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Abstract 

In this paper we examine transportation sustainability in American metropolitan areas using 

transportation-related CO2 emissions, public transit accessibility and commuting times as 

indicators. Though variations in these indicators may stem from historic contexts, policies, 

institutional arrangements, social and cultural origins, the spatial structure of metropolitan 

areas—in particular their formal characteristics—may also be a contributing factor. To test this 

relationship, we identify metropolitan form metrics from prior literature that are expected to 

impact transportation outcomes, and choose five metrics to which we introduce significant 

improvements. We apply the metrics to all 166 Combined Statistical Areas (CSAs) in the US, 

using an open-source GIS toolbox released along with the paper. Our findings demonstrate that 

form-based metrics provide a better explanation to CO2 emissions, public transit accessibility 

and commuting times in US metro areas than the simpler population size or density metrics 

typically used in practice. We also show that counter to prior literature on urban scaling laws and 

economies of scale, which have argued that larger cities and metro areas are more sustainable per 

capita, transport related CO2 emissions and transit accessibility are actually less favorable in 

larger CSAs when controlling for formal characteristics of metropolitan areas. Instead of scale, 

compactness has the highest elasticity with respect to transportation sustainability of metro areas.  
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1. Introduction 

Urban sprawl costs the US economy more than $1 trillion a year via infrastructure and public 

services (Victoria Transport Policy Institute, 2015). Because of employment decentralization, 

Americans travel longer distances to work, which is deteriorating the mental and physical health 

of the nation (Jackson, 2003). More than 15 percent of the population in nearly all US metro 

areas is obese, costing cities an estimated $80 billion a year only in health care (Witters 2011). A 

large body of planning literature has focused on how these challenges are related to urban form, 

land use planning and car-dependency in American cities. Built environments encourage 

vehicular travel and all too often discourage even moderate levels of physical activity. Less work 

has focused on studying how metropolitan form—that is the shape characteristics of entire 

metropolitan areas—affect transportation choices and related quality of life outcomes in urban 

regions (Angel et al 2005; Burchfield et al 2006; Wheeler 2008). 

This paper evaluates the relationship between metropolitan form and transportation outcomes. To 

capture formal characteristics of metro areas, we deploy five different shape metrics from prior 

literature and introduce important improvements to their specification. We apply the proposed 

metrics to all 166 Combined Statistical Areas (2015 CSAs) within the continental US1 

(excluding Puerto Rico) in order to classify US metro areas based on formal similarities, and 

assess how metropolitan form properties relate to transportation sustainability.  

The paper is structured as follows. We first present the metrics we use to capture the formal 

                                                 

1 CSAs are delineated based on commute patterns by the US Office of Management and Budget, and are comprised 
of one or multiple urban cores and surrounding low-density socio-economically linked areas.  
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properties of metropolitan areas and describe their improvements with respect to previous 

applications. Next, we apply the metrics to combined statistical areas in the US and illustrate 

extreme outliers. The following section examines how the forms of US metropolitan areas relate 

to CO2 emissions per capita, average travel time to work, and the percent of population that can 

walk to rail transit from home—qualities which we associate with more sustainable land-use and 

transportation outcomes. We demonstrate that metropolitan form metrics, such as gravity-

compactness and coverage provide a more detailed understanding of these outcomes at the 

metropolitan level than simpler population size and density metrics that are widely used in 

scholarship as well as policy-making to date. In contrast to the literature on urban scaling laws, 

our findings suggest that it is compactness—a formal property of metropolitan areas—not simply 

their scale that explains lower CO2 emissions and better transit access. Section five discusses 

takeaways for policy and planning and directions for future research. 

 

2. Metropolitan form metrics 

 

An extensive body of literature has focused on the development of urban form metrics (Angel et 

al. 2010; Wu et al., 2017; Clifton et al. 2008; Parent et al. 2009; Prosperi et al. 2009; Song et al. 

2013; Wentz 1997). While the idea of landscape morphology and shape analysis in geography 

dates to at least early twentieth century (Sauer 1925), data and computational limitations till 

recently prohibited a wider implementation of these metrics (Boyce & Clark 1964; MacEachren 

1985; Gibbs, 1961). With GIS and computing power, the field has considerably broadened.  For 

instance, FRAGSTATS is a Spatial Pattern Analysis Program for Categorical Maps based on 
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remotely-sensed land cover data that offers tools for analyzing regional urbanization patterns in 

GIS (McGarigal & Marks 1995). Parent et al. (2009) and Angel et al.(2010) and Wentz (1997) 

utilized advances in GIS to develop urban form metrics for a set of global cities. Their proposed 

metrics describe continuous urbanized areas around metropolitan cores, examining the shape 

characteristics of urban edges, the relationship between a city’s area and perimeter, and the ease 

with which the area can be traversed or circumvented. A unique focus on the overall shape of 

metropolitan areas, however, has so far ignored their internal structural characteristics, such as 

the distribution of population or jobs, or the pattern of their centers and land uses (Prosperi et al. 

