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Abstract
In bike sharing systems (BSSs), the uncoordinated
movements of customers using bikes lead to empty
or congested stations, which causes a significant
loss in customer demand. In order to reduce the
lost demand, a wide variety of existing research
has employed a fixed set of historical demand pat-
terns to design efficient bike repositioning solu-
tions. However, the progress remains slow in un-
derstanding the underlying uncertainties in demand
and designing proactive robust bike repositioning
solutions. To bridge this gap, we propose a dy-
namic bike repositioning approach based on a prob-
abilistic satisficing method which uses the uncer-
tain demand parameters that are learnt from histor-
ical data. We develop a novel and computationally
efficient mixed integer linear program for maximiz-
ing the probability of satisfying the uncertain de-
mand so as to improve the overall customer satis-
faction and efficiency of the system. Extensive ex-
perimental results from a simulation model built on
a real-world bike sharing data set demonstrate that
our approach is not only robust to uncertainties in
customer demand, but also outperforms the existing
state-of-the-art repositioning approaches in terms
of reducing the expected lost demand.

1 Introduction
The extensive usage of private vehicles significantly con-
tributes to major growing concerns such as global warming,
air pollution, usage of non-renewable resources, traffic con-
gestion and emission of greenhouse gases [Wright and Ful-
ton, 2005]. To mitigate these concerns, Bike Sharing Sys-
tems (BSSs) have become increasingly ubiquitous in recent
years as they can provide an attractive and green alternative
to private transportation. Thanks to the boom of the sharing
economy, more than 1,700 BSSs are already deployed in the
major cities of the world and around 390 programs are in the
planning stage [Meddin and DeMaio, 2018]. A few popular
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examples of BSSs are Capital Bikeshare in Washington DC,
Hubway in Boston, CitiBike in New York, Bixi in Montreal,
Wuhan and Hangzhou Public Bicycle in China, etc.

In a typical dock-based BSS, a set of stations is strategi-
cally placed throughout the city, each of which has a fixed
docking capacity. Due to involuntary and uncoordinated one-
way trips of customers using the bikes, the stations often get
imbalanced over time which causes either starvation (supply
of bikes is lower than the demand) or congestion (supply of
bikes is higher than the demand) of bikes at stations, lead-
ing to a significant amount of unsatisfied customers. The
starvation of bikes at stations causes monetary loss to the
BSS operators and in the worst case, the unsatisfied cus-
tomers might leave the system forever. In order to reduce
the number of unsatisfied customers (referred to as lost de-
mand), many BSS operators employ carrier vehicles (e.g.,
medium size trucks) to rebalance the entire system at the end
of the day, which is known as static repositioning [Chemla
et al., 2013]. In addition, several BSS operators also repo-
sition bikes during the day by either myopically matching
the producer and consumer stations [Contardo et al., 2012;
Schuijbroek et al., 2017; Lowalekar et al., 2017] or by consid-
ering a fixed set of historical demand points [Shu et al., 2013;
Ghosh et al., 2017; Mellou and Jaillet, 2019], which is re-
ferred to as dynamic repositioning. However, the real-world
spatio-temporal customer demand for many BSSs (specially
for densely populated cities) is highly uncertain and varies
significantly over time and therefore, the methods with fixed
demand may fail significantly in meeting the future demand.
[Ghosh et al., 2016] propose a two-player iterative game ap-
proach between the repositioning planner and an adversary to
develop a robust repositioning approach by considering the
variance in the historical demand. However, as the proposed
adversarial game is designed to tackle the worst-case scenar-
ios, it may fail to reduce the expected lost demand adequately
and therefore, customer satisfaction level might degrade.

In order to tackle the aforementioned concerns and to im-
prove customer satisfaction, we explore new advances in data
uncertainty and propose a probabilistic model for dynamic
repositioning of bikes by taking into account the underlying
uncertainty in spatio-temporal customer demand. We employ
a tractable probabilistic satisficing model, referred to as the
T-model [Jaillet et al., 2016]. The principal idea behind the T-
model is to identify an efficient solution which maximizes the



probability of satisfying a decision criterion under data un-
certainty. Specifically, a satisficing decision criterion is used
to evaluate how well a given solution would remain feasi-
ble under uncertainty. We employ this reasoning behind the
T-model for dynamic repositioning of bikes, where the objec-
tive is to maximize the probability of meeting the uncertain
customer demand. In a nutshell, we first identify the spatio-
temporal demand over multiple days from the historical de-
mand data and develop a novel mixed integer linear program
(MILP) model that maximizes the log-likelihood of meeting
all the customer demand while ensuring the physical routing
constraints of the carrier vehicles.

