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Abstract
Wave energy represents an abundant source of renewable energy, but as yet the po-
tential is not fully utilized. Aiming to exploit this vast potential, many theoretical,
experimental and pilot-scale studies have been conducted on wave energy converters
(WECs), however as yet there has been no convergence on the optimal shape of a
WEC. Furthermore, there is no agreed-upon definition of what it means for a WEC
to be ‘optimal’ and no established framework to find optimal shapes. This thesis es-
tablishes a novel, scientifically rigorous framework to find practically realistic optimal
shapes of WECs. Through a general, efficient and efficacious procedure, we system-
atically investigate groups of shapes to reveal powerful new results for the optimal
shapes of axisymmetric WECs. Finally, we analyze these results to develop insights
and gain physical intuition about the best WEC shapes.
Although the hydrodynamics of WECs under operating conditions can generally be
considered linear, the dependence of the hydrodynamics and power extraction of the
geometry can be highly nonlinear. In this thesis, we assume linear hydrodynamics but
allow the geometry to be very general and consider a wide range of possible geometries.
We optimize a single-body deep-water 3D axisymmetric point absorber WEC, with
linear power take-off mechanisms, assuming a monochromatic unidirectional incoming
wave with given wavenumber 𝑘. We consider two separate problems: a WEC moving
and extracting energy in the heave mode only, as well as the complete 3D problem of
an axisymmetric WEC moving and extracting energy in heave, surge and pitch.
This thesis develops a robust computational approach for finding the optimal WEC
shape underpinned by a strong theoretical grounding. We describe general geometries
using piecewise parametric polynomial basis functions and develop a multi-objective
optimization to minimize WEC surface area and volume, while ensuring constant,
maximum power for all shapes. We show that constraints are necessary to ensure
feasible body motion, weight distribution and stability. We present a novel theorem
to find roots of the heave resonance equation, which adds to our understanding of the
problem and significantly speeds up the optimization process by effectively decreasing
the degree of freedom of the optimization.
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Our systematic investigation encompasses a broad range of shapes, starting with trun-
cated cylinders and then generalizing to significantly more complex shapes. We show
that shapes that protrude outwards below the waterline generally perform better, due
to their high heave damping coefficient, which enables smaller volumes while still ad-
hering to the motion constraint. Furthermore, in general the maximum radius occurs
closer to the waterline than the maximum draft. Compared to the heave-only prob-
lem, the optimal shapes from the heave-surge-pitch problem are generally wider and
less protruding outwards, resulting in a larger volume and surface area. The trends
that we observe in the optimal shapes are consistent across all the groups of shapes,
implying these may be features of a general optimum. Optimizing the geometry can
significantly decrease the material used to produce the same, maximum power: for
example, the optimal shapes have up to 72 % less surface are and 93 % less volume
than the optimized cylinders.
The methodology developed, along with the results found, in this thesis will help
to inform future WEC development. Through the discovery of WEC shapes which
extract maximum power and require minimum material use, whilst ensuring the WEC
shapes are practically feasible, this thesis is a step forward in our understanding of
WECs and ultimately contributes towards wave energy becoming a viable source of
renewable energy in future.

Thesis Supervisor: Dick K. P. Yue
Title: Philip J. Solondz Professor of Engineering; Professor of Mechanical & Ocean
Engineering
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Chapter 1

Introduction

1.1 Wave energy potential and state of the art of

wave energy converters

Wave energy represents an abundant source of renewable energy. Gunn and Stock-

Williams (2012) estimate a global resource of 2 TW. A predictable, relatively consis-

tent and energy-dense form of renewable energy, wave energy could help add diversity

to the renewable energy sources needed to tackle the global climate crisis we are cur-

rently experiencing.

To demonstrate the immense potential of wave energy converters (WECs), consider

the available energy per unit crest-length in an incident wave:

𝑃𝐼 = 1
2𝜌𝑔𝐴

2𝑉𝑔 (1.1.1)

where 𝜌 is density of the water, 𝑔 is gravitational constant, 𝐴 is amplitude of the

incident wave, and 𝑉𝑔 is the group velocity of the incident wave. For a 10-second wave

with an amplitude of 1 meter, there is approximately 40 kW/m of energy available,

and for a 10-second wave with an amplitude of 5 meters, there is approximately 1000

kW/m of energy available.
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Research on wave energy first widely gained traction in the 1960’s and 1970’s with

the global energy crisis, but much like the profile of the wave, interest has gone

through peaks and troughs throughout the years subsequent. The technology is still

relatively in its infancy, with only a handful of wave energy converter designs having

completed any real-sea testing (Al Shami et al., 2019), and as yet it is not economically

competitive with other renewable energy resources, such as wind or solar energy

(Chang et al., 2018). For wave energy technology to become economically viable,

Chang et al. (2018) estimate that the capital expenditure and operating expenditure

must be reduced by 45 % and power production must be increased by 200 %. Clearly,

there needs to be a significant, not just incremental, improvement for wave energy to

become a viable source of renewable energy.

Babarit et al. (2012) argue that performance metrics, instead of CAPEX or OPEX,

should be used when technologies are still nascent, and suggested using surface area as

a performance metric for cost, since mass could be made up mostly of water and/or

concrete, which would be cheap. Dallman et al. (2018) reviewed the finalists for

the 2016 US Department of Energy ‘Wave Energy Prize,’ and found that surface

area is closest to estimating full cost estimates, rather than volume or PTO force.

Uihlein and Magagna (2016) state that challenges for the technology are reliability,

robustness, cost and deployment. Therefore, although surface area may be a good

approximation of the cost of the device, to decrease deployment and maintenance cost,

volume should also be considered, since a larger volume will require larger containers,

ships, etc. to move and deploy. Furthermore, currently wave energy converters are

only considered in very energetic locations, which corresponds to sea states with very

large wave periods. WECs would consequently be large, and these sea states produce

very high waves and large forces on the body. Therefore, if WECs can be made smaller

and more efficient, and thus viable in less extreme sea states, it would dramatically

increase their survivability and decrease operational costs. Again, this suggests that

very significant improvements to the efficiency of the technology are needed, not just

incremental improvements.
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There have been a number of reviews of wave energy converters (Lehmann et al., 2016;

Drew et al., 2009; Falnes, 2007; Ringwood et al., 2014; Al Shami et al., 2019; Falcão,

2010), which illustrate a plethora of different concepts for wave energy extraction.

In fact, there have been over 1000 different wave energy converter designs (Drew

et al., 2016). WECs can be generally classified into four main groups. There are

‘overtopping’ devices, where waves fill a reservoir above the waterline, and then,

taking advantage of the potential energy, the water passes through a turbine at the

waterline. There are ‘attenuators,’ which are multiple segments connected to one

another lying perpendicular to the incident wave, where the relative motion between

the segments is exploited for capturing energy. There are ‘oscillating water columns,’

consisting of a fixed structure with a turbine above the waterline, and the waves

push air through the turbine (Martins-Rivas and Mei, 2009, Evans and Porter, 1997).

However, the most common type of wave energy converter is a ‘point absorber,’ which

is a floating body whose characteristic dimension is much smaller than the incoming

wavelength and has a power take-off (PTO) device attached.

In 2016, the US Department of Energy sponsored the ‘Wave Energy Prize,’ a public

prize challenge to design a ‘game-changing’ WEC to improve efficiency, and the range

of designs, shapes, and technologies in the finalists was vast. Babarit (2015) compared

the performance of a number of different WECs to form a ‘database,’ which showed

the incredibly wide range of both performance and design. All of these studies and

WEC concepts highlight a large knowledge gap in the field: the lack of convergence

to an optimal shape.

While there is no convergence on the optimal shape of a WEC, there have been a

number of studies that optimize the dimensions of a specific geometric design (Durren,

2012; Gomes et al., 2012; Rosenberg and Mundon, 2016; Shadman et al., 2018; Xu et

al., 2018). There have also been studies that have looked at very simple geometries

(such as a cylinder, hemisphere, cone) and optimized the dimensions of these shapes.

For example, Hager et al. (2012) compared 2D shapes experimentally, Ricci et al.

(2006) compared a hemisphere and a cylinder with a few different radius to draft ra-
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tios, Saptono Warpindyasmoro and Gunaldi (2018) and Wen et al. (2018) optimized

wave energy converters for a specific location, and Zhang et al. (2016) considered

cylinders, hemispheres, paraboloids, and cones. Alamian et al. (2019) optimized a

few shapes of pitch point absorbers for a particular location. Other studies, such

as Andres et al (2014), examined how to change geometry of WEC (they consid-

ered only cylindrical WECs) based on different location and wave climate. Gilloteau

and Ringwood (2010) studied the interplay between phyiscal geometry (again, they

only considered cylinders) and control strategy. Esmaeilzadeh and Alam (2019) and

Kelly and Alam (2019) optimize a submerged planar pressure differential for different

spreads of incoming waves. Kurniawan and Moan (2012, 2013) considered a ‘library’

of shapes, including lines, circles and elliptical sections. McCabe (2009, 2010, 2013)

optimized bi-cubic b-splines for non-axisymmetric WECs extracting energy in surge

and/or pitch.

There is also a wide range of optimization functions in these studies, showing differ-

ent definitions of what makes an ‘optimal’ WEC. For example, Goggins and Finnegan

(2014) maximize a performance indicator they call the ‘significant velocity,’ which is

similar to significant wave height but for the device motion. Kurnaiwan and Moan

(2013) perform a multi-objective optimization, minimizing surface area and maximiz-

ing the integral of power over a given spectrum. McCabe (2013) considered three

optimization functions, given a spectrum: overall power, power per characteristic

length, and power per volume.

From these studies, we can see a second gap in the knowledge of wave energy: there

is no agreed-upon definition of ‘optimal’ in wave energy, and there is no established

framework or systematic study to find general optimal shapes of a WEC.

From all of these studies, we can conclude that for wave energy to become a viable

and competitive source of renewable energy, there must be significant improvements

to WECs to increase extracted power and decrease cost. Additionally, there is a need

to determine a robust, clear definition of what it means for a WEC to be ‘optimal,’

38



and to perform an optimization of general geometries to seek convergence on the

optimal shape(s) of a wave energy converter.

1.2 Problem statement and thesis objectives

Optimizing geometry could provide the significant improvement needed in WECs to

extract more power for less cost. In this thesis, we optimize WECs for normal op-

erating conditions, rather than looking at extreme conditions. Therefore, we assume

that wave motions are sufficiently small to linearize. Newman (1977) states that “for

most practical purposes the linear results... are extremely accurate." Although the

problem is linearized, the dependence of the hydrodynamic parameters, and conse-

quently everything determined by these parameters, on the body geometry can be

highly nonlinear. We assume that the bodies are large relative to the wave ampli-

tude, so flow separation is unimportant. Therefore, assuming linear potential theory,

we optimize a single-body deep-water 3D axisymmetric point absorber WEC, with

linear power take-off (PTO) mechanisms, assuming a monochromatic unidirectional

incoming wave with given wavenumber 𝑘. We consider two separate problems: a

WEC moving and extracting energy in the heave mode only, as well as the complete

3D problem of an axisymmetric WEC moving and extracting energy in heave, surge

and pitch.

We chose to optimize axisymmetric shapes since in the ocean wave direction is highly

variable (Drew et al., 2009). Power take-off mechanisms are usually direct-drive linear

generators (Al Shami et al., 2018), hence why we model it as a linear damper. While

controls are sometimes used in WECs, there are known issues (Babarit, 2015; Cretel

et al., 2011), and we choose not to introduce more parameters to our optimization

than is necessary.

Therefore, the main objectives of this thesis are to

1. Establish a robust framework defining optimality of wave energy converters
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2. Find the optimal shapes of an axisymmetric WEC

3. Develop physical insights about what makes an optimal WEC

1.3 Thesis outline

In chapter 2, we present the hydrodynamic theory for an axisymmetric floating wave

energy converter. We show the derivation of the equation of motion of a standard

floating body in waves, and then illustrate how this equation is altered to express the

equation of motion for a floating WEC. We then show the expressions for extractable

power, for heave-only extraction and a general multi-degree-of-freedom power extrac-

tion. We determine the maximum extractable power, and under what conditions this

maximum occurs. We look at how to practically achieve this maximum power by

matching the equation of motions with the expressions for maximum power. We then

use far-field theory to find limits for capture width, which is the ratio of extractable

power to incident power. We show the derivations for the known limits for heave and

surge-pitch motions, and also present a derivation, which we believe to be novel, of

the division of the capture width in the surge, pitch and surge-pitch coupled modes,

when the WEC moves in surge and pitch.

In chapter 3, we present our novel, scientifically rigorous optimization framework to

find practically realistic optimal shapes of WECs. We start by broadly summarizing

the main concepts involved for optimizing a WEC, which are to maximize power,

while ensuring that the shapes are practically feasible, and to minimize cost, which

we do by using amount of material as a proxy for cost. We introduce the concept of

a multi-objective optimization and a Pareto Front. Then, we describe our optimiza-

tion framework in detail, including the constraints put on the problem to form the

populations as well as the objective functions to find the set of optimal solutions. We

also outline other frameworks we considered, before settling on the current one, to

demonstrate some of the nuances of the problem and give motivation for our current

framework.
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In chapter 4, we present the general, efficient and efficacious procedure we developed

to solve the optimization problem. We present our description of general geometries

using piecewise parametric polynomial basis functions and how we use the coefficients

of these functions as the parameters in the optimization. In this way, we can represent

a vast range of geometries with relatively few parameters. Then, we present a novel

theorem to find roots of the heave resonance equation. This theorem adds to our

understanding of the problem, but also significantly decreases the computation time

for the optimization: it is 100x more efficient than brute-force tests. We then present

general observations and conclusions for any given class of shapes, which adds to

our understanding of what populations and Pareto Fronts will look like and how

the constraints affect them. We then discuss how populations are formed for groups

of shapes. And finally, we present the flow chart and details of our multi-objective

evolutionary algorithm.

In chapter 5, we present the optimal dimensions of a vertical truncated cylinder. We

use the cylinder as an example to show the framework and procedure on a shape that

is easily described and visualized. However, since in ocean engineering the cylinder

is the easiest shape to build, and the most commonly built shape, the results for the

optimal cylinders are an important result intrinsically. We present the results for

different constraint regimes, to show how the constraints affect the optimal cylinders’

performance and dimensions.

In chapter 6, we present the rest of the results for optimized shapes. We show our

systematic investigation to find optimal shapes over a broad range of shapes. We

discuss the dimensions of the shapes and compare performance among the groups as

well as across groups, and look at how constraints affect the shapes and performance.

We discuss general trends we saw, and the physical insights these trends give us by

looking at how and why these shapes performed better than others.

In chapter 7, we summarize the main contributions of this thesis, and we discuss

future work to be done on this topic.
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Chapter 2

Hydrodynamic theory for an

axisymmetric floating wave energy

converter

2.1 Assumptions and problem setup

Consider a three-dimensional axisymmetric floating wave energy converter (WEC)

in deep water. Linear potential flow is assumed with a single monochromatic unit-

amplitude incoming wave with wavenumber 𝑘. For the first of two distinct problems,

the WEC is restricted to motion in heave (𝜉3) only, and there is a single power take-off

mechanism, which is modeled as a linear damper with damping coefficient 𝛽3. For

the second problem, the WEC is allowed to move in surge (𝜉1), heave, and pitch (𝜉5),

and there are 4 power take-off mechanisms, modeled as four linear dampers: one in

the surge mode with coefficient 𝛽1, one in the heave mode with coefficient 𝛽3, one

in the pitch mode with coefficient 𝛽5, and one in the surge-pitch coupled mode with

coefficient 𝛽15. Mooring line restoring force is modeled as a spring in surge with spring

coefficient 𝑘1. The vertical center of gravity is located at z-coordinate 𝑧𝐺, and the

pitch moment of inertia is 𝐼55. The first (heave-only) problem is shown in figure 2-1,

whereas the second (heave-surge-pitch) is shown in figure 2-2.
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In the following section, first the equations of motion for a general 6 degree-of-freedom

floating body in waves is derived, and then extended to find the equations of motion

for the floating wave energy converters described above. Equations for extractable

power are presented, and equations for maximal power are derived. Specifically, we

present the derivation of the important result that maximal power for an axisymmetric

WEC does not depend on size or shape. Finally, far-field analysis is done to prove

expressions for maximum extractble power. More details of these equations of motion

and derivations for maximal power can be found in Newman (2018), Mei et al. (2005)

and Falnes and Kurniawan (2020).

Figure 2-1: WEC restricted to motion and energy extraction in the heave mode only
(𝜉3), with power take-off (PTO) modeled as a linear damper with damping coefficient
𝛽3
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Figure 2-2: WEC moving and extracting energy in heave (𝜉3), surge (𝜉1) and pitch
(𝜉5), with power take-off (PTO) modeled as linear dampers with damping coefficients
𝛽1, 𝛽3, 𝛽15 and 𝛽5

2.2 Theory

2.2.1 Derivation of the equation of motion of a floating body

in waves

Newman (2018) derives the expression for the equation of motion of a freely floating

body in waves. This derivation is summarized in this section.

Consider a plane progressive wave, with amplitude 𝐴 and frequency 𝜔, incident on

a freely floating body in deep water, which can move in 6 degrees of freedom: surge

(1), sway (2), heave (3), roll (4), pitch (5), and yaw (6), as shown in figure 2-3.
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Figure 2-3: Description of motions for floating body 𝑆𝐵

Potential flow is assumed, so the flow is assumed to be incompressible and irrotational,

and the fluid is assumed to be inviscid. With these assumptions, we can express the

velocity field 𝑣 in the fluid with a potential Φ, where

𝑣 = ∇Φ (2.2.1)

The deep-water dispersion relation is used to relate frequency to 𝑔, the gravitational

acceleration constant and 𝑘, the wavenumber (𝑘 = 2𝜋
𝜆

, where 𝜆 is wavelength).