2009).  

From a longer list of urban form metrics featured in literature, we identified five, which stood out 

for their expected relationship vis a vis metropolitan transportation outcomes. Of these, 

Polycentricity and Gravity-compactness capture characteristics of intra-urban spatial structure, 

weighed by employment and residential population respectively. There has been considerable 

debate about the influence of polycentric urban structure on transportation (Glaeser & Kahn 

2001; Crane & Chatman 2003), which suggests that the spatial distribution of job and residents 

should exert an influence on commuting distances and mode-shares. Second, while density 

remains one of the most common metrics for describing cities and their transportation outcomes, 

the conventional metric has been critiqued for disregarding internal relationships between parts 

(Tsai 2004, US Census Bureau 2012). Our use of gravity-compactness tries to address some of 

these shortcomings. We also expected coverage, which describes the extent to which a metro 

area is blanketed with urbanized landcover, and fragmentation, which quantifies how continuous 

versus piecemeal the development pattern is, to affect transportation outcomes. Metropolitan 
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areas with less coverage and more fragmentation were expected to lead to longer commutes 

times and more pollution. Finally, while each of the four previous metrics describes the present 

conditions of metropolitan structure from a different angle, we also expected limits to future 

expansion to exert an influence on present density and commuting patterns. Even though 

expandability addresses future potential, limits to growth may be grandfathered into past and 

present development trends and expectations in the form of higher density, certain growth 

corridors or greater support for public transit (Catenaccio 2010). Where the specification of a 

metrics significantly diverges from existing practice, we try to distinguish it by name from 

analogous measures in the literature.  

 

2.1. Gravity-compactness 

Compactness measures how physically close the elements of a metropolitan region—their built-

up areas, population or built form— are distributed with respect to each other. The closer they 

are, the more compact a metropolitan area is.  In geometry, compactness is defined by how a 

shape corresponds to a circular disk. Bertaud and Malpezzi (2003) defined dispersion—the 

inverse of compactness—as the ratio between average distance from centroids of population 

tracts to the central business district (CBD), weighted by the population of the tracts, and the 

average distance of the same population from the centroid of a hypothetical circular city of the 

same size with uniform density. Angel et al. (2005) proposed an analogous definition of 

compactness, but additionally accounted for geographical constrains like water bodies or 

mountains. Instead of comparing the observed built-up area to an ideal circular disk, it is 

compared to developable land in the study area. The main limitation of both measures is that 
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they assume the existences of a center and overlook spatial relationships between different built-

up areas with respect to each other. This can be problematic in cities where the CBD is less 

pronounced, not located at the geometric centroid of the city (e.g. coastal cities), or which have a 

polycentric structure. Second, Bertaud’s index is not affected by the absolute changes of 

density—if the relative size balance in tracts is kept constant, but the population in each tract is 

increased at the same rate, the dispersion index remains constant. 

Attempting to address these shortcomings, we have called the following metric gravity-

compactness, which is computed as the weighted average gravity accessibility of all built up 

polygons with respect to each other (Supp. Figure 1). The metric makes use of Hansen’s gravity 

accessibility index (Hansen, 1959), which is proportional to the population of each destination 

area and inversely proportional to its distance: 

𝐺𝑖 = ∑
𝑊[𝑗]

𝑑[𝑖, 𝑗]

𝑛

𝑗𝜖𝑀−{𝑖}

 

Equation 1 

, where Gi is the gravity index for built-up polygon [i] that is part of metro area M, W[j] is the 

population of destination polygon [j] and d[i,j] is the distance between their centroids. But since 

the measure is impacted by the total sum of weights [W], the metric has to be normalized to be 

comparable from city to city. Without normalization, compactness results would be higher in 

cities with higher population than cities with lower population, even if population is more 

compactly distributed in the latter. We find the normalized value Gi_norm by dividing each Gi with 

the total population in the city Wtotal.  
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Computing the gravity index from each built-up polygon to all other polygons in a metropolitan 

area, weighted by population, and taking the mean result across all polygons, can thus capture 

how compactly the metropolitan population is situated with respect to each other:   

𝐺 =
∑ 𝑊[𝑖] ∗ 𝐺𝑖_𝑛𝑟𝑜𝑚𝑖𝜖𝑀

∑ 𝑊[𝑖]𝑖𝜖𝐺
 

Equation 2 

The proposed measure does not assume a central reference point, thus making it applicable to 

metropolitan areas of any shape. 

 

2.2 Fragmentation 

Expansion of metropolitan areas does not only occur along the edges of built up areas; leapfrog 

growth is common in most cities. Climatic conditions, availability of affordable land, flexible 

zoning regulations, ground-water distribution, and low transportation costs are often key drivers 

of fragmented urban growth (Burchfield et al. 2006).  

