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Abstract 
In addition to operators who pick scheduled service duties, transit agencies have a separate 

group of operators to cover work that becomes open due to absence or other unexpected situations. 

This group of operators are referred to collectively as the extraboard. Another way to cover the open 

work is through operator overtime. Therefore, a central challenge of the extraboard planning problem 

lies in the uncertainty of the amount of the work that will need to be covered, as well as the extent of 

operators’ willingness to work overtime. Due to the critical importance of service reliability, transit 

agencies seek a systematic approach to schedule extraboard operators to minimize a weighted cost of 

lost service, overtime, and extraboard operators. This thesis proposes a methodology that 

systematically addresses the extraboard scheduling problem, focusing on a case study using data from 

the Massachusetts Bay Transportation Authority (MBTA). The methodology has two components: 

demand (absence) estimation and schedule optimization. 

 Absence can be classified as known-in-advance or unexpected, based on both when they are 

known and the way they are covered. Two negative binomial regression models were formulated based 

on their different characteristics. Among the variables tested, no significant predictive relationships 

were found with respect to absences, overtime, or lost service. The resulting models mainly reflect the 

average behavior on each day of the week.  

 Multi-stage integer optimization programs were constructed to schedule the extraboard 

operators. Given the current extraboard size, assignments given by different modelling strategies were 

similar. When the staffing level constraint was relaxed, compared to deterministic models, the robust 

solutions achieve more stable level of lost service and overtime, while being less sensitive to model 

parameters. However, the robust solutions are of higher financial costs to the MBTA, since they 

included more fixed financial costs from the extraboard operators and less variable costs from overtime 

and lost service. Therefore, without improvements in the input estimations, decision of extraboard size 

depends on the tradeoff between financial costs and service reliability.  

 This thesis contributes to the literature by quantitatively studying operator absence, introducing 

robust optimization for the extraboard planning problem, and demonstrating the use and the advantages 

of a systematic assignment procedure.  
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Chapter 1 Introduction  

In the transit industry, the cost of operators makes up 60% of operating expenses and 43% 

of all transit expenditures (APTA, 2019).  Workforce planning is the process used to align the 

needs and priorities of the organization with those of its workforce to ensure it can meet its 

legislative, regulatory, and service requirements and organizational objectives. Workforce 

planning enables evidence-based workforce development strategies that could improve the 

organization’s cost efficiency and service delivery. In this chapter, we motivate and describe the 

workforce planning problem, and define the analysis scope for this thesis. 

 

1.1 Terminology 

Before the workforce and the extraboard planning problem is introduced, the use of some 

terminology in this thesis is defined below. 

Piece of work: The smallest unit of work that can be assigned to an operator. 

Shift/run: Shifts and runs are used interchangeably. They refer to a set of pieces of work that are 

performed by a single operator. 

Regular operators: Operators who picked scheduled service runs at the start of the rating. 

Extraboard operators: Operators who do not have a run assignment and stand by to cover work 

when the scheduled regular operator cannot. 

Cover list operators: Part of the extraboard operators who are not assigned shifts in advance, but 

rather are assigned report times to the garage to stand by and cover unexpected open work. 

Open work: Work that becomes open after the run-cut and operator assignment, due to the 

assigned regular operator’s inability to deliver, or the need for additional work. 

Known-in-advance open work / Absence: Open work or operator absence that becomes known 

before the report times of the cover list operators are assigned. The garage dispatcher assigns the 

entire run to an extraboard operator.  

Unexpected open work / Absence: Open work or operator absence that is known after the report 

times of the cover list are assigned. These shifts are usually broken up into pieces which are 

covered by more than one operator. 
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1.2 The Workforce Planning Problem for Bus Operators 

Transit agencies provide service according to a published schedule. Depending on the size 

and geographical coverage, an agency usually operates trips out of multiple garages. At each 

garage, operators are scheduled to meet service requirements. If no operator is available to perform 

trips at the scheduled times, trips will be lost. Dropped trips significantly impact service reliability 

and customer satisfaction. For high-frequency routes, dropping a single run may not be a serious 

issue if subsequent trips can be covered; if not, then the headway will be noticeably longer for the 

duration of the absent operator’s shift. For routes with longer headways, people usually arrive at a 

stop according to the schedule and the waiting times will be very large (at least one headway) 

when a trip is missed. Having an adequately sized, efficiently scheduled workforce is a necessity 

if the agency is to meet their service commitment. Therefore, workforce planning is critical to 

ensuring service reliability. 

Workforce planning, in the transit context, is the process of operator scheduling that deals 

with aligning the availability of operators with the demand for operators such that service 

requirements are met at the least cost and with the most reliability. Figure 1-1 shows the basic 

elements involved in workforce planning and their interactions. At the highest level, the elements 

can be divided into three categories: operator demand, operator availability, and planning 

outcomes.  

Operator Demand: The demand for operators comes principally from the service 

requirements, and includes scheduled trips, non-service duties, and extra trips. Non-service duties 

include training, inspector duties, flagging duties, shuttles, transferring buses between garages 

(because most agencies operate multiple garages), etc. Extra (unplanned) service requirements 

include shuttles to replace subways during a shutdown, shuttles for special events, etc. Together, 

all the work mentioned above constitutes the operator demand. 

Operator Availability: The baseline operator availability is the staffing level. In addition, 

each operator is subject to vacation, making them unavailable for certain weeks in the year. Other 

factors that could reduce operator availability are absence, training, attrition, and suspension. To 

deal with the need for extra operators, agencies usually hire more operators than required by the 

timetable, resulting in an extraboard, consisting of operators who are available to cover runs as 

needed. Overtime is another way to increase the supply of operators in times of demand surge or 

availability shortage. 

Planning Outcomes: Planning outcomes reflect the match between operator demand and 

availability. There are two major outcomes for workforce planning. The first is the operator 

schedule, which matches planned services to individual operators. Second, realized service 

outcomes are the outcomes after accounting for demand and supply adjustments between the time 
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at which the plan is made and the day of operations. Either service is performed as planned 

(neutral), covered by other operators (increased cost), or dropped (reduced service reliability). 

 

 

Figure 1-1 Basic Quantities and Their Interactions in Workforce Planning 

 

Decision-making for bus operator planning (and service sector workforce planning in 

general) can be thought of at three levels: strategic, tactical, and operational (Abernathy et al., 

1973; Koutsopoulos and Wilson, 1987). Figure 1-2 shows the inputs to the process and the 

decisions being made at each level. The right-pointing arrows denote inputs at each stage, and the 

downward arrows indicate sequential decision-making.  

At the strategic level, the goal is to make hiring decisions that minimize overall operator 

costs while meeting the service requirements, work rules, and budget constraints. An overall goal 

is set for the planning period. Typically, there are several ratings in a year where the service 

requirements may differ (for example, the MBTA adjusts its service plan quarterly) and therefore 

the hiring targets will differ accordingly. The outcome of the strategic level is the number of hired 

operators, vacation allocation over the year, and services which are scheduled and allocated to 

operators. 

 



 9 

 

Figure 1-2 Three Levels of Workforce Planning 

 

At the start of each rating, tactical level planning finalizes the assignment of operators who 

cover vacations, as well as the number of extraboard operators to schedule each day, based on the 

expected level of absence and overtime availability. Vacation relief operators, who are a separate 

group from the extraboard operators, cover for operators on vacation. 

At the operational level, sequential decisions are made regarding assignments to cover 

known-in-advance absences, report times for the rest of the extraboard, and overtime acquisition. 

Some absences and extra work are known-in-advance, meaning that they are known before report 
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times are assigned to the cover list operators. These runs will be assigned directly to extraboard 

operators. For the remaining cover list, based on the expected time-of-day distribution of 

unexpected absences and extra work, each operator will be given a time at which they will report 

to the garage and cover work as needed. If a piece of work becomes open and no cover list operator 

is available, that piece of work will be offered to available operators as overtime. If an operator 

accepts the offer, (s)he will work extra time to cover the service; otherwise, the service will be lost.  

 The workforce planning process involves different stages which can be studied separately. 

For example, the scheduling problems for regular services and extraboard operators are quite 

different and can be studied separately. The run-cutting and operator assignment problem is a 

classical, deterministic problem in operations research. The challenge is to effectively 

accommodate agency-specific constraints and solve the optimization problem efficiently. The 

focus of the extraboard scheduling problem is dealing with uncertainty. While making strategic, 

tactical, and operational level decisions regarding the extraboard, absence and overtime 

availability are uncertain. This research deals with the extraboard scheduling problem at the 

tactical and operational levels. The next section describes this problem in more detail. 

 

1.3 The Extraboard Planning Problem 

After the run-cut and operator assignment, work may arise due to operator absence, shift 

swaps, diversions, service disruptions, and extra service. We refer to all work that comes up after 

the run-cut and operator assignment as open work. Some non-service duties such as transferring 

buses and serving as substitute inspectors may come up during daily operations. The extraboard 

operators provide a built-in buffer that makes the schedule more robust; that is, service 

requirements can still be met when unexpected situations arise. Without extraboard operators, we 

have no resources to deal with unexpected situations. In this case, whenever open work arises, 

overtime must be requested. Although overtime has a 50% pay premium, it is generally less 

expensive than hiring extraboard operators after accounting for benefits and vacations provided to 

each operator. However, there are two issues associated with relying heavily on overtime. First, 

not everyone is willing to work overtime and there are work rules around the maximum number 

of hours for those who want to work overtime. For example, the cap is 20 hours of overtime per 

operator per week at the MBTA. So, relying too much on overtime risks dropping a lot of service. 

Second, while evidence in a lot of industries suggest that working a moderate amount of 

compensated, voluntary overtime is healthy for both the organization and individuals (Beckers et 

al., 2008, 2004; Holly and Mohnen, 2012), working too much overtime causes fatigue and may 

compromise safety (Bae and Fabry, 2014; Rogers et al., 2004). Due to the importance of service 

reliability, an efficient and robust scheduling model that accounts for the uncertainty of the amount 

in open work and overtime availability is needed. 
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Scheduling extraboard operators is part of the three-level workforce planning framework 

(Figure 1-2) and is the main task at the tactical and operational levels. At the strategic level, hiring 

decisions are made regarding both regular operators and extraboard operators. At the tactical level, 

the extraboard operators’ workdays are determined. At the operational level, first, all known-in-

advance open work is assigned to the extraboard. The assigned extraboard operator will inherit all 

work from the open run, including the splits and built-in overtime. Next, to address unexpected 

absences, non-service duties, and delays caused by incidents and traffic, the remaining extraboard 

operators (i.e. the cover list operators) will be assigned report times. They will report to the garage 

and get paid for an 8-hour straight shift (6 hours for part-timers) regardless of the availability of 

open work. Having cover list operators present when there is no work results in unproductive but 

paid operator time. Different levels of tolerance for lost service and unproductive extraboard time 

will lead to very different scheduling decisions. The importance of effectively sizing and 

scheduling the extraboard has been established in the literature (Ingels and Maenhout, 2015; 

Sohoni et al., 2006). In general, having a large extraboard leads to lower utilization rates since 

there will be more unproductive time. On the other hand, having a small extraboard leads to more 

overtime requested which jeopardizes service reliability and operator well-being. 

Optimizing extraboard planning decisions is a challenging problem because the amount of 

open work at the time of decision-making is uncertain. While some seasonal and weekly trends 

exist, the amount of open work that needs to be covered can be highly variable. To further 

complicate the problem, since overtime is (generally) less expensive and more flexible, a cost-

effective extraboard assignment plan should take overtime into account. However, uncertainty 

exists around how much overtime will be available at a given time, how much available overtime 

the agency wants to engage (due to the issues mentioned earlier in this section), and how much 

lost service the agency is willing to accept.  

 

1.4 Scope and Objectives 

The principal reason for open work is operator absence (60%-70%) (DeAnnuntis and 

Morris, 2008; Gupta et al., 2011; Hickman et al., 1988; Shiftan and Wilson, 1993). The passage of 

the Family and Medical Leave Act (FMLA) of 1993 made operator absence a less predictable and 

more influential element in workforce planning (DeAnnuntis and Morris, 2008; Strathman and 

Callas, 2012). The impact is particularly pronounced in transit, because of operators’ rigid and 

oftentimes undesirable work schedules (Bolotnyy and Emanuel, 2019). This thesis specifically 

addresses the extraboard planning problem with respect to operator absence. 

Transit agencies always face tightly constrained resources. It is in their primary interest to 

fully utilize their existing resources and make informed decisions on a cost-effective workforce 
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size. This thesis approaches the problem at the tactical and operational levels, first taking the 

strategic level decision (hiring level) as given, and then progressing to make strategic-level 

recommendations.  

The goal of this thesis is to develop a systematic procedure to improve the extraboard 

planning process for bus operators to reduce lost service, overtime and cost. Breaking down the 

goal into smaller tasks/objectives, this thesis aims to address: 

1) Mining data from HASTUS™ Daily1 to extract relevant information on absence levels, 

overtime availability, and service reliability.  

2) Characterizing and modelling absence, overtime, lost service and their interrelations. 

3) Investigating how the resulting models could be used in extraboard scheduling and evaluate 

the effectiveness of such scheduling practice. 

 

1.5 Thesis Contents 

The thesis is organized as follows: Chapter 2 proposes an overall analysis framework for 

the extraboard planning problem. Chapter 3 reviews the relevant literature for the building blocks 

in the framework. Chapter 4 introduces the context for the analysis. Chapters 5 addresses the 

prediction of absence. Chapter 6 formulates the scheduling model and assesses the performance of 

different types of models. Lastly, Chapter 7 offers a summary of the major contributions and 

proposes future research directions.  

 

  

 
1 HASTUS™ Daily is a product of GIRO. 
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Chapter 2 Overall Analysis Framework  

This chapter describes the overall framework employed in this thesis to approach the 

extraboard planning problem. First, the decision-making process in extraboard planning is 

described. Then an interaction framework that can be applied at various levels for the demand and 

supply of operators is presented. Finally, the information feedback loop that cycles performance 

outcome data back to the earlier stages of planning is illustrated. 

 

2.1 The Decision-Making Process 

 The full workforce planning timeline can be summarized in Figure 2-1. Specifically, there 

are three important decisions to be optimized. At the strategic level, the number of extraboard 

operators to hire and to allocate to each garage is determined. At the tactical level, the number of 

extraboard operators for each day is determined. At the operational level, the report times of the 

cover list operators for unexpected absences are decided. In this thesis, only the tactical and the 

operational level decisions are considered, given a fixed number of extraboard operators available 

at each garage. At the time of deciding the number of extraboard operators for each day (the tactical 

level), absence levels (both known-in-advance and unexpected) are uncertain. At the time of 

deciding the report times of cover list operators (the operational level), the quantity and time-of-

day distribution of unexpected absences are uncertain. In Figure 2-1, these two decisions within 

the analysis scope are highlighted in red. The assignment on the day of operations is assumed to 

be greedy: extraboard operators will be used whenever available and overtime will be sought when 

no extraboard operators are available. Whether the greedy approach is optimal is another research 

topic on its own (Gupta and Li, 2016) and beyond the scope of this thesis. 

 

 

Figure 2-1 The Workforce Planning Process for Bus Operators 
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2.2 Interaction Framework of Quantities Involved 

 The problem, at each planning stage, can be decomposed into three building blocks: a 

demand model, a supply model, and an interaction mechanism. Figure 2-2 shows the proposed 

analysis framework. All open work is treated as demand for operator-hours, with available time to 

cover as the supply, and temporally aligning demand and supply produces trip outcomes (either 

completed or dropped). 

 

 

Figure 2-2 Interaction Framework for Interested Quantities 

 

 There are several reasons for open work, the biggest one being absence among scheduled 

operators. Depending on the time of notice, absences are divided into known-in-advance absence 

and unexpected absence. Different agencies have different criteria to categorize known-in-advance 

and unexpected absences, and the two types of absences are usually covered with different 

scheduling procedures. Aside from absence, another source of open work is extra service, which 

includes shuttles during special events and/or subway shutdowns. 

 Two options exist to cover open work: the extraboard and overtime. The extraboard is a 

proactive measure to cover open work, which is scheduled up till the day before the service day; 

and overtime is a reactive measure, which is acquired as work becomes open on the service day. 

 Since misalignment of demand and supply produces unproductive cover time and lost 

service, the interaction mechanism depends on the unit of analysis. For example, if open work and 

available time to cover are both at the time-of-day level, then directly aligning them temporally 

produces the times and quantity of personnel shortage. If open work and available time to cover 
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are on the daily level, then assumptions need to be made about the (mis)alignment of the time-of-

day profiles.  

 This analysis framework applies to both tactical and operational level scheduling.  In 

general, the number and report times of the extraboard are the decisions to be made and the open 

work and overtime availability need to be estimated. Trip outcome is the objective to be optimized. 

At the tactical level, the number of extraboard operators to schedule for each day needs to be 

determined. Both the amount of open work and overtime available are unknown and need to be 

predicted (or aggregated) from the operational level model. At the operational level, the scheduling 

decisions are the report times for the cover list operators. The number of known-in-advance 

absences and the majority of extra service, and the number of cover list operators to cover 

unexpected open work are known; the amount and time-of-day distribution of unexpected open 

work and available overtime are uncertain. The next section describes how observed trip outcomes 

can be used to form a feedback loop to inform earlier planning stages. 

 

2.3 Feedback Loop of Decision Variables and Observations 

 In Figure 2-3 we present an extended version of Figure 1-2 including the information 

feedback loop. From trip outcomes, information about the known-in-advance absences, 

unexpected absences, non-service work performed, lost service, and overtime performed can be 

extracted. First, overtime availability can be estimated historially from overtime performed and 

lost service. Since overtime is usually the last resort for covering open work, overtime requested 

is the total of overtime performed and lost service. When overtime performed is less than overtime 

requested, overtime performed is equal to overtime availability. When overtime performed is equal 

to overtime requested, available overtime is greater than or equal to overtime performed. Models 

to forecast unexpected absence and non-service work could be developed directly from 

observations, thereby providing a better understanding of how many operators are required to 

cover unexpected open work. Similarly, forecasts for the number of known-in-advance absences 

can be developed from historical observations. Combining the number of extraboard operators 

needed for unexpected absences, and the number needed for known-in-advanced absences gives 

recommendations for the tactical-level scheduling decision. Further, by aggregating the number of 

extraboard operators needed for each planning period, we could obtain recommendations for the 

strategic-level decisions on the number of extraboard operators to hire. 
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Figure 2-3 Information Feedback Loop 
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Chapter 3 Literature Review  

The proposed analysis framework has two major components: modelling absence and 

overtime availability, and optimization of extraboard schedules. Sections 3.1 and 3.2 offer an 

overview of literature in these two areas, respectively. Section 3.3 reviews the prior work on 

workforce planning at the MBTA. Section 3.4 describes the state of the practice in the transit 

industry. 

 

3.1 Absence / Overtime Modelling 

An ongoing area of research is the study of employee absenteeism and absence 

management in the social sciences. Behavioral models of absenteeism provide insights into the 

characteristics of employees who are more likely to be absent, why they are absent, and what 

incentives can reduce absence. This information can serve as domain knowledge in model and 

variable selection. There are three perspectives: individual, social, and economic (Kaiser, 1998). 

Some believe that absenteeism is dependent on the individual’s willingness and ability to attend 

work (Suárez and Muñiz, 2018), others believe that social adaptation (Ahn et al., 2013) and peer 

pressure (Gaudine and Saks, 2001) influence absence behavior. In economics, an income-leisure 

tradeoff model formulates absence as a balance between income and leisure, which is directly 

related to the employee’s marginal earnings, perceived safety, and schedule flexibility (Allen, 

1981). While there are studies that support this theory (Barmby et al., 2001), there is also empirical 

evidence showing that pay and absenteeism are unrelated (Winkelmann, 1996). Specific variables 

that have been used to study absence include personal and family factors (income, health, 

geographical location, gender, age, etc.), characteristics of work, attitudes towards work, income, 

social adaptation, firm size, etc. All studies on absenteeism point out that although generalizations 

can be made at the behavioral level, absenteeism is highly complex and specific to the industry 

and organization (Ahn et al., 2013; Allen, 1981; Kaiser, 1998; Suárez and Muñiz, 2018). In 

addition, some types of data, including demographics and attitudes, are difficult to obtain due to 

privacy and cost concerns. Therefore, while past literature serves as a guide for what to look for, 

each situation needs to be assessed individually. 

Overtime decisions are consistent with utility maximization subject to budget constraints, 

positively related to the pay premium and the number of hours of work after which overtime must 

be paid. But this positive correlation is quite weak since overtime decisions are fairly insensitive 

(Idson and Robins, 1991). An analysis using logistic regression on the 2002 General Social Survey 

(GSS) Quality of Work Life Module found that, similar to absence, voluntary overtime decisions 

are also related to certain demographic, job and work characteristics such as being single, 
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satisfaction with one's job, being a union member, employed in the public sector and standard 

(rather than contingent) jobs and having a say in one's job (Golden and Wiens-Tuers, 2005).  

To model absence quantitatively, due to the difficulty of obtaining demographic data, most 

research is based on aggregate data and uses regression. MacDorman et al. presented the earliest 

analytical work on this topic and approximated the cumulative distribution of absence by a logit 

function (MacDorman and MacDorman, 1987). Diab et al. used a multi-level regression to 

characterize and predict absence using both demographic and historical information (Diab et al., 

2014). Poisson regression with underreporting estimated by Monte Carlo Markov Chain (MCMC) 

(Winkelmann, 1996) and negative binomial regression (Barmby et al., 2001) have also been used 

to analyze annual absence days. Sturman compared eight different regression models to model the 

number of excused/unexcused absences in a given year using both simulation and actual data. The 

models include ordinary least squares (OLS), OLS with transformed variables, Poisson, over-

dispersed Poisson, negative binomial, Tobit, ordinal Logit, ordinal Probit. The focus of the study 

was whether the models yield false positives, that is, identified insignificant variables as being 

significant. The study concluded that despite methodological expectations, OLS does not produce 

significantly more false positives; Poisson and Tobit models are more prone to false positives; and 

negative binomial models are the most conservative when it comes to statistical significance of 

model coefficients (Sturman, 1996).  

 

3.2 Robust Schedule Optimization  

It is important to acknowledge the difference between regular operator scheduling and 

extraboard scheduling. For regular run-cutting and operator assignment, the problem is often how 

to effectively formulate and solve a classical set covering problem followed by a set partitioning 

problem (Constantino et al., 2017). Extraboard operators are assigned to cover regular operator 

absences and other non-service open work; therefore, while the problem is on a much smaller scale, 

the major challenge is explicitly accounting for uncertainty. Literature on the specific topic of 

extraboard scheduling in the transit industry is limited. The question of covering absence also 

arises in other service industries and has been studied quite extensively in the airline and nursing 

industries in particular. The rest of the section reviews the methods applied in other industries to 

account for uncertainty in scheduling. 

To build more robustness into the schedules, we could either proactively build robustness 

into the baseline plan, or reactively seek overtime to cover operational disruptions (Ingels and 

Maenhout, 2018). In the extraboard scheduling problem we make proactive decisions on the 

number of extraboard operators to schedule for each day at the tactical scheduling level, and make 

reactive decisions on the report times for each extraboard operator before the service day, as well 
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as overtime acquisition of the service day. In most of the literature, the strategic, tactical, and 

operational level models are optimized separately, but the structure of the problem in the scope of 

the thesis gives rise to a two-stage program that can be solved jointly. Ingels and Maenhout 

explored this structure in their theoretical analyses of the benefits of scheduling extraboard 

operators (Ingels and Maenhout, 2015) and the ability to acquire overtime (Ingels and Maenhout, 

2018). A systematic evaluation of the effect of having a reserve workforce was performed with 

simulated uncertain demands using scheduled service as the mean. The notions of 0% robustness 

(having no extraboard) and 100% robustness (having unlimited extraboard operators) were 

proposed. Both studies showed that it is important to schedule the extraboard to keep the overall 

cost under control and the assignment of the extraboard involves a tradeoff between the cost of 

additional extraboard operators and the cost of requesting overtime and/or dropping service (Ingels 

and Maenhout, 2018, 2015).  

In most analyses, a myopic approach was assumed considering the match between jobs and 

workers, that is, the extraboard operators will be exhausted before overtime is engaged. Gupta and 

Li proposed a randomized algorithm that investigated the tradeoff between the myopic approach 

(of accepting all jobs that can be scheduled) and the strategic approach (of accepting jobs that are 

longer than some threshold), thus balancing the proactively scheduled extraboard personnel and 

the potential reactive overtime (Gupta and Li, 2016). However, aside from efficiency, the negative 

impacts of excessive overtime on the personal lives of the employees and on service reliability 

must also be considered. 

Depending on the availability of data and the amount and overlap of absences known in 

advance, there are a number of ways that uncertainty can enter the formulation. When a good 

model to predict uncovered open work is available or if the most absences are known before the 

scheduling process, an optimal schedule can be developed using a set-covering and partitioning 

approach without considering uncertainty (Dillon and Kontogiorgis, 1999). When reliable 

information on the work that needs to be covered is not available, simulation can be used. A 

simulation of the airline's operations with stochastic journey time and crew absence inputs (without 

reserve crews) is used to generate input disruption scenarios for the mixed integer programming 

simulation scenario model (MIPSSM) formulation. Each disruption scenario corresponds to a 

record of all of the disruptions that may occur on the day of operation (Bayliss et al., 2017). To 

account for absences, the most common approach is to fit a regression model for the probability 

of absence for each shift or person (Bayliss et al., 2012; Maass et al., 2017; Wang and Gupta, 

2014). Compared to stochastic optimization, another alternative, robust optimization, has the 

advantage of replacing the probabilistic representation with deterministic, set-based constraints 

which makes it tractable in high dimensions (Bandi and Bertsimas, 2012). In transportation, robust 

optimization is widely applied in supply chain management and has demonstrated superior worst-

case results, smaller variance in performance with a small loss of optimality when the actual 
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distributions of the model inputs are similar to those used in the nominal model (Bruns et al., 2014; 

Peters et al., 2016; Van Landeghem and Vanmaele, 2002). 

 

3.3 Prior Work on Workforce Planning at the MBTA 

There is a line of research on this topic conducted at the MBTA in the 1980s and 1990s, 

which set the stage for future transit workforce planning efforts. Looking at absence 

retrospectively, Koutsopoulos formulated a tactical and an operational level integer programming 

model to show that significant productivity and reliability improvements could be achieved wkith 

optimization compared to using rules of thumb or simple deterministic models (Koutsopoulos and 

Wilson, 1987). Hickman et al. improved the formulation of the estimation of lost service by 

introducing the concept of “slop time”, which was defined as the nonzero element of uncovered 

open work and unproductive cover time (since one of them has to be zero for a particular time 

period), and fitting a “slop time” curve with respect to the difference between available hours to 

cover and amount of open work (Hickman et al., 1988). Kaysi later represented absence as a 

binomial process with the probability of a run being open having a constant value. The split 

between overtime and lost service, when no extraboard operator is available, was assumed to be 

constant (Kaysi and Wilson, 1990). Building on Kaysi’s work, Shiftan further studied the 

relationship between absence and overtime, as well as the relationship between overtime and 

service reliability. This analysis showed that absence was more a habit than a decision made with 

respect to overtime already performed. At the system level, there was a strong linear relationship 

between uncovered open work and missed trips at the daily level. In the study, instead of 

characterizing the “slop time” as one component, “slop time” was decomposed into uncovered 

open work and unused extraboard hours; the quantities are estimated separately and summed. Then 

the lesser of the two was taken to be the “slop time” for the day (Shiftan and Wilson, 1993). In the 

1990s, data entry and analysis were not fully automated it was very challenging to expand the scale 

of the study or to do analysis with a finer resolution. This research was not followed up. When 

more granular data became available from the recently employed scheduling software HASTUS™ 

Daily, the MBTA became interested in revisiting this topic. 

 

3.4 State of the Practice in the Transit Industry 

Some agencies (e.g. Dallas Area Rapid Transit) use historical data and rolling averages of 

open work to aid in extraboard scheduling but most agencies schedule extraboard report times 

manually, based on experience (DeAnnuntis and Morris, 2008; Gupta et al., 2011). At the MBTA, 

all scheduling decisions have to be made before noon on the previous day. After known-in-advance 

open work is addressed, the garage superintendent usually splits remaining extraboard operators 
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between serving the morning and afternoon peaks (about a 60-40 split, with more emphasis on the 

mornings), gives assignment times from the start of day in half-hour intervals, and saves one 

operator for the last shift of the day. In this thesis, we seek to improve this practice by developing 

systematic, data-driven methods to improve the performance and robustness of extraboard 

scheduling.  
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Chapter 4 The MBTA Context  

Although the overall decision-making framework is applicable at all transit agencies, 

specific practices with respect to both data availability and operator scheduling vary. This chapter 

describes the context in which the application discussed in the following chapters of this thesis 

takes place. Section 4.1 outlines the scheduling practices at the MBTA and how they influence 

modelling choices; Section 4.2 describes the data sources and pre-processing procedures; Section 

4.3 presents the descriptive analysis of the data to better understand the current state of the practice 

and the resulting performance. 

 

4.1 Scheduling Practice at the MBTA 

This section provides an overview of specific MBTA scheduling practices and how they 

influence data processing and model formulations. These scheduling practices may not apply to 

other agencies and need to be revised when applying the models to other agencies. The scheduling 

practices mentioned here are summarized again in later chapters when the models are presented.  

1) Part-time vs. full time extraboard operators: In theory, the MBTA only has full-time extraboard 

operators. However, part-time extraboard operators may be assigned when there is a shortage 

of operators (for example, in rating 4 of 2017). 

2) Split between known-in-advance and unexpected absence: The MBTA assigns full-day 

known-in-advance absences to extraboard operators (including splits and built-in overtime). 

Unexpected absences are covered by the cover list operators. An operator might cover multiple 

pieces of different runs, and a run might be covered by multiple operators. Since the report 

times for the cover list operators are assigned at 10am on the prior day, absences reported 

before 10am on the prior day are classified as known-in-advance, and absences reported later 

are unexpected. Partial-day known-in-advance absences are not assigned in advance, rather, 

they are left for the cover list, although anecdotal evidence suggests that partial-day known-

in-advance absences are uncommon. 

3) Report time assignment: After known-in-advance-absence run assignment, the remaining 

cover list operators will each be given a report time. At the MBTA, the report times of the 

cover list operators are based on the garage superintendent’s judgement, with the general rule 

of thumb being that operators will be assigned to cover the first run and the last run in the day, 

with the rest assigned at half-hour intervals for the morning and afternoon peaks, with more 

emphasis in the mornings (about a 60-40 split). 

4) Vacation: Vacations are mostly handled at the strategic and tactical level with a separate pool 

of vacation relief operators. Each year in November, operators with three (or more) weeks of 

vacation, pick their vacation weeks based on seniority and availability, and vacation relief 
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operators will be assigned to cover their work. Some vacation time in the unit of days can also 

be picked at the start of each rating and during the rating with valid reasons. These vacation 

days are covered by the extraboard. Therefore, in data processing, vacations in general were 

not counted towards operator absence but vacation days were included in operator absence 

since they need to be covered by the extraboard. Additionally, at times when there are more 

vacation relief operators than operators on vacation, the extra vacation relief operators are 

added to the extraboard. 