𝜔2 = 𝑔𝑘 (2.2.2)

Wave steepness is assumed to be small (𝑘𝐴 << 1), so linear theory can be used to

decompose the velocity potential into two parts: the potential due to a rigid body

fixed in place, and the potential due to the same body forced to oscillate in the

absence of waves:

Φ = Φ𝐷 + Φ𝑅 (2.2.3)

where Φ𝐷 is the potential due to the incident wave and the resulting interactions with

the body, and Φ𝑅 is the potential due to the body oscillating in the absence of waves.
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The potential can be expressed in the complex amplitude notation,

Φ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒
{︁
𝜑(𝑥, 𝑦, 𝑧)𝑒𝑖𝜔𝑡

}︁
(2.2.4)

Accordingly, equation 2.2.3 can be expressed as:

Φ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒

⎧⎨⎩
⎛⎝ 6∑︁
𝑗=1

𝜉𝑗𝜑𝑗 (𝑥, 𝑦, 𝑧) + 𝐴𝜑𝐴 (𝑥, 𝑦, 𝑧)
⎞⎠ 𝑒𝑖𝜔𝑡

⎫⎬⎭ (2.2.5)

where 𝜑𝑗 is the velocity potential of the body oscillating in the 𝑗th mode with unit

velocity in the absence of waves. The boundary conditions for the six 𝜑𝑗 values are

found by setting the normal derivative of each 𝜑𝑗 equal to the normal component of

body velocity:

𝜕𝜑𝑗
𝜕𝑛

= 𝑖𝜔𝑛𝑗, 𝑗 = 1, 2, 3 (2.2.6)

𝜕𝜑𝑗
𝜕𝑛

= 𝑖𝜔 (𝑟 × 𝑛)𝑗−3 , 𝑗 = 4, 5, 6 (2.2.7)

Here, 𝑛 is the unit normal vector on the body surface (into the body), and 𝑟 is the

position vector. In equation 2.2.5, 𝜉𝑗 is the complex amplitude of body motion in the

𝑗th mode, and 𝜑𝐴 = 𝜑𝐷/𝐴 is the potential due to the incident wave and resulting

disturbances to the incident wave due to the body, assuming the body is stationary.

𝜑𝐴 can be decomposed further into two parts: the incident wave, 𝜑𝐼 , and the resulting

scattering potential, 𝜑7:

𝜑𝐴 = 𝜑0 + 𝜑7 (2.2.8)

The diffraction (𝜑𝐴) problem must obey the body boundary condition: since the body

is assumed to be stationary, the normal velocity of the diffraction potential at the

boundary must be 0:

𝜕𝜑𝐴
𝜕𝑛

= 0, on 𝑆𝐵 (2.2.9)

Or,
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𝜕𝜑7

𝜕𝑛
= −𝜕𝜑0

𝜕𝑛
, on 𝑆𝐵 (2.2.10)

Note that each potential is governed by the Laplace equation:

∇2𝜑𝑗 = 0, for 𝑗 = 0, ..., 7 (2.2.11)

And also each potential must satisfy the free surface linearized kinematic-dynamic

boundary condition:

− 𝜔2𝜑𝑗 + 𝑔
𝜕𝜑𝑗
𝜕𝑧

= 0, for 𝑗 = 0, ..., 7, on 𝑧 = 0 (2.2.12)

As well as bottom boundary condition:

𝜑𝑗 → 0 as 𝑧 → −∞ for 𝑗 = 0, ..., 7 (2.2.13)

And finally, the potentials (except 𝜑0) must satisfy the radiation condition, which

states that waves must be outgoing at infinity to satisfy conservation of energy:

𝜑 ∝ 1√
𝑅
𝑒−𝑖𝑘𝑅 for 𝑗 = 1, ..., 7 (2.2.14)

where 𝑅 =
√
𝑥2 + 𝑦2.

Pressure on the surface of the body can be found using the linearized Bernoulli equa-

tion:

𝑝 = −𝜌
(︃
𝜕Φ
𝜕𝑡

+ 𝑔𝑧

)︃
(2.2.15)

Putting equation 2.2.5 into this equation, it becomes

𝑝 = −𝜌𝑅𝑒

⎧⎨⎩
⎛⎝ 6∑︁
𝑗=1

𝜉𝑗𝜑𝑗 + 𝐴 (𝜑0 + 𝜑7)
⎞⎠ 𝑖𝜔𝑒𝑖𝜔𝑡

⎫⎬⎭− 𝜌𝑔𝑧 (2.2.16)

Integrating the pressure over the wetted surface area of the body, 𝑆𝐵, we get the

forces and moments on the body:
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𝐹 =

⎧⎪⎪⎨⎪⎪⎩
∫︀∫︀
𝑆𝐵
𝑝𝑛 𝑑𝑆 𝑖 = 1, 2, 3∫︀∫︀

𝑆𝐵
𝑝 (𝑛× 𝑟) 𝑑𝑆 𝑖 = 4, 5, 6

(2.2.17)

where 𝐹 is the length-6 vector of forces (1,2,3) and moments (4,5,6) on the body. The

equation for forces can be broken into three parts:

𝐹 = 𝐹1 + 𝐹2 + 𝐹3 (2.2.18)

where 𝐹1 are the forces due the hydrostatic pressure, 𝐹2 are the forces due to radiation,

and 𝐹3 are the exciting forces, due to the diffraction problem. Putting equation 2.2.16

into 2.2.17 and decomposing into the three equations, we get

𝐹1 =

⎧⎪⎪⎨⎪⎪⎩
−𝜌𝑔

∫︀∫︀
𝑆𝐵
𝑛𝑧 𝑑𝑆 𝑖 = 1, 2, 3

−𝜌𝑔
∫︀∫︀
𝑆𝐵

(𝑛× 𝑟) 𝑧 𝑑𝑆 𝑖 = 4, 5, 6
(2.2.19)

𝐹2 =

⎧⎪⎪⎨⎪⎪⎩
−𝜌𝑅𝑒

{︁∑︀6
𝑗=1 𝑖𝜔𝜉𝑗𝑒

𝑖𝜔𝑡
∫︀∫︀
𝑆𝐵
𝑛𝜑𝑗 𝑑𝑆

}︁
𝑖 = 1, 2, 3

−𝜌𝑅𝑒
{︁∑︀6

𝑗=1 𝑖𝜔𝜉𝑗𝑒
𝑖𝜔𝑡
∫︀∫︀
𝑆𝐵

(𝑛× 𝑟)𝜑𝑗 𝑑𝑆
}︁

𝑖 = 4, 5, 6
(2.2.20)

𝐹3 =

⎧⎪⎪⎨⎪⎪⎩
−𝜌𝑅𝑒

{︁
𝑖𝜔𝐴𝑒𝑖𝜔𝑡

∫︀∫︀
𝑆𝐵
𝑛 (𝜑0 + 𝜑7) 𝑑𝑆

}︁
𝑖 = 1, 2, 3

−𝜌𝑅𝑒
{︁
𝑖𝜔𝐴𝑒𝑖𝜔𝑡

∫︀∫︀
𝑆𝐵

(𝑛× 𝑟) (𝜑0 + 𝜑7) 𝑑𝑆
}︁

𝑖 = 4, 5, 6
(2.2.21)

It is convenient to add forces due to the weight of the body to the forces due to

hydrostatic pressure (𝐹1) to get the total static forces and moments, 𝐹1̃. For a freely

floating body, this is shown in Newman (2018) to be

𝐹1̃,𝑖 = −
6∑︁
𝑗=1

𝐶𝑖𝑗𝜉𝑗 (2.2.22)

where [𝐶] = 𝐶𝑖𝑗 is the matrix with 0 everywhere except

𝐶33 = 𝜌𝑔𝑆 (2.2.23)
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𝐶44 = 𝜌𝑔𝑆22 + 𝜌𝑔∀𝑧𝐵 −𝑚𝑔𝑧𝐺 (2.2.24)

𝐶45 = −𝑔(𝜌∀𝑥𝐵 −𝑚𝑥𝐺) (2.2.25)

𝐶65 = −𝑔 (𝜌∀𝑧𝐵 −𝑚𝑧𝐺) (2.2.26)

𝐶55 = 𝜌𝑔𝑆11 + 𝜌𝑔∀𝑧𝐵 −𝑚𝑔𝑧𝐺 (2.2.27)

where 𝑥𝐵 and 𝑥𝐺 are the position vectors of the centers of gravity and buoyancy,

respectively, 𝑆 is the waterplane area, ∀ is displaced volume, and

𝑆𝑖𝑗 =
∫︁∫︁

𝑆0
𝑥𝑖𝑥𝑗𝑑𝑆 (2.2.28)

where 𝑆0 is the static position of 𝑆𝐵.

𝐹2 are the forces and moments due to radiation, and they can be written as

𝐹2,𝑖 = 𝑅𝑒

⎧⎨⎩
6∑︁
𝑗=1

𝜉𝑗𝑒
𝑖𝜔𝑡𝑓𝑖𝑗

⎫⎬⎭ (2.2.29)

where

𝑓𝑖𝑗 = −𝜌
∫︁∫︁

𝑆𝐵

𝜕𝜑𝑖
𝜕𝑛

𝜑𝑗 𝑑𝑆 (2.2.30)

𝑓𝑖𝑗 is the force in direction 𝑖 due to unit-amplitude motion in the 𝑗 direction. We can

express this force in terms of the component in phase with velocity and the component

in phase with acceleration, which we call damping and added mass, respectively:

𝑓𝑖𝑗 = 𝜔2𝐴𝑖𝑗 − 𝑖𝜔𝐵𝑖𝑗 (2.2.31)

𝐴𝑖𝑗 is called the added mass coefficient, and 𝐵𝑖𝑗 is called the damping coefficient. 𝐹2,𝑖
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can therefore be expressed as

𝐹2,𝑖 = 𝑅𝑒

⎧⎨⎩
6∑︁
𝑗=1

𝜉𝑗
(︁
𝜔2𝐴𝑖𝑗 − 𝑖𝜔𝐵𝑖𝑗

)︁⎫⎬⎭ (2.2.32)

Finally, 𝐹3 are the exciting forces and moments and can be expressed as

𝐹3,𝑖 = 𝑅𝑒
{︁
𝐴𝑋𝑖𝑒

𝑖𝜔𝑡
}︁

(2.2.33)

where, after applying boundary conditions defined by equations 2.2.6 and 2.2.7 to 𝐹3

in equation 2.2.21.

𝑋𝑖 = −𝜌𝑖𝜔
∫︁∫︁

𝑆𝐵

(𝜑0 + 𝜑7)
𝜕𝜑𝑖
𝜕𝑛

𝑑𝑆 (2.2.34)

Adding equations 2.2.22, 2.2.29 and 2.2.33, an expression for the sum of the forces

acting on the body is

𝐹𝑖 =
6∑︁
𝑗=1

𝜉𝑗 (−𝐶𝑖𝑗 + 𝑓𝑖𝑗) + 𝐴𝑋𝑖 for 𝑖 = 1, 2, ..., 6 (2.2.35)

To form the equation of motion, we set this sum equal to the inertial force:

− 𝜔2
6∑︁
𝑗=1

𝑀𝑖𝑗𝜉𝑗 =
6∑︁
𝑗=1

𝜉𝑗 (−𝑐𝑖𝑗 + 𝑓𝑖𝑗) + 𝐴𝑋𝑖 for 𝑖 = 1, 2, ..., 6 (2.2.36)

where 𝑀𝑖𝑗 is the matrix

𝑀𝑖𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 0 0 −𝑚𝑧𝐺 0

0 𝑚 0 0 0 0

0 0 𝑚 𝑚𝑧𝐺 0 0

0 0 𝑚𝑧𝐺 𝐼44 𝐼45 𝐼46

−𝑚𝑧𝐺 0 0 𝐼54 𝐼55 𝐼56

0 0 0 𝐼64 𝐼65 𝐼66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.2.37)

where 𝑚 is the body mass and 𝐼𝑖𝑗 is the moment of inertia. Rearranging equation
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2.2.36, and inserting equation 2.2.31 for 𝑓𝑖𝑗, we get the general 6 degree-of-freedom

equation of motion

6∑︁
𝑗=1

𝜉𝑗
[︁
−𝜔2 (𝑀𝑖𝑗 + 𝐴𝑖𝑗) + 𝑖𝜔𝐵𝑖𝑗 + 𝐶𝑖𝑗

]︁
= 𝐴𝑋𝑖 (2.2.38)

2.2.2 Equation of motion of a floating WEC

The equation of motion of a general body freely floating in waves derived in the

previous section will be used to derive the more specific equations of motion for our

two problems defined at the beginning of this chapter and summarized in figures

2-2 and 2-2. We will show that the heave and surge-pitch equations of motion are

uncoupled, so it is sufficient to derive the three (heave-surge-pitch) degree of freedom

equation of motion and then separate it into the separate problems afterwards. Notice

that equation 2.2.38 looks similar to a typical spring-mass-damper system, with the

mass term in this case including the standard inertia term as well as added mass,

the damping term from damping due to radiation, and the restoring term due to the

forces of buoyancy and gravity. To derive the equation of motion for a WEC, the

following additional forces must be accounted for:

1. Power take-off forces, which are modeled as linear dampers, there will be one

in the surge mode with damping coefficient 𝛽1, one in the heave mode with

coefficient 𝛽3, one in the pitch mode with coefficient 𝛽5, and one in the surge-

pitch coupled mode with coefficient 𝛽15.

2. Mooring forces, which are modeled as a spring in surge with spring coefficient

𝑘1.

Accounting for the these forces, and assuming a unit-amplitude (𝐴 = 1) incident

wave, the equation of motion for the WEC is thus

∑︁
𝑗=1,3,5

𝑀𝑖𝑗Ξ̈𝑗 = X𝑖 +
∑︁

𝑗=1,3,5

[︁
−𝐴𝑖𝑗Ξ̈𝑗 − (𝐵𝑖𝑗 + 𝛽𝑖𝑗) Ξ̇𝑗 − (𝐶𝑖𝑗 +𝐾𝑖𝑗) Ξ𝑗

]︁
(2.2.39)
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where 𝛽𝑖𝑗 is the PTO damping matrix:

𝛽𝑖𝑗 =

⎡⎢⎢⎢⎢⎢⎣
𝛽1 0 𝛽15

0 𝛽3 0

𝛽15 0 𝛽5

⎤⎥⎥⎥⎥⎥⎦ (2.2.40)

and 𝐾𝑖𝑗 has the term 𝐾11 = 𝑘1, the surge spring coefficient, and 0 elsewhere. Ξ𝑗 is

the harmonic body motion in mode 𝑗, and X𝑗 is the harmonic exciting force in mode

𝑗. We can write

Ξ𝑗 = 𝑅𝑒
{︁
𝜉𝑗𝑒

−𝑖𝜔𝑡
}︁

(2.2.41)

Ξ̇𝑗 = 𝑅𝑒
{︁
−𝑖𝜔𝜉𝑗𝑒−𝑖𝜔𝑡

}︁
(2.2.42)

Ξ̈𝑗 = 𝑅𝑒
{︁
−𝜔2𝜉𝑗𝑒

−𝑖𝜔𝑡
}︁

(2.2.43)

X𝑖 = 𝑅𝑒
{︁
𝑋𝑖𝑒

𝑖𝜔𝑡
}︁

(2.2.44)

Putting these expressions into equation 2.2.39, the time-harmonic term cancels, sim-

plifying the equation of motion to

− 𝜔2 ∑︁
𝑗=1,3,5

𝑀𝑖𝑗𝜉𝑗 = 𝑋𝑖 +
∑︁

𝑗=1,3,5

[︁
𝜔2𝐴𝑖𝑗 + 𝑖 (𝐵𝑖𝑗 + 𝛽𝑖𝑗) − (𝐶𝑖𝑗 +𝐾𝑖𝑗)

]︁
𝜉𝑗 (2.2.45)

Rearranging, this becomes

∑︁
𝑗=1,3,5

[︁
−𝜔2 (𝑀𝑖𝑗 + 𝐴𝑖𝑗) − 𝑖 (𝐵𝑖𝑗 + 𝛽𝑖𝑗) − (𝐶𝑖𝑗 +𝐾𝑖𝑗)

]︁
𝜉𝑗 = 𝑋𝑖 (2.2.46)

In matrix notation,

(︁
−𝜔2 ([𝑀 ] + [𝐴]) − 𝑖𝜔 ([𝐵] + [𝛽]) + ([𝐶] + [𝐾])

)︁
𝜉 = 𝑋 (2.2.47)

where [𝑀 ] is the mass matrix , [𝐴] is the added mass matrix, [𝐵] is the radiation
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damping matrix, [𝛽] is the PTO damping matrix, [𝐶] is the restoring coefficient matrix

and [K] is the spring restoring force. For our 3-mode system, the body motion vector

𝜉 is

𝜉 =

⎡⎢⎢⎢⎢⎢⎣
𝜉1

𝜉3

𝜉5

⎤⎥⎥⎥⎥⎥⎦ (2.2.48)

and the exciting force vector 𝑋 is

𝑋 =

⎡⎢⎢⎢⎢⎢⎣
𝑋1

𝑋3

𝑋5

⎤⎥⎥⎥⎥⎥⎦ (2.2.49)

For an axisymmetric body, mass matrix plus added mass matrix is

[𝑀 ] + [𝐴] =

⎡⎢⎢⎢⎢⎢⎣
𝑚 0 −𝑚𝑧𝐺
0 𝑚 0

−𝑚𝑧𝐺 0 𝐼55

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
𝐴11 0 𝐴15

0 𝐴33 0

𝐴15 0 𝐴55

⎤⎥⎥⎥⎥⎥⎦ (2.2.50)

The total (radiation and PTO) damping matrix is

[𝐵] =

⎡⎢⎢⎢⎢⎢⎣
𝐵11 + 𝛽1 0 𝐵15 + 𝛽15

0 𝐵33 + 𝛽3 0

𝐵15 + 𝛽15 0 𝐵55 + 𝛽5

⎤⎥⎥⎥⎥⎥⎦ (2.2.51)

And the total restoring matrix is
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[𝐶] =

⎡⎢⎢⎢⎢⎢⎣
𝑘1 0 0

0 𝐶33 0

0 0 𝐶55

⎤⎥⎥⎥⎥⎥⎦ (2.2.52)

where

𝐶33 = 𝜌𝑔𝑆 (2.2.53)

where 𝑆 is waterplane area, and

𝐶55 = 𝜌𝑔𝑆11 + 𝜌𝑔∀𝑧𝐵 −𝑚𝑔𝑧𝐺 (2.2.54)

Since the WEC is assumed to be axisymmetric, if the radius of the body at the

waterline is 𝑅, 𝑆11 =
∫︀
𝑥2𝑑𝑆 = 𝜋𝑅4

4 . From the above matrices, we can see that heave

and surge-pitch are uncoupled, meaning that we can solve heave separately from the

other two modes.