Angel et al. (2005) describe contiguity as the ratio between the main (largest) built-up area of the 

city and the total built-up area of the city. The more built-up area is concentrated in the largest 

cluster, the more contiguous the city is. This measure is useful as long as the main built-up area 

constitutes a large portion of the total extent of the city. But the metric is not well suited to metro 

areas dominated by multiple smaller built-up clusters—it does not account for rank-size 

relationships between individual discontinuous areas beyond the largest cluster.  
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Similar to Angel et al. (2005), we assume that the fewer discontinuous developments there are, 

the less fragmented a metropolitan area is. However, our metric additionally accounts for size 

relationships between all built-up clusters, achieved by automating the procedure in GIS (Supp. 

Figure 2).  

To compute fragmentation, first we compute the ratio between the area of each built-up polygon 

and the area of polygons smaller than it: 

∑ 𝐼(𝐴𝑖 < 𝐴𝑗)𝐴𝑖
𝑛

𝑖=1

𝐴𝑗

  𝑗𝜖{1,2, … , 𝑛} 

Equation 3 

, where Aj is the area of polygon j. Fragmentation is then defined as the weighted average of 

these elements: 

∑ (
∑ 𝐼(𝐴𝑖 < 𝐴𝑗)𝐴𝑖

𝑛

𝑖=1

𝐴𝑗
) . 𝐴𝑗

𝑛

𝑗=1

∑ 𝐴𝑗
𝑛

𝑗=1

= ∑ ∑
𝐼(𝐴𝑖 < 𝐴𝑗)𝐴𝑖

𝐴𝑡𝑜𝑡𝑎𝑙

𝑛

𝑖=1

𝑛

𝑗=1

 

where I(.) is an indicator function that is 1 when its condition holds and 0 otherwise. 

Equation 4 

The key improvement of the proposed index is that it accounts for the size relationships between 

all built-up clusters, making the metric suitable to metropolitan areas of any shape or pattern.  
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2.3. Area-doubling expandability 

Area-doubling expandability the extent to which a metropolitan area can be doubled using 

available and buildable land around its current urban extent. Studies of land management 

have used urban growth boundaries as a limit for land supply (Hopkins and Knaap 2000). 

Growth boundaries, however, are insufficient for our purposes, since few metro areas have 

legally implemented them and their regulatory mechanisms vary widely. Administrative 

boundaries are also inadequate as reference land, since metropolitan area typically span 

several municipalities.  

Saiz (2010) used a 50-kilometer radius from the centroid of the city – independent of 

administrative boundaries – as the search area for developable land. But as Wendell Cox (2011) 

pointed out, an invariant search radius makes results incomparable in cities of different size. 

Whereas in larger cities a 50-kilometer radius may barely cover the built-up area, in smaller 

towns it may contain several times their existing urban extent.  

We define the reference area as twice the size of the current urban extent, which is relative to 

each metropolitan area. We have implemented a solution to identify the precise distance to which 

the boundaries of all currently built-up areas have to be offset so that the total area of each 

polygon exactly doubles. Unbuildable regions are subtracted from the doubled reference area. 

Area-doubling expandability is then defined as the ratio between the area of buildable parts of 

the doubled expansion area (Ae) and the existing built area (Ab). The index is one if the entire 

expansion area is buildable and zero if none of it is buildable: 

Expandability = Ae / Ab 
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Equation 5 

The key advantage is that the references area is relative to the size of each metro areas. While the 

choice of a doubled, as opposed to a tripled or quadrupled area is similarly arbitrary as Saiz’ 

(2010) and Wendell Cox’ (2011) measures, the exact size of this ratio is also not critical—it is 

rather important to use the same multiplier in comparing different metro areas. 

 

2.4. Coverage 

Coverage illustrates how much land in a metropolitan area is built out. We use this common 

definition here, but as reference land, deploy the convex hull —the smallest possible convex 

polygon circumscribing presently built up areas (Supp Figure 3). The “buildable” area of the 

convex hull is obtained by subtracting unbuildable areas from the complete hull: 

𝐶𝑜𝑣 =
𝐴𝑏𝑙𝑡

(𝐴𝑐𝑣𝑥 − 𝐴𝑢𝑛𝑏)
 

Equation 6 

 

2.5. Relative polycentricity 

Polycentricity typically describes the extent to which jobs in a metropolitan area are concentrated 

in multiple as opposed to a single center. Quantifying polycentricity is challenging since defining 

a center can be ambiguous and the number of centers is not necessarily a sufficient yardstick for 

a polycentric urban structure. Centers can have blurry boundaries and polycentricity can be 
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relative to the size of a city as well as the resolution of the lens with which we examine an urban 

landscape. An area can be a center locally, but not large enough to qualify as a center at the scale 

of the city or in comparison to other cities.  