We develop an online approach for dynamic repositioning
of bikes which uses the current inventory information (i.e.,
distribution of bikes) of stations and carrier vehicles and the
future demand information for the next time step. Once the
repositioning solution is identified, we execute the solution on
a real-world simulator to identify the station inventory level
for the next time step. This iterative process continues until
we reach the final time step. Lastly, we perform extensive ex-
perimental studies on a real-world bike sharing data set from
Boston city, and show that our approach significantly reduces
the expected lost demand over a wide range of state-of-the-art
benchmark approaches. In addition, our approach is shown to
be robust to uncertainty in future demand.

2 Related Work
Due to the proliferation of BSSs, several bike repositioning
models have been proposed recently which can be broadly
categorized into three threads of research. The first thread of
research is based on static bike repositioning problem (SBRP)
where the movements of bikes by customers during the de-
cision period is assumed to be negligible. [Chemla et al.,
2013] solve the SBRP with a single vehicle by employing
a branch and cut algorithm. [Raviv et al., 2013] propose an
MILP that produces the bike repositioning activities and rout-
ing solutions for a set of vehicles to maximize satisfaction of
the customers. [Schuijbroek et al., 2017] model the bike flow
network with Markov assumptions and use closed-form ex-
pressions to predict bounds on the expected demand at each
station. Rebalancing is performed to meet the maximum and
minimum service bounds by dividing the stations into clus-
ters and assigning one vehicle to each cluster. However, as
the system evolution and station inventory levels change with
uncertain customer demand, these approaches are not suitable
for solving our problem during the day.

The second thread of research focuses on dynamic repo-
sitioning that takes into consideration the flows of bikes by
customers during the repositioning period. Several recent re-
search papers [Pfrommer et al., 2014; Singla et al., 2015;
Ghosh and Varakantham, 2017] propose myopic incentiviza-
tion mechanisms for encouraging users to support in rebal-
ancing the system. [Shu et al., 2013] propose an offline
optimization model by considering the future expected de-
mand for a long period to deal with future demand surges.
[Ghosh et al., 2015; 2017] jointly consider the repositioning
of bikes and the routing problem of vehicles with predicted
long-term future demand and present decomposition and ab-

straction mechanisms to speed up the solution process. [Mel-
lou and Jaillet, 2019] propose methodologies for accurate
demand estimation and provide efficient optimization mod-
els for dynamic repositioning with expected future demand
which is solved within a real-time framework using station
clustering based decomposition method. In contrast to these
papers which consider future expected demand and avoid the
underlying uncertainties in demand scenarios, our approach
takes into account the uncertainties associated with historical
demand scenarios while generating a dynamic repositioning
solution so as to improve the overall customer satisfaction.

The last thread of research focuses on data-driven robust
repositioning and optimization. To tackle the uncertainties
in spatio-temporal customer demand, data-driven solution ap-
proaches have been proposed for many applications including
emergency medical response [Ghosh and Varakantham, 2016;
2018; Konda et al., 2018], taxi fleet optimization [Lowalekar
et al., 2018] and healthcare operation [He et al., 2015]. How-
ever, the progress remains slow in designing data-driven ro-
bust bike repositioning solutions. [Ghosh et al., 2016] pro-
pose a robust and online bike repositioning approach using a
scenario generation based two-player iterative game. While
the proposed game-theoretic approach outperforms existing
dynamic repositioning approaches, it is primarily designed to
tackle the worst-case scenarios and therefore, it might fail to
reduce the expected lost demand and to improve the customer
satisfaction level adequately.

3 Model and Background
In this section, we provide a generic model for the
Dynamic routing and RepOsitioning of Bikes under demand
Uncertainty using SaTisficing approach (DrROBUST). In
addition, we briefly introduce the satisficing approach and the
probabilistic notion of meeting customer demand which form
the cornerstone of our solution methodology.

3.1 Model: DrROBUST
We extend the generic model of dynamic routing and reposi-
tioning problem (DRRP) introduced by [Ghosh et al., 2015;
2017] for defining our problem. DrROBUST is compactly
represented using the following tuple:

< S,V,C#,C∗, d#,0, {σ0
v},P ,F >

We have a set of base stations S (strategically placed through-
out the city) and a set of carrier vehicles V . C#

s denotes the
finite docking capacity of station s ∈ S and C∗v denotes the
capacity (i.e., the number of available bike slots) of vehicle
v ∈ V . d#,0 represents the initial distribution of bikes at
the stations. σ0 symbolizes the initial distribution of vehi-
cles at stations. Specifically, σ0

v(s) is fixed to 1 if vehicle v
is initially present at station s and is set to 0 otherwise. P is
a two-dimensional matrix that provides the relative distance
between two stations. F denotes a set ofK demand scenarios
which are used for training purposes, where F k

s,s′ represents
the customer demand for a given time step for scenario k that
originates from station s and plans to reach station s′ in the
next time step.

