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Research Article

Giacomo Gafforelli, Ruize Xu, Alberto Corigliano* and Sang-Gook Kim

Modeling of a Bridge-Shaped Nonlinear
Piezoelectric Energy Harvester

Abstract: Piezoelectric microelectromechanical systems
(MEMS) energy harvesting is an attractive technology
for harvesting small energy from ambient vibrations.
Increasing the operating frequency bandwidth of such
devices is one of the major challenges to be solved for
real-world applications. A MEMS-scale doubly clamped
nonlinear beam resonator has demonstrated very wide
bandwidth and high-power density among the energy
harvesters reported. In this paper, a first complete theo-
retical discussion of nonlinear resonance-based piezo-
electric energy harvesting is provided. The sectional
behavior of the beam has been studied through the
Classical Lamination Theory (CLT) specifically modified
to introduce the piezoelectric coupling and nonlinear
Green-Lagrange strain tensor. A lumped parameter
model has been built through Rayleigh–Ritz method
and the resulting nonlinear coupled equations have
been solved in the frequency domain through the
Harmonic Balance Method (HBM). Finally, the influence
of external load resistance on the dynamic behavior has
been studied. The theoretical model shows that nonlinear
resonant harvesters have much wider power bandwidth
than that of linear resonators but their maximum power
is still bounded by the mechanical damping as is the case
for linear resonating harvesters.

Keywords: MEMS, energy harvesting, piezoelectric mate-
rial, nonlinear dynamics, classical lamination theory,
harmonic balance method
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Introduction

Piezoelectric microelectromechanical systems (MEMS)
have been proven to be an attractive technology for
harvesting small amount of energy from ambient vibra-
tions. This technology promises to eliminate the need for
replacing chemical batteries or complex wiring in micro-
sensors/microsystems, moving us closer toward battery-
less autonomous sensor systems and networks. In the
meantime, new developments in sensors and comple-
mentary metal oxide semiconductor (CMOS) circuitry
technology have considerably reduced the power con-
sumption of electronics which can now be powered by a
few μW of continuous power from ambient vibrations
(Kim, Priya, and Kanno 2012). For MEMS-scale energy
harvesters, piezoelectric transduction is the most appro-
priate scenario since standard MEMS thin-film processes
are available for many piezoelectric materials, assuring
high efficiency, high energy density and scalability of the
device design. Operating frequency, frequency band-
width, excitation level, power density and size are the
key design requirements.

At the present time, most of the devices reported in the
literature do not meet the desired requirements mainly due
to the very narrow bandwidth and not-low-enough reso-
nant frequency. Cantilever laminated beams with thin
films of lead zirconate titanate Pb(Zr,Ti)O3 (PZT) on Si or
SiNx have been widely used to achieve high-power gen-
eration at large deflections near the resonant frequency
(Jeon et al. 2005). However, the frequency bandwidth of
the linear resonance system is extremely small, making the
harvesters very impractical. Moreover, excessive strain at
the exact resonance may shorten the life time of the har-
vester due to the accelerated piezoelectric fatigue over
0.2% strain on the piezoelectric thin film.

Exploiting nonlinear behaviors has been identified as a
possible solution to solve the issues emerged by studying
cantilever linear harvesters. The effect of nonlinear piezo-
electric constitutive equations has been studied
in cantilever beam harvesters showing that one- or two--
mode approximations are not sufficient to accurately
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predict the performance of the cantilever harvester
(Abdelkefi, Nayfeh, and Hajj 2012). Other authors proposed
bistable harvesters that exploit instability induced by pre-
stresses or additional external magnetic interactions (Harne
and Wang 2013). These designs seem promising but still
require an external intervention (as glued magnets or
pre-stresses) which enhances fabrication-related issues.

A nonlinear resonance-based energy harvester was
designed and developed for ultra wide-bandwidth
(UWB) energy harvesting (Hajati and Kim 2011). It was
demonstrated that both wide enough bandwidth reso-
nance and high enough power density could be achieved
by a doubly clamped beam nonlinear resonance energy
harvester. A doubly clamped beam at large deflection
requires stretching strain in addition to the bending
strain to be geometrically compatible, which stiffens the
beam as the beam deflects and transforms the dynamics
to the nonlinear regime. Interdigitated electrodes were
employed to convert the stretching strain into electrical
charge through d33-mode piezoelectrics. This device
exploits pure geometrical constraints to induce the non-
linear hardening behavior to the clamped beam, in this
way it is not required an additional external intervention
on the harvester (as for common bistable) and the fabri-
cation complexity is considerably reduced. Moreover,
bridge resonant harvesters, in which nonlinear effects
are activated due to axial stretching, can easily achieve
the full strain capability of the piezoelectric layer since
higher longitudinal strains can be obtained at equal
transversal displacement with respect to e.g. cantilever
linear resonators. This significantly shrinks the size of the
device.

