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Abstract—Our goal is to develop an automated digital fabri-
cation process that can make any object out of smart materials.
In this paper, we present an algorithm for creating shapes by the
process of duplication, using modules we have termed smart sand.
The object to be duplicated is dipped into a bag of smart sand;
the particles exchange messages to sense the object’s shape; and
then the particles selectively form mechanical bonds with their
neighbors to form a duplicate of the original.

Our algorithm is capable of duplicating convex and concave
3D objects in a completely distributed manner. It uses O(1)
storage space and O(n) inter-module messages per module. We
perform close to 500 experiments using a realistic simulator with
over 1400 modules. These experiments confirm the functionality
and messaging demands of our distributed duplication algorithm
while demonstrating that the algorithm can be used to form
interesting and useful shapes.

I. INTRODUCTION

In this paper we present a new distributed algorithm that
enables the creation of complex 3D shapes from a collection of
intelligent robotic particles. Our algorithm enables a collection
these small smart sand grains to form arbitrary 3D shapes
through a process of distributed duplication. The modules have
on-board computation, nearest-neighbor communication, and
latching capabilities. Given a “bag” of smart sand, we envision
dipping a scaled replica of the object we wish to duplicate
into the bag. (See Figure 1 for an example of duplicating a
mug.) The intelligent modules surrounding the object sense
and learn its shape. Then, using programmed communication
and connections, they replicate the object using the spare
modules in the bag. Once the solid replica is created, all other
inter-module connections are broken, and the user can retrieve
the duplicate object from the bag.

The algorithm in this paper provides a solution to dis-
tributed duplication of arbitrary 3D objects (i.e. both convex
and concave). The solution relies on local sensing of the
boundary of the desired object and coordinated inference and
planning to create a solid replica. Modules inside the replica
form mechanical bonds with each other, and modules outside
break all their bonds to surrounding neighbors. Because the
algorithm is distributed and does not rely on a centralized,
external controller, the distributed algorithm provides a scal-
able solution. No module ever stores the complete goal shape
nor the global state of the system; the memory required by
each module is O(1). Furthermore, the number of inter-module

Fig. 1. The distributed duplication algorithm is capable of duplicating
arbitrary 3D objects like the coffee mug (left) using a collection of intelligent
modules modules. The modules envelop and sense the shape of the original
object before forming a duplicate (right) from spare modules. Any extra
modules (white) are then brushed aside to reveal the completed object.

messages exchanged is O(n) per module, where n is the
number of modules in the system.

We have implemented and evaluated this algorithm in
simulations with thousands of modules. The code is written
in C and structured such that by retargeting the lowest-level
inter-module message passing and bonding functions, it could
be deployed on any modular system whose unit modules
can (1) form a regular cubic lattice around the object to be
duplicated; (2) mechanically bond and communicate with their
six nearest neighbors; (3) perform on-board computation; and
(4) store unique identifiers (UIDs) which are assigned during
fabrication.

II. RELATED WORK

While this paper is focused on algorithmic developments
which enable efficient, programmatic shape formation, modu-
lar robotics [21] intimately couples hardware and algorithms.
The Claytronics project envisions cylindrical [11, 10], and
eventually spherical modules, covered in magnetic or elec-
trostatic actuators, that are capable of rolling relative to one
another. Lipson et al. have developed a stochastic fluidic
assembly system consisting of cubic modules whose assembly
is controlled by pressure and suction [19, 17]. Klavins et al.
have developed a set of triangular tiles that circulate on an



air table and magnetically bond with their neighbors [1]. The
Kilobot system [16] consists of 1000 autonomous robots that
use stick-slip locomotion to form planar shapes. The 45cm
Miche cubes use mechanically switchable permanent magnets
to bond together in 3D shapes [4]. The RaChET system is
a chain of modules which, when bonded with mechanical
latches, can exert practical torques [20].