In the similar direction of [Ghosh et al., 2016], we make
the following assumptions for the ease of representation and



evaluation, which can be relaxed with minor modifications to
our approach: (a) Bike trips by the customers are always com-
pleted within one time step. That is to say, a customer who
reserves a bike at time step t always returns the bike at the
destination station at the beginning of time step t + 1. How-
ever, a vehicle can visit multiple stations within one time step;
(b) Customers are impatient in nature. Therefore, if the origin
station of a customer is empty, he leaves the system instead
of visiting the nearest station. While returning a bike, if the
destination station is full, then he always returns the bike to
the nearest available station; and (c) The events at each time
step follow a particular sequence. The customers first return
their bikes at the destination station, then the repositioning
of bikes by the vehicles are carried out and lastly, the arrival
customers pick up their bikes.

3.2 Satisficing Approach
Satisficing is a decision-making approach under data uncer-
tainty which was introduced by [Simon, 1959]. The satisfic-
ing approach aims to achieve solutions that satisfy the prob-
lem’s constraints as well as possible in case of uncertain envi-
ronments. [Charnes and Cooper, 1963] first use the satisficing
approach within an optimization framework. To overcome
the inherent scalability issues of satisficing based optimiza-
tion methods, [Jaillet et al., 2016] recently proposed a class
of tractable probabilistic satisficing models. The proposed
tractable model can be formally defined as follows:

max ρ(α)

s.t. A(z)x ≥ b(z) ∀z ∈ U(α) (1)
x ∈ X
α ∈ S

where x is a decision variable of dimension N and z is a K
dimensional uncertain variable that influences the entries of
function A : RK → RM×N and b : RK → RM . U(α)
denotes the family of uncertainty sets parameterized by the
variable α with support set S. Therefore, z checks the fea-
sibility constraints over the uncertainty set U(α). ρ(α) is a
generic function that determines the level of satisfaction ex-
pected from the optimized solution. For instance, ρ(α) = α
indicates that the model should identify the most robust solu-
tion x that would remain feasible in the problem’s constraints
when z arises from maximally sized uncertainty set. Intu-
itively, the optimization model (1) maximizes a function de-
fined over the uncertain parameters indexed over the support
set while ensuring that the chosen uncertain parameters sat-
isfy a set of feasibility constraints.

Probability of Meeting Demand
We now provide the motivation behind adopting the satisfic-
ing model in the context of bike sharing system. We consider
a set of historical demand data sets to learn the underlying
uncertainty in demand. Specifically, we consider customer
demand for K days and for each day we extract the demand
information for each time step and for each pair of source and
destination station. Motivated by [Jaillet et al., 2016], we as-
sume that the uncertain demand at station s at a given time
step (i.e., zs) is independent but not necessarily identically

distributed variable with support Ws. The support set for sta-
tion s at a given time step is defined as a set of integer values,
Ws = {ζls, . . . , ζ

L(s)
s }. For instance, if we consider 4 days

of historical demand for training purposes and the demand at
station s at time step t for those 4 days was 2, 1, 0 and 1,
then the support set for station s at that time step is defined
as Ws = {0, 1, 2}. Let, λls = P (zs ≤ ζls) denote the realiza-
tion probability that the demand at station s in a given time
step is bounded by ζls. Specifically, λls is an approximation of
the cumulative distribution function (CDF) of zs. Intuitively
speaking, if we are able to meet ζls demand at station s, then
the probability of meeting all the demand in the station is λls
according to the historical demand data. In case of the previ-
ous example, the historical data indicates a customer demand
of 0 and 2 bikes on one day and a demand of 1 bike on two
days. Hence, λ0s = P (z̃s ≤ 0) = 1

4 ; λ1s = P (z̃s ≤ 1) = 3
4 ;

and λ2s = P (z̃s ≤ 2) = 1. Given the support set and real-
ization probability, our goal is to identify a bike repositioning
solution that maximizes the sum of log likelihood of meeting
the demand over all the stations for a given decision period
(i.e.,

∑
s log(P (zs ∈Ws))).

4 Solution Approach for DrROBUST
We propose a rolling horizon framework for solving the Dr-
ROBUST, where the following two components are executed
sequentially at each time step:
• Given the distribution of bikes at stations, generate repo-

sitioning solution for the next time step;
• Simulate the repositioning solution along with customer

movements to generate the bike distribution at each sta-
tion for the next time step.

