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Abstract

Many smallholder farmers in developing countries struggle to make ends meet. We
develop a model that examines how markets catering to numerous smallholder farm-
ers reach an equilibrium, while incorporating real world challenges that smallholder
farmers face, namely a lack of long term planning and cash constraints. Through
this, we analyze the effectiveness of two common forms of government intervention,
storage and loan provision. We fully characterize market equilibrium conditions un-
der the base scenario of no government intervention, analyzing how price conditions,
number of farmers, and severity of cash constraints impact farmer behaviour. We
then illustrate how these results change when storage and loans are integrated into
the model. The analysis demonstrates that myopic optimization and cash constraints
induce farmers to make sub-optimal decisions, resulting in farmers not receiving the
full benefit of government interventions. We show that while storage is always use-
ful in situations where farmers have excess quantity, providing overly generous loan
terms can negatively impact farmer revenue by disincentivizing farmers from selling
their produce on the market. We also show that attempting to improve equality by
alleviating farmer cash constraints can result in negative externalities like increased
wastage. Empirical analysis with Bengal gram farmers in India shows that farmers
are in dire need of government assistance to meet their cash constraints. However,
improving loan terms only boosts farmer revenue up to a point, after which revenue
declines. The analysis shows that while loan schemes are widely popular and some-
times necessary in aiding struggling farmers, governments should be aware that the
strategic response of different farmers can result in adverse effects.

Thesis Supervisor: Y. Karen Zheng
Title: Associate Professor of Operations Management
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Chapter 1

Introduction

Smallholder farmers are an integral part of the agriculture industry, accounting for

84% of farms and 2 billion people worldwide [15]. Even as they provide over 80% of the

food consumed in developing countries, they also account for most of the 1.4 billion

people living in poverty [21]. Therefore, improving revenue outcomes for smallholder

farmers is an important and relevant problem for governments worldwide.

One reason that smallholder farmers struggle to generate revenue is that they are

forced to sell most or all of their produce immediately after harvest at depressed prices.

This is done firstly because of a lack of storage infrastructure. Smallholder farmers

do not have the capital necessary to invest in high quality storage facilities, and as a

result there are significant post-harvest crop losses from storage due to decay, physical

shocks, pests and disease [7]. A second reason is the need for immediate cash. It is

estimated that fewer than 10% of smallholder farmers have access to finance [4], and

as such most farmers rely on revenue generated through selling produce to prepare

for the next harvest. As a result, smallholder farmers flood the market with produce

during the harvest season and are forced to accept the low prices offered by traders

[20].

An illustration of how devastating this phenomenon can be for farmers was seen

recently in India, where the price of the khatif onion dropped below the cost of

production [11]. Without the means to store their produce, farmers were forced to

sell at a loss while traders and stockists with access to warehouses were able to store

13



the produce for sale during the lean season, where prices are typically higher.

This paper evaluates the effectiveness of commonly observed government interven-

tions in improving farmer revenue. We use a 2 period model, representing the harvest

and lean season, and simulate how a market with numerous farmers selling small

quantities of produce reaches an equilibrium in each season. This model is unique in

two ways: first, farmers are assumed to optimize myopically; second, farmers are het-

erogeneous, each constrained by their need for different amounts of cash. We believe

that these conditions accurately depict the realities faced by smallholder farmers -

the threat of poverty induces farmers to prioritize immediate financial benefits over

long-term strategy [3], and the need to purchase inputs like seeds and fertilizer for

the next harvest ensures that farmers face cash constraints. However, given that

farmers have multiple sources of income and some will be better off than others, we

incorporate heterogeneous cash constraints into the model.

Since cash constraints and myopic optimization results in farmers making long-

term sub-optimal decisions, government interventions designed to boost farmer rev-

enue may be rendered less effective. Furthermore, heterogeneity of cash constraints

allows us to analyze how the benefits of government intervention may be unevenly

distributed across farmers. In particular, this paper considers the effect of provid-

ing storage infrastructure and short-term loans to farmers. These measures are of

particular relevance in India as the government has looked to invest in these areas.

Recently, the Indian government pledged 1 trillion rupees for investment in cold stor-

age facilities and post-harvest storage centers, for the benefit of smallholder farmers

that are unable to afford such services [25]. There have also been numerous policies

aimed at improving access to credit, such as requiring banks to meet credit targets

for agricultural loans every year, and introducing schemes to lower the effective rate

of interest on agricultural loans [17].

We evaluate the effectiveness of storage and loans by examining their impact on

farmer revenue and inequality amongst farmers. We also consider the cost of such

schemes, both in terms of wasted produce as well as government expenditure. We find

that provision of storage always improves revenue and reduces wastage if farmers have

14



excess quantity in the harvest season. In contrast, loans have mixed effects - while

offering more generous loans reduces inequality amongst farmers, it also encourages

wastage and higher government expenditure. Furthermore, loans can backfire and

reduce farmer revenue.

We illustrate these findings using field data from the Bengal gram market in India.

Without government intervention, we find that farmers are unable to meet their cash

constraints. We then consider the introduction of storage and loans, calibrating loan

terms to government data. We find that farmers can now meet their cash constraints

in the harvest season and earn additional revenue in the lean season. However, op-

timizing loan terms sees a 12.6% increase in total revenue for farmers, as well as

reduced revenue disparity. Improving loan terms beyond the optimal level results in

lower revenue for farmers, on top of higher government expenditure.

The remainder of the paper is structured as follows. Chapter 2 reviews the related

literature. Chapter 3 characterizes the base model with no government intervention.

Chapter 4 explains how the introduction of storage infrastructure and loans influences

the model. Chapter 5 examines how the base model compares to the model under

government intervention. Chapter 6 considers how the government can determine

the optimal level of intervention, and discusses the policy implications. Chapter 7

presents the empirical analysis. Chapter 8 concludes the paper.

15
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Chapter 2

Literature Review

Studying the effect of storage on revenue is closely related to the classical warehouse

problem in operations management, where aspects of warehouses such as location or

size are optimized to maximize sales. Existing literature in the agriculture industry

includes studies by Jasinska and Wojtych [10] and Monteroso et al. [16] that examined

the warehouse location problem from the government’s perspective in the sugar beet

and grain industry respectively. Research in this area tends to view the storage

problem from a macro perspective, modelling the total flow of produce between areas.

This paper differs by approaching the storage problem from the farmer’s perspective

- rather than treating farmers as a homogeneous whole, we consider the reality that

individual farmers may have differing cash constraints that influence their decisions.

This adds value to the current discourse by enabling us to model how the benefits of

government intervention may be unevenly distributed to farmers.

Loans in the agriculture industry have also been well-studied. For example, studies

by Zelenovic, Vojinovic and Cvijanovic [28] and Sharifat et al. [24] examine agricul-

tural loans in Serbia and Iran respectively. The existing literature is largely focused

on understanding the underlying factors affecting credit access and default rates for

farmers. In contrast, this paper examines the effect of loans on farmer welfare, mod-

elling the balance between offering farmers loans large enough to meaningfully improve

their revenue, while also ensuring loans are not so large as to disincentivize farmers

from selling their produce on the market.
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In markets catering to smallholder farmers, we have hundreds of farmers selling

their produce simultaneously. Since market price is a function of total quantity sold,

the individual farmer’s decision on quantity to sell is clearly influenced by his peers.

However, due to the large number of farmers, it is unlikely that the individual farmer

considers the strategies of each of his peers separately. Using traditional dynamic

game theory is infeasible and implausible when analyzing dynamic systems with a

large number of agents [12]. Beyond computational limitations, as the number of play-

ers increases, ’interindividual complex strategies can no longer by implemented...each

player is progressively lost in the crowd in the eyes of other players’ [9]. Therefore,

we use the concept of mean field equilibria to model his decision making process,

where we assume each farmer bases his decision on the long run average behaviour of

all other farmers. We believe that the mean field approach provides a more realistic

approximation to farmer behavior in reality, compared to traditional dynamic game

theory.

Finally, we refer to a study by Liao, Chen and Tang [14] which modelled the

responses of smallholder farmers to information provision policies. They accounted for

heterogeneity amongst farmers in terms of their distance from markets, and modelled

this by assuming farmers were distributed uniformly over a 2D space representing

distance from the market. We adopt a similar approach in modelling heterogeneous

cash constraints.

18



Chapter 3

Base Model

In the base case, we model the existing situation for farmers - that is, without access

to storage or loans. Note that although we have a two period model, without storage

farmers are unable to sell produce in the lean season. Therefore, farmers earn no

revenue in the lean season, and we focus on the harvest season market equilibrium.

We consider an agricultural market with 𝑁 farmers. Since smallholder farmers

have limited access to finance [4], farmers rely on revenue generated through selling

produce to purchase inputs for the next harvest season. However, since farmers can

have multiple sources of income [23], different farmers require different amounts of

cash. Therefore, we assume heterogeneous cash constraints distributed uniformly

over [0, 𝐶𝑚𝑎𝑥]. We model market price using the same method as Liao, Chen and

Tang [14], as is commonly seen in operations research literature. Market price is

given by the equation 𝛼 − 𝛽
∑︀𝑁

𝑖=1 𝑞𝑖, where 𝛼 is the intercept, 𝛽 is price elasticity,

and
∑︀𝑁

𝑖=1 𝑞𝑖 is the total quantity sold by the 𝑁 farmers. Since smallholder farmers

operate farms of 2 hectares or less, the output level of each farm is similar. Therefore,

we assume homogeneous production of 1 unit per farmer during the harvest season.

Each farmer is aware of his individual cash constraint, the total number of farmers,

and the distribution of cash constraints across farmers.
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3.1 Characterization of equilibria

Using the principle of mean field equilibria, we assume individual farmers make quan-

tity decisions based on the average quantity sold by other farmers. We call this their

best-response quantity. We characterize an equilibrium by computing the best-

response quantity for each farmer as a function of their cash constraint, and we say

an equilibrium is feasible if it meets the following conditions: (i) Farmers satisfy their

cash constraint by selling their best-response quantity; (ii) No farmer is selling more

than 1 unit. In this section, we begin by defining the parameter region in which feasi-

ble equilibria exist. Thereafter, we show the derivation of best-response quantities for

feasible equilibria. Finally, we consider the sensitivity of the equilibrium to changes

in parameter values.

We begin by considering how the individual farmer computes his best-response

quantity. The 𝑖th farmer chooses quantity 𝑞𝑖 ∈ [0, 1] to sell in order to maximize

revenue. The farmer has cash constraint 𝐶𝑖 and solves the following problem:

𝑚𝑎𝑥𝑞𝑖 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑚𝑎𝑥𝑞𝑖 (𝛼− 𝛽(𝑞𝑖 + (𝑁 − 1)𝑞−𝑖))𝑞𝑖 (3.1)

𝑠.𝑡. 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 ≥ 𝐶𝑖

0 ≤ 𝑞𝑖 ≤ 1

where 𝑞−𝑖 is the average quantity sold by the other 𝑁−1 farmers. There are two pos-

sibilities: (i) The cash constraint is not tight for any farmer. (ii) The cash constraint

is tight for some farmers. We refer to the former as an unconstrained equilib-

rium, and the latter as a partially constrained equilibrium. Note that the cash

constraint cannot be tight for all farmers because cash constraints start at 0.

Before presenting the theorem, we introduce some terminology. In the context

of partially constrained equilibria, we separate the farmers into two groups: uncon-

strained (Revenue > 𝐶) and cash constrained (Revenue = 𝐶). As seen in problem

3.1, the individual farmer’s decision is dependent on the average quantity sold by

other farmers, 𝑞−𝑖. We use the following terms to express 𝑞−𝑖:

20



1. 𝑐: The boundary cash constraint between unconstrained and cash constrained

farmers.

2. 𝐹 : The average quantity sold by unconstrained farmers

3. 𝑓 : The average quantity sold by cash constrained farmers, weighted by the

proportion of cash constrained farmers

The average quantity sold by the other farmers can thus be written 𝑞−𝑖 = 𝑐
𝐶𝑚𝑎𝑥

𝐹 + 𝑓 .

Lemma 1 Let 𝛼1, 𝑓1 and 𝛼2, 𝑓2 be the solutions to the system of equations 3.2 and

3.3 respectively. At least one of the systems of equations has a solution. If only one

has a solution, denote it 𝛼*. Else, let 𝛼* = 𝑚𝑖𝑛{𝛼1, 𝛼2}.

𝑃 = 𝛼− 𝛽(𝑁 − 1)(
𝑐

𝐶𝑚𝑎𝑥

𝐹 + 𝑓) ≥ 𝛽 + 𝐶𝑚𝑎𝑥

𝑔(𝑓) =
1

2𝛽
(1 − 𝑐

𝐶𝑚𝑎𝑥

)𝑃 − 1

12𝛽2𝐶𝑚𝑎𝑥

((𝑃 2 − 4𝛽𝑐)1.5 − (𝑃 2 − 4𝛽𝐶𝑚𝑎𝑥)1.5) − 𝑓

= 0

𝑔′(𝑓) = 0 (3.2)

𝑃 = 𝛽 + 𝐶𝑚𝑎𝑥

𝑔(𝑓) = 0 (3.3)

where 𝐹 = 𝐶𝑚𝑎𝑥(𝛼−𝛽𝑓(𝑁−1))
2𝛽(𝐶𝑚𝑎𝑥+𝑐(𝑁−1))

and 𝑐 =
−𝛽𝐶𝑚𝑎𝑥+

√
𝛽2𝐶2

𝑚𝑎𝑥+𝛽𝐶𝑚𝑎𝑥(𝑁−1)(𝛼−𝛽𝑓(𝑁−1))2

2𝛽(𝑁−1)
.

Theorem 1 Let 𝑞 = 𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1} and 𝑅 = (𝛼− 𝛽𝑁𝑞)𝑞.

1. If 𝛼 ≥ 𝛼*, then if

(a) If 𝑅 ≥ 𝐶𝑚𝑎𝑥, 𝑞* = 𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1}

(b) If 𝑅 < 𝐶𝑚𝑎𝑥, 𝑞* is a piece-wise function of the following form:

𝑞(𝐶) =

⎧⎪⎨⎪⎩𝐹 𝐶 ≤ 𝑐

1
2𝛽

(𝑃 −
√︀

𝑃 2 − 4𝛽𝐶) 𝑐 < 𝐶 ≤ 𝐶𝑚𝑎𝑥
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2. If 𝛼 < 𝛼* then the problem 3.1 is infeasible and ∃𝑐* > 0 s.t. ∀𝐶𝑖 > 𝑐*,

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 < 𝐶𝑖, .

To interpret Lemma 1, we begin by explaining the derivation and intuition behind

the formulas for 𝐹, 𝑐 and 𝑔(𝑓). As mentioned earlier, 𝐹 and 𝑐 exist in the context of

a partially constrained equilibria where some farmers are cash constrained and others

are unconstrained. We consider problem 3.1 from the perspective of both groups of

farmers. Since unconstrained farmers’ quantity decision is unaffected by their cash

constraint, we can remove it from their revenue maximization problem. As a result,

all unconstrained farmers solve identical problems and hence have the same best-

response quantity, which we denote as 𝐹 . By solving the problem below, we can

express 𝐹 in terms of 𝑐 and 𝑓 .

𝑚𝑎𝑥𝐹 (𝛼− 𝛽(𝐹 + (𝑁 − 1)(
𝑐

𝐶𝑚𝑎𝑥

𝐹 + 𝑓)))𝐹

𝐹 =
𝐶𝑚𝑎𝑥(𝛼− 𝛽𝑓(𝑁 − 1))

2𝛽(𝐶𝑚𝑎𝑥 + 𝑐(𝑁 − 1))
(3.4)

Since cash constrained farmers make their cash constraint exactly, we can determine

their best-response quantity 𝑞 in terms of 𝑐 and 𝑓 by equating revenue to their cash

constraint 𝐶. Note that 𝑞 is increasing in 𝐶, as more severely cash constrained farmers

will have to sell larger quantities to meet their cash constraint.