For heave, the equation of motion reduces to

[−𝜔 (𝑚+ 𝐴33) − 𝑖𝜔 (𝐵33 + 𝛽3) + 𝐶33] 𝜉3 = 𝑋3 (2.2.55)

Solving for 𝜉3, we get

𝜉3 = 𝑋3

𝐶33 − 𝜔 (𝑚+ 𝐴33) − 𝑖𝜔 (𝐵33 + 𝛽3)
(2.2.56)

For surge-pitch, the equation of motion becomes

⎛⎜⎝−𝜔2

⎡⎢⎣ 𝑚+ 𝐴11 𝐴15 −𝑚𝑧𝐺

𝐴15 −𝑚𝑧𝐺 𝐼55 + 𝐴55

⎤⎥⎦− 𝑖𝜔

⎡⎢⎣𝐵11 + 𝛽1 𝐵15 + 𝛽15

𝐵15 + 𝛽15 𝐵55 + 𝛽5

⎤⎥⎦+

⎡⎢⎣𝑘1 0

0 𝐶55

⎤⎥⎦
⎞⎟⎠
⎡⎢⎣𝜉1

𝜉5

⎤⎥⎦ =

⎡⎢⎣𝑋1

𝑋5

⎤⎥⎦
(2.2.57)
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Solving for [𝜉1, 𝜉5]𝑇 , we get

⎡⎢⎣𝜉1

𝜉5

⎤⎥⎦ = 1
𝐷

⎡⎢⎣𝐶55 − 𝜔2 (𝐼55 + 𝐴55) − 𝑖𝜔 (𝐵55 + 𝛽5) 𝜔2 (𝐴15 −𝑚𝑧𝐺) + 𝑖𝜔 (𝐵15 + 𝛽15)

𝜔2 (𝐴15 −𝑚𝑧𝐺) + 𝑖𝜔 (𝐵15 + 𝛽15) 𝑘1 − 𝜔2 (𝑚+ 𝐴11) − 𝑖𝜔 (𝐵11 + 𝛽1)

⎤⎥⎦
⎡⎢⎣𝑋1

𝑋5

⎤⎥⎦
(2.2.58)

where

𝐷 =
[︁
𝑘1 − 𝜔2 (𝑚+ 𝐴11) − 𝑖𝜔 (𝐵11 + 𝛽1)

]︁ [︁
𝐶55 − 𝜔2 (𝐼55 + 𝐴55) − 𝑖𝜔 (𝐵55 + 𝛽5)

]︁
−
[︁
𝜔2 (𝐴15 −𝑚𝑧𝐺) + 𝑖𝜔 (𝐵15 + 𝛽15)

]︁2
(2.2.59)

2.2.3 Extractable power

Using the above theory to describe the WEC, we now calculate the extractable power

of a given body and incoming wave.

Heave-only power extraction

For the case where the WEC only moves and extracts power in the heave mode, the

linear damper, described with damping coefficient 𝛽3, can produce power equal to

its velocity times the force of the linear damper, which is 𝛽3 times velocity. The

extractable power is

𝒫3 = Ξ̇3𝛽3Ξ̇3 (2.2.60)

where, as above,

Ξ3 = 𝑅𝑒
{︁
𝜉3𝑒

−𝑖𝜔𝑡
}︁

(2.2.61)

𝜉3 is the complex amplitude of heave body motion. It can be written in terms of its

amplitude |𝜉3| and phase 𝜑3:
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𝜉3 = |𝜉3|𝑒𝑖𝜑3 (2.2.62)

Equation 2.2.61 can also be expressed as

Ξ3 = 𝑅𝑒
{︁
𝜉3𝑒

𝑖𝜔𝑡
}︁

= 𝑅𝑒
{︁
|𝜉3|𝑒𝑖𝜑3𝑒𝑖𝜔𝑡

}︁
= |𝜉3|𝑐𝑜𝑠 (𝜔𝑡+ 𝜑3) (2.2.63)

Therefore, putting equation 2.2.63 into equation 2.2.60, we get

𝒫3 = 𝛽3𝜔
2𝜉2

3 = 𝛽3𝜔|𝜉3|2𝑐𝑜𝑠2 (𝜔𝑡+ 𝜑3) (2.2.64)

From now on, we will talk about average power over one period of the wave, which

we will call 𝑃3 for heave. Since 𝑐𝑜𝑠2 (𝜔𝑡+ 𝜑3) = 1
2 ,

𝑃3 ≡ 𝒫3 = 1
2𝛽3𝜔

2|𝜉3|2 (2.2.65)

Using equation 2.2.56, we can input the expression for |𝜉3| to find an expression for

extractable power in heave:

𝑃3 =
1
2𝛽3𝜔

2|𝑋3|2

[𝐶33 − 𝜔2 (𝑚+ 𝐴33)]2 + 𝜔2 (𝛽3 +𝐵33)2 (2.2.66)

General Multi-degree-of-freedom power extraction

Falnes (2020, 1980) and Evans (1980, 1986) explain the general problem of extracting

power in six degrees-of-freedom. In general, power from a harmonic oscillation is

𝒫 = 𝐹 (𝑡)𝑈(𝑡) (2.2.67)

where 𝐹 (𝑡) is a harmonic forcing term, and 𝑈(𝑡) is a harmonic velocity:

𝐹 (𝑡) = 𝑅𝑒
{︁
𝑓𝑒𝑖𝜔𝑡

}︁
= 𝑓

2 𝑒
𝑖𝜔𝑡 + 𝑓 *

2 𝑒
𝑖𝜔𝑡 (2.2.68)

where 𝑓 is the complex amplitude of the forcing term, and * represents the complex

conjugate.
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𝑓 = |𝑓 |𝑒𝑖𝜑𝑓 (2.2.69)

and

𝑈(𝑡) = 𝑅𝑒
{︁
𝑢𝑒𝑖𝜔𝑡

}︁
= 𝑢

2𝑒
𝑖𝜔𝑡 + 𝑢*

2 𝑒
𝑖𝜔𝑡 (2.2.70)

where 𝑢 is the complex amplitude of the velocity term:

𝑢 = |𝑢|𝑒𝑖𝜑𝑢 (2.2.71)

Putting 2.2.68 and 2.2.70 into 2.2.67:

𝒫 = 𝐹 (𝑡)𝑈(𝑡) = 1
4
(︁
𝑓𝑢* + 𝑓 *𝑢+ 𝑓𝑢𝑒𝑖𝜔𝑡 + 𝑓 *𝑢*𝑒𝑖𝜔𝑡

)︁
(2.2.72)

Again, we will consider average power over one period. The third and fourth terms

in the parenthesis in the equation above are equivalent to 2𝑓𝑢𝑐𝑜𝑠(2𝜔𝑡), and so this

has an average of 0 over one period. Therefore, average power over one period from

force 𝐹 moving with velocity 𝑈 is

𝑃 ≡ 𝒫 = 1
4 (𝑓𝑢* + 𝑓 *𝑢) = 1

2𝑅𝑒 {𝑓𝑢*} (2.2.73)

In general, extractable power from a WEC is equivalent to the exciting power minus

the radiated power:

𝑃 = 𝑃𝑒 − 𝑃𝑟 (2.2.74)

For a body in waves, the exciting power is equal to the exciting force times velocity.

As above, the harmonic exciting force in the 𝑖th mode is

X𝑖 = 𝑅𝑒
{︁
𝑋𝑖𝑒

𝑖𝜔𝑡
}︁

= 𝑅𝑒
{︁
|𝑋𝑖|𝑒𝑖𝜑𝑋𝑖𝑒𝑖𝜔𝑡

}︁
(2.2.75)

And, if the harmonic body motion in the 𝑖th mode is
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Ξ𝑖 = 𝑅𝑒
{︁
𝜉𝑖𝑒

𝑖𝜔𝑡
}︁

(2.2.76)

then the harmonic velocity is

U𝑖 = Ξ̇𝑖 = 𝜔Ξ𝑖 = 𝑅𝑒
{︁
𝜔𝜉3𝑒

𝑖𝜔𝑡
}︁

(2.2.77)

Therefore, using equations 2.2.73, 2.2.75 and 2.2.77, the exciting power in the 𝑖th

mode will be

𝑃𝑒,𝑖 = 𝜔

4 (𝑋𝑖𝜉
*
𝑖 +𝑋*

𝑖 𝜉𝑖) (2.2.78)

So the total exciting power is

𝑃𝑒 =
6∑︁
𝑖=1

𝑃𝑒,𝑖 = 𝜔

4

6∑︁
𝑖=1

(𝑋𝑖𝜉
*
𝑖 +𝑋*

𝑖 𝜉𝑖) = 𝜔

4
(︁
𝑋𝑇 𝜉* +𝑋*𝑇 𝜉

)︁
(2.2.79)

The radiated power in the 𝑖th mode is equal to the radiation force times the velocity.

Again using equation 2.2.73 we find an expression for average radiated power over

one period in the 𝑖th mode:

𝑃𝑟,𝑖 = 1
4

6∑︁
𝑗=1

(︁
𝑍𝑖𝑗𝑢𝑗𝑢

*
𝑖 + 𝑍*

𝑖𝑗𝑢
*
𝑗𝑢𝑖
)︁

(2.2.80)

where 𝑍𝑖𝑗 is the radiation impedance matrix:

𝑍𝑖𝑗 = 𝑖𝜔𝐴𝑖𝑗 +𝐵𝑖𝑗 (2.2.81)

From equation 2.2.73, we see that we can instead express the average power in terms

of the real part of the force times complex conjugate of velocity. We see that

𝑅𝑒 {𝑍𝑖𝑗} = 1
2
(︁
𝑍𝑖𝑗 + 𝑍*

𝑖𝑗

)︁
= 𝐵𝑖𝑗 (2.2.82)

So equation 2.2.80 becomes

59



𝑃𝑟,𝑖 = 𝜔2

2

6∑︁
𝑗=1

𝑅𝑒 {𝑍𝑖𝑗𝜉𝑗𝜉*
𝑖 } = 𝜔2

2

6∑︁
𝑗=1

𝐵𝑖𝑗𝜉𝑗𝜉
*
𝑖 (2.2.83)

And the total radiated force is

𝑃𝑟 =
6∑︁
𝑖=1

𝑃𝑟,𝑖 = 𝜔2

2

6∑︁
𝑖=1

6∑︁
𝑗=1

𝑅𝑒 {𝑍𝑖𝑗𝜉𝑗𝜉*
𝑖 } = 𝜔

2 𝜉
*𝑇 [𝐵]𝜉 (2.2.84)

Extractable power for mode 𝑖 is then equal to the exciting power in mode 𝑖 minus

radiated power in mode 𝑖:

𝑃𝑖 = 𝑃𝑒,𝑖 − 𝑃𝑟,𝑖 = 𝜔

4 (𝑋𝑖𝜉
*
𝑖 +𝑋*

𝑖 𝜉𝑖) − 𝜔2

2

6∑︁
𝑗=1

𝐵𝑖𝑗𝜉𝑗𝜉
*
𝑖 (2.2.85)

Finally, total extractable power is

𝑃 = 𝑃𝑒 − 𝑃𝑟 = 𝜔

4
(︁
𝑋𝑇 𝜉* +𝑋*𝑇 𝜉

)︁
− 𝜔2

2 𝜉*𝑇 [𝐵]𝜉 (2.2.86)

2.2.4 Maximum power

Heave maximum power

Extractable power in the heave mode only is shown in equation 2.2.66. To find

the maximum extractable power, we set the derivative with respect to 𝛽3 equal to

zero, and the derivative with respect to 𝐶33 − 𝜔2 (𝑚+ 𝐴33) equal to 0. The latter

requirement, which is the resonance condition is not always possible, so we solve the

former first:

𝜕𝑃

𝜕𝛽3
=

[𝐶33 − 𝜔2 (𝑚+ 𝐴33)]
[︁

1
2𝜔

2|𝑋3|2
]︁

−
[︁

1
2𝛽3𝜔

2|𝑋3|2
]︁

[2𝜔2 (𝛽3 +𝐵33)]{︁
[𝐶33 − 𝜔2 (𝑚+ 𝐴33)]2 + 𝜔2 (𝛽3 +𝐵33)

}︁2 = 0

(2.2.87)

Solving this equation for 𝛽3, we get an expression for the optimal power take-off

damping coefficient, 𝛽𝑜𝑝𝑡3 , which is a function of frequency and geometry:

𝛽𝑜𝑝𝑡3 =
√︃
𝐶33 − 𝜔2 (𝑚+ 𝐴33)

𝜔2 +𝐵2
33 (2.2.88)
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Then, we set the derivative of 2.2.66 with respect to 𝐶33 − 𝜔2 (𝑚+ 𝐴33) equal to 0:

𝜕𝑃3

𝜕 [𝐶33 − 𝜔2 (𝑚+ 𝐴33)]
= 2 [𝐶33 − 𝜔2 (𝑚+ 𝐴33)]{︁

[𝐶33 − 𝜔2 (𝑚+ 𝐴33)]2 + 𝜔2 (𝛽3 +𝐵33)
}︁2 = 0 (2.2.89)

This condition results in what will be called the ‘heave resonance equation’:

𝐶33 − 𝜔2 (𝑚+ 𝐴33) = 0 (2.2.90)

Putting this heave resonance condition into equation 2.2.66, we get an expression for

heave extractable power when the body is in resonance.

𝑃 𝑟
3 =

1
2𝛽3|𝑋3|2

(𝛽3 +𝐵33)2 (2.2.91)

Putting the heave resonance condition (equation 2.2.90) into the expression for op-

timal POT coefficient (equation 2.2.88), we get an expression for the optimal PTO

coefficient when the body is in resonance:

𝛽𝑜𝑝𝑡,𝑟3 = 𝐵33 (2.2.92)

That is, when the body is in resonance, the optimal PTO coefficient is equal to the

damping coefficient due to radiation. Note: if other damping existed in the system (for

example, from mooring lines), the optimal 𝛽3 would be the sum of all other damping

in the system. Putting this expression into equation 2.2.91, we get an expression for

the maximum extractable power, assuming the body is in resonance and the PTO

coefficient is equal to the radiation damping coefficient:

𝑃𝑚𝑎𝑥
3 = 𝑃 𝑜𝑝𝑡,𝑟

3 = |𝑋3|2

8𝐵33
(2.2.93)

Since our WEC is an axisymmetric body, we can use the following version of the

Haskind relation (Mei et al., 2005):
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𝐵33 = 𝑘|𝑋3|2

4𝜌𝑔𝑉𝑔𝐴2 (2.2.94)

where 𝑉𝑔 is the group velocity. Putting this into equation 2.2.93, we see that the

maximum extractable power does not depend on shape:

𝑃𝑚𝑎𝑥
3 = 𝜌𝑔𝑉𝑔

2𝑘 (2.2.95)

It is convenient to define a capture width, which is the ratio of the extractable power

to the incident power per unit crest length. In other words, the capture width is the

width of the incoming wave such that the WEC extracts all of the energy from it. In

heave, this capture width is

𝑊3 = 𝑃3

𝑃𝐼
(2.2.96)

Incident power per unit width of crest of the incident wave is

𝑃𝐼 = 1
2𝜌𝑔𝐴

2𝑉𝑔 (2.2.97)

To non-dimensionalize, the capture width is multiplied by 𝑘. Therefore, putting equa-

tions 2.2.95 and 2.2.97 into equation 2.2.96, we see that the optimal nondimensional

capture width in heave is

𝑘𝑊𝑚𝑎𝑥
3 = 1 (2.2.98)

General multi-degree-of-freedom maximum power

To find the maximum extractable power for a multi-degree-of-freedom system, we

define a vector

𝛿 = 𝜉 − 𝜁 (2.2.99)

where 𝜁 is the solution of
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1
2𝑋 = 𝜔[𝐵]𝜁 (2.2.100)

We know that [𝐵] is symmetric and real, so when we take the complex conjugate

transpose of the above equation it becomes

1
2𝑋

*𝑇 = 𝜔𝜁
*𝑇 [𝐵]*𝑇 = 𝜔𝜁

*𝑇 [𝐵] (2.2.101)

Putting 𝜉 = 𝛿+𝜁 into the equation for extractable power for a multi-degree-of-freedom

WEC (equation 2.2.86) and expanding, we get

(2.2.102)
𝑃 = 𝜔

4𝑋
𝑇
𝜁

* + 𝜔

4𝑋
*𝑇
𝜁 + 𝜔

4𝑋
𝑇
𝛿

* + 𝜔

4𝑋
*𝑇
𝛿 − 𝜔2

2 𝜁
*𝑇 [𝐵]𝜁

− 𝜔2

2 𝛿
*𝑇 [𝐵]𝜁 − 𝜔2

2 𝜁
*𝑇 [𝐵]𝛿 − 𝜔2

2 𝛿
*𝑇 [𝐵]𝛿

The second term cancels the fifth term, the third term cancels the sixth term, and

the fourth term cancels the seventh term, so only the first and last terms remain:

𝑃 = 𝜔

4𝑋
𝑇
𝜁

* − 𝜔2

2 𝛿
*𝑇 [𝐵]𝛿 (2.2.103)

Since [𝐵] is positive definite, the second term is strictly positive, therefore

𝑃𝑚𝑎𝑥 = 𝜔

4𝑋
𝑇
𝜁

* (2.2.104)

Which occurs when 𝛿 = 0, meaning that

𝜉
𝑜𝑝𝑡 = 𝜁 (2.2.105)

So, when [𝐵] is non-singular, we get an expression for the vector of body motion that

results in the maximal extractable power:

𝜉
𝑜𝑝𝑡 = 1

2𝜔 [𝐵]−1𝑋 (2.2.106)

Since 𝑃𝑚𝑎𝑥 is a scalar, it is equal to its transpose, so, using equation 2.2.100, the

expression for 𝑃𝑚𝑎𝑥 in equation 2.2.104 becomes
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𝑃𝑚𝑎𝑥 = 𝜔2

2 𝜁
*𝑇 [𝐵]𝜁 (2.2.107)

And when 𝜉 = 𝜉
𝑜𝑝𝑡 = 𝜁, we get an expression for the maximal extractable power for

a general 6 degree of freedom system in terms of the body motion vector, frequency,

and the radiation damping matrix:

𝑃𝑚𝑎𝑥 = 𝜔2

2 𝜉
*𝑇 [𝐵]𝜉 (2.2.108)

Surge-pitch

Here we use the general 6 degree-of-freedom derivation in the previous section to show

the maximum extractable power for surge-pitch motion. When 𝜉 = 𝜉
𝑜𝑝𝑡 = 𝜁, equation

2.2.106 gives us an expression for optimal motion in the surge and pitch modes

⎡⎢⎣𝜉𝑜𝑝𝑡1

𝜉𝑜𝑝𝑡5

⎤⎥⎦ = 1
2𝜔 (𝐵11𝐵55 −𝐵2

15)

⎡⎢⎣ 𝐵55 −𝐵15

−𝐵15 𝐵11

⎤⎥⎦
⎡⎢⎣𝑋1

𝑋5

⎤⎥⎦ (2.2.109)

= 1
2𝜔 (𝐵11𝐵55 −𝐵2

15)

⎡⎢⎣𝐵55𝑋1 −𝐵15𝑋5

𝐵11𝑋5 −𝐵15𝑋1

⎤⎥⎦ (2.2.110)

We can find a more explicit expression for body motion. To do so, 𝜉1, 𝜉5, 𝑋1 and 𝑋5

can be expressed in the complex amplitude form:

𝜉1 = |𝜉1|𝑒𝑖𝜑1 (2.2.111)

𝜉5 = |𝜉5|𝑒𝑖𝜑5 (2.2.112)

𝑋1 = |𝑋1|𝑒𝑖𝜓1 (2.2.113)
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𝑋5 = |𝑋5|𝑒𝑖𝜓5 (2.2.114)

We wish to find |𝜉1|, 𝜑1, |𝜉5| and 𝜑5 in terms of damping coefficients and exciting

forces. We will prove in section 2.2.6 the following facts, which will be used in our

derivations of body motion amplitude and phases:

1. 𝜓1 − 𝜓5 can only take the values 2𝜋𝑛 or 2𝜋𝑛+ 𝜋.