To complement the variety of hardware, many shape for-
mation algorithms have also been developed. Researchers
have attempted to optimize the path planning process when
reconfiguring sets of connected modules [18, 2]. Others have
focused on encoding a desired shape in a set of rules that is
executed by each module [9]. Shen et al. have developed an
approach that conveys a complete description of the desired
shape to every module in the system [15]. While expensive
in terms of memory, the algorithm allows large collections of
mobile modules to form scale-invariant versions of the desired
shape. Funiak et al. published a localization algorithm based
on SLAM that is capable of localizing tens-of-thousands of
irregularly packed modules [3]. Goldstein et al. envisioned an
algorithm which conveys a description of the desired shape
to all modules on exterior perimeter of a system [7]. Then,
by injecting or absorbing holes, the border can be expanded
or contracted until it matches the desired shape. Pillai et al.
developed an algorithm which enables a collection of modules
to act as a 3D fax machine [14]. In contrast to our work, their
algorithm is centralized and performs almost all computation
externally. Griffith et al. developed a duplication system that
mimics DNA [8]. Despite these algorithmic advances, no
solution exists if one wishes to form arbitrary 3D shapes,
without the use of an external controller, while keeping the
memory requirements of each module constant.

The remainder of this paper is organized as follows. In the
next section, we explain the challenges of, and our approach to,
distributed duplication. Section IV then demonstrates how we
solve the duplication problem in 2D. Section V then extends
these results to 3D. In Section VI, we present over 1000
experiments and analyze the performance of the algorithm.
Finally, Section VII offers a brief discussion of our results.

III. FORMULATION OF DISTRIBUTED DUPLICATION

We assume that the object to be duplicated is tightly
surrounded by a regular cubic lattice of modules. The user
sends one module a start signal, and all of the modules form
mechanical bonds with their neighbors to encase the object in
a rigid block of material. Once solidified, the system senses
the geometry of the passive object in a distributed manner. For
each location occupied by the obstacle, the algorithm identifies
a conjugate module some distance away (in a specified offset
direction) that will become part of the duplicate shape. Once
all of these duplicate modules have been notified, they remain
solidified when all other modules self-disassemble.

Sensing the shape of the object being duplicated in a
distributed manner that scales favorably is challenging. Fig-
ure 2 outlines the essence of our solution, which senses and
identifies the perimeter of the void in the module lattice

that is occupied by the object. The algorithm identifies the
surface of the object by message passing and marks all the
lattice modules on the object’s perimeter. A shifted replica
of this perimeter is created at a different location in the
lattice some automatically determined offset distance away
from the original. Then, the algorithm uses a flood fill process
to notify all the modules within this surface that they are a
part of the duplicate object. The result is the desired one-to-
one correspondence between voids in the lattice and conjugate
duplicate modules. This approach works for arbitrarily com-
plex surfaces, both convex and concave.
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Fig. 2. The distributed duplication algorithm works by sensing the border
of the shape to be duplicated. Once the border is identified, each module on
the border notifies a conjugate duplicate border module that is offset a fixed
distance in a given direction. With all the modules on the duplicate border
aware of their status, the algorithm notifies all modules inside the duplicate
border that they are part of the duplicate shape.

Despite its relatively simple high-level description, there
are many challenges when implementing the algorithm. The
modules must (1) all agree on the offset distance between the
original and the duplicate; (2) posses a way to differentiate
between bordering on the obstacle to be duplicated and the
very exterior of the initial block of material; (3) synchronize
when each module’s contribution to the duplicate border is
complete so as to not start disassembling prematurely; (4) be
able to do all of the above while using a constant amount of
memory and a number of messages that scales favorably.

A naive solution that considers the border as a set of
individual modules instead of a closed surface will fail. First,
if all border modules do not agree on the offset distance by
which to shift their conjugates, the conjugate border will not be
a closed surface that mirrors the border of the original. Second,
if the system starts the flood fill process before the surface
surrounding the duplicate is complete, the fill messages will
escape from holes in the surface and modules that should not
be part of the duplicate will incorrectly remain bonded after
self-disassembly. Third, if some module initiates the disassem-
bly process before all modules inside the duplicate surface
have received a fill message, some modules will disassemble
instead of remaining bonded as part of the duplicate.