𝐶 = (𝛼− 𝛽(𝑞 + (𝑁 − 1)(
𝑐

𝐶𝑚𝑎𝑥

𝐹 + 𝑓)))𝑞

𝑞 =
1

2𝛽
(𝑃 −

√︀
𝑃 2 − 4𝛽𝐶) (3.5)

where 𝑃 = 𝛼 − 𝛽(𝑁 − 1)( 𝑐
𝐶𝑚𝑎𝑥

𝐹 + 𝑓). 𝑃 can be interpreted as the market price

observed by the farmer before making a quantity decision.

We can express 𝑐 in terms of 𝑓 by noting that the farmer with cash constraint 𝑐

belongs to both the unconstrained and cash constrained groups. Therefore, his cash
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constraint is tight, but he also sells quantity 𝐹 :

𝑐 = (𝛼− 𝛽(𝐹 + (𝑁 − 1)(
𝑐

𝐶𝑚𝑎𝑥

𝐹 + 𝑓)))𝐹

𝑐 =
−𝛽𝐶𝑚𝑎𝑥 +

√︁
𝛽2𝐶2

𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽𝑓(𝑁 − 1))2

2𝛽(𝑁 − 1)
(3.6)

We are then left with one unknown 𝑓 . By construction, equations 3.4, 3.5 and

3.6 guarantee that farmers satisfy their cash constraint. For a given value of 𝑓 , we

can compute the realized weighted average quantity sold by cash constrained farmers,

𝑓𝑟𝑒𝑎𝑙 =
∫︀ 𝐶𝑚𝑎𝑥

𝑐
1

𝐶𝑚𝑎𝑥

1
2𝛽

(𝑃 −
√︀

𝑃 2 − 4𝛽𝐶)𝑑𝐶. The fixed point equation 𝑔(𝑓) checks if

𝑓𝑟𝑒𝑎𝑙 = 𝑓 . When 𝑔(𝑓) = 0, we know that farmers are selling their best-response

quantity, and all farmers satisfy their cash constraint, meeting the first condition of

feasibility.

To check the second condition of feasibility, that no farmer is selling more than

1 unit, we check that 𝑞(𝐶𝑚𝑎𝑥) ≤ 1, since the most cash constrained farmer sells the

greatest quantity. We find that this equivalent to the condition 𝑃 ≥ 𝛽+𝐶𝑚𝑎𝑥. When

𝑃 = 𝛽 + 𝐶𝑚𝑎𝑥, the most cash constrained farmer is forced to sell 1 unit, since the

market price then decreases by 𝛽 and he earns exactly 𝐶𝑚𝑎𝑥. Therefore, as long as

𝑃 ≥ 𝛽 + 𝐶𝑚𝑎𝑥, the most cash constrained farmer will not sell more than 1 unit.

The systems of equations 3.2 and 3.3 allow us to find the boundary parameter

values for each of the feasibility conditions. System of equations 3.2 finds the value

of 𝛼 such that if 𝛼 decreases, condition (i) will fail. System of equations 3.3 does the

same for condition (ii).

Before explaining the systems of equations, we prove the following properties of

𝑓𝑟𝑒𝑎𝑙:

Proposition 1 1. 𝑓𝑟𝑒𝑎𝑙 > 0 when 𝑓 = 0

2. 𝑑𝑓𝑟𝑒𝑎𝑙
𝑑𝑓

> 0

3. 𝑑𝑓𝑟𝑒𝑎𝑙
𝑑𝛼

< 0 and 𝑑𝑓𝑟𝑒𝑎𝑙
𝑑𝛽

, 𝑑𝑓𝑟𝑒𝑎𝑙
𝑑𝑁

, 𝑑𝑓𝑟𝑒𝑎𝑙
𝑑𝐶𝑚𝑎𝑥

> 0
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To provide some intuition for Proposition 1, note that feasibility is related to how

easily farmers can meet their cash constraint. In terms of model parameters, we say

that it is easier for farmers to meet their cash constraint if 𝛼 increases or 𝛽,𝑁 , or

𝐶𝑚𝑎𝑥 decreases. Increasing 𝛼 raises the price intercept, while decreasing 𝛽 reduces

the sensitivity of price to quantity sold. Therefore, a farmer will earn more revenue

for the same quantity sold. Decreasing 𝑁 reduces the number of competing farmers,

effectively reducing the total supply to the market and making it easier for farmers

to get a better price. Finally, reducing 𝐶𝑚𝑎𝑥 not only makes it easier for the most

cash constrained farmer to meet his cash constraint, but also improves price for other

farmers, since the most cash constrained farmer no longer has to sell as much quantity.

If we adjust parameters to make it easier for farmers to meet their cash constraint,

we will eventually allow all farmers to meet their cash constraint by selling 1 unit or

less. Conversely, if we make it more difficult for farmers to meet their cash constraint,

we will reach an infeasible situation where it is impossible for every farmer to satisfy

his cash constraint.

We start by explaining system of equations 3.2. As explained earlier, 𝑔(𝑓) has

two components - the given value of 𝑓 and the realized best-response quantity 𝑓𝑟𝑒𝑎𝑙.

Taking these components separately and plotting them as functions of 𝑓 , we see a

solution to 𝑔(𝑓) exists when there is an intersection between the components. The

equations 𝑔(𝑓) = 0 and 𝑔′(𝑓) = 0 find the value of 𝑓 such that the line 𝑦 = 𝑓𝑟𝑒𝑎𝑙

is tangent to 𝑦 = 𝑓 , as illustrated in Figure 3-1. The inequality 𝑃 ≥ 𝛽 + 𝐶𝑚𝑎𝑥

ensures that farmers are selling feasible quantities at this value of 𝑓 . By Proposition

2, decreasing 𝛼 or increasing 𝛽,𝑁,𝐶𝑚𝑎𝑥 causes 𝑓𝑟𝑒𝑎𝑙 to shift upwards, hence there

is no intersection point and 𝑔(𝑓) = 0 becomes infeasible. This means that farmers

cannot sell their best-response quantity and meet their cash constraint.

For system of equations 3.3, 𝑃 = 𝛽 + 𝐶𝑚𝑎𝑥 ensures that the farmer with cash

constraint 𝐶𝑚𝑎𝑥 is selling 1 unit, and the second equation ensures the fixed point

equation is solved. Decreasing 𝛼 or increasing 𝑁, 𝛽, 𝐶𝑚𝑎𝑥 causes 𝑓𝑟𝑒𝑎𝑙 to shift upwards.

From Figure 3-1, we see that the equilibrium value of 𝑓 increases. This reflects the

fact that cash constrained farmers are selling greater quantity, since it is now more
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Figure 3-1: Illustration of Eqn. 3.2 (left) and 3.3 (right).

difficult for them to meet their cash constraint. Market price decreases as a result of

greater quantity being sold, meaning the most cash constrained farmer now has to

sell more than 1 unit to earn 𝐶𝑚𝑎𝑥.

We now explain the characterization of unconstrained and partially constrained

equilibria. For unconstrained equilibria, since the cash constraint is not tight for any

farmer, we can remove it from the farmers’ revenue maximization problem. Hence,

all farmers solve identical problems, given by

𝑚𝑎𝑥𝑞𝑖 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑚𝑎𝑥𝑞𝑖 (𝛼− 𝛽(𝑞𝑖 + (𝑁 − 1)𝑞−𝑖))𝑞𝑖

𝑠.𝑡. 0 ≤ 𝑞𝑖 ≤ 1

All farmers therefore have the same optimal quantity, given by 𝛼
2𝛽𝑁

. We refer to this

as the optimal unconstrained quantity. Note that 𝛼
2𝛽𝑁

can be greater than 1,

so farmers’ best-response quantity is actually 𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1}. If farmers sell 𝛼
2𝛽𝑁

, each

farmer earns 𝛼2

4𝛽𝑁
. Else if farmers sell 1 unit, each farmer earns 𝛼− 𝛽𝑁 . If individual

farmer revenue is greater than 𝐶𝑚𝑎𝑥, then every farmer meets his cash constraint, and

therefore the unconstrained equilibrium is feasible.
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Figure 3-2: Harvest season partially constrained equilibrium.

For partially constrained equilibria, given the formulas for 𝐹 and 𝑐 from equations

3.4 and 3.6, we can characterize the best-response quantity for all farmers in terms of

𝑓 . Let 𝑞(𝐶) denote the best-response quantity sold by a farmer with cash constraint

𝐶.

𝑞(𝐶) =

⎧⎪⎨⎪⎩𝐹 𝐶 ≤ 𝑐

1
2𝛽

(𝑃 −
√︀

𝑃 2 − 4𝛽𝐶) 𝑐 < 𝐶 ≤ 𝐶𝑚𝑎𝑥

By solving systems of equations 3.2 and 3.3 to obtain 𝛼*, we guarantee that for

𝛼 ≥ 𝛼*, there exists a solution to 𝑔(𝑓) = 0 where all farmers are selling 1 unit or less.

Therefore, we only need to solve the fixed point equation to find the equilibrium value

of 𝑓 . Figure 3-2 illustrates a typical harvest season partially constrained equilibrium.

Observe that unconstrained farmers sell the same quantity while increasingly cash

constrained farmers are forced to sell greater amounts.

Note that while unconstrained equilibria are guaranteed to be unique, it is possible

for multiple feasible partially constrained equilibria to exist for a single parameter set.

However, we can rank them in terms of farmer revenue. We find that the equilibrium

with the lowest 𝑓 has the smallest proportion of cash constrained farmers, and all

farmers earn equal or better revenue than the other equilibria.
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Proposition 2 Suppose there ∃𝑓1 < 𝑓2 corresponding to feasible partially constrained

equilibria. Then (𝛼− 𝛽(𝑞1(𝐶) + (𝑁 − 1)( 𝑐1
𝐶𝑚𝑎𝑥

𝐹1 + 𝑓1))𝑞1(𝐶) ≥ (𝛼− 𝛽(𝑞2(𝐶) + (𝑁 −

1)( 𝑐2
𝐶𝑚𝑎𝑥

𝐹2 + 𝑓2))𝑞2(𝐶)∀𝐶 ∈ [0, 𝐶𝑚𝑎𝑥].

Finally, we examine how the equilibrium value of 𝑓 shifts in response to changes in

the parameters 𝛼, 𝛽,𝑁,𝐶𝑚𝑎𝑥 and how this affects farmer revenue:

Proposition 3 𝑑𝑓
𝑑𝛼

< 0 and 𝑑𝑓
𝑑𝛽
, 𝑑𝑓
𝑑𝑁

, 𝑑𝑓
𝑑𝐶𝑚𝑎𝑥

> 0.

Proposition 3 reflects the intuitive result that as 𝛼 increases or 𝛽,𝑁,𝐶𝑚𝑎𝑥 de-

creases, cash constrained farmers will sell less quantity since it is easier for them to

meet their cash constraint. As 𝑓 decreases, the proportion of cash constrained farmers

decreases, and unconstrained farmers earn more revenue. From a government stand-

point, this means that making it easier for farmers to meet their cash constraints

improves farmer welfare.
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Chapter 4

Government Intervention

We now introduce two forms of government intervention into the model - provision

of storage infrastructure and loans. We select these forms of government intervention

because they align with government policy in reality. In India, access to storage

and finance are key components of the government’s approach to helping smallholder

farmers [25][17].

4.1 Storage

We assume that farmers are now able to store their unsold quantity from the harvest

season to the lean season. We further assume that there is no limit to the quantity that

can be stored, there is no cost of storage, and there is no depreciation of quality over

time. We make the first two assumptions with the view that it is in the government’s

interest to reduce wastage, and that the government is not trying to profit through

providing storage. We ignore the effect of depreciation for the sake of model simplicity.

Under these assumptions, farmers will store all of their unsold quantity since there

is no downside. During the lean season, we also assume that the price parameters

𝛼 and 𝛽 are unchanged from the harvest season. This is a conservative take, given

that seasonal variation in prices of staple crops has been observed in India, where

prices fall during harvest months and increase in the lean season [26]. Finally, we

assume that farmers are not cash constrained in the lean season, since they would
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have already purchased new inputs post harvest.

Note that because farmers still optimize myopically, the harvest season equilibrium

is unchanged from the base case. We now characterize the equilibrium in the lean

season. Moving forward, we introduce subscripts to differentiate the harvest and lean

season, with 1 referring to the harvest season and 2 the lean season. Similar to the base

case, we begin by considering how the individual farmer computes his best-response

quantity. A farmer with cash constraint 𝐶𝑖 solves the following problem:

𝑚𝑎𝑥𝑞𝑖 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑚𝑎𝑥𝑞𝑖 (𝛼− 𝛽(𝑞𝑖 + (𝑁 − 1)𝑞−𝑖))𝑞𝑖 (4.1)

𝑠.𝑡. 𝑞𝑖 ≤ 1 − 𝑞1(𝐶𝑖)

where 𝑞−𝑖 is the average quantity sold by the other 𝑁 − 1 farmers, and 𝑞1(𝐶𝑖) is the

farmer’s quantity sold in the harvest season. Note that instead of a cash constraint,

farmers now face a quantity constraint in 𝑞𝑖 ≤ 1 − 𝑞1(𝐶𝑖). There are three cases:

(i) The quantity constraint is not tight for any farmer. (ii) The quantity constraint

is tight for some farmers. (iii) The quantity constraint is tight for all farmers. We

henceforth refer to (i) as an unconstrained equilibrium; (ii) as a partially con-

strained equilibrium; and (iii) as a fully constrained equilibrium. For the

following analysis, we assume that a feasible equilibrium exists in the harvest season.

In case (ii), we can separate the farmers into two groups: unconstrained (𝑞𝑖 <

1 − 𝑞1(𝐶𝑖)) and quantity constrained (𝑞𝑖 = 1 − 𝑞1(𝐶𝑖)). As seen in problem 4.1, the

farmer’s decision is dependent on 𝑞−𝑖, so we introduce the following terminology:

1. 𝑐2: Boundary cash constraint between unconstrained and quantity constrained

farmers

2. 𝐹2: Average quantity sold by unconstrained farmers

3. 𝑓2: Average quantity sold by quantity constrained farmers, weighted by the

proportion of quantity constrained farmers

We can write 𝑞−𝑖 = 𝑐2
𝐶𝑚𝑎𝑥

𝐹2 + 𝑓2.
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Theorem 2 Let 𝑞1 = 𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1} and 𝑅 = (𝛼− 𝛽𝑁𝑞1)𝑞1.

1. If 𝑅 ≥ 𝐶𝑚𝑎𝑥, 𝑞*2 = 𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1 − 𝑞1}

2. If 𝑅 < 𝐶𝑚𝑎𝑥, a partially constrained equilibrium exists in the harvest season,

and we obtain 𝐹1, 𝑐1, 𝑓1, 𝑞1(𝐶𝑚𝑎𝑥) and 𝑃1.

(a) If 1 − 𝑞1(𝐶𝑚𝑎𝑥) ≥ 𝛼
2𝛽𝑁

, 𝑞*2 = 𝛼
2𝛽𝑁

(b) If 𝛼
2𝛽𝑁

≥ 1 − 𝐹1 and
𝐶𝑚𝑎𝑥(𝛼−𝛽(𝑁−1)(1− 𝑐1

𝐶𝑚𝑎𝑥
−𝑓1)

2𝛽(𝐶𝑚𝑎𝑥+(𝑁−1)𝑐1)
≥ 1 − 𝐹1, 𝑞*2 is a piece-wise

function of the following form:

𝑞2(𝐶) =

⎧⎪⎨⎪⎩1 − 𝐹1 𝐶 ≤ 𝑐1

1 − 1
2𝛽

(𝑃1 −
√︀

𝑃 2
1 − 4𝛽𝐶) 𝑐1 < 𝐶 ≤ 𝐶𝑚𝑎𝑥

(c) Else, 𝑞*2 is a piece-wise function of the following form:

𝑞2(𝐶) =

⎧⎪⎨⎪⎩𝐹2 𝐶 ≤ 𝑐2

1 − 1
2𝛽

(𝑃1 −
√︀

𝑃 2
1 − 4𝛽𝐶) 𝑐2 < 𝐶 ≤ 𝐶𝑚𝑎𝑥

where 𝐹2 = 𝐶𝑚𝑎𝑥(𝛼−𝛽(𝑁−1)𝑓2)
2𝛽(𝐶𝑚𝑎𝑥+(𝑁−1)𝑐2)

.