2. 𝜓1 − 𝜓5 = 2𝜋𝑛 if and only if 𝐵15 > 0

3. 𝜓1 − 𝜓5 = 2𝜋𝑛+ 𝜋 if and only if 𝐵15 < 0

Using equation 2.2.109, 𝜉1 can be expressed as

𝜉1 = |𝜉1|𝑒𝑖𝜑1 = 𝐵55𝑋1 −𝐵15𝑋5

2𝜔 (𝐵11𝐵55 −𝐵2
15)

= 𝑁1

𝑄
= |𝑁1|

|𝑄|
𝑒𝑖𝜑1 (2.2.115)

where

𝑁1 = 𝐵55𝑋1 −𝐵15𝑋5 (2.2.116)

𝑄 = |𝑄|= 2𝜔
(︁
𝐵11𝐵55 −𝐵2

15

)︁
(2.2.117)

To find 𝑁1, we can use the complex amplitude form of 𝑋1 and 𝑋5 given in equations

2.2.113 and 2.2.114 to get

𝑁1 = 𝐵55|𝑋1|𝑒𝑖𝜓1 −𝐵15|𝑋5|𝑒𝑖𝜓5 = 𝐵55|𝑋1|(𝑐𝑜𝑠𝜓1 + 𝑖𝑠𝑖𝑛𝜓1)−𝐵15|𝑋5|(𝑐𝑜𝑠𝜓5 + 𝑖𝑠𝑖𝑛𝜓5)

(2.2.118)

So that the square of the amplitude is

|𝑁1|2= 𝐵2
55|𝑋1|2+𝐵2

15|𝑋5|2−2𝐵55𝐵15|𝑋1||𝑋5|𝑐𝑜𝑠 (𝜓1 − 𝜓5) (2.2.119)

Since when 𝜓1 −𝜓5 = 2𝜋𝑛,𝐵15 > 0 and when 𝜓1 −𝜓5 = 2𝜋𝑛+ 𝜋,𝐵15 < 0 (and those

are the only two options for 𝜓 − 𝜓5), we can say
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|𝑁1|2= 𝐵2
55|𝑋1|2+𝐵2

15|𝑋5|2−2𝐵55|𝐵15||𝑋1||𝑋5| (2.2.120)

and therefore

|𝑁1|= 𝐵55|𝑋1|−|𝐵15||𝑋5| (2.2.121)

Putting equations 2.2.121 and 2.2.117 into equation 2.2.115, we find an expression for

|𝜉1|:

|𝜉1|=
𝐵55|𝑋1|−|𝐵15||𝑋5|
2𝜔 (𝐵11𝐵55 −𝐵2

15)
(2.2.122)

To find 𝜑1, we see that

𝑐𝑜𝑠𝜑1 = 𝐵55|𝑋1|𝑐𝑜𝑠𝜓1 −𝐵15|𝑋5|𝑐𝑜𝑠𝜓5

|𝑁1|
(2.2.123)

and/or

𝑠𝑖𝑛𝜑1 = 𝐵55|𝑋1|𝑠𝑖𝑛𝜓1 −𝐵15|𝑋5|𝑠𝑖𝑛𝜓5

|𝑁1|
(2.2.124)

Similarly, we can perform the same analysis on 𝜉5. We define

𝜉5 = |𝜉5|𝑒𝑖𝜑5 = 𝐵11𝑋5 −𝐵15𝑋1

2𝜔 (𝐵11𝐵55 −𝐵2
15)

= 𝑁5

𝑄
= |𝑁1|

|𝑄|
𝑒𝑖𝜑5 (2.2.125)

where

𝑁5 = 𝐵11𝑋5 −𝐵15𝑋1 (2.2.126)

and, following the same steps as for 𝜉1, we get

|𝜉5|=
𝐵11|𝑋5|−|𝐵15||𝑋1|
2𝜔 (𝐵11𝐵55 −𝐵2

15)
(2.2.127)

To find 𝜑5, we see that
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𝑐𝑜𝑠𝜑5 = 𝐵11|𝑋5|𝑐𝑜𝑠𝜓5 −𝐵15|𝑋1|𝑐𝑜𝑠𝜓1

|𝑁5|
(2.2.128)

and/or

𝑠𝑖𝑛𝜑5 = 𝐵11|𝑋5|𝑠𝑖𝑛𝜓5 −𝐵15|𝑋1|𝑠𝑖𝑛𝜓1

|𝑁5|
(2.2.129)

Now that we have expressions for |𝜉1|, |𝜉5|, 𝜑1 and 𝜑5, we can input these into the

expression for maximal power for a multi-degree-of-freedom WEC, given by equation

2.2.108. For surge-pitch motion only, the simplified expression is:

𝑃𝑚𝑎𝑥
1+5 = 𝜔2

2

[︂
𝜉*

1 𝜉*
5

]︂ ⎡⎢⎣𝐵11 𝐵15

𝐵15 𝐵55

⎤⎥⎦
⎡⎢⎣𝜉1

𝜉5

⎤⎥⎦ (2.2.130)

= 1
2𝜔

2
[︁
𝐵11|𝜉1|2+𝐵55|𝜉5|2+2𝐵15|𝜉1||𝜉5|𝑐𝑜𝑠 (𝜑1 − 𝜑5)

]︁
(2.2.131)

We use equations 2.2.123, 2.2.124, 2.2.128 and 2.2.129 to find an expression for

𝑐𝑜𝑠(𝜑1 − 𝜑5):

𝑐𝑜𝑠(𝜑1 − 𝜑5) = 𝑐𝑜𝑠𝜑1𝑐𝑜𝑠𝜑5 + 𝑠𝑖𝑛𝜑1𝑠𝑖𝑛𝜑5 (2.2.132)

= −𝐵11𝐵15|𝑋5|2−𝐵15𝐵55|𝑋1|2+ (𝐵11𝐵55|𝑋1||𝑋5|+𝐵2
15|𝑋1||𝑋5|) 𝑐𝑜𝑠(𝜓1 − 𝜓5)

𝐵11𝐵55|𝑋1||𝑋5|−𝐵11|𝐵15||𝑋5|2−|𝐵15|𝐵55|𝑋1|2+|𝐵15|2|𝑋1||𝑋5|
(2.2.133)

When 𝜓1 − 𝜓5 = 2𝜋𝑛, 𝑐𝑜𝑠(𝜓1 − 𝜓5) = 1 and 𝐵15 > 0 (so |𝐵15|= 𝐵15), and therefore

𝑐𝑜𝑠(𝜑1 − 𝜑5) = 1. When 𝜓1 − 𝜓5 = 2𝜋𝑛 + 𝜋, 𝑐𝑜𝑠(𝜓1 − 𝜓5) = −1 and 𝐵15 < 0 (so

−|𝐵15|= 𝐵15), and therefore 𝑐𝑜𝑠(𝜑1 − 𝜑5) = −1. Therefore, the expression for the

maximum extractable power for a WEC moving and extracting power in surge and

pitch is
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𝑃𝑚𝑎𝑥
1+5 = 𝜔2

2
(︁
𝐵11|𝜉1|2+𝐵55|𝜉5|2+2|𝐵15||𝜉1||𝜉5|

)︁
(2.2.134)

We will show in section 2.2.6, using far field analysis, that this corresponds to a

capture width of

𝑘𝑊𝑚𝑎𝑥
1+5 = 2 (2.2.135)

Equations 2.2.98 and 2.2.135 show the maximum capture widths for the heave and

surge-pitch problems, respectively. These results, which were originally derived by

Mei (1976), Newman (1976), Evans (1975) and Budal and Falnes (1975), show that

maximum power does not depend on geometric size or shape.

2.2.5 Matching equation of motion with optimal motion

Heave

For a heaving-only WEC to achieve maximum power the body must be in resonance

(equation 2.2.90) and the PTO coefficient must be equal to the radiation damping

coefficient (equation 2.2.92). Therefore, for our first problem, shown in figure 2-1,

ensuring these two requirements results in maximum power extracted.

Heave-surge-pitch

Since heave motion is uncoupled from surge-pitch motion, for our second problem,

shown in figure 2-2, we must again ensure that the power is maximum in heave, as

described in section 2.2.4, but then we must separately determine the requirements

to achieve maximum power in surge-pitch.

To determine how to extract the maximum power in surge-pitch, we must compare the

analysis done to find the equation of motion in section 2.2.2 with the expressions for

the theoretical maximum extractable power in section 2.2.4. Consider the equation of

motion in equation 2.2.58 and the expression for the optimal body motion in equation
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2.2.109. To match these expressions, we must enforce the following three equations,

which we will call the surge-pitch resonance equations:

𝑘1 − 𝜔2 (𝑚+ 𝐴11) = 0 (2.2.136)

𝐴15 −𝑚𝑧𝐺 = 0 (2.2.137)

𝐶55 − 𝜔2 (𝐼55 + 𝐴55) = 0 (2.2.138)

Further, the PTO coefficients must be equal to the corresponding resonance damping

coefficients:

𝛽1 = 𝐵11 (2.2.139)

𝛽5 = 𝐵55 (2.2.140)

𝛽15 = 𝐵15 (2.2.141)

Putting these 6 equations into equation 2.2.58 results in equation 2.2.109, the op-

timal body motion in surge-pitch. Therefore, ensuring these 6 requirements results

in maximum power extracted in surge-pitch. Additionally, ensuring equations 2.2.90

and 2.2.92 results in maximum power extracted in heave-surge-pitch.

2.2.6 Far-field analysis

Newman (1976 and 1979) and Mei (Mei et al., 2005) have shown that coupled surge-

pitch motion for an axisymmetric body can result in a maximum nondimensional

capture width of 𝑘𝑊𝑚𝑎𝑥
1+5 = 2. As shown in section 2.2.4, the maximum capture

width for heave is 𝑘𝑊𝑚𝑎𝑥
3 = 1. Since heave motion is uncoupled from surge-pitch

for our axisymmetric body, the total maximum capture width is 𝑘𝑊𝑚𝑎𝑥
𝑇 = 3. The

derivation of maximum surge-pitch capture, using far-field analysis, is summarized

here. Also, we look at the capture width from the surge mode, the pitch mode, and

the surge-pitch mode.
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The maximum extractable power for a multi-degree-of-freedom WEC is given by

equation 2.2.108. Putting the expression for optimal motion, equation 2.2.106, into

this equation, we get an alternative equation for maximal power:

𝑃𝑚𝑎𝑥 = 1
8𝑋

*𝑇 [𝐵]−1𝑋 (2.2.142)

For surge-pitch motion, the expression simplifies to

𝑃𝑚𝑎𝑥
1+5 = 𝐵55|𝑋1|2−𝐵15𝑋1𝑋

*
5 −𝐵15𝑋

*
1𝑋5 +𝐵11|𝑋5|2

2 (𝐵11𝐵55 −𝐵2
15)

(2.2.143)

We will use this equation to derive the maximum capture width. If 𝒜𝑗(𝜃) is the

angular variation of the forced wave in mode 𝑗, we can use expressions that relate the

exciting force and radiation damping coefficients to the far-field expressions (derived

in Mei et al., 2005):

𝑋𝑖 = −4
𝑘
𝜌𝑔𝐴𝑉𝑔𝒜𝑖 (𝜃𝐼 + 𝜋) (2.2.144)

𝐵𝑖𝑗 = 2
𝜋𝑘
𝜌𝑔𝐶𝑔

∫︁ 2𝜋

0
𝒜𝑖 (𝜃) 𝒜*

𝑗 (𝜃) 𝑑𝜃 (2.2.145)

where 𝜃𝐼 is the incident wave angle. Since our body is axisymmetric,

𝒜1 (𝜋) = −𝒜1 (0) ≡ −𝒜1 (2.2.146)

𝒜5 (𝜋) = −𝒜5 (0) ≡ −𝒜5 (2.2.147)

𝒜1 (𝜃) = 𝒜𝑐𝑜𝑠𝜃 (2.2.148)

Putting equations 2.2.146, 2.2.147, and 2.2.148 into equations 2.2.144 and 2.2.145,

and assuming 𝜃𝐼 = 0, we get the following expressions for surge exciting force and

damping coefficient, pitch exciting force and damping coefficient, and surge-pitch

damping coefficient:

𝑋1 = 4
𝑘
𝜌𝑔𝐴𝐶𝑔𝒜1 (2.2.149)
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𝑋5 = 4
𝑘
𝜌𝑔𝐴𝐶𝑔𝒜5 (2.2.150)

𝐵11 = 2
𝜋𝑘
𝜌𝑔𝑉𝑔

∫︁ 2𝜋

0
|𝒜1|2𝑐𝑜𝑠𝜃𝑑𝜃 = 2

𝜋𝑘
𝜌𝑔𝑉𝑔𝜋|𝒜1|2=

2
𝑘
𝜌𝑔𝑉𝑔|𝒜1|2 (2.2.151)

𝐵55 = 2
𝑘
𝜌𝑔𝑉𝑔|𝒜5|2 (2.2.152)

𝐵15 = 2
𝑘
𝜌𝑔𝑉𝑔𝒜1𝒜*

5 (2.2.153)

Putting equations 2.2.149-2.2.149 into 2.2.143, we get

𝑃𝑚𝑎𝑥
1+5 =

(︁
2
𝑘
𝜌𝑔𝑉𝑔

)︁ (︁
4
𝑘
𝜌𝑔𝐴𝑉𝑔

)︁2
[|𝒜5|2|𝒜1|2−𝒜1𝒜*

5𝒜1𝒜*
5 − 𝒜1𝒜*

5𝒜*
1𝒜5 + |𝒜1|2|𝒜5|2]

8
(︁

2
𝑘
𝜌𝑔𝑉𝑔

)︁2
[|𝒜5|2|𝒜1|2−𝒜2

1𝒜*2
5 ]

(2.2.154)

Therefore, the maximum extractable surge-pitch power is

𝑃𝑚𝑎𝑥
1+5 = 1

𝑘
𝜌𝑔𝑉𝑔𝐴

2 (2.2.155)

As shown in equation 2.2.97, the energy flux from an incoming unit-crest-length wave

is

𝑃𝐼 = 1
2𝜌𝑔𝐴

2𝑉𝑔 (2.2.156)

So the maximum capture width for surge-pitch extraction is

𝑘𝑊𝑚𝑎𝑥
1+5 = 2 (2.2.157)

Surge-pitch damping coefficient

The coupled surge-pitch damping coefficient, in terms of far-field quantities, as shown

in equation 2.2.153, is

𝐵15 = 2
𝑘
𝜌𝑔𝑉𝑔𝒜1𝒜*

5 (2.2.158)

Showing 𝒜1 and 𝒜5 in terms of complex amplitudes and phases 𝜓1 and 𝜓5:
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𝐵15 = 2
𝑘
𝜌𝑔𝑉𝑔|𝒜1||𝒜5|𝑒𝜓1−𝜓5 (2.2.159)

We know that 𝐵15 must be real, so we see that the only options for 𝜓1 − 𝜓5 are 2𝜋𝑛,

in which case 𝐵15 > 0, or 2𝜋𝑛 + 𝜋, in which case 𝐵15 < 0. This is used in section

2.2.4 to find expressions for surge-pitch power.

Capture width from surge, pitch, and coupled, separated

We previously proved that 𝑘𝑊1+5 = 2. In this section we will prove that

𝑘𝑊1 = 1
2 (2.2.160)

𝑘𝑊5 = 1
2 (2.2.161)

𝑘𝑊15 = 1 (2.2.162)

where

𝑘𝑊1 = 𝑘
𝑃1

𝑃𝐼
(2.2.163)

𝑘𝑊5 = 𝑘
𝑃5

𝑃𝐼
(2.2.164)

𝑘𝑊15 = 𝑘
𝑃15

𝑃𝐼
(2.2.165)

Here, 𝑃1 is the extracable power from the surge PTO, 𝑃5 is extracable power from

pitch PTO, and 𝑃15 is the extractable power from the coupled surge-pitch PTO. From

equation 2.2.134, we separate 𝑃𝑚𝑎𝑥
1+5 into three parts:

𝑃1 = 𝜔2

2 𝐵11|𝜉1|2 (2.2.166)

𝑃5 = 𝜔2

2 𝐵55|𝜉5|2 (2.2.167)
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𝑃15 = 𝜔|𝐵15||𝜉1||𝜉5| (2.2.168)

To prove equations 2.2.160-2.2.162, it is sufficient to show the following:

𝑃1 + 𝑃5 = 𝑃15 (2.2.169)

and

𝑃1 = 𝑃5 (2.2.170)

Putting equations 2.2.122 and 2.2.127 for |𝜉1| and |𝜉5| into these three equations, we

see that 𝑃1, 𝑃5 and 𝑃15 all have the same denominator, (𝐵11𝐵55 −𝐵2
15)

2, which we

will set equal to 𝑅, so we can further simplify the objectives. If we set

𝑃1 = 𝑀1

𝑅
(2.2.171)

𝑃5 = 𝑀5

𝑅
(2.2.172)

𝑃15 = 𝑀15

𝑅
(2.2.173)

We must prove that

𝑀1 +𝑀5 = 𝑀15 (2.2.174)

𝑀1 = 𝑀5 (2.2.175)

We again use the far-field relations for 𝑋’s and 𝐵’s: equations 2.2.149- 2.2.153.

