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Abstract

Introducing BrainPrint, a compact and discriminative representation of anatomical structures in 

the brain. BrainPrint captures shape information of an ensemble of cortical and subcortical 

structures by solving the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and 

tetrahedral (volumetric) meshes. We derive a robust classifier for this representation that identifies 

the subject in a new scan, based on a database of brain scans. In an example dataset containing 

over 3000 MRI scans, we show that BrainPrint captures unique information about the subject’s 

anatomy and permits to correctly classify a scan with an accuracy of over 99.8%. All processing 

steps for obtaining the compact representation are fully automated making this processing 

framework particularly attractive for handling large datasets.

1 Introduction

Is it possible to identify an individual based on their brain? Are cortical folding patterns 

unique to a person, similar to a fingerprint? While the unique complexity of the brain may 

indicate that an unambiguous identification should be possible, there is currently little 

empirical research that can speak to these questions. One dificulty for identifying the subject 

of a given brain is that longitudinal changes caused by aging or disease may significantly 

alter the brain morphometry. Additionally, scanning artifacts, inhomogeneities, and different 

imaging protocols can cause changes in intensity values in magnetic resonance scans, further 

complicating the identification. Therefore, a subject-specific brain signature must be both 

stable across time and insensitive to imaging artifacts. Moreover, it needs to provide a 

holistic representation of the brain to ensure subject identification even if certain parts 

change. Finally, small changes in the brain should map to small changes in the 

representation to permit a robust identification.

Here, we introduce BrainPrint, a holistic representation of the brain anatomy, containing the 

shape information of an ensemble of cortical and subcortical structures. The inclusion of 

only shape information has the advantage to remain independent from the local intensity 

values in the scan. Moreover, the variety of the different structures included in the 

BrainPrint yields an extensive characterization of the brain anatomy. We quantify the shape 

information by calculating the spectrum of the Laplace-Beltrami operator (LBO) on both 

triangular meshes that represent boundary surfaces, e.g., the white matter surface, and 

tetrahedral meshes for volumetric representations of individual structures. We then derive a 

classifier that identifies a subject from an MRI scan based on its BrainPrint. We achieve 

robustness in the identification by letting each brain structure vote independently for the 
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subject’s identity. Not only does our classifier identify previously encountered subjects with 

high accuracy, but it also determines whether a query brain belongs to an unknown subject, 

not yet represented in the existing database.

An alternative approach to calculate the similarity between scans could be based on image 

registration [3,5]. However, real applications of such identification methods require large 

datasets and the cost for aligning a new scan to all scans in the database becomes prohibitive 

for a large number of scans. BrainPrint introduces a new framework that is especially 

beneficial when working with large datasets widely available today. The first step extracts 

information from the image, based on the segmentation of anatomical structures. The second 

step transfers this information into a compact and discriminative representation, the 

BrainPrint. Any further processing is conducted on this representation, which takes less 

memory and permits easier calculations and comparisons than the original scan.

1.1 Related Work

A 3D object can be represented by the space that it occupies (3D volume representation, 

e.g., voxels, tetrahedra meshes) or by representing its boundary (2D surface representation, 

e.g., triangle meshes). Reuter et al. [10] introduced the “shapeDNA” and demonstrated that 

the spectra of 3D solid objects and their 2D boundary surfaces contain complementary 

information: the spectra of the 2D boundary surface was capable of distinguishing two 

isospectral 3D solids (GWW-prisms). Therefore, we propose to combine the information 

from both the 3D solid and 2D boundary shape representations.

While there has been previous work analyzing the shapeDNA for single brain structures 

[1,9,11], to the best of our knowledge this is the first study that evaluates its application to 

cortical structures and a wide range of subcortical structures. Importantly, we investigate the 

joint modeling of the ensemble. Additionally, most prior work computes the shapeDNA for 

triangular surface meshes [1,8], while we also work with tetrahedral volume tessellations. 

Given that the Laplace spectra are isometry invariant, the 2D boundary representation alone 

may yield a weaker descriptor, due to the large set of potential (near-) isometric 

deformations. For example, a closed 2D surface with a protrusion pointing inwards yields 

the same descriptor as one with the protrusion pointing outwards, while the spectra of the 

enclosed 3D solids differ.

2 Shape Descriptor

We segment anatomical structures from brain scans with FreeSurfer [2]. Next, we compute a 

compact shape representation that captures important shape information and facilitates the 

further processing. Since image intensity varies across scans, we focus on geometrical 

properties. Example representations are the volume and the local gyrification index (LGI) of 

a structure. While volume will be affected by brain atrophy, quantifying the gyrification may 

be more robust to longitudinal changes, assuming that the folding patterns of the brain 

remain stable. The LGI was used previously to identify gyral abnormalities [12]. We 

transform this local measure into a global shape descriptor by computing the mean LGI over 

the surface. Fig. 1 shows the mean and standard deviation of these measures calculated from 
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several longitudinal scans per subject. The large variance and overlap across subjects 

indicates that such representations are not well suited for identifying subjects.