Recall that if 𝑅 ≥ 𝐶𝑚𝑎𝑥, an unconstrained equilibrium is feasible in the harvest

season, and all farmers store the same quantity 1 −𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1}, so stored quantity

is uniform. Therefore, in the lean season, the quantity constraint is identical for

farmers, and we either have an unconstrained or fully constrained equilibrium. In an

unconstrained equilibrium, we remove the quantity constraint from problem 4.1 and

find that the optimal quantity for farmers is 𝛼
2𝛽𝑁

. In a fully constrained equilibrium

farmers will sell 1 −𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1}. Therefore, the best-response quantity for farmers

is 𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1 −𝑚𝑖𝑛{ 𝛼
2𝛽𝑁

, 1}}.

If 𝑅 < 𝐶𝑚𝑎𝑥, a feasible partially constrained equilibrium exists in the harvest

season. In this case, stored quantity differs between farmers. Due to heterogeneity in

the quantity constraint, unconstrained, partially constrained, and fully constrained
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equilibria are possible. From the harvest season, we have equilibrium values of 𝑓1, 𝑐1

and 𝐹1. Recall that 𝑓1 is the weighted average quantity sold by cash constrained farm-

ers, 𝑐1 is the boundary cash constraint between cash constrained and unconstrained

farmers, and 𝐹1 is the quantity sold by unconstrained farmers.

For unconstrained equilibria, as explained above the optimal unconstrained quan-

tity is 𝛼
2𝛽𝑁

. Since the most cash-constrained farmer sells the greatest quantity in the

harvest season, he consequently has the least quantity in the lean season. Therefore,

to ensure that no farmer is violating his quantity constraint we check if 1−𝑞1(𝐶𝑚𝑎𝑥) ≥
𝛼

2𝛽𝑁
.

In a fully constrained equilibrium, all farmers are quantity constrained. We con-

sider the conditions under which this is optimal for farmers. First, if the optimal

unconstrained quantity is greater than quantity stored for all farmers, it must be

optimal for all farmers to be quantity constrained. The inequality 𝛼
2𝛽𝑁

≥ 1 − 𝐹1

checks for this condition. Second, note that cash constrained farmers from the har-

vest season store less than unconstrained farmers. Take the cash constrained farmers

and assume they sell all of their stored quantity in the lean season. We can then

compute the best-response quantity for unconstrained farmers. If their best-response

quantity is greater than their stored quantity, a fully constrained equilibrium exists.

The inequality
𝐶𝑚𝑎𝑥(𝛼−𝛽(𝑁−1)(1− 𝑐1

𝐶𝑚𝑎𝑥
−𝑓1)

2𝛽(𝐶𝑚𝑎𝑥+(𝑁−1)𝑐1)
≥ 1 − 𝐹1 checks for this condition.

We show in the proof of Theorem 2 that a partially constrained equilibrium is

guaranteed to exist if the conditions for unconstrained and fully constrained equilibria

are not met. To characterize the quantity sold in a partially constrained equilibrium,

we separate farmers into unconstrained and quantity constrained groups, and solve

problem 4.1 from both perspectives. Since unconstrained farmers are unaffected by

their quantity constraint, we can remove it from their revenue maximization problem.

Hence all unconstrained farmers sell the same quantity, and we can express their best-

response quantity 𝐹2 in terms of 𝑓2 and 𝑐2

𝐹2 =
𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓2)

2𝛽(𝐶𝑚𝑎𝑥 + (𝑁 − 1)𝑐2)
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Figure 4-1: Lean season partially constrained equilibrium.

Since all other farmers are quantity constrained, we know that they sell 1 − 𝑞1(𝐶).

Let 𝑞2(𝐶) be the best-response quantity sold by a farmer with cash constraint 𝐶.

𝑞2(𝐶) =

⎧⎪⎨⎪⎩𝐹2 𝐶 ≤ 𝑐2

1 − 𝑞1(𝐶) 𝑐2 < 𝐶 ≤ 𝐶𝑚𝑎𝑥

The fact that a fully constrained equilibrium does not exist guarantees that 𝑞2(𝐶)

does not violate farmers’ quantity constraint. To find the equilibrium values of 𝑐2

and 𝑓2, two conditions must be fulfilled - first, the farmer with cash constraint 𝑐2

should be quantity constrained but also selling 𝐹2; second, for a given value of 𝑓2, the

realized weighted average quantity sold by cash constrained farmers must be equal to

𝑓2. Such an equilibrium is depicted in Figure 4-1, and expressed mathematically as

follows:

𝐹2 = 1 − 𝑞1(𝑐2)

𝑓2 =

∫︁ 𝐶𝑚𝑎𝑥

𝑐2

1

𝐶𝑚𝑎𝑥

(1 − 𝑞1(𝐶))𝑑𝐶
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4.2 Loans

Although introducing storage provides farmers with revenue in the lean season, it

does not address the problem of farmers struggling to meet their cash constraints in

the harvest season. Therefore, we suppose the government offers farmers a loan in

the harvest season, using the quantity stored by farmers as collateral. We introduce

two new parameters, 𝐿 and 𝑟. Let 𝐿 be the maximum loan quantum, and assume

that the quantum that farmers are eligible for scales linearly with quantity stored.

A farmer that sells 𝑞1(𝐶) in the harvest season is thus eligible for a loan of size

(1 − 𝑞1(𝐶))𝐿. Let 𝑟 be the proportion of the loan to be repaid. In our analysis, we

assume that 𝑟 takes on values between 0 and 1. Since we contextualize our analysis to

India, this is justified by the extensive history of borrower bailouts in India. In 2009,

the Agricultural Debt Waiver and Debt Relief Scheme distributed more than Rs.520

billion in debt waivers. This was followed by state level loan waivers in 2014, 2016, and

2017, amounting to more than Rs.1 trillion [19]. The efficacy of such loans have been

subject to debate for many years, with studies finding that loan performance declines

in districts with greater exposure to loan waivers, and that farmers may anticipate

credit market interventions, resulting in more loan defaults [8] [13]. Therefore, it is

certainly possible that many farmers take on loans with the intention of only repaying

a fraction of the principal.

Since farmers optimize myopically, the introduction of loans only affects the har-

vest season equilibrium, where farmers can now use the loan to meet their cash con-

straints. We reformulate the individual farmer’s maximization problem in the harvest

season:

𝑚𝑎𝑥𝑞𝑖 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐿𝑜𝑎𝑛 = 𝑚𝑎𝑥𝑞𝑖 (𝛼− 𝛽(𝑞𝑖 + (𝑁 − 1)𝑞−𝑖))𝑞𝑖 + (1 − 𝑟)(1 − 𝑞𝑖)𝐿

𝑠.𝑡. 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐿𝑜𝑎𝑛 ≥ 𝐶𝑖

0 ≤ 𝑞𝑖 ≤ 1

Note that we differentiate between income and revenue: income is the sum of
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revenue, the money earned from selling produce on the market, and the loan received

from the government. Also note that the farmer has factored the loan repayment into

his optimization problem - even though he receives a loan of size (1−𝑞𝑖)𝐿, he accounts

for the fact that he has to repay 𝑟(1 − 𝑞𝑖)𝐿 and therefore only gains (1 − 𝑟)(1 − 𝑞𝑖)𝐿

in income. As in Chapter 3, we have unconstrained equilibria where no farmers are

cash constrained, and partially constrained equilibria where some farmers are cash

constrained.

The characterization of the equilibrium remains very similar to the base case,

except farmers now incorporate the loan into their income calculations. Therefore,

we retain the definitions of 𝐹1, 𝑐1 and 𝑓1 for partially constrained equilibria, as in

Chapter 3.

Lemma 2 Let 𝛼1, 𝑓1 and 𝛼2, 𝑓2 be the solutions to the system of equations 4.2 and

4.3 respectively. At least one of the systems of equations has a solution. If only one

has a solution, denote it 𝛼*. Else, let 𝛼* = 𝑚𝑖𝑛{𝛼1, 𝛼2}.

𝑃1 = 𝛼− 𝛽(𝑁 − 1)(
𝑐1

𝐶𝑚𝑎𝑥

𝐹1 + 𝑓1) ≥ 𝛽 + 𝐶𝑚𝑎𝑥

𝑔(𝑓1) =
1

2𝛽
(1 − 𝑐1

𝐶𝑚𝑎𝑥

)(𝑃1 − (1 − 𝑟)𝐿) − 1

12𝛽2𝐶𝑚𝑎𝑥

(((𝑃1 − (1 − 𝑟)𝐿)2

−4𝛽(𝑐1 − (1 − 𝑟)𝐿))1.5 − ((𝑃1 − (1 − 𝑟)𝐿)2 − 4𝛽(𝐶𝑚𝑎𝑥 − (1 − 𝑟)𝐿))1.5)

−𝑓1

= 0

𝑔′(𝑓1) = 0 (4.2)

𝑃1 = 𝛽 + 𝐶𝑚𝑎𝑥

𝑔(𝑓1) = 0 (4.3)

where 𝐹1 = 𝐶𝑚𝑎𝑥(𝛼−𝛽𝑓1(𝑁−1)−(1−𝑟)𝐿)
2𝛽(𝐶𝑚𝑎𝑥+𝑐1(𝑁−1))

and

𝑐1 =
−𝛽(𝐶𝑚𝑎𝑥−(𝑁−1)(1−𝑟)𝐿)+

√
𝛽2(𝐶𝑚𝑎𝑥+(𝑁−1)(1−𝑟)𝐿)2+𝛽𝐶𝑚𝑎𝑥(𝑁−1)(𝛼−𝛽(𝑁−1)𝑓1−(1−𝑟)𝐿)2

2𝛽(𝑁−1)
.

Theorem 3 Let 𝑞 = 𝑚𝑖𝑛{𝛼−(1−𝑟)𝐿
2𝛽𝑁

, 1} and 𝑅 = (𝛼− 𝛽𝑁𝑞)𝑞 + (1 − 𝑟)(1 − 𝑞)𝐿.
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1. If 𝛼 ≥ 𝛼*, then if

(a) If 𝑅 ≥ 𝐶𝑚𝑎𝑥, 𝑞*1 = 𝑚𝑖𝑛{𝛼−(1−𝑟)𝐿
2𝛽𝑁

, 1}

(b) If 𝑅 < 𝐶𝑚𝑎𝑥, 𝑞*1 is a piece-wise function of the following form:

𝑞1(𝐶) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐹1 𝐶 ≤ 𝑐1
1

2𝛽
(𝑃1 − (1 − 𝑟)𝐿−√︀

(𝑃1 − (1 − 𝑟)𝐿2 − 4𝛽(𝐶 − (1 − 𝑟)𝐿))

𝑐1 < 𝐶 ≤ 𝐶𝑚𝑎𝑥

2. If 𝛼 < 𝛼* then the problem 4.1 is infeasible and ∃𝑐* > 0 s.t. ∀𝐶𝑖 > 𝑐*,

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐿𝑜𝑎𝑛 < 𝐶𝑖.

We begin by explaining the derivation of formulas for 𝐹1 and 𝑐1. In a partially

constrained equilibrium, we have unconstrained and cash constrained farmers. As in

Chapter 3, we remove the quantity constraint from the income maximization problem

of unconstrained farmers, to obtain their best response quantity 𝐹1.

𝑚𝑎𝑥𝐹1 (𝛼− 𝛽(𝐹1 + (𝑁 − 1)(
𝑐1

𝐶𝑚𝑎𝑥

𝐹1 + 𝑓1)))𝐹1 + (1 − 𝑟)(1 − 𝐹1)𝐿

𝐹1 =
𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓1 − (1 − 𝑟)𝐿)

2𝛽(𝐶𝑚𝑎𝑥 + 𝑐1(𝑁 − 1))
(4.4)

Similarly, cash-constrained farmers now use the loan to meet their cash constraint 𝐶:

𝐶 = (𝛼− 𝛽(𝑞 + (𝑁 − 1)(
𝑐1

𝐶𝑚𝑎𝑥

𝐹1 + 𝑓1)))𝑞 + (1 − 𝑟)(1 − 𝑞)𝐿

𝑞 =
1

2𝛽
(𝑃1 − (1 − 𝑟)𝐿−

√︀
(𝑃1 − (1 − 𝑟)𝐿)2 − 4𝛽(𝐶 − (1 − 𝑟)𝐿)) (4.5)

where 𝑃1 = 𝛼− 𝛽(𝑁 − 1)( 𝑐1
𝐶𝑚𝑎𝑥

+ 𝑓1).

Finally, the farmer with cash constraint 𝑐1 sells quantity 𝐹1, and combining his

revenue and loan income makes just enough to meet his cash constraint:

𝑐1 = (𝛼− 𝛽(𝐹1 + (𝑁 − 1)(
𝑐1

𝐶𝑚𝑎𝑥

𝐹1 + 𝑓1)))𝐹1 + (1 − 𝑟)(1 − 𝐹1)𝐿
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𝑐1 =

−𝛽(𝐶𝑚𝑎𝑥 − (𝑁 − 1)(1 − 𝑟)𝐿) +

⎯⎸⎸⎸⎷𝛽2(𝐶𝑚𝑎𝑥 + (𝑁 − 1)(1 − 𝑟)𝐿)2 + 𝛽𝐶𝑚𝑎𝑥

(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓1 − (1 − 𝑟)𝐿)2

2𝛽(𝑁 − 1)

Since the intuition behind the fixed point equation 𝑔(𝑓1) and the systems of equations

4.2 and 4.3 is identical to the base case, we do not reproduce the explanations here.

For unconstrained equilibria, we remove the cash constraint from the income max-

imization problem. Farmers solve:

𝑚𝑎𝑥𝑞𝑖 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐿𝑜𝑎𝑛 = 𝑚𝑎𝑥𝑞𝑖 (𝛼− 𝛽(𝑞𝑖 + (𝑁 − 1)𝑞−𝑖))𝑞𝑖 + (1 − 𝑟)(1 − 𝑞𝑖)𝐿

𝑠.𝑡. 0 ≤ 𝑞𝑖 ≤ 1

The optimal quantity is 𝛼−(1−𝑟)𝐿
2𝛽𝑁

, and the best-response quantity is 𝑚𝑖𝑛{𝛼−(1−𝑟)𝐿
2𝛽𝑁

, 1}

due to farmers’ quantity constraint. Intuitively, 𝛼−(1−𝑟)𝐿
2𝛽𝑁

< 𝛼
2𝛽𝑁

because farmers now

derive income from unsold quantity and are hence incentivized to sell less.

For partially constrained equilibria, as in Chapter 3 we use the formulas for 𝐹1

and 𝑐1 to find 𝑞1(𝐶), the best-response quantity sold by a farmer with cash constraint

𝐶.

𝑞1(𝐶) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐹1 𝐶 ≤ 𝑐1
1

2𝛽
(𝑃1 − (1 − 𝑟)𝐿−√︀

(𝑃1 − (1 − 𝑟)𝐿2 − 4𝛽(𝐶 − (1 − 𝑟)𝐿))

𝑐1 < 𝐶 ≤ 𝐶𝑚𝑎𝑥

The findings on ranking feasible partially constrained equilibria and the sensitivity

of 𝑓1 to 𝛼, 𝛽,𝑁 and 𝐶𝑚𝑎𝑥 remain identical to those expressed in Propositions 2 and 3.