4.1 Generate Repositioning Solution
In this section, we describe the method for computing a bike
repositioning solution that maximizes the customer satisfac-
tion level where the demand is uncertain. To generate the
bike repositioning solution, we provide a novel mixed integer
linear program (MILP). At a given decision epoch t, the dis-
tribution of bikes at stations (i.e., d#,t) is given as an input to
the MILP model. In addition, we precompute the values of λ
and ζ from the historical demand data for the planning period
and augment them into the inputs of the optimization model.
It should be noted that a vehicle can visit multiple stations
within one decision epoch. Let us assume that a vehicle can
visit a maximum of R stations within one decision epoch. To
represent the sequence of moves for a vehicle, we use another
time index (also referred to as episode) r ∈ {0, . . . , R}. We
now introduce a set of decision and intermediate variables to
formally represent the optimization model. Let y+,r

s,v and y−,rs,v
denote the number of bikes picked up and dropped off by ve-
hicle v from station s at episode r, respectively. zrs,v denotes
the routing decision variable which is set to 1 if vehicle v is
stationed at station s at episode r and 0 otherwise. Let d∗,rv
denote the number of bikes present in vehicle v at episode r
and Dv,r

s,s′ represent the distance travelled by vehicle v during
episode r if it moves from station s to s′.

As indicated earlier, our goal is to maximize the log likeli-
hood of satisfying the uncertain customer demand which can



take any value from the support set W 1. Therefore, we in-
troduce the binary variables α to capture the realization of
customer demand from the uncertainty set. Specifically, αl

s is
set to 1 if ζls ∈Ws is selected as the demand bound to be met
for station s and otherwise it is set to 0. Intuitively, since the
support set Ws is ordered non-decreasingly and the realized
demand can only take one value from Ws for the station s,
our goal is to set the value αl

s to 1 for the highest possible ζls
given that the physical routing and repositioning constraints
are ensured. Therefore, for a given station s, the log likeli-
hood of meeting the realized demand can be represented as:

log(P (z̃s ∈Ws)) =
∑

l∈[L(s)]

αl
s log(λ

l
s)

The optimization model for generating the repositioning so-
lution is represented compactly in Table (1). Our objective
(delineated in Expression (2)) is to maximize the log likeli-
hood of meeting the realized demand over all the stations.
The constraints associated with this repositioning task gener-
ation problem are described as follows:
The supply of bikes is sufficient for realized demand.
Constraints (3) ensure that the supply of bikes is higher than
the selected demand bound (i.e.,

∑
l∈L(s) α

l
sζ

l
s) so that we

can always satisfy the realized demand which is lower than
the chosen demand bound. The supply of demand is com-
puted as the sum of the bikes present in the station (i.e., d#,t

s )
and the net amount of dropped off bikes by all the carrier
vehicles during the planning period (i.e.,

∑
r,v(y

−,r
s,v −y+,r

s,v )).
Constraints (4) enforce that exactly one demand bound is cho-
sen from the support set for each station by allowing only one
of the decision variable of αs to be set to 1. While gener-
ating a repositioning solution, it is possible to encounter an
unexpected situation where any of the previously observed
demand cannot be satisfied. For example, at a given decision
period, consider a station which has experienced at least one
demand in all the historical demand data. But, while generat-
ing the repositioning solution, we observe that the station is
empty and due to physical routing limitation of the vehicles,
it is impossible to reposition bikes to the station during the
planning period. To avoid such infeasibility, we introduce a
slack variable ρs as the dummy supply of bikes at station s
in constraints (3). Constraint (5) enforces that the cumulative
value of slack variables over all the station is bounded by a
given input value ρ. As the aforementioned unexpected situ-
ation arises rarely, we manually tune the input parameter ρ.
We begin with ρ = 0 and increase the value of ρ gradually by
1 until we identify a feasible solution, which ensures that we
minimize the number of unsatisfied customer demand in case
of an unexpected situation. As the value of ρ is always fairly
low and the MILP solvers (e.g. CPLEX) promptly returns an
infeasibility error, a feasible value of ρ can be found quickly.
The flows of bikes in and out of vehicles are preserved.
Constraints (6) enforce the flow preservation of bikes on ve-
hicles. The initial load of bikes in vehicles (i.e., d∗,0) is given
as input to the optimization model. So, constraints (6) ensure

1Note that the support set for the uncertain demand at stations,
W changes over different time periods or decision epochs.

max
∑
s∈S

∑
l∈[L(s)]

αl
s log(λ

l
s) (2)

s.t.
∑

l∈[L(s)]

ζlsα
l
s≤d#,t

s +
∑
r,v

(y−,rs,v −y+,r
s,v )+ρs, ∀s (3)

∑
l∈[L(s)]

αl
s = 1, ∀s (4)

∑
s∈S

ρs ≤ ρ (5)

d∗,rv = d∗,r−1v +
∑
s

(y+,r
s,v − y−,rs,v ), ∀v, r (6)

y+,r
s,v + y−,rs,v ≤ C∗v · zrs,v, ∀s, v, r (7)∑
r,v

y+,r
s,v ≤ d#,t

s , ∀s (8)

∑
r,v

y−,rs,v ≤ C#
s − d#,t

s , ∀s (9)

