding mode of a widening splitter and its upside-down mirror image.

Proof. The rigid folding motion follows that of widening splitter, and because the connected
upside-down splitter is compatible, they fold rigidly with the specified relative speed (in
tangent-half-fold-angle parameterization) in Figure 16.

4.2 Proof and Layout

Proof of Theorem 4.1. Given a Positive 1-in-E3 SAT formula R1 ∧ R2 ∧ · · · ∧ Rm with m
clauses R1, R2, . . . , Rm of n variables x1, x2, . . . , xn, we construct a grid of n+4m horizontal
wires H1, H2, . . . ,Hn+4m and vertical wires V1, V2, . . . , V3m+1, where we place a gadget at
each intersection node of wires or at groups of nodes as specified below. By default, crossover
gadgets are placed at unspecified nodes between horizontal and vertical wires.

We set the horizontal wires from H1, H2, . . . ,Hn to be the variables x1, . . . , xn, and
each set of four horizontal wires (Hn+4(l−1)+1, . . . ,Hn+4(l−1)+4) to be the lth clause Rl
(l = 1, 2, . . . ,m). Specifically, for Rl = (xi, xj , xk), we place a clause gadget at the inter-
section between V1 and (Hn+4(l−1)+1, . . . ,Hn+4(l−1)+4). The input variables Hn+4(l−1)+1,
Hn+4(l−1)+2, Hn+4(l−1)+3 of the clause are copied from V3l−1, V3l, V3l+1, respectively; and
the values of V3l−1, V3l, V3l+1 are copied from Hi, Hj , Hk, respectively, by placing splitters
at the appropriate intersections. We claim that the value of each of the vertical wires
V3l−1, V3l, V3l+1 is constrained only by the clause gadgets that they are attached to via split-
ters. This is because each of these vertical wires, if folding in a true wire, will (1) suppress
the other vertical wires being fed into this clause and (2) cross other horizontal wires at a
crossover gadget which will not change its value. By Lemmas 4.2, 4.5, 4.6 and 4.7, each
clause can rigidly fold only if the clause returns true.

Now, because we concatenate all cause gadgets along V1, all clauses must be true
if any clause is true. We claim that at least one clause must be true if any fold line is
folded, therefore the whole laid out pattern can fold only if the given Positive 1-in-E3 SAT
formula R1 ∧ R2 ∧ · · · ∧ Rm is satisfied. The claim follows because, if all the clauses are
false, then all variables are false and thus all horizontal wires are false. Because all vertical
wires V2, . . . , V3m+1 are the copies of variables, all vertical wires are also false, and thus the
material remains completely unfolded.

If the Positive 1-in-E3 SAT formula is satisfiable, we may assign true and false
to each wire as appropriate. For false wires, we can assume that they are removed from
the crease pattern, which will result in a degree-4 flat-foldable mesh composed of gutter
splitters, staircase splitters, widening splitters. For these creases, we assign the specified
folding modes in Lemmas 4.3 and 4.8, so that they are compatible through the gutter and

http://jocg.org/

JoCG 11(1), 93–124, 2020 121

Journal of Computational Geometry jocg.org

staircase wires at correct speeds. In particular, the synchronization between the widening
and staircase splitters is realized by the different speeds between V1 (with speed 1) and
V2, . . . , V3m+1 (with speed p2) as in Remark 4.4. To allow for correct synchronization, we
place 90◦-rotated crossovers at the intersections between V1 and H1, H2, . . . ,Hn so that the
speed of the horizontal wire is p times the speed of the vertical wire; see the circled parts of
Figure 9 and the zoomed-in subpattern of Figure 17. More precisely, if the lth clause’s dth
variable (where d ∈ {0, 1, 2}) is xi which is true, then each cycle formed by (1) the gutter
splitter at (V3l−1+d, Hi), (2) the staircase splitter at (V3l−1+x, Hn+4l−3+d), (3) the widening
splitter at (V1, Hn+4l−3+x) as a part of clause gadget, and (4) the 90◦-rotated splitter at
(V1, Hi) as a part of crossover gadget rigidly folds with synchronized speeds at the creases.

p2 p2 p2 p2
11 1 1

p2 p2 p2 p211 1 1

p3

p3

p
p

p
p

p
p

p3

p3

p
p

p
p

p
p

part of
clause
gadget

staircase
splitter

part of
crossover

(90° rotated)
splitter

V1 V3l−1+x

Hi

Hn+4l−3+x

∙∙∙ ∙∙∙

∙∙∙

∙∙∙×p

×p

×p−3

×p−1

×p

×p−1

Figure 17: Synchronization of the gadgets: gutter splitter (right bottom), staircase splitter
(right top), widening splitter from a clause gadget (left top), and 90◦-rotated splitter from
a 90◦-rotated crossover (left bottom). An example set of these four gadgets is marked with
circles in Figure 9.