While a number of useful density-based methods for detecting centers have been proposed 

(Cleveland 1979; McDonald 1987; McDonald & McMillen 1990; McDonald & Prather 1994; 

McMillen & McDonald 1997; García-López & Muñiz 2010; Giuliano & Small 1991), they have 

either failed to account that several contiguous tracts can jointly form a single center or 

presumed the existence and location of a CBD. More generally, many studies have focused on 

identifying centers, but they have not considered the overall share of jobs or the relative size 

balance between centers as factors. Roca and Marmolejo (2009) proposed a functional approach 

for detecting sub-centers, which instead of density of zones uses the intensity of interaction with 

the CBD. With a similar functional approach, Limtanakool et al. (2009) utilized the Entropy 

Index, which describes how uniformly commuting flows are distributed among centers, as a 

measure of how polycentric a metropolitan region is. 

Our relative polycentricity metric builds upon these methods to identify centers, but makes the 

employment density cutoff relative to city size. We also use Limtanakool’s concept of spatial 

interaction between centers to include a size-balance consideration in the metric.  

We use the following density-based criteria to identify centers at the census block-group 

level (other spatial units can also be used). First, job density in block-groups has to be 

two standard deviations above the mean job density in the metro area—commonly used 

threshold for identifying outliers. Second, if several adjacent block-groups pass the cut-
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off threshold, they are grouped to form a joint center. Third, while many block-groups in 

a metro area can have a high job density, we do not consider one a center if it does not 

contain a sufficiently high share of total metro area employment. We have empirically 

determined a reasonable threshold to be 10% of the square root of total jobs in the area. 

This avoids identifying block-groups, whose job densities are high, but which only 

contain a small fraction of metropolitan jobs in them, as centers. The minimum relative-

size threshold is adjustable. We use 10% of the square root of total jobs in the area as our 

relative size cutoff below, which we found to intuitively identify subcenters in multiple 

metro areas.2 

Having defined centers, polycentricity depends simultaneously on the number of centers, 

the sizes of the centers, and the relative size balance between centers found in a metro 

area. We consider a region to be more polycentric if a) it has more centers, b) a greater 

share of its total jobs is located in centers, and c) the more equally balanced the sizes of 

its sub-centers are (the less any one center dominates). Relative polycentricity PC is thus 

defined as:  

PC=HI*N*Rc  

Equation 7 

                                                 

2 There is no “right” value for the minimum center size; the chosen value will affect whether small neighborhood 
job clusters or only regionally important job-centers will be included. It is important that the same criterion be 
used among all cases that are compared. The method we used picks out 33 subcenters in the Los Angeles-Long 
Beach CSA and 13 subcenters in the New York-Newark CSA (see Supp. materials).  
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, where N is the number of centers, and Rc is the ratio between the number of jobs found in all 

centers to the total amount of jobs in the metro area as a whole. HI is Limtanakool et al.’s 

Entropy Index (2009), which measures the degree to which the sizes of centers are homogenous: 

𝐻𝐼 = − ∑
(𝑧𝑖)𝑙𝑛(𝑧𝑖)

𝑙𝑛(𝑁)

𝑁

𝑖=1

 

Equation 8 

, where Zi is the ratio of the number of jobs at center i to the total number of jobs in all N centers 

in a region.  Supplemental Figure 4 illustrates the 33 job centers identified in the Los Angeles-

Long Beach CSA—by far the most polycentric metro area in the US (PC=13.8). 

 

3.  Application to American Metropolitan Areas     

We use the National Land Cover Database (MRLC 2011) and boundaries of CSAs to delineate 

the extent of urbanized areas in the US. Combined statistical areas typically include a number of 

core based statistical areas (CBSAs), whose individual built-up areas often form a large, regional 

whole. Within each CSA, we reclassified the four land cover classes labeled as developed (low, 

medium, high intensity, and open space) to urban, converted the urbanized extents to polygon 

features and eliminated features smaller than 1 km2. We also reclassified Wetlands and Open 

Water land cover as unbuildable, which used for computing compactness, coverage, and 

expandability. While urban growth boundaries, steep slopes and protected lands can also serve as 

barriers for development and urban expansion, our application here unfortunately does not 

account for these due data and time constraints. However, our open source GIS toolbox allows 
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other researchers to define unbuildable land in alternative ways using, for instance, slope, legal 

growth boundaries, protected areas and other restrictions in future work. We use 2010 block-

group level population from the US Census and 2015 business locations from ESRI3 to compute 

gravity-compactness (weighted by population) and relative polycentricity (weighted by 

employment) respectively. Supplementary Table 1 provides summary statistics of metropolitan 

form metrics across all CSAs and a full table of results including each CSA separately is also 

provided in supplemental Table 4.   