In this work we use the shapeDNA [10] as a shape descriptor, which performed among the 

best in a recent comparison of methods for non-rigid 3D shape retrieval [6]. The ShapeDNA 

is computed from the intrinsic geometry of an object by calculating the Laplace-Beltrami 

spectrum. Considering the Laplace-Beltrami operator Δ, we obtain the spectrum by solving 

the Laplacian eigenvalue problem (Helmholtz equation) Δf = −λf using the finite element 

method. The solution consists of eigenvalue λi ∈ ℝ and eigenfunction fi pairs (sorted by 

eigenvalues, 0 ≤ λ1 ≤ λ2 ≤ …). To be independent of the objects’ scale, we normalize the 

eigenvalues , where vol is the Riemannian volume of the D-dimensional manifold 

(i.e., the area for 2D surfaces) [10]. The first l non-zero eigenvalues form the shapeDNA: λ 

= (λ′ ,…, λ′ ).

The eigenvalues are isometry invariant with respect to the Riemannian manifold, meaning 

that length-preserving deformations will not change the spectrum. This important property 

permits the comparison of subjects by directly comparing the shapeDNA, without the need 

for alignment. While isometric non-congruent surfaces exist (e.g., bending a sheet of paper), 

two solid bodies embedded in ℝ3 are isometric if and only if they are congruent (translated, 

rotated and mirrored). A second property is that the spectrum continuously changes with 

topology-preserving deformations of the object boundary. Fig. 2 illustrates the 

eigenfunctions of the cerebral cortex boundary. The eigenfunctions show natural vibrations 

of the shape when oscillating at a frequency specified by the square root of the eigenvalue.

We compute the spectra for all cortical and subcortical structures on the 2D boundary 

surfaces (triangle meshes) and additionally on the full 3D solid (tetrahedra meshes) for the 

cortical structures (white and pial surfaces in both hemispheres), forming the BrainPrint Λ = 

(λ1,…, λη ). Triangle meshes of the cortical surfaces are obtained automatically for each 

hemisphere using FreeSurfer. Surface meshes of subcortical structures are constructed via 

marching cubes from the FreeSurfer subcortical segmentation. To construct tetrahedral 

meshes, we remove handles from the surface meshes, uniformly resample the output to 60K 

vertices, and create the volumetric mesh with the gmsh package [4]. We use the linear finite 

element method [10] with Neumann boundary condition (zero normal derivative) to 

compute the spectra of the tetrahedral meshes.

3 Classifier

We derive a classifier to assign a new scan to one of the subjects in the database. Since the 

segmentation or tessellation of specific structures may fail in certain cases, we propose a 

robust classifier that handles missing information. We build a classifier by combining the 

results from weak classifiers operating on specific brain structures.

Assuming n subjects C1,… , Cn and N scans in a database (N ≥ n, for repeated scans of 

subjects). Each scan has its associated BrainPrint Λ1,… , ΛN . Let Sk ⊂ {1,… ,N } denote 

scans for subject Ck . The probability that a the new scan with BrainPrint Λ shows subject 

Ck is
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(1)

where we assume a uniform class probability p(Ck ) ∞ 1 and the conditional independence 

of structures given the subject. The likelihood is multivariate normal distributed 

 with the subject mean  for structure s. Since we 

only have a few samples per class, we estimate a global diagonal covariance matrix Σs 

across all scans for each structure. Weighting distances by the variance helps to prevent the 

domination by higher eigenvalues that exhibit higher variation. The subject identity with the 

highest probability is assigned to the scan

(2)

The posterior probability of this classifier is the product of the posterior probabilities across 

all structures, cf. Eq. (1), which may be problematic for structures with low discriminative 

power. Many subcortical structures do not carry much distinctive shape information and can 

therefore negatively influence the overall probability. We therefore propose a second 

classifier that is specifically adapted to working with structures that are not very 

discriminative. Increased robustness is achieved by voting for each structure independently

(3)

with the final vote set to the mode of the vote distribution.

4 Results

We perform experiments on data from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [7]. We work with over 3000 scans from almost 700 subjects, where each subject 

has between three and six longitudinal scans. Each T1-weighted image from the dataset is 

processed independently with FreeSurfer. We calculate 36 shape descriptors for subcortical 

structures and 8 descriptors for cortical structures (left/right, white/gray matter, 2D/3D). 

Additionally, we calculate the lateral differences of shapeDNA between left and right 

cortical structures to quantify asymmetries, resulting in 4 additional descriptors.