Putting these far-field relations, as well as equation 2.2.122 for |𝜉1|, into equation

2.2.166 for 𝑃1, and looking at the numerator, we get

𝑀1 = 𝐵11𝐵
2
55 |𝑋1|2 − 2𝐵11𝐵15𝐵55 |𝑋1| |𝑋5| +𝐵11𝐵

2
15 |𝑋5|2 (2.2.176)
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(2.2.177)=
(︂2
𝑘
𝜌𝑔𝑉𝑔

)︂3 (︂4
𝑘
𝜌𝑔𝑉𝑔𝐴

)︂2 [︁
|𝒜1|2 |𝒜5|4 |𝒜1|2 − 2 |𝒜1|2 𝒜1𝒜*

5 |𝒜5|2 |𝒜1| |𝒜5|

+ |𝒜1|2 (𝒜1𝒜*
5)

2 |𝒜5|2
]︁

Similarly, putting the far-field relations 2.2.149-2.2.153, as well as equation 2.2.127

for |𝜉1| into equation 2.2.167 for 𝑃5, and looking at the numerator, we get

𝑀5 = 𝐵2
11𝐵55 |𝑋5|2 − 2𝐵11𝐵15𝐵55 |𝑋1| |𝑋5| +𝐵2

15𝐵55 |𝑋1|2 (2.2.178)

(2.2.179)=
(︂2
𝑘
𝜌𝑔𝑉𝑔

)︂3 (︂4
𝑘
𝜌𝑔𝑉𝑔𝐴

)︂2 [︁
|𝒜1|4 |𝒜5|2 |𝒜5|2 − 2 |𝒜1|2 𝒜1𝒜*

5 |𝒜5|2 |𝒜1| |𝒜5|

+ (𝒜1𝒜*
5)

2 |𝒜1|2 |𝒜5|2
]︁

Looking at equations 2.2.177 and 2.2.179, we can see that 𝑀1 = 𝑀5. This proves

2.2.175.

Finally, after putting far-field relations 2.2.149-2.2.153, as well as both equation

2.2.122 and 2.2.127 in to equation 2.2.168 for 𝑃15 and looking at the numerator,

we get

𝑀15 = 2𝐵11𝐵15𝐵55 |𝑋1| |𝑋5| − 2𝐵2
15𝐵55 |𝑋1|2 − 2𝐵11𝐵

2
15 |𝑋5|2 + 2𝐵3

15 |𝑋1| |𝑋5|

(2.2.180)

(2.2.181)=
(︂2
𝑘
𝜌𝑔𝑉𝑔

)︂3 (︂4
𝑘
𝜌𝑔𝑉𝑔𝐴

)︂2 [︁
2 |𝒜1|3 |𝒜5|3 𝒜1𝒜*

5 − 4 |𝒜5|2 |𝒜1|2 (𝒜1𝒜*
5)

2

+ 2 |𝒜1| |𝒜5| (𝒜1𝒜*
5)

3
]︁

Comparing 2.2.181 to 2.2.177 and 2.2.179, we see that

𝑀15 = 𝒜1𝒜*
5

|𝒜1| |𝒜5|
(𝑀1 +𝑀5) = 𝑀1 +𝑀5 (2.2.182)

This proves 2.2.174. We have included this proof because we have not seen it in

literature before, and it adds to our understanding of how much energy is extracted
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from the surge PTO, the pitch PTO, and the surge-pitch PTO. Note that this does not

mean that they can operate separately: each mode must be extracting the specified

amount of power for the entire system to work correctly.

2.3 Summary

In this chapter, we derived and explained the relevant hydrodynamic theory for our

problem. We started by defining the assumptions made, which are summarized as

follows:

∙ Linear potential flow

∙ Single monochromatic unit-amplitude incoming wave

∙ Three-dimensional axisymmetric body

∙ Two separate problems:

1. Body only moving and extracting energy in heave

2. Body moving and extracting energy in surge, heave and pitch

∙ PTO mechanisms modeled as linear dampers

∙ Mooring force modeled as a spring force in surge

To derive the equation of motion for the body, we initially derived the general six

degree of freedom equation of motion for a freely floating body in a monochromatic

wave. Adding in the forces specific to wave energy extraction, including PTO forces

and the spring force in surge, and limiting to the three modes of motion of interest,

we arrived at the equations of motion for both of the separate (heave only vs. heave-

surge-pitch) problems, noticing that heave is uncoupled from surge-pitch.

Next, we derived equations for extractable power for both problems and then max-

imum power. We emphasized that the way to achieve maximum power in for the
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heave-only problem is to ensure the body solves the heave resonance equation (equa-

tion 2.2.90) and set the heave PTO damping coefficient equal to the heave radia-

tion damping coefficient at resonance. We showed that this results in a maximum

capture width (extractable power over incident power per unit crest length, nondi-

mensionalized by wavenumber 𝑘) of 𝑘𝑊𝑚𝑎𝑥
3 = 1. To achieve maximum power in

heave-surge-pitch, it is necessary to again ensure the same conditions as for heave,

but additionally all three surge-pitch resonance equations (equations 2.2.136, 2.2.137

and 2.2.138) must be satisfied, and finally each surge, pitch and surge-pitch PTO

coefficient must be equal to the corresponding radiation damping coefficient. We

showed

Finally, we looked at far-field analysis to show that the maximum capture width

for the heave-surge-pitch problem is 𝑘𝑊𝑚𝑎𝑥
1+5 = 2. With all eight (heave and surge-

pitch) conditions satisfied, the maximum capture width of 𝑘𝑊𝑚𝑎𝑥
𝑇 = 3 is achieved.

We emphasized that the maximum capture width for heave and surge-pitch do not

depend on geometric shape or size.

We also showed that the capture width from the surge PTO is 𝑘𝑊1 = 0.5, the capture

width from the pitch PTO is 𝑘𝑊5 = 0.5 and the capture width from the surge-pitch

PTO is 𝑘𝑊15 = 1, when the body moves in both surge and pitch. To the best of our

knowledge, this derivation is novel, and it adds to our understanding of the problem.
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Chapter 3

Optimization Framework

In the previous chapter, the equations of motion for our problems were derived, and

limits for maximum extractable power, along with necessary conditions to achieve

those limits, were discussed. In this chapter, the goals and framework of our opti-

mization are motivated and explained.

In the first section, main considerations that must be examined when optimizing a

wave energy converter are broadly discussed. Then, these concepts are expanded

upon and explained more in the second section, with specific equations, diagrams

and symbols. In the third section, other frameworks considered are discussed to

further motivate the validity of the chosen framework. Finally, the framework and

contributions from this framework are summarized in the final section.

3.1 Main concepts involved for optimizing a WEC

In this section, we discuss broadly what it means to optimize a WEC, and our general

optimization question is stated.

As motivated in the introduction, when looking to optimize a wave energy converter,

the main objectives are to maximize power and minimize cost. For the latter, this not

only refers to minimizing material used, but also ensuring that shapes are practically

feasible.
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Heave-only extraction:

As shown in the previous chapter, for a WEC moving and extracting power in the

heave mode only, the way to achieve maximum extractable power is to force the body

to be in resonance and set the power take-off (PTO) damping coefficient equal to the

radiation damping coefficient at resonance. This idea of how to achieve resonance,

then, becomes very important. We are assuming that an incoming wave frequency

is given, so the geometric shape becomes the changing parameter in the resonance

equation. However, requiring the body to be in resonance introduces the need for a

motion constraint since resonance also corresponds to the largest motion amplitude.

This motion constraint is required to ensure that shapes are practically feasible.

Heave-surge-pitch extraction:

To achieve optimal motion, and thus maximum extractable power, a WEC moving

and extracting power in heave, surge, and pitch must solve four resonance equations,

if active controls, such as latching, are not used. One of these resonance equations

is the heave resonance equation, already discussed. However, the other 3 resonance

equations, referred to as the surge, pitch, and surge-pitch resonance equations, all

contain passively controllable terms. These design parameters do not depend on

geometric shapes, so they can be changed after the geometry is chosen. In surge,

it is the mooring forces modeled as a linear spring, in surge-pitch, it is the center

of gravity, and in pitch, it is the weight distribution through the pitch moment of

inertia. Since the heave resonance equation does not have any passively controllable

parameters, the heave resonance equation must be solved first to get the geometric

shape. Then, the passively controllable parameters can be changed to ensure the

other three resonance equations are met. These controllable parameters introduce

more constraints. Namely, the center of gravity cannot be outside of the body, the

body must be in stable equilibrium, and the radius of gyration must be contained

within the body. Furthermore, the same motion constraints as in the heave-only case

must be applied to the surge and pitch motion.
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Minimizing cost:

As discussed in the introduction chapter, a large concern in realizing wave energy as

a viable renewable energy resource is cost. The constraints to the motion and the

controllable parameters are important to minimizing cost and making sure the bodies

are practically feasible, but additionally we need to minimize the amount of material

used. A multi-objective optimization allows us to simultaneously minimize surface

area and volume, and the result is a set of optimal solutions that developers could

choose from depending on further constraints or budget.

Optimization question: What practically feasible shapes maximize power while

minimizing cost?

With this motivation for the optimization statement, we will now discuss the specifics

of how to achieve these goals.

3.2 Optimization framework

3.2.1 Multi-objective optimizations and Pareto Fronts

In this section, multi-objective optimization algorithms are explained, and the popu-

lation and the Pareto Front are defined. Given the constraints of the problem, the set

of all possible solutions is known as the population. A multi-objective optimization

has two or more competing optimization functions. For our optimization problem, we

have two optimization functions, so we will limit the explanation to two. For more

information on multi-objective optimization problems, see Deb (2011) or Deb et al.

(2005).

If the two objective functions are called 𝑓1 and 𝑓2, where the objective is to minimize

both 𝑓1 and 𝑓2, and two solutions (‘organisms’) within the population are 𝑥1 and 𝑥2,

it is said that organism 𝑥1 dominates 𝑥2 if

1. 𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2) for 𝑖 = 1, 2
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2. 𝑓1(𝑥1) < 𝑓1(𝑥2) and/or 𝑓2(𝑥1) < 𝑓2(𝑥2)

The set of non-dominated solutions is called the Pareto Front, which is the set of

optimal solutions for the problem. To visualize the population and and what it means

for one point to dominate another, consider figure 3-1. The x-axis is the first objective

function, 𝑓1, and the y-axis is the second objective function, 𝑓2. The entire population

can be plotted as points on this plot. Consider points 𝑥1 and 𝑥2. Point 𝑥1 dominates

point 𝑥2 since it is not ‘worse’ in either objective function (𝑓1(𝑥1) = 𝑓1(𝑥2)) and is

strictly better in one objective function (𝑓2(𝑥1) < 𝑓2(𝑥2)). The set of non-dominated

solutions are the set of solutions along the ‘bottom left’ curve, shown in blue in figure

3-2.

Figure 3-1: Example of plotting a population. 𝑓1 and 𝑓2 are the two objective
functions, where the objectives are both minimization.
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Figure 3-2: The Pareto Front of the population shown in figure 3-1, shown in blue.

Multi-objective optimizations are used in this thesis to optimize two objective func-

tions simultaneously, resulting in a set of optimal solutions. Next, we will describe

how the populations are formed for our problem. Later, objective functions which

determine the Pareto Front will be defined.

3.2.2 Constraints in our problem

In this section, the formation of the population is described, using constraints gov-

erning the problem. We wish to optimize a body given any incoming wave, so we will

assume wavenumber 𝑘 is given and nondimensionalize size parameters to 𝑘.

Heave resonance

As shown in the previous chapter, to achieve maximum power in heave, the body

must move with optimal motion, which is done by satisfying the heave resonance

equation:

𝐶33 − 𝜔2 (𝑚+ 𝐴33) = 0 (3.2.1)

where 𝐶33 is the buoyancy restoring force, 𝑚 is mass, and 𝐴33 is added mass. Since
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frequency is given, the parameter in this equation now becomes the geometric shape.

We will discuss in chapter 4 how to solve this equation. The set of shapes that solve

this equation will be defined as R3.

Since wave frequency is given, the independent parameter of the heave resonance

equation is now geometric shape. Therefore, this is a nonlinear equation, due to the

nonlinearity of the heave added mass coefficient on geometry.

Heave motion constraint

In many engineering contexts the goal of looking at resonance equations is to avoid

resonance, since this is when the amplitude of motion is maximum, but we have

shown that resonance is a necessary condition to achieve maximum power. However,

to avoid shapes where the body motion at resonance would be too large, we introduce

a motion constraint. This constraint was motivated by Evans (1981). The constraint

is given by

|𝜉3|
𝐴

≤ 𝛼 (3.2.2)

where |𝜉3| is the amplitude of heave body motion and 𝐴 is incoming wave amplitude.

𝛼 should be of order 1 so that the body does not move much more than amplitude

of wave. In this thesis, we look at 𝛼 = 1 and 𝛼 = 3. As shown in section 4.3, the

motion constraint disallows deep SPAR-like shapes who satisfy the heave resonance

equation but whose body motion at resonance is unrealistically large. This motion

constraint ensures that the body is practically feasible. Bodies moving too much will

result in more fatigue and thus a shorter lifespan. Therefore, this constraint also

helps minimize costs. Given 𝛼, the set of shapes that adhere to the heave motion

constraint, and thus satisfy equation 3.2.2, is called A3.

Heave steepness constraint

Another practical consideration is to make sure that the body does not leave the
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ocean surface. If 𝐻 is the body’s draft at the vertical centerline, the body motion in

heave must be less than 𝐻: 𝐻 > |𝜉3|. Multiplying each side by 𝑘 and then dividing

and multiplying by 𝐴 on the right-hand-side, we get 𝑘𝐻 > 𝑘𝐴 |𝜉3|
𝐴

. 𝑘𝐴 is often used in

hydrodynamics to specify steepness of the ocean, and is defined by 𝜖 ≡ 𝑘𝐴. Therefore

the heave ‘steepness constraint’ is given by

𝑘𝐻 > 𝜖
|𝜉3|
𝐴

(3.2.3)

Without this steepness constraint, very thin disk-like objects that satisfy both the

resonance equation and the heave motion constraint would be allowed. However, in

reality they would leave the ocean surface, creating problems such as slamming. For

linear theory, we require 𝜖 << 1, so we consider small but finite values of 𝜖. In this

thesis, we consider 𝜖 = 0.1 and 𝜖 = 0.2. Given 𝜖, the set of shapes that adhere to the

heave steepness constraint, and thus satisfy equation 3.2.3, is called E3.

Forming heave population and Pareto Front

If we define the set of all possible shapes to be B, then the sets R3,A3 and E3 are all

subsets of B. This is shown in figure 3-3, where R3 is shown in light green, E3 in light

purple and A3 in light teal. Shown with horizontal lines, the intersection of these sets

is P3, the heave population, since this is the set of all shapes that adhere to the

constraints of the problem. The heave Pareto Front, PF3, shown as a dark blue

circle in figure 3-3, is a subset of P3.
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Figure 3-3: Formation of the population for the heave-only problem, given 𝛼 and 𝜖

For different values of 𝛼 and 𝜖 the population, and resulting Pareto Front, will be

different. Stricter motion constraints (smaller values of 𝛼) and/or stricter steepness

constraints (larger values of 𝜖) will result in smaller sets A3 and E3, respectively,

resulting in a smaller P3 set and a smaller PF3. This is shown in figure 3-4. R3 will

not change. The darker purple represents the set which adheres to a stricter steepness

constraint, and darker teal represents the set which adheres to a stricter motion

constraint. The new population, represented with red horizontal lines, is a subset

of the old population (green horizontal lines). The new Pareto Front, represented

by yellow vertical lines, is the intersection of the new population and the old Pareto

Front.
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Figure 3-4: How stricter motion and steepness constraints affect the heave population
and Pareto Front

Heave-surge-pitch resonance

To achieve maximum power for WECs moving and extracting power in heave, surge,

and pitch, the body must move with optimal motion (equation 2.2.106). To achieve

this optimal motion without active controls, the body must solve four resonance

equations. One of these is the heave resonance equation (3.2.1). The other three will

be called the surge resonance equation, the surge-pitch resonance equation, and the

pitch resonance equation.

𝑘1 − 𝜔2 (𝑚+ 𝐴11) = 0 (3.2.4)

𝐴15 −𝑚𝑧𝐺 = 0 (3.2.5)

𝐶55 − 𝜔2 (𝐼55 + 𝐴55) = 0 (3.2.6)

Here, 𝑘1 is the surge spring coefficient, representing mooring forces, 𝐴11 is surge added

mass, 𝐴15 is coupled surge-pitch added mass, 𝑧𝐺 is the center of gravity, 𝐶55 is the
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pitch buoyancy restoring coefficient, 𝐼55 is the pitch moment of inertia, and 𝐴55 is

pitch added mass.

Unlike the heave resonance equation, there are now ‘controllable’ parameters in each

of these three equations. That is, there are parameters that do not depend on the

shape (or frequency). In equation 3.2.4, 𝑘1 is controllable, in equation 3.2.5, 𝑧𝐺 is

controllable, and in equation 3.2.6, 𝐼55 is controllable. For a freely floating WEC,

the 𝑘1 term is not needed. However, not only is the inclusion of the 𝑘1 practically

correct, since it means that there is a term for mooring force, but also we can see

from equation 3.2.4 that it is necessary to be able to solve the resonance equation

and ensure that optimal motion, and thus maximal power, is being realized. No other

resonance equation has any added terms.