Some descriptive statistics are worth pointing out. Data from American CSAs suggests that 

population density tends to be higher in larger metropolitan areas. Highest populations density is 

found in the two most populated CSAs: New York-Newark, NY (2,104pax/km2) and Los 

Angeles-Long Beach, CA (2,110 pax/km2). The lowest population density, on the other hand, is 

found in Edwards-Glenwood Springs, CO (567 pax/km2) and DeRidder-Fort Polk South, LA 

(569 pax/km2), which are both in the bottom 10%-ile in terms of CSA population (126,000 pax 

and 88,000 pax respectively). This is noteworthy in light of Angel’s (2005) analysis of global 

urban expansion, where he found that as population doubled between 2000 and 2010, land area 

tripled—urban densities in all regions were found to be decreasing over time. Our data shows 

that larger metro areas in the US have higher population densities on average.  

Seventy-five per cent of all metropolitan areas in the US have four or more centers, which are, 

on average, 28 kilometers apart from each other. Despite the continued dominance of the mono-

                                                 

3 https://www.esri.com/en-us/arcgis/products/arcgis-business-analyst/overview  

https://www.esri.com/en-us/arcgis/products/arcgis-business-analyst/overview
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centric model in urban economic education (Alonso 1964; Muth 1969; Mills 1967), the 

assumptions of these models are inconsistent with the polycentric structure of employment in US 

metropolitan areas.  

Most American metro areas are also spatially fragmented—built-up areas cover only a small 

portion of their convex hulls. Less than 12% of the metro area’s convex hull is urbanized in 

seventy-five per cent of all CSAs.  

Most American metropolitan areas do not face significant water barriers to growth. Seventy-five 

per cent of all metropolitan areas could potentially use 88% of land within an area-doubling 

buffer zone around them for growth—that is land that is unobstructed by water bodies.4 Major 

metropolitan areas on the coasts are typically more constrained.  Washington-Baltimore-

Arlington CSA, Seattle-Tacoma CSA and Miami-Fort Lauderdale-Port St. Lucie CSA are the 

least expandable metro areas in the US, due to both oceanfront edges and wetlands that act as de 

facto growth boundaries around them. 

3.1. Identifying unique metropolitan forms 

Although metro areas of similar size generally tend to have similar spatial structure, some also 

stand out as unique. We use Mahalanobis distance (Appendix 1) to detect CSAs that are outliers 

based on their combination of five form metrics. Mahalanobis distance not only detects 

observations that are outliers according to one metric, but also those that have an extremely 

                                                 

4 There may be other barriers to growth, including terrain, protected areas legal growth boundaries as discussed 
above. 
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different combination of measured outcomes.5 

Outliers include Edwards-Glenwood Springs in Colorado, with its snake-like shape extended 

along a valley, extremely large linear metropolitan areas like Miami-Fort Lauderdale-Port St. 

Lucie and Seattle-Tacoma (Supp. Figure 5). The highly fragment and un-expandable regions of 

Washington-Baltimore-Arlington and Seattle-Tacoma, which are surrounded by wetlands, the 

enormous continuous region of Los Angeles, and Columbia-Moberly-Mexico CSA in Missouri, 

which contains three major built-up areas separated by agricultural lands, are also detected as 

outliers. Figure 1 below reports the standardized deviations from the mean in each of their 

metrics and supplemental Figure 5 illustrates the shapes of some of the outlier footprints (in 

black) and job centers (in red). 

                                                 

5 Supplementary Table 2 shows the metropolitan form metrics for unique CSAs. 
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Figure 1. standardized deviation from the mean (centered at zero) for each metric for outlier 

metropolitan areas. While in some metropolitan areas no single metric deviates drastically from 

the mean, they are detected as outliers given their rare combination of measured outcomes (e.g. 

Columbia-Moberly-Mexico, Las Vegas-Henderson, Midland-Odessa and Bloomington-Pontiac). 

 

We can see from Figure 1, for instance, that Los Angeles-Long Beach is an outlier due to three 

metrics that diverge beyond two standard deviations from the mean: 1) its exceptionally 

polycentric employment pattern, 2) its unusually high compactness, and 3) its unusually large 

area. The Seattle-Tacoma and the Washington-Baltimore-Arlington CSAs, on the other hand, are 

outliers due to their exceptionally low expandability (both are surrounded by water-bodies) and 

highly discontinuous built-up areas—a quality that is also attributable to the waterbodies that 

surround them.  
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4 Metropolitan form and transportation outcomes. 

We used linear regressions to test how these metropolitan form metrics relate to transportation 

indicators that we use as proxies for sustainable metropolitan development—CO2 emissions per 

capita, average travel time to work, and the percent of population that lives within walking 

distance (1km) from public transit. Though the benefits of denser urban environments remain 

subject to debate (Echenique et al. 2014), many planners have argued that minimizing sprawl and 

travel time to work, maximizing walking access to transit, and reducing CO2 emissions per 

capita lead to environmentally more sustainable, less time-wasting and healthier urban 

environments (Frank and Engelke 2001; Glaeser 2012; Speck 2013).  