∑
s∈S

zrs,v = 1, ∀v, r (10)

Dv,r
s,s′ ≥ Ps,s′(z

r
s′,v + zr−1s,v − 1), ∀s, s′, v, r (11)

u
∑
r,s,s′

Dv,r
s,s′ +m

∑
r,s

(y+,r
s,v + y−,rs,v ) ≤ Q, ∀v (12)

0 ≤ d∗,rv , y+,r
s,v , y

−,r
s,v ≤ C∗v , D

v,r
s,s′ ≥ 0 (13)

αl
s ∈ {0, 1}, zrs,v ∈ {0, 1} (14)

Table 1: SOLVEDRROBUST(ζ,λ, t,d#,d∗,0)

that the number of bikes present at vehicle v at the episode
r (i.e., d∗,rv ) is equivalent to the sum of the number of bikes
present in the vehicle at the previous episode (i.e., d∗,r−1v ) and
the net number of picked up bikes from stations during that
episode (i.e.,

∑
s(y

+,r
s,v − y−,rs,v )).

A vehicle can only pickup/drop-off bikes from a station if
it is currently present there. Constraints (7) enforce that
the number of bikes picked up or dropped off by vehicle v
from station s at episode r is bounded by the vehicle capacity
if v is present at station s (i.e., zrs,v = 1) and 0 otherwise.

Total number of bikes picked up or dropped off from a
station is less than the available bikes or open docks. As
multiple vehicles can pick up bikes from the same station
within the planning period, constraints (8) enforce that the
total number of picked up bikes from station s by all the ve-
hicles over all the episodes is bounded by the number of bikes
present in the station (i.e., d#,t

s ). Similarly, constraints (9) as-
sure that the total number of dropped-off bikes by all the ve-
hicles at station s is bounded by the number of empty docks
at the station (i.e., C#

s − d#,t
s ).

Total time spent by a vehicle in traveling and reposition-
ing of bikes is less than the duration of planning period.
Constraints (10) ensure that at a given episode r, vehicle v
should be placed in one of the stations by allowing only one



of the routing variables to be set to 1 (i.e.
∑

s z
r
s,v = 1). Con-

straints (11) compute a lower bound on the distance travelled
by vehicle v if it travels from station s to s′ during episode
r (i.e., Dv,r

s,s′ ). D
v,r
s,s′ is set to Ps,s′ if the vehicle travels from

station s to s′ during episode r (i.e., zr−1s,v = zrs′,v = 1) and
otherwise it is set to 0. Let u denote the unit for converting
distance to time, m denote the time required to pickup/drop-
off one bike and Q denote the duration of planning period.
Constraints (12) ensure that the total time spent by vehicle
v in routing (i.e.,u

∑
r,s,s′ D

v,r
s,s′ ) and pickup/drop-off events

(i.e., m
∑

r,s(y
+,r
s,v + y−,rs,v )) is bounded by the duration of

planning period, Q. So, these constraints enforce an upper
bound on the routing distance travelled by a vehicle in each
time-step. Therefore, as shown in section 5, the cumulative
routing distance for our approach is always highly competi-
tive to other benchmark approaches.
Vehicle capacity is not exceeded. Constraints (13) assure
that the number of picked up or dropped off bikes in aggregate
is bounded by the vehicle’s capacity.

We further exploit the structure of the MILP of Table (1)
with the following observation which helps to improve the
computational efficiency of the proposed MILP.
Observation 1 The integrality of α variables in con-
straints (14) can be relaxed to 0 ≤ αl

s ≤ 1, without compro-
mising the feasibility or optimality of the optimization prob-
lem delineated in Table (1).
Proof: The objective function (2) computes a point-wise
maximum of linear functions of α and therefore, convex in
α [Boyd and Vandenberghe, 2004]. As a convex function
over a compact domain achieves the optimal solution at an
extreme point of the feasible region, we can relax the binary
variablesα to continuous ones. Let l∗ denote the index of the
largest λs value that satisfies all the feasibility constraints for
station s. Then, any convex combination of λs with contin-
uous values of αs (i.e.,

∑
l∈[L(s) α

l
s log(λ

l
s)) is less than or

equal to log(λl
∗

s ). Hence, in the optimal solution, αl∗

s should
be set to 1 even if α’s are defined as continuous variables. �

4.2 Simulation Model
We now describe a data-driven simulation model (adapted
from [Ghosh et al., 2016]) which is used to execute the bike
repositioning strategies and for evaluating their performance
on testing demand scenarios. Let f ts,s′ represent the number
of customers who intend to travel from station s to s′ at time
step t. Let d#,t

s denote the number of bikes stationed at s af-
ter the repositioning tasks are completed for time step t. As
the number of available bikes changes due to repositioning,
the actual flows of bikes between stations are computed as
follows: (a) If the arrival demand at a station is less than the
supply of bikes, then all the customers are served; (b) If the
arrival demand at a station is higher than the supply of bikes,
then the actual flow of bikes (denoted as xts,s′ ) is determined

based on the relative ratio
ft
s,s′∑

s′ f
t
s,s′

as shown in equation (15).