We examine how the equilibrium shifts in response to changes in the new parameters

𝐿 and 𝑟:

Proposition 4 𝑑𝑓1
𝑑𝐿

< 0 and 𝑑𝑓1
𝑑𝑟

> 0. Also, 𝑑𝑞1(𝐶)
𝑑𝐿

< 0 and 𝑑𝑞1(𝐶)
𝑑𝑟

> 0.

Improving loan terms by increasing 𝐿 or decreasing 𝑟 causes the equilibrium value

of 𝑓1 to decrease, and induces all farmers to increase stored quantity. The proposition
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reflects the intuitive result that as loan terms are made more generous, fewer farmers

are cash constrained and farmers that remain cash constrained sell less quantity.

Furthermore, since storing produce now allows farmers to take a larger loan, farmers

will opt to store more produce.
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Chapter 5

Comparison of Models

We now consider 3 scenarios: (i) No storage or loans; (ii) Storage but no loan; (iii)

Storage and loan. We use the following metrics for comparison: First, total net rev-

enue, which we define as harvest season and lean season revenue less cash constraint,

across all farmers. Second, wastage, defined as unsold quantity after the lean season.

Third, inequality, defined as the proportion of cash constrained farmers. We use this

as a metric for inequality because cash constraints are the key driver of sub-optimal

decision making in the model, so equality is achieved when no farmers are cash con-

strained. This is also justified from a monetary perspective, since all farmers earn

equal revenue when no farmers are cash constrained.

We conduct a theoretical analysis to examine the sensitivity of total net revenue,

wastage, and inequality to the repayment rate 𝑟. We use 𝑟 because from a government

policy perspective, 𝑟 is the means by which the government can control how much

money is disbursed to farmers. By setting 𝑟 = 1, the loan model reduces to the base

case of no loan, since farmers will opt not to take the loan if they have to repay the

full amount. Following the theoretical analysis, we conduct numerical simulations to

show how different parameter sets can affect the benefits of storage and loans.

Proposition 5 Define 𝑅1(𝑟) =
∫︀ 𝐶𝑚𝑎𝑥

0
(𝛼−𝛽(𝑞1(𝐶) + (𝑁 − 1)( 𝑐1

𝐶𝑚𝑎𝑥
𝐹1 + 𝑓1)))𝑞1(𝐶) −

𝐶𝑑𝐶 and 𝑅2(𝑟) =
∫︀ 𝐶𝑚𝑎𝑥

0
(𝛼 − 𝛽(𝑞2(𝐶) + (𝑁 − 1)( 𝑐2

𝐶𝑚𝑎𝑥
𝐹2 + 𝑓2)))𝑞2(𝐶) 𝑑𝐶 as harvest

season and lean season net revenue respectively, as functions of repayment rate 𝑟.

39



The following equations have unique solutions, denoted as 𝑟1, 𝑟2 and 𝑟3 respectively:

𝑐1
𝐶𝑚𝑎𝑥

𝐹1 + 𝑓1 =
𝛼

2𝛽𝑁
(5.1)

(𝛼− 𝛽(1 − 𝛼

2𝛽𝑁
+ (𝑁 − 1)(

𝑐1
𝐶𝑚𝑎𝑥

𝐹1 + 𝑓1)))

(1 − 𝛼

2𝛽𝑁
) + (1 − 𝑟)

𝛼

2𝛽𝑁
𝐿 = 𝐶𝑚𝑎𝑥 (5.2)

1 − 𝑐1
𝐶𝑚𝑎𝑥

𝐹1 − 𝑓1 =
𝛼

2𝛽𝑁
(5.3)

𝑅1(𝑟) is unimodal, and ∃𝑟*1 ∈ [0, 1] s.t. 𝑅1(𝑟
*
1) ≥ 𝑅1(𝑟)∀𝑟 ∈ [0, 1], where 𝑟*1 is

expressed by the following piece-wise equation:

𝑟*1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 𝑟1 ≤ 0

𝑟1 0 < 𝑟1 < 1

1 𝑟1 ≥ 1

For 𝑅2(𝑟),

1. If 𝑟2 ∈ [0, 1] and 𝑟3 /∈ [0, 1], 𝑅2(𝑟2) ≥ 𝑅2(𝑟)∀𝑟 ∈ [0, 1].

2. If 𝑟2 /∈ [0, 1] and 𝑟3 ∈ [0, 1], 𝑅2(𝑟3) ≥ 𝑅2(𝑟)∀𝑟 ∈ [0, 1].

3. If 𝑟2, 𝑟3 /∈ [0, 1], 𝑚𝑎𝑥{𝑅2(0), 𝑅2(1)} ≥ 𝑅2(𝑟)∀𝑟 ∈ [0, 1].

4. If 𝑟2, 𝑟3 ∈ [0, 1], 𝑅2(𝑟2) = 𝑅2(𝑟3) ≥ 𝑅2(𝑟)∀𝑟 ∈ [0, 1].

Define 𝑊 (𝑟) =
∫︀ 𝐶𝑚𝑎𝑥

0
1 − 𝑞1(𝐶) − 𝑞2(𝐶) 𝑑𝐶 as wastage. The following system of

equations has a unique solution, 𝑟4.

𝐹2 = 1 − 𝐹1

𝑐2 = 𝑐1

𝑓2 = 1 − 𝑐1
𝐶𝑚𝑎𝑥

− 𝑓1

𝑐1 =
𝐶𝑚𝑎𝑥

𝛽(𝑁 − 1)
{2𝛼− 2𝛽 − 𝛽(𝑁 − 1) − (1 − 𝑟)𝐿} (5.4)
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𝑊 (𝑟) is decreasing in 𝑟 for 𝑟 ∈ [0,𝑚𝑎𝑥{𝑟4, 0}], and 𝑊 (𝑟) = 0 for 𝑟 ∈ (𝑚𝑖𝑛{𝑟4, 1}, 1].

Define 𝐼(𝑟) = 1− 𝑐1
𝐶𝑚𝑎𝑥

and let 𝑞 = 𝛼−(1−𝑟)𝐿
2𝛽𝑁

. The following equation has a unique

solution 𝑟5.

(𝛼− 𝛽𝑁𝑞)𝑞 + (1 − 𝑟)(1 − 𝑞)𝐿 = 𝐶𝑚𝑎𝑥 (5.5)

𝐼(𝑟) = 0 for 𝑟 ∈ [0,𝑚𝑎𝑥{𝑟5, 0}] and increasing for 𝑟 ∈ (𝑚𝑖𝑛{𝑟5, 1}, 1]

From Proposition 5, we see that harvest season revenue is guaranteed to have a unique

maximizer, while lean season revenue can have up to 2 maximizers.

The LHS of equation 5.1 is the average quantity sold in the harvest season, while

the RHS is the optimal unconstrained quantity 𝛼
2𝛽𝑁

. Note that we do not use 𝛼−(1−𝑟)𝐿
2𝛽𝑁

because we want to maximize revenue, not income. When they are equal, harvest

season net revenue is maximized. By Proposition 4, we know that a unique solution

exists because as 𝑟 decreases, average quantity sold decreases. However, it is possible

that the solution is not within the interval [0, 1], in which case the maximizer of 𝑅1(𝑟)

is at the boundary.

Equations 5.2 and 5.3 correspond to the two possible maximizers of 𝑅2(𝑟). Like

the harvest season, lean season revenue is maximized when the average quantity sold

is equal to the optimal unconstrained quantity. There are two cases when this may

occur: First, when all farmers are able to sell 𝛼
2𝛽𝑁

. By Proposition 4, since stored

quantity is increasing for all farmers as 𝑟 decreases, there is some unique value where

the most cash-constrained farmer stores exactly 𝛼
2𝛽𝑁

. This is expressed in equation

5.2, where the LHS is the farmer’s harvest season revenue when selling quantity

1 − 𝛼
2𝛽𝑁

. Therefore, the most cash constrained farmer will sell this quantity to meet

his cash constraint. Second, in a fully constrained equilibrium, due to differences in

quantity stored some farmers are forced to sell less than 𝛼
2𝛽𝑁

while others can sell more.

As a result, it is possible for the overall average quantity to equal 𝛼
2𝛽𝑁

. By Proposition

4, there is a unique value 𝑟3 corresponding to this equilibrium, characterized by

equation 5.3. The LHS is the average quantity stored, while the RHS is the optimal

unconstrained quantity. It is not guaranteed that 𝑟2 or 𝑟3 is within the interval [0, 1],

so we consider all possibilities in Proposition 5.
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We now move on to the analysis of wastage. From Proposition 4, it is clear

that wastage is non-increasing in 𝑟. Since increasing 𝑟 results in decreased stored

quantity, wastage cannot increase. In fact, wastage is strictly decreasing in 𝑟 up to

the point where the lean season equilibrium transitions from partially constrained

to fully constrained, which is characterized by equation 5.4. Recall that we check

for the existence of a fully constrained equilibrium by assuming all cash constrained

farmers from the harvest season sell all of their stored quantity, then computing

the best-response quantity of the remaining unconstrained farmers. The boundary

between partially constrained and fully constrained equilibrium is therefore when the

best-response quantity of unconstrained farmers is equal to their stored quantity. If

𝑟 is increased, all farmers store less and will therefore sell their maximum quantity,

resulting in a fully constrained equilibrium. Hence, wastage is 0 for all greater values

of 𝑟. Conversely, if 𝑟 is decreased all farmers store more, and there are fewer cash

constrained farmers from the harvest season. As a result, the best-response quantity of

the unconstrained farmers decreases, and we have a partially constrained equilibrium.

Hence, wastage increases.

Finally, with regard to inequality, from Proposition 4 we know that inequality is

non-decreasing in 𝑟. In fact, inequality is constant at 0 to the point where the har-

vest season equilibrium transitions from unconstrained to partially constrained, after

which inequality is strictly increasing. To find the boundary between unconstrained

and partially constrained equilibria, we use the result from Theorem 3 to find the

value of 𝑟 such that the most cash constrained farmer just meets his cash constraint

by selling the optimal unconstrained quantity. This condition is expressed in equation

5.5.

For the numerical simulations, Figures 5-1 and 5-2 illustrate how total net rev-

enue, wastage, and inequality change in response to changes in 𝛼 and 𝐶𝑚𝑎𝑥, under 3

scenarios: (i) no storage or loan, (ii) storage but no loan, (iii) storage and loan. We

exclude 𝛽 and 𝑁 since the results are similar. Note that scenarios (i) and (ii) are

unaffected by 𝑟, so the lines are constant. Also note that providing storage does not

affect inequality, so we only show scenarios (i) and (iii) in the inequality plot.
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Figure 5-1: Simulation results for the following parameter values: 𝛽 = 0.1, 𝑁 =
520, 𝐶𝑚𝑎𝑥 = 16, 𝐿 = 10.

43



Figure 5-2: Simulation results for the following parameter values: 𝛼 = 30, 𝛽 =
0.01, 𝑁 = 1800, 𝐿 = 10.
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We begin by analyzing Figure 5-1. For this parameter set, note that optimal

unconstrained quantity 𝛼
2𝛽𝑁

= 0.48 when 𝛼 = 50. This indicates that if farmers were

not cash constrained, it would be optimal for them to waste a significant amount

of produce in the harvest season. Therefore, if storage were provided, we expect a

large quantity to be stored, and farmers would see a large increase in revenue. This is

reflected in the total net revenue plot for 𝛼 = 50, where farmers saw a 393% increase in

net revenue from storage. In comparison, loans provide a relatively small improvement

in net revenue. The wastage plot highlights one of the drawbacks of loan provision,

as it becomes optimal for farmers to waste produce as 𝑟 decreases. Decreasing 𝑟 also

serves to reduce inequality, establishing the trade-off between reducing wastage and

inequality. However, for 𝛼 = 55, there is a range of 𝑟 values where we have zero

wastage and inequality simultaneously. In increasing 𝛼 = 50 to 𝛼 = 55, we improve

market price conditions and increase the optimal unconstrained quantity. Storage is

therefore utilized less, but still provides a 184% increase in revenue. Loans provide

even smaller benefit than before, because taking a loan is now a less attractive option

for farmers compared to selling their produce on the market. With better prices, more

farmers can meet their cash constraint and there is less reason to take a loan. The

reduction in cash constrained farmers is clear in the inequality plot. Finally, wastage

is reduced because better prices incentivize farmers to sell more of their produce on

the market.

For Figure 5-2, the optimal unconstrained quantity is now 0.83. As a result,

it is optimal for farmers to sell almost all of their produce in the harvest season.

Therefore, storage has less of an impact on net revenue, which only increases 68%.

This parameter set demonstrates how loans can be used to encourage usage of storage

and thereby boost revenue. For 𝐶𝑚𝑎𝑥 = 13 and 𝑟 = 0, the loan improves revenue by a

further 43%, relative to the storage and no loan case. Because of the higher optimal

unconstrained quantity, it is optimal for farmers to sell all of their produce over the

harvest and lean seasons. This is reflected in the wastage plots, where we have zero

wastage for scenarios (ii) and (iii). Note that the effect on net revenue and inequality

when reducing 𝐶𝑚𝑎𝑥 from 14 to 13 is very similar to that of increasing 𝛼 from 50 to
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55. This reflects the point in Chapter 3 that both of these parameter shifts have the

effect of making it easier for farmers to meet their cash constraints. Therefore, we

intuitively expect these changes to have similar results.
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Chapter 6

Government Optimization Problem

We consider the scenario where the government has provided storage and determined

𝐿, and now wants to find the optimal 𝑟 that maximizes government utility. We

propose the following objective function:

𝑚𝑎𝑥𝑟 𝑤1{
∫︁ 𝐶𝑚𝑎𝑥

0

(𝛼− 𝛽(𝑞1(𝐶) + (𝑁 − 1)(
𝑐1

𝐶𝑚𝑎𝑥

𝐹1 + 𝑓1)))𝑞1(𝐶) − 𝐶 𝑑𝐶

+

∫︁ 𝐶𝑚𝑎𝑥

0

(𝛼− 𝛽(𝑞2(𝐶) + (𝑁 − 1)(
𝑐2

𝐶𝑚𝑎𝑥

𝐹2 + 𝑓2)))𝑞2(𝐶) 𝑑𝐶}

−𝑤2{
∫︁ 𝐶𝑚𝑎𝑥

0

1 − 𝑞1(𝐶) − 𝑞2(𝐶) 𝑑𝐶}

−𝑤3{1 − 𝑐1
𝐶𝑚𝑎𝑥

}

The objective function is the weighted sum of total farmer net revenue, wastage, and

inequality, as defined in Chapter 5. To characterize the objective function maximizer

𝑟*, we begin by considering the edge case where 𝑤2 = 𝑤3 = 0. Following that, we

examine how the inclusion of wastage and inequality affects 𝑟*. Finally, we conclude

by summarizing the implications on government policy.

Recall from Proposition 5 that harvest season net revenue has a unique maximizer,

while lean season net revenue has up to two maximizers. For the following analysis,

we assume that all three maximizers are in the interval [0, 1]. Denote the maximizers

𝑟1, 𝑟2 and 𝑟3, as defined in Proposition 5. Let the total net revenue maximizer be 𝑟*𝑟𝑒𝑣.
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Proposition 6 1. If 𝛼
2𝛽𝑁

≥ 1, 𝑟*𝑟𝑒𝑣 ∈ (0, 2𝛽𝑁−(𝛼−𝐿)
𝐿

)

2. If 1
2
< 𝛼

2𝛽𝑁
< 1, 𝑟2 ≤ 𝑟3 < 𝑟*𝑟𝑒𝑣 < 𝑟1

3. If 𝛼
2𝛽𝑁

= 1
2
, 𝑟2 ≤ 𝑟3 = 𝑟1 = 𝑟*𝑟𝑒𝑣

4. If 0 < 𝛼
2𝛽𝑁

< 1
2
, then for 𝑟 = 𝑟1,

(a) If 1 − 𝑞1(𝐶𝑚𝑎𝑥) > 𝛼
2𝛽𝑁

, 𝑟1 < 𝑟*𝑟𝑒𝑣 < 𝑟2 < 𝑟3

(b) If 1 − 𝑞1(𝐶𝑚𝑎𝑥) = 𝛼
2𝛽

, 𝑟*𝑟𝑒𝑣 = 𝑟1 = 𝑟2 < 𝑟3

(c) Else, 𝑟2 < 𝑟*𝑟𝑒𝑣 < 𝑟3

If 𝛼
2𝛽𝑁

≥ 1, it is optimal for farmers to sell 1 unit in the harvest season until 𝑟

decreases to the point that 𝛼−(1−𝑟)𝐿
2𝛽𝑁

< 1. Since farmers will earn maximum revenue

by selling 1 unit, harvest season net revenue is maximized for all 𝑟 ≥ 2𝛽𝑁−(𝛼−𝐿)
𝐿

. For

the lean season, it is always optimal for farmers to sell all of their stored quantity.