Transportation-related CO2 emissions were obtained from the Vulcan project, using 2016 data, 

which describes emissions in a10 by 10 km grid nationwide (Gurney et al 2009). Individual cell 

values were intersected with CSA built up areas to interpolate emissions to each CSA and 

divided by the population within the same built up polygons. Average commuting times to work 

were obtained from the 2016 American Community Survey, using 5-year estimates. Percent of 

residents living within a one kilometer (approx. 15-minute walk) from transit stations was 

estimated based on the US DOT Bureau of Transport Statistics National Transit Map, which 

includes commuter rail, heavy rail, light rail, monorail/automated guideway, streetcar rail and 

bus stations. This data is based on a General Transit Feed Specification (GTFS) requests made 

by US DOT to all transit agencies in the country, but the data is voluntarily provided and may 
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not represent the full picture.6 We first computed the distance from each Census block in the US 

to its closest transit station, filtered out only those Census blocks that are within 1km from a 

station and then aggregated the population-weighted results up to CSA levels.  Supplementary 

Table 3 presents the descriptive statistics. 

The outcome variables suggested that the mean travel time to work is 21 minutes across all CSAs 

with a minimum of 14.4min in Clovis-Portales NM and a maximum of 32.6 in New York-

Newark NY. The average percent of population with walking distance from transit across all 166 

CSAs is 22%. This is an average of individual percentages, without weighting by size of CSA. 

The total percent of population across all CSAs that reside within 1km of stations is 46.6% and it 

rises to 53% if we only consider those 85 CSA that do have transit systems. The average resident 

in US metropolitan areas produces 5.9 tons of transportation-related CO2 per year with, but the 

amount can be as high as 9-10 tons in some cases (e.g. Bowling Green-Glasgow KY and 

Columbia-Orangeburg-Newberry-SC) and as low as 3.4 tons per capita in the New York -

Newark CSA.  

In order to estimate the relationship between formal attributes and transport outcomes as 

elasticities, some variables had to be transformed. Transit access was included in raw form, since 

it was already measured as percentage. Average travel time and transportation-related CO2 

emissions were transformed with a natural log. Among the form metrics, coverage and area-

doubling expandability were not transformed, since their raw form already reflects a percentage, 

                                                 

6 The data is described at https://www.bts.gov/national-transit-map/about. Intersecting the stations with CSAs 
showed that roughly half (85 out of 166) of the CSAs had transit stations.  

https://www.bts.gov/national-transit-map/about
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but polycentricity, fragmentation and gravity-compactness were transformed with a natural log to 

yield elasticities. We also include the log of CSA population as a control variable in the models, 

given that each of the four sustainability proxies are known to be strongly related to city size. 

Since 81 CSAs had no data on transit stations, only those cases with transit data were included in 

the corresponding model. 

We first examined the relationship between each form metric to each outcome variable alone. 

These coefficients and R2 statistics are reported in Table 1. We also included population and 

population density as sole predictors for comparison. The coefficients in these tests are 

uncontrolled and therefore should not be used for interpretation. Standard errors and t-statistics 

are reported to show how the fit of the estimated relationship varies across CSAs, but should not 

be interpreted as statistical significance, since the data is not a random sample, but rather reflects 

a full list of CSAs in the United States. 

Some exploratory findings are worth noting. First, population density is often cited as a key 

metric for transportation planning and policy. A critical reader could also suggest that the form 

metrics introduced above may be equivalent or inferior to a much simple population density 

metric, whose computation only requires knowledge of the area and population of each CSA. 

When we examine the relationship between density and each of the three outcome variables in 

Table 1, we see that gravity-compactness consistently explains a greater share of the variation in 

each outcome than density. Variation in gravity-compactness alone explains 27.5% of 

metropolitan variation in transport-related CO2 emissions per capita, while density only explains 

6.8%. Gravity-compactness explains 24.3% of variation in average commute times and 40.4% 

variation in transit accessibility, while the corresponding explanatory power of density is only 
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2.4% and 16%. Variations in coverage also provides a better explanation to CO2 emissions and 

average commute times than density, though density has a stronger correlation with transit 

accessibility. Fragmentation, polycentricity and area-doubling expandability too outperform 

density in their power to explain average commute times. All in all, using density as a convenient 

alternative to characterizing metropolitan form can be misleading. 

 

 
 

 Table 1. Bi-variate regressions showing the uncontrolled effects of each form metric alone on 

transport-related CO2 emissions per capita, average commute time and percent of population 

with walking access to transit. Models include population and population density as sole 

predictors are also included for comparison.  

Table 2 reports the results of controlled models, where all form metrics as well as population of 

the metro were regressed together against the same three outcome variables. 
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Table 2. OLS estimates of elasticities of metropolitan form metrics with respect to transport-

related CO2 emissions, travel time to work and walking access to public transit. Highest 

variation inflation factor (VIF) is 8.3 for log of population. 