In this paper, a first comprehensive theoretical dis-
cussion on nonlinear resonance-based piezoelectric
energy harvesting is provided. First, the electrical damp-
ing is considered as a linear dashpot added to the classi-
cal mechanical damper and the influence of the
additional damping has been studied. It has been
shown that the maximum power generation of nonlinear
resonant harvesters is theoretically bounded by the
mechanical damping of the dynamic system, which is
the same as the well-known result for linear piezoelectric
harvesters (duToit, Wardle, and Kim 2005). Theoretical
modeling of this damping boundedness is presented here
for nonlinear harvesters (Section 2). In Section 3, this
result is verified through a more accurate model which
considers the influence of an external load resistance to
the dynamic behavior of the nonlinear oscillator. The
sectional behavior of the doubly clamped beam is studied
through the Classical Lamination Theory specifically
modified to introduce the piezoelectric coupling and

nonlinear Green-Lagrange strain tensor. A lumped para-
meters model is built and solved through the Harmonic
Balance Method (HBM). The theoretical model shows that
nonlinear resonant harvesters have much wider power
bandwidth than that of linear resonators, but their max-
imum power is still bounded by the mechanical damping
as is the case for linear resonating harvesters.

Simple model with linear
electrical damping

A general nonlinear piezoelectric resonant energy harvester
is modeled in Figure 1 by a spring-mass system. kL and kN
are the linear and nonlinear stiffness, cM and cE are the
linear mechanical and electrical damping,mc is the concen-
tratedmass andw is the displacement of themass relative to
the reference system, finally yext is the displacement of the
reference frame to the ground. The system behaves as a
Duffing oscillator and its dynamics is described by eq. [1]:

mc €wþ cE þ cMð Þ _wþ kLwþ kNw3 ¼ �€yextmc ½1�

In the case of a doubly clamped beam, at large deflections
the stretching strain increases the stiffness. The hardening
behavior is obtained when kN > 0. The solution of eq. [1] is
achieved through the HBM in case of harmonic excitation
(Worden and Tomlinson 2000). Harmonic balance mimics
the spectrum analyzer by simply assuming that the
response to a sinusoidal excitation is a sinusoid at the
same frequency. A trial solution w ¼ Wsin(ωt) is substi-
tuted in the equation, then the coefficients of the same
harmonics are equated and the nonlinear Frequency
Response Function (FRF) is computed as shown in eq. [2]:

Y ¼ �Ω2
M þ 1þ 3

4 αY
2

� �þ i 2 ζ E þ ζMð ÞΩM½ �� ��1 ½2�

where α ¼ kN=kLW2
0 is a measure of the nonlinearity

of the system, W0 is the linear static displacement,
Y ¼ W=W0 is the dimensionless amplitude, ΩM ¼ ω/ωn

is the dimensionless excitation frequency, ζM ¼ cM/2ωnmc

kN
kL

cEcM

yext

w

mc

Figure 1 Nonlinear energy harvester with linear electric damping
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and ζE ¼ cE/2ωnmc are the electrical and mechanical
damping ratios.

The equivalent stiffness and the natural frequency
are amplitude dependent, which explains the hardening
behavior of the oscillator as shown in eq. [3]):

keq ¼ kL 1þ 3
4
αY2

� �
ωn ¼ kL

m
1þ 3

4
αY2

� �� �1=2

½3�

Figure 2 shows the influence of damping on the ampli-
tude response. The higher the damping the lower is the
jump-down frequency and the displacement amplitude.
The maximum amplitude and the jump-down frequency
are given in eq. [4] (Brennan et al. 2008).