xts,s′ =

{
f ts,s′ if

∑
s′ f

t
s,s′ ≤ d#,t

s
ft
s,s′∑
s̃ ft

s,s̃
· d#,t

s otherwise

}
(15)

Once we compute the actual flows of bikes between the sta-
tions, the distribution of bikes at station s for the next time
step t + 1 is determined as the sum of un-hired bikes at time
step t, the net amount of incoming bikes and the net amount
of dropped off bikes at station s by the vehicles.

d#,t+1
s = d#,t

s +
[∑

s̃

xts̃,s−
∑
s′

xts,s′
]
+
[
Y −,t+1
s −Y +,t+1

s

]
(16)

It should be noted that equation (16) ignores the station ca-
pacity constraints. To tackle such boundary conditions, we
transfer excess bikes (i.e., d#,t+1

s −C#
s ) to the nearest avail-

able station. In the experimental results, we report these ex-
cess numbers as the lost demand at the destination station.
This bike distribution (i.e., d#,t+1) is then used to compute
the repositioning strategy for the next time step. We continue
this iterative process until the last time step is reached.

5 Experimental Results
We evaluate the performance2 of our approach with respect
to the key performance metric of loss in demand on a real-
world data set from Hubway3. The Hubway data set contains
the following information: (1) Customer trip records, from
which we compute the demand scenarios; (2) The number
of stations, their capacity and initial distribution of bikes at
each of the stations; (3) Geographical locations of stations,
from which we calculate the relative distance between two
stations; and (4) The number of vehicles and their capacity.
The Hubway system consists of 95 base stations and 3 vehi-
cles. We consider 6 hours of planning horizon in the morning
peak (6AM-12PM) which is divided into 12 decision epochs,
each having a duration of 30 minutes. We generate 60 de-
mand scenarios for the weekdays from three months of his-
torical trip data. As the historical trip data ignores the un-
observed lost demand, we employ a micro-simulation model
from [Ghosh et al., 2016] with one minute of time discretiza-
tion to determine the period when a station was empty and
inject artificial demand based on the observed demand at that
station in previous time step. We observe that the mean of
total pickup/return demand for a single day over 6 hours of
planning period is 1485. From 60 demand scenarios, 20 sce-
narios are used for training purposes and other 40 scenarios
are used for testing. We compare the utility of our approaches
with the following four benchmark approaches:
Static repositioning: The vehicles are used for repositioning
at the end of the day to achieve a predefined inventory level
(e.g., 50% of the capacity) for the stations. For this baseline
approach, we simulate the customer flow without any reposi-
tioning of bikes during the planning period.
Offline repositioning: For the offline approach [Shu et al.,
2013], the repositioning strategy is generated once at the be-
ginning for the entire planning horizon by considering the ex-
pected future demand (computed from the training scenarios)
to better account for future demand surges.

2All the linear optimization models are solved using IBM ILOG
CPLEX Optimization Studio V12.7 on a 2.1 GHz Intel Xeon E5
machine with 16 cores and 32GB RAM.

3Data is taken from Hubway bike sharing company of Boston
[http://hubwaydatachallenge.org/trip-history-data]



Lost demand at Lost demand at Routing
the time of bike pickup the time of bike return Distance

MEAN MAX STDEV MEAN MAX STDEV (KM)

Static 283.6 459 79.7 65.8 103 19.3 0
Online 272.4 436 78.3 50.1 87 21.22 250.1
Offline 205 356 70.4 54.8 116 18.03 282.2
Robust 201.4 337 64.5 49.2 81 14.05 217.7
DrROBUST 160.9 317 62.4 52 79 15.61 243.2
(a) Comparison results with 3 episodes in each decision epoch (R = 3).

Static 283.6 460 79.7 65.8 103 19.4 0
Online 263.7 416 71.7 54.1 85 20 282.6
Offline 217.8 367 68.9 81 159 21.7 486.5
Robust 178.7 304 58.3 53.3 105 16.8 259.9
DrROBUST 131.9 261 55.2 54.4 81 15.8 336.5
(b) Comparison results with 4 episodes in each decision epoch (R = 4).

Table 2: Lost demand statistics on the Hubway data set.