5) Overtime acquisition: Overtime can be sought from both operators on their days-off and 

operators who are working on the day but not at the hour. In theory, overtime is the last resort 

to cover services. When there are no extraboard operators available, overtime is offered to 

regular operators in decreasing orders of seniority. The more senior operators get to decide 

first if they want to take the overtime. However, at times when the extraboard is too small, 

operators on their dayoff might be called in for overtime in anticipation of operator shortage. 

Overtime is paid at 1.5 times of the regular rate. The MBTA used to pay the operators at this 

50% premium for all work hours outside of their picked schedule. To avoid overtime-induced 

absence (where the operators earn enough income at the start of the week through overtime 

and are more likely to be absent later in the week), the MBTA now pays the premium for 

additional hours after the operator has accumulated 40 hours of work in any given week. 

6) Trippers: Trippers are pieces of work with a run number that are 2-3 hours long. They do not 

fit into any 8h or 6h shifts and are set aside to be covered by the cover list. In theory they could 

be covered by different operators each day, but sometimes a specific cover list operator will 

consistently take a tripper run. 

7) Suspension and Attrition: During the rating, open work caused by suspension and attrition will 

be covered by the extraboard. During data processing, these absences, will be counted towards 

the open work caused by operator absence. 

 

4.2 Data source and pre-processing 

HASTUS™ is a workforce scheduling and management software suite widely adopted in 

the transit industry for planning, scheduling, operations, passenger information, and analysis. 

HASTUS™ Daily is a module in the HASTUS™ software suite that develops and monitors daily 

operator schedules and attendance. The software does not perform extraboard scheduling, but it 

provides rich data on the state of operations, aiding in the development of effective operator 

management strategies. 

The data in this case study comes from rating 4 (September to December) of 2017, 2018, 

and 2019 at the Southampton Garage, as well as rating 4 of 2019 at Charlestown Garage at the 
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MBTA. The MBTA started deploying the software as a pilot at Southampton in December 2016 

and rolled it out to all garages in February 2019. The data includes anonymized information by 

piece of work and scheduled operator, actual operator, start time and end time for each piece of 

work, and whether the piece is cancelled or covered. It is important to note that the data exports 

come from the pilot phase when the software was used as a backup system. As a result, consistency 

and reliability of the data is not guaranteed. 

In order to derive useful information from the data, the starting point is to match the original 

owner (who picked the run) with the actual operator (who performed the run) and identify the 

status of both operators for each piece of work. When the two are different, the original owner 

status explains why the work is open (the demand side in the overall framework); and the actual 

operator status indicates how the work was covered (supply side of the overall framework). A 

sample classification (specific to the MBTA context) with the quantities in the analysis framework 

labelled, is shown in Figure 4-1. 

 One complication with the dataset used was the definition of ‘original owner’. The intended 

definition of this field is the operator who picked the work at the start of the rating. That is, the 

original owner of any tripper should be empty, and the original owner of each run on a particular 

day of the week (except for special weeks that are picked separately, for example Thanksgiving 

week and Christmas week) should be the same person. However, the original owner field of the 

dataset does not always adhere to these definitions. Trippers, most of the time, have an original 

owner assigned and an operator could have different assignments for the same day of the week in 

different weeks. If we stick to using the original rosters as ‘original owner’, inconsistencies will 

result while processing other quantities. For example, the absence records will not match with 

inferred absences from the rosters and actual operator. Therefore, in order to be consistent, the 

column ‘original owner’ in HASTUS™ Daily was taken to be the definition of ‘original owner’. 

Besides internal consistency, another argument for using this column in Daily is that updates made 

so much in advance that the operator is already updated as the original owner in the system are not 

in the scope of extraboard planning. The drawback is that there is not a consistent timeline on when 

the original owner field is updated. More consistent and reliable record-keeping is needed to 

eliminate the need for this assumption. 

 For open work caused by reasons other than absence, there is no information on whether 

or not it was essential. It is important to distinguish between essential and non-essential non-

service duties because the essential ones are as important as scheduled service duties and should 

be estimated in conjunction with operator absence, but non-essential ones should have a lower 

priority. In the dataset, all non-service duties are coded as ‘run as directed’, ‘work as directed’, 

‘cover’, or ‘availability’, and the use of these four codes was not consistent.  
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Figure 4-1 Data Pre-Processing 

 

 Additionally, sometimes operators were observed to perform trips assigned to others at the 

same time when (s)he has an assignment. This could happen when the trip they were originally 

assigned to was less important than the other trip. For example, dropping a trip on a high-frequency 

route might not be serious problem, but dropping a trip on a 30min headway route will leave 

passengers waiting for a very long time. Alternatively, during peak periods, when demand is high, 

missing a trip on a popular route likely leads to overcrowding and cause significant delays. Another 

route that serves an area with low ridership would be less important. However, these are based on 

judgments and are ad-hoc, and therefore difficult to anticipate.  

 In summary, operator absence is the biggest reason for open work (around 80%-85%, as 

shown in Table 4-2), and the other reasons (non-service duties, extra work, etc.) are difficult to 

isolate from the data and/or difficult to anticipate from a modeling perspective. Therefore, the rest 

of the thesis will focus on scheduling extraboard operators to deal with operator absence. 

4.3 Descriptive Analysis 

This section presents the garage performance statistics, and the analysis of empirical 

distributions and relationships among absence, overtime, lost service, and the extraboard. This 

section starts with an overview of the scheduled service in the analysis periods (4.3.1), then 

proceeds to analyze the day-of-week and time-of-day distributions of absence (4.3.2), the 

extraboard size (4.3.3), overtime (4.3.4), cover list utilization (4.3.5), and lost service (4.3.6). For 
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all time-of-day analysis, data was aggregated into 10-min intervals and each service day runs from 

4am to 1am the next day. On the plots, 1am the next day is plotted following 12am (hour 24) and 

labelled as hour 25. 

 

4.3.1 Overall Garage/Rating Information 

Table 4-1 shows the start and end dates and the number of days in the ratings analyzed, 

and the amount of scheduled service in each garage/rating. In subsequent sections, absence, 

overtime, and lost service will be shown as a percentage of scheduled service. Over the three-year 

analysis period, the amount of service provided has been increasing at Southampton. Charlestown 

had 50% more scheduled service than Southampton, concentrated on weekdays. 

 

Table 4-1 Rating-Garage Overview 

 
2017 R4 

Southampton 
2018 R4 

Southampton 
2019 R4 

Southampton 
2019 R4 

Charlestown 

Start Date 09/03 09/02 09/01 09/01 

End Date 12/30 12/29 12/21 12/21 

# Days 119 119 112 112 

Total Scheduled 
Service (hours) 

86,040 98,030 93,650 140,615 

Weekday 
Scheduled Service 

(hours) 
804 903 914 1,523 

Saturday Scheduled 
Service (hours) 

581 689 702 827 

Sunday Scheduled 
Service (hours) 

511 611 617 479 

 

Table 4-2 presents rating-level performance metrics derived from HASTUS™ Daily data. 

Absence is defined as the absences of all operators who are scheduled for service and need to be 

covered by extraboard operators; that is, absences for both non-service duties and the extraboard 

were not included in the rate, and long-term absences, where the work had been assigned to another 

operator, were not included. Additionally, since vacation weeks are covered by dedicated vacation 

relief operators, they are not included in absence, but single-day vacations are covered by the 

extraboard, and so are included. Note that the classification for absence (known-in-advance and 

unexpected) was derived from how absence was covered according to MBTA’s scheduling 

practices outlined in Section 4.1, not by the actual notification time. Absences covered in full by 

one operator were classified as known-in-advance and absences covered by the cover list in 
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multiple pieces, by overtime, or lost were classified as unexpected. Half-day absences were 

assigned to the cover list, regardless of the notification time, and therefore classified as unexpected. 

Since open work not only includes absence, the sum of hours covered by the extraboard, by 

overtime, and lost does not equal the number of absence hours. 

 

Table 4-2 Rating Level Performance Metrics 

 2017 R4 
Southampton 

2018 R4 
Southampton 

2019 R4 
Southampton 

2019 R4 
Charlestown 

Absence Rate 10.9% 12.6% 14.3 % 13.8% 

Known-in-Advance Absence 
Hours 

1,436 (1.7%) 4,787 (4.9%) 5,314 (5.2%) 9,314 (6.6%) 

Unexpected Absence Hours  7,909 (9.2%) 7,598 (7.8%) 8,652 (9.1%) 10,039 (7.1%) 

Absence as % all open work 82.0% 79.9% 84.3% 83.4% 

Overtime Hours (% 
scheduled service hours) 

4,454 (5.2%) 4,283 (4.4%) 4,788 (5.1%) 4,263 (3.0%) 

Service Hours Covered by 
Known-in-Advance Covers 

(% scheduled service hours) 
1,771 (2.1%) 6,817 (6.3%) 5,850 (6.3%) 10,548 (7.5%) 

Service Hours Covered by 
the Cover List (% scheduled 

service hours) 
2,414 (2.8%) 3,213 (3.3%) 3,023 (3.2%) 5,337 (3.8%) 

Non-service Duty Hours by 
the Cover List 

1,427  2,299 780 3,092 

Cover List Service Utilization 
Rate2 

63.4% 58.9% 58.2% 63.9% 

Cover List Overall Utilization 
Rate3 

74.4% 67.6% 67.9% 70.0% 

Lost Service Hours (% 
scheduled service hours) 

1,929 (2.2%) 1,161 (1.2%) 1,945 (2.1%) 2,124 (1.5%) 

  

At Southampton, an increasing absence trend was observed. The absence level for 

Charlestown was similar to that for Southampton. In Southampton 2017, an unusually small 

amount of known-in-advance absences occurred (only 15% of all absence was classified as known-

in-advance) possibly because of a combination of inaccuracies in record-keeping and the very  

small extraboard. In 2017, HASTUS™ was in its early pilot phase at the MBTA, so there was no 

guarantee of accurate record-keeping. Additionally, garages reserved some extraboard operators 

for the cover list. For example, a cover list operator was scheduled to cover the first run in the 

 
2 Cover List Service Utilization Rate = Service Hours Covered by the Cover List / (Service Hours + Non-service 

Hours Covered by the Cover List + Idle Time) 
3 Cover List Overall Utilization Rate = (Service Hours + Non-service Hours Covered by the Cover List) / (Service 

Hours + Covered by the Cover List + Idle time) 
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morning to ensure that it would be operated. If there were not enough operators, even when 

absences were notified beforehand, they would end up covered by the cover list, overtime, or lost 

and be classified as unexpected absence. In 2018 and 2019 at Southampton, the known-in-advance 

vs. unexpected split is 4:6 and in 2019 at Charlestown the split is around 5:5. Unexpected absence 

levels stayed relatively stable over the years (8-9% of all scheduled service). Absence accounted 

for around 80% - 85% of all open work in all analysis periods, making it an important quantity to 

estimate for extraboard planning. 

Overtime at Southampton was similar across the three years (~5% of all scheduled service), 

but less was observed at Charlestown (3%) due to the higher percentage of all work done by the 

extraboard (~11% compared to ~10%).  

While the amount of work done by the extraboard was low in 2017 (4.9%) due to 

extraboard shortage, the amount of the work done by the extraboard was similar in 2018 and 2019 

at Southampton (9.6% and 9.5%, respectively); and Charlestown had more work done by the 

extraboard (11.3%). 

It is meaningless to calculate utilization rates for covers assigned for known-in-advance 

open work because the work is always covered with full efficiency. We can categorize the pieces 

of work that the cover list operators do as service, non-service duties, and idling. The service 

utilization rate is defined as the amount of time a cover list operator performing service divided by 

the duration that (s)he is scheduled for. The service utilization rates observed were stable, around 

50% to 60%. The cover list operators also do non-service work, such as covering for the inspectors 

and transferring buses. These pieces of work were not included in service time but were included 

in the overall utilization rate. The overall utilizations rates were between 65% to 75%. The times 

that the operators have work coded as ‘cover’, ‘availability’, ‘run as directed’, or ‘work as directed’ 

were classified as idle. However, anecdotal evidence suggests that this is a weaker part of the data 

and sometimes work was done during those times but was not recorded in the system. Therefore, 

overall utilizations are likely to be higher than the numbers given. At Southampton in 2017, there 

were fewer cover list operators, and the utilization rate was (slightly) higher compared with other 

ratings/garages. 

Lost service rate was around 1-2% and was dependent on the absence level, overtime 

performed, and cover hours.  For example, at Southampton in 2017, the absence level was low, 

but the extraboard staffing level was also low, leading to a high rate of lost service. At 

Southampton in 2019, although the extraboard staffing level was raised and overtime performed 

was level, more absences were observed so the lost service rate was as high as 2017. Southampton 

in 2018 and Charlestown in 2019 had modest amounts of absence, and reasonable amounts of both 

overtime performed and extraboard hours, therefore less service was lost. 
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4.3.2 Absence 

Figure 4-2 shows the absence rates for each garage/rating for different days of the week. 

Average absence rates (% of scheduled service) are plotted on the y-axis and different days of the 

week on the x-axis. Here rates are plotted instead of the number of hours, because on weekends 

and holidays, there were fewer hours scheduled, therefore the number of absence hours was 

naturally lower, making the comparison using absence hours potentially misleading. 

 

 
 Total Absence Rates 

 

 Known-in-Advance Absence Rates  

 

 Unexpected Absence Rates 

Figure 4-2 Absence Rates 

 

Overall, the trends for different ratings/garages were similar: there was less absence on 

Tuesdays, Wednesdays, and Thursdays; higher absence levels on Mondays and Fridays; and the 

lowest absence rates on holidays. The difference between the highest and the lowest weekday was 

around 3%-4% of scheduled service hours. Additionally, at Charlestown, both known-in-advance 
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and unexpected absences rates on weekends were high. At Southampton there were less known-

in-advance absences on weekends. On most days, there were more unexpected absences than 

known-in-advance absences, except for holidays. This is probably due to more single-day 

vacations requested and granted on holidays and may require separate modelling considerations. 

 Figure 4-3 shows the distributions of shift durations of the operators who are classified as 

covering for known-in-advance absences. Usually, only full-time operators (8h shifts) are on the 

extraboard. For all ratings/garages, 8h shifts were the most common, along with 6h (part-time) and 

10h (4-day week) shifts, confirming the validity of the data processing procedure. In 2017 at 

Southampton, there were a number of part-time operators on the extraboard, due to the significant 

shortage in extraboard workforce at the time. In the other ratings/ garages, part-timers covered for 

known-in-advance absences very occasionally, possibly due to special arrangements. Additionally, 

in ratings after 2017, 10h shifts were scheduled. Known-in-advance extraboard operators also 

cover those shifts in full, resulting in some 10h shifts in the figure. 

  

a) 2017 R4 Southampton b) 2018 R4 Southampton c) 2019 R4 Southampton 

 

d) 2019 R4 Charlestown 

Figure 4-3 Known-in-Advance Absence Duration 

 

Figure 4-4 shows the time-of-day distribution of the number of operators covering 

unexpected absences. Each light blue line represents a day and the thicker line is the mean profile. 

Known-in-advance absences are excluded, because each is covered by a single operator, so only 

the number known-in-advance absences per day is of interest, not the time-of-day distribution. On 

average, the unexpected absence profile has a bi-modal distribution with morning and evening 

peaks on weekdays and a unimodal distribution on the weekends, and were similar across 

ratings/garages. Although the time-of-day distribution was highly variable, the average hourly 

absence was proportional to the amount of scheduled service, meaning that there were no particular 

times when operators tended to be absent more and the absence rates were similar across the day. 

At Charlestown, where there were significantly more weekday trips, the peaks in absence profiles 

were more pronounced than those at Southampton. 
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a) 2017 R4 Southampton b) 2018 R4 Southampton c) 2019 R4 Southampton 

 

d) 2019 R4 Charlestown 

Figure 4-4 Unexpected Absence by Time of Day 

 

4.3.3 The Extraboard  

In a similar format to Section 4.3.2, Figure 4-5 shows the number of extraboard operators. 

Because of the larger amount of scheduled service, Charlestown had a larger extraboard than 

Southampton. At Southampton, there was a shortage of extraboard operators in 2017, but the 

numbers caught up in 2018 and 2019, consistent with the rating-level statistics. Absence rates for 

weekdays and weekends were similar but there was less service scheduled for the weekends. 

Across all ratings/garages there were significantly fewer (close to 1/3) extraboard operators 

scheduled on the weekends, while the scheduled service on the weekends was around 70% and 40% 

of weekdays for Southampton and Charlestown, respectively. This mismatch might be due to the 

lack of knowledge on open work distribution, or the lack of extraboard operators, or that weekend 

trips were strategically given a lower priority. During the week, the number of extraboard operators 

scheduled generally matched the absence patterns at Southampton (lower on Tuesdays, 

Wednesdays, and Thursdays), but at Charlestown there were more extraboard operators scheduled 

on Tuesdays even though there was less absence. 

Figure 4-6 shows the time-of-day distribution of the scheduled cover list operators. Due to 

all cover list operators working straight runs while most regular runs were split, the time-of-day 

distribution of cover list operators did not closely match the absence profiles and exhibited a more 

muted bi-modal distribution. In order to match the absence distributions and improve utilization 

rates, there might be value in scheduling split runs for the cover list and this scenario is tested later 

in Section 6.6.2. 
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 Total Extraboard Operators 

 

 Extraboard Operators for Known-in-Advance Open Work 

 

 Extraboard Operators for Unexpected Open Work 

Figure 4-5 Extraboard Operators by Day of Week 

 

a) 2017 R4 Southampton b) 2018 R4 Southampton c) 2019 R4 Southampton d) 2019 R4 Charlestown 

Figure 4-6 Time-of-day Distribution of Cover for Unexpected Open Work 
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4.3.4 Overtime Availability 

Figure 4-7 shows the day-of-week patterns of overtime performed. Overtime performed is 

dependent on absence level and number of operators on the cover list, as well as overtime 

availability. Performed overtime was inversely correlated with the number of cover list operators. 

At Charlestown, although the absence levels were higher, overtime performed was lower than that 

at Southampton, because the size extraboard was also larger. The day-of-week distribution was 

similar across ratings/garages, with more overtime performed on Thursdays, Fridays and Saturdays, 

followed by Mondays, Tuesdays, and Wednesdays. Significantly less overtime was performed on 

Sundays and holidays.  

 

Figure 4-7 Overtime Hours by Day of Week 

 Figure 4-8 plots overtime requests and availability by hour for each rating/garage. In the 

plots, only overtime to provide service was included; overtime for non-service duties (such as 

flagging, and inspector duties) was excluded. Since overtime is the last resort to cover service, 

overtime requested is defined as overtime performed plus lost service. Fulfillment rate is defined 

as overtime performed divided by overtime requested. The scatter plot on the left shows overtime 

fulfillment with respect to the hour and number of operators requested. Each point on the plot 

represents the number of requests made in a particular hour and the color of the point represents 

the fulfillment rate (from 0% to 100%). A 0% fulfillment rate indicates no overtime is performed 

with all requests turning into lost service, and a 100% fulfillment rate indicates overtime requested 

at this hour equals overtime performed and no service is lost. When there are multiple day/hours 

with the same number of requests, the fulfillment rate shown is the average. The plot on the right 

shows the maximum and average amount of overtime requested and fulfilled by time of the day.  

 Similar to overtime performed, the amount of overtime requested is also not an independent 

quantity. It was derived from the amount of open work and the available cover list at different 

times. Therefore, the patterns for different ratings/garages differ. For example, Southampton in 

2017 and Charlestown in 2019 showed a larger evening peak with respect to overtime requested. 

There was a higher evening peak in the absence pattern compare to the other two analysis periods 
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(Figure 4-4) that was not matched by the amount of cover scheduled in the evening peak (Figure 

4-6).  In general, the number of overtime requests was fewer at the start/end of the day and had a 

large range from morning peak to evening peak. For example, in mid-afternoon (around 3pm), 

both 0 requests and 15 requests had been observed on different days. In all cases, a decreasing 

fulfillment rate was observed with increasing requests at each hour, but the rate and threshold of 

the decrease were different for each rating/garage/hour. 

 

 

 2017 R4 @ Southampton 

 
 2018 R4 @ Southampton 

 
 2019 R4 @ Southampton 
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 2019 R4 @ Charlestown 

Figure 4-8 Overtime Requests and Availability by Hour 

 

Figure 4-9 shows the relationship between overtime fulfillment rate and hour / number of 

potential overtime operators. Each point in the figure represents a day/10min period when overtime 

was requested. On the left, the fulfillment rate is plotted against the hour; on the right the 

fulfillment rate is plotted against the rate of request and number of potentially available operators. 

Potential overtime operators are defined as either operators who work on that day but not at that 

hour, or operators who have the day off but are present for work the previous day or the following 

day so potentially they could be called in for overtime.  

Both relationships for all ratings/garages were highly variable as the points are all over the 

figures, but we can draw some insights from the average value (plotted in black). During the early 

mornings and late evenings, the sample size was small since there were often no overtime requests 

(Figure 4-8); so the numbers were less reliable. On average, the overtime fulfillment rate was lower 

during the morning and evening peaks. One possible reason is that the number of potential 

operators being smaller (more operators are already working during peak hours). In the morning 

it is harder to call people in and in the evening peak there was usually a larger request (Figure 4-8), 

the combination also resulted in lower fulfillment rates during the peaks. The relationship between 

overtime fulfillment and request rate was also variable. In general, a higher request rate led to 

lower fulfillment, but this was more pronounced in some years than others. When the request rate 

went from 0% to 40%, at Southampton in 2017 the fulfillment rate barely decreased by a couple 

percentage points, whereas at Southampton in 2019 the fulfillment rate decreased from ~70% to 

~30%. 
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 2017 R4 @ Southampton 

 
 2018 R4 @ Southampton 

 
 2019 R4 @ Southampton 

 

 2019 R4 @ Charlestown 

Figure 4-9 Overtime Fulfillment w.r.t Hour and Rate of Requests 
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4.3.5 Cover List Utilization 

Figure 4-10 shows the day-of-week cover list service utilization rates. Service utilization 

rates on Sundays and holidays were lower, possibly a result of less absence to cover. Other than 

that, there was no common pattern across the ratings/garages. 

 

 

Figure 4-10 Cover List Service Utilization Rate by Day of Week 

 

Figure 4-11 shows the time-of-day distribution of cover list service utilization rates. Similar 

to overtime fulfillment rates, in the early mornings and late evenings, there were fewer 

observations (usually one cover list operator was scheduled in both the early morning and late 

evenings), so the average rates were not consistent. The service utilization rate of the cover list 

was highest during the morning and evening peaks on weekdays due to there being more open 

work. A similar, but less pronounced pattern was observed on the weekend. The average service 

utilization rate was low in the early morning because the garage always scheduled one cover list 

operator for the first shift in the morning to ensure that it will always run. If the assigned regular 

operator shows up, there will not another trip for the cover list operator to do, resulting in very low 

utilization. Options could be explored around this scheduling practice to improve the utilization 

rate of the cover list operators. 

 

 

a) 2017 R4 Southampton 
 

b) 2018 R4 Southampton 
 

c) 2019 R4 Southampton 
 

d) 2019 R4 Charlestown 

Figure 4-11 Time-of-day Distribution of Cover List Service Utilization Rate 
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To investigate the assignment of service and non-service duties for the cover list operators, 

the non-service duty hours for the cover list in Table 4-2 was further broken down with the results 

shown in Table 4-3. The record-keeping of the work performed for these duties was known to be 

inconsistent at the MBTA. For a piece of work labelled as ‘run as directed’, which should mean 

standing by and doing nothing, the operator could be called to do something else, while the records 

may not get updated. Therefore, all pieces of work done by the cover list that were not service trips 

were included in this table.  

 

Table 4-3 Breakdown of Non-Service Duty hours 

 2017 R4 
Southampton 

2018 R4 
Southampton 

2019 R4 
Southampton 

2019 R4 
Charlestown 

Non-Service Duty Hours by the 
Cover List (% cover list hours4) 

1,427 (39.6%) 2,299 (44.2%) 2,248 (45.0%) 
3,092 

(40.9%) 

- Deadhead 363 416 368 390 

- Other 1,064 1,882 1,880 2702 

o With Lost Service (% all 
Non-Service Duty Hours 
by the Cover List) 

256 (18.0%) 352(15.3%) 845 (37.6%) 652 (21.1%) 

o With Lost Service and/or 
Overtime (% all Non-
Service Duty Hours by 
the Cover List) 

717 (50.2%) 1,458 (63.4%) 1,561 (69.4%) 
1,636 

(52.9%) 

 

Non-service duties make up a significant portion of all cover list hours (~40%). While the 

operators are performing non-service duties, oftentimes services were lost (15%-40%) or overtime 

was requested to cover service trips (50%-70%). This suggests that some of the non-service duties 

were essential and/or unexpected absences occurred when the cover list operators had been 

dispatched for non-service duties and could not be called back for service. However, due to the 

lack of detailed, reliable records on what was done during these non-service hours and what was 

essential and what was optional, the non-service hours could not be further classified into the two 

reasons stated above.  

 

 
4 This rate is 1-Cover List Overall Utilization Rate 
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4.3.6 Lost Service 

Lost service is derived from the interaction between open work, the extraboard, and 

overtime performed. When there was open work and nobody was available to cover, service will 

be lost. Figure 4-12 shows the day-of-week distribution of the lost service rate. For all 

ratings/garages, similar trends were observed with the least proportion of service being lost during 

the mid-week. Mondays, Fridays, and weekends had significantly higher lost service rates than 

Tuesdays, Wednesdays and Thursdays. It is worth noting that Saturdays and Sundays have a 

reduced schedule than weekdays, therefore a similar (or higher) number of lost service hours meant 

the rate of lost service was much higher. On holidays, significantly less service was lost due to 

lower absence rates and a similar amount of resources (extraboard and overtime) to cover should 

open work occur. 

 

 

Figure 4-12 Lost Service Rate by Days of Week 

 

Figure 4-13 shows the time-of-day distribution of lost service hours. Across all 

ratings/garages, distributions with large spreads were observed. The worst case was very bad 

compared to the average case. On weekdays there were higher lost service hours in the morning 

and evening peaks, with the distribution on weekends being more uniform.  

 

 

a) 2017 R4 Southampton b) 2018 R4 Southampton 

 

c) 2019 R4 Southampton 
 

d) 2019 R4 Charlestown 

Figure 4-13 Time-of-day Distribution of Lost Service 
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In summary, most of the rating-level, day-of-week, and time-of-day patterns of absence 

and the extraboard are generalizable across ratings and garages. Overtime and lost service were 

derived from absence and extraboard scheduling, and therefore were more variable. Among 

weekdays, there was less absence, fewer extraboard operators scheduled, and less lost service on 

Tuesdays and Wednesdays; rates of absences were similar on the weekends but due to less 

scheduled service the hours needing to be covered was smaller, the number of extraboard operator 

scheduled was also smaller on the weekends, resulting in higher lost service rates. Regarding the 

time-of-day distributions, although highly variable, both average absence and lost service profiles 

resembled the distribution of scheduled service; due to the straight-run requirement, the modes in 

the bi-modal distribution of the number of extraboard operators available were less pronounced. 

Observations at Southampton in 2017 were quite different due both to it being the early pilot of 

the software, as well as the shortage of extraboard operators.   
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Chapter 5 Absence Models 

 This chapter explores one of the most important inputs into extraboard scheduling: operator 

absence. At the tactical level, we need to determine the number of extraboard operators assigned 

to each day of the week with only probabilistic information about the amount of open work which 

will need to be covered. At the operational level, we need to determine the report times for 

unassigned extraboard operators with only probabilistic information about the time-of-day 

distribution of unexpected open work. Since most of the need for the extraboard comes from 

covering absences, developing an accurate model to forecast absence levels on different days of 

the week, and at different times of day provides valuable information on the demand for extraboard 

operators, and thus is important in extraboard scheduling. 

Section 5.1 discusses the absence modelling problem. Section 5.2 gives an overview of 

models that could be used and their respective advantages and disadvantages. Sections 5.3 - 5.5 

present the model formulations. Section 5.6 presents a case study using data from the MBTA to 

explore the models’ use and effectiveness. 

 

5.1 Issues in Modelling Absence 

1) Categorization of Absence 

In light of the way the notification time for absence affects how absences are covered, we 

categorize absences into two types: known-in-advance and unexpected. At the tactical level, both 

types are unknown. At the operational level, known-in-advance absence is known but unexpected 

absence remains uncertain.  

Known-in-advance absence gives the system (the scheduler as well as operators) enough 

time that an entire run can be assigned to one operator. Therefore, these full-run absences can be 

covered without loss of efficiency, as long as there are enough extraboard operators to cover them. 

If, there are not enough extraboard operators, or if some extraboard operators need to be reserved 

for other reasons (for example, the MBTA typically reserves two extraboard operators to cover the 

first and last trips of the day at each garage), known-in-advance absences could end up being 

covered the same way as unexpected absences. Whether this relationship needs to be modelled 

depends on the agency scheduling practices and on data availability. Additionally, partial-day 

known-in-advance absences are not assigned in advance, rather, they are left for the cover list. But 

anecdotal evidence suggests that partial-day known-in-advance absences are uncommon. In this 

case study, single-day vacations are categorized as known-in-advance absence since they are 

allocated to the extraboard. However, the underlying factors explaining single-day vacations will 
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likely be different from those for other absences. If the data permits it would be helpful to model 

single-day vacation separate from known-in-advance absence. 

After assignment of operators to cover known-in-advance absences, the remaining 

extraboard operators are referred to as the cover list and assigned report times at which they 

become available to cover unexpected absences for the following 8 hours. Unexpected absences 

are the ones that managers have no knowledge of at the time of scheduling because they arise after 

the cover list operators’ report times are set. Cover list report times are then determined based on 

anticipated unexpected absences and overtime availability. When the reality differs significantly 

from the expectation, losses in the forms of unutilized cover list time, high levels of overtime 

performed, and lost services can occur. At any time of day, if we schedule for less absence than 

actually occurs, overtime will be requested, and when overtime is not available, service will be 

lost. If we schedule for more absence than actually occurs, some extraboard operators will have 

no productive work to do while getting paid, resulting in higher costs than necessary.  

Besides this difference in coverage efficiency, the differences in the duration and time-of-

day distributions for known-in-advance and unexpected absences can also be significant. Known-

in-advance absences are usually full-day absences and an extraboard operator will inherit all the 

characteristics of the run including the splits, breaks, and built-in-overtime. The time-of-day 

distribution follows that of the scheduled runs and because of the one-to-one relationship between 

scheduled operator duties and extraboard assignments, we are not concerned about the time-of-

day distribution of known-in-advance absences for the purpose of extraboard scheduling. However, 

unexpected absences can occur for only a piece of a run and different pieces could be covered by 

different operators. Therefore, different pieces of a run could have different outcomes: covered by 

a cover list operator, covered on overtime, or lost. The time-of-day distribution of unexpected 

absences is of interest, as the operational level is concerned with matching the time-of-day 

distribution of unexpected absences with the availability of extraboard operators, which is 

governed by their report times.  