Yd � 2
3α

1þ 3α

4ðζ E þ ζMÞ2
 !1=2

� 1

0
@

1
A

0
@

1
A1=2

Ωd � 1
21=2

1þ 1þ 3α

4ðζ E þ ζMÞ2
 !1=2

0
@

1
A1=2

½4�

The linear electric dashpot represents the amount of
damping injected in the system by the piezoelectric mate-
rial, thus the power generation is given by the power
dissipated by the dashpot.

As shown in Figure 3, the power generation increases
until the system jumps down, before which the power
reaches the maximum. Moreover, the amount of power
that can be extracted depends on the electrical damping
injected in the system. When the electrical damping is
zero, no power can be harvested, while when the damp-
ing is too high, the oscillator does not move and no
power is then produced. An optimal electrical damping
which maximizes the power generation lies in between.
Providing the power spectrums for varying electrical

damping, the envelope of all peaks is obtained (black
line in Figure 3).

By comparing Figure 3 to the well-known power
response of a linear harvester (Du Toit 2005), it is proved
that nonlinear harvesters have a much larger bandwidth
than linear harvesters which are useful only when oper-
ating near the resonance frequency of the system.
Computing the power at the jump-down using eq. [4], a
closed expression of the maximum power is provided:

Pd ¼ 1
2
CE _wj j2 ¼ ζ Em €yextj j2

4ω0ðζM þ ζ EÞ2
½5�

Eq. [5] is the same to the result that was obtained for
linear harvesters (Roundy 2003), and the peak power
occurs when ζE ¼ ζM, as it can be shown in Figure 3 or
by providing the derivative. The previous expression can be
considered as a theoretical upper bound to the power
generation for all kind of resonant energy harvesters.
However, this does not mean that ζE ¼ ζM is always the
optimal condition for the oscillator. However, this is true
only at Ω ¼ Ωd (as in linear system it is true only at
resonance) while for other excitation frequencies, the opti-
mal electrical damping is higher (when Ω < Ωd) or lower
(when Ω > Ωd) than the mechanical damping. In conclu-
sion, each excitation frequency requires a specific electrical
damping for the harvester to work in the optimal condition.

The simple model suggests that the electrical damp-
ing needs to match the mechanical damping at the max-
imum power; thereby eq. [5] provides an upper limit for
both linear and nonlinear resonant harvesters. However,
the model relies on a strong hypothesis on the piezo-
electric coupling, which should take into account the
nonlinear behavior. This issue is considered in the follow-
ing section with more accurate modeling of the piezo-
electric coupling.

Figure 2 FRF of the Duffing oscillator for different values of elec-
trical damping (α ¼ 0.048, ζM ¼ 0.0056, ωn ¼ 0.0016)

Figure 3 Power response of the Classical Duffing Oscillator for
different values of electrical damping
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Accurate model

A more accurate model needs to be developed since the
model presented in Section 2 is not suitable to describe the
completely coupled piezoelectric behavior. Indeed, a linear
dashpot is not sufficient enough to describe the coupling
as it was extensively demonstrated (Roundy 2003; Du Toit
2005). For instance, the previous simple model is not able
to explain the increase of stiffness due to the piezoelectric
coupling. A coupled nonlinear model of a doubly clamped
piezo-laminated beam is developed in this paper. The
sectional behavior of the beam is studied by means of
Classical Lamination Theory (CLT) specifically modified
to introduce the piezoelectric coupling and nonlinear
strain. By appropriate hypothesizing on the deflection
and electric field, a lumped system is obtained and then
solved through HBM. The influence of the external load
resistance is then studied and the results obtained in
Section 2 are confirmed.

Geometry

The doubly clamped beam resonator is presented in
Figure 4. L and h are the half length and the total thick-
ness of the piezolaminated beam, respectively. A concen-
trated mass (mc) is placed in the middle of the beam. The
x1-coordinate originates in the neutral axis and is directed
downward while x3-coordinate lies along the beam axis.
A PZT layer is placed on top of the beam substrate and is
activated in d33-mode when the beam deflects. To imple-
ment d33-mode, interdigitated (IDT) electrodes span one
surface of PZT thin film, which has been polarized along
x3-axis, wraps from one electrode to the next in alternat-
ing directions. In such way, when the PZT layer is
stretched an electric field arises parallel to the x3-axis,
the generated charge can be collected by the IDT electro-
des. The IDT electrodes are alternatively connected,
resulting in a couple of electrodes. One of them is
grounded while the other is attached to an external
load resistor (R), which represents an ideal external cir-
cuit employed for managing the power generated by PZT.