We developed a 2D solution [5] which addresses these
challenges, but the extension to 3D is not simple. The primary
additional challenge that the 3D algorithm must overcome is
the fact that there is no efficient, distributed way to identify the
perimeter of the passive shape. In particular, we need a dis-
tributed, message-based sensing algorithm that can completely



envelop the 3D shape. Such an algorithm needs to identify all
modules on the perimeter of the passive shape and inform
those modules where to create the duplicate’s perimeter.

To accomplish 3D duplication, we decompose the duplica-
tion process into 2D sub-problems using a layered approach.
The initial block of material is cut into individual planes,
and duplication proceeds semi-independently in each plane. In
each plane, the obstacle perimeter identification problem uses
the bug algorithm [13]. Any module on the perimeter of the
obstacle (as determined by a missing neighbor), attempts to
route a message to the unoccupied lattice location. In its futile
attempt to reach its destination, the message circumnavigates
the entire obstacle before returning to its sender.

The 3D duplication algorithm must synchronize all these
planar processes. Concavities in the object to be duplicated
need careful processing because they can create planes that
have two or more disjoint groups of modules. To route mes-
sages from one group to the other, we use recent developments
in 3D geographic routing [12].

IV. 2D DUPLICATION

To understand the 3D duplication algorithm, one must
understand 2D duplication. For more detail see [5]. The 2D
algorithm, (see Figure 3), is a five-step process:

1) Encapsulation and Localization–the modules solidify
around the original object and establish a coordinate system.

2) Shape Sensing / Leader Election–each module border-
ing on the original object transmits a SENse message, (which
includes the module’s hard-coded UID), that circumnavigates
the object using the bug algorithm. As modules forward
these messages to their neighbors, they discard messages
with lower UIDs than their own. As a result, only a single
SENse message completes its circumnavigation and returns
to its sender. This module is elected the obstacle leader. The
returning SENse message has learned the perimeter, area, and
bounding box of the obstacle.

3) Border Notification–The obstacle leader sends another
message around the border of the original shape which
follows the same path taken by the SENse message. This
DUPlication message prompts each module bordering on
the original object to transmit a BORder message. These
BORder messages are each addressed to a conjugate border
module that is offset, in a user-specified direction, by an auto-
matically calculated distance. The offset distance is determined
by the size of obstacle’s bounding box as learned during shape
sensing, and this distance is carried in the DUPlication
message. When each conjugate border module receives its
BORder message, it sends a CONfirmation message back
to the obstacle leader. The obstacle leader compares the num-
ber of received CONfirmation messages to the perimeter of
the obstacle to determine when the border notification phase
is complete.

4) Shape Fill–With a closed duplicate border established,
the obstacle leader floods the system with a FILl message.
This message has an inside bit that is initially cleared. As
the FILl message propagates, the inside bit is flipped every

time the message passes through the duplicate border. As a
result, every module inside the duplicate border will receive
a FILl message with the inside bit set and every module
outside will receive the message with the bit cleared. Each
module that receives a FILl message with the inside bit
set sends a CONfirmation message to the obstacle leader,
(whose coordinates are provided as part of the FILl mes-
sage). The obstacle leader compares the number of received
CONfirmation messages to the area of the obstacle to
determine when the fill phase is complete.

5) Self-Disassembly–once all modules that comprise the
duplicate shape have been notified of their status, the obstacle
leader starts the disassembly process by flooding the system
with a DISassemble message. Upon receiving this message
all modules except those in the duplicate structure break their
bonds with the neighbors to reveal the duplicate shape.