Lean season revenue is thus maximized for 𝑟 = 0, where quantity stored is maximized.

𝑟*𝑟𝑒𝑣 is thus in the interval (0, 2𝛽𝑁−(𝛼−𝐿)
𝐿

).

If 1
2
< 𝛼

2𝛽𝑁
< 1, since farmers only have 1 unit to sell over the harvest and lean

season, if harvest season net revenue is maximized, farmers will store insufficient

quantity to maximize lean season revenue. Hence we have 𝑟2 ≤ 𝑟3 < 𝑟1, and since

harvest season net revenue is unimodal by Proposition 5, 𝑟*𝑟𝑒𝑣 is in the interval (𝑟3, 𝑟1).

If 𝛼
2𝛽𝑁

= 1
2
, farmers will maximize harvest season and lean season net revenue at

the same time, hence we have 𝑟2 ≤ 𝑟3 = 𝑟1 = 𝑟*𝑟𝑒𝑣.

If 0 < 𝛼
2𝛽𝑁

< 1
2
, when farmers maximize harvest season net revenue, they will

store too much to maximize lean season revenue with a fully constrained equilibrium.

Hence we have 𝑟1 < 𝑟3. However, the relationship between 𝑟1 and 𝑟2 is dependent

on the quantity stored by the farmer with cash constraint 𝐶𝑚𝑎𝑥, 1 − 𝑞1(𝐶𝑚𝑎𝑥). If,

at 𝑟 = 𝑟1, 1 − 𝑞1(𝐶𝑚𝑎𝑥) > 𝛼
2𝛽𝑁

, then the farmer is storing more than enough to sell

the optimal unconstrained quantity. Hence 𝑟1 < 𝑟2 < 𝑟3, and 𝑟*𝑟𝑒𝑣 is in the interval

(𝑟1, 𝑟2). If 1 − 𝑞1(𝐶𝑚𝑎𝑥) = 𝛼
2𝛽𝑁

, we have 𝑟1 = 𝑟2 < 𝑟3, and 𝑟*𝑟𝑒𝑣 = 𝑟1. Finally, if

1 − 𝑞1(𝐶𝑚𝑎𝑥) < 𝛼
2𝛽𝑁

, then 𝑟2 < 𝑟1 < 𝑟3, then 𝑟*𝑟𝑒𝑣 is in the interval (𝑟2, 𝑟3).
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From Proposition 5, wastage is non-increasing in 𝑟. Therefore, as 𝑤2 increases,

we expect 𝑟* to increase. However, note that if 𝑟*𝑟𝑒𝑣 ≥ 𝑟4, where 𝑟4 is the solution to

equation 5.4, then 𝑟* = 𝑟*𝑟𝑒𝑣 since there is zero wastage at 𝑟*𝑟𝑒𝑣. Conversely, inequality

is non-decreasing in 𝑟, and we expect 𝑟* to decrease as 𝑤3 increases. However, if

𝑟*𝑟𝑒𝑣 ≤ 𝑟5, where 𝑟5 is the solution to equation 5.5, then 𝑟* = 𝑟*𝑟𝑒𝑣 since there is zero

inequality at 𝑟*𝑟𝑒𝑣. Note that due to the multimodal nature of net revenue, we cannot

guarantee the existence of a unique 𝑟*.

As a robustness check, we also consider adding an additional term to the objective

function for government expenditure, computed as the proportion of the loan that is

not paid back by farmers.

∫︁ 𝐶𝑚𝑎𝑥

0

(1 − 𝑟)(1 − 𝑞1(𝐶))𝐿 𝑑𝐶

Similar to wastage, we find that government expenditure is decreasing in 𝑟, and

becomes constant at 0 when it is optimal for farmers to sell everything in the harvest

season. We find that the inclusion of government expenditure in the objective function

does not affect our prior findings on 𝑟*.

We now examine policy insights that can be drawn from the analysis. Since the

provision of storage infrastructure gives farmers a mechanism to transfer quantity

across periods, it is clear that all farmers with excess quantity in the harvest season

will obtain greater revenue, as well as reduced wastage. Whether the investment in

storage facilities will be worthwhile is strongly dependent on the nature of the harvest

season market. If demand outpaces supply, storage facilities may be underutilized.

However, the government must be cognizant that farmers may be forced to sell larger

quantities than they would prefer in the harvest season due to their cash constraints.

In this case, offering a loan can be an effective mechanism to increase the benefits

from storage. The crux of the optimization problem then lies in the loan quantum and

repayment rate, which allows the government to control how much quantity farmers

store.

In determining the optimal value of 𝑟, there is a clear trade-off between equality
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Figure 6-1: Lean season total revenue.

and wastage. On one hand, improving equality requires decreasing 𝑟 so that cash

constrained farmers can afford to store more. However, generous loan terms can

create a wastage problem as it disincentivizes unconstrained farmers from selling

their produce on the market during the harvest season. They would rather store

excess quantity to take a larger loan, even if much of that stored quantity goes unsold

in the lean season. On the other hand, by increasing 𝑟, it is possible to achieve zero

wastage. We plot lean season total revenue as a function of 𝑟 in Figure 6-1. We have

zero wastage at 𝑟3 where we have a fully constrained equilibrium, and we achieve the

same total revenue as at 𝑟2, where we have an unconstrained equilibrium and total

lean season revenue is maximized. However, total revenue as a metric fails to reflect

the distribution of revenue amongst farmers. At 𝑟3, cash-constrained farmers are in

fact doubly worse off relative to their peers - not only do they have less net revenue

in the harvest season, they also have less quantity and therefore less revenue in the

lean season.

Another crucial insight is that decreasing 𝑟 does not necessarily improve total

revenue in the first or lean season. In the harvest season, this occurs when average

quantity sold declines below 𝛼
2𝛽𝑁

. Since the loan offering can be interpreted as an
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alternative ’market’ where the farmer can sell his produce for a price of (1− 𝑟)𝐿, the

government should be cautious of offering terms that overly disincentivize farmers

from selling their produce on the actual market.

In the lean season, total revenue can decline if the average quantity sold exceeds
𝛼

2𝛽𝑁
. This is seen in Figure 6-1 where total revenue initially decreases as 𝑟 is decreased

past 𝑟3. This is a result of the uneven distribution of quantity amongst farmers.

Farmers with greater quantity know that their peers are quantity constrained and

therefore flood the market, driving prices down. As 𝑟 is decreased further, total

revenue gradually reverts to the optimal level as stored quantity becomes increasingly

uniform across farmers. Total revenue in the lean season can also remain constant if

all farmers are able to sell 𝛼
2𝛽𝑁

. On Figure 6-1, this is represented by 𝑟 < 𝑟2. Further

reducing the repayment rate will increase the quantity stored but not the quantity

sold, resulting in increased wastage.

Therefore, on top of balancing the need to improve farmer revenue and equality

amongst farmers with the desire to limit wastage, the government must also be aware

that offering improved loan terms can backfire by reducing farmer revenue.
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Chapter 7

Relating Model Predictions to

Empirical Observations

In this chapter, we calibrate our model parameters with field data to examine the

extent to which storage and loan provision can improve farmer outcomes, as measured

by total net revenue, wastage, and equality. We consider 4 scenarios: (i) the base

case without storage or loans; (ii) intervention using calibrated values of 𝐿 and 𝑟;

(iii) intervention using the calibrated value of 𝐿 and the optimized value of 𝑟; (iv)

intervention using the calibrated value of 𝐿 and 𝑟 = 0. The last case effectively

means the government provides a subsidy for farmers, and we include it because of

the numerous instances of Indian state governments offering loan waivers to farmers

[19]. Given the popularity of such schemes, we feel that it is worth analyzing.

We use field data from Bengal gram farmers in Karnataka state. We use Karnataka

because agriculture is the dominant industry for the rural population, supporting over

60% of the workforce and occupying over 64% of state land [2]. Furthermore, 79%

of farmer households are smallholders occupying less than 2 hectares of land [22].

Karnataka is also India’s fourth largest producer of Bengal gram, which is cultivated

in 70% of the land in North Karnataka during the dry season [27]. Despite the Bengal

gram’s popularity, many Bengal gram farmers suffer from poverty. In early 2020,

farmers launched a state-wide protest demanding increased government assistance

for farmers. A key complaint was that due to a lack of storage facilities for grams,
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𝛼 𝛽 𝑁 𝐶𝑚𝑎𝑥 𝐿 𝑟
85960.91 215.89 248 44580.87 44500 0.62

Table 7.1: Calibrated parameter values.

farmers were forced to accept low prices offered by traders, negatively influencing

farmer revenue [1]. Therefore, there is certainly a pressing need to help farmers, and

we believe that storage and loan provision are feasible interventions to be considered.

We calibrate the price parameters 𝛼 and 𝛽, as well as the number of farmers

𝑁 using data from the Unified Market Platform as well as demographic data from

the Karnataka state government. We estimate 𝐶𝑚𝑎𝑥 using cost of production and

income data from the Ministry of Agriculture and Farmers Welfare [23][6]. Finally,

we estimate 𝐿 and 𝑟 using information from the National Bank for Agriculture and

Rural Development [18] and state data [5].

Table 7.1 summarizes the parameter values used in our analysis. 𝛼 and 𝛽 are ob-

tained by linear regression, using weekly price and quantity data for markets across

Karnataka. 𝑁 is obtained by averaging the number of farmers that sold produce

during the harvest season over the number of markets. 𝐶𝑚𝑎𝑥 is obtained from cost

of production data from the Commission for Agricultural Costs and prices, less the

average farming households’ monthly income from non-agricultural sources. We es-

timate 𝐿 to be slightly lower than 𝐶𝑚𝑎𝑥, using the state government’s guidelines for

determining the loan quantum that farmers are eligible for, and 𝑟 is obtained from

data on loan repayment rates.

We find that without storage and loans, some farmers are unable to meet their

cash constraint, and consequently there is no feasible solution. We find that the

maximum value of 𝐶𝑚𝑎𝑥 for a feasible equilibrium to exist is 39450. Consequently,

assuming farmers have uniformly distributed cash constraints, at least 11.5% of farm-

ers are unable to meet their cash constraints without government assistance. This is

consistent with reports of farmers struggling to recoup their cost of production.

Using the calibrated value 𝑟 = 0.62, all farmers can meet their cash constraints.

The equilibrium value of 𝑐1 is 38636, indicating that 13.3% of farmers are cash con-

strained. Unconstrained farmers sell 68% of their produce in the harvest season,
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while the most cash constrained farmer sells 87%. We find that the optimal value of

𝑟 using the government objective function is 0.271, which is also the total net revenue

maximizer. There is zero wastage for all values of 𝑟 since the optimal unconstrained

quantity 𝛼
2𝛽𝑁

= 0.8. We therefore expect that farmers will sell all of their quantity

over the two seasons. Furthermore, we find that when total net revenue is maximized,

no farmers are cash constrained and inequality is therefore minimized. As a result,

changing the weight values do not affect 𝑟*. At this equilibrium, all farmers sell ex-

actly 50% of their produce in the harvest and lean season. Finally, for 𝑟 = 0, while

there are also no cash constrained farmers, farmers now choose to sell just 39% of

their produce in the harvest season and 61% in the lean season.

The comparison of equilibria from 𝑟 = 0.62, 𝑟 = 0.271, and 𝑟 = 0 is shown

in in Table 7.2, and the equilibrium quantity sold is depicted in Figure 7-1. Note

that although government expenditure is not included in the government objective

function, we include it in the results to illustrate the efficacy of government spending.

Comparing 𝑟 = 0.62 to 𝑟 = 0.271, we observe that a 216% increase in government

expenditure results in a 12.6% increase in total revenue. In absolute terms, this

represents a gain of 37 cents for every additional rupee in government expenditure.

The gain in revenue is a product of increased utilization of storage - in the calibrated

case, stored quantity is low, with the most cash constrained farmer only able to store

13% of his produce. By optimizing loan terms, we increase stored quantity to 50%

for all farmers, while also seeing a significant reduction in inequality, from 13.3%

of farmers being cash constrained to zero cash constrained farmers. It should be

noted that if farmers were not cash constrained and had the ability to plan long-

term, this would be their optimal quantity. However, due to myopic optimization,

the government must step in to help them reach this equilibrium.

Total Net Revenue Wastage Inequality Govt. Exp.
Optimized r = 0.271 1,645,039.1 0 0 723,387.2
Calibrated r = 0.62 1,460,553.3 0 0.133 228,718.5
Subsidy r = 0 1,584,288.1 0 0 1,215,721.5

Table 7.2: Simulation Results.
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Figure 7-1: Quantity sold in the harvest and lean seasons.

However, the results also make clear that helping farmers is more complex than

simply giving them money. When 𝑟 = 0, total revenue decreases while government

expenditure increases 68% from the optimized case. Although there is zero inequality,

as in the optimized case, farmers have grown increasingly reliant on the government

for their income. This occurs because the government intervention disincentivizes

farmers from selling their produce on the market. Instead, they would rather store

their produce to qualify for a larger loan, as seen in Figure 7-1. Even though farmers

earn greater income, the gain from the loan now negatively affects revenue, rendering

government intervention less effective.

This underlines the fact that governments need to consider the strategic nature

of farmers when implementing loan schemes. While offering generous loan terms

is undoubtedly the popular decision, it can result in excessively high government

expenditure that does not translate into gains for farmers.
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Chapter 8

Conclusion

This paper develops a model to examine how markets catering to smallholder farmers

in developing countries reach an equilibrium. To capture the real world challenges

that smallholder farmers face, we incorporate the fact that many smallholders lack

the information to make long term plans, as well as the fact that farmers often

need immediate cash to survive. The analysis suggests that cash constraints have a

significant effect on sales decisions, inducing farmers to sell more than they would

prefer to raise funds. The model then allows us to analyze the effectiveness of storage

and loan schemes, both of which are popular forms of government intervention.

We demonstrate that government interventions can have a varied effect on farmer

outcomes. Storage always benefits farmers by providing farmers with access to a

previously untapped market in the lean season. In contrast, loans can backfire by

reducing farmer revenue, as they can disincentivize farmers from selling produce on

the market. We also show that due to heterogeneous cash constraints, there exists a

trade-off between improving equality and reducing wastage. Helping cash constrained

farmers by offering more generous loans can result in their unconstrained peers prefer-

ring to waste their produce to qualify for larger loans, instead of selling their produce

on the market. These findings were backed up by an empirical analysis using data

from the Bengal gram market in Karnataka, India. We found that farmers are unable

to meet their cash constraints without government intervention, and would benefit

strongly in terms of revenue and equality from storage and more generous loan terms.
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However, we also find that offering farmers an outright cash subsidy has a negative

effect on farmer revenue. These results highlight that while poverty amongst small-

holder farmers is of acute concern, government interventions must be constructed

while accounting for the strategic behavior of farmers.