Sectional behavior: Modified Classical
Lamination Theory (MCLT)

The beam’s final stack is not homogeneous since differ-
ent layers are deposited. The mechanical response of the
layered beam can be obtained by means of a number of
theories (Ballhause et al. 2005). A very thin beam must
be designed to activate nonlinear stretching. Thus, CLT is
adopted here in order to introduce the piezoelectric
coupling in PZT layer and the Green-Lagrange nonlinear
strain tensor. The bending (S33–L) and stretching (S33–N)
strains along the beam axis are computed from
Euler–Bernoulli kinematics assumptions and the Green-
Lagrange strain–displacement relationship:

S33�L ¼ �x1
@2w1

@x23
S33�N ¼ 1

2
@w1

@x3

� �2

½6�

where w1 and w3 are the vertical and horizontal displace-
ment of the beam neutral axis.

The electric potential (ϕ) is constant across the piezo-
electric layer. Piezoelectric constitutive laws are adopted
to describe strain–stress relation, the fully coupled law
for d33-mode reads as follows:

T33 ¼ C33S33 � e33E3 þ Tr
33 D3 ¼ e33S33 þ εS33E3 ½7�

where T33 is the stress component parallel to x3-axis, Tr
33

is the residual stress component, S33 is the strain tensor
component, D3 the electric displacement component, E3
the electric field component (E3 ¼ −,ϕ) and C33, e33 and
εS33 are the elastic, piezoelectric and dielectric constant,
respectively. Eq. [7] is known as the e-form of piezoelec-
tric constitutive relations.

By considering a layered section and by integrating on
the thickness, one obtains the generalized stiffness usually
defined for the theory of laminates. In such a case, the new
constitutive law contains, in the integrated constitutive
equations, the generalized stiffness due to residual stresses
and the generalized piezoelectric coefficient. Moreover, the
same procedure is adopted on the electrical part of the
constitutive law obtaining the internal capacity. The same
method is applied to compute the equivalent translational
and rotational mass of the beam which are summed to the
concentrated mass (Ardito et al. 2013).

Lumped model: Rayleigh–Ritz method

Rayleigh–Ritz method is adopted to describe beam
deflection and electric potential along the beam. The
vertical displacement is modeled as a cubic polynomialFigure 4 Doubly clamped bridge-shaped piezolaminated beam

with tip mass
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while the electric potential can be considered as linear
because the strain is constant between two electrodes
(Figure 5). The coordinate x�3 starts in the middle of
each electrode and is directed opposite to the polariza-
tion vector P3 which wraps from one electrode to the next
in alternating directions.

w1 x3; tð Þ ¼ w tð Þψw x3ð Þ ¼ w tð Þ 3 x3=Lð Þ2 � 2 x3=Lð Þ3
� 	

f x3; tð Þ ¼ v tð Þψv x3ð Þ ¼ v tð Þ x�3 � a=2

 �

=l

½8�

Motion equation

Euler–Lagrange equations are used to compute the
motion equation:

d
dt

@L
@ _qi

� �
� @L
@qi

þ @D
@ _qi

¼ 0 ½9�

where the Lagrangian is a combination of kinetic energy
(K), internal energy (E) and external work (W):

L ¼ K� E �Wð Þ ½10�

The involved quantities are computed as follows:

E ¼ 1
2

ð
V

T33S33 � D3E3dV ¼ 1
2
2
ðL
0

ð
A

T33S33 � D3E3ð ÞdAdx3

½11�

K ¼ 1
2
mtip _wþ _yextð Þ2 þ 1

2

ð
V

ρ _w1 þ _yextð Þ2dV

¼ 1
2
mtip _wþ _yextð Þ2 þ 1

2
2
ðL
0

ð
A

ρ _w1 þ _yextð Þ2dAdx3
½12�

W ¼ �qv ½13�

D ¼ 1
2
cM _w2 ½14�

where V and A are the volume of the beam and the area
of the beam cross section.