The 2D duplication algorithm uses the bug algorithm [13]
for all message routing. In particular, its ability to route
SENse and DUPlication messages along the face of the
obstacle is crucial to the algorithm’s success. A SENse mes-
sage routed with the bug algorithm determines the obstacle’s
perimeter by counting the number of times it collides with
the obstacle (see Figure 5). It also determines the obstacle’s
area by integrating on a row-wise basis. While not shown in
Figure 3, modules on the exterior border of the entire assembly
also believe themselves to be bordering on a obstacle, so they
also send SENse messages which will circumnavigate the
exterior border of the assembly. When one of these messages
has completed its circuit, the area it carries will be negative,
so the system can differentiate the exterior and interior border.

V. 3D DUPLICATION

As illustrated in Figure 4, the key to the complete 3D
duplication algorithm is to virtually cut the initial block of
modules into individual planes. As shown in the z = 2 plane,
a single cut plane may contain multiple distinct groups of
modules. We call each of these groups a slice.

At a high level, each slice executes the basic 2D duplication
process semi-independently, but the slices must synchronize
and exchange information for the duplication to succeed. As a
result, there are unique steps in the 3D algorithm that have no
counterpart in the 2D case. The duplication process is initiated
by sending one module on the exterior of the raw block of
material a start message specifying (1) the slice plane; (2) the
coordinate direction in which the duplicate should be formed;
and (3) which of the module’s faces is an exterior face of the
initial block. This start module then assumes its position is
(0, 0, 0) and that it has a standard orientation. Once begun,
the 3D duplication algorithm has 10 steps:

1) Encapsulation and Localization–As in the 2D case,
the modules in the system solidify around the shape to be
duplicated and exchange messages to learn their positions and
orientations relative to the start module.

2) Hull Tree Construction–For 3D routing, we employ an
algorithm [12] based on convex hull trees. Each module stores
a single convex hull that encompasses its position and the
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Fig. 3. After localization, the distributed duplication algorithm begins in (a) by routing a SENse message around the border of the obstacle. As shown
in (b), the message sent by the module with the highest unique ID (marked with an asterisk) will eventually return to its sender, prompting that module to
route a DUPlication message around the border of the obstacle (c). Upon receiving a DUPlication message, a module sends BORder message to its
conjugate that will become the border of the duplicate object. After all duplicate border modules have sent CONfirmation messages back to the obstacle
leader (d), the leader broadcasts a FILl message (e) informing modules contained by the new border that they are part of the duplicate shape and causing
them to send CONfirmation messages back to the leader, (f). Upon receiving all confirmation messages, the leader broadcasts a DISassemble message
(g) causing all modules except those in the duplicate shape to self-disassemble (h) [5].

Fig. 4. Here a 12x6x4 block of material encasing a 4x4x2 tube (transparent)
is sliced along the x-y plane. We reference all coordinates to the start module
in the lower-front-left corner. Each distinct group of modules within a slice
(there are two in the z = 2 slice) is termed as slice and has a slice leader
(blue) that is always on the slice’s exterior border. Additionally, each slice
has an inter-slice parent link module (green) that can be located arbitrarily.
The arrows point from inter-slice parent link modules to their parent slices.
Finally, each obstacle has an associated obstacle leader (red).

positions of all its descendant modules in the tree. During this
step, the tree is built from the start module, which becomes the
root of the tree, down to the leaves. Then, starting at the leaves,
the convex hulls are constructed and propagated upward back
to the start module, whose convex hull holds the positions of
all modules in the system.

The 3D routing algorithm routes messages greedily, mov-
ing each message directly towards its destination whenever
possible. When blocked by an obstacle, the message switches
to traversing the convex hull tree. In particular, a message

only descends into a node if that node’s convex hull contains
the message’s destination. If the message exhausts all of the
convex hulls associated with a module’s children, the message
then moves up the tree to the module’s parent. We simplify
the computation and storage requirements for the algorithm
described in [12] by distilling each convex hull into a simple
rectangular bounding box. Despite some theoretical loss in
performance, this simplification the algorithm works well.