2) Reasons for Absence 

There are different reasons for absence. Common reasons include medical leave (self or 

family), sickness, disability, work rules, vacation, etc. Individual operator characteristics (whether 

(s)he has a habit of being absent, and job commitment), work characteristics (whether the piece of 

work is attractive or convenient), and contextual information (for example, when the overall 

economy is weak, operators may work harder to keep their jobs) can all influence operators’ 

motivation and willlingness to attend. Because the psychology underpinning absence is complex, 

even when the data includes absence classification by type, the real behavioral intent behind the 

decision-making process often remains unknown. Psychological factors are a function of the 

individual, the work, and the environment and are mostly subjective, and difficult to measure. 
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Therefore, although psychological factors may play a large role in determining absence, they are 

not easily incorporated into a model to forecast absence. 

3) Unit of Analysis 

Being absent from work is a time-sensitive, individual-specific decision. While models are 

an abstraction of reality, the level of abstraction depends on the intended application as well as on 

data availability. Below we discuss two aspects of abstraction: aggregation and time resolution. 

To account for heterogeneity across individuals, we would prefer a disaggregate model. 

For example, estimating the probability of absence for each individual is a common approach in 

disaggregate analyses of absence. Disaggregate models require detailed data at the individual level 

to model the population heterogeneity. In contrast, modelling absence at an aggregate level ignores 

differences among individuals and models absence hours for a group of individuals. Aggregate 

models sacrifice individual details but require far less data and are easier to estimate with limited 

data. In this thesis, the underlying behavioral determinants of absence are beyond our scope and 

having aggregate absence information is sufficient to make scheduling decisions. Unless data on 

individual operator characteristics is available and can significantly improve model fit, an 

aggregate model is appropriate for our purposes. 

Absence could be modelled at the time-of-day, daily, weekly, monthly, or annual levels. 

While more detailed models require more information, depending on the relationships being 

explored, more detailed models may not necessarily be better. Although time-of-day observations 

could be summed to daily, weekly, and annual data, it is not the same with modelled results since 

modelling with different temporal units captures different levels of information. For example, a 

time-of-day model is useful to explore the correlations between absence at different times of day 

but is not helpful in characterizing long-term trends. For the purpose of extraboard scheduling, 

particularly at the operational level, absence by time-of-day is needed, and the long-term trends 

are less relevant since the analysis should be repeated every season (season, rating, and timetable 

are used interchangeably in this thesis).  

 

To summarize, in modelling absence for extraboard scheduling at the tactical and 

operational levels, there are a few things to note: 1) Known-in-advance absence and unexpected 

absence should be modelled separately. 2) Behavioral factors may be important in modelling 

absence, but they are difficult, if not impossible, to incorporate into a forecasting model, given the 

available data. 3) Depending on the application and on data availability, disaggregate and 

aggregate models each have their advantages and disadvantages. For the purpose of operational-

level scheduling, the time resolution should be as high as possible. 
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5.2 Approaches to Modelling Absence 

In this section, we briefly describe alternative absence modelling approaches and discuss 

their advantages and disadvantages. In general, we can split the approaches into disaggregate and 

aggregate. In our context, disaggregate models consider differences among individuals and/or runs, 

whereas aggregate models include only temporal information and exclude individual 

characteristics. Disaggregate models usually estimate a probability of absence for each individual, 

run or time period, and overall absence levels can be estimated by aggregating the probabilities. 

Aggregate models directly estimate the number of absences at a particular time.  Figure 5-1 shows 

the categorization of these alternative modelling approaches. 

 

 

Figure 5-1 Types of Absence Models 

 

 For disaggregate models, we could use either nonparametric methods, such as a decision 

tree, or parametric methods, such as regression to estimate the probability of absence for each 

operator. For example, if absence is driven by individual circumstances and motivation, we could 

calculate a probability of absence for each individual based on past performance and aggregate to 

group performance based on schedule assignment. If the run characteristics outweigh individual 

differences, we could estimate an absence rate for each run, regardless of the operator. It is hard 

to verify the assumptions made and these methods are vulnerable to outliers – we need an adequate 

number of observations in each subdivision to ensure that the rate is representative. When more 

information, such as demographic characteristics for individual operators is available, regression 

is usually used for a more comprehensive analysis (Shiftan and Wilson, 1994; Wang and Gupta, 

2014). 

file:///C:/Users/wangqi44/AppData/Roaming/Microsoft/Word/models.png
file:///C:/Users/wangqi44/AppData/Roaming/Microsoft/Word/models.png
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In aggregate models, depending on the temporal unit of analysis, the data will exhibit 

different characteristics, and more model choices exist. First, the number of absent operators is 

integer-valued and non-negative, and the occurrence of absences can be assumed to be random 

given a rate. This problem description suggests use of count models. Poisson regression, which 

assumes equi-dispersion (expected value and variance are equal), is the most basic form of count 

model, but many variations exist to account for different data distributions and structures. In 

Poisson regression, it is assumed that the rate parameter λ for the Poisson process is deterministic 

and all the differences in rates are explained by the explanatory variables. If this is not realistic, 

then we could model the rate parameter with an unobserved random factor η with the resulting rate 

being ηλ. When η has a gamma distribution, ηλ will have a negative binomial distribution (a 

mixture of Poisson and Gamma). Negative binomial regression can be viewed as a form of Poisson 

regression that includes a random component reflecting the uncertainty around the true rate 

(unobserved heterogeneity). Additionally, if we want to model data with a panel structure (for 

example, correlations among counts at different times of day), we could employ multivariate count 

models. They are harder to estimate (no closed form solution and more parameters), but they are 

capable of modelling correlations across days and times of day in the same model. 

If the time-of-day distribution of absence is regular and follows a distinctive pattern such 

as a uniform or bimodal distribution, or follows the pattern of the scheduled work, we could 

employ a cluster and assign approach. Empirical distributions can be fed into a clustering algorithm 

to identify representative profiles and then a classification method, such as logistic regression, can 

be used to assign any given day to the appropriate profile. The advantage of this approach is that 

it is highly interpretable, since we can directly observe the representative time-of-day distributions. 

The disadvantage is that two models are needed and it does not work well if the distributions are 

evenly spread out rather than falling into distinct clusters. 

Lastly, the structure of the problem suggests a time-series approach if the most influential 

factor is time and other factors influencing absence are unobserved. Time series models can 

accommodate seasonal effects, moving averages, autoregressive error terms, etc. The advantage 

of time series models is that they can be intuitive and easy to implement, but they do not make use 

of information other than time and thus have limited explanatory power.  

Table 5-1 summarizes and compares the model types. Different model types can be chosen, 

based on the application and data availability and characteristics. In most cases, disaggregate 

models will not be feasible due to data limitations, and time-series models have limited modelling 

capability. Therefore, count or cluster-and-assign models are generally recommended. In the next 

two sections, we describe in detail two specific models that are used to estimate absence at the 

tactical and operational levels for extraboard planning in the MBTA case study. 
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Table 5-1 Comparison of Absence Model Types 

Type 
Modeling 
Approach 

Advantage Disadvantage 

D
is

ag
gr

eg
at

e Non-
parametric 
Methods 

Easy to implement, can model 
heterogeneity among individuals 

Sensitive to outliers, some 
categories may have very few 

observations 

Regression 
Easy to implement, can model 

heterogeneity among individuals 
Often difficult to obtain 

required explanatory variables  

A
gg

re
ga

te
 Count models 

Match the problem (nonnegative and 
integer), can accommodate different data 

patterns and temporal units of analysis 

More versatile models are 
difficult to implement and 
require larger sample sizes 

Cluster and 
Assignment 

Intuitive, interpretable, easy to 
implement 

Requires separate models; can 
only be used when there are a 

few distinctive patterns 

Time Series Intuitive, interpretable Limited modelling capabilities 

 

5.3 Known-in-Advance Absence Prediction with Negative Binomial Regression 

Formulation 

For known-in-advance absence, we only need to estimate the number of runs for each day 

since all such absences are full-day runs, each of which will be assigned to a single operator. The 

operator will cover the full run; therefore, we do not need to know at what times of the day these 

absences occur.  

Known-in-advance absences are modelled as a count-based process using negative 

binomial regression. The assumption is that the observed value follows a negative binomial 

distribution given the fitted value. Similar to Poisson regression, absences are assumed to be 

generated by a memoryless Poisson process, but we account for unobserved heterogeneity and 

treat the true rate of the process λ̃ = λ as a random variable. Because of this uncertainty around 

the true parameter, the observed value assumes a larger variance than in a Poisson regression. The 

error term ϵ could have many different distributions, but it is mathematically convenient to assume 

that it has a gamma distribution, in which case the observations follow a negative binomial 

distribution. For a through discussion of Poisson and negative binomial regression, please refer to 

Gardner and Mulvey (1995). 

We adapt the standard negative binomial formulation to explain differences between rates 

of absence. The number of known-in-advance absences is directly observed. The count not only 

depends on the characteristics of the day and the scheduled operators, but also the number of runs 

scheduled. With more runs scheduled, there is more exposure and the count of absences is likely 

to be higher. In the formulation, 𝑑𝑖  is the number of scheduled runs on day i, introduced as 
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exposure. Let λ𝑖 be the absence rate, then the expected number of absences is 𝑑𝑖λ𝑖. Therefore, the 

regression applies to the rate, making the model more generalizable in the face of service level 

changes. In mathematical terms, the problem can be formulated as follows. 

 

Define yi = Number of known-in-advance absences on day i 

Xi = Independent variables for day i  

β = Regression coefficients  

N = Sample size 

K = Number of independent variables  

λi = Absence rate on day i (# absences / # scheduled runs) 

di = # scheduled runs on day i 

where 

 𝑦𝑖 ∼ 𝑁egBin(μ𝑖 , α)  (5-1) 

 𝐸(𝑦𝑖) = μ𝑖 = 𝑑𝑖λ𝑖 = 𝑑𝑖exp(𝑋𝑖
𝑇β) = exp (𝑋𝑖

𝑇β + 𝑙𝑛(𝑑𝑖))   

 var(𝑦𝑖) = μ𝑖 +
μ𝑖

2

α
   

 The logarithmic link function transforms µ into a linear combination of the predictors and 

the log of di: 

ln(μ𝑖) = ln(𝑑𝑖) + 𝑋𝑖
𝑇β 

 

Estimation and Inference 

1. Estimate β: The python package statsmodels is used to estimate the model (Seabold and 

Perktold, 2010). Package statsmodels.glm estimates generalized linear models with an offset, 

but does not estimate the dispersion α. Since maximum likelihood estimators of β for the 

linear exponential family (which includes Negative Binomial II) are consistent regardless of 

the dispersion, we can estimate β and α separately (Gardner and Mulvey, 1995). 

2. Estimate α: Given observations yi with estimated mean µi, variance of observations = 

𝑣𝑎𝑟(𝑦𝑖|µ�̂�)̂ = (𝑦𝑖 − µ�̂�)
2. Variance of a negative binomial random vaiable is of the form: 

µ𝑖 + 𝛼−1µ𝑖
2. We can find α−1 using least squares (with no intercept): 

(𝑦𝑖 − µ𝑖)2 − μ𝑖 = 𝛼−1µ𝑖
2
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3. Re-estimate β: If α ≤ 0, then there is no overdispersion in the data, terminate and use the 

estimated Poisson model. Otherwise, input α as a parameter in the estimation of β. The 

values of β  should not change much as the estimators are consistent regardless of the 

dispersion. 

4. Check dispersion/scale: Calculate observed variance and compare it to the variance assumed 

by the distribution. ϕ̂ should be 1 if the distributions match perfectly. A value greater than 

1 indicates that there is over-dispersion and there remains a component of y variance that 

the negative binomial regression model did not capture. 

ϕ̂ =
1

𝑁 − 𝐽
∑

(𝑦𝑖 − μ�̂�)
2

μ𝑖 + α−1μ𝑖
2̂

𝑁

𝑖=1

 

 

5. Correct for dispersion to make inference: Variance of β̂ is given by 

𝑉𝑎�̂�(β̂) = (∑
μ�̂�

1 + α−1μ�̂�
𝑋𝑖𝑋𝑖

′
𝑁

𝑖=1

)

−1

 

Assuming that the conditional variance is a linear function of the conditional mean, the 

corrected 𝑉𝑎�̂�(β̂) is given by: 

    

𝑉𝑎�̂�(β̂)
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

= ϕ̂ (∑
μ�̂�

1 + α−1μ�̂�
𝑋𝑖𝑋𝑖

′
𝑁

𝑖=1

)

−1

 

Evaluation 

To evaluate model performance, the standard mean absolute error (MAE) and mean absolute 

percent error (MAPE) are used, as well as Theil’s coefficient which is commonly used to evaluate 

the fit of time series model (Bliemel, 1973). For an observed time series Y and a fitted time series 

X, each with n elements, Theil’s U is defined as  

U =

√1
𝑛

∑ (𝑋𝑖 − 𝑌𝑖)2
𝑖

√1
𝑛

∑ 𝑋𝑖
2

𝑖 + √1
𝑛

∑ 𝑌𝑖
2

𝑖

 

 

where U ranges between [0,1]. The smaller the U, the better the fit.  

 

5.4 Unexpected Absence Prediction with Negative Binomial Regression 

In this section, we introduce a combination of methods that could be used to estimate 

unexpected absences. We separate the estimation of the total number of absence hours and their 

time-of-day distribution. First, the total number of unexpected absence hours is estimated using 

negative binomial regression. Then representative time-of-day profiles are found with the average 
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time-of-day profile for each day of the week. Although it involves multiple steps, this procedure 

is intuitive, has relatively few parameters to estimate, and gives interpretable results. 

 

5.4.1 Modelling Daily Unexpected Absence Hours 

The model has the same formulation and estimation procedure as that discussed in Section 

5.3, except that we substitute number of unexpected absence hours for the number of known-in-

advance absences, and the rate of unexpected absence is defined as the unexpected absence hours 

divided by the total scheduled hours, since unexpected absences can have different lengths. 

 

5.4.2 Modelling Time-of-Day Distribution of Absence  

The time-of-day distribution is defined as the number of absent operators for each hour 

divided by the total number of unexpected absence operator-hours for each day. Based on previous 

research, the time-of-day distribution of unexpected absence hours has only a small impact on the 

cover list scheduling results (Kaysi and Wilson, 1990). Descriptive results in Section 4.3.2 suggest 

that the time-of-day distribution of unexpected absence hours is similar to that of scheduled 

services. Therefore, a simple approach is used: the time-of-day distributions for each day of the 

week were averaged and used for prediction. Each day of the week will have a different predicted 

profile, but will be the same across different weeks in the rating. Holidays are classified based on 

whether they follow a weekday, Saturday, or Sunday schedule (for example, Columbus Day has a 

weekday schedule, but Labor Day has a Sunday schedule). For the case study data, this simple 

approach achieves similar performance to the theoretically more powerful cluster-and-assign 

approach.  

 

5.5 Unexpected Absence Prediction with Multivariate Analysis 

In this section, a model that deals with the day-of-week and time-of-day correlations 

simultaneously is proposed. First, we recognize that absences at different times on the same day 

are likely to be correlated since each absence is likely to extend over consecutive time periods. 

Correlations may also exist between absence rates on different days of the week. The temporal 

characteristic variables explicitly account for this correlation as well as the absence rates from 

previous time periods.  

Following the standard notation for multivariate data, the counts are organized into a matrix 

where the indices i and j denote the day (i) and time (j). The parameters β are time-period-specific 

and a set of day-and-hour-specific latent effects b is included to model the correlations between 
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counts at different times of the day. Conditioned on latent effects 𝑏𝑖 and parameters β𝑗, we assume 

that the counts 𝑦𝑖𝑗  follow independent Poisson distributions and the latent effects follow 

multivariate normal distributions. Under these conditions, the resulting model is a Multivariate 

Poisson Log-Normal Model (Chib and Winkelmann, 2001). This model has been most commonly 

applied in car accident count modelling (Bai et al., 2011; Ma et al., 2008; Wang et al., 2018; Zhan 

et al., 2015; Zhao et al., 2018). We now discuss the details of this model, which primarily uses the 

methods developed by Chib and Winkelmann (Chib and Winkelmann, 2001), with added 

regularization on the estimation of D using Bayesian Graphical LASSO (Wang, 2012). 

Specific formulation details for our problem can be found below. Note that when we 

specify one subscript of a multidimensional matrix, the rest is kept in place. For example, β𝑗 ∈

𝑅𝐾
 and 𝑋𝑖 ∈ 𝑅𝐽×𝐾. 

 

Define N = Sample size (days) 

J = Number of time periods 

K = Number of independent variables  

y = Total number of absence hours (day i, time j) ∈ RN×J 

X = Independent variables (day i, time j, attribute k) ∈ RN×J×K  

β = Regression coefficients (time j, attribute k) ∈ RJ×K 

µ𝑖𝑗  = Absence rate on day i at time j 

bi = Latent effects to model correlation among the time periods ∈ RJ 

where 𝑦𝑖𝑗|𝑏_𝑖,  β_𝑗  ∼ 𝑃oisson(µ𝑖𝑗) 

μ𝑖𝑗 = exp(𝑋𝑖𝑗
𝑇 β𝑗 + 𝑏𝑖𝑗) 

We assume 𝑏𝑖 ∼ 𝒩𝒥(0, 𝐷), where D is an unrestricted covariance matrix. To understand 

features of this model, let ν𝑖𝑗 = exp(𝑏𝑖𝑗) and ν𝑖 = (ν𝑖1, ν𝑖2, … , ν𝑖𝐽), then ν𝑖 ∼ 𝐿ogNormal(μ, Σ) 

with mean μ = exp(0.5𝑑𝑖𝑎𝑔(𝐷))and covariance Σ = (𝑑𝑖𝑎𝑔(μ))[𝑒𝑥𝑝(𝐷 − 11𝑇)](𝑑𝑖𝑎𝑔(μ)). 

Given this, the expectation and covariance of the observations can be derived using the law 

of iterated expectation as follows: 

E[𝑦𝑖|β𝑗, 𝐷] = μ𝑖 = exp (𝑋
𝑖𝑗

𝑇β𝑗) exp(0.5𝑑𝑖𝑎𝑔(𝐷)) 

var[𝑦𝑖|β𝑗, 𝐷] = diag(μ𝑖) + diag(μ𝑖)[𝑒𝑥𝑝(𝐷 − 11𝑇)]diag(μ𝑖) 
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Hence the covariances between the counts are 

cov(𝑦𝑖𝑗, 𝑦𝑖𝑘) = μ𝑖𝑗(𝑒𝑥𝑝(𝐷𝑗𝑘) − 1)μ𝑖𝑘 

which can be positive or negative depending on the signs of 𝐷𝑗𝑘. 

Estimation and Inference  

 The likelihood function of the model is 

P(𝑦𝑖|β, 𝐷) = ∫ ∏ 𝑓(𝑦𝑖𝑗|β𝑗, 𝑏𝑖𝑗)ϕ𝐽(𝑏𝑖|0, 𝐷)𝑑𝑏𝑖

𝐽

𝑗=1𝑏𝑖

 

where f is the density function of the Poisson distribution and ϕ𝐽 is the density function of a J-

variate normal distribution. We cannot use maximum likelihood methods because we cannot solve 

this multiple integral in closed form. Instead, we resort to simulation-based methods. 

The main idea of simulation-based methods is to develop a MCMC chain where the 

limiting invariant of the chain is the posterior distribution of the parameters of the model β, b, and 

D. One standard way to construct such a Markov chain is Gibbs sampler, which samples from one 

full conditional density at a time. Gibbs sampler is used when the joint distribution of β, b, and D 

is difficult to sample from but the conditional distribution of each variable conditioned on all other 

variables and the data is easier to sample from. Each full conditional density in the simulation is 

sampled either directly (if the full conditional density belongs to a known family of distributions) 

or by utilizing the Metropolis–Hastings (M–H) algorithm. In this case, the posterior distribution 

of the parameters is 

P(β, 𝐷−1|𝑦, 𝑥) ∝ 𝑓(β)f(𝐷−1)P(𝑦𝑖|β, 𝐷) 

The augmented posterior density of the parameters β, D and the latent effects b can be 

written as 

P(β, 𝑏, 𝐷−1|𝑦, 𝑥) ∝ 𝑓(β)𝑓(𝐷−1) ∏ 𝑃(𝑦𝑖|β, 𝑏𝑖)ϕ𝐽(𝑏𝑖|0, 𝐷)

𝑁

𝑖=1

 

where 𝑓(β), 𝑓(𝐷−1)are the prior distributions of β, and D. The full conditionals P(𝑏|𝑦, β, 𝐷), 

P(β|𝑦, 𝑏, 𝐷), and P(𝐷−1|𝑦, 𝑏, β) are 

P(𝑏|𝑦, β, 𝐷) = ∏ 𝑃(𝑦𝑖|β, 𝑏𝑖)ϕ𝐽(𝑏𝑖|0, 𝐷)  ∝ ∏ ϕ𝐽(𝑏𝑖|0, 𝐷) ∏ 𝑒𝑥𝑝(−μ𝑖𝑗)μ
𝑖𝑗

𝑦𝑖𝑗

𝐽

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1
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P(β|𝑦, 𝑏, 𝐷) ∝ 𝑓(β) ∏ ∏ 𝑒𝑥𝑝(−μ𝑖𝑗)μ
𝑖𝑗

𝑦𝑖𝑗

𝐽

𝑗=1

𝑁

𝑖=1

 

P(𝐷−1|𝑦, 𝑏, β) = f(𝐷−1) ∏ ϕ𝐽(𝑏𝑖|0, 𝐷)

𝑁

𝑖=1

 

 The parameters will be sampled sequentially as follows: 

1.  Sampling b 

To sample from the target density ∏ ϕ𝐽(𝑏𝑖|0, 𝐷) ∏ 𝑒𝑥𝑝(−μ𝑖𝑗)μ
𝑖𝑗

𝑦𝑖𝑗𝐽
𝑗=1

𝑁
𝑖=1 , we utilize the 

M–H algorithm. For more information regarding the M-H algorithm and its use in estimating 

Poisson models, please refer to the papers by Chib, Greenberg and Winkelmann (Chib et al., 

1998; Chiband and Greenberg, 1995). The proposal density is found by approximating the target 

density around the modal value by a multivariate-t distribution with 

Mean 𝑏�̂� = argmax ln ∏ ϕ𝐽(𝑏𝑖|0, 𝐷) ∏ 𝑒𝑥𝑝(−μ𝑖𝑗)μ
𝑖𝑗

𝑦𝑖𝑗𝐽
𝑗=1

𝑁
𝑖=1   

Variance 𝑉𝑏𝑖
= (−𝐻𝑏𝑖

)
−1

  

The modal value 𝑏�̂� and Hessian 𝐻𝑏𝑖
 can be found by any gradient-based solvers with  

Gradient 𝑏𝑖 = −𝐷−1𝑏𝑖 + 𝑦𝑖exp − (𝑥𝑖
𝑇β + 𝑏𝑖)  

Hessian 𝑏𝑖 = −𝐷−1diag − 𝑒𝑥𝑝((𝑥𝑖
𝑇β + 𝑏𝑖))  

 

2. Sampling β 

A normal prior is imposed with mean β0  and variance 𝐵0 . Both β0  and 𝐵0  are 

hyperparameters. The target density f(β) ∏ ∏ 𝑒𝑥𝑝(−μ𝑖𝑗)μ
𝑖𝑗

𝑦𝑖𝑗𝐽
𝑗=1

𝑁
𝑖=1  is for J × K β parameters at 

once. However, since the dimension of β is large, we would have a high proportion of rejections. 

Therefore, we assume that the β𝑗’s are independent of each other and can be sampled one j at a 

time (𝐵0 is block-diagonal). The posterior distribution can be sampled by an M-H algorithm similar 

to that for sampling b’s. 

For a given j, the proposal density is found by approximating the target density around the 

modal value by a multivariate-t distribution with 

Mean β�̂� = argmax lnϕ𝐾(β𝑗|β0, 𝐵0) ∏ 𝑒𝑥𝑝(−μ𝑖𝑗)μ
𝑖𝑗

𝑦𝑖𝑗𝑁
𝑖=1   

Variance 𝑉β𝑗
= (−𝐻β𝑗

)
−1

  

The modal value β�̂� and Hessian 𝐻β𝑗
 can be found by any gradient-based solvers with 
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Gradient β𝑗 = −𝐵0𝑗
(β𝑗 − β0𝑗

) + ∑ (𝑦𝑖𝑗 − μ𝑖𝑗)(𝑥𝑖𝑗)𝑁
𝑖=1   

Hessian β𝑗 = −𝐵0𝑗
− ∑ μ𝑖𝑗𝑥𝑖𝑗𝑥𝑖𝑗

𝑇𝑁
𝑖=1   

 

3. Sampling D−1 

D is the covariance matrix and D−1 is the precision matrix of bi’s. The target density is 

f(𝐷−1) ∏ ϕ𝐽(𝑏𝑖|0, 𝐷)𝑁
𝑖=1 . Sampling the precision matrix of a Gaussian distribution has long been 

a standalone topic of discussion in both frequentist and Bayesian statistics. A conjugate Wishart 

prior is usually used to form a simple and fast procedure for computing the analytic posterior of 

the precision matrix. Wishart priors are also used in the MVPLN literature (Ma et al., 2008; Wang 

et al., 2018; Zhan et al., 2015; Zhao et al., 2018). However, in crash injury analyses, the injury 

level (J) is usually no greater than 5. In our context, we have a large number of time periods (if the 

temporal unit of analysis is hours, then J = 20 since transit service only operates for around 20 

hours a day). The dimension of D is 20 × 20. We have around 120 days (N ≈ 120) in a rating. The 

sample size is small compared to the dimensionality of the parameters. Therefore, we seek ways 

to regularize the precision matrix. Here we used a Gibbs sampler based on a Bayesian Graphical 

LASSO model (Wang, 2012). 

Given observations Y (N × J data matrix), the graphical lasso problem is to maximize the 

penalized log-likelihood with respect to the precision matrix Ω 

 

where S = Y TY and ρ ≥ 0 is the shrinkage parameter that shrinks the entries of Ω to 0. The graphical 

lasso problem also has a Bayesian interpretation (Wang, 2012); the graphical lasso estimator is 

equivalent to the maximum a posteriori estimation of the following model 

P(𝑦𝑖|Ω) = 𝒩(𝑦𝑖|0, Ω−1) 

P(Ω|λ) = 𝐶−1 ∏ 𝐷𝐸(ω𝑖𝑗|λ) ∏{𝐸𝑋𝑃(ω𝑖𝑖|λ/2)}1Ω∈𝑀+

𝐽

𝑖=1𝑖<𝑗

 

where the posterior distribution is re-parameterized by λ with the double exponential (DE) and 

exponential (EXP) density functions. For any fixed values of λ ≥ 0, the posterior mode of Ω is the 

graphical lasso estimate with ρ = λ/N. 
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We observe that if 𝐷−1  only depends on b, then the posterior distribution P(𝐷−1|𝑦, 𝑏, β)  is 

equivalent to P(𝐷−1|𝑏) , where 𝑏𝑖 ∼ 𝒩𝒥(0, 𝐷−1). Therefore, we could parameterize P(𝐷−1|𝑏) 

using λ and use Gibbs sampler to estimate 𝐷−1. 

 

5.6 The MBTA Case Study 

This section presents a case study using MBTA’s data on absence applying the models 

discussed in prior sections of this chapter. The case study aims to explore the effectiveness of the 

models, interpret the model results, and assess the strengths and limitations of each model. Section 

5.6.1 describes the case study and introduces the variables involved in the estimation. Sections 

5.6.2, 5.6.3, and 5.6.4 present the model results for known-in-advance absences and unexpected 

absence using negative binomial regression, and unexpected absence using MVPLN. 

 

5.6.1 Data Description  

Using the processed data described in Section 4.2, we built and tested models for the 

Southampton garage for Rating 4 (September to December) of 2017, 2018, and 2019 and 

Charlestown garage for Rating 4 of 2019. For each model, detailed results and interpretation will 

be presented for Southampton garage for 2019 (Rating 4). Having data from previous years for the 

same rating and the same garage enables us to study the stability of the models over time. Since 

tactical level scheduling occurs at the beginning of each rating and we have no access to data from 

the current year, we can only apply the model from prior years. Models trained from prior year’s 

data will be used to forecast 2019 absence levels and the forecast will be compared with actual 

observations to see how absence behavior changed over time and how well the models generalize. 

The benchmark error, which is the best error possible using a model class, was taken to be the 

error from the model retrospectively fitted with observed data (train and test with data for the same 

period).  

Separate models were built for known-in-advance and unexpected absences. On some days, 

some known-in-advance absences were covered as if they were unexpected absences because of 

extraboard operator shortage (especially in 2017 R4 @ Southampton) although the data does not 

facilitate isolation of these instances. For scheduling, we aim to model how absences are covered 

given the resource constraints, not the notification time of absences. Given a small extraboard, 

some known-in-advance absences will need to be covered as if they were unexpected absences. 

Instead of one operator covering a complete run when enough extraboard operators are available, 

the run would potentially be split into pieces to be covered by multiple operators and some service 
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could be lost. This relationship is accounted for by including both known-in-advance absence and 

unexpected absence in the model formulation.  

In general, the variables included can be divided into four categories: temporal 

characteristics, reference quantities, interaction terms, and predicted quantities: 

Temporal characteristics are dummy variables indicating the time-of-day, day-of-week, 

and special days such as holidays. At the MBTA, holiday work is paid at a premium: every operator 

is paid 8 hours of holiday pay whether they are scheduled to work that day or not, and hours worked 

on holidays are paid separately at straight time rate (1x). However, in order to receive the holiday 

pay (the 8 hours of pay without working), the contract requires the operator to be present the day 

preceding, the day of (if scheduled), and the day following the holiday. Vacation and personal days 

that are scheduled at the start of the rating can be excused from this requirement. For operators 

who are not scheduled for work on the day preceding or following, this rule does not apply. For 

example, for a Monday holiday, in addition to being present on Monday if scheduled, an operator 

also needs to be present for both the Sunday and Tuesday in order to receive holiday pay, but for 

those who are scheduled to have the weekend off, they only need to be present for the Tuesday, 

and Monday if scheduled. Therefore, absence rates on and around a holiday are expected to be 

lower than on the corresponding day in a normal week. 

Reference quantities are historical hours of certain types of absence and overtime 

performed. Overtime is included because more overtime performed might lead to increased levels 

of absence because of burnout, as well as its effect on any income target. Quantities from two days 

ago are used, because at the MBTA, the operational level scheduling (setting report times for the 

cover list) happens at 10am the previous day, when the operational statistics for that day are not 

yet available.  

Intercept terms are added to account for the different effects that different types of reference 

quantities have on absence on different days of week. These terms add an intercept to specific 

scenario combinations. For example, although each operator has different days-off based on 

his/her roster, the weekends have lower service levels, meaning that many operators still have the 

weekends off. Operators who are sick on Thursday might also consider taking Friday off to get a 

longer weekend, but this behavior would not happen if the operator is sick on Monday and there 

are four more workdays ahead. 