Our results have important practical implications and opens up new areas for

future research. For example, in our analysis we assumed that government inter-

ventions were available to all farmers, when in fact it might be preferable for the

government to prioritize aid to poorer and more severely cash constrained farmers.

Therefore, it would be valuable to consider extensions such as a limit on quantity

stored per farmer or heterogeneous access to loans, to determine if these adaptations

can effectively mitigate the negative externalities of government intervention.
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Appendix A

Summary of Notation Used

Notation Interpretation
𝛼 Market price intercept
𝛽 Market price elasticity
𝑁 Number of farmers
𝐶𝑚𝑎𝑥 Maximum cash constraint
𝐿 Maximum loan quantum
𝑟 Loan repayment rate
𝐹1 Average quantity sold by non-cash constrained farmers
𝑐1 Boundary cash constraint between cash constrained and

non-cash constrained farmers
𝑓1 Average quantity sold by cash constrained farmers,

weighted by the proportion of cash constrained farmers
𝑃1 Market price observed by the farmer before making a

quantity decision
𝐹2 Average quantity sold by non-quantity constrained farm-

ers
𝑐2 Boundary cash constraint between quantity constrained

and non-quantity constrained farmers
𝑓2 Average quantity sold by quantity constrained farm-

ers, weighted by the proportion of quantity constrained
farmers

𝑞1(𝐶), 𝑞2(𝐶) Quantity sold by a farmer with cash constraint 𝐶 in the
harvest and lean seasons respectively

𝑔(𝑓) Fixed point equation comparing a given value of 𝑓 to
the realized value 𝑓𝑟𝑒𝑎𝑙

Table A.1: Summary of Notation Used.

59



60



Appendix B

Proofs

Lemma 1: Want to show that at least one of the systems of equations 3.2 and 3.3

has a solution. First, claim that for any value of 𝛼, ∃𝑓 such that 𝑃 = 𝛽 + 𝐶𝑚𝑎𝑥. For

a fixed value of 𝛼, lim𝑓→−∞ 𝑃 = ∞ and 𝑃 = 0 when 𝑓 = 𝛼
𝛽(𝑁−1)

. Thus by IVT, there

must exist 𝑓 such that 𝑃 = 𝛽 + 𝐶𝑚𝑎𝑥.

𝑑𝑃

𝑑𝑓
= −𝛽(𝑁 − 1)(1 − 𝐴 + (𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 − 𝛽𝐶𝑚𝑎𝑥

2(𝐴 + (𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 + 𝛽𝐶𝑚𝑎𝑥)
) < 0

Where 𝐴 =
√︁

𝛽2𝐶2
𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2. Since 𝑑𝑃

𝑑𝑓
< 0, the solution

is unique. Lastly, claim that 𝑑𝑃
𝑑𝛼

> 0.

𝑑𝑃

𝑑𝛼
= 1 − 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2(2𝛽𝐶𝑚𝑎𝑥 + 𝐴)

2(𝛽𝐶𝑚𝑎𝑥 + 𝐴)2𝐴

where 𝐴 =
√︁

𝛽2𝐶2
𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2. Showing 𝑑𝑃

𝑑𝛼
> 0 simplifies

to showing

√︁
𝛽2𝐶2

𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 > 2𝛽𝐶𝑚𝑎𝑥

(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 > 3𝛽𝐶𝑚𝑎𝑥
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Let 𝑃 (𝛼, 𝑓) denote 𝑃 for given values of 𝛼 and 𝑓 . Note that 𝛼 − 𝛽(𝑁 − 1)𝑓 >

𝑃 (𝛼𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) = 𝛽 + 𝐶𝑚𝑎𝑥 for 𝑓 ≤ 𝑓𝑚𝑎𝑥 and 𝛼 ≥ 𝛼𝑚𝑖𝑛. Then

(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 ≥ (𝑁 − 1)(𝛽 + 𝐶𝑚𝑎𝑥)2

= (𝑁 − 1)(𝛽2 + 𝐶2
𝑚𝑎𝑥 + 2𝛽𝐶𝑚𝑎𝑥)

Thus 𝑑𝑃
𝑑𝛼

> 0 if 𝑁 ≥ 3. Therefore, the corresponding value of 𝑓 increases as 𝛼

increases. Let 𝛼*, 𝑓 * be one such solution.

Suppose there exists one or more values of 𝑓 < 𝑓 * such that 𝑔(𝛼*, 𝑓) = 0. If the

minimum point of 𝑔 is at 𝑓 *, we have 𝑔(𝛼*, 𝑓 *) < 0. Denote one of the equilibrium

values 𝑓* such that 𝑔(𝛼*, 𝑓*) = 0. Now find 𝛼* < 𝛼* such that 𝑃 (𝛼*, 𝑓*) = 𝛽 + 𝐶𝑚𝑎𝑥.

As shown above, 𝑔(𝛼*, 𝑓*) > 0. Then by IVT, there must exist a solution to Eqn 3.2.

Now suppose the minimum point of 𝑔 is at an interior point. Clearly 𝛼 can be

decreased until 𝑔 > 0, otherwise an equilibrium would always exist. Thus there must

exist 𝛼* < 𝛼* such that 𝑔(𝛼*, 𝑓*) = 𝑔′(𝛼*, 𝑓*) = 0. If the corresponding 𝑓 such that

𝑃 (𝛼*, 𝑓) = 𝛽 + 𝐶𝑚𝑎𝑥 is greater than 𝑓*, then we take 𝛼*, 𝑓* as the solution to Eqn

3.3. If it is smaller than 𝑓*, then there must exist a solution to Eqn 3.2.

Suppose there does not exist 𝑓 ≤ 𝑓 * such that 𝑔(𝛼*, 𝑓) = 0. Then since 𝑔(𝛼*, 0) >

0, 𝑔(𝛼*, 𝑓 *) > 0. Now increase 𝛼*. As 𝛼* increases, 𝑓 * increases to maintain 𝑃 (𝑓 *) =

𝛽+𝐶𝑚𝑎𝑥. Either we increase 𝛼* until an equilibrium exists for 𝑓 < 𝑓 *, in which case we

use the logic above, or no equilibrium exists and 𝛼* increases until an unconstrained

equilibrium exists, in which case we use that value of 𝛼 as the minimum.

Theorem 1: Begin by showing that a feasible equilibrium exists for 𝛼 ≥ 𝛼*, and no

feasible equilibrium exists for 𝛼 < 𝛼*.

Let 𝛼 ≥ 𝛼*.

𝑑𝑐

𝑑𝛼
=

𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓)

2
√︁

𝛽2𝐶2
𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2

> 0

Thus 𝑐(𝛼, 𝑓𝑚𝑎𝑥) > 𝑐(𝛼𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥). Now consider the cash-constrained quantity equa-
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tion:

𝑞(𝐶) =
1

2𝛽
(𝑃 −

√︀
𝑃 2 − 4𝛽𝐶)

𝑑𝑞

𝑑𝑃
=

1

2𝛽
(1 − 𝑃√︀

𝑃 2 − 4𝛽𝐶
) < 0

Note that 𝑔(𝑓) =
∫︀ 𝐶𝑚𝑎𝑥

𝑐
𝑞(𝐶)𝑑𝐶 − 𝑓 . Want to show that as 𝛼 increases, 𝑞(𝐶) de-

creases. Since q is decreasing in P and 𝑑𝑃
𝑑𝛼

> 0, then 𝑞(𝛼*, 𝑓𝑚𝑎𝑥) > 𝑞(𝛼, 𝑓𝑚𝑎𝑥)∀𝐶 ∈

[𝑐(𝛼, 𝑓𝑚𝑎𝑥), 𝐶𝑚𝑎𝑥]. Then 𝑔(𝛼, 𝑓𝑚𝑎𝑥) < 0, and since 𝑔(0) > 0, there exists an equilib-

rium 𝑓 ∈ (0, 𝑓𝑚𝑎𝑥).

Let 𝛼 < 𝛼*. Note that we have that 𝑔(𝑓) > 0 for 𝑓 ∈ (0, 𝑓𝑚𝑎𝑥). From the

argument above, we know that decreasing 𝛼 decreases 𝑃 , therefore increasing 𝑞(𝐶).

Since this is true for all values of 𝑓 , we have that 𝑔(𝛼, 𝑓) > 𝑔(𝛼*, 𝑓) for 𝑓 ∈ (0, 𝑓𝑚𝑎𝑥).

Thus, no equilibrium can exist for 𝛼.

The proof of the characterization of 𝑞* is presented in Chapter 3.

Proposition 1: Since quantity sold is non-negative,
∫︀ 𝐶𝑚𝑎𝑥

𝑐
𝑞(𝐶) 1

𝐶𝑚𝑎𝑥
𝑑𝐶 ≤ 0 when

𝑐 ≥ 𝐶𝑚𝑎𝑥. Suppose for contradiction this is true.

−𝛽𝐶𝑚𝑎𝑥 +
√︀
𝛽2𝐶2

𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)𝛼2

2𝛽(𝑁 − 1)
≥ 𝐶𝑚𝑎𝑥

𝛽2𝐶2
𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)𝛼2 ≥ 𝛽2𝐶2

𝑚𝑎𝑥(4𝑁2 − 4𝑁 + 1)

𝛼2

4𝛽𝑁
≥ 𝐶𝑚𝑎𝑥

Note that 𝛼2

4𝛽𝑁
is the revenue earned per farmer if everyone sells 𝛼

2𝛽𝑁
. Therefore, if an

unconstrained equilibrium does not exist then 𝑐 < 𝐶𝑚𝑎𝑥 and
∫︀ 𝐶𝑚𝑎𝑥

𝑐
𝑞(𝐶) 1

𝐶𝑚𝑎𝑥
𝑑𝐶 > 0.

Since 𝑑𝑞

𝑑𝑓
= 𝑑𝑞

𝑑𝑃
𝑑𝑃
𝑑𝑓

> 0,
∫︀ 𝐶𝑚𝑎𝑥

𝑐
𝑞(𝐶) 1

𝐶𝑚𝑎𝑥
𝑑𝐶 is strictly increasing in 𝑓 .

For proof of the third statement, see Proposition 3.

Proposition 2: Suppose that we have two equilibrium values of 𝑓 , 𝑓1 < 𝑓2. Claim
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that for both equilibria to be valid, 𝑐1 ̸= 𝑐2. Suppose for contradiction that 𝑐1 = 𝑐2.

𝑑𝑐

𝑑𝑓
= − 2𝛽𝐶𝑚𝑎𝑥(𝑁−1)(𝛼−𝛽(𝑁−1)𝑓)

4
√

𝛽2𝐶2
𝑚𝑎𝑥+𝛽𝐶𝑚𝑎𝑥(𝑁−1)(𝛼−𝛽𝑓(𝑁−1))2

Then it must be that 𝛼−𝛽(𝑁−1)𝑓2 < 0. However, then 𝐹 (𝑓2) < 0, so the equilibrium

is invalid. Therefore we must have 𝑐1 > 𝑐2. Comparing the revenue of farmers with

cash constraint 𝐶:

1. 𝐶 ≥ 𝑐1

Farmers in equilibrium 1 and 2 will both be making their cash constraint, so

revenue is equal.

2. 𝐶 ≤ 𝑐2

Farmers in equilibrium 1 will be making 𝑐1 while farmers in equilibrium 2 will

be making 𝑐2, so equilibrium 1 is better.

3. 𝑐2 < 𝐶 < 𝑐1

Farmers in equilibrium 1 will be making 𝑐1 while farmers in equilibrium 2 will

be making 𝐶, so equilibrium 1 is better.

Proposition 3: We prove the claim for each parameter separately:

1. 𝛼:

Claim that since 𝑑𝑐
𝑑𝛼

> 0, and 𝑑𝑞
𝑑𝛼

= 𝑑𝑞
𝑑𝑃

𝑑𝑃
𝑑𝛼

< 0, 𝑔(𝑓) shifts downwards for all

values of 𝑓 as 𝛼 increases. Hence 𝑓 *
𝑛𝑒𝑤 < 𝑓 *.

𝑑𝑐

𝑑𝛼
=

𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓)

2
√︁

𝛽2𝐶2
𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2

> 0

𝑑𝑞

𝑑𝑃
=

1

2𝛽
(1 − 𝑃√︀

𝑃 2 − 4𝛽𝐶
) < 0

𝑑𝑃

𝑑𝛼
= 1 − 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2(2𝛽𝐶𝑚𝑎𝑥 + 𝐴)

2(𝛽𝐶𝑚𝑎𝑥 + 𝐴)2𝐴
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Showing 𝑑𝑃
𝑑𝛼

> 0 simplifies to showing

√︁
𝛽2𝐶2

𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 > 2𝛽𝐶𝑚𝑎𝑥

(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 > 3𝛽𝐶𝑚𝑎𝑥

Note that 𝛼− 𝛽(𝑁 − 1)𝑓 ≥ 𝛽 + 𝐶𝑚𝑎𝑥. Then

(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 ≥ (𝑁 − 1)(𝛽 + 𝐶𝑚𝑎𝑥)2

= (𝑁 − 1)(𝛽2 + 𝐶2
𝑚𝑎𝑥 + 2𝛽𝐶𝑚𝑎𝑥)

Thus 𝑑𝑃
𝑑𝛼

> 0 if 𝑁 ≥ 3. Finally,

𝑑𝑐

𝑑𝑓
= − 2𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)

4
√︁

𝛽2𝐶2
𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽𝑓(𝑁 − 1))2

< 0

𝑑𝐹

𝑑𝑓
= −𝛽2𝐶2

𝑚𝑎𝑥(𝑁 − 1)

(𝛽𝐶𝑚𝑎𝑥 + 𝐴)𝐴
< 0

𝑑𝑃

𝑑𝑓
= −𝛽(𝑁 − 1)(1 − 𝐴 + (𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 − 𝛽𝐶𝑚𝑎𝑥

2(𝐴 + (𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)2 + 𝛽𝐶𝑚𝑎𝑥)
) < 0

2. 𝛽:

Claim that since 𝑑𝑐
𝑑𝛽

< 0, and 𝑑𝑞
𝑑𝛽

= 𝜕𝑞
𝜕𝛽

+ 𝜕𝑞
𝜕𝑃

𝜕𝑃
𝜕𝛽

> 0, 𝑔(𝑓) shifts downwards for

all values of 𝑓 as 𝛽 decreases. Hence 𝑓 *
𝑛𝑒𝑤 < 𝑓 *.