3) Shape Sensing–Within each slice, shape sensing operates
nearly identically in 3D as it does in 2D by using the bug
algorithm to route SENse messages around any apparent
border. The only difference is that, in addition to electing
an obstacle leader, the algorithm also elects a leader for
the entire slice. This is illustrated in Figure 5. Just as each
obstacle leader is the module on the border of the obstacle
with the largest UID, the slice leader is the module on the
border of the slice with the largest UID. Slice leader modules
are differentiated from obstacle leaders because the SENse
message that circumnavigates the exterior border of the slice
will return to the slice leader indicating a negative area. The
magnitude of this number is the actual area of the slice,
including the space consumed by any obstacles.

4) Roll Call–The new slice leader broadcasts its position
to all modules in the slice. Each module then replies with a
RoLl Call message indicating whether it has zero, one, or
two out-of-slice-plane neighbors. Obstacle leaders supplement
their returned RoLl Call messages with the size of the
obstacle they represent. By counting the returning RoLl
Call messages, the slice leader can positively account for
the entire area of the slice. Additionally, the slice leader learns
how many out-of-slice-plane neighbors the slice has.

5) Slice Tree Construction–The algorithm constructs a tree
in which each node is a slice. The root of the tree is the slice
containing the start module. During construction, each slice
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knows that it has accounted for all possible children when
each of its out-of-slice-plane neighbor modules reports that it
has a parent. This is detailed below. The slice tree is be used
to synchronize all slices after several of the following steps.
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Fig. 6. To aid inter-slice communication, the duplication algorithm forms a
tree on the slices in the initial structure. Here, we see the modules of Figure 4
projected onto the x-z plane and each of the six slices outlined in a different
color. The solid green modules are inter-slice parent link modules, and they
serve as connection points from a slice to its parent. Every module in a slice
learns the location of its inter-slice parent link module, so a message can be
forwarded from any location, (in this case from the slice leader of the small
slice in the z = 2 plane), to the root inter-slice parent link module.

6) Offset Distance Consensus–The slices need to agree on
where the duplicate shape should be placed. To do so, each
slice transmits the bounding box surrounding all obstacles in
the slice to its parent slice. Then union of all these bounding
boxes propagates up the slice tree to the root slice. The slice
tree root module can then determine the global offset necessary
to prevent a duplicate object in which the slices are skewed
relative to one another. The root slice broadcasts this offset so
that it can be incorporated into the BORder messages sent to
the conjugate border modules.

7) Exterior Face Determination–The 3D duplication algo-
rithm must duplicate both the convex and concave portion of
the original shape. For example, in Figure 4, the interior border
of the tube must be duplicated along with the exterior border
or else the duplicate object will become a solid block instead
of another tube. This means that in addition to duplicating the

border of any obstacle contained within a slice, slices must
also duplicate their exterior borders. The algorithm makes one
exception to this rule: it does not duplicate any slice’s exterior
border if that border is also an exterior border of the entire
block of material. We explain the differentiation process below.

8) Border Notification–As in the 2D case, all border
modules, (except modules on the exterior of the entire block of
material), send BORder message to their conjugate modules
that will become the border of the duplicate shape. The con-
jugate border modules reply with CONfirmation messages
that are counted by either the obstacle leader or slice leader
(depending on the type of border being duplicated–interior
or exterior, respectively). When the obstacle and slice leaders
have received CONfirmation messages from each duplicate
border module for which they are responsible, they each
send secondary CONfirmation messages to their respective
inter-slice parent link modules. Once the inter-slice parent link
module has received secondary CONfirmation messages
for each obstacle, the slice as a whole, and any child slices, it
forwards a secondary CONfirmation message to its parent
slice. Eventually, secondary CONfirmation messages will
propagate to the root of the slice tree, and the root module
will know that the border notification process is complete.