Because all gadgets have rational coordinates, so does the constructed crease pattern.

5 Conclusion

We have shown weak NP-completeness of rigid foldability up to finite precision of a degree-4
flat-foldable crease pattern, using all or optional creases (Theorem 3.1); and strong NP-
hardness of exact rigid foldability with optional creases (Theorem 4.1); refer to Table 1.

On the hardness side, two natural questions are whether any all-crease rigid fold-
ability problem is strongly NP-hard; and whether exact rigid foldability using all creases is
NP-hard (weakly or strongly). Weak NP-hardness seems to bump into precision issues, so
it might be easiest to solve both problems simultaneously by proving strong NP-hardness of
exact rigid foldability using all creases.

http://jocg.org/

JoCG 11(1), 93–124, 2020 122

Journal of Computational Geometry jocg.org

On the algorithmic side, the main open question is whether rigid foldability of general
crease patterns is in NP, beyond the degree-4 flat-foldable case that we showed is in NP
(Theorem 2.12). As rigid origami is a special case of linkage folding, the rigid foldability
problem belongs to the class ∃R [2]. Is deciding rigid foldability of a flat crease pattern
∃R-hard like linkage folding [2]?

Another interesting direction would be to generalize our notion of finite-precision
rigid foldability beyond just degree-4 flat-foldable crease patterns (as in Definition 2.11).
Some initial steps in this direction are made in [10]. With such a definition in hand, we
could ask whether (non-degree-4) finite-precision rigid foldability is in NP.

Acknowledgements

Tomohiro Tachi supported by KAKENHI 16H06106. Thomas Hull supported by NSF EFRI-
1240441 and DMS-1906202. Hugo A. Akitaya supported by NSF CCF-1422311 and CCF-
1423615. This work was begun at the 2015 Bellairs Workshop on Computational Geometry,
co-organized by Erik Demaine and Godfried Toussaint. We thank the other participants of
the workshop for stimulating discussions.

References

[1] Zachary Abel, Jason Cantarella, Erik D. Demaine, David Eppstein, Thomas C. Hull,
Jason S. Ku, Robert J. Lang, and Tomohiro Tachi. Rigid origami vertices: conditions
and forcing sets. Journal of Computational Geometry, 7(1):171–184, 2016.

[2] Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch,
and Tao B. Schardl. Who needs crossings? hardness of plane graph rigidity. In Proceed-
ings of the 32nd International Symposium on Computational Geometry, pages 3:1–3:15,
Boston, MA, June 2016.

[3] Hugo A. Akitaya, Kenneth C. Cheung, Erik D. Demaine, Takashi Horiyama, Thomas C.
Hull, Jason S. Ku, Tomohiro Tachi, and Ryuhei Uehara. Box pleating is hard. In Revised
Papers from the 18th Japan Conference on Discrete and Computational Geometry and
Graphs, pages 167–179, Kyoto, Japan, September 2015.

[4] sarah-marie belcastro and Thomas C. Hull. Modelling the folding of paper into three
dimensions using affine transformations. Linear Algebra and its Applications, 348:273–
282, 2002.

[5] Marshall Bern and Barry Hayes. The complexity of flat origami. In Proceedings of the
7th ACM-SIAM Symposium on Discrete Algorithms (SODA ’96), pages 175–183, 1996.

[6] J. M. Borwein and P. B. Borwein. On the complexity of familiar functions and numbers.
SIAM Review, 30(4):589–601, 1988.

[7] Raoul Bricard. Mémoire sur la théorie de l’octaèdre articulé. Journal de Mathématiques
Pures et Appliquées, 5e série, 3:113–150, 1897.

http://jocg.org/

JoCG 11(1), 93–124, 2020 123

Journal of Computational Geometry jocg.org

[8] Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and Susanne
Schmitt. A separation bound for real algebraic expressions. Algorithmica, 55(1):14–
28, September 2009.

[9] Jian S. Dai. Configuration transformation and mathematical description of manipula-
tion of origami cartons. In K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. J. Lang,
and P. Wang-Iverson, editors, Origami6: Proceedings of the 6th International Meet-
ing of Origami Science, Mathematics, and Education, pages 163–173. The American
Mathematical Society, 2015.

[10] Erik D. Demaine, Martin L. Demaine, David A. Huffman, Thomas C. Hull, Duks Kos-
chitz, and Tomohiro Tachi. Zero-area reciprocal diagram of origami. In K. Kawaguchi,
M. Ohsaki, and T. Takeuchi, editors, Proceedings of the IASS Annual Symposium 2016,
Tokyo, Japan, September 2016.

[11] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press, Cambridge, 2007.