 

Transportation-related CO2 emission per capita is related positively to population—larger CSAs 

have higher per capita emissions than smaller CSAs controlling for form characteristics—but the 

elasticity is very small. A one percent increase in CSAs population relates to only a 0.08% 

increase in per-capita emissions. This is nevertheless remarkable, given that a considerable body 

of urban science literature has theorized that more populated cities require less, not more, per-

capita travel infrastructure and produce less per capital emissions (Glaeser 2012). Even though 

metro population indeed had a negative relationship to per-capita emissions when examined 

alone (Table 1), its sign flips when we control for metropolitan form characteristics (Table 2). 

Bettencourt et al. (2010), for instance, found that more populated cities produce less gasoline 

sales per capita, than less populated cities. Though our findings do not measure gasoline sales 

but CO2, the data here disagrees. It is not the size, but the form of metropolitan areas that 

Variable Coeff. Coeff. Coeff. VIF

Constant 8.482 ( 0.269 ) ( 31.583 ) 2.032 ( 0.112 ) ( 18.106 ) 0.222 ( 0.373 ) ( 0.596 )

Population 0.083 ( 0.030 ) ( 2.779 ) 0.087 ( 0.012 ) ( 7.003 ) -0.003 ( 0.040 ) ( -0.082 ) 7.329

Relative Polycentricity -0.057 ( 0.039 ) ( -1.462 ) -0.007 ( 0.016 ) ( -0.427 ) 0.028 ( 0.047 ) ( 0.607 ) 1.397

Area-doubling Expandability -0.108 ( 0.127 ) ( -0.849 ) -0.103 ( 0.053 ) ( -1.937 ) -0.177 ( 0.147 ) ( -1.201 ) 1.870

Fragmentation -0.081 ( 0.041 ) ( -1.990 ) 0.027 ( 0.017 ) ( 1.574 ) -0.096 ( 0.050 ) ( -1.929 ) 2.739

Coverage -0.670 ( 0.267 ) ( -2.511 ) 0.277 ( 0.111 ) ( 2.483 ) -0.413 ( 0.285 ) ( -1.452 ) 2.212

Gravity-Compactness -1.136 ( 0.191 ) ( -5.932 ) -0.231 ( 0.080 ) ( -2.894 ) 1.051 ( 0.250 ) ( 4.208 ) 3.854

R
2
 (adjusted) 0.314 0.712 0.456

t-value Std. Error t-value

Note: cell values show betas, with std. errors and t-values in parentheses. Significance level not reported since the dataset is not a sample, 

but reflects all CSAs.

1. Dependent =CO2/pax 2. Dependent = Avg travel 

time to work.

3. Dependent = % residents 

near transit.
n = 163 n =  163 n = 85

Std. Error t-value Std. Error



23 

 

explains lower transport-related CO2 emissions per capita. It is natural to confound these effects, 

since larger metro areas also tend to be more compact.7 

The largest form-related effect is observed with gravity-compactness—a 1% increase in 

compactness corresponds to a 1.136% decrease in emissions. An elasticity greater than one 

suggests that increasing metropolitan compactness is indeed an efficient way of reducing 

emissions.  

Coverage has the second highest elasticity with respect to CO2 emissions—the more a CSA’s 

convex hull is covered with development, the lower its emissions tend to be (elasticity = 0.67). 

Polycentricity, fragmentation and expandability are also negatively related to emissions, though 

their elasticities are close to zero. The six variables in the model explain 31% of variation in 

transport-related CO2 emissions per capita across US CSAs. Table 2 tells us that the majority of 

that explanatory power is attributable to compactness. 

The same five form metrics plus population explain 71% of variation in average travel time to 

work in US metro areas. Commute times are negatively related to gravity-compactness (elasticity 

= -0.23)—more compact metropolitan areas have shorter commute times, controlling for 

covariates. Coverage is positively related to travel times, and its elasticity even exceeds that of 

compactness. A one percent increase in coverage is related to a 0.28% increase in travel times. 

Metro areas that have a larger share of their convex hull built out, have longer commute times. 

                                                 

7 Compactness values reported in Supp. Table 4 show that the average gravity-compactness for CSAs whose 
population is above the 90th percentile is 1.1 (n=17). It drops to 0.6 for CSAs in the 40th-60th percentile population 
range (n=34), and to 0.4 for CSAs below the 10th percentile population range (n=17). 
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Again, the elasticities of other form variables are notably smaller. Polycentricity has a very small 

negative elasticity and a low t-value. We are unable to conclude from this that more polycentric 

metropolitan structure reduces travel times and helps alleviate traffic problems, which has often 

been used as an argument in transport literature (Crane and Chatman 2003). For instance, Los 

Angeles-Long Beach CSA—the most polycentric metro area in the US—has a mean commute 

time of 27.7 minutes, which is above the 95th percentile of mean travel times. Even when LA is 

excluded from the data due to its exceptionally high polycentricity, the effect does not change. 