9) Shape Fill–The shape fill procedure in 3D is similar to
the process in 2D. The FILl messages still carry the inside
bit that is toggled every time the message crosses the duplicate
border. The messages also need a live flag that is cleared
when a message crosses a slice border. Until the live flag
is again set–when the message crosses a border module–the
inside flag is ignored. The reason for the live flag is that an
included module in one slice has no way to determine whether
a module in neighboring slice is also included. Ignoring
some caveats addressed below in Section V-C, the shape fill
phase terminates just like the border notification phase. Each
included module sends a CONfirmation message to the
appropriate obstacle leader. Then the obstacle leader sends a
secondary CONfirmation message to its inter-slice parent
link module. The inter-slice parent link module waits for
this and secondary CONfirmation messages from all child
slices before propagating the secondary CONfirmation up
the slice tree to the root.

10) Self-Disassembly–Once the slice tree root receives
CONfirmation messages from all child slices, it floods the
network with a DISassemble messages causing all modules
except those forming the duplicate shape to disassemble.

A. Synchronization

To enable synchronization before the border notification,
shape fill, and disassembly steps, the algorithm needs a way
to ensure that all slices have completed the active step. To do
so, the system must determine the total number of slices, so it
builds a tree of slices. Figure 6 shows an example. (Note: this
is separate from the convex hull tree used for 3D routing.)

The slice tree is built from the root downward. The module
originally given the start signal by the user informs its slice’s
leader that the leader should also be the root of the slice tree.



(This is why, in Figure 4 the module at (5, 5, 0) is both blue
and green.) Once the slice leader is told that it is also the root
of the slice tree, it broadcasts its location to all other modules
in its slice. As a result, all modules in the slice learn the
location of, what we term, their inter-slice parent link module.
Once a module knows the location of its inter-slice parent link
module, it can service incoming requests from neighboring
slices looking for a parent in the slice tree.

In the neighboring slices that are not yet incorporated in
the slice tree, all modules send parent request messages to
their out-of-slice-plane neighbors. Eventually, some out-of-
slice-plane module, (which already knows the position of its
inter-slice parent link module), responds. The module in the
unincorporated slice to which it responds becomes that slice’s
inter-slice parent link module (after checking with its slice’s
leader module to ensure that no other module has already been
appointed as the inter-slice parent link). That is, the module is
the location of the link to the parent slice. This process repeats
until all slices have an inter-slice parent link module.

When a slice is incorporated into the tree, the modules in the
slice inform all of their out-of-slice-plane neighbors that they
are now a part of the tree. Because each slice knows, (thanks
to the roll call step), how many out-of-slice-plane neighbors it
has, each slice can determine when all of its out-of-slice-plane
neighbors have been incorporated into the tree. Therefore, we
can guarantee that all slices are incorporated into the tree.

B. Exterior Face Identification

When duplicating even a simple 3D shape like a coffee mug,
the algorithm must account for both the concave and convex
parts of the object’s border. In the case of tube, the concave, or
interior part of the tube’s face will correspond to the exterior
border of multiple slices. The algorithm must duplicate the
exterior border of these slices but not duplicate the exterior
borders of slices that also serve as the exterior border of the
initial block of material. Figure 5 provides an example: the
algorithm should duplicate the exterior border of the inner 2-
by-2 slice, but it should not duplicate the exterior border of
the 12-by-6 slice that surrounds the smaller slice. We term the
larger slice an exterior slice.

Our approach to differentiating exterior borders relies on
the bug routing algorithm. By default, all exterior border
modules assume that they should be duplicated. The start
module initiates the exterior face identification process because
it was told, (as part of the start command), which of its faces
was an exterior face. The start module uses the bug algorithm
in an attempt to route two EXTerior messages in the
direction of the specified exterior face. The first EXTerior
message is routed in the slice plane, and the second is routed
orthogonal to it. Because the bug algorithm is fundamentally
a 2D algorithm, these messages will remain in their given
planes. These EXTerior messages will circumnavigate the
exterior border. As they pass through the modules on their
routes, they notify those modules that they too are on the
exterior of the whole block. Additionally, they prompt those
modules to emit their own EXTerior messages. Specifically,

a message arriving in the slice plane will prompt an out-of-
slice-plane message, and vice versa.