[12] Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell. Rigidly
foldable origami twists. In K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. J. Lang,
and P. Wang-Iverson, editors, Origami6: Proceedings of the 6th International Meet-
ing of Origami Science, Mathematics, and Education, pages 119–130. The American
Mathematical Society, 2015.

[13] Shuzo Fujimoto and Masami Nishikawa. 創造する折り紙遊びへの招待 / Sōzō suru
origami asobi e no shōtai (Invitation to Creative Playing with Origami, in Japanese).
Asahi Culture Center, Tokyo, 1982.

[14] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[15] David Harvey and Joris van der Hoeven. Integer multiplication in time O(n log n). HAL
Preprint hal-02070778, 2019. https://hal.archives-ouvertes.fr/hal-02070778.

[16] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, and
R. J. Wood. Programmable matter by folding. Proceedings of the National Academy of
Sciences of the United States of America, 107(28):12441–12445, 2010.

[17] David A. Huffman. Curvature and creases: A primer on paper. IEEE Transactions on
Computers, 25(10):1010–1019, 1976.

[18] Thomas Hull. Project Origami: Activities for Exploring Mathematics. A K Peters/CRC
Press, Wellesley, MA, 2nd edition, 2012.

[19] Thomas C. Hull. Counting mountain-valley assignments for flat folds. Ars Combinato-
ria, 67:175–187, 2003.

[20] Thomas C. Hull. Rigid folding of periodic triangulated origami tessellations. In
K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. J. Lang, and P. Wang-Iverson, editors,

http://jocg.org/
https://hal.archives-ouvertes.fr/hal-02070778

JoCG 11(1), 93–124, 2020 124

Journal of Computational Geometry jocg.org

Origami6: Proceedings of the 6th International Meeting of Origami Science, Mathemat-
ics, and Education, pages 97–108. The American Mathematical Society, 2014.

[21] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger, editors, Proceedings of a Symposium on
the Complexity of Computer Computations, pages 85–103, March 1972.

[22] Toshikazu Kawasaki. On the relation between mountain-creases and valley-creases of
a flat origami. In H. Huzita, editor, Proceedings of the 1st International Meeting of
Origami Science and Technology, pages 229–237, Ferrara, Italy, December 1989. An
unabridged Japanese version appeared in Sasebo College of Technology Report, 27:153–
157, 1990.

[23] Philippe Laroche. Planar 1-in-3 satisfiability is NP-complete. Comptes Rendus de
l’Académie des Sciences, Serie I (Mathematiques), 316(4):389–392, 1993.

[24] Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. Journal
of the ACM, 55(2):11:1–11:29, May 2008.

[25] S. A. Robertson. Isometric folding of Riemannian manifolds. Proceedings of the Royal
Society of Edinburgh, 79(3–4):275–284, 1977.

[26] M. Schenk, S. G. Kerr, A. M. Smyth, and S. D. Guest. Inflatable cylinders for deployable
space structures. In F. Escrig and J. Sánchez, editors, Proc. of the First Conference
Transformables 2013, In the Honor of Emilio Pérez Piñero, Seville, Spain, Madrid,
Spain, 2013. Starbook Editorial.

[27] Jesse L. Silverberg, Arthur A. Evans, Lauren McLeod, Ryan C. Hayward, Thomas
Hull, Christian D. Santangelo, and Itai Cohen. Using origami design principles to fold
reprogrammable mechanical metamaterials. Science, 345(6197):647–650, 2014.

[28] Tomohiro Tachi. Freeform rigid-foldable structure using bidirectionally flat-foldable
planar quadrilateral mesh. In Cristiano Ceccato, Lars Hesselgren, Mark Pauly, Helmut
Pottmann, and Johannes Wallner, editors, Advances in Architectural Geometry 2010,
pages 87–102. Springer Vienna, 2010.

[29] Tomohiro Tachi. Rigid-foldable thick origami. In P. Wang-Iverson, R. J. Lang, and
M. Yim, editors, Origami5: Proceedings of the 5th International Meeting of Origami
Science, Mathematics, and Education, pages 253–263, Boca Raton, FL, 2011. CRC
Press.

[30] Tomohiro Tachi and Thomas C. Hull. Self-foldability of rigid origami. Journal of
Mechanisms and Robotics, 9(2):021008–021017, 2016.

http://jocg.org/

	Introduction
	Rigid Origami Basics
	Mathematical Model
	Computational Model
	Degree-4 Flat-Foldable Vertex
	Assembly: Degree-4 Flat-Foldable Origami
	Square Twist Fold

	Rigid Foldability using All Creases is Weakly NP-hard
	Rigid Foldability with Optional Creases is Strongly NP-hard
	Gadgets
	Wires
	Splitters
	Suppressor and Crossover Gadgets
	Clause Gadget

	Proof and Layout

	Conclusion