Predicted Quantities: although not feasible for scheduling, total absence on the previous 

day was tested and found to be significant. Therefore, we include a predicted total for the previous 

day in the full model. 

In subsequent sections, the base model refers to a model that includes only the temporal 

characteristics specified in Table 5-2. The base model variables are the same for both known-in-
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advance absence estimation and unexpected absence estimation since they describe the 

characteristics of the day. The base model can be used for tactical-level scheduling since no 

operational information enters the formulation. 

 

Table 5-2 Base Model Variables  

Variable  Rationale  

Temporal Characteristics 

Dummy for day of week to account for day-of-week variation 

Week number  to account for within-rating trends 

Dummy for holiday to account for the holiday effect 

Dummy for holiday 
extension 

1 day before and after a holiday 

 

Besides the base model, additional variables including recent operational-level information 

are tested in the full model. Table 5-3 describes the rationale for the additional variables tested for 

the estimation of known-in-advance absence. At the tactical level, the operational-level 

information is not available. At the operational level, known-in-advance absences are assigned to 

the extraboard without uncertainty. Therefore, this full model will not be used for scheduling, 

rather, it can provide insights into the relationships between these variables and known-in-advance 

absence. 

 

Table 5-3 Additional Variables for Known-in-Advance Absence Estimation 

Variable  Rationale  

Reference Quantities (1 day prior unless otherwise specified) 

Average overtime 
hours in the previous 
week 

Based on the hypothesis that too much overtime might lead to operator 
fatigue. At the same time, working overtime might help the operator reach 
his/her income target,  (s)he is more likely to be absent when income targets 
are met. 

Known-in-advance 
absence hours 

Based on the hypothesis that known-in-advance absences might be 
autoregressive. 

Daily unexpected 
absence rates 

Defined as the daily total unexpected absence hours divided by the total 
hours of scheduled service. Based on the hypothesis that known-in-advance 
absences might be related to unexpected absence. 

 

Table 5-4 describes the rationale for the additional variables tested for the full model 

estimation of unexpected absences. The full model for unexpected absence could be used at the 

operational level since the report times of the cover list are determined on a daily basis. The 

reference quantities are for two days prior because at the time of report-time scheduling, the 

numbers for the previous day are not yet available.  
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Table 5-4 Additional Variables for Unexpected Absences 

Variable  Rationale  

Reference Quantities (2 days prior unless otherwise specified) 

Daily unexpected 
absence rate 

Defined as the daily total unexpected absence hours divided by the hours 
of scheduled service. Based on the hypothesis that unexpected absence 
might be autoregressive. 

Known-in-advance 
absence rate 

Defined as the daily known-in-advance absence runs divided by the 
number of runs scheduled. Based on the hypothesis that known-in-
advance absence may be related to unexpected absence.  

Sick absence rate Based on the hypothesis that sickness might persist over several days 

Absence rate related to 
the Family and Medical 
Leave Act 

Based on the hypothesis that absence for individual and family medical 
leave might persist over several days 

Average overtime hours 
in the previous week 

Based on the hypothesis that overtime might lead to operator fatigue. At 
the same time, working overtime might help the operator reach his /her 
income target, (s)he is more likely to be absent when income targets are 
met. 

Overtime hours  same reason as above 

Intercept Terms 

Day of week x Reference Quantities 

Predicted Quantities 

Predicted absence hours for the day before 

 

 

In subsequent sections, model results are presented in detail for Southampton for 2019; 

results for the other years and garage are presented in Appendix A and Appendix B, respectively. 

 

5.6.2 Known-in-Advance Absence Prediction with Negative Binomial Regression 

This section presents the results from applying the model described in Section 5.3 to 

estimate known-in-advance absences. 

 

Estimation Results 

Table 5-5 shows the model coefficients (with significance level), standard error, and p-

value for the models estimated with Southampton’s 2019 rating 4 data. Each β𝑗 is the elasticity of 

𝑥𝑗 with respect to y. For small values of β𝑗, β𝑗 is approximately the change in y caused by a unit 

change in 𝑥𝑗. Since the total number of scheduled runs are included as the exposure term, the 

coefficients represent the elasticity of the explanatory variables with respect to the known-in-

advance absence rates. 
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Table 5-5 Regression Coefficients Known-in-Advance Absence 2019 R4 @ Southampton 

 Base Model Full Model 

 
Coefficients 

(β𝑗) 
Standard 

Error 
p-

value 
Coefficients 

(β𝑗) 
Standard 

Error 
p-

value 

1/𝜶 0.12   0.07   

constant -3.264 *** 0.185 0 -3.1401 *** 0.251 0 

holiday 0.0449 0.348 0.897 -0.2394 0.311 0.442 

holiday extension 0.2886 0.235 0.22 0.3714 0.221 0.093 

week 0.0521 *** 0.012 0 0.0409 ** 0.015 0.007 

Tue -0.0736 0.207 0.722 -0.2617 0.188 0.163 

Wed -0.1867 0.209 0.373 -0.4224 * 0.193 0.029 

Thu -0.0247 0.201 0.902 -0.1773 0.18 0.326 

Fri 0.0933 0.197 0.636 -0.1079 0.178 0.545 

Sat -0.467 * 0.232 0.044 -0.842 *** 0.229 0 

Sun -0.4701 * 0.241 0.050 -0.5417 * 0.218 0.013 

average overtime hours 
in the previous week    -0.0099 0.005 0.06 

daily unexpected 
absence rate (day of) 

   
0.0086 0.017 0.613 

known-in-advance 
absence (day before) 

   
0.0795 *** 0.016 0 

Log Likelihood -238.43 -227.35 

Table notes: *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001. 

 

The log likelihood for the full model is higher than that of the base model, indicating a 

better overall fit. The log likelihood ratio test statistic is 2*((-227.35) – (-238.43)) = 22.16, the 

critical χ2 statistic with degree of freedom 3 at 95% significance level is 7.81. The full model passes 

the log likelihood test for being a better model. The dispersion factor was 0.12 for the base model 

and 0.07 for the full model. The full model has less over-dispersion (unobserved heterogeneity) 

than the base model. The coefficients which are significant at the 95% confidence level are 

highlighted in the table. The insignificant coefficients are more likely to be unstable and sometimes 

have opposite effects in the base and full model (e.g. holidays and Fridays in this case). But in 

general, the coefficients are consistent with the results of the descriptive analysis. For 

completeness, the insignificant variables were not removed from the final model applied for 

scheduling in Chapter 6. 

Neither the holidays nor the days around the holidays have a significant impact in this 

rating on known-in-advance absences. The signs for the coefficients for holidays change between 

the base model and the full model. For this rating, descriptive analysis suggests that the holidays 

have higher rates than others, which is inconsistent with the results from the full model. The effect 
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would probably be better captured with quantifying the number of vacation days amongst all 

known-in-advance absences. The model mainly reflects the average behavior for different days of 

the week with a weekly trend. There was an increase in absence over the course of the rating, 

indicated by a positive coefficient for the ‘week’ variable. The reference day of week is Monday. 

Compared to Monday, only Friday and holidays had a (insignificant and unstable) higher number 

of known-in-advance absences and the weekends had the lowest rates, which agrees with the 

observations in Section 4.3.2.  

Two of the three additional variables are insignificant. The effect of overtime in this model 

was counter-intuitive, the model suggested that more overtime leads to less known-in-advance 

absence. In the other three ratings, coefficients for rolling overtime were also insignificant, but 

positive (see Appendix A). Unexpected absences on the day was not a significant indicator for 

known-in-advance absences across all ratings. On the other hand, known-in-advance absences for 

the previous day was significant and positive for all ratings, indicating a strong autoregressive 

effect for known-in-advance absences at an aggregate level. 

Validation 

 

 

 

a) Base Model 

 

 

 

b) Full Model 

Figure 5-2 Negative Binomial Regression Results for Known-in-Advance Absences (2019 R4 @ 

Southampton) 
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Figure 5-2 shows the number of predicted vs actual known-in-advance absences (left) along 

with the residual plot (right) for both the base and the full model. The residual plot exhibits spacing 

patterns of predicted numbers due to most of the explanatory variables being binary. Although the 

full model has a generally better fit, there was one outlier with an error > 10 operators. 

Table 5-6 shows the model fit for each rating/garage. On average, the model prediction is 

off by 1-3 operators per day. Although the absolute error is lowest for 2017 R4 for Southampton, 

its percentage error is especially high due to the low reported numbers of known-in-advance 

absences. Charlestown, having more known-in-advance absences (Figure 4-2: similar absence 

numbers but much more service), a similar MAE results in much smaller MAPE. The full models, 

with more variables, yield better results than the base models, but the improvement differs across 

ratings (ranging from 1% to 9%). Similar observations can be made from Theil’s coefficient, where 

Charlestown had the best fit and the difference in predictive power between the base and full 

models was minor. 

 

Table 5-6 Negative Binomial Regression Error for Number of Known-in-Advance Absences 

 Base Full 

Time 
Period 

Garage 
MAE (# 

operators) 
 

MAPE 
Theil’s 

Coefficient 
MAE (# 

operators) 
 

MAPE 
Theil’s 

Coefficient 

2017 R4 Southampton 1.35 75.8% 0.38 1.23 69.1% 0.34 

2018 R4 Southampton 1.80 33.8% 0.20 1.68 31.5% 0.19 

2019 R4 Southampton 2.86 47.5% 0.24 2.35 39.0% 0.21 

2019 R4 Charlestown 2.17 19.6% 0.12 2.07 18.6% 0.11 

 

Model Transferability 

Table 5-7 Model Coefficients Comparison 

Variable 
Southampton Charlestown 

2017 R4 2018 R4 2019 R4 2019R4 

average overtime hours in the previous week 0.0183 0.0032 -0.0099 0.0004 

daily unexpected absence rate (day of) -0.0204 -0.0235 0.0086 -0.0035 

known-in-advance absence (day before) 0.1215 *** 0.0529 ** 0.0795 *** 0.0399 ** 

 

Transferability is studied from two perspectives: significance of model coefficients and 

model performance. Table 5-7 shows the values and significance of the variable coefficients for 

the additional variables. Only the additional variables from the full model are investigated here as 

the coefficients for the temporal characteristic variables follow the patterns established in the 

descriptive analysis (Figure 4-2). In all models, known-in-advance absences have strong 
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autoregressive effects and are not related to overtime or unexpected absences. The degree of 

dependency varies both spatially and temporally.  

Next, transferability was studied by evaluating the performance of the model on data from 

a different period than the model was trained on. Since 2017 data at Southampton was very 

different from 2018 and 2019, it did not make sense to try to generalize a model trained on 2017 

data to other years. Instead, half of 2019’s data at Southampton was used for training and the other 

half for testing to see the effect of pooling data. Since absence rates are modelled, the model was 

robust against changes in service levels. Table 5-8 presents the transferability results for both the 

base and full models. The benchmark was taken as the result from the best fit model for the testing 

data: in this case, the full model trained on the testing data. 

 

Table 5-8 Transferability Results for Known-in-advance Absences 

Training Data Testing Data 
Base Model 

MAE 
Full Model 

MAE 
Benchmark 

MAE 

2018 R4 Southampton 2019 R4 Southampton 3.29 2.91 2.35 

2018 R4 Southampton 
2019 R4 (second half) 

Southampton 
3.39 3.22 3.07 

2018 R4 + 2019 R4 (first 
half) Southampton 

2019 R4 (second half) 
Southampton 

3.36 3.02 3.07 

 

 The models yielded a mean error of ±1 operator per day compared to the benchmark. 

Temporally, the full model generalized better than the base model, since the relationships found 

for the added variables were similar (Table 5-7). In this case, the improvement from pooling data 

was negligible in the base model (0.9%), but significant in the full model (6.7%). More data is 

needed to test the effects of pooling data. Since the model mainly reflected weekly trends and day 

of week differences, it is important to do the descriptive analysis before generalizing the model. 

 

Limitations 

The estimated model was affected by the limited number of explanatory variables and the 

stochastic nature of absence behavior. Since only temporal variables were available, the model is 

unable to predict variations beyond day-of-week and holidays. On the other hand, tactical-level 

scheduling rules do not allow different numbers of extraboard operators for each individual day. 

Most of the time, for the same day of week, the number of extraboard operators assigned will be 

the same and the trips not covered by extraboard operators will need to be covered on overtime. 
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5.6.3 Unexpected Absence Prediction with Negative Binomial Regression 

Results from the various models to predict unexpected absences discussed in Section 5.4 

are presented here.  

 

Estimation Results 

Because of the large number of potential variables listed in Table 5-4, for each dataset, as 

well as all years and ratings combined, variable selection used the log likelihood test with a 95% 

confidence level. Variables are sorted based on prior belief in their importance and tested 

sequentially using the log likelihood test with degree of freedom 1, and the variables that passed 

the test were included in the final model (Table 5-10). If the confidence level was reduced to 90%, 

more variables would be significant, but a variable was still significant for at most two ratings.  

 

Table 5-9 Variable Selection Unexpected Absence Regression (90% C.I.) 

 Southampton Charlest
own 

 

 2017 R4  2018 R4  2019 R4 2019 R4  All 

unexpected absence rate (1 day ago)   √ √ √ 

unexpected absence rate (2 days ago) x 
holiday extension 

√    √ 

unexpected absence rate (2 days ago)  √    √ 

unexpected absence rate (1 week ago)      √ 

having weekday schedule √ √    

known-in-advance absence rate (day of)  √    

known-in-advance absence rate (1 day ago) √  √   

known-in-advance absence rate (1 day ago) 
x Saturday 

√  √  √ 

known-in-advance absence rate (1 day ago) 
x Sunday 

  √ √  

sick absence rate (2 days ago) √     

sick absence rate (2 days ago) x holiday 
extension 

  √   

sick absence rate (2 days ago) x Saturday √     

FMLA absence rates (2 days ago) x holiday 
extension 

√    √ 

FMLA absence rates (2 days ago) x Saturday  √    

FMLA absence rates (2 days ago) x Sunday  √   √ 

rolling overtime hours previous week x 
holiday extension 

 √ √  √ 

rolling overtime hours previous week x 
Sunday 

√     
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Table 5-9 shows the selected variables at the 90% confidence level for all ratings/garages. 

To summarize, the variables significant for two ratings were unexpected absence rates (previous 

day), having a weekday schedule, known-in-advance absence rates (previous day), known-in-

advance absence rates (previous day) interacted with Saturday and Sunday, and rolling overtime 

interacted extended holidays. Overall, there was not a universal predictive significance pattern 

regarding the other variables tested. 

 

Table 5-10 Negative Binomial Regression Coefficients for Unexpected Absence 2019 R4 @ Southampton 

 Base Model Full Model 

 
Coefficient 

(β𝑗) 
Standard 

Error 
p-

value 
Coefficient 

(β𝑗) 
Standard 

Error 
p-

value 

1/α 0.08   0.07   

constant -2.5594 *** 0.109 0 -2.7423 *** 0.127 0 

holiday -0.3221 0.222 0.147 -0.3096 0.224 0.166 

holiday extension -0.4661 *** 0.137 0.001 0.186 0.275 0.499 

week 0.0301 *** 0.007 0 0.0213 ** 0.008 0.006 

Tue -0.0762 0.125 0.543 -0.0882 0.118 0.457 

Wed -0.1066 0.125 0.392 -0.0955 0.119 0.422 

Thu -0.0559 0.123 0.648 -0.0367 0.118 0.755 

Fri 0.1545 0.122 0.204 0.1621 0.117 0.165 

Sat -0.0732 0.127 0.563 -0.4277 * 0.183 0.02 

Sun -0.0593 0.129 0.645 -0.3568 0.19 0.061 

unexpected absence rate (1 
day ago) 

   0.0265 ** 0.01 0.006 

rolling overtime hours 
previous week x holiday 

extension 
   -0.0106 0.006 0.068 

sick absence rate (2 days 
ago) x holiday extension 

   -0.2186 0.116 0.059 

known-in-advance absence 
rate (1 day ago) x Sat 

   0.0385 * 0.018 0.036 

known-in-advance absence 
rate (1 day ago) x Sun 

   0.0676 0.035 0.054 

Log Likelihood -428.68 -387.03 

Table notes: *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001. 

 

Since a general pattern was not identified from the models, a universal full model was not 

developed. Rather, the full model in subsequent parts included variables significant at the 95% 

confidence level identified from the dataset. Since unexpected absence from the previous day is 
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not available at the time of operational scheduling, the prediction for the previous day was tested 

as a proxy, however, the benefits were not significant and therefore was not included in the final 

model (see Table 5-11). 

The coefficients for the negative binomial regression model for the number of unexpected 

absence hours are shown in Table 5-10 for Southampton for 2019 rating 4. While trying to fit the 

full model, with the inclusion of more explanatory variables, α−1 decreases (smaller unobserved 

heterogeneity, baseline 0.08, full 0.07) and the dispersion ϕ increases (higher over-dispersion with 

respect to the estimated negative binomial distribution, baseline 1.21, full 1.31). The full model 

passes the log likelihood ratio test indicates a better fit than the base model. 

Since the total number of scheduled hours are included as an exposure term, the coefficients 

represent the elasticity of the explanatory variables with respect to the unexpected absence rate. 

Similar to the known-in-advance absence model, the coefficients for significant variables were 

more stable (week, holiday, and intercept) than those for the non-significant variables. For the 

‘week’ variable. For unexpected absence, the holidays impose a significant negative effect. 

Unexpected absences were lower both on and around the holidays. Using Monday as a reference, 

the day-of-week was not significant for this rating in the base model but the signs of the coefficient 

agree with the descriptive analysis, where in this rating the weekly trend was present but weaker 

than in the other ratings. With the addition of more variables, day-of-week became more significant.  

 The coefficients for the additional variables in the full model suggest that: 1) Unexpected 

absences are autoregressive. 2) For weekends, higher previous-day known-in-advance absence 

rates lead to higher unexpected absence rates. Since there was no universal pattern in the additional 

variables across other ratings, these relationships are more likely correlational rather than causal.  

 

Validation 

Figure 5-3 shows the negative binomial model fit (left) and residuals distribution (right) 

for the base and full models.  

  

a) Base Model 
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b) Full Model 
 

Figure 5-3 Negative Binomial Regression for Unexpected Absence Hours 2019 R4 @ Southampton 

 

Table 5-11 shows the average estimation errors for daily unexpected absence hours for 

each dataset. The error rate was similar across ratings (20-25%) and Theil’s U coefficients were 

also similar – the amount of variation explained by the model structure was similar. Including 

more variables drove the error down by about 2%. Since the previous day absence was a significant 

predictor (Table 5-10) but absence levels for the previous day are not available at the time of cover 

list scheduling, the prediction for the previous day was included as a surrogate. However, including 

the previous day prediction did not improve the model performance. The performance gain from 

including the previous day’s absence level was offset by the inaccuracy of the predictions. 

Therefore, the previous-day prediction was removed from the final formulation. 

 

Table 5-11 Negative Binomial Regression Error Rates for Daily Unexpected Absence Hours 

Time Period 
Garage 

Base Model Full Model 

w/o Prev Day 
Prediction 

w/ Prev Day 
Prediction 

w/o Prev Day 
Prediction 

w/ Prev Day 
Prediction 

MAE 
(MAPE) 

Theil’s 
U 

MAE 
(MAPE) 

Theil’s 
U 

MAE 
(MAPE) 

Theil’s 
U 

MAE 
(MAPE) 

Theil’s 
U 

2017 R4 
Southampton 

15.1 
(22.8%) 

0.14 
15.1 

(22.8%) 
0.14 

14.0 
(21.1%) 

0.13 
13.9 

(21.0%) 
0.13 

2018 R4 
Southampton 

14.6 
(22.9%) 

0.14 
14.5 

(22.6%) 
0.14 

13.4 
(21.0%) 

0.13 
13.4 

(21.0%) 
0.13 

2019 R4 
Southampton 

19.2 
(24.9%) 

0.15 
19.1 

(24.6%) 
0.15 

17.3 
(22.4%) 

0.14 
17.1 

(22.1%) 
0.14 

2019 R4 
Charlestown 

20.5 
(22.9%) 

0.14 
20.5 

(22.9%) 
0.14 

19.2 
(21.4%) 

0.13 
19.4 

(21.7%) 
0.13 

 

For time-of-day distributions of unexpected absences, average profiles for different days 

of the week and holidays were used. Figure 5-4 shows the average time-of-day absence profiles 
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for all ratings and garages. Some holidays, in our case Columbus Day, use weekday schedules, 

and these holidays were categorized by their day of week instead of the holiday profile. On some 

days of the week, the patterns were similar. For example, the profiles for Mondays and Tuesdays, 

as well as Thursdays and Fridays, were very similar. But this similarity was not universal therefore 

the different days of the week were kept separate. The patterns were also similar, across different 

ratings and garages, especially on weekdays. 

 

 

a) Monday  

 

b) Tuesday  

 

c) Wednesday  

 

d) Thursday  

 

e) Friday 

 

f) Saturday 

 

g) Sunday 

 

h) Holiday 
Figure 5-4 Time-of-Day Distributions of Unexpected Absences  

 

 Cover list scheduling requires estimates for unexpected absences by hour. Integrating daily 

total unexpected absence hours with their time-of-day distribution gave predictions for unexpected 

absences by hour. Comparing the modelled results with actual number of unexpected absences, 

Figure 5-5 shows the model errors by time of day for this rating. The average error for the hourly 

prediction was 1.51. The hourly prediction, along with the error term, serves as inputs to the 

scheduling model in Chapter 6. The model produces more negative outliers, i.e. some high absence 

days were significantly under-predicted. In a pure estimation application, the direction of error 

does not matter; but for the scheduling application, having a high prediction indicates wasted 
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manpower and a low prediction means heavy demands for overtime and the likelihood of lost 

service. This tradeoff will be considered further in Chapter 6. 

 

Figure 5-5 Combined Model Error 2019 R4 @ Southampton 

 

Model Transferability 

Table 5-12 tabulates the coefficients for the base variables, as well as the additional 

variables that passed the likelihood test at the 95% confidence level for each year. For the base 

variables, the day-of-week dummies are generally insignificant. Among the coefficients identified, 

the signs and magnitudes are similar across years with a few exceptions. The effect of holidays 

was not significant. There was an increasing trend in the amount of unexpected absences going 

from September to December as the end of year approaches. As for holiday extensions, in three 

rating/garages, the variable had a negative value. In 2019R4 at Southampton, although the holiday 

extension variable was positive in the full model, this variable was negative with the highest level 

of significance (***), which leads us to believe that the inclusion of other variables in the full 

model has offset this effect. The holiday pay provisions are effective in reducing absence. 

There was no additional variable identified as significant in the prediction of unexpected 

absence hours for more than two rating/garages. The variables that were significant in two 

rating/garages are highlighted in the table. The two common factors are unexpected absence the 

previous day, as well as the intercept term of known-in-advance absence on Friday for Saturday 

absence prediction. First, unexpected absence was likely to be autoregressive and the coefficients 

estimated were similar. Besides the autoregressive effect, the other variables passing the test are 

all intercept terms with holiday extensions and weekends. Having more known-in-advance 

absences on Friday could lead to more unexpected absences on Saturdays. In 2018, where known-

in-advance absence x Saturday was not included, FMLA x Saturday was strongly significant (p-

value less than 0.001), which could be accounting for the same effect in which a longer weekend 

might be necessary (or desired).  
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For only one rating (2018 Southampton) did same-day known-in-advance absence rates 

pass the likelihood test, but was not significant at the 95% confidence level in the final model. If 

known-in-advance absence exceeds the extraboard capacity and overflows into unexpected 

absences, known-in-advance absence rates on the day of should have a positive and significant 

coefficient in the models, but there was no evidence to support this hypothesis.  

 

Table 5-12 Variable Selection and Estimation Results Unexpected Absence Regression (95% C.I.) 

 Southampton Charlestown 

 2017 R4 2018 R4 2019 R4 2019 R4 

Base Variables 

constant -2.4363*** -2.4829*** -2.7423*** -3.1550*** 

holiday 0.4384* -0.1327 -0.3096 -0.2726 

holiday extension -0.6870*** -0.3570*** 0.1860 -0.2471 

week 0.0244*** 0.0148** 0.0213** 0.0210** 

Tue -0.2532* -0.0227 -0.0882 -0.0567 

Wed -0.1736 -0.2723** -0.0955 -0.0976 

Thu -0.1869 -0.1227 -0.0367 0.0605 

Fri -0.0411 0.0222 0.1621 0.2184 

Sat 0.0794 -0.6506** -0.4277* 0.6531*** 

Sun 0.0829 0.3598* -0.3568 0.1642 

Additional Variables 

unexpected absence (1 day ago)   0.0265 ** 0.0337 ** 

unexpected absence (2 days ago)     

unexpected absence (1 week ago)     

known-in-advance (same day)  -0.0183   

known-in-advance (1 day ago) x 
holiday extension 

-0.0207    

known-in-advance absence (1 day 
ago) x Saturday 

0.0647 *  0.0385 *  

known-in-advance absence (1 day 
ago) x Sunday 

  0.0676  

sick absence (2 days ago) x holiday 
extension 

  -0.2186  

sick absence (2 days ago) x Saturday -0.3858 **    

rolling overtime previous week x 
holiday extension 

  -0.0106  

FMLA absence rates (2 days ago) x 
holiday extension 

-0.1828 *    

FMLA absence rates (2 days ago) x 
Saturday 

 0.1682 ***   

FMLA absence rates (2 days ago) x 
Sunday 

 -0.1380 ***   

Table notes: *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001. 
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Table 5-13 shows prediction errors for different training and testing datasets. For example, 

both training and testing for 2019 show the model fit on the same dataset and serves as a best 

possible model performance benchmark with the current model structure. All base models had the 

same specification. The specifications used for the full models were the best ones found using the 

training dataset. The error from the model trained on 2018 data and tested on 2019 data shows how 

much the relationships between unexpected absence and the explanatory variables changed from 

2018 to 2019. To include as much data as possible, as well as showing the value of pooling data 

and updating the model using data from the current rating, the second half of 2019 data was chosen 

as the test set. 

 

Table 5-13 Transferability for Unexpected Absence Hours Model 

  Base Model Full Model 

Training Data5 
Testing 

Data 
Negative Binomial– 

MAE (MAPE) 
Theil’s 

U 
Negative Binomial– 

MAE (MAPE) 
Theil’s 

U 

2019 (second half) 

2019 
(second 

half) 

21.24 (25.2%) 0.14 18.11 (21.5%) 0.12 

2017+2018+2019 
(first half) 

23.64 (28.0%) 0.18 23.76 (28.2%) 0.18 

2017+2018 23.95 (28.4%) 0.19 25.28 (30.0%) 0.19 

2018 26.90 (31.9%) 0.21 28.96 (34.3%) 0.22 

2017 21.59 (25.6%) 0.15 28.29(33.6%) 0.2 

 

Unlike known-in-advance absences, although the full model had a better fit on the training 

data, it had worse testing errors. 2017 and 2019 had similar absence rates (Table 4-2), therefore 

using 2017 data to predict 2019 (MAPE is 27%, 4% worse than the benchmark) did better than 

using 2018 (30%). When the training distribution and the testing distribution were farther from 

each other (larger errors), the full model did worse because it was overfitted to the training data. 

Pooling effectively hedged against this effect. When data from the current rating was included in 

the model formulation, both models had similar performance.  

Note that at the start of the rating, at the tactical level, we only have information to apply 

the base model. However, as we get into operational-level assignment, the full model is still not 

recommended since the full model is overfitted to the training data and has poor interpretability 

and transferability. In summary, the unexpected absence patterns differed slightly from year to 

year and data from a time period closer to the testing time period did not necessarily lead to better 

results. Combining the available training data from different time periods effectively hedges the 

effect. When there are policy changes that would affect unexpected absence behavior, caution must 

be used when selecting an appropriate training dataset. 

 
5 The garage was Southampton. 
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5.6.4 Unexpected Absence Prediction with Multivariate Analysis 

In this section, results from the multivariate model discussed in section 5.5 are presented 

and analyzed. Since the explanatory variables were the same, and MVPLN is a variation of count 

models, the transferability patterns are similar to the model system discussed in 5.5, therefore we 

omit the discussion on model transferability. 

 

Estimation Results 

One of the disadvantages of this model is the number of parameters that need to be 

estimated. There are 21 hours * 10 explanatory variables = 210 β’s, and a 21x21 covariance matrix 

must be estimated. For the rating shown (2019 R4 @ Southampton), the sample size was 112 days 

* 21 hours per day = 2352. Therefore, it is challenging to estimate the coefficients accurately. With 

a larger sample the benefit of the model would be easier to assess. 

Figure 5-6 shows the beta values on the left and the covariance matrix on the right from 

Southampton in 2019 R4. Due to the large numbers of coefficients estimated, the magnitude of the 

coefficients is shown using a heatmap with a color scale centered at 0 (white). On the x-axis are 

the explanatory variables, the y-axis the hour of day, and the colors the magnitude of the 

coefficients. For example, the cell corresponding to 5-intercept shows the value of the intercept at 

5am. 

Similar to the previous models, due to the limitations in the information included in the 

explanatory variables, the model only captured the day-of-week and time-of-day effects not in the 

descriptive analysis. In this rating, there was one very clear trend: late evening absence increased 

as the rating progressed, as reflected in the coefficient for the week number. Correspondingly, the 

effect of the intercept, which includes constant effects, decreased. This pattern was not common 

over all years (for results from other years, please refer to Appendix C). This model used Monday 

as a reference. Only Fridays had either comparable (white for the hours 5-13 and 21-25) or higher 

(orange-red colors for the hours 14-20) levels of unexpected absence compared to Mondays. 

Thursdays had lower morning absences and slightly higher evening absences. All the other days 

of the week had lower unexpected absences at all times of the day, especially holidays. 

The correlation matrix presents the correlation between different hours of the day that is 

not modelled explicitly. The correlations were generally positive, meaning the unobserved effects 

generally applied to the whole day with higher correlation between hours which are close together. 

The correlation matrix patterns in this rating were similar to those for other ratings/garages. For 

results from other ratings/garages, please refer to Appendix C. 
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Figure 5-6 MVPLN Beta Values (left) And Correlation Matrix (right) 2019 R4 @ Southampton 

 

 To illustrate the effects of increased sample size on this model, Figure 5-7 shows the 

correlation matrix estimated from the combined 2017, 2018 and 2019 datasets at Southampton 

(350 days). The colors fade steadily from the diagonal to the lower left and upper right corner, 

indicating that the unobserved heterogeneity was more strongly correlated between hours which 

are close together. 

 

Figure 5-7 MVPLN Correlation Matrix 2017, 2018 and 2019 @ Southampton 
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Validation 

Figure 5-8 shows the model errors by time of day for this rating. The average error for the 

prediction of hourly unexpected absence was 1.67, higher than the value obtained from the 

previous method (1.51), but the error range was more balanced and there were less extreme 

negative errors from this model. Because of the large numbers of parameters estimated, this 

method would benefit from larger datasets. 