Online repositioning: For the online heuristic [Schuijbroek
et al., 2017], our objective is to bound the inventory level
within 10% of the mean demand (learnt from training data),
while ensuring the physical routing limitations of vehicles.
Robust repositioning: We employ a scenario generation based
two-payer game approach from [Ghosh et al., 2016] to gen-
erate the robust repositioning strategy. In each iteration of
the game, a worst demand scenario is generated to counter
the repositioning strategy of the current iteration and then the
repositioning planner produces a robust strategy that mini-
mizes the maximum lost demand over all the previously gen-
erated worst-case scenarios.

Performance comparison. We summarize the key perfor-
mance statistics of DrROBUST against all the benchmark ap-
proaches in Table 2. We provide statistics for two types of
loss in demand: (a) lost demand occurred at the time of bike
pickup due to starvation of bikes at stations; and (b) lost de-
mand occurred at the time of bike drop-off due to conges-
tion of bikes at stations. Table 2(a) summarizes the lost de-
mand statistics at the pickup and drop-off time for different
approaches with 3 episodes (i.e., a vehicle is allowed to visit
maximum 3 stations in each of the decision epochs). Due to
the uncertainties in customer demand, the Robust approach
outperforms all the other benchmarks (i.e., Static, Offline and
Online approaches). Our proposed approach performs better
than the Robust approach both in terms of reducing the ex-
pected and worst-case lost demand. On average, our approach
reduces the overall lost demand (i.e., sum of lost demands
at the pickup and drop-off time) by 15% and the worst-case
lost demand is also reduced by around 5% over the Robust
approach. Similar performance statistics are shown in Ta-
ble 2(b) where we allow a vehicle to visit 4 stations in each
decision epoch. We observe a consistent pattern in results that
our approach reduces the expected lost demand by at least
19% over all the benchmark approaches. Moreover, our ap-
proach reduces the worst-case lost demand by at least 9% and
therefore, it is robust to the uncertainty in demand.

Routing cost comparison. The next set of results provide
the routing cost comparison. Table 2 reports the average cu-
mulative distance (which is directly proportional to the rout-
ing cost) travelled by 3 vehicles over the entire planning hori-
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Figure 1: (Cumulative) Runtime comparison on Hubway data set
for: (a) R = 3; and (b) R = 4.

zon. As expected, vehicles travel the maximum distance for
the Offline approach to minimize future demand surges. Al-
though both DrROBUST and Robust employ similar physical
routing constraints for vehicles, the average routing cost for
DrROBUST is higher (albeit by a small amount) than the Ro-
bust approach. However, as DrROBUST significantly reduces
the lost demand over the Robust approach, it can contribute
to higher profits for the BSS operators.

Runtime performance. In the last set of results, we show
the runtime performance of our approach on the real-world
demand scenarios. For fairness in comparison, we only pro-
vide runtimes for Online, Robust and DrROBUST approaches
as all of them generate decisions in each time step in a round-
robin fashion. Figure 1(a) depicts the runtime performance
with 3 episodes where in the X-axis we vary the number of
decision epochs and the Y-axis denotes the cumulative run-
time. While the Online approach performs the best, our ap-
proach was always faster than the Robust approach. Figure
1(b) delineates the runtime with 4 episodes. Although our
approach takes the longest time to generate a better quality
solution in comparison to other benchmarks, the runtime is
always bounded by 15 minutes in each decision epoch.

6 Concluding Remarks
In this paper, we propose a probabilistic satisficing based op-
timization approach to solve the dynamic repositioning prob-
lem in bike sharing systems. We develop a computationally
efficient optimization model for maximizing the probability
of satisfying the customer demand by exploiting the under-
lying uncertainties learnt from the historical demand. The
empirical results on a real-world bike sharing data set demon-
strate that our approach is robust to demand uncertainty and
outperforms existing best known repositioning approaches in
reducing the expected lost demand and therefore, improves
the overall customer satisfaction. In future, this work can be
extended to an offline planning and online execution setting
where the repositioning strategy is generated in each time step
by considering the demand uncertainties for multiple future
time steps to better account for future demand surges.

Acknowledgments
This work was partially supported by the Singapore National
Research Foundation through the Singapore-MIT Alliance
for Research and Technology (SMART) Centre for Future Ur-
ban Mobility (FM). The authors would like to thank Melvyn
Sim from National University of Singapore (NUS) for his
thoughtful suggestions in modeling the optimization problem.



References
[Boyd and Vandenberghe, 2004] Stephen Boyd and Lieven

Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[Charnes and Cooper, 1963] Abraham Charnes and
William W Cooper. Deterministic equivalents for
optimizing and satisficing under chance constraints.
Operations research, 11(1):18–39, 1963.

[Chemla et al., 2013] Daniel Chemla, Frédéric Meunier, and
Roberto Wolfler Calvo. Bike sharing systems: Solving
the static rebalancing problem. Discrete Optimization,
10(2):120–146, 2013.

[Contardo et al., 2012] Claudio Contardo, Catherine
Morency, and Louis-Martin Rousseau. Balancing a
dynamic public bike-sharing system. Technical report,
CIRRELT, 2012.