When an in-slice-plane EXTerior message completes its
circuit around an exterior slice, it sends an CONfirmation
message to the root inter-slice parent module. This root can
determine when the entire process is complete because it
knows, as a result of the slice tree construction step, how
many exterior slices comprise the entire structure.

C. Area Accounting During Shape Fill

One particular challenge of 3D duplication is that two
slices occupying the same plane do not know of each other’s
existence. Consider again Figure 5. During the shape fill step,
the obstacle leader in the outer slice, expects to receive sixteen
CONfirmation messages. It does not know that the inner-
most four of those lattice positions are not part of the duplicate
obstacle. Our solution, illustrated in Figure 7, is to send a fake
CONfirmation message from a conjugate border module
corresponding to the leader of the interior slice.
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Fig. 7. The obstacle leader of the exterior slice, expects to receive sixteen
CONfirmation messages after the shape fill process beings. Although the
obstacle leader does not know it, the obstacle is hollow. To ensure that the
obstacle leader still receives all CONfirmation messages, the slice leader
of the inner slice sends a special BORder message to its conjugate instructing
it to confirm four additional units of area despite the fact that the conjugate
module is not included in the duplicate structure.

First, whenever an exterior border of a slice is duplicated,
the slice leader, when sending a BORder message to its
conjugate, includes its slice’s area. This is shown in Figure 7.
Second, during the shape fill process, the slice leader’s con-
jugate border module sends a CONfirmation message to
the outer slice’s obstacle leader even though it is not part of
the duplicate shape. This CONfirmation message is special
because it accounts for four units of area, not just one like
other messages. As a result of this two-step process, the outer
slice’s obstacle leader accounts for all sixteen units of area.

D. Storage and Message Scaling

The algorithm requires only O(1) storage per module. No
part of the algorithm requires a module to amass any data that
correlates with the number of modules in the system. (Note:
we ignore the O(log n) scaling of the number of bits required
to store variables whose sizes are proportional to n.) The
key to this attribute is the one-to-one correspondence between
modules on the border of the original shape and modules on



the border of the duplicate. When collecting CONfirmation
messages, modules do not track the origins of the messages,
only the total number received. The convex hull tree only
requires a constant amount of storage per module because
each module needs to store the rectangular hulls of at most six
neighbors. Likewise, messages only move up the slice tree, so
each module only needs to know the location of its inter-slice
parent module. All other routing information is constant in
size and stored in the messages themselves.

The number of messages exchanged scales as O(n2) total
or O(n) per module, and it is dominated by the exterior
notification, shape sensing and border notification steps. The
worst case message scaling occurs when the initial block of
material approaches a 1-by-n line of modules. In this case,
there will be O(n) modules sending EXTerior messages and
each message will have to circumnavigate O(n) other modules
before returning to its sender. The same scaling applies to
the shape sensing phase if the object being duplicated also
approaches a long rod: O(n) modules will each transmit a
SENse message and messages may travel O(n) hops before
being discarded. During border notification, there will again
be O(n) modules sending messages that each have to travel
O(n) hops before reaching their conjugates.

VI. EXPERIMENTS

Using a custom simulator [6], we performed over 450
experiments duplicating rods, cubes, square tubes, the mug
shown in Figure 1, a 103-module hammer, and 128-module
wrench. The results are listed in Table I. The overall success
rate was 100%. A video of the system in action is linked from
the Supplementary Material section below.

TABLE I
EXPERIMENTS SHOW THE 3D DUPLICATION ALGORITHM WORKING

CORRECTLY IN A VARIETY OF TEST CASES.