 

 

Figure 5-8 MVPLN Error 2019 R4 @ Southampton 

 

Operator absence makes up the majority of the demand for extraboard operator-hours and 

will serve as an input to the extraboard scheduling model. In order to achieve better schedules, 

accurately predicting absence is an integral step. This chapter presented different forms of count 

models to predict aggregate absence. The key takeaways are: 1) The holiday pay incentive, 

explained in Section 5.6.1 with the model results shown in Table 5-12, was shown to be effective. 

Therefore, underlying behavioral factors play an important role in absence. Count models can 

model aggregate absences with mean absolute errors at around 20% to 30%. The lack of other 

behavioral and demographic data leaves room for improvement. 2) Both known-in-advance and 

unexpected absences are autoregressive, but past overtime and different types of absence are not 

significant predictors. 3) Unexpected absences at different hours in the day are correlated, and this 

correlation can either be captured by modelling a daily total and imposing a time-of-day 

distribution, or modelled explicitly with latent factors 
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Chapter 6 The Extraboard Scheduling Optimization Model 

 

Extraboard operators are intended to provide cover for both service trips and non-service 

duties (such as transferring buses, flagging, yard, inspector duties, etc.). All work that the 

extraboard is intended to cover is referred to as open work. This chapter addresses the assignment 

of extraboard operators under uncertainty at the tactical and operational levels. With the strategic 

level in the three-step workforce planning process (Figure 1-2) beyond the scope of this research, 

the overall extraboard size is fixed. Figure 6-1 shows a modified version of Figure 1-2 where only 

the tactical and operational levels are included. At the tactical level, given the estimated levels of 

absence, overtime availability, essential non-service duties, and the number of available extraboard 

operator-days, the allocation of extraboard operators across garages and then the allocation of 

extraboard operators across days of the week are determined. Extraboard operators are trained and 

work at specific garages and can operate any route in the garage but are not shared between garages. 

Although it would be interesting to study the costs, and benefits of sharing extraboard operators 

across garages, due to data not being available from all garages, this is left for future research. At 

the operational level, on a daily basis, known-in-advance absences are assigned directly to the 

extraboard, assuming that the extraboard is large enough to cover all known-in-advance absences. 

The remaining operators (the cover list) are assigned report times for the next day to cover 

unexpected absences, and other open work as required. Finally, on the day of operations, as 

unexpected absences and non-service duties appear, outcomes in terms of lost service, overtime 

performed, and cover utilization follow. Although strategic-level decisions are taken as an input, 

results in terms of lost service and overtime performed for different staffing levels can inform 

strategic level decisions such as whether to adjust the extraboard size. 

Section 6.1 discusses the treatment of another important input into extraboard scheduling: 

overtime availability. Section 6.2 discusses the policy constraints on extraboard scheduling, as 

well as some assumptions made in the model formulation. Section 6.3 presents the nominal model 

formulation without uncertainty and Section 6.4 presents the robust version of the model. Section 

6.5 presents the numerical results of the MBTA case study using the models developed in Chapter 

5, and Section 6.5.6 analyzes the benefits of two alternative scheduling policies which could be 

considered by the MBTA.  

 



 74 

 

Figure 6-1 Tactical and Operational Level Planning Decisions 

 

 

6.1 Treatment of Overtime Availability 

Operator overtime plays a major role in covering absences to maximize service coverage, 

especially when there is a shortage in the number of extraboard operators (see Table 4-2). Although 

paid at a 50% pay premium over the regular rate, overtime is often a less expensive option than 

increasing the size of the cover list due to the benefits and vacation liability associated with 

additional operators. Overtime can also be a more flexible and efficient option than the extraboard 

because calls for overtime are made only when there is open work, thus no wasted time is incurred. 

However, relying too heavily on overtime can lead to operator fatigue and more operator absence. 

If no one volunteers to work overtime when it is offered, service will be lost, affecting reliability 

of service and public perception of the agency. Therefore, a key question is what is the amount of 

overtime which can be reliably counted on. Correctly anticipating the level of overtime available 

at different times of the day and on different days of the week can help in scheduling cover list 

operators such that maximum coverage is obtained at minimum cost. 
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A few models are tested for estimating overtime availability, but no satisfactory models 

resulted from this research, mainly due to data limitations. The attempts made are described in 

Appendix D. We will discuss some modelling considerations that formed the basis of the 

approximations made in this research, mainly for future reference. There are two potential sources 

that the garage superintendent could seek overtime from: operators on their day-off and extension 

of work hours for operators who are performing a shift that day. Most overtime (from both sources) 

is worked as single pieces with no breaks. The decision-making processes behind the two sources 

of overtime are different. The factors correlated with the quantity on the aggregate level were also 

expected to be different. In the regression models considered, separate formulations were 

constructed for each type.  

The biggest issue in modelling overtime availability is that it is not directly observed, so 

no ground truth is available. From the data, overtime performed is observed, which depends on 

both overtime availability and overtime requested and is therefore a lower bound on overtime 

availability. At the MBTA, overtime is only requested if there is no cover list operator available 

to do the work. Assuming that this practice is followed rigorously and that the garage 

superintendent always attempts to fill all trips, we could infer how much overtime is requested as 

the sum of lost service and overtime performed. When there is lost service, we can conclude that 

overtime performed is equal to overtime available, since if there was more overtime available, 

more service would have been covered. However, when there is no lost service, observed overtime 

is just a lower bound of available overtime. 

In this research, the empirical distribution of overtime availability was used. First, the hours 

with lost service are selected, since for these times, overtime performed is also available overtime. 

Second, the numbers of operators available for overtime are grouped by day of week and hour of 

day. For deterministic models, the mean μ𝑑𝑡
𝑜  is taken as the overtime availability for the hour and 

day of week. For robust models, standard deviations σ𝑑𝑡
𝑜  are taken from the empirical distributions 

to form the range of values in the uncertainty set for each level of robustness. 

 

6.2 Scheduling Policy Constraints and Modelling Assumptions 

This section discusses the model constraints associated with the labor agreement, common 

scheduling practices at the MBTA, and assumptions made in model formulation. Other agencies 

might have different policies and practices and the associated constraints would need to be 

modified accordingly. Depending on the objectives of the analysis, other assumptions may also 

need to be modified. 
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Tactical Level 

1) Analysis unit: number of operators per day. Tactical-level analysis is based on expected 

absences, overtime availability, and lost service on a daily basis, which is aggregated from the 

operational-level model. 

 

2) Scheduling policy: Most vacation cover is scheduled with dedicated vacation relief operators, 

which are part of a separate group of operators, in a separate process from extraboard allocation. 

The remaining vacations are scheduled in the form of single vacation days, and are covered in 

the same way as regular absences. In any week when there are more vacation relief operators 

than operators on vacation, vacation relief operators are added to the extraboard.  

 

3) Scheduling policy: Each day of the week has the same scheduled number of extraboard 

operators in all weeks in the rating. Note that the actual number of operators available on any 

given day will depend on the absences among extraboard operators, as well as any unassigned 

vacation relief operators. At the tactical level, the MBTA builds the extraboard duties into 

rosters which operators pick in order of (decreasing) seniority. Each operator has the same 

work days in all weeks of the rating. Although it is important to take week-to-week variations 

in absence and overtime availability into account while scheduling, the tactical-level 

assignment plan cannot respond to these variations by changing the scheduled number of 

extraboard operators from week to week within the rating. Data suggests that the actual number 

of extraboard operators available on any given day varies greatly, because of extraboard 

operators updated in the data as the original owner of the shifts, extraboard absences, 

unassigned vacation relief operators, operator suspension and/or attrition. 

 

4) Scheduling policy: Generally, only full-time operators are assigned to the extraboard. Many 

agencies employ full-time and part-time operators with different duty requirements and 

constraints (as well as benefits). Based on current MBTA practice, the extraboard consists 

mainly of full-time operators, taking on scheduled runs (for known-in-advance absence) and 

eight-hour straight shifts (for the cover list). Although in special circumstances, such as 

significant shortages of full-time operators (for example rating 4 at Southampton in 2017), 

part-time operators could be assigned to the extraboard. In the base case, it is assumed that all 

cover list operators are full-time operators working eight-hour straight shifts.  

 

Operational Level 

1) Analysis unit: hourly workload curve. Operational-level analysis is based on an hourly 

workload curve, since the absence and overtime analysis are at an aggregate level. Since the 
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daily total and time-of-day profile were estimated separately, non-integer numbers naturally 

arise for the number of unexpected absences. Hourly overtime availability was integer-valued.  

The cover list assignment was modelled by the report time for each extraboard operator; 

therefore, the cover list coverage curve was integer valued.  

 

2) Assumption: Part-day known-in-advance absences, which are uncommon, are treated as if they 

were unexpected absences. At the MBTA, cover is not arranged in advance for these absences 

and they end up on the cover list. In theory, while determining report times for the following 

day, known-in-advance, part-day absences give concrete information on times that cover is 

required, reducing the amount of uncertainty on unexpected absences. From Figure 4-3, there 

are few known-in-advance part-day absences. Therefore, they are not accounted for during 

operational-level scheduling. All absences covered by the cover list are assumed to be 

unexpected and any knowledge on part-day known-in-advance absences is not used in the 

assignment of report times. 

 

3) Assumption: Rest rules between shifts do not affect scheduling at the aggregate level. Rest 

rules exist to protect operators from becoming dangerously fatigued and thereby raising safety 

concerns. For example, the MBTA has requirements on both rest time between days and 

cumulative work hours in a given time period. All operators need to have at least 6 hours of 

rest between consecutive workdays and at least 8 hours of rest if the previous day shift was 14 

hours. In a 16-hour spread on any day (including breaks), the operator cannot work for more 

than 14 hours, as well as 42 hours in a 72-hour period, and 60 hours in a week (from Saturday 

to Friday). These rules apply to every operator. Since this analysis is at the aggregate level, the 

rest rules are not explicitly included. It is assumed that the rest rules can be satisfied by 

swapping shifts between operators after the shifts are made if the rest rules would be violated.  

 

4) Assumption: During operations, overtime will not be requested unless no cover list operator is 

available. On the day of operations, the MBTA follows a greedy approach when assigning 

work: when unexpected demands occur, work is assigned to the cover list operators before 

overtime is offered. The scheduling model adopts this assignment strategy in the calculation 

of overtime performed and lost service on the day of operations. Whether the greedy approach 

is optimal is an open question (Gupta and Li, 2016), but this issue is beyond the scope of this 

thesis. 
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5) Assumption: It is assumed that all service trips take precedence over non-service duties and 

that non-service duties can be scheduled in between required service duties or not performed 

without incurring losses. Besides service trips, cover list operators also perform non-service 

duties such as transferring buses between garages, doing flagging work, substituting for 

inspectors, etc. Based on empirical evidence, the amount of non-service duties is not negligible 

(Table 4-3). In terms of importance, non-service duties can be divided into essential and non-

essential. Some essential non-service duties may be required even at times when service trips 

also need to be covered. Although in practice, once an operator has started a non-essential non-

service duty and, if an unexpected absence occurs, the operator may not be able to terminate 

the non-service duty and be available for the service trip, this dispatching issue is beyond the 

scope for this formulation and it is assumed that no conflict will be incurred. Similar to 

absences, essential non-service duties can also be divided into known-in-advance and 

unexpected. It is assumed that, in extraboard scheduling, the known-in-advance and 

unexpected non-service duties are treated the same as known-in-advance absences and 

unexpected absences, respectively. 

 

6.3 Nominal Problem Formulation 

This process involves two levels of decision making that can be formulated as a two-stage 

optimization problem. The first stage (tactical level) involves deciding the number of extraboard 

operators to assign to each day of the week in the analysis period (rating) based on predicted 

absences and overtime availability. During the rating, on a daily basis, extraboard operators are 

assigned to cover known-in-advance absences. At the second stage (the operational level), the 

remaining extraboard operators are assigned report times for the following day to be available to 

cover unexpected absences. At both stages, the goal is to minimize lost service and overtime 

performed and maximize extraboard productivity.  

This section introduces the nominal (deterministic) formulation of the problem. In the 

nominal model, absence levels and overtime availability are treated as deterministic quantities. 

Although not directly applicable to scheduling (since absence and overtime availability are 

uncertain at the time of scheduling), this formulation is used to get the optimal assignment strategy 

given hindsight, and is used as a benchmark for the scheduling strategies developed subsequently. 

This formulation also serves as a starting point for introducing uncertainty into the formulation, as 

discussed in Section 6.4.  

The variables, objective functions, and constraints for the two levels of scheduling are 

introduced separately below, and then combined in the complete formulation. 
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6.3.1 Tactical Level 

Model Parameters and Variables 

The decision variables for the tactical level are X = [𝑥0, … , 𝑥6], a vector that represents the 

number of extraboard operators scheduled for Monday to Sunday (𝑥0, … , 𝑥6). Each subscript 

represents a day of the week that, in theory, should have the same number of extraboard operators 

scheduled in all weeks in the rating. 

The parameters and inputs for the models are shown below.  

𝑐𝑙𝑠, 𝑐𝑜𝑡, 𝑐𝑒𝑥 cost coefficients for lost service, overtime performed, and extraboard hours 

D the dates in scope 

T the hours in a day 

N maximum number of extraboard operators that can be scheduled in any day 

M number of available extraboard-days in a week 

s shift length in hours 

δ𝑑𝑖 indicator for the number of extraboard operators scheduled for date d; δ𝑑𝑖 = 1 

if date d corresponds to category i in a week, δ𝑑𝑖 = 0 otherwise; i = 0, … ,7; 

∑ δ𝑑𝑖
6
𝑖=0 = 1       ∀𝑑 since each day can belong to only one category. 

  

 For notational convenience, the following intermediate variables are defined:  

𝑥𝑑
𝑒  number of extraboard operators assigned for date d 

𝑥𝑑
𝑐  number of cover list operators for date d 

𝑧𝑑𝑡
𝑙𝑠  number of lost service hours on date d hour t 

𝑧𝑑𝑡
𝑜  number of operators performing overtime on date d hour t 

 

Objective Function 

The objective is to minimize a weighted sum of the cost of lost service, overtime performed, 

and extraboard operators for all days in the analysis period:  

    min    
𝑋

∑ (𝑐𝑒𝑥 s 𝑥𝑑
𝑒 +   min   

𝑌
𝑐𝑙𝑠 ∑ 𝑧𝑑𝑡

𝑙𝑠

𝑇

𝑡=1

+ 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡
𝑜

𝑇

𝑡=1

)  

D

d=1
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where 𝑐𝑙𝑠, 𝑐𝑜𝑡, 𝑐𝑒𝑥 are weights assigned to an hour of lost service, an hour of overtime 

performed, and an hour of work performed by an extraboard operator. However, there is no direct 

monetary cost to the agency associated with lost service (besides lost passenger revenue, which 

involves demand prediction to quantify), and the cost of the extraboard includes fringe benefits 

which makes the cost of each extraboard hour higher than the nominal pay rate. Although overtime 

appears to be a less expensive option, with the cost of fringe benefits associated with extraboard 

operators, relying too heavily on overtime risks losing service, and influencing the well-being of 

operators, both of which are influential and hard to quantify. Therefore, 𝑐𝑙𝑠, 𝑐𝑜𝑡, 𝑐𝑒𝑥 are weights 

based on agency-specific judgment. For example, if minimizing lost service is the ultimate goal, 

then 𝑐𝑙𝑠  can take a large value relative to 𝑐𝑜𝑡 and 𝑐𝑒𝑥 , thereby ensuring that lost service is 

minimized, given the resource constraints. Within the resource constraints (the staffing level), 

overtime performed, and extraboard assignment costs are relevant only when the same level of lost 

service is attained.  

 

Constraints  

Two resource scenarios may be of interest: constrained resources and unconstrained 

resources. The constrained resource model can be used to efficiently allocate known resources, 

whereas the unconstrained model can be used to inform strategic-level decisions. In the 

constrained resource case, the total number of extraboard operators is fixed. In the unconstrained 

resource case, the total number of extraboard operators is not restricted and the scheduling model 

is used to recommend the staffing level to minimize overall weighted cost objective. However, 

constraints on the relationship between the number of operators hired and the number of days 

worked also need to be satisfied. In this model, it is assumed that every extraboard operator works 

five days a week. For example, if we have x extraboard-days assigned in one week, then we cannot 

have more than x/5 operators in a day. 

 

• Apply to both scenarios 

o The same number of extraboard operators is scheduled for each day of the week across all 

weeks in the rating. 

𝑥𝑑
𝑒 = ∑ δ𝑑𝑖𝑥𝑖

𝑖∈𝐼

 

where δ𝑑𝑖 = 1 when date d belongs to day-of-week category i. 
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• Constrained Resources 

o Total number of extraboard operator-days available in a week. Either M or N needs to be 

specified, or both. 

∑ 𝑥𝑖

6

𝑖=0

≤ M ≤ 5N 

o Number of extraboard operators available in a day cannot exceed the number of extraboard 

operators. 

𝑥𝑖 ≤ 𝑁     ∀𝑖 

 

• Unconstrained Resources 

o The number of extraboard operators assigned each day is less than the total number of 

extraboard days in the week divided by 5. 

𝑥𝑑
𝑒 ≤

1

5
∑ 𝑥𝑖

6

𝑖=0

     ∀d 

 

6.3.2 Operational Level 

Model Parameters and Variables 

Y ∈ {0,1}N × D×𝑇 is a matrix of binary values that represents the report times of each cover 

list operator (𝑦𝑗𝑑𝑡 = 1 if cover list operator j reports at hour t on date d, 𝑦𝑗𝑑𝑡 = 0 otherwise). 

Operator j on date d and operator j on date d’ do not have to be the same person, as long as the 

number of operators scheduled is greater than, or equal to, the number of operators assigned. 

During operations, when faced with unexpected open work, in anticipation of more open 

work arising, it is the garage’s dispatcher’s decision whether to dispatch a cover list operator, 

request overtime, or drop the work. Since the real-time dispatching problem during operations is 

beyond the scope of this thesis, a greedy approach (where open work is assigned to the cover list 

on a first come, first serve basis until no more cover list operators are available, and then the 

remaining work is offered as overtime) was assumed for the assignment. The costs of lost service 

and overtime performed were assumed to be the same for service and non-service duties: if the 

costs are different, one type of duty will take precedence over the other. The variables in the model 

are defined as follows. 
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𝑐𝑙𝑠, 𝑐𝑜𝑡  cost coefficients for lost service and overtime performed 

T the hours in a day 

s shift length in hours 

δ𝑑𝑖  indicator for the number of extraboard operators scheduled for date d; δ𝑑𝑖 = 1 if 

date d corresponds to category i in a week, δ𝑑𝑖 = 0 otherwise; i = 0, … ,7; 

∑ δ𝑑𝑖
6
𝑖=0 = 1       ∀𝑑 since each day can belong to only one category. 

𝑛𝑑𝑡
𝑢𝑜𝑤  number of unexpected open work on date d hour t 

𝑛𝑑
𝑘𝑜𝑤  number of known-in-advance open work on date d 

𝑛𝑑𝑡
𝑎𝑜  number of operators available for overtime on date d hour t 

𝑛𝑑𝑡
𝑢   number of unexpected absences on date d hour t 

𝑛𝑑
𝑘  number of known-in-advance absences on date d 

𝑛𝑑𝑡
𝑢𝑛𝑠  number of unexpected essential non-service duties on date d hour t 

𝑛𝑑
𝑘𝑛𝑠  

number of operators needed from the extraboard for known-in-advance essential 

non-service duties on date d 

 

Objective Function 

At the operational level, each day is optimized independently. The number of extraboard 

operators is inherited from the tactical level, so the cost of the extraboard is constant no matter the 

assignment strategy; therefore, the objective function contains only costs related to lost service 

and overtime performed. 

Q(nd
kow,  nd

uow, nd
o , X) =   min   

𝑌
𝑐𝑙𝑠 ∑ 𝑧𝑑𝑡

𝑙𝑠

𝑇

𝑡=1

+ 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡
𝑜

𝑇

𝑡=1

 

 

Constraints  

• Work rules 

o Open work consists of absence and essential non-service duties 

𝑛𝑑
𝑘𝑜𝑤 = 𝑛𝑑

𝑘𝑛𝑠 + 𝑛𝑑
𝑘 

𝑛𝑑𝑡
𝑢𝑜𝑤 = 𝑛𝑑𝑡

𝑢𝑛𝑠 + 𝑛𝑑𝑡
𝑢  
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o Extraboard operators 𝑥𝑑
𝑒  cover both types of open work: known-in-advance and 

unexpected open work.  

𝑥𝑑
𝑒   ≤ 𝑥𝑑

𝑐 + 𝑛𝑑
𝑘𝑜𝑤 

𝑥𝑑
𝑐 = ∑ ∑ 𝑦𝑗𝑑𝑡

𝑁

𝑗=1

𝑇

𝑡=0

 

o At the MBTA, one cover list operator is reserved to cover the first shift in the morning and 

another for last shift at night. This rule does not apply when there are no cover list operators 

and if there is only one cover list operator, (s)he is scheduled to cover the first shift in the 

morning. 

∑ 𝑦𝑗𝑑0
𝑁
𝑗=1 ≥ 1 , ∑ 𝑦𝑗𝑑(𝑇−𝑠)

𝑁
𝑗=1 ≥ 1 

o The number of cover list operators available in hour t is the number of operators that started 

their duties before this time and are still active, and those who start their duties in the 

current hour.  

𝑥𝑑𝑡
𝑐 = ∑ ∑ 𝑦𝑗𝑑k

𝑡

𝑘=𝑚𝑎𝑥(0,𝑡−𝑠)

𝑥𝑑
𝑐

𝑗=1

 

o Lost service is calculated from the shortage of operators in each hour. Demand for cover 

operators is the unexpected absence and essential non-service duties at time t, 𝑛𝑑𝑡
𝑢𝑜𝑤, and 

cover availability is the sum of available overtime and active cover list operators 𝑛𝑑𝑡
𝑜 + 𝑥𝑑𝑡

𝑐 . 

When there are more available operators than absences, 𝑛𝑑𝑡
𝑢𝑜𝑤 − 𝑛𝑑𝑡

𝑜 − 𝑥𝑑𝑡
𝑐  is negative and 

there is no lost service. 

𝑧𝑑𝑡
𝑙𝑠 = max(𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑛𝑑𝑡
𝑜 − 𝑥𝑑𝑡

𝑐 , 0) 

o Overtime performed is calculated as the hourly number of operators working overtime. 

Since overtime is the last resort to cover, 𝑧𝑑𝑡
𝑝𝑜   > 0 only when 𝑛𝑑𝑡

𝑢𝑜𝑤 = 𝑛𝑑𝑡
𝑢 + 𝑛𝑑𝑡

𝑢𝑛𝑠  >  𝑥𝑑𝑡
𝑐 .   

𝑧𝑑𝑡
𝑜 = max(𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑥𝑑𝑡
𝑐 − 𝑧𝑑𝑡

𝑙𝑠 ,  0) 

 

• Non-negativity and uniqueness constraints 

o A scheduled operator can have only one report time. 

∑ 𝑦𝑑𝑗𝑡
𝑇
𝑡=1 ≤ 1      ∀𝑗, d  
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6.3.3 Combined Model 

Combining and linearizing the constraints, the nominal problem formulation is: 

Tactical Level: 

    min    
𝑋

∑ (𝑐𝑒𝑥s𝑥𝑑
𝑒 +   min   

𝑌
𝑐𝑙𝑠 ∑ 𝑧𝑑𝑡

𝑙𝑠

𝑇

𝑡=1

+ 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡
𝑜

𝑇

𝑡=1

)  

D

d=1

 

 Constrained resources: Unconstrained resources:  

s.t. ∑ 𝑥𝑖
6
𝑖=0 ≤ M ≤ 5N    

 𝑥𝑖 ≤ 𝑁  𝑥𝑑
𝑒 ≤ 𝑥𝑖  ∀i   

 𝑥𝑑
𝑒 = ∑ δ𝑑𝑖𝑥𝑖𝑖∈𝐼   𝑥𝑑

𝑒 ≤
1

5
∑ 𝑥𝑖

6
𝑖=0   ∀d  

 𝑥𝑖 ∈ N   𝑥𝑖 ∈ N   

Operational Level (for a specific date d): 

Q(nd
kow, 𝑛𝑑

𝑢𝑜𝑤, nd
ao, X) =   min   

𝑌
𝑐𝑙𝑠 ∑ 𝑧𝑑𝑡

𝑙𝑠

𝑇

𝑡=1

+ 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡
𝑝𝑜

𝑇

𝑡=1

 
 

 

 s.t. 𝑛𝑑
𝑘𝑜𝑤 = 𝑛𝑑

𝑘𝑛𝑠 + 𝑛𝑑
𝑘    

 𝑛𝑑𝑡
𝑢𝑜𝑤 = 𝑛𝑑𝑡

𝑢𝑛𝑠 + 𝑛𝑑𝑡
𝑢     ∀t  

 𝑥𝑑
𝑒 = ∑ δ𝑑𝑖𝑥𝑖𝑖∈𝐼     

 𝑥𝑑
𝑒   ≤ 𝑥𝑑

𝑐 + 𝑛𝑑
𝑘𝑜𝑤    

 𝑥𝑑
𝑐 = ∑ ∑ 𝑦𝑗𝑑𝑡

𝑁
𝑗=1

𝑇
𝑡=0     

 𝑥𝑑𝑡
𝑐 = ∑ ∑ 𝑦𝑗𝑑𝑘

𝑡
𝑘=𝑚𝑎𝑥(0,𝑡−𝑠)

𝑥𝑑
𝑐

𝑗=1    ∀t  

 𝑧𝑑𝑡
𝑙𝑠   ≥ 𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑛𝑑𝑡
𝑎𝑜 − 𝑥𝑑𝑡

𝑐𝑙    ∀t  

 𝑧𝑑𝑡
𝑜 ≥ 𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑥𝑑𝑡
𝑐 − 𝑧𝑑𝑡

𝑙𝑠    ∀t  

 𝑧𝑑𝑡
𝑙𝑠 ≥ 0   ∀t  

 𝑧𝑑𝑡
𝑜 ≥ 0   ∀t  

 ∑ 𝑦𝑗𝑑0
𝑁
𝑗=1 ≥ 1   when 𝑥𝑑

𝑐 ≥ 1    

 ∑ 𝑦𝑗𝑑(𝑇−𝑠)
𝑁
𝑗=1 ≥ 1   when 𝑥𝑑

𝑐 ≥ 2    

 ∑ 𝑦𝑑𝑗𝑡
𝑇
𝑡=1 ≤ 1   ∀𝑗  

 Y ∈ {0,1}N×𝑇    
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6.4  Adaptive Robust Problem Formulation 

If we know nd
k ,  ndt

u , nd
kns, ndt

uns and ndt
o , then the nominal formulation (6.3) should give the 

optimal assignment strategy. However, at the tactical level, 𝑛𝑑
𝑘 ,  𝑛𝑑𝑡

𝑢 , 𝑛𝑑
𝑘𝑛𝑠, 𝑛𝑑𝑡

𝑢𝑛𝑠,  and 𝑛𝑑𝑡
𝑜  are all 

uncertain. While  𝑛𝑑
𝑘   and 𝑛𝑑

𝑘𝑛𝑠  are realized before the operational level assignment, 

𝑛𝑑𝑡
𝑢  , 𝑛𝑑𝑡

𝑢𝑛𝑠,  and 𝑛𝑑𝑡
𝑜  remain uncertain. To deal with this uncertainty, two approaches are feasible. 

In the general stochastic optimization literature, the expected value of the objective function, or a 

specified percentile of the objective function is optimized. Another approach is to use robust 

optimization, that attempts to develop solutions that are robust to the specified uncertainty. The 

objective function is optimized while maintaining feasibility for all parameter values in the 

specified uncertainty sets. In this thesis, robust optimization was selected for two reasons: first, 

transit agencies would want to have a plan that hedges worst-case risks; second, the expected 

objective function value of an integer optimization problem with uncertainty is intractable. This 

section introduces the robust formulation of the scheduling problem and proposes a solution 

algorithm. 

 

6.4.1 Formulation 

The extraboard scheduling problem is formulated as a two-stage adaptive robust 

optimization problem since the operational-level decisions depend on the tactical level decisions. 

The tactical-level problem is a robust adaptive problem, and the operational-level problem is a 

standard integer robust optimization problem.  

The decision variables and parameters are defined as in the nominal version. X is the here-

and-now decision and Y is the wait-and-see decision. Since the cost of service and essential non-

service duties are the same,  𝑛𝑘  and  𝑛𝑘𝑛𝑠  are combined to form 𝑛𝑘𝑜𝑤  and 𝑛𝑢  and 𝑛𝑢𝑛𝑠  are 

combined to form 𝑛𝑢𝑜𝑤outside the optimization program. Let 𝑍𝑛𝑘𝑜𝑤 , 𝑍𝑛𝑢𝑜𝑤 ,  𝑍𝑛𝑎𝑜   represent the 

uncertainty sets for known-in-advance open work, unexpected open work, and overtime 

availability for date d and time t respectively. The adaptive robust model can be formulated as 

follows. 
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Tactical Level: 

    min    
𝑋

∑ (𝑐𝑒𝑥s𝑥𝑑
𝑒 +   min   

𝑌
𝑐𝑙𝑠 ∑ 𝑧𝑑𝑡

𝑙𝑠

𝑇

𝑡=1

+ 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡
𝑜

𝑇

𝑡=1

)  

D

d=1

 (6-1) 

 Constrained resources: Unconstrained resources:  

s.t. ∑ 𝑥𝑖
6
𝑖=0 ≤ M ≤ 5N    

 𝑥𝑖 ≤ 𝑁  𝑥𝑑
𝑒 ≤ 𝑥𝑖  ∀i   

 𝑥𝑑
𝑒 = ∑ δ𝑑𝑖𝑥𝑖𝑖∈𝐼   𝑥𝑑

𝑒 ≤
1

5
∑ 𝑥𝑖

6
𝑖=0   ∀d  

 𝑥𝑖 ∈ N   𝑥𝑖 ∈ N   

Operational Level (for a specific date d): 

Q(nd
kow, 𝑛𝑑

𝑢𝑜𝑤, nd
o, X) =   min   

𝑌
𝑐𝑙𝑠 ∑ 𝑧𝑑𝑡

𝑙𝑠

𝑇

𝑡=1

+ 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡
𝑜

𝑇

𝑡=1

 (6-2) 

 s.t. 𝑛𝑑
𝑘𝑜𝑤 = 𝑛𝑑

𝑘𝑛𝑠 + 𝑛𝑑
𝑘     

 𝑛𝑑𝑡
𝑢𝑜𝑤 = 𝑛𝑑𝑡

𝑢𝑛𝑠 + 𝑛𝑑𝑡
𝑢     ∀𝑡  

 𝑥𝑑
𝑒 = ∑ δ𝑑𝑖𝑥𝑖𝑖∈𝐼     

 𝑥𝑑
𝑒   ≤ 𝑥𝑑

𝑐 + 𝑛𝑑
𝑘𝑜𝑤    

 𝑥𝑑
𝑐 = ∑ ∑ 𝑦𝑗𝑑𝑡

𝑁
𝑗=1

𝑇
𝑡=0     

 𝑥𝑑𝑡
𝑐 = ∑ ∑ 𝑦𝑗𝑑k

𝑡
𝑘=𝑚𝑎𝑥(0,𝑡−𝑠)

𝑥𝑑
𝑐

𝑗=1    ∀𝑡  

 𝑧𝑑𝑡
𝑙𝑠   ≥ 𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑛𝑑𝑡
𝑜 − 𝑥𝑑𝑡

𝑐𝑙    ∀𝑡; 𝑛𝑑𝑡
𝑢𝑜𝑤 ∈

𝑍𝑛𝑢𝑜𝑤 ;  𝑛𝑑𝑡
𝑜 ∈

𝑍𝑛𝑎𝑜     

(6-3) 
 𝑧𝑑𝑡

𝑜 ≥ 𝑛𝑑𝑡
𝑢𝑜𝑤 − 𝑥𝑑𝑡

𝑐 − 𝑧𝑑𝑡
𝑙𝑠    

 𝑧𝑑𝑡
𝑙𝑠 ≥ 0   ∀𝑡  (6-4) 

 𝑧𝑑𝑡
𝑜 ≥ 0   ∀𝑡  

 ∑ 𝑦𝑗𝑑0
𝑁
𝑗=1 ≥ 1   when 𝑥𝑑

𝑐 ≥ 1    (6-5) 

 ∑ 𝑦𝑗𝑑(𝑇−𝑠)
𝑁
𝑗=1 ≥ 1   when 𝑥𝑑

𝑐 ≥ 2    (6-6) 

 ∑ 𝑦𝑑𝑗𝑡
𝑇
𝑡=1 ≤ 1   ∀𝑗  

 Y ∈ {0,1}N×𝑇    
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6.4.2 Solution Algorithm 

The adaptive robust programs (6-1) and (6-2) are a two-stage adaptive integer program. 