With the addition of these controllable parameters, we no longer need to solve for

shape. Given a shape and frequency, we can control these parameters to solve all

three resonance equations. From equation 3.2.4, we can solve for 𝑘1 to get the value

that would ensure the body was in resonance in surge:

𝑘𝑟1 = 𝜔2 (𝑚+ 𝐴11) (3.2.7)

Given a shape and frequency, the right-hand-side will be fully known. We can solve

3.2.5 for 𝑧𝐺 to determine the value of the center of gravity that would ensure the

surge-pitch resonance equation was solved:

𝑧𝑟𝐺 = 𝐴15

𝑚
(3.2.8)

where, again, given a shape and frequency the right-hand-side is fully known. Finally,

equation 3.2.6 can be solved for 𝐼55 to determine the value of the pitch moment of

inertia to ensure that the pitch resonance equation was solved:

𝐼𝑟55 = 𝐶55

𝜔2 − 𝐴55 (3.2.9)
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Here, 𝐶55 is

𝐶𝑟
55 = 𝜌𝑔𝜋𝑅4/4 + 𝜌𝑔𝑙3𝑉 (𝑧𝐵 − 𝑧𝐺) (3.2.10)

Putting equation 3.2.8 for 𝑧𝐺, this becomes

𝐶55 = 𝜌𝑔𝜋𝑅4/4 + 𝜌𝑔𝑙3𝑉 𝑧𝐵 − 𝑔𝐴15 (3.2.11)

And after putting this expression for 𝐶55 into equation 3.2.9, the expression for 𝐼𝑟55

becomes

𝐼𝑟55 = 𝜌𝑔𝜋𝑅4/4 + 𝜌𝑔𝑙3𝑉 𝑧𝐵 − 𝑔𝐴15

𝜔2 − 𝐴55 (3.2.12)

This section explained how to achieve resonance in surge, pitch and surge-pitch, given

a frequency and shape.

Stability and center of gravity constraint

Center of gravity is a controllable parameter, but we must introduce constraints to

what 𝑧𝐺 can be. Firstly, the center of gravity cannot be below the draft at the

centerline, 𝐻. And secondly, there is a maximum value of 𝑧𝐺, called 𝑧𝑚𝑎𝑥𝐺 , above

which the body will no longer be in stable equilibrium.

Stability analysis is explained more in Appendix A. For more information, see Prin-

ciples of Naval Architecture (1988). A body is in stable equilibrium if

1. The center of mass and center of buoyancy are on the same vertical line

2. If an external moment acts on the body, the body returns to its original position

once the moment is removed.

The first is automatically true in our problem since the body is assumed to be ax-

isymmetric. For second requirement to be true, point 𝑧𝑀 , the transverse metacenter,

must be higher than 𝑧𝐺, vertical center of gravity. As explained in Appendix A, this

results in the following expression for 𝑧𝑚𝑎𝑥𝐺 :
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𝑧𝑚𝑎𝑥𝐺 = 8𝑅4

9∀
+ 𝑧𝐵 (3.2.13)

The set of shapes such that −𝐻 < 𝑧𝑟𝐺 < 𝑧𝑚𝑎𝑥𝐺 is called Z15.

Pitch moment of inertia constraint

Similarly, even though 𝐼55 is a controllable parameter, we must introduce constraints

on the values of 𝐼55. Looking at equation 3.2.9, we can deduce that for some shapes

(with larger 𝐴55 or 𝐴15 values), the expression for 𝐼𝑟55 would be negative. This, of

course, is not physically possible, so we must enforce the following constraint:

𝜌𝑔𝜋𝑅4/4 + 𝜌𝑔𝑙3𝑉 𝑧𝐵 − 𝑔𝐴15

𝜔2 − 𝐴55 > 0 (3.2.14)

Furthermore, we also need to make sure radius of gyration is not so big that it would

not be possible to distribute the weight within the body. To simplify, we can assume

weight to be located at 𝑧𝐺. If 𝑧𝐺 < 0, the radius of gyration, 𝑟𝑟𝑔 = 𝐼𝑟
55
𝑚

, must not be

greater than radius of the body at 𝑧𝐺, denoted 𝑟(𝑧𝐺). The set of shapes for which

0 < 𝑟𝑟𝑔 < 𝑟(𝑧𝐺) will be called I15.

Surge motion constraint

We must enforce a surge motion constraint, similar to the heave one:

|𝜉1|
𝐴

≤ 𝛼 (3.2.15)

Again, we consider 𝛼 = 1, 3 in this thesis. Given 𝛼, the set of shapes that adhere to

the surge motion constraint, and thus solve equation 3.2.15, is called A1.

Pitch motion constraint

Similarly, we must enforce a pitch motion constraint:

|𝜉5|
𝐴/𝑅

≤ 𝛼 (3.2.16)

Where, again, we consider 𝛼 = 1, 3. Given 𝛼, the set of shapes that adhere to the

pitch motion constraint, and thus solve equation 3.2.16, is called A5.
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Pitch steepness constraint

There is again a risk of the body leaving the ocean surface for pitch motion, so we

must enforce a pitch steepness constraint similar to the one in heave:

𝑘𝐻 > 𝜖
|𝜉5|
𝐴/𝑅

(3.2.17)

We again consider 𝜖 = 0.1, 0.2. Given 𝜖, the set of shapes that adhere to the pitch

steepness constraint, and thus solve equation 3.2.17, is called E5.

Forming the heave-surge-pitch population and Pareto Front

The set of all shapes that adhere to the five constraints for WECs moving and ex-

tracting energy in surge and pitch defined above will be called P15. The formation of

this set is shown in figure 3-5. The set of all possible shapes, B, is represented by the

white rectangle. Given 𝛼, the sets of shapes that adhere to surge and pitch motion

constraints, respectively, are A1 (represented in red) and A5 (yellow). Given 𝜖, the set

of shapes that adhere to the pitch steepness constraint is E5 (orange). And finally,

the sets of shapes that adhere to the center of gravity constraint and the pitch motion

of inertia constraint are, respectively, Z15 (pink) and I15 (green). The intersection of

the five sets, P15, is shown with vertical blue lines.
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Figure 3-5: The formation of the set of shapes that adhere to the five constraints for
WECs moving and extracting energy in surge and pitch, P15

The population for shapes moving and extracting energy in heave, surge, and pitch,

which will be called the heave-surge-pitch population, P135, is the intersection of

the heave population, P3 and the set of shapes that adhere to the five constraints for

surge-pitch, P15. This is shown in figure 3-6. The heave population, P3 is shown by

horizontal green lines, and the set of shapes adhering to all five surge-pitch constraints,

P15 is shown by vertical blue lines. The intersection of these two sets, represented

by the checkered area, is the heave-surge-pitch population. The heave-surge-pitch

Pareto Front, PF135 is a subset of P135, shown by a purple circle.

Because of the controllable parameters, we no longer need to solve for a shape to

enforce resonance in surge, pitch and surge-pitch. However, to enforce resonance in

heave, we do need to solve for a shape. Therefore, to form the heave-surge-pitch pop-

ulation, P135, we must use the heave resonance equation to solve for shape, and then

use the controllable parameters to enforce resonance in surge, pitch, and surge-pitch.

Then, we can use the constraints (i.e. heave, surge and pitch motion constraints,

heave and pitch steepness constraints, and the center of gravity and pitch motion of

inertia constraints) to eliminate shapes that are not practical. This subtle idea of

solving the heave resonance equation first is crucial to our set up.
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Figure 3-6: Finding PF135, the heave-surge-pitch Pareto Front: The intersection
of the heave population, P3, and the set of shapes that adhere to the surge-pitch con-
straints, P15, is the heave-surge-pitch population. The heave-surge-pitch Pareto
Front is a subset of the population

Similar to the heave-only case, P135 and 𝑃𝐹15 depend on 𝛼 and 𝜖. The popula-

tions, and resulting Pareto Fronts, for smaller 𝛼 (or larger 𝜖) will be subsets of the

corresponding sets for larger 𝛼 (or smaller 𝜖, respectively).

Summary

We discussed how to find shapes that produce maximum power in heave, by ensuring

they are in resonance in heave. We defined the heave motion and steepness constraints

to ensure that the body does not move much more than the incident wave amplitude,

and that the body does not leave the ocean surface. We discussed how these three

constraints (resonance, motion, and steepness) formed the population for the heave-

only problem, of which the Pareto Front is a subset.

We saw that, unlike for heave, where shape was the parameter to solve for in the res-

onance equation, there exist ‘controllable parameters’ in the surge, pitch and surge-

pitch resonance equations, which can be changed given any shape to enforce reso-

nance, and hence maximum power, in these modes. We defined constraints involving
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these controllable parameters (the center of gravity must be within the body, the body

must be in stable equilibrium, and the radius of gyration must be within the body).

We defined the surge motion constraint, pitch motion constraint, and pitch steepness

constraint. We showed that, in order to form the heave-surge-pitch population and

the resulting Pareto Front, we must solve for the shape using the heave resonance

equation, change the controllable parameters to enforce resonance in surge, pitch and

surge-pitch, and then use the constraints to make sure the body is practically feasible.

3.2.3 Optimization statement summary

Objective functions

In the previous section, we described how the heave population and heave-surge-pitch

population are formed. The Pareto Front is the set of optimal solutions from that

population. To define ‘optimal,’ we must define the two objective functions. As

discussed in the introduction chapter, cost must be reduced to make wave energy a

viable source of energy. The constraints listed in the previous chapter help minimize

cost by reducing fatigue and ensuring feasibility. Another way to minimize cost is

to minimize material used. Therefore, our two objective functions minimize surface

area and volume. Because we want to optimize the WEC given any incoming wave,

we nondimensionalize these two values by wavenumber 𝑘. To measure surface area,

we use

𝑘𝑙𝑆 = 𝑘
√︁
𝑆𝑊 (3.2.18)

where 𝑆𝑊 is wetted surface area. To measure volume, we use

𝑘𝑙𝑉 = 𝑘
3
√

∀ (3.2.19)

where ∀ is volume of submerged body

Heave only
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Our optimization problem for the problem of a heaving-only WEC is summarized in

the following box:

Given 𝑘, 𝜖, and 𝛼, minimize

1. 𝑘𝑙𝑆

2. 𝑘𝑙𝑉

such that each body is in resonance, 𝑘𝐻 > 𝜖 |𝜉3|
𝐴

, and
|𝜉3|
𝐴

≤ 𝛼

Heave-surge-pitch

Our optimization problem for the problem of a WEC moving and extracting power

in heave, surge and pitch is summarized in the following box:
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Given 𝑘, 𝜖, and 𝛼, minimize

1. 𝑘𝑙𝑆

2. 𝑘𝑙𝑉

such that for each body:

1. It is in resonance in heave, surge, pitch, and surge-

pitch coupled. That is,

(a) 𝐶33 − 𝜔2 (𝑚+ 𝐴33)

(b) 𝑘1 − 𝜔2 (𝑚+ 𝐴11)

(c) 𝐴15 −𝑚𝑧𝐺

(d) 𝐶55 − 𝜔2 (𝐼22 + 𝐴55)

2. |𝜉3|
𝐴

≤ 𝛼

3. 𝑘𝐻 > 𝜖 |𝜉3|
𝐴

4. |𝜉1|
𝐴

≤ 𝛼

5. |𝜉5|
𝐴/𝑅

≤ 𝛼

6. −𝐻 < 𝑧𝐺 < 𝑧𝑚𝑎𝑥𝐺

7. If 𝑧𝐺 < 0, 𝑟𝑔 < 𝑟(𝑧𝐺)

8. 𝑘𝐻 > 𝜖 |𝜉5|
𝐴/𝑅

The result of each of these optimizations is a Pareto Front, which is a set of optimal

shapes. The benefit of having a set of shapes is that someone interested in building

a WEC can look at this set and decide what is most important to them. This refers

to the two objective functions, surface area or volume, but also looking at other

parameters, for example mooring forces, design options, and material stiffness. These

factors are not the focus of this thesis, but some of the differences within sets will be
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discussed in the results section.

The optimization framework that has been developed is summarized in the two boxes

above. This framework ensures that the resulting shapes will extract maximum power,

while minimizing surface area and volume. Further, the constraints that were included

in the framework limit the resulting shapes to be practically feasible.

3.3 Other frameworks considered

To motivate our optimization framework, we will discuss other options for frameworks

that were considered before this framework was decided upon.

3.3.1 Maximizing power, minimizing volume or surface area

A first thought when the goal is to maximize power and minimize cost would be

to maximize 𝑘𝑊 , the nondimensional capture width, and minimize either volume

or surface area. However, with no constraint this forms an ill-posed multi-objective

optimization. In a multi-objective optimization, all objective functions must be able

to stand alone as a valid single-objective optimization. The objective of minimizing

volume or surface area without any constraint would result in the absence of a body

as the answer.

3.3.2 Given volume, maximize power and minimize surface

area

Therefore, the next logical step is to enforce a constraint. We tried to look at multiple

values of 𝑘𝑙𝑉 , and given that 𝑘𝑙𝑉 maximize 𝑘𝑊 and minimize 𝑘𝑙𝑆/𝑘𝑙𝑉 . Due to the

nature of the resonance equation, for each 𝑘𝑙𝑉 , there would be many shapes which

achieved the maximum value of 𝑘𝑊 = 1 (for heave). Looking across multiple values of

𝑘𝑙𝑉 , the best would be the shape which achieves 𝑘𝑊 = 1 and minimum 𝑘𝑙𝑆/𝑘𝑙𝑉 , which

would be the resonating hemisphere. However, this answer is not very enlightening
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since, though it minimizes the ratio of surface area to volume it minimizes neither

surface are nor volume, so does not in fact minimize cost.

3.3.3 Minimizing motion and volume or surface area

Seeing all of the shapes able to achieve 𝑘𝑊 = 1, we decided to only look at shapes

that maximize power (i.e. all resonating shapes). However, there becomes a problem

of large amplitude of body motion. A first thought was to minimize surface area

or volume alongside body amplitude. However, minimizing body motion amplitude

versus just keeping it small does not really matter to the cost/ performance. So, we

decided on the motion constraint described above instead.

These other frameworks that were considered give motivation for our optimization

framework that has been discussed in this chapter.

3.4 Summary

In this chapter, our optimization framework was defined and described. In the first

section, we discussed the overarching question of ‘what make a good WEC’ to guide

us in defining an optimization goal: to find what practically feasible shapes maximize

power while minimizing cost. Next, we introduced the main concepts of a multi-

objective optimization algorithm, including the population and Pareto Front.

We then explained how the populations are formed in our problems (heave-only vs.

heave-surge-pitch). For WECs moving in heave only, we solve the heave resonance

equation (equation 3.2.1) with shape as the parameter to find shapes that resonance

in heave, thus extracting maximum power. The heave motion constraint and heave

steepness constraint must be enforced to ensure that the body does not move much

more than the incoming wave amplitude and does not leave the ocean surface, with

a small but finite steepness, respectively. Bodies that solve the heave resonance

equation and adhere to the heave motion constraint and heave steepness constraint

form the population.
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To form the population for WECs moving and extracting energy in heave, surge

and pitch, we first solve the heave resonance equation to find shapes that resonate in

heave. Then, we use controllable parameters – surge mooring force modeled as a linear

spring, center of gravity, and pitch moment of inertia – to ensure that the body is in

resonance in surge, pitch and surge-pitch. The values of these parameters to enforce

resonance are shown in equations 3.2.7, 3.2.8 and 3.2.9. Surge and pitch motion

constraints, and a pitch steepness constraint, similar to in heave, must be used. In

addition, there are constraints that arise from the controllable parameters: the center

of gravity must be within the body, the body must be in stable equilibrium, and the

radius of gyration must be within the body. Bodies that solve the heave resonance

equation, adhere to the heave, surge and pitch motion constraints, the heave and

pitch steepness constraints, and the constraints on the center of gravity and pitch

moment of inertia, form the heave-surge pitch population.

For each population, the Pareto Front is the set of optimal solutions based on mini-

mizing the two objective functions, defined in equations 3.2.18 and 3.2.19, measuring

surface area and volume. The optimization statements for heave-only and for heave-

surge-pitch are summarized in section 3.2.3. Finally, other frameworks considered

were discussed to motivate our framework.

A novel idea described in this chapter is how to get maximum power from WECs

moving and extracting power in heave, surge, and pitch without the use of external

controls. The heave resonance equation is used to solve for shape, and then surge

mooring force modeled as a linear spring, the center of gravity, and pitch moment of

inertia are all used to force resonance in surge, pitch and surge-pitch.

The framework developed in this chapter for finding optimal shapes is theoretically

rigorous, comprehensive and realistic. In the next chapter, we detail the methods

used in the procedure of how to define possible geometries, get hydrodynamic quan-

tities, and the multi-objective evolutionary algorithm. Also, we show how to find

heave resonating shapes using a novel theorem for finding root of the heave resonance
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equation.
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Chapter 4

Approach to obtain constrained

optimized shapes

In the last chapter, our original optimization framework was motivated and presented.

In this chapter, the approach we developed to solve this optimization problem is

detailed.

In the first section, we explain how we can define any general geometry, by represent-

ing it by polynomial basis functions. Using this description of geometry, we can put

the coefficients of the basis functions into our optimization. In this way, we can vary

geometry by just a few parameters. We also introduce a few terms we use in the rest

of the thesis: a class of shapes and a group of shapes. A class of shapes is a set of

shapes that have all other parameters other than waterline radius and volume given.

A group of shapes is a set of multiple classes of shapes.

In the second section, we present a novel theorem for finding roots of the heave res-

onance equation and its corresponding proof. As detailed in the previous chapter,

solving the heave resonance equation is an essential part of our optimization frame-

work. This theorem allows us to semi-analytically solve the heave resonance equation.

We show how this theorem adds to our understanding of optimal shapes for wave en-

ergy conversion, but also how this theorem significantly speeds up the optimization
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process by reducing the order of the optimization by one. Without the theorem, there

would be a computational burden on solving the heave resonance equation.

In the third section, we present general observations and conclusions for any given

class of shapes. We use insights from our geometric description, our heave resonance

theorem, observations made, and hydrodynamic insights to form general truths about

the nature of the population and resulting Pareto Front for any given class of shapes.

These insights are used in the subsequent chapters to given reasoning to why certain

shapes lie on the Pareto Front.

In the fourth section, we outline our multi-objective evolutionary algorithm, and

how it is used to optimize groups of shapes. We detail how our theorem is used in

the algorithm, and how the evolutionary algorithm produces the final set of optimal

solutions.

Finally, in the fifth section we summarize our robust, complete and efficient approach

to finding optimal wave energy converters that minimize cost while maximizing power

and ensuring feasibility.

4.1 Geometric description of shapes

In this section, we describe how we represent a large number of shapes by only

changing a few parameters, so that we can optimize these shape parameters in our

multi-objective optimization. We also introduce the ways we classify shapes into

different sets in this thesis: classes and groups of shapes.