[Ghosh and Varakantham, 2016] Supriyo Ghosh and
Pradeep Varakantham. Strategic planning for setting up
base stations in emergency medical systems. In ICAPS,
pages 385–393. AAAI Press, 2016.

[Ghosh and Varakantham, 2017] Supriyo Ghosh and
Pradeep Varakantham. Incentivizing the use of bike
trailers for dynamic repositioning in bike sharing systems.
In ICAPS. AAAI Press, 2017.

[Ghosh and Varakantham, 2018] Supriyo Ghosh and
Pradeep Varakantham. Dispatch guided allocation op-
timization for effective emergency response. In AAAI,
pages 775–783, 2018.

[Ghosh et al., 2015] Supriyo Ghosh, Pradeep Varakantham,
Yossiri Adulyasak, and Patrick Jaillet. Dynamic redeploy-
ment to counter congestion or starvation in vehicle sharing
systems. In ICAPS. AAAI Press, 2015.

[Ghosh et al., 2016] Supriyo Ghosh, Michael Trick, and
Pradeep Varakantham. Robust repositioning to counter un-
predictable demand in bike sharing systems. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
2016.

[Ghosh et al., 2017] Supriyo Ghosh, Pradeep Varakantham,
Yossiri Adulyasak, and Patrick Jaillet. Dynamic reposi-
tioning to reduce lost demand in bike sharing systems.
Journal of Artificial Intelligence Research, 58:387–430,
2017.

[He et al., 2015] Shuangchi He, Melvyn Sim, and Meilin
Zhang. Data-driven patient scheduling in emergency de-
partments: A hybrid robust-stochastic approach. Available
at Optimization-Online http://www. optimization-online.
org/DB HTML/2015/11/5213. html, 2015.

[Jaillet et al., 2016] Patrick Jaillet, Sanjay Dominik Jena,
Tsan Sheng Ng, and Melvyn Sim. Satisficing awak-
ens: Models to mitigate uncertainty. Available at
Optimization-Online http://www.optimization-online.org/
DB HTML/2016/01/5310.html, 2016.

[Konda et al., 2018] Muralidhar Konda, Supriyo Ghosh, and
Pradeep Varakantham. Reserved optimisation: Han-
dling incident priorities in emergency response systems.

In International Conference on Automated Planning and
Scheduling (ICAPS), pages 330–338, 2018.

[Lowalekar et al., 2017] Meghna Lowalekar, Pradeep
Varakantham, Supriyo Ghosh, Sanjay Dominic JENA,
and Patrick Jaillet. Online repositioning in bike sharing
systems. In ICAPS. AAAI Press, 2017.

[Lowalekar et al., 2018] Meghna Lowalekar, Pradeep
Varakantham, and Patrick Jaillet. Online spatio-temporal
matching in stochastic and dynamic domains. Artificial
Intelligence, 261:71–112, 2018.

[Meddin and DeMaio, 2018] Russell Meddin and Paul De-
Maio. The bike sharing world map. http://www.
bikesharingworld.com, 2018. Accessed: 2018-07-09.

[Mellou and Jaillet, 2019] Konstantina Mellou and Patrick
Jaillet. Dynamic resource redistribution and demand es-
timation: An application to bike sharing systems. Avail-
able at SSRN: https://papers.ssrn.com/sol3/papers.cfm?
abstract id=3336416, Feb 2019.

[Pfrommer et al., 2014] Julius Pfrommer, Joseph Warring-
ton, Georg Schildbach, and Manfred Morari. Dynamic
vehicle redistribution and online price incentives in shared
mobility systems. IEEE Transactions on Intelligent Trans-
portation Systems, 15(4):1567–1578, 2014.

[Raviv et al., 2013] Tal Raviv, Michal Tzur, and Iris A.
Forma. Static repositioning in a bike-sharing system:
models and solution approaches. EURO Journal on Trans-
portation and Logistics, 2(3):187–229, Aug 2013.

[Schuijbroek et al., 2017] Jasper Schuijbroek, Robert C
Hampshire, and W-J Van Hoeve. Inventory rebalancing
and vehicle routing in bike sharing systems. European
Journal of Operational Research, 257(3):992–1004, 2017.

[Shu et al., 2013] Jia Shu, Mabel C Chou, Qizhang Liu,
Chung-Piaw Teo, and I-Lin Wang. Models for ef-
fective deployment and redistribution of bicycles within
public bicycle-sharing systems. Operations Research,
61(6):1346–1359, 2013.

[Simon, 1959] Herbert A Simon. Theories of decision-
making in economics and behavioral science. The Ameri-
can economic review, 49(3):253–283, 1959.

[Singla et al., 2015] Adish Singla, Marco Santoni, Gábor
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