Decision variables for both levels (X, Y) are integer, therefore, affine decision rules cannot be 

applied, and duality cannot be used to simplify the minimax formulation, either. However, note 

that the tactical-level decisions depend on the operational-level objective function value 

Q(nd
kow,  nd

uow, nd
o, X), which depends on the known-in-advance absences, unexpected open 

work, available overtime, and the number of extraboard operators scheduled. Note also that 

unexpected open work nd
uow and available overtime 𝑛dt

o  are inputs to the model and do not 

depend on the tactical level decisions, and that both X and 𝑛𝑑
𝑘 can only take on integer values in 

a reasonable range. In this case, the operational-level objective function value’s dependence on 

the tactical-level information only lies in one scalar variable: the number of cover list operators 

𝑥𝑑
𝑒 − nd

kow. Therefore, the tactical-level integer program can be written as a minimax formulation 

min
𝑋

  max  
𝑛𝑑

𝑘∈𝑍
𝑛𝑘

Q(𝑛𝑘𝑜𝑤, nd
uow,  nd

o, X,  Y), which can be solved by enumerating all values of 𝑥𝑑
𝑒 −

nd
kow. Now we need to find a solution to the operational-level problem (6-2).  

The inner minimization (6-2) is a robust integer optimization since nd
uow and nd

o are still 

uncertain at this stage. 𝑍𝑛𝑢𝑜𝑤  and 𝑍𝑛𝑜  are disjoint uncertainty sets. However, the robust 

counterparts for the constraints are not trivial to derive. The basic assumption in the derivation of 

robust counterparts is that uncertainty is constraint-wise. However, constraint (6-3) includes two 

independent uncertainty sets, and the subtraction of two uncertain variables with budget 

uncertainty sets is not of standard form. At the same time,  𝑍𝑛𝑢𝑜𝑤  also appears in constraint (6-4). 

Since the concept of robust optimization is constraint-wise, splitting the uncertainty in 𝑛𝑢𝑜𝑤 across 

two constraints implies the worst case lost service and overtime are optimized with potentially 

different 𝑛𝑢𝑜𝑤  values. The program will be not only unnecessarily conservative, but also 

impractical since different 𝑛𝑢𝑜𝑤 values are used for the same day. 

Since robust counterparts for the program are difficult to derive, a cutting-plane approach 

is used to solve the inner minimization. Let w represent the set of uncertain parameters w =

[𝑛dt
uow, ndt

o ]  and Z = [𝑍𝑛𝑢𝑜𝑤 , 𝑍𝑛𝑜]  the uncertainty set. The proposed algorithm is summarized 

below: 

1. Set iteration number k = 1 

2. The master problem (6-2) is solved to get 𝑌𝑘 and the objective function value (obj). The 

reduced uncertainty set �̃� consists of only the nominal values in this iteration. 

3. 𝑌𝑘  is substituted to solve the adversarial problem (6-7) below to get the worse-case 

uncertainty parameters w and objective function value (obj_adv). 
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𝑤𝑘 =     argmax    
𝑛𝑑𝑡

𝑢𝑜𝑤,𝑛𝑑𝑡
𝑎𝑜

    𝑐𝑙𝑠 ∑ 𝑧𝑑𝑡
𝑙𝑠

𝑇

𝑡=1

+ 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡
𝑜

𝑇

𝑡=1

 (6-7) 

s.t. 𝑥𝑑𝑡
𝑐 = ∑ ∑ 𝑦𝑗𝑑𝑘

𝑡
𝑘=𝑚𝑎𝑥(0,𝑡−𝑠)

𝑥𝑑
𝑐

𝑗=1   ∀t  

 𝑧𝑑𝑡
𝑙𝑠 = max(𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑛𝑑𝑡
𝑜 − 𝑥𝑑𝑡

𝑐 , 0)  
∀t   

 𝑧𝑑𝑡
𝑜 = max(𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑥𝑑𝑡
𝑐 − 𝑧𝑑𝑡

𝑙𝑠 ,  0)  

 𝑛𝑑𝑡
𝑢𝑜𝑤 ∈ 𝑍𝑛𝑢𝑜𝑤 , 𝑛𝑑𝑡

𝑜 ∈ 𝑍𝑛𝑎𝑜   ∀t  

 

4. wk is added to the master model uncertainty set �̃�. Solve the master problem (6-2)  to 

obtain the assignment for the kth iteration 𝑌𝑘. 

5. The master problem (6-2) with uncertainty set �̃�  gives a lower bound for the optimal 

solution in each iteration, and the adversarial problem gives an upper bound. The algorithm 

terminates if the bounds are within a predefined error range. Otherwise, k=k+1, go to step 

2 and iterate with the updated uncertainty set �̃�. 

Note that the adversarial problem (6-7) has a maximization in the objective with another 

maximization in the constraints (the nonnegativity constraints of lost service and overtime 

performed). To ensure non-negativity, indicator decision variables 𝑖𝑙𝑠, 𝑖𝑜 were added to indicate 

the signs of lost service and overtime (1 for positive and 0 for negative). Since we are maximizing 

the objective function, when there is excess capacity for service and lost service or overtime 

performed is negative, the indicator variable will take value 0 to maximize the objective. The result 

is a quadratic program (6-8).  

       max   
𝑛𝑑𝑡

𝑢𝑜𝑤,𝑛𝑑𝑡
𝑜

    𝑐𝑙𝑠 ∑ 𝑧𝑑𝑡
𝑙𝑠

𝑇

𝑡=1

× 𝑖𝑡
𝑙𝑠 + 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡

𝑜 × 𝑖𝑡
𝑜 

𝑇

𝑡=1

 (6-8) 

s.t. 𝑥𝑑𝑡
𝑐 = ∑ ∑ 𝑦𝑗𝑑k

𝑡
𝑘=𝑚𝑎𝑥(0,𝑡−𝑠)

𝑥𝑑
𝑐

𝑗=1   ∀t  

 𝑧𝑑𝑡
𝑙𝑠 = 𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑛𝑑𝑡
𝑜 − 𝑥𝑑𝑡

𝑐   ∀t  

 𝑧𝑑𝑡
𝑜 = 𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑥𝑑𝑡
𝑐 − 𝑧𝑑𝑡

𝑙𝑠   ∀t  

 𝑛𝑑𝑡
𝑢𝑜𝑤 ∈ 𝑍𝑛𝑢𝑜𝑤 , 𝑛𝑑𝑡

𝑜 ∈ 𝑍𝑛𝑜   ∀t  

 𝑖𝑙𝑠 ∈ {0,1}𝑇 , 𝑖𝑜 ∈ {0,1}𝑇   
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Additionally, the calculation of overtime 𝑧𝑑𝑡
𝑜  involves lost service 𝑧𝑑𝑡

𝑙𝑠 , which is not a 

problem when the formulation is linear, but the nonlinearity of lost service in the new formulation 

(6-8) makes it infeasible for standard solvers. Instead, note that the sum of the lost service and 

overtime performed is the difference between uncovered open work and available cover or 0 when 

we have more cover than work, that is 𝑧𝑑𝑡
𝑙𝑠 + 𝑧𝑑𝑡

𝑜 = max(𝑛𝑑𝑡
𝑢𝑜𝑤 − 𝑥𝑑𝑡

𝑐 ,   0). A new variable 𝑧𝑑𝑡
𝑙𝑠𝑝𝑜 =

𝑧𝑑𝑡
𝑙𝑠 + 𝑧𝑑𝑡

𝑜 = max(𝑛𝑑𝑡
𝑢𝑜𝑤 − 𝑥𝑑𝑡

𝑐 ,   0) was defined to represent the sum of lost service and overtime, 

substituting it for 𝑧𝑑𝑡
𝑜 , we have the formulation (6-9) shown below, which can be solved with a 

standard solver. 

       max   
𝑛𝑑𝑡

𝑢𝑜𝑤,𝑛𝑑𝑡
𝑜

    (𝑐𝑙𝑠 − 𝑐𝑜𝑡) ∑ 𝑧𝑑𝑡
𝑙𝑠

𝑇

𝑡=1

× 𝑖𝑡
𝑙𝑠 + 𝑐𝑜𝑡 ∑ 𝑧𝑑𝑡

𝑙𝑠𝑝𝑜
× 𝑖𝑡

𝑙𝑠𝑝𝑜 

𝑇

𝑡=1

 (6-9) 

s.t. 𝑥𝑑𝑡
𝑐 = ∑ ∑ 𝑦𝑗𝑑k

𝑡
𝑘=𝑚𝑎𝑥(0,𝑡−𝑠)

𝑥𝑑
𝑐

𝑗=1   ∀t  

 𝑧𝑑𝑡
𝑙𝑠 = 𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑛𝑑𝑡
𝑜 − 𝑥𝑑𝑡

𝑐   ∀t  

 𝑧𝑑𝑡
𝑙𝑠𝑝𝑜 = 𝑛𝑑𝑡

𝑢𝑜𝑤 − 𝑥𝑑𝑡
𝑐   ∀t  

 𝑛𝑑𝑡
𝑢𝑜𝑤 ∈ 𝑍𝑛𝑢𝑜𝑤 , 𝑛𝑑𝑡

𝑜 ∈ 𝑍𝑛𝑜   ∀t  

 𝑖𝑙𝑠 ∈ {0,1}𝑇 , 𝑖𝑙𝑠𝑝𝑜 ∈ {0,1}𝑇   

 

6.5 The MBTA Case Study 

This section compares the performance of the different scheduling models presented in the 

previous section, making use of the absence models estimated in Chapter 5. First the dataset and 

its limitations are described (Section 6.5.1), followed by discussion of uncertainty set formation 

(Section 6.5.2). Then the experimental setup (Section 6.5.3) is presented, including the 

characteristics of the three models: the hindsight model, the nominal model, and the adaptive 

robust model. The scheduling results and sensitivity analyses of the cost parameters for the 

constrained and unconstrained resources scenarios are presented in Sections 6.5.4 and 6.5.5. 

Finally, the comparison between constrained and unconstrained resource scenarios and model 

selection considerations are presented in Section 6.5.6. 

 

6.5.1 Data Description and Limitations 

The dataset used in this section is the same as in previous chapters. In this section, the focus 

is on Southampton Garage in rating 4 of 2019 and the results are compared with the actual 

performance in the rating. Since each holiday has different characteristics and the holidays 
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typically have enough operators, holidays are not considered in this case study. Some modelling 

adjustments were made to the formulations in Sections 6.3 and 6.4 to accommodate data 

limitations and/or the chosen modelling scope and framework: 

 

1) The time horizon for the models is taken to be a week. Extraboard availability (N and M) was 

taken to be the maximum number of extraboard operators for one day and the total number of 

observed extraboard operator-days in the week. 

Theoretically, the number of extraboard operators to schedule should be the same for each 

week, while the actual number of extraboard operators available also reflect the extraboard 

operators being updated in the system as the original owners of the work, the number of excess 

vacation relief operators, extraboard operators who are assigned to cover long-term absences, and 

extraboard operator absence. If the extraboard operator has been updated as the original owner of 

the shift, (s)he will not be included in the extraboard count for the day. Besides the number of 

extraboard operators scheduled during the pick, excess vacation relief operators will be added to 

the extraboard and absent extraboard operators will decrease the count. The result is that, 

empirically, the week-to-week variation of the number of extraboard operators was large. For 

example, in R4 of 2019 at Southampton, week 12 had the most extraboard operators scheduled, 

with 124 operator-days, while in week 5 the total was 60.  

To make the model results comparable to the current assignment outcomes, the constraint 

that each week should have the same number of extraboard operators was relaxed and the 

optimization model was run for each week. Then the results for the whole rating were aggregated 

to form the rating-level statistics. Empirical observation of actual availability was taken as the 

model constraint. Additionally, because of this update, the relationship between the number of 

extraboard operators and the number of extraboard-days worked (i.e.  

𝑥𝑑
𝑒 = ∑ δ𝑑𝑖𝑥𝑖𝑖∈𝐼  and 𝑥𝑑

𝑒 ≤
1

5
∑ 𝑥𝑖

6
𝑖=0  for each day d) is not enforced in the model. In weeks with 

holidays, the total number of days was then 5 (both Thursday and Friday of Thanksgiving week 

were holidays) or 6. In R4 of 2019 at Southampton, there were 16 weeks with the total number of 

operators for each week shown in Table 6-1. 

 

Table 6-1 Extraboard Days (by week) 

Week # 1 2 3 4 5 6 7 8 

# extraboard-days observed 80 74 82 81 75 60 72 108 

# days in the week 6 7 7 7 7 7 6 7 

Week # 9 10 11 12 13 14 15 16 

# extraboard-days observed 74 78 87 124 63 88 111 77 

# days in the week 7 7 6 7 5 7 7 7 
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2) All extraboard operators are all full-time operators. 

This is one of the MBTA’s scheduling policies, although it is sometimes relaxed especially 

when the extraboard size would otherwise be inadequate. Since any relaxation is a matter of 

judgment, it is assumed in the model that this policy is followed strictly. 

 

3) During the evaluation phase, an hour of time is randomly made unavailable for each cover list 

operator. That is, a maximum of 7 hours of work is possible for a cover operator while they 

are paid for 8 hours.  

Travel time is incurred when the trip starts at a different location from the previous location 

of the cover list operator. The smallest unit of coverage is a round trip from (and back to) the 

garage. Some short durations of cover availability cannot be utilized because they are too short to 

cover a round trip, or the trip has already started when the cover became available. Since open 

work is modelled as a workload curve, this work piece-level information cannot be incorporated. 

Rather, an hour of time for each operator-day was randomly removed to approximate this loss. 

  

4) Known-in-advance absences that exceed the number of extraboard operators are lost.  

On rare occasions, the number of known-in-advance absences can exceed the number of 

extraboard operators. In practice, since no cover list operators remain, any uncovered known-in-

advance absences, along with unexpected absences, are offered as overtime. However, the time-

of-day distribution of known-in-advance absences was not modelled, so this solution is impractical 

under the current modelling framework. Instead, any uncovered known-in-advance absences are 

treated as eight hours of lost service. Although this known-in-advance absence piece can likely be 

covered on overtime since it is known in advance, the supply of overtime will decrease accordingly. 

Because of the shortage of extraboard operators and reliance on overtime, unexpected absences 

are likely going to be lost. Therefore, not reducing the overtime availability and directly treating 

the known-in-advance absence as lost service is a reasonable approximation. 

 

5) Service trips take precedence over all non-service duties and non-service duties can be 

scheduled in between service trips without conflict. 

This assumption is not correct. If this assumption were to hold, when the cover list 

operators perform non-service duties, no overtime or lost service should occur. However, empirical 

evidence suggests that there was a significant amount of overtime performed and/or services lost 

while the cover list operators were on non-service duties (Table 4-3). However, because of data 

limitations (see Section 4.3.5), models for essential non-service hours are beyond the scope of this 
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thesis and we only consider the scheduling of extraboard operators for absences. Both known-in-

advance and unexpected open work are assumed to consist only of absence (𝑛𝑘𝑜𝑤 = 𝑛𝑘, 𝑛𝑢𝑜𝑤 =

𝑛𝑢) in this case study. From this point on, we will limit our scope to account only for absence and 

overtime availability when evaluating the effectiveness of the proposed models. 

 

6.5.2 Uncertainty Sets 

The uncertainty sets (𝑍𝑛𝑘𝑜𝑤 , 𝑍𝑛𝑢𝑜𝑤 ,  𝑍𝑛𝑜) in the robust formulation are the range of values 

that the parameters could take. The uncertainty sets were derived from the models estimated in 

Chapter 5 and the approximations described in Section 6.1. Since probability distributions were 

estimated, the modeler could choose the probability that the uncertain parameters (absence and 

overtime availability) will fall into the uncertainty set, i.e. the degree of robustness, denoted as α. 

α is the significance level parameter, meaning that the actual absence and overtime availability fall 

into the uncertainty sets with probability (1 − α) according to the estimated models. Therefore, 

for the scheduling models, the smaller α, the greater the robustness. High robustness usually results 

in more conservative solutions as more resources are allocated to cover extreme cases. In this case, 

having high robustness would imply having more extraboard operators such that the worst case 

can be covered. However, having more extraboard operators to cover extreme cases would result 

in a higher fixed cost and (probably) higher overall cost since extraboard operators are paid 

regardless of whether, or not, there is productive work to do. Both Poisson and negative binomial 

distributions are discrete distributions. Normal approximations are used where appropriate to 

reduce computational complexity. Suppose that the level of significance we are scheduling for is 

α, 𝑧α/2 represents the z-score of the standard normal distribution. 

 

Known-in-advance Absences: 

Estimated model:  

𝑛𝑑
𝑘 ∼ 𝑁egBin(μ𝑑

𝑘 ,  α𝑘) 

The model estimated for known-in-advance absence was the negative binomial regression 

model given by Equation (5-1). Given the dependent variable values of date d, the number of 

known-in-advance absences has mean μ𝑑
𝑘  and dispersion α𝑘. The normal approximation is used 

for the negative binomial distribution 𝑛𝑑
𝑘 ∼ 𝒩(μ𝑑

𝑘 ,  𝜇𝑑
𝑘(1 + 𝛼𝑘)). Known-in-advance absences 

are independent for each date d. Therefore, for each date d, the uncertainty set for the scalar 𝑛𝑑
𝑘 is 

𝑍
𝑛𝑘 = {𝑛𝑑

𝑘 ∈ 𝑁: |𝑛𝑑
𝑘 − 𝜇𝑑

𝑘| ≤ 𝑧𝛼/2√𝜇𝑑
𝑘(1 + 𝛼𝑘)} 
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The uncertainty set is visualized below. The x-axis is the days in the rating and the y-axis 

is the number of known-in-advance absences for each day as well as the range of values for 

different robustness levels. Because the model only captures the day-of-week and seasonal trends 

in the rating, even the highest level of robustness cannot always capture the true value. 

 

 

Figure 6-2 Uncertainty Range for Known-in-Advance Absences 

 

Unexpected Absences: 

Estimated model: 

𝑛𝑑.
𝑢 = ∑ 𝑛𝑑𝑡

𝑢

𝑡

∼ 𝑁egBin(μ𝑑
𝑢,  α𝑢) 

a𝑏𝑑𝑡
𝑢 = a𝑏𝑑.

𝑢 × 𝑝𝑑𝑡 

where 𝑝𝑑𝑡 is the time-of-day distribution of unexpected absences for date d (∑ 𝑝𝑑𝑡𝑡 = 1).  

 Similar to the number of known-in-advance absences, the daily total of unexpected 

absence hours follows a negative binomial distribution with mean 𝜇𝑑
𝑢 and dispersion 𝛼𝑢. The 

normal approximation is used for the negative binomial distribution of daily total hours 

𝑛𝑑.
𝑢 ∼ 𝒩(𝜇𝑑

𝑢, 𝜇𝑑
𝑢(1 + 𝛼𝑢)). Since there is also uncertainty on the time-of-day distribution, 

uncertainty limits also need to be constructed for unexpected absence by time-of-day. For 

continuous distributions such as a normal distribution, we can directly scale the mean and 

variance. It follows that each 𝑛𝑑𝑡
𝑢  also follows a normal distribution 𝒩(𝜇𝑑

𝑢𝑝𝑑𝑡,   𝑝𝑑𝑡
2 𝜇𝑑

𝑢(1 + 𝛼𝑢)). 

Constraining both the hourly number of unexpected absences and the daily total hours of 

unexpected absence, the result was a budget uncertainty set: 

𝑍𝑛𝑢𝑎 = {𝑛𝑑𝑡
𝑢 ∈ ℝ: |𝑛𝑑𝑡

𝑢 − 𝜇𝑑
𝑢𝑝𝑑𝑡| ≤ 𝑧𝛼/2𝑝𝑑𝑡√𝜇𝑑

𝑢(1 + 𝛼𝑢), |𝑛𝑑.
𝑢 − 𝜇𝑑

𝑢| ≤ 𝑧𝛼/2√𝜇𝑑
𝑢(1 + 𝛼𝑢)} 
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The uncertainty set for the daily total is visualized below. The x-axis is the days in the 

rating and the y-axis is the unexpected absence hours for each day as well as the range of values 

for different robustness levels considered. Because the model only captures the day-of-week and 

seasonal trend in the rating, even the highest level of robustness cannot always capture the true 

value. 

 

 

Figure 6-3 Uncertainty Range for Daily Total Unexpected Absence Hours 

 

Overtime Availability: 

As described in Section 6.1, no satisfactory model was estimated for overtime. Instead, 

the empirical distribution is used for scheduling. Assuming that the overtime availability for each 

hour on each day of the week follows a normal distribution, let μ𝑖𝑡
𝑜  and σ𝑖𝑡

𝑜  represent the mean 

and standard deviation of the empirical distribution for day of week i and hour t, using only the 

observations where lost service was observed (indicating overtime performed = overtime 

available).  

Since valid observations do not necessarily come from the same day, a daily total of 

available overtime operator-hours cannot be directly observed. Although ideally, we would like 

to constrain the daily total of available overtime hours, it cannot be done in this case. Instead, a 

more conservative box uncertainty set was used: 

𝑍𝑛𝑜 = {𝑛𝑖𝑡
𝑎 ∈ 𝑅: |𝑛𝑖𝑡

𝑜 − 𝜇𝑖𝑡
𝑜 | ≤ 𝑧𝛼/2𝜎𝑖𝑡

𝑜} 

The uncertainty set is visualized below. Unlike absences, overtime availability was taken 

from the day-of-week and hourly average. For each day of week and hour the availability was 

taken to be the same. Therefore, the timeseries for a week was plotted. On the x-axis is day of 

week and on the y-axis is the overtime availability for each hour as well as the range of values 

for different robustness levels considered. 
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Figure 6-4 Uncertainty Range for Hourly Overtime Availability 

 

6.5.3 Experimental Setup 

Models Estimated: 

Three models were estimated: the hindsight model, the nominal model, and the adaptive 

robust model. In the hindsight model, the realized absence (both known-in-advance and 

unexpected) was entered into the nominal model. Because of the requirement that cover list 

operators work straight eight-hour shifts, there is unavoidable loss and inefficiency in the 

scheduling process. The hindsight model quantifies this loss and serves as a benchmark for other 

models when evaluated on the realized outcome. The nominal model is the model discussed in 

Section 6.3. Absences and overtime availabilities (𝑛𝑑
𝑘 , 𝑛𝑑

𝑢, 𝑛𝑑𝑡
𝑜 )  were taken as the nominal values 

of regression means (μ𝑑
𝑘 , μ𝑑

𝑢) and the mean of the observed availability μ𝑑𝑡
𝑜 . No uncertainty was 

considered. The adaptive robust model was discussed in Section 6.4. Three adaptive robust 

models with different levels of robustness (α = 0.2,  0.5, 0.7) were tested. For example, when 

α=0.2, the actual absence and overtime availability fall into the uncertainty sets of the robust model 

with probability 0.8 according to the estimated models. Increasing levels of robustness (decreasing 

values of α) means that the model took into account larger ranges of absence and overtime 

availability. Experimenting with the level of robustness offers insights into the tradeoff between 

robustness and efficiency. Assignment plans from the more robust models should be more hedged 

under extreme (worst) cases but are not necessarily better in average cases because of the 

redundancy built into the assignment plan to cover these extremes. 

 

Model Parameters: 

The initial cost of lost service hours (𝑐𝑙𝑠), overtime hours (𝑐𝑜𝑡), and extraboard operator 

hours (𝑐𝑒𝑥) are taken to be 5, 2, and 1, respectively. First, extraboard operators are paid at the 

regular rate, so 𝑐𝑒𝑥 = 1. Overtime is paid at 1.5x the regular rate, but considering the employee 
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benefits associated with hiring additional extraboard operators, an hour of overtime costs about 

the same as an hour of extraboard operator time. However, 𝑐𝑜𝑡 was set to 2 because transit agencies 

would not want to rely too heavily on operator overtime to deliver service. Relying too heavily on 

overtime has non-monetary costs related to operator fatigue, low job satisfaction, and vulnerability 

to missing service. Lastly, the cost of lost service hours was chosen such that it is the least desired 

outcome; yet, 𝑐𝑙𝑠 was not so large that costs of overtime and extraboard operators did not matter, 

resulting in a great deal of unproductive extraboard time. Since the selection of these parameters 

was somewhat arbitrary, a sensitivity analysis was performed (see Sections 6.5.4 and 6.5.5). In all 

models, including the hindsight model, overtime availability was taken to be the empirical 

distribution. Since known-in-advance absences are known at the time of operational level 

scheduling and they are covered with 100% efficiency, only the cover list (# extraboard operators 

- # known-in-advance absences) utilization was calculated. 

 

Model Evaluation: 

All three of the models were evaluated by the financial cost, the amount of lost service, 

performed overtime, scheduled extraboard hours, and cover list utilization. Because of the 

aggregate representation of the hourly workload curve, some work piece level information cannot 

be accurately reflected, which results in an assumed 100% maximum cover list utilization. 

However, in reality there are unavoidable losses in cover hours (see #3 in Section 6.5.1). To 

account for the unavoidable loses, during the evaluation phase, an hour of time is randomly made 

unavailable for each cover list operator. That is, a maximum of 7 hours of work is allowed for a 

cover operator while they are paid for 8 hours.  

The direct financial cost is the monetary cost paid to the operators and is expressed as a 

percentage of the current financial cost. It is simply an index to show the expected changes with 

any proposed solutions relative to the current cost. Because of the benefits associated with the 

extraboard operators, an extraboard hour and an overtime hour are considered to have the same 

financial cost. Although lost service greatly hurts the service reliability and has large indirect costs, 

it is not part of the financial cost consideration. Lost service is considered in the objective function, 

which is an artificial weighted cost for combining the direct costs of operator wages and the 

indirect costs because of unreliable service. 

The models are evaluated in three different cases: the realized outcome, the average case, 

and the worst case. The realized outcome was based on the observed absences in hindsight. To 

evaluate the model assignments under different realizations of absence and overtime availability, 

100 draws were made independently from the estimated absence and overtime availability. Each 

draw contains an instance of the entire rating with each day drawn independently (112 days, for 
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example, in rating 4 of 2019). The average case was obtained by taking the average performance 

from the 100 draws of the rating. The worst case was the case with the worst objective function 

value among the 100 draws. For each assigned operator on each day, an hour was randomly 

blocked as unusable to approximate the time lost due to travel and available duration not always 

being enough to cover a piece of work. 

Since the realized outcome was used to build the hindsight model, it is expected that the 

best assignment will be achieved with the hindsight model in the realized outcome. Since the 

nominal model was built based on the expected value of modelled absence, it is expected that it 

will have better average performance than the others, but there will also be edge cases that might 

affect the nominal model performance more than for the robust models. The average cost of the 

robust models might be similar to the nominal model and the tradeoff between efficiency and 

robustness is what we want to observe. Finally, since neither the hindsight model nor the nominal 

model account for uncertainty, it is expected that the robust models will achieve the lowest 

objective function value for the worst case.  

 

Scenarios Considered: 

 First, the current garage performance is quoted from Table 4-2. The current assignment 

plan cannot be evaluated for the simulated ratings because the number of known-in-advance 

absences, and therefore the number of cover list operators, vary across different simulation trials. 

The current assignment plan only gives the assignment for one of those possibilities, therefore it 

only applies to the realized outcome evaluation case. However, there are a few assumptions in the 

models that affect the quality of this comparison: the biggest being the inability to model non-

service duties, and the assumption that every cover operator works for eight hours.  

In addition to comparing with the current performance, the models are evaluated under two 

scenarios: constrained resources (Section 6.5.4) and unconstrained resources (Section 6.5.5). In 

the constrained resources case, the weekly number of extraboard-days available and the maximum 

number of extraboard operators that can be scheduled in any day were set to the observed values 

during the rating. Model results from the constrained case can be used to assess the current 

assignment plan. In the scheduling model with unconstrained resources, no upper limits were set 

for the number of extraboard-days in a week or the number of extraboard operators in a day. Model 

results from the unconstrained case can be used to get recommended extraboard staffing levels in 

accordance with the scheduling policies and model assumptions set out in Sections 6.1 and 6.5.1. 
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Sensitivity Analysis with respect to the Cost Coefficients: 

Since the cost coefficients in the model (𝑐𝑙𝑠 = 5,  𝑐𝑜𝑡 = 2,  𝑐𝑒𝑥 = 1) were reasonable but 

arbitrary, the sensitivity of the results is analyzed. To make the objective function values for the 

assignment plans comparable, the sum of the costs was constrained to be 8. Additionally, while 

constructing different test scenarios, the cost coefficients were constrained by: 

cost of cover list hours < cost of overtime hours < cost of lost service hours.   

For example, (4, 2.5, 1.5) is a valid combination, but (4, 2, 2) is not. 

 

Presentation of Results: 

All models and tests were performed on R4 of 2019 at Southampton. All costs and hours 

presented in the model results are totals for the entire rating unless otherwise stated. Since we 

assumed that known-in-advance absences were assigned in advance, the results table only shows 

the hours and utilization rates for the cover list operators.  