4.1.1 Chebyshev polynomial basis functions

Our goal in coming up with a way to describe geometry was to be able to describe

the entire geometry using a function with changeable parameters, instead of using

panel or node locations as the parameters in the optimize. Additionally, we want to

be able to input the radius at the waterline, 𝑅, and the draft at the centerline, 𝐻, as
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parameters.

One way to achieve this goal is to use polynomial basis functions, and to use the

coefficients of such functions as the parameters to optimize. We use the Chebyshev

polynomials of the first kind, which are defined using the following recursive relation:

𝑇0(𝑥) = 1 (4.1.1)

𝑇1(𝑥) = 𝑥 (4.1.2)

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥) (4.1.3)

The set of Chebyshev polynomials form an orthonormal basis, defined in 𝑥 ∈ [−1, 1],

which can be expressed by the infinite sum

𝑓(𝑥) =
∞∑︁
𝑛=0

𝑎𝑛𝑇𝑛(𝑥) (4.1.4)

4.1.2 Parametric description of the body geometry

Since all the bodies considered in this thesis are axisymmetric, the geometry is com-

pletely defined in 𝑟 − 𝑧 plane. For example, figure 4-1 shows an example of the 2D

cross-section in the 𝑟 − 𝑧 plane:
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Figure 4-1: Example of the 2D cross-section, in the 𝑟−𝑧 plane, of a 3D axisymmetric
shape

To make geometries more general, we use a parametric description: 𝑟 and 𝑧 are

described by separate series, with Chebyshev polynomials as basis functions for each

separate function. And to further generalize the allowable shapes, we allow slope

discontinuities (‘kinks’) in the body geometry. Each kink coordinates are described

by the points (𝑟1, 𝑧1), (𝑟2, 𝑧2), etc. For example, figure 4-2 shows a one-kink shape:

Figure 4-2: Example of a ‘one-kink’ shape (i.e. a shape with a slope discontinuity)
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Each piecewise continuous segment 𝑗 of the body is described by the following para-

metric equations:

𝑟𝑗(𝑠) =
𝑁𝑗∑︁
𝑖=0

𝑎𝑗𝑖𝑇𝑖(𝑠) = 𝑎𝑗0𝑇0(𝑠) + 𝑎𝑗1𝑇1(𝑠) + 𝑎𝑗2𝑇2(𝑠) + ... (4.1.5)

𝑧𝑗(𝑠) =
𝑀𝑗∑︁
𝑖=0

𝑏𝑗𝑖𝑇𝑖(𝑠) = 𝑏𝑗0𝑇0(𝑠) + 𝑏𝑗1𝑇1(𝑠) + 𝑏𝑗2𝑇2(𝑠) + ... (4.1.6)

Where 𝑠 is a parameter in the range [0, 1] so that 𝑥 = 2𝑠− 1, and 𝑗 = 1 refers to the

segment closest to the waterline.

As mentioned, one of the requirements is to be able use the radius at the waterline, 𝑅,

and the draft at the centerline, 𝐻, as two input parameters. Additionally, the coordi-

nates of the slope discontinuities (if they exist) need to be parameters. Therefore, we

need to use them as boundary conditions. For a shape with no slope discontinuities,

𝑠 = 0 at the waterline and 𝑠 = 1 at the 𝑧 centerline. That is, 𝑠 = 0 when 𝑟 = 𝑅 and

𝑧 = 0, and 𝑠 = 1 when 𝑟 = 0, 𝑧 = −𝐻, as shown in figure 4-3.

Figure 4-3: Showing boundary values for a shape described by continuous parametric
functions

For a shape with one slope discontinuity, for 𝑗 = 1 (the segment closest to the

waterline), 𝑠 = 0 at the waterline, and 𝑠 = 1 at the slope discontinuity. Then, 𝑗 = 2,
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𝑠 = 0 at the slope discontinuity and 𝑠 = 1 at the centerline. That is, for piece 𝑗 = 1,

𝑠 = 0 when 𝑟 = 𝑅 and 𝑧 = 0, and 𝑠 = 1 when 𝑟 = 𝑟1 and 𝑧 = 𝑧1. For piece 𝑗 = 2,

𝑠 = 0 when 𝑟 = 𝑟1 and 𝑧 = 𝑧1, and 𝑠 = 1 when 𝑟 = 0 and 𝑧 = −𝐻. This is shown in

figure 4-4.

Figure 4-4: Showing boundary values for a shape with one slope discontinuity. Each
piecewise continuous segment is described by unique parametric equations.

Note: for 𝑗 = 1, the 1-subscript is dropped, so that the coefficients are 𝑎0, 𝑎1, 𝑎2, ..., 𝑏0, 𝑏1, 𝑏2, ....

The coefficients 𝑎𝑗0, 𝑎𝑗1, 𝑏𝑗0 and 𝑏𝑗1 must be defined to ensure the boundary condi-

tions described above and shown in the figures. To generalize, we can describe these

boundary conditions by saying that 𝑠 = 0 when 𝑟 = 𝛾𝑗1, 𝑧 = 𝜁𝑗1 and 𝑠 = 1 when 𝑟 =

𝛾𝑗2, 𝑧 = 𝜁𝑗2. For a shape with no slope discontinuity, 𝛾1 = 𝑅, 𝛾2 = 0, 𝜁1 = 0, 𝜁2 = −𝐻.

For a shape with one slope discontinuity, for 𝑗 = 1, 𝛾11 = 𝑅, 𝛾12 = 𝑟1, 𝜁11 = 0, 𝜁12 = 𝑧1,

and for 𝑗 = 2, 𝛾21 = 𝑟1, 𝛾22 = 0, 𝜁21 = 𝑧1, 𝜁22 = −𝐻.

Therefore, to ensure boundary conditions, 𝑎𝑗0 and 𝑏𝑗0 must be defined as

𝑎𝑗0 = 𝛾𝑗2
2 + 𝛾𝑗1

2 − 𝑎𝑗2 − 𝑎𝑗4 − ... all other even terms (4.1.7)

𝑏𝑗0 = 𝜁𝑗2
2 + 𝜁𝑗1

2 − 𝑏𝑗2 − 𝑏𝑗4 − ... all other even terms (4.1.8)
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And 𝑎𝑗1 and 𝑏𝑗1 must be defined as

𝑎𝑗1 = 𝛾𝑗2
2 − 𝛾𝑗1

2 − 𝑎𝑗3 − 𝑎𝑗5 − ... all other odd terms (4.1.9)

𝑏𝑗1 = 𝜁𝑗2
2 − 𝜁𝑗1

2 − 𝑏𝑗3 − 𝑏𝑗5 − ... all other odd terms (4.1.10)

Therefore, putting equations 4.1.7, 4.1.8, 4.1.9 and 4.1.10 into equation 4.1.5, we see

that 𝑟𝑗(𝑠) can be expressed as

𝑟𝑗(𝑠) = 𝛾𝑗2𝑠+ 𝛾𝑗1 (1 − 𝑠) + 𝑎𝑗2 (𝑇2(𝑠) − 1) + 𝑎𝑗3 (𝑇3(𝑠) − 2𝑠+ 1) + ... (4.1.11)

𝑟𝑗(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝛾2𝑠+ 𝛾𝑗1 (1 − 𝑠) +∑︀𝑁/2

𝑖=1 (𝑎𝑗2𝑖 (𝑇2𝑖(𝑠) − 1)) +∑︀𝑁/2−1
𝑖=1

(︁
𝑎𝑗(2𝑖+1) (𝑇2𝑖+1(𝑠) − 2𝑠+ 1)

)︁
𝑁 even

𝛾2𝑠+ 𝛾𝑗1 (1 − 𝑠) +∑︀(𝑁−1)/2
𝑖=1

(︁
𝑎𝑗2𝑖 (𝑇2𝑖(𝑠) − 1) + 𝑎𝑗(2𝑖+1) (𝑇2𝑖+1(𝑠) − 2𝑠+ 1)

)︁
𝑁 odd

(4.1.12)

We can verify that at 𝑠 = 0, 𝑟 = 𝛾𝑗1 and at 𝑠 = 1, 𝑟 = 𝛾𝑗2, and therefore it satisfies

the boundary conditions. Similarly, 𝑧𝑗(𝑠) can be expressed as

𝑧𝑗(𝑠) = 𝜁𝑗2𝑠+ 𝜁𝑗1 (1 − 𝑠) + 𝑏𝑗2 (𝑇2(𝑠) − 1) + 𝑏𝑗3 (𝑇3(𝑠) − 2𝑠+ 1) + ... (4.1.13)

𝑧𝑗(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝜁𝑗2𝑠+ 𝜁𝑗1 (1 − 𝑠) +∑︀𝑀/2

𝑖=1 (𝑏𝑗2𝑖 (𝑇2𝑖(𝑠) − 1)) +∑︀𝑀/2−1
𝑖=1

(︁
𝑏𝑗(2𝑖+1) (𝑇2𝑖+1(𝑠) − 2𝑠+ 1)

)︁
𝑀 even

𝜁𝑗2𝑠+ 𝜁𝑗1 (1 − 𝑠) +∑︀(𝑀−1)/2
𝑖=1

(︁
𝑏𝑗2𝑖 (𝑇2𝑖(𝑠) − 1) + 𝑏𝑗(2𝑖+1) (𝑇2𝑖+1(𝑠) − 2𝑠+ 1)

)︁
𝑀 odd

(4.1.14)

We can verify that at 𝑠 = 0, 𝑧 = 𝜁𝑗1 and at 𝑠 = 1, 𝑧 = 𝜁𝑗2, so therefore it satisfies the

boundary conditions.

To summarize, for a no-kink shape with up to 4th order polynomials, the parametric
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equations would be

𝑟(𝑠) = 𝑅 (1 − 𝑠) + 𝑎2 (𝑇2(𝑠) − 1) + 𝑎3 (𝑇3(𝑠) − 2𝑠+ 1) + 𝑎4 (𝑇4(𝑠) − 1) (4.1.15)

𝑧(𝑠) = −𝐻𝑠+ 𝑏2 (𝑇2(𝑠) − 1) + 𝑏3 (𝑇3(𝑠) − 2𝑠+ 1) + 𝑏4 (𝑇4(𝑠) − 1) (4.1.16)

For a shape with one slope discontinuity and two piecewise continuous segments with

up to 4th order polynomials, the parametric equations would be

𝑟(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝑟1𝑠+𝑅 (1 − 𝑠) + 𝑎2 (𝑇2(𝑠) − 1) + 𝑎3 (𝑇3(𝑠) − 2𝑠+ 1) + 𝑎4 (𝑇4(𝑠) − 1) , piece 1

𝑟1 (1 − 𝑠) + 𝑎22 (𝑇2(𝑠) − 1) + 𝑎23 (𝑇3(𝑠) − 2𝑠+ 1) + 𝑎24 (𝑇4(𝑠) − 1) , piece 2
(4.1.17)

𝑧(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝑧1𝑠+ 𝑏2 (𝑇2(𝑠) − 1) + 𝑏3 (𝑇3(𝑠) − 2𝑠+ 1) + 𝑏4 (𝑇4(𝑠) − 1) , piece 1

−𝐻𝑠+ 𝑏22 (𝑇2(𝑠) − 1) + 𝑏23 (𝑇3(𝑠) − 2𝑠+ 1) + 𝑏24 (𝑇4(𝑠) − 1) , piece 2
(4.1.18)

Nondimensionalization

To nondimensionalize the geometric parameters, we will use the cube-root of volume,

𝑙𝑉 , for 𝑅 and 𝐻, and then use 𝑅 for all radial parameters and 𝐻 for all depth

parameters. Therefore,

𝑅 = 𝑅

𝑙𝑉
(4.1.19)

𝐻 = 𝐻

𝑙𝑉
(4.1.20)

For all coordinates of the slope discontinuities,
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𝑟𝑗 = 𝑟𝑗
𝑅

(4.1.21)

𝑧𝑗 = 𝑧𝑗
𝐻

(4.1.22)

For all coefficients,

𝑎𝑗𝑖 = 𝑎𝑗𝑖
𝑅

(4.1.23)

𝑏𝑗𝑖 = 𝑏𝑗𝑖
𝐻

(4.1.24)

And, for the functions,

𝑟𝑗(𝑠) = 𝑟𝑗(𝑠)
𝑅

(4.1.25)

𝑧𝑗(𝑠) = 𝑧𝑗(𝑠)
𝐻

(4.1.26)

Equations 4.1.15, 4.1.16, 4.1.17 and 4.1.18 summarize the parametric equations used

in this thesis to represent a wide range of shapes. The coefficients 𝑎2, 𝑎3, 𝑎4, 𝑎22, 𝑎23,

𝑎24, 𝑏2, 𝑏3, 𝑏4, 𝑏22, 𝑏23, and 𝑏24, as well as the coordinates of the slope discontinuity

(𝑟1, 𝑧1), become the parameters to optimize in the multi-objective optimization.

4.1.3 Introducing classes of shapes

Given the description of geometric shapes above, there are many ways to group the

parameters to describe different shapes. For example, you could compare all shapes

with a given volume. As explained more in section 4.2, we need a way to represent the

set of all shapes with all geometric parameters other than radius and volume fixed.

We call these sets classes of shapes.

From the geometric description described above, we see that given the following
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vector, 𝐵, the shape is fully defined:

𝐵 =
{︁
𝑅,𝐻, 𝑎2, 𝑏2, 𝑎3, 𝑏3, ..., 𝑟1, 𝑧1, 𝑎22, 𝑏22, 𝑎23, 𝑏23, ..., ...

}︁
(4.1.27)

Consider the following vector, B𝐸, which contains all of the parameters other than

𝑅 and 𝐻:

B𝐸 =

⎧⎪⎪⎨⎪⎪⎩
{︁
𝑎2, 𝑏2, 𝑎3, 𝑏3, 𝑎4, 𝑏4

}︁
0 kinks{︁

𝑎2, 𝑏2, 𝑎3, 𝑏3, 𝑎4, 𝑏4, 𝑟1, 𝑧1, 𝑎22, 𝑏22, 𝑎23, 𝑏23, 𝑎24, 𝑏24
}︁

1 kink
(4.1.28)

Therefore, 𝐵 =
{︁
𝑅,𝐻,B𝐸

}︁
. Since the shape is axisymmetric and described by

parametric equations, volume can be expressed as

𝑙3𝑉 = 𝑅2𝐻
∑︁
𝑗

∫︁ 1

0
𝑟𝑗

2
𝑧𝑗′𝑑𝑠 (4.1.29)

where 𝑧𝑗′ is the derivative of 𝑧𝑗. The summation of the integral, which we will call 𝐼,

depends only on the terms in B𝐸. That is,

𝐼
(︁
B𝐸

)︁
=
∑︁
𝑗

∫︁ 1

0
𝑟𝑗

2
𝑧𝑗′𝑑𝑠 (4.1.30)

We can use the expressions from equations 4.1.19 and 4.1.20 to see that 𝐻 can be

expressed in terms of 𝑅 and B𝐸:

𝐻 = 1
𝜋𝑅

2
𝐼
(︁
B𝐸

)︁ (4.1.31)

Therefore, 𝐵 =
{︁
𝑅, 𝑙𝑉 ,B𝐸

}︁
.

We define a class of shapes as the set of all possible values of 𝑅 and 𝑙𝑉 , with a fixed

B𝐸. That is, if 𝑘 is given, class C 𝑘 is

C 𝑘 ≡
{︁
𝑙𝑉 , 𝑅 | B𝐸 = B𝐸

𝑘 fixed
}︁

(4.1.32)

We have defined a class of shapes to be all shapes with a fixed B𝐸, which is defined
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in equation 4.1.28. We came up with the idea of classes to use them, as explained in

section 4.2, to find roots of the heave resonance equation.

4.1.4 Examples of classes of shapes

In this section, we will look at example of classes to help demonstrate the principle.

Cylinders

This class consists of all possible cylinders and so is the simplest class to understand.

We set 𝑟1 = 1 and 𝑧1 = −1 and all other terms in B𝐸 equal to 0:

(4.1.33)B𝐸
𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =

{︁
𝑎2, 𝑏2, 𝑎3, 𝑏3, ..., 𝑟1, 𝑧1, 𝑎22, 𝑏22, 𝑎23, 𝑏23, ...

}︁
= {0, 0, 0, 0, ..., 1,−1, 0, 0, 0, 0, ...}

and so the class is

C 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
{︁
𝑙𝑉 , 𝑅 | B𝐸 = B𝐸

𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
}︁

(4.1.34)

All cylinders are describable by 𝑙𝑉 and 𝑅. Figure 4-5 demonstrates some of the

cylinders in this set. Note that the x-axis is 𝑟
𝑙𝑉

and y-axis is 𝑧
𝑙𝑉

. The full class of

shapes consists of all values of 𝑅 and all values of 𝑙𝑉 . That is, it consists of all

cylinders. Given 𝑙𝑉 , increasing 𝑅, as shown in the figure, decreases 𝐻.

Figure 4-5: Example of a class of shapes: cylinders
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Class 𝑟1 = 2

Another class of shapes is all shapes with 𝑟1 = 2, 𝑧1 = −1 and all other parameters

in B𝐸 equal to 0:

(4.1.35)B𝐸
𝑟1 =2 =

{︁
𝑎2, 𝑏2, 𝑎3, 𝑏3, ..., 𝑟1, 𝑧1, 𝑎22, 𝑏22, 𝑎23, 𝑏23, ...

}︁
= {0, 0, 0, 0, ..., 2,−1, 0, 0, 0, 0, ...}

and so the class is

C 𝑟1=2 =
{︁
𝑙𝑉 , 𝑅 | B𝐸 = B𝐸

𝑟1=2}︁ (4.1.36)

Figure 4-6 shows associated shapes for this class. The ratio of the maximum radial

dimension (at the coordinate of the slope discontinuity) to the radius at the waterline

is fixed at 2, and the bottom remains flat. For a given 𝑙𝑉 as 𝑅 increases, 𝐻 decreases.

Figure 4-6: Example of class of shapes: 𝑟1 = 2, 𝑧1 = −1

Class 𝑧1 = −2

Another class of shapes is all shapes with 𝑟1 = 1, 𝑧1 = −2 and all other parameters

in B𝐸 equal to 0:

(4.1.37)B𝐸
𝑧1 =−2 =

{︁
𝑎2, 𝑏2, 𝑎3, 𝑏3, ..., 𝑟1, 𝑧1, 𝑎22, 𝑏22, 𝑎23, 𝑏23, ...