𝑑𝑐

𝑑𝛽
= − 𝐶𝑚𝑎𝑥(𝛼2 − (𝛽(𝑁 − 1)𝑓)2)

4𝛽
√︁

𝛽𝐶𝑚𝑎𝑥(𝛽(𝐶𝑚𝑎𝑥 + 𝛽(𝑁 − 1)3𝑓 2) + 𝛼2(𝑁 − 1) − 2𝛼𝛽(𝑁 − 1)2𝑓)

< 0

𝜕𝑞

𝜕𝛽
=

1

𝛽
{ 1

2𝛽
(
√︀

𝑃 2 − 4𝛽𝐶 − 𝑃 ) +
𝐶√︀

𝑃 2 − 4𝛽𝐶
}

𝜕𝑃

𝜕𝛽
= −𝐵{(𝛼− 𝛽(𝑁 − 1)𝑓)2[𝑓(𝑁 − 1)𝐴 + 𝐶𝑚𝑎𝑥(3𝛽(𝑁 − 1)𝑓 − 𝛼)]

+4𝛽𝐶𝑚𝑎𝑥𝑓(𝛽𝐶𝑚𝑎𝑥 + 𝐴)}

where 𝐵 = 𝛽(𝑁−1)𝐶𝑚𝑎𝑥

2(𝛽𝐶𝑚𝑎𝑥+𝐴)2𝐴
.
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We bound 𝜕𝑃
𝜕𝛽

from above by
√︁

𝐶𝑚𝑎𝑥

4𝛽(𝑁−1)
. Denote this quantity 𝐷. Want to

show:

𝑑𝑞

𝑑𝛽
≥ 1

𝛽
{ 1

2𝛽
(
√︀

𝑃 2 − 4𝛽𝐶 − 𝑃 ) +
𝐶√︀

𝑃 2 − 4𝛽𝐶
}

+
1

2𝛽
(1 − 𝑃√︀

𝑃 2 − 4𝛽𝐶
)𝐷

> 0

2𝛽𝐶 − 𝛽𝑃𝑇√︀
𝑃 2 − 4𝛽𝐶

> 𝑃 −
√︀

𝑃 2 − 4𝛽𝐶 − 𝛽𝑇

2𝛽𝐶 − 𝛽𝑃𝑇 > (𝑃 − 𝛽𝑇 )
√︀

𝑃 2 − 4𝛽𝐶 − (𝑃 2 − 4𝛽𝐶)

𝑃 2 − 𝛽𝑃𝑇 − 2𝛽𝐶 > (𝑃 − 𝛽𝑇 )
√︀

𝑃 2 − 4𝛽𝐶

4𝛽2𝐶2 − 4𝛽2𝑇𝐶𝑃 + 4𝛽3𝑇 2𝐶 > 0 (B.1)

𝐶 − 𝑃𝑇 + 𝛽𝑇 2 > 0 (B.2)

Note that in B.1 we square both sides because the LHS is guaranteed to be

positive if 𝑁 , the number of farmers, is greater than 2. We can lower bound

the LHS of B.2 by setting 𝑇 =
√︁

𝐶𝑚𝑎𝑥

4𝛽(𝑁−1)
, and letting 𝐶 = 𝑐. We obtain the

following:

𝑃

√︃
𝐶𝑚𝑎𝑥

4𝛽(𝑁 − 1)
< 𝑐 +

𝐶𝑚𝑎𝑥

4(𝑁 − 1)

(𝛼− 𝛽(𝑁 − 1)(
𝑐

𝐶𝑚𝑎𝑥

𝐹 + 𝑓))

√︃
𝐶𝑚𝑎𝑥

4𝛽(𝑁 − 1)
<

− 𝐶𝑚𝑎𝑥

4(𝑁 − 1)
+ (𝛼− 𝛽(𝑁 − 1)𝑓)

√︃
𝐶𝑚𝑎𝑥

4𝛽(𝑁 − 1)
(B.3)

(𝑁 − 1)
𝑐

𝐶𝑚𝑎𝑥

𝐹

√︃
𝐶𝑚𝑎𝑥

4𝛽(𝑁 − 1)
>

𝐶𝑚𝑎𝑥

4𝛽(𝑁 − 1)

(𝛼− 𝛽(𝑁 − 1)𝑓)(−𝛽𝐶𝑚𝑎𝑥 + 𝐴)

2𝛽(𝛽𝐶𝑚𝑎𝑥 + 𝐴)
>

√︃
𝐶𝑚𝑎𝑥

4𝛽(𝑁 − 1)
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(𝛼− 𝛽(𝑁 − 1)𝑓)(−𝛽𝐶𝑚𝑎𝑥 + 𝐴) >

√︃
𝛽𝐶𝑚𝑎𝑥

(𝑁 − 1)
(𝛽𝐶𝑚𝑎𝑥 + 𝐴)

((𝛼− 𝛽(𝑁 − 1)𝑓) − 1)𝐴 > ((𝛼− 𝛽(𝑁 − 1)𝑓) + 1)𝛽𝐶𝑚𝑎𝑥 (B.4)

((𝛼− 𝛽(𝑁 − 1)𝑓) − 1)2𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓) >

4(𝛼− 𝛽(𝑁 − 1)𝑓)𝛽2𝐶2
𝑚𝑎𝑥

((𝛼− 𝛽(𝑁 − 1)𝑓) − 1)2(𝑁 − 1) > 4𝛽𝐶𝑚𝑎𝑥 (B.5)

Note that in B.3, we take a lower bound of 𝑐. In B.4, we use the fact that 𝑁 ,

the number of farmers, is greater than 𝛽𝐶𝑚𝑎𝑥, the maximum cash constraint

multiplied by the price sensitivity. We also use the fact that 𝛼−𝛽(𝑁−1)𝑓 > 𝑃 .

B.5 is true given that 𝑁 is large and that 𝐶𝑚𝑎𝑥 ≥ 2 (hence (𝛼−𝛽(𝑁−1)𝑓)−1 ≥

1). Thus we have 𝑑𝑞
𝑑𝛽

> 0.

3. 𝑁 :

Claim that since 𝑑𝑐
𝑑𝑁

< 0, and 𝑑𝑞(𝑓,𝐶)
𝑑𝑁

= 𝑑𝑞(𝑓,𝐶)
𝑑𝑃

𝑑𝑃
𝑑𝑁

> 0, 𝑔(𝑓) shifts downwards

for all values of 𝑓 as 𝑁 decreases. Hence 𝑓 *
𝑛𝑒𝑤 < 𝑓 *.

𝑑𝑐

𝑑𝑁
=

𝐶𝑚𝑎𝑥

4(𝑁 − 1)2
√︁

𝛽2𝐶2
𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽𝑓(𝑁 − 1))2

{2(

√︁
𝛽2𝐶2

𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽𝑓(𝑁 − 1))2 − 𝛽𝐶𝑚𝑎𝑥)

−(𝑁 − 1)(𝛼2 − (𝛽(𝑁 − 1)𝑓)2)}

2(𝐴− 𝛽𝐶𝑚𝑎𝑥) − (𝑁 − 1)(𝛼2 − (𝛽(𝑁 − 1)𝑓)2) < 0

2𝐴 < (𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓)(𝛼 + 𝛽(𝑁 − 1)𝑓) + 2𝛽𝐶𝑚𝑎𝑥

(𝛼− 𝛽(𝑁 − 1)𝑓)2 < (𝛼− 𝛽(𝑁 − 1)𝑓)(𝛼 + 𝛽(𝑁 − 1)𝑓)

Since (𝛼 + 𝛽(𝑁 − 1)𝑓) > (𝛼− 𝛽(𝑁 − 1)𝑓) > 0, 𝑑𝑐
𝑑𝑁

< 0.

Now want to show 𝑑𝑃
𝑑𝑁

< 0.

𝑑𝑃

𝑑𝑁
= 𝐶{−𝛼3𝐶𝑚𝑎𝑥 − 𝛼2(𝑁 − 1)𝑓(−𝛽𝐶𝑚𝑎𝑥 + 𝐴)
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−𝛽𝑓(4𝐶𝑚𝑎𝑥 + 𝛽(𝑁 − 1)3𝑓 2)(𝛽𝐶𝑚𝑎𝑥 + 𝐴)

+𝛼𝛽(𝑁 − 1)2𝑓 2(𝛽𝐶𝑚𝑎𝑥 + 2𝐴)}

= 𝐶{−𝛼2𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓)

−𝛼(𝑁 − 1)𝑓𝐴(𝛼− 𝛽(𝑁 − 1)𝑓)

−(𝛽𝐶𝑚𝑎𝑥 + 𝐴)(4𝛽𝐶𝑚𝑎𝑥𝑓 − 𝛽(𝑁 − 1)2𝑓 2(𝛼− 𝛽(𝑁 − 1)𝑓))}

= 𝐶{(𝛼− 𝛽(𝑁 − 1)𝑓)[−𝐶𝑚𝑎𝑥(𝛼2 − (𝛽(𝑁 − 1)𝑓)2)

−(𝑁 − 1)𝑓𝐴(𝛼− 𝛽(𝑁 − 1)𝑓)]

−4𝛽𝐶𝑚𝑎𝑥𝑓(𝛽𝐶𝑚𝑎𝑥 + 𝐴)}

< 0

where 𝐶 = 𝛽2𝐶𝑚𝑎𝑥

2(𝛽𝐶𝑚𝑎𝑥+𝐴)2𝐴
.

Then since 𝑑𝑞
𝑑𝑃

< 0, we have 𝑑𝑞
𝑑𝑁

= 𝑑𝑞
𝑑𝑃

𝑑𝑃
𝑑𝑁

> 0 and we are done.

4. 𝐶𝑚𝑎𝑥: Claim that since 𝑑𝑔
𝑑𝐶𝑚𝑎𝑥

> 0, 𝑔(𝑓) shifts downwards for all values of 𝑓 as

𝐶𝑚𝑎𝑥 decreases. Hence 𝑓 *
𝑛𝑒𝑤 < 𝑓 *.

Lemma 3 𝑑𝑐
𝑑𝐶𝑚𝑎𝑥

− 𝑁−1
2𝐶𝑚𝑎𝑥

𝑃 (𝐹 ( 𝑐
𝐶𝑚𝑎𝑥

− 𝑑𝑐
𝑑𝐶𝑚𝑎𝑥

) − 𝑐 𝑑𝐹
𝑑𝐶𝑚𝑎𝑥

) > 0

𝛽𝐶𝑚𝑎𝑥(−𝛽𝐶𝑚𝑎𝑥 + 𝐴)(𝛼− 𝛽(𝑁 − 1)𝑓)4(𝑁 − 1)

8𝐴(𝛽𝐶𝑚𝑎𝑥 + 𝐴)3
> 0

Lemma 4 𝑐
𝐶𝑚𝑎𝑥

− 𝑑𝑐
𝑑𝐶𝑚𝑎𝑥

> 0

𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

=
(𝛼− 𝛽(𝑁 − 1)𝑓)2

4𝐷
> 0

Where 𝐷 =
√︁

𝛽2𝐶2
𝑚𝑎𝑥 + 𝛽𝐶𝑚𝑎𝑥(𝑁 − 1)(𝛼− 𝛽𝑓(𝑁 − 1))2 > 0

Lemma 5 (( 𝑐
𝐶𝑚𝑎𝑥

− 𝑑𝑐
𝑑𝐶𝑚𝑎𝑥

)𝐹 − 𝑐 𝑑𝐹
𝑑𝐶𝑚𝑎𝑥

) > 0

((
𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

)𝐹 − 𝑐
𝑑𝐹

𝑑𝐶𝑚𝑎𝑥

) =
𝛽𝐶2

𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓)3

2(𝛽𝐶𝑚𝑎𝑥 + 𝐷)2𝐷
> 0
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𝑑𝑔

𝑑𝐶𝑚𝑎𝑥

=
𝜕𝑔

𝜕𝐶𝑚𝑎𝑥

+
𝜕𝑔

𝜕𝐹

𝜕𝐹

𝜕𝐶𝑚𝑎𝑥

+
𝜕𝑔

𝜕𝑐

𝜕𝑐

𝜕𝐶𝑚𝑎𝑥

=
1

2𝛽𝐶𝑚𝑎𝑥

(
𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

)(𝑃 + 𝛽(𝑁 − 1)(1 − 𝑐

𝐶𝑚𝑎𝑥

)𝐹 )

+
1

12𝛽2𝐶2
𝑚𝑎𝑥

{(𝑃 2 − 4𝛽𝑐)1.5 − 𝑃 2 − 4𝛽𝐶𝑚𝑎𝑥)1.5}

− 𝑁 − 1

4𝛽𝐶2
𝑚𝑎𝑥

𝑃{
√︀

𝑃 2 − 4𝛽𝑐−
√︀

𝑃 2 − 4𝛽𝐶𝑚𝑎𝑥}

(𝐹 (
𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

) − 𝑐
𝑑𝐹

𝑑𝐶𝑚𝑎𝑥

)

− 1

2𝛽𝐶𝑚𝑎𝑥

{
√︀

𝑃 2 − 4𝛽𝐶𝑚𝑎𝑥 −
𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

√︀
𝑃 2 − 4𝛽𝑐}

− 𝑐

2𝐶𝑚𝑎𝑥

(𝑁 − 1)(1 − 𝑐

𝐶𝑚𝑎𝑥

)
𝑑𝐹

𝑑𝐶𝑚𝑎𝑥

≥ 1

2𝛽𝐶𝑚𝑎𝑥

(
𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

)(𝑃 + 𝛽(𝑁 − 1)(1 − 𝑐

𝐶𝑚𝑎𝑥

)𝐹 )

+
1

2𝛽𝐶𝑚𝑎𝑥

√︀
𝑃 2 − 4𝛽𝑐{ 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

−𝑁 − 1

2𝐶𝑚𝑎𝑥

𝑃 (𝐹 (
𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

) − 𝑐
𝑑𝐹

𝑑𝐶𝑚𝑎𝑥

)}

+
1

2𝛽𝐶𝑚𝑎𝑥

√︀
𝑃 2 − 4𝛽𝐶𝑚𝑎𝑥{

𝑁 − 1

2𝐶𝑚𝑎𝑥

𝑃 (𝐹 (
𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

)

−𝑐
𝑑𝐹

𝑑𝐶𝑚𝑎𝑥

) − 𝑐

𝐶𝑚𝑎𝑥

} − 𝑐

2𝐶𝑚𝑎𝑥

(𝑁 − 1)(1 − 𝑐

𝐶𝑚𝑎𝑥

)
𝑑𝐹

𝑑𝐶𝑚𝑎𝑥

>
1

2𝛽𝐶𝑚𝑎𝑥

{(
𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

)(𝑃 −
√︀
𝑃 2 − 4𝛽𝐶𝑚𝑎𝑥)

+𝛽(𝑁 − 1)(1 − 𝑐

𝐶𝑚𝑎𝑥

)((
𝑐

𝐶𝑚𝑎𝑥

− 𝑑𝑐

𝑑𝐶𝑚𝑎𝑥

)𝐹 − 𝑐
𝑑𝐹

𝑑𝐶𝑚𝑎𝑥

)}

> 0

Theorem 2: The proof for unconstrained and fully constrained equilibria are given

in Chapter 4. We now show that a partially constrained equilibrium is feasible if

unconstrained and fully constrained equilibria are infeasible. Consider the pairs of

(𝑓2, 𝑐2) values that fulfill the mean-field equation
∫︀ 𝐶𝑚𝑎𝑥

𝑐2

1
𝐶𝑚𝑎𝑥

(1 − 𝑞*1(𝐶))𝑑𝐶 = 𝑓2.

Know that (0, 𝐶𝑚𝑎𝑥) and (1− 𝑐1
𝐶𝑚𝑎𝑥

− 𝑓 *
1 , 𝑐

*
1) are two such pairs, and that 𝑐2 is strictly

decreasing as 𝑓2 increases.

𝐹2(𝑐2 = 𝐶𝑚𝑎𝑥, 𝑓2 = 0) > 1 − 𝑞*1(𝐶𝑚𝑎𝑥), else an unconstrained equilibrium exists
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since 𝐹2(𝑐2 = 𝐶𝑚𝑎𝑥, 𝑓2 = 0) = 𝛼
2𝛽𝑁

. We also know that 𝐹2(𝑐2 = 𝑐1, 𝑓2 = 1 − 𝑐1
𝐶𝑚𝑎𝑥

−

𝑓 *
1 ) < 1−𝐹 *

1 = 1−𝑞*1(𝑐*1). Therefore, by IVT, there must exist some (𝑓2, 𝑐2) pair that

fulfills the mean-field equation, while also fulfilling 𝐹2(𝑐2, 𝑓2) = 1 − 𝑞*1(𝑐2). Since this

pair is between (0, 𝐶𝑚𝑎𝑥) and (1 − 𝑐1
𝐶𝑚𝑎𝑥

− 𝑓 *
1 , 𝑐

*
1), we know that it is feasible. Thus a

partially constrained equilibrium is feasible.

Lemma 2: Refer to the proof of Lemma 1.

Theorem 3: The proof that no feasible equilibrium exists for 𝛼 < 𝛼* and that a

feasible equilibrium exists for 𝛼 ≥ 𝛼* is similar to that of Theorem 1. The character-

ization of 𝑞1(𝐶) is given in Chapter 4.