 

6.5.4 Scheduling with Constrained Resources 

Rating-Level Metrics: 

First, the effective use of the current resources was tested. The rating-level performance 

metrics for the different models and evaluation scenarios are shown in Table 6-2. The number of 

extraboard hours were the same across all cases and models, but slight differences exist in cover 

list hours due to the lost known-in-advance absence hours (see #4 in Section 6.5.1). When there 

are known-in-advance absence runs lost, the absence runs are counted in lost service, instead of 

covered using the extraboard operators. Since the total number of extraboard operators are the 

same, on other days there will be more cover list operators. 

For the realized outcome, performance of the current assignment plan was calculated. The 

worked hours in the dataset are not a clean cut at eight hours so there are some differences in the 

scheduled cover list hours, even though the total number of weekly extraboard-days was 

constrained to be the same. Since information on essential non-service duties is missing, the 

realized lost service and overtime are higher than the modelled amount, whereas the productive 

cover time and utilization are lower. The model assumes that all existing resources can be used 

to cover services; however, in reality some of the scheduled cover hours are assigned to essential 

non-service work and should be considered productive but are currently labeled as unproductive. 

As a result, the productive cover hour and utilization rate are lower bounds on the actual values. 

Because some cover time is dedicated to non-service duties, cover hours available for covering 
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services decrease and more services needs to be covered by overtime or are dropped. Therefore, 

the number of overtime and lost service hours are likely larger than the modelled amounts. Since 

overtime and cover list are considered the same cost financially, the financial costs are not 

influenced by the hours that should be covered by the cover list but are covered by overtime. When 

service is dropped, those hours are excluded from the financial cost and included in the lost service 

hours, making the actual financial cost of covering for absences larger than the current figure. At 

the same time, some cover list hours are used for non-service duties, therefore, if only absence is 

considered, the scheduled cover list hours are likely smaller, making the actual financial cost of 

covering absences smaller than the current figure. Therefore, without the number of hours that the 

cover list operators were working on essential non-service duties, it is hard to decide whether the 

true financial cost would be higher or lower. 

Table 6-2 Rating-Level Metrics (Constrained Resources) 

 Current Hindsight 
Nominal 
Model 

Adaptive Robust 
(𝛂) 

0.7 0.5 0.2 

Realized 
Outcome 

Financial cost 100% 90% 89% 89% 89% 89% 

Lost Service (h) 1945 992 1383 1433 1428 1450 

Overtime (h) 4788 2805 2748 2743 2754 2729 

Scheduled Cover List 
(h) 

5194 5648 5704 5728 5728 5728 

Productive Cover List 
Time (h) 

3023 4433 4155 4134 4128 4130 

Cover List Utilization 
(%) 

58% 78% 72% 72% 72% 72% 

Average 
Behavior 

Financial cost n/a 89% 88% 88% 88% 88% 

Lost Service (h) n/a 1555 1197 1274 1260 1263 

Overtime (h) n/a 2633 2548 2524 2535 2528 

Scheduled Cover List 
(h) 

n/a 5946 5800 5811 5807 5814 

Productive Cover List 
Time (h) 

n/a 4173 4472 4429 4429 4439 

Cover List Utilization 
(%) 

n/a 70% 77% 76% 76% 76% 

Worst Case 

Financial cost n/a 89% 89% 89% 89% 88% 

Lost Service (h) n/a 2037 1723 1805 1797 1832 

Overtime (h) n/a 2750 2616 2638 2635 2596 

Scheduled Cover List 
(h) 

n/a 5632 5480 5504 5488 5496 

Productive Cover List 
Time (h) 

n/a 3905 4201 4120 4116 4127 

Cover List Utilization 
(%) 

n/a 69% 76% 74% 75% 75% 
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The amounts of lost service, overtime, and cover utilization were similar for the nominal 

and robust models. The assignment results from different modelling strategies are also similar. 

Since the cost of the extraboard is the same in this case, the financial cost is lower with less 

overtime performed. The amount of overtime performed is also similar across all models. Either 

the current staffing level was more than enough (such that all services are covered no matter what), 

or the current staffing level was inadequate (such that all strategies will assign the extraboard to 

cover the most basic needs and the rest is left to overtime). Since the amount of lost service was 

not negligible, the second reason is more plausible. The financial costs estimated by the models 

are around 90% of the current cost. Whether the actual savings is above or below 10% depends on 

the number of hours of essential non-service duties worked by the cover list.  

The absence and overtime availability distributions used for evaluation were simulated 

from the modelled absence and overtime availability, which are the inputs for the nominal model 

and the robust models. The nominal model and the robust models resulted in similar average 

performances and cover list utilizations, with the nominal model doing slightly better. The 

distributions of lost service, overtime, scheduled cover list, and cover list utilization for the 100 

simulated cases are shown in Figure 6-5. With the resources constrained, robust models are not 

better than the nominal. Robustness levels are increased by introducing more extraboard operators 

such that when unusually high levels of absence occur, some of the surge can be absorbed. In this 

case, with the number of extraboard-days constrained, resources can only be moved around. 

Therefore, the differences in lost service, overtime, scheduled cover, and cover utilization between 

the nominal and the robust models, as well as with different robustness levels, are insignificant.  

The hindsight model was overfitted to the realized outcome and achieves the lowest lost 

service and overtime in the realized outcome. When the evaluation scenario is the modelled 

absences, the hindsight model yields the lowest utilization rates and the most lost service (the green 

curves). The nominal model, on the contrary, achieves the lowest lost service. The accuracy of the 

inputs is critical to the deterministic models, even in the constrained resource case. 

The average cover list utilization rate was calculated as the total number of worked 

service hours by the cover list in the 100 draws divided by the total hours of scheduled cover list 

in the 100 draws. Because 1 hour of time was made unavailable for every extraboard operator to 

account for travel time and unavoidable losses, the theoretical maximum cover list utilization rate 

is 87.5%. If the modelled distribution was the same as the evaluation set, utilization was 76-78% 

(hindsight model evaluated on realized outcome; nominal and robust models evaluated on average 

simulated behavior). When the distribution differed from the modelled distribution, the utilization 

rates were lower – around 70-72%. Most of the cover list was matched to open work regardless of 

the changing distribution of absence, and the covers can only meet the basic needs with the 

variations leading to a combination of overtime and lost service. 
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a) Lost Service 

 

b) Overtime  

  

c) Cover List  
d) Cover Utilization  

Figure 6-5 Model Results with Constrained Resources 

 

Tactical-Level Assignment: 

Figure 6-6 shows the tactical-level assignment results for different models as well as the 

current assignment. The overall results produced by the different models are similar. The current 

assignment assigns more extraboard operators on weekdays and fewer on weekends. The two 

deterministic models (hindsight and nominal) produced similar results and the three robust models 

produced similar results. Some differences exist in the treatment of Fridays and Sundays between 

the deterministic and robust models. More resources were allocated to cover Sundays when the 

robustness level was increased since Sundays have lower but more variable operational-level costs 

whereas Fridays have higher operational-level costs but are the least variable. 
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Figure 6-6 Tactical-Level Assignments (with constrained resources) 

 

Operational-Level Assignment: 

 Figure 6-7 shows the average operational-level assignments for different days of the week. 

Since the time-of-day distribution was taken as the average profile for each day of the week, the 

time-of-day distributions of unexpected absence averaged by  day of week were the same as those 

for hindsight, while differences exist between individual days. As a result, the assignment plan 

was very similar across all models. 

The purple line in each figure is the observed time-of-day distribution of cover list 

assignments and the black line is the distribution of unexpected absence by time-of-day. The model 

results were similar to the observed distribution except for Mondays. The differences in 

assignments were due to the differences in estimated overtime availability. Despite the differences, 

the performances of these assignment plans were almost identical since the resources were 

constrained.  

Since the time-of-day distribution of unexpected absence on weekdays was typically bi-

modal, theoretically, the cover list time-of-day distribution should also be bi-modal. However, 

especially in the constrained case where overtime is heavily used, the assigned time-of-day 

distribution of cover list was a product of both unexpected absence and overtime availability,  and 

overtime availability was generally unimodal. The resulting pattern was more unimodal with a 

small dip at midday. Another factor is that the straight eight-hour shift rule might be reducing the 

efficiency of the cover list: this rule will be tested in Section 6.6.2 by allowing two independent 

four-hour duties, which should enable the operational-level assignment to adhere more closely to 

the absence pattens. 
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Figure 6-7 Operational-Level Assignments (with constrained resources) 

 

Sensitivity Analysis of Cost Coefficients: 

 Since there are 3 covariates (cost of cover list hours, overtime hours, and lost service hours), 

we isolate each to see the effect on the assignment results. Figure 6-8 show the sensitivity of lost 

service hours, performed overtime hours, and scheduled cover list hours, with respect to the cost 

of cover list hours.  

 All models are insensitivities to the cost coefficients. Due to the resource constraint, the 

service outcomes are unaffected by the cost parameters (Figure 6-8), illustrating again that the 

current extraboard-days constraint is the factor limiting performance. Due to the inevitable need 

for overtime and the cost of overtime being lower than the cost of lost service, the amount of 

overtime performed cannot be reduced by varying overtime costs. Because the service outcomes 

are constant, sensitivity plots with respect to cost of overtime and lost service are omitted. For the 

realized outcome and worst case, the assignment results were also insensitive to the cost 

parameters, similar to the average behavior, and the corresponding plots are shown in Appendix 

E. 
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Figure 6-8 Sensitivity w.r.t. Cost of Cover List Hours (with constrained resources) 

 

In summary, with the resources constrained at the current level, all models give similar 

results, with only the basic needs being covered. The assignment strategies are similar across all 

models and are insensitive to the cost coefficients. To further study performance as a function of 

staffing levels, as well as the characteristics of the different models, results with the constraint on 

weekly extraboard-days relaxed are presented in the next section. 

 

6.5.5 Scheduling with Unconstrained Resources 

Rating-Level Metrics: 

To determine the recommended levels of extraboard staffing, the constraint on the 

maximum number of operators was relaxed with the model results shown in Table 6-3. When the 

resources are unconstrained, the different characteristics of assignment strategies are shown more 

clearly.  

A model with robustness level α meant that the model took into account estimated inputs 

at (1 − α) confidence level. Therefore, a smaller α meant more robustness. Being more robust 

meant scheduling more cover list operators such that when there are unusually high levels of 

absence, cover list operators are more likely to be available. In this case, with the inputs having 

the same expected values, the robust models, on average, scheduled 25-45% more extraboard 

operators than the nominal model in exchange for 44-63% reduction in lost service and 34-54% 

reduction in overtime. However, having more cover list operators increases financial costs. When 

there are fewer absences, the unproductive cover list operators still get paid and the cover list 

utilization rates decrease with increasing robustness levels. The reduction in overtime alone 

cannot offset the increase in the cover list operator cost. Therefore, the financial costs incurred by 

the MBTA increase as robustness levels increase. The financial costs are expressed as a percentage 

of the current financial cost. The deterministic models increased their costs by 10% compared to 
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the constrained case, and are now on par with the current costs, but the robust models would 

recommend 9-16% more financial costs than the deterministic models. 

 

Table 6-3 Rating-Level Metrics (Unconstrained Resources) 

 Hindsight 
Nominal 
Model 

Adaptive Robust (𝛂) 

0.7 0.5 0.2 

Realized 
Outcome 

Financial cost 100% 99% 109% 112% 116% 

Lost Service (h) 302 771 444 367 299 

Overtime (h) 1715 2141 1560 1399 1160 

Scheduled Cover List (h) 8328 7768 9736 10336 11296 

Productive Cover List Time 
(h) 

6213 5334 6226 6463 6771 

Cover List Utilization (%) 74% 68% 63% 62% 59% 

Average 
Behavior 

Financial cost 101% 97% 106% 109% 114% 

Lost Service (h) 820 555 312 263 204 

Overtime (h) 1872 1754 1149 1001 804 

Scheduled Cover List (h) 8438 7802 9771 10370 11328 

Productive Cover List Time 
(h) 

5482 5805 6639 6834 7088 

Cover List Utilization (%) 64% 74% 67% 65% 62% 

Worst Case 

Financial cost 103% 97% 107% 110% 116% 

Lost Service (h) 1133 952 651 578 493 

Overtime (h) 2156 1847 1306 1192 1034 

Scheduled Cover List (h) 8440 7328 9312 9912 10872 

Productive Cover List Time 
(h) 

5643 5484 6327 6514 6756 

Cover List Utilization (%) 66% 74% 67% 65% 62% 

 

Since the errors in the modelled absences for R4 at Southampton are around 48% for 

known-in-advance absences and 25% for unexpected absences, the realized outcome has a 

different distribution than the simulations using the estimated models. The hindsight model, 

naively fitted to the realized outcome, observed increases in overtime performed (increases of 157 

hours) and lost service (increase of 518 hours) from the realized outcome scenario (model input) 

to the average-case modelled scenario (evaluation scenario). Similarly, the other deterministic 

model, the nominal model, which is naively fitted to the modelled absences, overtime and lost 

service increased by 387 and 216 hours, respectively, from the average-case modelled scenario 

(model input) to the realized outcome (evaluation scenario). On the other hand, for the robust 

models tested, the amounts of overtime and lost service are smaller, but the increases are 356 – 

421, 95 – 132 hours, for overtime and lost service, respectively, only slightly better than the 

nominal models. Therefore, it is important to estimate the demand accurately. Otherwise high fixed 
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costs from scheduling more operators have to be incurred to reduce variable costs by the performed 

overtime and lost service. 

A similar pattern could be observed in Figure 6-9, where the models are evaluated on 

different realizations of the rating by simulation. Since the simulation was based on the estimated 

model, the hindsight model achieves the highest lost service and overtime. The expected value of 

inputs of both the nominal and the robust models match the mean of the simulations. More robust 

models tend to provide solutions with less lost service and overtime both in terms of the average 

value and the variance at similar objective function values as the nominal, with larger scheduled 

cover list. 

 

 

a) Lost Service 

 

b) Overtime 

 

c) Cover List  
 

d) Cover Utilization 

Figure 6-9 Model Results with Unconstrained Resources 

 

Tactical-Level Assignment: 

Figure 6-10 shows the tactical-level assignment results for the different models in the 

unconstrained case. The current average number of extraboard days per week is 88, which is far 

fewer than recommended by any of the models. The weekly totals suggested by the models are 
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110, 106, 122, 127, 135, for the hindsight, nominal, robust α = 0.7, 0.5, 0.2 models respectively. 

The nominal model suggested the fewest operators, but it would still be 20% more than the current 

level.  Among the robust models, the more robust models scheduled significantly more extraboard-

days. The most robust model suggested that the extraboard staffing level should increase by more 

than 50%. The differences in tactical level assignment between different models were in the 

weekly number of extraboard-days scheduled: the day-of-week patterns were similar across the 

different models.  

 

 

Figure 6-10 Tactical-Level Assignments (with unconstrained resources) 

 

Operational-Level Assignment: 

 Figure 6-11 shows the average operational-level assignments for different days of the week. 

Since the time-of-day distributions were normalized, they are independent of the resource 

constraints, as well as of the predicted daily unexpected absence hours. As a result, the assignment 

plans were similar to those of the constrained case. Therefore, the observations made in Section 

6.5.4 hold. 
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Figure 6-11 Operational-Level Assignments (with unconstrained resources) 

 

Sensitivity Analysis of Cost Coefficients: 

 Figure 6-12, Figure 6-13, and Figure 6-14 show the sensitivities of assignment results (lost 

service hours, overtime hours, scheduled cover list hours) with respect to the cost of cover list 

hours, overtime hours, and lost service hours, respectively. The x-axis was taken to be the cost 

expressed as a percentage of the total. For example, in the original case (5, 2, 1), the percentage 

values in the plots would be (0.675, 0.25, 0.125). The lines represent the average cover list hours, 

overtime hours, and lost service hours in the 100 simulated runs. The sensitivity patterns for the 

realized outcome and worst case was similar to the average behavior (the plots are shown in 

Appendix E). 

 

 

Figure 6-12 Sensitivity w.r.t. Cost of Cover List Hours (with unconstrained resources) 
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Figure 6-13 Sensitivity w.r.t. Cost of Overtime Hours (with unconstrained resources) 

 

Figure 6-14 Sensitivity w.r.t. Cost of Lost Service Hours (with unconstrained resources) 

 

Unlike the constrained scenario where all models are insensitive to the model parameters, 

in the unconstrained scenario, the deterministic models (hindsight and nominal model) were more 

sensitive to changes in the cost coefficient than the robust models (shown by higher slopes in 

Figure 6-12). The deterministic models not only have larger variance with respect to uncertainty 

in model inputs, but also to model parameters.   

The number of scheduled cover list hours from the hindsight and nominal models were 

quite sensitive to the cost coefficients. A significant decrease in the number of cover list operators  

can be observed with increasing costs of the cover list. However, the assignment plans from the 

robust models were insensitive to the cost coefficients. Rather, they were more sensitive to the 

level of robustness (α). For each α, the assignment plan curves were mostly flat and the differences 

in costs were mostly due to the different distributions of costs. 

In the unconstrained case, the sensitivity of different parameters can be observed. In this 

case, the cost of the cover list hours was more sensitive than the cost of overtime and lost service 

hours since the amount of cover list hours was determined by the model and the amount of 

overtime and lost service were derived, intermediate variables. In Figure 6-12, the number of 

scheduled cover list hours monotonically decreases with increasing cost of the cover list. However, 

in Figure 6-13 and Figure 6-14, the number of overtime and lost service hours did not have a clean, 

negative correlation, suggesting that there were other factors contributing to these results.  
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6.5.6 Comparing the Constrained and Unconstrained Scenarios and Model Selection 

Comparing the performances across different scenarios for each model, the percent 

differences between values in Table 6-2 and Table 6-3 are tabulated in Table 6-4. Bigger 

improvements in lost service and performed overtime are observed for the deterministic models 

when the input data is more similar to the evaluation data for all models. For example, a 70% 

reduction in lost service was observed for the hindsight model with a 10% increase in the financial 

cost. For robust models, the effect of removing resource constraints was also pronounced with the 

most robust model having the largest increase in the scheduled cover list, along with the greatest 

reductions in lost service, overtime, and cover utilization rates. For example, while evaluating on 

the realized outcome, the most robust model suggested a 95% increase in cover list hours, while 

reductions of 79%, 57%, and 13% occurred in lost service, overtime, and cover utilization rates, 

respectively. With the same absences to be covered and lower utilization rates, the amount of 

overtime and lost service in the unconstrained case both decreased compared to the constrained 

case. Therefore, higher utilization rates are not necessarily better: higher utilization could be a 

result of either effective scheduling, or an inadequate cover list. Therefore, the cover list utilization 

rates have to looked at with other performance metrics to form strategic-level recommendations. 

 

Table 6-4 Constrained vs. Unconstrained Performance Comparison 

 Hindsight 
Nominal 
Model 

Adaptive Robust (𝛂) 

0.7 0.5 0.2 

Realized 
Outcome 

Financial cost 10% 10% 20% 23% 27% 

Lost Service (h) -70% -44% -69% -74% -79% 

Overtime (h) -39% -22% -43% -49% -57% 

Scheduled Cover List (h) 47% 36% 70% 80% 97% 

Productive Cover List Time 
(h) 

40% 28% 51% 57% 64% 

Cover List Utilization (%) -4% -4% -9% -10% -13% 

Average 
Behavior 

Financial cost 12% 9% 18% 21% 26% 

Lost Service (h) -47% -54% -76% -79% -84% 

Overtime (h) -29% -31% -54% -61% -68% 

Scheduled Cover List (h) 42% 35% 68% 79% 95% 

Productive Cover List Time 
(h) 

-6% -3% -9% -11% -14% 

Cover List Utilization (%) -11% -13% -17% -17% -17% 

Worst Case 

Financial cost 14% 8% 18% 21% 28% 

Lost Service (h) -22% -29% -50% -55% -60% 

Overtime (h) 50% 34% 69% 81% 98% 

Scheduled Cover List (h) 45% 31% 54% 58% 64% 

Productive Cover List Time 
(h) 

-14% -9% -14% -14% -14% 

Cover List Utilization (%) -70% -44% -69% -74% -79% 
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In order to inform model selection, Figure 6-15 shows the tradeoff between financial costs 

and the amount of lost service in both the constrained and the unconstrained scenario for all model 

formulations. The colors indicate the different model formulations, the plus sign represent the 

constrained scenario and the dot represents the unconstrained scenario. The constrained models 

are all concentrated at the upper left corner, where the financial costs are low but lost service rates 

are high. The unconstrained models are scattered towards the higher end of financial costs with 

lower lost service rates. 

The best model should reside in the lower left corner, with the lowest financial cost and 

lost service levels. But this total dominance of the models only happens when the input distribution 

matches the evaluation distribution. For example, the hindsight model dominates the other models 

when evaluated on the realized outcome, but is dominated by other models when evaluated on the 

modelled absences.  

With the nominal and robust models, an efficient frontier was observed. No model strictly 

dominates the others (less financial cost and less lost service). With the resource constraint relaxed, 

given the current modelling assumptions, more cover list hours are scheduled, resulting in reduced 

lost service and overtime at the same time, but direct financial costs to the agency will increase as 

the decrease in overtime does not offset the increase in costs from additional extraboard operators.  

 

  

a) Realized Outcome 

 

b) Average Simulated Behavior 

Figure 6-15 Lost Service vs. Financial Cost  

 

A deterministic model works well when the actual distribution is centered on the input of 

the deterministic model. The robust models produce results with slightly better objective function 

values but with very different characteristics: larger extraboards, less variance, less lost service 

and overtime, and less sensitivity to the cost coefficients in the model. Making robustness levels 
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too high results in  too many cover list operators to deal with situations that are unlikely to occur, 

giving the transit agency a very high financial cost (the lower right corner in Figure 6-15). To 

achieve decreased financial costs and lost service at the same time, the input models must be 

improved, otherwise, determining the optimal extraboard size and assignment strategy is a choice 

of balancing direct financial costs and lost service. In this case, we choose to take the value of the 

objective function, the overall weighted cost, into consideration and choose the model with a 

moderate amount of robustness. In the next section, the adaptive robust model with α=0.7 is used 

for several scenario analyses. 

 

6.6 The MBTA Case Study Scenario Analysis 

This section tests possible policy scenarios to see if, and by how much performance can be 

improved using the robust model with α = 0.7. Two policy scenarios are tested: removal of the 

requirement for early-morning and late-night covers and the introduction of split covers. 

 

6.6.1 Early-morning and Late-night Covers 

The MBTA scheduling practice is that one cover list operator is reserved for both the first 

shift in the morning and last shift at night to ensure that the first run and the last run of the day are 

operated. However, during those times there are very few runs, and if the scheduled operator shows 

up, the cover hours will be wasted. Therefore, we want to test whether removing the requirement 

will help improve the assignment efficiency. In this scenario, constraints (6-5) and (6-6) were 

relaxed with the results for models both with and without the resource constraint, shown in Table 

6-5. The “with requirement” column was taken from Table 6-2 and Table 6-3 for ease of reference.  

In the constrained case, the removal of the requirement yielded a slight improvement. With 

the constraint removed, on 83% of the days, there are operators scheduled for the first hour; on 

50% of the days there are operators scheduled for the last hour. In the unconstrained case, the 

effect was minimal. The small variations come from the random draw of the unavailable hour in 

the evaluation phase. In fact, with the requirement removed, on 97% of the days, there are operators 

scheduled for the first hour and on 90% of the days there are operators scheduled for the last hour. 

Additionally, even if the operator for the first and/or last run is present, part of the morning/evening 

peak is included in the report time. The saving in unproductive cover time is likely less than 3 

hours. 
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Table 6-5 Evaluation of Dropping Early Morning and Late Night Covers 

Adaptive Robust (𝛂 = 𝟎. 𝟕) 

Constrained resources Unconstrained resources 

With 
Requirement  

Requirement 
Removed  

With 
Requirement  

Requirement 
Removed  

Realized 
Outcome 

Financial cost 89% 89% 109% 109% 

Lost Service (h) 1433 1422 444 435 

Overtime (h) 2743 2725 1560 1559 

Scheduled Cover 
List (h) 

5728 5720 9736 9736 

Productive Cover 
List Time (h) 

4134 4155 6226 6236 

Cover List 
Utilization (%) 

72% 72% 63% 64% 

Average 
Case (100 

simulations) 

Financial cost 88% 88% 106% 106% 

Lost Service (h) 1274 1239 312 312 

Overtime (h) 2524 2536 1149 1146 

Scheduled Cover 
List (h) 

5811 5808 9771 9771 

Productive Cover 
List Time (h) 

4429 4449 6639 6641 

Cover List 
Utilization (%) 

76% 76% 67% 67% 

Worst Case 

Financial cost 89% 88% 107% 107% 

Lost Service (h) 1805 1795 651 654 

Overtime (h) 2638 2608 1306 1320 

Scheduled Cover 
List (h) 

5504 5512 9312 9312 

Productive Cover 
List Time (h) 

4120 4168 6327 6310 

Cover List 
Utilization (%) 

74% 75% 67% 67% 

 

 

6.6.2 Split Covers 

Because of the straight eight-hour cover list shift requirement, the time-of-day coverage 

patterns are mostly unimodal. However, time-of-day unexpected absence has a bi-modal 

distribution: in order to match the bi-modal distribution of ridership, most the scheduled runs are 

split runs. Therefore, whether having split covers will improve the scheduling performance as well 

as cover list utilization is investigated. Table 6-6 shows the performance comparison with split 

runs allowed and shows the coverage generated by the model. Slight improvements were observed 

in financial costs and lost service in all scenarios when split runs are allowed, with reduction in 
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the number of cover list operators recommended, reduced lost service, and overtime. A slight 

improvement in cover list utilization was also observed in all cases. Although the improvements 

are not large, there are no tradeoffs being made and assignment plan is strictly better than the 8h 

straight assignment. Similar performance was achieved by the nominal model with the results 

shown in Appendix F.  

The time-of-day distribution of coverage shown in Figure 6-16 better approximates the 

absence distributions than before (Figure 6-7 and Figure 6-11). The time-of-day distribution of 

coverage for the unconstrained case was similar to the constrained case and is shown in Appendix 

F. 

 

Table 6-6 Evaluation of Split Cover List (Robust Adaptive Model) 

Adaptive Robust (𝛂 = 𝟎. 𝟕) 
Constrained Resources Unconstrained Resources 

8h straight  4h splits  8h straight  4h splits  

Realized 
Outcome 

Financial cost 89% 89% 109% 108% 

Lost Service (h) 1433 1377 444 404 

Overtime (h) 2743 2690 1560 1520 

Scheduled Cover List 
(h) 

5728 5712 9736 9672 

Productive Cover 
List Time (h) 

4134 4227 6226 6306 

Cover List Utilization 
(%) 

72% 74% 63% 65% 

Average 
Case (100 

simulations) 

Financial cost 88% 88% 106% 105% 

Lost Service (h) 1274 1251 312 290 

Overtime (h) 2524 2503 1149 1096 

Scheduled Cover List 
(h) 

5811 5814 9771 9708 

Productive Cover 
List Time (h) 

4429 4476 6639 6714 

Cover List Utilization 
(%) 

76% 76% 67% 69% 

Worst Case 

Financial cost 89% 88% 107% 106% 

Lost Service (h) 1805 1816 651 637 

Overtime (h) 2638 2603 1306 1270 

Scheduled Cover List 
(h) 

5504 5512 9312 9248 

Productive Cover 
List Time (h) 

4120 4153 6327 6377 

Cover List Utilization 
(%) 

74% 75% 67% 68% 
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Figure 6-16 Evaluation of Split Cover List –  Assignments (with constrained resources) 

  

Although the time-of-day distribution of absences were approximated much better by the 

coverage curve, improvements in all performance metrics were small. However, the value of split 

runs lies not only in the anticipated cost savings, but also in the ability to react to situations better. 

For example, as the unexpected absences become known during the day, adjustments can be made 

to the report times of the second half of the assignment to match with the known absences. 

 

 In this chapter, three models were constructed for extraboard scheduling at the tactical and 

operational levels: a hindsight model that by definition is the best given the knowledge of the 

absence levels; a deterministic, nominal model that only takes the estimated absence and overtime 

availability profiles into account; and an adaptive robust integer program that includes input 

uncertainty in the formulation. The model was applied to the data from Southampton in 2019R4. 

The key takeaways from the case study are, 

1) Right now, the current assignment plan is similar to the modelled plan, but the 

performance metrics are much worse than the outcomes anticipated in the models. This is 

due to the extraboard operators performing essential non-service duties that are not clearly 

identified in the data. At the same time, there should not be services lost or overtime 

performed at times extraboard operators are idle. In the dataset, there were services lost at 

times when there are unassigned extraboard operators, which could be an issue of 

dispatching, or record-keeping. More consistent and reliable record-keeping is needed to 

identify the cause and, to make the modelled results directly comparable to the current 

performance metrics. 

2) When there are not enough extraboard operators, different assignment strategies and 

model parameters result in similar performance.  
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3) Having an adequately sized extraboard can help reduce overtime and lost service, at the 

expense of greater fixed costs associated with the additional extraboard operators. More 

robustness is not always better. As robustness increases, costs are added to cover less and 

less likely cases. Determining the optimal extraboard size and assignment strategy 

depends on the tradeoff between financial costs and service reliability (represented by the 

lost service).  

4) It is important to estimate accurate input models. Deterministic models are overfitted to 

their input distribution. When the input distribution matches the evaluation distribution, 

deterministic models perform well. As the evaluation distribution deviates away from the 

input distribution, performances of deterministic models deteriorate quickly. Robust 

solutions can accommodate the specified level of uncertainty at the expense of extra fixed 

costs. To achieve decreased financial cost and lost service at the same time, the input 

models (in this case absence and overtime availability) need to be improved. 

5) The robust models are less sensitive to model parameters, but they are quite sensitive to 

the level of robustness parameter.   

6) Early-morning and late-night covers do not significantly affect performance. 

7) Allowing split assignments better approximates the absence distributions than eight-hour 

straight runs. However, improvements in financial cost and lost service were small. This 

scenario shows that the time-of-day assignments of cover list operators only affect model 

performance slightly. On the other hand, allowing split covers has the potential to improve 

performance in ways not modelled in this thesis (e.g. by making the operational-level 

assignment more reactive).   
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Chapter 7 Conclusion and Future Work 

This chapter summarizes the research, outlines the contributions, acknowledges the 

limitations, and suggests future research directions in extraboard operator planning. 

7.1 Summary of Major Findings 

In this section, the goal and objectives set out in Section 1.3 are revisited and the research 

outcomes discussed. The overall goal of this thesis was to develop a systematic procedure to 

improve the extraboard planning process for bus operators to reduce lost service, overtime and 

extraboard cost. A demand and supply interaction framework was formulated to address this 

problem. First, relevant demand and supply quantities other than the schedule of the extraboard 

operators are estimated. Then the interaction framework is formulated as an optimization model 

to solve for the optimal assignment plan that achieves the best weighted cost of lost service, 

overtime and the extraboard. 

Breaking down the goal into smaller tasks/objectives, this thesis aimed to mine data from 

the newly introduced scheduling software HASTUS™ Daily, characterizing and modelling absence, 

overtime, lost service and their relations, as well as investigating how resulting models could be 

used in extraboard scheduling and evaluate the effectiveness of such scheduling practice. 