By employing assumptions of eqs [6]–[8], and
solving eq. [9] for qi ¼ w; v the motion equations of the
coupled system connected to an external load resistance
read:

mw€wþ cM _wþ kl þ krð Þwþ kNw3 � Θχvv þ Θηvwv ¼ �my€yext
kEv þ Θχvw� 1=2Θηvw2 ¼ q

_q ¼ �R�1v

½15�
where mw is the total mass, my is the mass activated by
the external acceleration; kl, kr and kN are the linear
elastic, the residual stress and the nonlinear stiffness;
kE is the internal capacitance of PZT, Θχv and Θηv are
the linear and nonlinear coupling coefficients, cM is the
mechanical damping coefficient, and R is the external
load resistance. The coefficients are computed by inte-
grating the shape functions and the generalized constitu-
tive coefficients on the volume of the beam.

ENN ¼ 1
2

ð
V

C33S33�Nð Þ S33�Nð ÞdV

¼ 1
2

ð
V

C33
1
2
ψ0

w
2w2

� �2

dV ¼ 1
4
kNw4

½16a�

EEL ¼ 1
2

ð
V

2 �e3E3ð Þ S33�Lð ÞdV

¼ 1
2

ð
V

2 e3ψ0
vvð Þ �x1ψ00

wwð ÞdV ¼ �Θηvvw

½16b�

EEN ¼ 1
2

ð
V

2 �e3E3ð Þ S33�Nð ÞdV

¼ 1
2

ð
V

2 e3ψ0
vvð Þ 1

2
ψ0

w
2w2

� �
dV ¼ 1

2
Θηvvw2

½16c�

EEE ¼ � 1
2

ð
V

2 ε3E3ð Þ E3ð ÞdV

¼ � 1
2

ð
V

2 �ε3ψ
0
vvð Þ �ψ0

vvð ÞdV ¼ � 1
2
kEv2

½16d�

The other coefficients are computed in the same way but
they are not reported since they are customary in CLT
(Ardito et al. 2013).

Eq, [15] describes the dynamic behavior of the non-
linear harvester. Additional coupling terms arise with
respect to a linear harvester. When substituting the afore-
mentioned assumptions in the internal energy expression

-

Figure 5 Polarization and electric potential between IDT electrodes
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(eq. [11]), the nonlinear strain (/ w2) multiplies the
piezoelectric strain (/ v) and an additional “nonlinear
coupled term” (eq. [16c]) is obtained. Accordingly to
eq. [9], by differentiating with respect to w and v, new
nonlinear coupling terms proportional to w appear in
eq. [15]. These additional coupling terms are negligible
at low w, physically the bending strain prevails on the
stretching strain and the beam does not activate the non-
linear regime. In this case, eq. [15] reduces to the classical
equations of linear harvesters (Du Toit 2005).

Solution: HBM

The oscillator frequency response to harmonic excitations
is studied through HBM. Nonlinear systems do not
respond to a monoharmonic signal with a monoharmonic
at the same frequency but all harmonics are involved in
the response (Worden and Tomlinson 2000). The solution
provided by HBM is always an approximation, since to
appropriately apply the method the trial solution must be
an infinite sum of all harmonics. However, according to
physic considerations, one or few of harmonics are
enough to correctly describe the dynamics. In this case,
the amplitude is well described by a single harmonic,
while two harmonics are required to get the correct vol-
tage response since stretching mode has twice the fre-
quency of bending one. Moreover, at large amplitudes,
the linear response (described by the first harmonic) can
be neglected and only the second harmonic survives.
Neglecting the linear coupling terms and substituting
the trial solutions w ¼ W sin(ωt) and v ¼ V sin(2ωt þ
Φv) in eq. [15], the FRF is computed:

Y ¼ �Ω2
M þ 1þ 3

4
αþ κ2ηvΩ

2
M

2ð4Ω2
M þ Ω2

EÞ

 !
Y2

" #(

þi 2ζM þ κ2ηvΩE

4 4Ω2
M þ Ω2

E


 �Y2

 !
ΩM

" #)�1
½17�

where ΩM ¼ ω/ωn is the dimensionless excitation fre-
quency, ΩE ¼ 1/RkEωn is the dimensionless cut-off fre-
quency of the circuit (RkE is the time constant of the RC
circuit) and κηv ¼ W0 Θηv/(kEkL)

1/2 is the effective piezo-
electric nonlinear coupling coefficient. κηv is a global
measure of the degree of coupling which takes into
account d33-mode piezoelectric coupling coefficient κ33
¼ e33/(C33εS33)1/2, geometrical and nonlinear aspects. In
case of a pure linear piezoelectric system, κηv would
exactly coincide with κ33.