Proposition 4: Note that because 𝐿 and 𝑟 are always combined in the form (1−𝑟)𝐿

for all equations in the model, increasing 𝐿 is equivalent to decreasing 𝑟. Therefore,

we only consider the sensitivity of 𝑓 and 𝑞1(𝐶) with regard to 𝐿.

For 𝑓 , want to show that since 𝑑𝑐
𝑑𝐿

> 0, and 𝑑𝑞
𝑑𝐿

< 0, 𝑔(𝑓) shifts downwards for all

values of 𝑓 as 𝐿 increases. Hence 𝑓 *
𝑛𝑒𝑤 < 𝑓 *.

𝑑𝑐

𝑑𝐿
=

1

2
(1 − 𝑟)

(1 − 𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿) − 𝛽(𝐶𝑚𝑎𝑥 + (1 − 𝑟)(𝑁 − 1)𝐿)

𝐴
)

Want to show 𝐴 > 𝐶𝑚𝑎𝑥(𝛼 − 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿) − 𝛽(𝐶𝑚𝑎𝑥 + (1 − 𝑟)(𝑁 − 1)𝐿).

If the RHS is negative then we are done, so we assume it is positive. Squaring both

sides, we obtain

(𝐶𝑚𝑎𝑥 − 𝛽(𝑁 − 1))(𝛼− 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿) < 2𝛽(𝐶𝑚𝑎𝑥 + (1 − 𝑟)(𝑁 − 1)𝐿)

If 𝛼−(1−𝑟)𝐿
2𝛽𝑁

≥ 1 an unconstrained equilibrium exists, so we set 𝑓 = 0 and bound the

LHS from above:

(𝐶𝑚𝑎𝑥 − 𝛽(𝑁 − 1))2𝛽𝑁 < 2𝛽𝐶𝑚𝑎𝑥 + 2𝛽(1 − 𝑟)(𝑁 − 1)𝐿
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𝐶𝑚𝑎𝑥 − (1 − 𝑟)𝐿 < 𝛽𝑁

To show why this inequality is true, consider the price in an unconstrained equilib-

rium, 𝛼+(1−𝑟)𝐿
2

.

Lemma 6 The equilibrium price in a partially constrained equilibrium must be less

than that in an unconstrained equilibrium.

Suppose for contradiction that we have a partially constrained equilibrium with a

higher price than 𝛼+(1−𝑟)𝐿
2

. Then the total quantity being sold must be less than the

quantity in the unconstrained case. Then there must exist some 𝜖 > 0 such that the

non cash constrained farmers can increase their revenue by supplying 𝐹 + 𝜖. Thus

the non-cash constrained farmers are not behaving optimally.

Thus 𝛼+(1−𝑟)𝐿
2

> 𝐶𝑚𝑎𝑥, else no partially constrained equilibrium would be feasible.

Now suppose for contradiction that 𝐶𝑚𝑎𝑥 − (1 − 𝑟)𝐿 > 𝛽𝑁 . Then since 𝛼−(1−𝑟)𝐿
2𝛽𝑁

>

𝛼−(1−𝑟)𝐿
2(𝐶𝑚𝑎𝑥−(1−𝑟)𝐿)

, we must have 𝛼−(1−𝑟)𝐿
2(𝐶𝑚𝑎𝑥−(1−𝑟)𝐿)

< 1. But this means that 𝛼+(1−𝑟)𝐿
2

< 𝐶𝑚𝑎𝑥,

hence no partially constrained equilibrium can exist. Therefore we have that 𝑑𝑐
𝑑𝐿

> 0.

𝑑𝑞

𝑑𝐿
=

𝜕𝑞

𝜕𝐿
+

𝜕𝑞

𝜕𝑐

𝑑𝑐

𝑑𝐿
+

𝜕𝑞

𝜕𝐹

𝑑𝐹

𝑑𝐿
𝜕𝑞

𝜕𝐿
=

1

2𝛽
(1 − 𝑟)(−1 +

𝑃 − (1 − 𝑟)𝐿− 2𝛽√︀
(𝑃 − (1 − 𝑟)𝐿)2 − 4𝛽(𝐶 − (1 − 𝑟)𝐿)

)

Want to show 𝜕𝑞
𝜕𝐿

< 0.

𝑃 − (1 − 𝑟)𝐿− 2𝛽 <
√︀

(𝑃 − (1 − 𝑟)𝐿)2 − 4𝛽(𝐶 − (1 − 𝑟)𝐿)

𝐶 < 𝑃 − 𝛽

Since we know that 𝑃 ≥ 𝛽 + 𝐶𝑚𝑎𝑥, we have 𝜕𝑞
𝜕𝐿

< 0.

Want to show 𝜕𝑞
𝜕𝑐

𝑑𝑐
𝑑𝐿

+ 𝜕𝑞
𝜕𝐹

𝑑𝐹
𝑑𝐿

< 0.

𝜕𝑞

𝜕𝑐

𝑑𝑐

𝑑𝐿
+

𝜕𝑞

𝜕𝐹

𝑑𝐹

𝑑𝐿
=

𝑁 − 1

2𝐶𝑚𝑎𝑥

(−1 +
𝑃 − (1 − 𝑟)𝐿√︀

(𝑃 − (1 − 𝑟)𝐿)2 − 4𝛽(𝐶 − (1 − 𝑟)𝐿)
)

(𝐹
𝑑𝑐

𝑑𝐿
+ 𝑐

𝑑𝐹

𝑑𝐿
)
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𝐹
𝑑𝑐

𝑑𝐿
+ 𝑐

𝑑𝐹

𝑑𝐿
= 𝐵{(𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿)

(−𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿)

+𝛽(𝐶𝑚𝑎𝑥 + (1 − 𝑟)𝐿(𝑁 − 1)) + 𝐴) −

((𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓) + 𝐶𝑚𝑎𝑥)

(−𝛽(𝐶𝑚𝑎𝑥 − (1 − 𝑟)𝐿(𝑁 − 1)) + 𝐴)}

Where 𝐵 = 𝐶𝑚𝑎𝑥(1−𝑟)
2(𝑁−1)𝐴(𝛽(𝐶𝑚𝑎𝑥+(1−𝑟)𝐿(𝑁−1))+𝐴)

. Since 𝐵 > 0, we want to show that the

term in the curly brackets is negative. We can simplify it to obtain

−(𝑁 − 1)𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿)2 − ((1 − 𝑟)𝐿(𝑁 − 1) + 𝐶𝑚𝑎𝑥)𝐴

+𝛽(𝑁 − 1)(𝐶𝑚𝑎𝑥 + (1 − 𝑟)𝐿(𝑁 − 1))(𝛼− 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿)

−𝛽((1 − 𝑟)𝐿(𝑁 − 1) − 𝐶𝑚𝑎𝑥)((𝑁 − 1)(𝛼− 𝛽(𝑁 − 1)𝑓) + 𝐶𝑚𝑎𝑥) < 0

If (1 − 𝑟)𝐿(𝑁 − 1) > 𝐶𝑚𝑎𝑥, we can simplify the equation

2𝛽 − (𝛼− 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿) < 0

𝐶𝑚𝑎𝑥 > 𝛽 + (1 − 𝑟)𝐿

If (1 − 𝑟)𝐿(𝑁 − 1) ≤ 𝐶𝑚𝑎𝑥, expand the expression fully and compare positive and

negative terms

(𝐶𝑚𝑎𝑥 + (𝑁 − 1)(1 − 𝑟)𝐿)𝐴 + 𝛽((𝑁 − 1)(1 − 𝑟)𝐿)2 >

𝛽(𝐶2
𝑚𝑎𝑥 − ((𝑁 − 1)(1 − 𝑟)𝐿)2) + 𝛽((𝑁 − 1)(1 − 𝑟)𝐿)2 = 𝛽𝐶2

𝑚𝑎𝑥

(𝑁 − 1)𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓 − (1 − 𝑟)𝐿)2 >

2𝛽(𝑁 − 1)𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓)

(𝛼− 𝛽(𝑁 − 1)𝑓)2 − 2(1 − 𝑟)𝐿(𝛼− 𝛽(𝑁 − 1)𝑓) + ((1 − 𝑟)𝐿)2 ≥

(𝛼− 𝛽(𝑁 − 1)𝑓)2 − 2(1 − 𝑟)𝐿(𝛼− 𝛽(𝑁 − 1)𝑓) > 2𝛽(𝛼− 𝛽(𝑁 − 1)𝑓)

(𝛼− 𝛽(𝑁 − 1)𝑓) > 2𝛽 + 2(1 − 𝑟)𝐿

𝐶𝑚𝑎𝑥 > 𝛽 +
2𝐶𝑚𝑎𝑥

𝑁 − 1
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𝐶𝑚𝑎𝑥 >
𝑁 − 1

𝑁 − 3
𝛽

For large 𝑁 , this approaches 𝐶𝑚𝑎𝑥 > 𝛽. Therefore, if 𝐶𝑚𝑎𝑥 > 𝛽 + (1 − 𝑟)𝐿, we have

that 𝑑𝑞
𝑑𝐿

< 0. We can interpret this condition as the maximum cash constraint being

greater than the net present value of the loan plus the price sensitivity to quantity.

For 𝑞1(𝐶), we know that cash constrained farmers increase stored quantity if 𝐿

increases. Hence all that remains to show is that unconstrained farmers increase

stored quantity as well.

Lemma 7 𝐹1 >
𝛼−(1−𝑟)𝐿

2𝛽𝑁

𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓1 − (1 − 𝑟)𝐿)

2𝛽(𝐶𝑚𝑎𝑥 + (𝑁 − 1)𝑐1)
>

𝛼− (1 − 𝑟)𝐿

2𝛽𝑁

(𝛼− (1 − 𝑟)𝐿)(1 − 𝑐1
𝐶𝑚𝑎𝑥

) > 𝛽𝑁𝑓1

𝛼− 𝛽𝑁𝑞1 > (1 − 𝑟)𝐿

This condition can be interpreted as follows: If every farmer sells the average quantity

sold by cash-constrained farmers, the market price must be greater than the net

present value of taking the full loan. This is true because we have assumed that 𝐿 is

lower than the market price to encourage farmers to sell their goods on the market.

Note that the unconstrained optimal quantity 𝛼−(1−𝑟)𝐿
2𝛽𝑁

decreases as 𝑟 decreases.

Furthermore, note that as 𝐿 increases, we showed previously that 𝑐1 increases and 𝑓1

decreases (ie. as the loan terms become more favourable for farmers, the proportion

of cash-constrained farmers decreases). Therefore, we approach the unconstrained

equilibrium as 𝐿 increases.

Now suppose for contradiction that 𝐹1 does not decrease monotonically as 𝐿 in-

creases. Then there exists some value of 𝐿 where increasing 𝐿 causes 𝐹1 to diverge

from unconstrained optimum, a contradiction. By similar argument for decreasing 𝑟,

we are done.

Proposition 5: Begin by showing 𝑅1(𝑟) is unimodal. Net revenue is maximized
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when the average quantity sold is 𝛼
2𝛽𝑁

, the unconstrained optimal quantity. With

loans, the optimal quantity becomes 𝛼−(1−𝑟)𝐿
2𝛽𝑁

.

1. 𝛼
2𝛽𝑁

≥ 1

Farmers will all sell 1 unit for 𝑟 ≥ 2𝛽𝑁−(𝛼−𝐿)
𝐿

, therefore net revenue is constant.

For 𝑟 < 2𝛽𝑁−(𝛼−𝐿)
𝐿

, as 𝑟 decreases farmers sell less quantity, moving away from

the optimal. Therefore, net revenue decreases.

2. 𝛼
2𝛽𝑁

< 1, 𝛼2

4𝛽𝑁
≥ 𝐶𝑚𝑎𝑥

All farmers meet their cash constraint by selling the optimal quantity, so max-

imum market revenue is achieved at 𝑟 = 1. As 𝑟 decreases farmers sell less

quantity, moving away from the optimal. Therefore, net revenue decreases.

3. 𝛼
2𝛽𝑁

< 1, 𝛼2

4𝛽𝑁
< 𝐶𝑚𝑎𝑥

Farmers cannot meet their cash constraint by selling the optimal quantity, so

there is either a partially constrained equilibrium or no equilibrium. For this

analysis we assume a partially constrained equilibrium exists at 𝑟 = 1.

The average quantity sold in a partially constrained equilibrium is given by
𝑐1

𝐶𝑚𝑎𝑥
𝐹1 + 𝑓1. Maximum net revenue is achieved when 𝑐1

𝐶𝑚𝑎𝑥
𝐹1 + 𝑓1 = 𝛼

2𝛽𝑁
. In

Proposition 3, we proved that 𝑑𝑃
𝑑𝑓

< 0, which is equivalent to showing 𝑐1
𝐶𝑚𝑎𝑥

𝐹1+𝑓1

decreases as 𝑓1 decreases. Furthermore, from Proposition 4 we know that 𝑓1

decreases as 𝑟 decreases. Hence there can only be a maximum of one value of 𝑟

corresponding to the maximum net revenue.

For 𝑅2(𝑟), the uniqueness of 𝑟2 and 𝑟3 are explained in Chapter 5. We prove the

claim that maximum revenue is never achieved in a partially constrained equilibrium.

We know that the average quantity sold by quantity constrained farmers must be less

than 𝛼
2𝛽𝑁

. Let 𝑞 be the average quantity sold by quantity constrained farmers, and

suppose that there are 𝑁1 and 𝑁2 unconstrained and constrained farmers respectively,

𝑁1 + 𝑁2 = 𝑁 . Want to show that the unconstrained farmers will always prefer to

raise the average quantity sold above 𝛼
2𝛽𝑁

. Unconstrained farmers solve the problem

𝑚𝑎𝑥𝑞 (𝛼− 𝛽(𝑁1𝑞 + 𝑁2𝑞))𝑞
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𝑞* =
𝛼

2𝛽𝑁1

− 𝑁2

2𝑁1

𝑞

The average quantity is given by

1

𝑁
(𝑁1𝑞 + 𝑁2𝑞) =

1

𝑁
(
𝛼

2𝛽
+

𝑁2

2
𝑞)

>
𝛼

2𝛽𝑁

Hence the average quantity in a partially constrained equilibrium cannot be 𝛼
2𝛽𝑁

,

since unconstrained farmers will always prefer to sell more.

For 𝑊 (𝑟), consider the lean season equilibrium for some value of 𝑟. By Proposition

4, we know that as 𝑟 decreases, stored quantity increases for all farmers. Therefore,

if an unconstrained equilibrium exists, it will also exist for lower values of 𝑟. Since

the quantity sold remains the same, wastage must increase. If a fully constrained

equilibrium exists, wastage is 0 so it is certainly non-decreasing as 𝑟 decreases.

Now consider the case if a partially constrained equilibrium exists. Claim that

as 𝑟 decreases, equilibrium 𝐹2 decreases. As 𝑟 decreases, increased quantity becomes

available for all farmers, and therefore 𝑐2 increases. Note that as equilibrium 𝑐2

increases, 𝐹2 approaches 𝛼
2𝛽𝑁

(ie. as the number of quantity-constrained farmers

decreases, quantity sold by unconstrained farmers approaches the fully unconstrained

optimal quantity). Therefore, since 𝐹2 >
𝛼

2𝛽𝑁
, 𝐹2 must decrease.

𝐶𝑚𝑎𝑥(𝛼− 𝛽(𝑁 − 1)𝑓2)

2𝛽(𝐶𝑚𝑎𝑥 + (𝑁 − 1)𝑐2
>

𝛼

2𝛽𝑁

𝛼− 𝛽𝑁𝑞2 > 0

where 𝑞2 is the average quantity sold by quantity constrained farmers. Since quantity

constrained farmers sell less than their peers, this is guaranteed to be true. Given

that 𝐹2 decreases as 𝑟 decreases, wastage increases as 𝑟 decreases.

Finally, the result for 𝐼(𝑟) follows directly from Proposition 4.

Proposition 6: Proof is presented in Chapter 6.
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