 First, pre-processing and descriptive analysis showed that the consistency and reliability of 

record-keeping could be improved. In particular, two areas are identified for further improvement: 

the consistency of original owner, and the reliability and detail of non-service duty records. 

Currently, since the original owner definition is unclear, assumptions have to be made during data 

preprocessing. Additionally, the non-service duties are not reliably documented. Different codes 

are used interchangeably, and the codes are not informative with respect to the necessity of these 

duties. Not being able to further classify non-essential duties creates comparison difficulties during 

scheduling model evaluations.   

 Second, absence and overtime availability are difficult to predict. The underlying 

mechanism cannot be captured by existing information. Negative binomial regression is used to 

estimate both the known-in-advance and unexpected absences. The historical quantities of absence, 

overtime, or lost service were not significant variables in the prediction of absences and the 

resulting model mainly accounts for the day-of-week and week in rating variations. The resulting 

error rates are in the 20%-40% range. Overtime availability is a more difficult quantity to model 

because the performed overtime is only a lower bound on available overtime. With the current 

information, no satisfactory models were found and the empirical distribution of records where 

performed overtime is equal to available overtime for each day of the week and hour of the day 

was taken as input to the scheduling model. 
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 Lastly, robust optimization was used to schedule the extraboard operators. The models 

showed that at the current staffing levels, different assignment strategies yield similar results. 

Adjusting the number of extraboard operators can reduce lost service and overtime, but with added 

extraboard costs and therefore a higher financial cost. Robust models provide solutions that are 

more conservative. With a similar weighted objective function value accounting for both service 

reliability and financial cost, robust solutions tend to have more fixed costs from more extraboard 

operators. Because of the higher extraboard size, robust solutions result in more stable financial 

cost and lost service in different realizations of absence and are less sensitive to model parameters.  

The robust solutions are sensitive to the robustness levels defined. Robustness levels must be 

chosen carefully: higher robustness implies higher financial costs to cover increasingly rare 

scenarios. Joint reductions in both lost service and financial cost can only be achieved when the 

input models are improved. Therefore, tradeoff between financial costs and reliability must be 

considered while determining the extraboard size. In this case, the model with a moderate amount 

of robustness α=0.7 was used to evaluate two policy scenarios. Removing the requirement of early 

morning and late night covers achieved some improvement in the constrained case but when there 

was no constraint on the number of operators, more than 90% of the time there was a cover reserved 

for the first and last shift regardless. Therefore, there was no improvement upon relaxing the 

requirement. Allowing split covers significantly improved the model’s ability to match the 

coverage curve to the time-of-day absence distribution, however, the improvements in 

performance metrics were limited.  

 With the major findings summarized above, the contributions made by this thesis are  

1) Quantification of absence and overtime availability levels.  

The vast majority of absence and overtime availability literature focuses on the motivation 

and psychological decision-making aspects of operator behavior. While these are central in 

developing management strategies to reduce absence, equally important is acknowledging that 

operator absence will not be totally eliminated and preparing the garages to cover operator 

absences more efficiently. This thesis made an attempt at quantifying absence and overtime 

availability for extraboard scheduling purposes, and gave insight into the factors that influence 

absence and overtime availability at an aggregate level.  

2) Application of robust optimization in extraboard planning. 

Having an extraboard is itself a way to build robustness into the overall scheduling system. 

Although optimization has been used widely in literature, and some prior work has demonstrated 

the importance of using extraboard operators to improve the system’s robustness, previous 

literature has not looked at how to optimize the extraboard assignment to maximize the robustness 

impacts of the extraboard . This thesis places this problem in a robustness optimization framework 
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and demonstrates the benefits of optimizing the extraboard scheduling process given uncertainty 

in absence and overtime availability.  

3) An end-to-end framework for transit extraboard scheduling. 

In previous work on scheduling, the demand side estimation and supply side optimization 

were not integrated. This thesis took a holistic approach and developed a procedure that takes the 

raw data from the scheduling software to an optimized extraboard assignment. 

 

7.1 Limitations 

The approaches developed here, for absence modelling and extraboard scheduling, have 

several limitations that must be acknowledged. 

1) No operator level demographic information was used in the absence and overtime availability 

models. Although it was demonstrated in the literature that demographic information such as 

gender, age, marital status, and income can have significant impacts on absence rates and 

willingness to accept overtime, due to privacy considerations, this data is not released by the 

MBTA and therefore significantly limited the explanatory powers of the absence and overtime 

availability models. 

2) An hourly workload curve was assumed for the extraboard scheduling model. Although this is 

a common practice in the workforce scheduling literature, using an hourly workload curve 

instead of individual pieces of work makes the model less detailed regarding the compatibility 

of pieces of work. This loss was approximated by setting aside a random hour of unavailable 

time for each operator. Although this loss of detail will not impact the overall scheduling 

recommendations, comparisons between the modelled performance metrics and the observed 

performance metrics will be inaccurate.     

3) Essential non-service duties are not modelled. Essential non-service duties are an integral part 

of the extraboard’s work. Although they are performed at (or from) the garage, there are no 

accurate records of them in the dataset. Assuming that all service duties take precedence will 

make the modelled performance metrics overly optimistic comparing the observed 

performance metrics.  

4) The garage dispatcher makes many real-time, on-the-fly decisions that are not necessarily 

reflected in the optimization model. For example, overtime may be requested before 

unexpected absences are realized in anticipation of operator shortage. Although half-day 

absences end up being covered by the cover list, regardless of the time the garage is notified, 

having this information can aid in scheduling report times. 
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7.2 Future Research  

The above limitations are mostly in terms of data quantity and quality. The models 

developed in this research also allude to other modelling and policy scenarios that are beyond the 

scope of this research but are of value in the bigger picture of better extraboard performance. 

Several attractive directions for future research are: 

1) Incorporate the dispatch strategy on the day-of: This thesis develops an end-to-end framework 

from data to planning. A final step of operations (dispatching) is missing. Whether to call for 

overtime, divert a regular operator, or use the extraboard when open work arises is another 

area that is worth investigating and might affect overall extraboard effectiveness.  

2) With data from different garages, sharing extraboard operators between garages may be 

investigated. Allowing sharing between the garages will introduce more resources to use by 

the garages to cover extreme conditions. For example, if an incident happens, idle operators 

from other garages could be dispatched to help. Additionally, operator sharing among different 

garages could allow the agency to exploit different travel patterns at different garages during 

scheduling. For example, pairing garages that experience peak demands at different times of 

day could even out the demand peaks. In order to achieve sharing between the garages, travel 

time between garage, compatibility between pieces of work, operator training across routes in 

different garages, as well as real-time information sharing, will then become important 

considerations.  

3) Besides 4hour shifts, the cost and benefits of more variable shift lengths for the cover list may 

be investigated. This will give more flexibility to the garage superintendents to adjust the 

coverage. At the same time, more variable hours will likely create inconvenience and stress for 

the cover list operators. Therefore, the cost and benefit of different combination of shift lengths 

and the break time between the shifts need to be quantified. 

4) Different costs for lost service at different times of day and on different days can be considered. 

Currently, the Southampton garage experiences higher rates of lost service on weekends. The 

models suggest that currently larger shortages of extraboard operators are more likely to occur 

on weekends. This recommendation is made on the assumption that lost services are of equal 

disutility at all times of the week. As mentioned in Section 4.1, the garage superintendent does 

sometimes take operators off their own assignments to cover work that are deemed more 

important. Therefore, under some resource constraint, the issue of which services are more 

important to be covered is worth investigating. 
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Appendix A Full Results of Known-in-Advance Absence Models  

2017 Rating 4 Southampton Garage 

Table  A-1 Regression Coefficients for Known-in-Advance Absences 2017 R4 @ Southampton 

 Base Model Full Model 

 
Coefficient 

(β𝑗) 
Standard 

Error 
p-

value 

Coefficient 
(β𝑗) 

Standard 
Error 

p-
value 

1/𝛂 0.35   0.21   

constant -4.8504 *** 0.419 0 -5.2323 *** 0.704 0 

holiday 0.1147 0.619 0.853 -0.1544 0.566 0.785 

holiday extension 0.9991 * 0.407 0.014 0.5496 0.465 0.237 

week 0.0507 * 0.025 0.043 0.0196 0.028 0.487 

Tue -0.0684 0.486 0.888 -0.1639 0.47 0.727 

Wed 0.488 0.451 0.279 0.4722 0.422 0.263 

Thu 0.5521 0.438 0.207 0.4112 0.407 0.312 

Fri 0.1848 0.453 0.684 0.1319 0.418 0.752 

Sat -0.3377 0.535 0.528 -0.6101 0.534 0.253 

Sun 0.3495 0.499 0.483 0.4013 0.463 0.386 

rolling overtime 
previous week    0.0183 0.016 0.253 

unexpected absence 
(day of) 

   
-0.0204 0.043 0.636 

Known-in-advance 
Absence (day before) 

   
0.1215 *** 0.036 0.001 

  
a) Base model 

  
b) Full model 

Figure  A-1 Negative Binomial Regression Results for Known-in-Advance Absences 2017 R4 @ 

Southampton 
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2018 Rating 4 Southampton Garage 

Table  A-2 Regression Coefficients for Known-in-Advance Absences 2018 R4 @ Southampton 

 Base Model Full Model 

 
Coefficient 

(β𝑗) 
Standard 

Error 
p-

value 
Coefficient 

(β𝑗) 
Standard 

Error 
p-

value 

1/𝛂 0   0   

constant -2.8162 *** 0.122 0 -2.9416 0.241 *** 0 

holiday 0.1813 0.199 0.363 -0.0437 0.214 0.838 

holiday extension 0.3283 ** 0.135 0.015 0.2185 0.144 0.129 

week -0.0194 ** 0.008 0.017 -0.0181 * 0.009 0.05 

Tue 0.0509 0.137 0.71 -0.008 0.137 0.953 

Wed -0.1436 0.146 0.324 -0.292 0.152 0.055 

Thu -0.0366 0.143 0.797 -0.0972 0.143 0.498 

Fri 0.0631 0.138 0.647 -0.0128 0.14 0.927 

Sat -0.218 0.161 0.175 -0.3198 0.164 0.051 

Sun -0.268 0.165 0.103 -0.2797 0.165 0.089 

rolling overtime 
previous week    0.0032 0.005 0.53 

unexpected absence 
(day of) 

   
-0.0235 0.018 0.186 

Known-in-advance 
Absence (day before) 

   
0.0529 ** 0.018 0.004 

 
 

a) Base model 

 
 

b) Full model 

Figure  A-2 Negative Binomial Regression Results for Known-in-Advance Absences 2018 R4 @ 

Southampton 
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2019 Rating 4 Charlestown Garage 

Table  A-3 Regression Coefficients for Known-in-Advance Absences 2019 R4 @ Charlestown 

 Base Model Full Model 

 
Coefficient 

(β𝑗) 
Standard 

Error 
p-

value 
Coefficient 

(β𝑗) 
Standard 

Error 
p-

value 

1/𝛂 0   0   

constant -3.0632 *** 0.094 0 -3.2354 *** 0.134 0 

holiday -0.2952 0.207 0.154 -0.4148 * 0.21 0.049 

holiday extension 0.0748 0.124 0.545 0.1284 0.13 0.325 

week 0.0406 *** 0.006 0 0.029 ** 0.011 0.01 

Tue -0.0275 0.1 0.784 -0.0186 0.101 0.853 

Wed 0.0156 0.099 0.875 0.0231 0.101 0.819 

Thu -0.0728 0.101 0.472 -0.066 0.101 0.515 

Fri -0.1157 0.101 0.25 -0.0856 0.102 0.399 

Sat 0.2099 0.112 0.061 0.2619 * 0.132 0.048 

Sun 0.048 0.143 0.737 -0.0127 0.147 0.931 

rolling overtime 
previous week    0.0004 0.003 0.88 

unexpected absence 
(day of) 

   
-0.0035 0.012 0.776 

Known-in-advance 
Absence (day before) 

   
0.0399 ** 0.013 0.002 

 
 

a) Base model 

 
 

b) Full model 

Figure  A-3 Negative Binomial Regression Results for Known-in-Advance Absences 2017 R4 @ 

Charlestown 
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Appendix B Full Results of Unexpected Absence Models 

2017 Rating 4 Southampton Garage 

 

  

 Base Model 

  

 Full Model 

Figure  B-1 Negative Binomial Regression for Unexpected Absence Hours 2017 R4 @ Southampton 
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2018 Rating 4 Southampton Garage 

 

  

 Base Model 

  
 Full Model 

Figure  B-2 Negative Binomial Regression for Unexpected Absence Hours 2018 R4 @ Southampton 
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2019 Rating 4 Charlestown Garage 

 

  

 Base Model 

  
 Full Model 

Figure  B-3 Negative Binomial Regression for Unexpected Absence Hours 2019 R4 @ Charlestown 
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Appendix C Full Results of Multivariate Unexpected Absence Models  

2017 Rating 4 Southampton Garage 

 

 

Figure  C-1 MVPLN Error 2017 R4 @ Southampton 

 

 

Figure  C-2 MVPLN Beta Values (left) and Correlation Matrix (right) 2017 R4 @ Southampton 
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2018 Rating 4 Southampton Garage 

 

 

Figure  C-3 MVPLN Error 2018 R4 @ Southampton 

 

 

Figure  C-4 MVPLN Beta Values (left) and Correlation Matrix (right) 2018 R4 @ Southampton 
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2019 Rating 4 Charlestown Garage 

 

 

Figure  C-5 MVPLN Error 2019 R4 @ Charlestown 

 

 

Figure  C-6 MVPLN Beta Values (left) and Correlation Matrix (right) 2019 R4 @ Charlestown 
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Appendix D Modelling Approaches for Estimating Overtime Availability  

Two model formulations were tested for overtime availability models. The formulation, 

variables tested, the results, and why they are not used in the scheduling model are briefly 

explained in this section. 

Censored Poisson Regression 

Since we are interested in the amount of overtime available only for the purpose of 

extraboard scheduling, not characterizing the decision-making process, only aggregate models are 

considered. Due to the discrete nature of the number of operators performing overtime, count 

models are used. Since overtime available is different from overtime performed, the time-of-day 

profile for overtime availability cannot be directly taken from the observed hourly overtime. The 

two-step approach for absence is not applicable, and overtime availability at different hours is 

modelled directly. The number of operators available for overtime depends both on the number of 

potential operators available for overtime, and their willingness to accept overtime. Define 

𝑦𝑖𝑡 , 𝜆𝑖𝑡 , 𝑎𝑛𝑑 𝑛𝑖𝑡  to be the number of available operators for overtime, the proportion of potential 

operators willing to perform overtime, and the number of potential operators for overtime, 

respectively, for day i and hour t. Then their relationship is 𝑦𝑖𝑡 = 𝜆𝑖𝑡 × 𝑛𝑖𝑡  . 

The main difference between absence and overtime availability modelling is that overtime 

observations are performed overtime which is a function of overtime requested and overtime 

available. The quantity of interest, available overtime 𝑦𝑖𝑡 , is unobserved. For example, if the 

number of cover list operators is sufficient to cover all open work, then overtime observed will be 

0, but this does not mean that there is no overtime available. Operators willing to work overtime 

are unobserved if no overtime is requested. To account for the unobserved available overtime, a 

censored model is used.  

The common form of truncation is zero (left)-censored models where the value of 0 cannot 

be observed. For example, if we are modelling the number of hospitalization days, only 

hospitalized individuals will exist in the dataset and 0 days cannot occur and we left-truncate the 

model. In this case of overtime availability, the observations are right-censored. This form of 

truncation is often observed in surveys when the “x or more” option is included. The same 

principles for left truncation can be applied to right truncation problems. Let 𝑌 represent a discrete 

random variable (overtime availability) with probability mass function 𝑓𝑌 . Since realizations 

greater than 𝑟 (number of requests for overtime) are omitted, 𝑟 will be observed for every value of 

y that is larger than 𝑟, and the likelihood of observing 𝑟 is the sum of the probabilities of 𝑌 taking 

values larger than or equal to 𝑟 . The right-censored distribution representing the probability 

𝑃(𝑌 = 𝑦) is given by  
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𝑃(𝑌 = 𝑦) = {
∑ 𝑓𝑌(𝑌 = 𝑎)

∞

𝑎=𝑟

             𝑖𝑓 𝑦 = 𝑟

𝑓𝑌(𝑌 = 𝑦)                    𝑖𝑓 𝑦 ≤ 𝑟

 

There are two types of overtime availability: overtime from operators who extend their 

workday and operators who come in for overtime on their days-off. Since the availability pool for 

the two types of overtime are separate, and the rate at which they can be obtained are likely 

different, they are estimated by two separate models and then summed to get the overall availability 

profile, to ensure the representation of the amount of overtime from both sources is accurate. 

Superscripts “on” and “off” are used in the formulation below to denote the two types of overtime 

availability. Since requests are made to both pools of operators together, the number of requests 

𝑟𝑖𝑡  and indicator variable 𝑑𝑖𝑡  are shared between the two models. Before the mathematical 

formulation is presented, the rest of the regression parameters and inputs are defined below (for 

the “on” case).  

             𝑦 ∗𝑖𝑡
𝑜𝑛

 = number of operators (on their workday) performing overtime on day i at hour t 

μ𝑖𝑡= average number of operators available for overtime on day i at hour t 

𝑋𝑖𝑡  = independent variables for day i and hour t 

βon = regression coefficients  

N = number of observations 

𝐾 = number of independent variables 

𝑟𝑖𝑡= number of overtime requests at day i hour t (lost service + overtime performed) 

d𝑖𝑡= indicator whether the observation is the actual value (1) or a lower bound (0) 

 

 It is assumed that 𝑦𝑖𝑡
𝑜𝑛 has a Poisson distribution where the mean value is a function of the 

explanatory variables 𝑋𝑖𝑡. 

 𝑃(𝑦𝑖𝑡
𝑜𝑛) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑡

𝑜𝑛)  
 

 

 𝐸(𝑦𝑖𝑡
𝑜𝑛) = 𝜇𝑖𝑡

𝑜𝑛 = 𝑛𝑖𝑡
𝑜𝑛𝜆𝑖𝑡

𝑜𝑛 = 𝑛𝑖𝑡
𝑜𝑛𝑒𝑥𝑝(𝑋𝑖𝑡

𝑇 βon)   

 𝑣𝑎𝑟(𝑦𝑖𝑡
𝑜𝑛) = 𝜇𝑖𝑡

𝑜𝑛  

{
𝑑𝑖𝑡 = 0                𝑖𝑓𝑦 ∗𝑖𝑡

𝑜𝑛+ 𝑦 ∗𝑖𝑡
𝑜𝑓𝑓

= 𝑟𝑖𝑡

𝑑𝑖𝑡 = 1                𝑖𝑓 𝑦 ∗𝑖𝑡
𝑜𝑛+ 𝑦 ∗𝑖𝑡

𝑜𝑓𝑓
< 𝑟𝑖𝑡
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The likelihood function can be written as, 

𝐿𝑜𝑛 = ∏ ∏ 𝑓𝑝(𝑦𝑖𝑡
𝑜𝑛 = 𝑦 ∗𝑖𝑡

𝑜𝑛 |𝑛𝑖𝑡
𝑜𝑛, 𝑋𝑖𝑡 , 𝛽𝑜𝑛)𝑑𝑖𝑡𝑓𝑝(𝑦𝑖𝑡

𝑜𝑛 ≥ 𝑦 ∗𝑖𝑡
𝑜𝑛 |𝑛𝑖𝑡

𝑜𝑛, 𝑋𝑖𝑡 , 𝛽𝑜𝑛)1−𝑑𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

 

where 𝑓𝑝 is the Poisson distribution.  

 

The log likelihood is 

𝑙𝑜𝑛(β) = ∑ ∑ [𝑑𝑖𝑡𝑙𝑜𝑔 (𝑓𝑝(𝑦𝑖𝑡
on = 𝑦 ∗𝑖𝑡

on |nit
on, 𝑋𝑖𝑡, 𝛽on))

𝑇

𝑡=1

𝑁

𝑖=1

+ (1 − 𝑑𝑖𝑡)𝑙𝑜𝑔 (𝑓𝑝(𝑦𝑖𝑡
on ≥ 𝑦 ∗𝑖𝑡

on |nit
on, 𝑋𝑖𝑡, 𝛽on))] 

 Similarly, if we substitute the superscript with “off”, then we get the same model with 

parameters 𝛽off to be estimated and the log likelihood 𝑙𝑜𝑓𝑓(β) for the overtime availability among 

operators who have the day off. The overall log likelihood of the model is  

𝑙(β) = 𝑙𝑜𝑛(β) + 𝑙𝑜𝑓𝑓(β) 

 Since the log likelihood function contains the cumulative distribution function of the 

Poisson distribution, analytical solutions are not available. The Nelder-Mead algorithm (Gao and 

Han, 2012) in scipy.minimize (Hill, 2016) was used to minimize the log likelihood. Variables are 

selected based on a priori expectations aided by the likelihood tests. 

 

Binomial Regression 

Filtered observations to the ones where requested overtime > performed overtime, that is, 

at hours when observed overtime = available overtime, such that we can directly see the fit of the 

model and the explanatory power of the exogeneous variables. 

 

On day d at hour t: 

𝑝𝑑𝑡 = probability of potential operators accept overtime (assuming homogeneous among operators) 

𝑛𝑑𝑡 = number of potential operators doing overtime 

𝑦𝑑𝑡 = observed number of people performing overtime 
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𝑦𝑑𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑛𝑑𝑡 , 𝑝𝑑𝑡) 

Separate models are estimated for available overtime from operators working and operators on 

their days-off. 

 

Variables Considered 

Besides temporal characteristics, daily and hourly overtime performed/available rates and 

lost service rates were tested to see if they help with the fitting. The rationale for including overtime 

rates is that overtime availability may be autoregressive and past overtime rates might be indicative 

of current overtime rates. Past lost service rates are also indicative of overtime availability since 

with the extraboard resources approximately the same, more lost service is indicative of less 

overtime availability. 

Hourly vs. Daily: Since the rate is an hourly rate, overtime and lost service rates for the 

same hour is indicative of the levels we could anticipate for the same hour since overtime 

availability for different times of the day is different. However, daily rates were tested as well 

since hourly rates may not be stable and are subject to outliers that may affect model results.  

Overtime availability rate vs overtime performed rate: The quantity being modelled is 

hourly availability rates. Therefore, the referenced hourly rates are hourly. However, the same 

definition does not work when the availability is aggregated to a daily resolution. An operator 

cannot be available for all hours of the day, and therefore on the daily level, overtime performed 

rate was quoted. Although not the same definition, higher overtime availability directly leads to 

overtime performed. The modelled relationship is not affected. 

Same/different day-category: The day-category refers to weekdays and weekends. The 

availability rates for weekends and weekdays should be different. Therefore, two variables are 

constructed for the cases where the referenced day (1 or 2 days ago) is the same with or different 

from the day of interest, such that the coefficients for the two variables represent the effect of past 

observed values when the dates was of the same or different categories, respectively. There are 

three separate cases: first, the target day and the referenced day are both weekdays or weekends; 

second, the target day is on the weekend but the referenced day is a week day; third, the target day 

is a weekday but the referenced day is on the weekend. 

In models of both 𝑦𝑑𝑡
𝑜𝑛 𝑎𝑛𝑑 𝑦𝑑𝑡

𝑜𝑓𝑓
, the variables tested are shown in Table  D-1. 
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Table  D-1 Variables Tested for both Working and Off Operators 

Variable Resolution Definition 

Temporal Characteristics 

Day of week dummy daily To account for day-of-week variation 

Week number daily To account for within-rating trends 

(Weekday/Weekend) x Time 
period dummy 

by defined 
time period 

To model the time-of-day distribution of overtime. 
The distribution should be different for days with 

weekday schedules and weekend schedules. 
Two types of time periods were tested: 

morning/midday/afternoon/evening vs. hourly 

Additional Variables: 

average hourly lost service rate 
in the past week 

hourly 𝑙𝑠𝑑𝑡
̅̅ ̅̅ ̅ = lost / scheduled 

average daily lost service rate in 
the past week 

daily 𝑙𝑠𝑑
̅̅ ̅̅  = lost / scheduled 

lost service rate 2 days ago 
during the same hour 𝑙𝑠(𝑑−2)𝑡 

hourly same day category 

 target is weekend; reference is weekday 

 target is weekday; reference is weekend 

daily lost service rate 2 days ago 
𝑙𝑠(𝑑−2) 

daily same day category 

 target is weekend; reference is weekday 

 target is weekday; reference is weekend 

average hourly overtime 
availability rate in the past week 

hourly 𝑝𝑑𝑡̅̅ ̅̅  = overtime performed / potential operators 

average daily overtime 
availability rate in the past week 

daily  

overtime availability rate 2 days 
ago during the same hour 

(𝑝(𝑑−2)𝑡 = overtime performed / 

potential operators) 

hourly same day category 

 target is weekend; reference is weekday 

 target is weekday; reference is weekend 

overtime performed rate 2 days 
ago (𝑝𝑑−2 = daily overtime 

performed / scheduled service) 

daily same day category 

 target is weekend; reference is weekday 

 target is weekday; reference is weekend 

Analysis Terms: 

lost service rate 1 day ago during 
the same hour 𝑙𝑠(𝑑−1)𝑡 

hourly same day category 

 target is weekend; reference is weekday 

 target is weekday; reference is weekend 

daily lost service rate 1 day ago 
𝑙𝑠(𝑑−1) 

daily same day category 

 target is weekend; reference is weekday 

 target is weekday; reference is weekend 

overtime availability rate 1 days 
ago during the same hour 

(𝑝(𝑑−1)𝑡 = overtime performed / 

potential operators) 

hourly same day category 

 target is weekend; reference is weekday 

 target is weekday; reference is weekend 

overtime performed rate 1 days 
ago (𝑝𝑑−1 = daily overtime 

performed / scheduled service) 

daily same day category 

 target is weekend; reference is weekday 

 target is weekday; reference is weekend 
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Estimation Results: 

Variables: the daily variables are not significant and often have the wrong signs. They are 

then excluded. The additional variables do not have a common, interpretable, and significant 

pattern besides the first variable (only average hourly overtime availability rate in the past week is 

consistently positive and significant).  

Censored Poisson: Due to the survival function in the likelihood formulation, the 

minimization of negative log likelihood is difficult and likely to run into numerical issues. The 

resulting coefficients were not stable, and the signs were often opposite to prior beliefs. 

Additionally, the profiles that were estimated were difficult to comprehend.  

Since in this formulation, no ground truth exists, in Figure  D-1 the average estimated 

overtime availability (black) and observed overtime (red) are plotted for rating 4 at Southampton 

garage. The rates in the plots are defined as the estimated (black) / observed (red) operators / all 

available operators and weekdays and weekends are estimated separately. In the plots the time-of-

day dummy was taken to be 4 periods: morning (before 10am), midday (10am-4pm), afternoon 

(4pm – 9pm), evening (after 9pm). Theoretically, the estimated availability should be above the 

observed overtime and it is true in most cases while there are some patterns estimated that are 

difficult to interpret. However, since there is no ground truth to compare the model results to. It is 

unknown whether the problem lies in numerical estimation, the noise in the data, or the sample 

size being too small.  

 

 

Figure  D-1 Overtime Availability Censored Poisson Formulation 2019R4 @ Southampton 
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Binomial: To verify the data quality, the binomial formulation was tested. The data is 

filtered to the records where observed is equal to available, therefore the tails of the distribution 

should not affect the results estimation. However, the model fit only slightly better than estimating 

the average. Some years/garages are better than others and the plots are shown below. Therefore, 

knowing that with the existing explanatory variables, we are not capable of explaining the variance 

in overtime availability. Therefore, in the scheduling model, empirical distributions were used 

instead of modelled results. Models for overtime availability is left for future research. 

 

 

Figure  D-2 Overtime Availability Binomial Formulation Fit 2017R4 @ Southampton 

 

Figure  D-3 Overtime Availability Binomial Formulation Fit 2018R4 @ Southampton 
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Figure  D-4 Overtime Availability Binomial Formulation Fit 2019R4 @ Southampton 

 

Figure  D-5 Overtime Availability Binomial Formulation Fit 2019R4 @ Charlestown 
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Appendix E Sensitivity Analysis of Cost Coefficients in the Realized 

Outcome and Worst-case Scenarios 

Realized Outcome (Constrained Resources): 

 

 
i) w.r.t cost of cover list hours 

 

 
ii) w.r.t cost of overtime hours 

 

 
iii) w.r.t. cost of lost service hours 

 
Figure  E-1 Sensitivity Analysis of Realized Outcome (constrained) 
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Realized Outcome (Unconstrained Resources): 

 

 
i) w.r.t cost of cover list hours 

 

 
ii)   w.r.t cost of overtime hours 

 

  
iii) w.r.t. cost of lost service hours 

 
Figure  E-2 Sensitivity Analysis of Realized Outcome (unconstrained) 
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Worst-case Outcome (Constrained Resources): 

 

 
i) w.r.t cost of cover list hours 

 

 
ii) w.r.t cost of overtime hours 

 

 
iii) w.r.t. cost of lost service hours 

 
Figure  E-3 Sensitivity Analysis of Worst-case Outcome (constrained) 
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Worst-case Outcome (Unconstrained Resources): 

 

 
i) w.r.t cost of cover list hours 

 

 
ii) w.r.t cost of overtime hours 

 

 
iii) w.r.t. cost of lost service hours 

 
Figure  E-4 Sensitivity Analysis of Worst-case Outcome (unconstrained)  
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Appendix F Scenario Analysis of the Nominal Model 

  

Table  F-1  Split Covers (Nominal Model) 

Adaptive Robust (𝛂 = 𝟎. 𝟕) 

Constrained Resources Unconstrained Resources 

8h straight 
shifts 

4h splits 
allowed  

8h straight 
shifts  

4h splits 
allowed  

Realized Outcome 

Financial cost 89% 89% 99% 99% 

Lost Service (h) 1383 1304 771 712 

Overtime (h) 2748 2736 2141 2047 

Scheduled Cover 
List (h) 

5704 5704 7768 7840 

Productive Cover 
List Time (h) 

4155 4246 5334 5479 

Cover List 
Utilization (%) 

72% 74% 68% 69% 

Average Case (100 
simulations) 

Financial cost 88% 88% 97% 97% 

Lost Service (h) 1197 1162 555 513 

Overtime (h) 2548 2557 1754 1697 

Scheduled Cover 
List (h) 

5800 5802 7802 7880 

Productive Cover 
List Time (h) 

4472 4500 5805 5903 

Cover List 
Utilization (%) 

77% 77% 74% 74% 

Worst Case 

Financial cost 89% 89% 97% 98% 

Lost Service (h) 1723 1706 952 909 

Overtime (h) 2616 2604 1847 1793 

Scheduled Cover 
List (h) 

5480 5504 7328 7416 

Productive Cover 
List Time (h) 

4201 4254 5484 5589 

Cover List 
Utilization (%) 

76% 77% 74% 75% 
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Figure  F-1 Split Covers - Operational-Level Assignment (with Unconstrained Resources) 
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