We perform leave-one-out experiments by removing one scan from the dataset and by 

aiming to recover the correct identity. Fig. 3 reports the classification results for the product 

classifier in Eq.(2) and the structure-specific voting in Eq.(3). We report classification 

results as a function of the number of eigenvalues used to represent the shape. Additionally, 

we vary the set of brain structures in BrainPrint: cortical structures with triangular meshes 

(4), cortical structures with tetrahedral meshes (4), cortical structures for both mesh types 

(8), a selection of structures with the highest individual performances (15), all structures 

(44), and all structures with the lateral differences of cortical structures (48). The number of 

structures is shown in parentheses. The results demonstrate a clear difference between the 

two classifiers. The product classifier achieves the best performance when working with 
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cortical triangular meshes. Adding more features, especially when working with all features, 

dramatically reduces the classification results. We observe an opposite behavior when 

working with the structure-specific voting. Subcortical structures alone yield the worst 

performance in this case. The combination of 3D solid and 2D boundary descriptors leads to 

a clear improvement. A further improvement is gained by adding subcortical structures.

To further study this behavior, we examine the candidate subject that each structure votes 

for in Fig. 4. Each column corresponds to one scan and each row to one structure. The color 

indicates the subject number. Scans were sorted by subject; a perfect feature should show a 

color gradient from blue to red. The first 8 rows correspond to cortical structures, which 

exhibit the best performance. The remaining 36 rows show subcortical structures that 

perform worse than cortical structures and vary in their discriminative power. This explains 

the poor performance of the product classifier for the whole feature set, as weak features can 

obscure good features. In contrast, weak features do not degrade the performance of the 

voting classifier as long as weak features show no bias for a specific subject. The best 

performance of over 99.8% is achieved for 50 eigenvalues on all features with the additional 

difference features. For comparison, the classification rate for the mean LGI on both 

hemispheres is 1.0% for the product and 3.9% for the voting classifier. The classification 

rate for the volume, calculated from all cortical and subcortical structures, is 0.03% for the 

product and 0.6% for the voting classifier, confirming results from Fig. 1.

Fig. 5 shows the two scans for which BrainPrint does not correctly identify the subject 

identity. These subjects show strong atrophy and imaging artifacts, resulting in pronounced 

segmentation errors. Manual correction in FreeSurfer or reacquisition to avoid motion 

artifacts may therefore improve the above results.

As an additional experiment, we evaluate the possibility to determine whether a subject is 

not contained in the database. We study the number of votes the winning subject receives in 

Fig. 4, once when the subject of the scan is included in the database and once when the 

subject is excluded. If the subject in the current scan exists in the database, the scan receives 

about 15 votes for the winning subject class. If the subject is not contained in the database, 

the number of votes for the winner does not surpass 4. Setting 4 votes as our decision 

boundary results in only a 0.49% error (false negative) of concluding incorrectly that a 

subject is not in the database. The false positive rate is zero.

5 Discussion and Conclusions

The high classification accuracy of BrainPrint suggests that brain structures are unique to 

individuals and can be used for identification. Since our study only includes data on subjects 

followed over a period of up to 36 months, we cannot currently assess how the accuracy of 

BrainPrint changes across the entire lifespan of a subject. Unfortunately, such data sets are 

not yet available. However, since subjects with Alzheimer’s disease in our dataset 

demonstrate pronounced neurodegeneration in a relatively short time, we are optimistic that 

BrainPrint will remain robust for comparison across longer time periods.

The identification accuracy may raise concerns about privacy issues when publicly 

distributing de-faced or skull-stripped brain scans together with diagnosis and other sensitive 
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information. Yet, we currently do not think that BrainPrint interferes with anonymization 

because at least a second scan with knowledge of the identity needs to be available to 

connect to the private information. In terms of its practical applications, we see BrainPrint 

as an aid when handling large datasets. Identifying similar images in an eficient way can 

provide the launchpad for a more detailed follow-up analysis, e.g., calculation or prediction 

of localized growth and shrinkage patterns. Since most of our retrieval errors are related to 

incorrect segmentations, our approach could also be used as an automatic quality control. 

Furthermore, BrainPrint can help identify anonymization errors (mismatch of subject 

identity), which are dificult to detect and can impede longitudinal studies. Finally, the 

presented framework of image understanding and compact characterization is relevant for 

handling large datasets in other fields and not limited to neuroscience.
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Fig. 1. 
Mean and standard deviation of the volume (left) and of the mean local gyrification index 

(right) of the cortex for 40 subjects. Statistics are calculated over several longitudinal scans 

per subject.
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Fig. 2. 
Left cerebral cortex and first eigenfunctions of the LBO calculated on the surface (yellow – 

positive, red – negative, and green – zero)
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Fig. 3. 
Classification results for product classifier (left) and voting classifier (right) under variable 

number of eigenvalues and feature sets
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Fig. 4. 
Left: Subject (color) voted for by each structure (row) for each scan (column). Cortical 

structures in first 8 rows, subcortical features below. Optimal feature response would show a 

color gradient from blue to red, since scans are sorted by subject. Right: Number of votes for 

the winning subject identity when the correct subject is included (blue) in the database and 

when it is excluded (green). Decision boundary at 4 votes (red) yields a 0.49% false negative 

rate.
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Fig. 5. 
Coronal and axial slices from two misclassified scans. White matter segmentation is shown 

in yellow.
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