Original Encasing # # Avg. Msgs./
Shape Shape Trials Successes Trial

2x1x1 Rod 7x3x3 Block 25 25 5409
3x1x1 Rod 9x3x3 Block 25 25 7413
4x1x1 Rod 11x3x3 Block 25 25 9788
5x1x1 Rod 13x3x3 Block 25 25 12170
6x1x1 Rod 15x3x3 Block 25 25 14757
7x1x1 Rod 17x3x3 Block 25 25 18487
1x1x1 Cube 5x3x3 Block 25 25 3602
2x2x2 Cube 7x4x4 Block 25 25 10199
3x3x3 Cube 9x5x5 Block 25 25 21768
4x4x4 Cube 11x6x6 Block 25 25 41725
5x5x5 Cube 13x7x7 Block 25 25 71698
6x6x6 Cube 15x8x8 Block 25 25 112410
7x7x7 Cube 17x9x9 Block 25 25 182720
4x4x4 Tube 11x6x6 Block 25 25 44381
5x5x5 Tube 13x7x7 Block 25 25 77990
6x6x6 Tube 15x8x8 Block 25 25 131670
7x7x7 Tube 17x9x9 Block 25 25 230320

Figure 1 Mug 17x7x7 Block 25 25 115020
Hammer 22x5x14 Block 5 5 290830
Wrench 20x4x18 Block 5 5 249098

Figure 8 shows a number of different statistics collected
as we duplicated cubes with side lengths ranging from 1—
7. In particular, Figure 8(a) plots the total number of inter-
module messages exchanged as a function of the number of

active modules in the system. The seven points along the x-
axis correspond to cubes with side lengths 1—7. As expected,
the total number of messages scales quadratically (0.266n2 +
78.037n) with the number of active modules in the system.
Even though the n2 term will dominate past a few hundred
modules, we expect the number of messages per module to
scale as O(n). Figure 8(b) illustrates this: both the average
number of messages per module and the maximum number of
messages exchanged by any given module scale linearly. It is
worth noting that the average number of messages per module
is significantly less than the maximum as the size of the cube
being duplicated grows. This relationship is better illustrated
by Figure 8(c) which shows a histogram of the number of
messages exchanged by all modules in the system as it is
used to duplicate cubes. When similar plots are generated for
the rods and tubes that we also duplicated, we see similar
behavior to that in Figure 8.

While theory predicts that the O(n) scaling shown in
Figure 8(b) to continue as the number of active modules
grows indefinitely, simulations containing more than few thou-
sand modules are difficult. Each module is simulated as an
independent process, and the modules use UDP packets to
communicate with their neighbors. Several thousand concur-
rent processes begin to tax all but the most powerful PCs.
Additionally, given that each module uses a unique UDP port
to communicate with each neighbor, simulations with a few
thousand modules quickly exhaust the available supply of port
numbers. Neither of these issues will be a concern when
running the algorithm on dedicated robotic hardware.

VII. DISCUSSION

We have demonstrated a distributed algorithm capable of
autonomously duplicating arbitrary 3D shapes in a modular
robot system. The algorithm and implementation are generic
and lend themselves to easy hardware implementation. Ad-
ditionally, we have shown the algorithm running correctly in
hundreds of test cases with some experiments using over 1200
simulated modules. The total memory required in each module
is fixed while the total number of messages exchanged scales
as O(n2). We hope to reduce this bound so that the number
of messages exchanged per module is sub-linear.

Our algorithm opens several important problems. It is sen-
sitive to any dropped messages. It is not guaranteed to operate
if there are modules missing from the lattice. It will also not
work in completely irregular lattices where the modules are
randomly arranged and may have more than six neighbors. In
the future, we hope to develop extensions that solve both these
challenges. Additionally, we hope to eliminate the need for
the user to specify in which cardinal direction, with respect
to the original object, the duplicate should be placed. Our
work raises the question of how to create scaled duplicates or
multiple copies of a single original. Finally, if the object to be
duplicated cannot be fit into the initial block of material, or
if a scaled duplicate is too big to be created in one pass, we
need to find a way to break the object into subcomponents that
can be produced independently and then joined. This paper is
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a first step, and with additional research, we hope to make
distributed duplication a practical reality.
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