The equivalent stiffness and damping coefficients
depend on the amplitude because of the nonlinear beha-
vior of the system:

keq ¼ kL 1þ 3
4
αþ κ2ηvΩ

2
M

2 4Ω2
M þ Ω2

E


 �
 !

Y2

 !

ζ eq ¼ ζM þ ζ E ¼ ζM þ κ2ηvΩE

8 4Ω2
M þ Ω2

E


 �
 !

Y2

½18�

For small amplitudes, the nonlinear behavior is not acti-
vated, and no damping is injected into the system by the
coupling activated by the stretching strain. In this case,
the bending strain dominates and the FRF in eq. [17]
would reduce to one of a linear harvester where equiva-
lent stiffness and damping do not depend on amplitude
(duToit 2005).

The displacement response Y is obtained by solving a
cubic equation in ΩM resulting from the module of eq.
[17], and the shape of the response is similar to the
Duffing oscillator response. As eq. [18] shows, the exter-
nal load resistor modifies the stiffness and the damping.
According to the value of R, the curve is more (or less)
distorted, and the value of jump-down frequency is mod-
ified too. In short circuit condition (S.C.), R→0 (ΩE → ∞),
the stiffness reduces to the equivalent stiffness of the
classical Duffing oscillator (eq. [3]), while the electrical
damping goes to zero and no energy can be harvested. In
open circuit condition (O.C.) R→∞ (ΩE → 0), the equiva-
lent stiffness is increased while, as expected, the electri-
cal damping still goes to zero and no energy can be
harvested. All intermediate conditions depend on the
value of R. Starting from O.C. condition, the damping
introduced in the system increases as ΩE increases,
until the maximum damping is reached. After this
point, increasing ΩE reduces the electrical damping
injected in the system until the S.C. condition is reached.
As a result, the jump-down frequency, which depends on
the total damping ratio value, decreases as ΩE increases,
until to a minimum value (blue line in Figure 6), and then
grows to reach the S.C. condition.

Electrical damping and power generation

The power generation is computed and plotted in
Figure 7 by employing the relation shown in eq. [19]:

P ¼ vj j2
R

¼ mω3
nΩ

2
M

κ2ηvΩE

8 4Ω2
M þ Ω2

E


 �
 !

W4 ½19�
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The electrical damping injected to the system has a max-
imum when the displacement amplitude and the jump-
down frequency are the lowest. This maximum depends
on the value of the effective coupling coefficient κηv. Two
situations must be considered: the peak electrical damp-
ing (i) cannot reach or (ii) can overcome the mechanical
damping. In the first case, the electrical damping must be
pushed to the maximum value in order to maximize the
power. However, in this case, the harvester does not work
efficiently since the power will always be lower than the
maximum allowable for the system. In this second case
(Figures 8 and 7), the system results bounded by the
mechanical damping, and the power generation has two
peaks when cE ¼ cM. If the electrical damping is pushed

to overcome the mechanical, the total damping injected
in the system will excessively reduce the amplitude and
lower the power generation.

Conclusion

In this paper, a first theoretical study of a nonlinear
piezoelectric harvester is provided. A simple model is
developed in which piezoelectric coupling is treated as
a linear dashpot added to a nonlinear Duffing oscilla-
tor. The main result supports that the power generation
is bounded by the mechanical damping for both linear
and nonlinear harvesters. However, in the nonlinear

Figure 6 Amplitude response for different values of cut-off frequency

Figure 7 Normalized power generation vs. dimensionless frequency (ΩM) and cut-off frequency (ΩE)
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case the power generation is spread out over a wider
bandwidth.

A more accurate model is made to study the behavior
of a bridge-shaped nonlinear harvester working in
d33-mode. The direct influence of an external load resis-
tor is included to consider a more accurate nonlinear
coupling effect instead of the linear electrical damping
employed in the first model. The sectional behavior of
the beam is studied by means of Classical Lamination
Theory specifically modified to introduce the piezoelectric
coupling and nonlinear Green-Lagrange strain tensor. A
lumped model is built through Rayleigh–Ritz method and
is solved in the nonlinear regime by means of HBM. By
solving the nonlinear FRF, the nonlinear equivalent
stiffness and damping can be identified. This second
model is suitable for predicting the response of a generic
piezoelectric nonlinear harvester with arbitrary excitation
frequency and external load.
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