The third model suggests that access to public transit in American metropolitan areas is higher in 

more compact metro areas. An elasticity greater than one is again worth highlighting here—a 

one percent increase in compactness relates to a 1.05% increase in transit access. Other effects 

are notably smaller and have lower t-values. Area-doubling expandability (elasticity -0.17) and 

coverage (elasticity -0.41) are negatively related to transit access—metro areas whose expansion 

is less constrained and those that cover more of their extents with development, have fewer 

people living near transit. Other elasticities are too small to play a role. Population, which taken 

alone exhibited a positive relationship to transit access in Table 1, again flipped signs to produce 

a negative impact, suggesting that larger metro areas have fewer people near transit options, 

when controlling for compactness and other form characteristics. A low t-value also signals 

greater variation among CSAs. The model explains 45.6% of variation in transit access.  

Overall, compactness stands out as the most important predictor with the highest elasticity in all 

three models. How close people live to others in a metropolitan region appears to be the most 

consequential variable in explaining carbon emissions and the proportion of people with walking 

access to transit. Metropolitan regions that produce least pollution, have shortest commute times, 
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and where most residents have walking access to transit tend to have more compact forms. 

Coverage is the second most impactful factor, with notable elasticities as well. For average 

commute times, coverage has a higher elasticity than compactness.   

5. Discussion 

We presented five metrics to describe the forms of metropolitan areas and introduced 

improvements to their specification. The metrics were applied to all US CSAs, which enabled us 

to outline those metro areas that stand out with unique formal properties. We also analyzed 

relationships between the metropolitan form metrics and three different sustainable transport 

indicators—transport-related CO2 emissions, commute times and pedestrian access to public 

transport. Gravity-compactness, which describes how close people live with respect to all other 

people in the metro area, was the most consequential predictor of CO2 emissions and access to 

transit.  Our findings suggest that the gravity-compactness metric overcomes some of the known 

shortcomings of the simpler population density measures often used in practice.8 Given a number 

of desirable outcomes of more compact metropolitan areas—less CO2, shorter commute times, 

and higher levels of population near transit—we find that the metric is well-suited to be used in 

metropolitan planning and policy making. 

                                                 

8 The US Census Bureau has recently shifted to including weighted population density measures in addition to raw 
population density measures in their data (US Census Bureau, 2012). While a weighted density measure accounts 
for variations within population distribution, a key advantage of the proposed compactness measure lies in the 
fact that it captures internal variations in population distributions as well as distances between built-out regions 
within the same metropolitan area, thereby providing a more accurate and context-sensitive depiction of 
metropolitan configuration.  
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Coverage and fragmentation metrics can be used to describe spatial fragmentation of 

metropolitan areas. While coverage describes the percent of buildable land in a convex hull that 

is actually built out, irrespective of shape, fragmentation specifically captures how disjointed the 

development pattern is. Both metrics are positively related to average commute times to work. 

Controlling for covariates, metro areas with a higher land cover, as well as those with more 

fragmented development, tended to have longer commute times to work. At the same time, more 

compact and more polycentric metropolitan areas tended to reduce commute times and enable 

more people to gain access to transit within walking distance.  

Contrary to some existing literature, our analysis showed that per-capita CO2 emissions are not 

necessarily smaller in bigger CSAs. Controlling for form characteristics, metropolitan population 

is actually positively related to CO2, though the effect is very small. Rather than the size of a 

metro area, more compact form is are key to explaining lower emissions.   

An interesting metropolitan form typology that is highly discontinuous, but at the same time 

compact is presented by Washington-Baltimore-Arlington, Seattle-Tacoma and Miami-Fort 

Lauderdale-Port Lucia CSAs (Supplemental Figure 5). Each of these three metropolitan areas is 

highly constrained by water bodies around their edges (low expandability). Each of them also 

contains a rail transit system that has become a magnet for densification and growth. Their forms 

are compact and polycentric and at least partially concentrated around public transport, similar to 

the well-known patterns of Copenhagen and Stockholm in Europe. Despite their low coverage 

and highly fragmented development patterns, these CSAs demonstrate that it is possible to 

achieve lower than average transport-related CO2 emissions with highly discontinuous, but 

compact growth around polycentric rail corridors.   



27 

 

The open-source GIS toolbox accompanying this paper enables researchers to automate and 

customize the calculation of shape metrics on metropolitan areas elsewhere. Future work could 

examine how effective different policy and planning mechanisms have been in guiding the 

formal pattern of metropolitan areas. The effects of policies, such as urban growth boundaries, 

gasoline taxes, large-scale transit investments or form-based development codes can be 

examined when metropolitan shape metrics are compared across the same metropolitan areas 

over multiple decades. Longitudinal data for such comparison has been recently made available 

by the World Bank, covering at least three decades (1990, 2000 and 2010) world-wide.  Having 

scalable metrics to describe metropolitan form offers an important step towards quantifying the 

effects of past, present and future policy changes in different urban regions. 
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