}︁
= {0, 0, 0, 0, ..., 1,−2, 0, 0, 0, 0, ...}
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and so the class is

C 𝑧1=−2 =
{︁
𝑙𝑉 , 𝑅 | B𝐸 = B𝐸

𝑧1=−2}︁ (4.1.38)

Figure 4-7 shows associated shapes for this class.

Figure 4-7: Example of class of shapes: 𝑟1 = 1, 𝑧1 = −2

Class 𝑎2 = −0.25

A class of shapes can be defined by a given coefficient of the parametric equations. For

example, a certain class of shapes could be all shapes with no slope discontinuities,

with 𝑎2 = −0.25 with all other coefficients equal to 0:

(4.1.39)B𝐸
𝑎2 =−0.25 =

{︁
𝑎2, 𝑏2, 𝑎3, 𝑏3, ...

}︁
= {−0.25, 0, 0, 0, ...}

and so the class is

C 𝑎2=−0.25 =
{︁
𝑙𝑉 , 𝑅 | B𝐸 = B𝐸

𝑎2=−0.25}︁ (4.1.40)

Figure 4-8 shows associated shapes for this class. The ratio of the maximum radial

dimension (this time not occurring at a slope discontinuity) to the radius at the

waterline is again fixed. For a given 𝑙𝑉 , as 𝑅 increases, 𝐻 decreases.
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Figure 4-8: Example of class of shape: 𝑎2 = −0.25

Class 𝑏2 = 0.25

Similarly, a class of shapes could be defined by the vector

(4.1.41)B𝐸
𝑏2 =0.25 =

{︁
𝑎2, 𝑏2, 𝑎3, 𝑏3, ...

}︁
= {0, 0.25, 0, 0, ...}

and so the class is

C 𝑏2=0.25 =
{︂
𝑙𝑉 , 𝑅 | B𝐸 = B𝐸

𝑏2=0.25
}︂

(4.1.42)

Figure 4-9 shows associated shapes for this class.

Figure 4-9: Example of class of shape: 𝑏2 = 0.25
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4.1.5 Groups of shapes

A group of shapes is a set of multiple classes of shapes, and our optimizations consider

entire groups at once, instead of just individual classes. We use the symbol G to

represent a group of shapes. In this section, the groups that are optimized.

Flat-bottomed shapes

The ‘flat-bottomed’ group contains all shapes consisting of two piecewise-linear seg-

ments with one slope discontinuity, with the bottom segment being horizontal. That

is, 𝑧1 = −1 and 𝑟1 > 0.

We showed one of the classes belonging to this group in figure 4-6. Class C 𝑟1=2 is

defined in equation 4.1.38, with B𝐸 shown in equation 4.1.37. The group is defined

as

G 𝐹𝐵 =
{︁
C 𝑟1=𝑟11

,C 𝑟1=𝑟12
, ...
}︁

(4.1.43)

where C 𝑟1=𝑟1𝑖 is

C 𝑟1=𝑟1𝑖 =
{︂
𝑅, 𝑘𝑙𝑉 |B𝐸 = B𝐸

𝑟1=𝑟𝑖
1
}︂

(4.1.44)

where B𝐸
𝑟1=𝑟1𝑖

is

B𝐸
𝑟1=𝑟1𝑖

=
{︁
0, 0, 0, 0, ..., 𝑟1

𝑖,−1, 0, 0, 0, 0, ...
}︁

(4.1.45)

Figure 4-10 illustrates shapes included in this group. Each column represents one

class of shapes. The figures show one example shape in each class.
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Figure 4-10: ‘Flat-bottomed’ group of shapes: linear piecewise segments with one
slope discontinuity at (𝑟1, 𝑧1). 𝑧1 = 𝑧1

𝐻
= −1, so that the segment from the centerline

to the slope discontinuity is horizontal. 𝑟1 = 𝑟1
𝑅
> 1 represents a ‘protruding outwards’

shape

Flat-sided shapes

Another group of shapes, called ‘flat-sided shapes’ consists of all classes of shapes

with 𝑟1 = 1 and 𝑧1 < 0. That is, the walls are vertical from the waterline to the slope

discontinuity. The group is defined as

G 𝐹𝑆 =
{︁
C 𝑧1=𝑧11

,C 𝑧1=𝑧12
, ...
}︁

(4.1.46)

where C 𝑧1=𝑧1𝑖 is

C 𝑧1=𝑧1𝑖 =
{︂
𝑅, 𝑘𝑙𝑉 |B𝐸 = B𝐸

𝑧1=𝑧𝑖
1
}︂

(4.1.47)

where B𝐸
𝑧1=𝑧1𝑖

is

B𝐸
𝑧1=𝑧1𝑖

=
{︁
0, 0, 0, 0, ..., 1, 𝑧1

𝑖, 0, 0, 0, 0, ...
}︁

(4.1.48)

Figure 4-11 shows examples of shapes in each class to form the group.
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Figure 4-11: ‘Flat-sided’ group of shapes: piecewise linear segments with one slope
discontinuity at (𝑟1, 𝑧1). 𝑟1 = 𝑟1

𝑅
= 1, so that the segment from the waterline to the

slope discontinuity is vertical. 𝑧1 = 𝑧1
𝐻
< −1 represents a ‘dipping down’ shape

All ‘one-kink’ shapes

The group of shapes with one slope discontinuity, with two piecewise linear segments,

is called ‘one-kink shapes.’ This group consists of all classes with different values of

𝑟1 and 𝑧1, with all other shape parameters 0. The group is defined as

G 𝑂𝐾 =
{︁
C (𝑟1,𝑧1)=(𝑟11,𝑧11),C (𝑟1,𝑧1)=(𝑟12,𝑧12), ...

}︁
(4.1.49)

where C (𝑟1,𝑧1)=(𝑟1𝑖,𝑧1𝑖) is

C (𝑟1,𝑧1)=(𝑟1𝑖,𝑧1𝑖) =
{︂
𝑅, 𝑘𝑙𝑉 |B𝐸 = B𝐸

(𝑟1,𝑧1)=(𝑟1𝑖,𝑧1𝑖)
}︂

(4.1.50)

where B𝐸
(𝑟1,𝑧1)=(𝑟1𝑖,𝑧1𝑖) is

B𝐸
(𝑟1,𝑧1)=(𝑟1𝑖,𝑧1𝑖) =

{︁
0, 0, 0, 0, ..., 𝑟1

𝑖, 𝑧1
𝑖, 0, 0, 0, 0, ...

}︁
(4.1.51)

Figure 4-12 shows example shapes, with one example shape from a range of classes

with 𝑟1 from 0.25 to 1.5 and 𝑧1 from −0.25 to −1.5.
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Figure 4-12: ’One-kink’ group of shapes: piecewise linear segments with one slope
discontinuity at (𝑟1, 𝑧1). 𝑧1 = 𝑧1

𝐻
< −1 represents a ‘dipping down’ shape, and

𝑟1 = 𝑟1
𝑅
> 1 represents a ‘protruding outward’ shape

Compound cylinders

Another group of shapes is the compound cylinder. This is the group of shapes that

can be made from two cylinders of differing widths being stacked one on top of the

other. Therefore, the shape is known if 𝑙𝑉 , 𝑅, 𝑟2 and 𝑧2 are known, where (𝑟2𝑧2) is

the coordinate of the intersection of the two cylinders. The group is defined as

G 𝐶𝐶 =
{︁
C (𝑟2,𝑧2)=(𝑟21,𝑧21),C (𝑟2,𝑧2)=(𝑟22,𝑧22), ...

}︁
(4.1.52)

where C (𝑟2,𝑧2)=(𝑟2𝑖,𝑧2𝑖) is

C (𝑟2,𝑧2)=(𝑟2𝑖,𝑧2𝑖) =
{︂
𝑅, 𝑘𝑙𝑉 |B𝐸 = B𝐸

(𝑟2,𝑧2)=(𝑟2𝑖,𝑧2𝑖)
}︂

(4.1.53)
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where B𝐸
(𝑟2,𝑧2)=(𝑟2𝑖,𝑧2𝑖) is

B𝐸
(𝑟2,𝑧2)=(𝑟2𝑖,𝑧2𝑖) =

{︁
0, 0, 0, 0, ..., 𝑟2

𝑖, 𝑧2
𝑖, 0, 0, 0, 0, ...

}︁
(4.1.54)

These shapes have three slope discontinuities, and 4 piecewise-linear segments. 𝑟2

can be any number greater than 0, and 𝑧2 must be between -1 and 0. Figure 4-13

shows example shapes from a range of classes in the group.

Figure 4-13: Compound cylinder group of shapes: shapes consisting of one cylinder
on top of another. 𝑟2 = 𝑟2

𝑅
is the ratio of the radius of the bottom cylinder to the

radius of the top cylinder. Therefore, 𝑟2 > 1 represents a larger bottom cylinder.
𝑧2 = 𝑧2

𝐻
is the ratio of the draft of the top cylinder to the total draft.

All no-kink 2nd-order shapes

The final group of shapes we optimize in this thesis is called ’no-kink 2nd-order’

shapes. This group consists of all shapes with no slope discontinuities, with nonzero

2nd-order coefficients of both parametric equations. It is defined by

G 𝑁𝐾2𝑂 =
{︂
C (𝑎2,𝑏2)=(𝑎21,𝑏2

1),C (𝑎2,𝑏2)=(𝑎22,𝑏2
2), ...

}︂
(4.1.55)

where C (𝑎2,𝑏2)=(𝑎2𝑖,𝑏2
𝑖) is
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C (𝑎2,𝑏2)=(𝑎2𝑖,𝑏2
𝑖) =

{︂
𝑅, 𝑘𝑙𝑉 |B𝐸 = B𝐸

(𝑎2,𝑏2)=(𝑎2𝑖,𝑏2
𝑖)
}︂

(4.1.56)

where B𝐸
(𝑎2,𝑏2)=(𝑎2𝑖,𝑏2

𝑖) is

B𝐸
(𝑎2,𝑏2)=(𝑎2𝑖,𝑏2

𝑖) =
{︁
𝑎2, 𝑏2, 0, 0, ...

}︁
(4.1.57)

Figure 4-14 shows example shapes from a range of classes in the group.

Figure 4-14: ‘No-kinks-2nd-order’ group of shapes: one second-order continuous seg-
ment with no slope discontinuities. The parametric equations ahve coefficients of the
second-order polynomial basis function 𝑎2 and 𝑏2 (in the 𝑟 and 𝑧 directions, respec-
tively). 𝑎2 = 𝑎2

𝑅
< −0.1 signifies a ‘protruding outward’ shape and 𝑏2 = 𝑏2

𝐻
> 0.1

signifies a ‘dipping down’ shape

In this section, the geometric description of shapes that we developed to be able

to represent many geometries by changing few parameters was presented. These
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parameters are the radius at the waterline, 𝑅, the draft at the centerline, 𝐻, the

coordinates of any slope discontinuities and the coefficients of parametric polynomial

basis functions. Then, the idea of a class of shapes was introduced. A class of

shapes is the set of shapes with all geometric parameters other than 𝑅 and 𝐻 fixed,

and we showed some examples of different classes. Finally, the groups of shapes

(sets of multiple classes of shapes) that are optimized in this thesis were defined and

illustrated.

4.2 Theorem for finding roots of heave resonance

equation

In this section, a novel theorem for finding roots of the heave resonance equation is

presented and proved. This theorem adds to our understanding of resonating heave

bodies, and it significantly decreases computational burden in our optimization by

allowing us to semi-analytically solve for resonating shapes, instead of looking for

them with brute-force methods.

4.2.1 Theorem

Consider a WEC of volume 𝑙3𝑉 , with an incoming wave of unit-amplitude and wavenum-

ber 𝑘. Suppose body class vector B𝐸 is given. If nondimensional added-mass co-

efficient, 𝐴33 = 𝐴33
𝜌𝑙3𝑉

, where 𝐴33 is the dimensional added mass coefficient, can be

approximated by the function

𝐴33 = 𝑓(𝑅, 𝑘𝑙𝑉 ) = 𝐴(𝑘𝑙𝑉 )𝑅3 (4.2.1)

with the following restrictions on 𝐴(𝑘𝑙𝑉 ):

1. 𝐴(𝑘𝑙𝑉 ) > 0 for all 𝑘𝑙𝑉 > 0

2. Δ = 𝑘𝑙𝑉
[︁
−27 (𝐴(𝑘𝑙𝑉 ))2 (𝑘𝑙𝑉 )3 + 4𝜋3

]︁
must have 1 positive real root, (𝑘𝑙𝑉 )𝑚𝑎𝑥,

such that Δ > 0 for 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥 and Δ < 0 for 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥
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then for 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥 there are two shapes, with 𝑅-values 𝑅1 and 𝑅2, that achieve

resonance, and for 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥 there are no shapes that achieve resonance.

4.2.2 Proof

For a shape to achieve resonance, it must solve the resonance equation:

𝐶33 − 𝜔2 (𝑚+ 𝐴33) = 0 (4.2.2)

For a floating body in deep water, and assuming small motion, this becomes

𝜋𝑔𝑅2 − 𝑘𝑔
(︁
𝜌𝑎3 + 𝐴33

)︁
= 0 (4.2.3)

Dividing this equation by 𝑔𝜌𝑙2𝑉 , the resonance condition can be defined by:

𝜋𝑅
2 − 𝑘𝑙𝑉

(︁
1 + 𝐴33

)︁
= 0 (4.2.4)

Putting the expression for 𝐴33 from equation 4.2.1, into this version of the resonance

condition, we get

𝐺(𝑅, 𝑘𝑙𝑉 ) = 𝜋𝑅
2 − 𝑘𝑙𝑉

(︁
1 + 𝐴(𝑘𝑙𝑉 )𝑅3)︁ = 0 (4.2.5)

Since 𝐴(𝑘𝑙𝑉 ) > 0 for all 𝑘𝑙𝑉 > 0, the Descartes’ rule of signs tells us that there is

always one real negative root and either 0 or 2 real positive roots.

It is known that the sign of the cubic discriminant, Δ, reveals the number of real

roots:

∙ If Δ > 0 the equation has 3 real roots (in our case, 1 negative and 2 positive),

∙ If Δ < 0 the equation has 1 real root (in our case, 1 negative) and 2 complex

conjugate roots.

Therefore, if Δ has one positive real root, (𝑘𝑙𝑉 )𝑚𝑎𝑥, and for 0 < 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥,Δ > 0

and for 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥,Δ < 0, then we can say that for 0 < 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥 there are

two resonant shapes, defined by the two positive real roots of equation 4.2.5, 𝑅1(𝑘𝑙𝑉 )
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and 𝑅2(𝑘𝑙𝑉 ), and for 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥 there are no resonant shapes, since there are no

positive real roots of equation 4.2.5.

Note: We could equivalently solve the equation Δ
𝑘𝑙𝑉

= 0 to find (𝑘𝑙𝑉 )𝑚𝑎𝑥, and if

we show that for 0 < 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥, Δ
𝑘𝑙𝑉

> 0 and for 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥, Δ
𝑘𝑙𝑉

< 0,

this is equivalent to showing that for 0 < 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥,Δ > 0 and for 𝑘𝑙𝑉 >

(𝑘𝑙𝑉 )𝑚𝑎𝑥,Δ < 0.

4.2.3 Discussion of theorem and its use

From equation 4.2.5, it becomes apparent why defining a class of shapes is impor-

tant: we need all other geometric parameters to be defined other than ł𝑉 and 𝑅 so

that 𝐺(𝑅, 𝑘𝑙𝑉 ) was only a function of those two variables. Every organism in our

optimization algorithm is defined by a vector 𝑉 :

𝑉 =
{︁
𝑘𝑙𝑉 B𝐸

}︁
(4.2.6)

So for each 𝑉 𝑖, we get 𝐴33 values for a ‘few’ (around 10) values of 𝑅. Then, this data

is fit to the the curve

𝐴33 = 𝐴𝑐𝑅
3 (4.2.7)

where𝐴𝑐 is a constant, since 𝑘𝑙𝑉 is given. Then, we calculate Δ = (𝑘𝑙𝑉 )
[︁
−27 (𝐴𝑐)2 (𝑘𝑙𝑉 )3 + 4𝜋3

]︁
,

to determine if there are 0 (if Δ < 0) or 2 (if Δ > 0) positive real roots to the res-

onance equation. If there are two, we find them by putting equation 4.2.7 into 4.2.5

which becomes

− (𝑘𝑙𝑉 )𝐴𝑐𝑅
3 + 𝜋𝑅

2 − 𝑘𝑙𝑉 = 0 (4.2.8)

which is just a cubic equation for 𝑅 and can be solved explicitly. From our theorem,

we know that the solution will give one negative root and two positive roots, 𝑅1(𝑉 𝑖)

and 𝑅2(𝑉 𝑖). The resonating shapes are defined by 𝐵1 =
{︁
𝑅1(𝑉 𝑖), 𝑉 𝑖

}︁
and 𝐵2 ={︁

𝑅2(𝑉 𝑖), 𝑉 𝑖

}︁
. Note that this theorem is not specific to Chebyshev polynomials. For
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example, if shapes were described by a Fourier basis, it would still be valid.

This theorem essentially speeds up our optimization algorithm by removing one degree

of freedom from the algorithm, using formulas and semi-analytic theory. Without the

theorem, we would need to search many values of 𝑅 to find where the resonance

equation is true. Due to the nature of the resonance equation, these roots are hard to

find without prior knowledge of (1) how many there will be, and (2) where they might

be. Because of this theorem, our process is 100x more efficient than brute-force

tests.

Additionally, if for a given 𝑉
* =

{︁
𝑘𝑙*𝑉 ,B𝐸

*}︁, there are 0 roots of the resonance

equation, from the theorem we know that for any 𝑘𝑙𝑉 > 𝑘𝑙*𝑉 , for the given B𝐸 = B𝐸
*,

there are also 0 roots of the resonance equation, so we can automatically disregard any

𝑉 𝑖 with B𝐸 = B𝐸
* and 𝑘𝑙𝑉 > 𝑘𝑙*𝑉 . This also significantly increases our optimization

computation time.

In this section, we presented a novel theorem to find roots of the heave resonance

equation, which adds to our understanding of the problem and significantly reduces

our computational time to solve the optimization problem.

4.2.4 Computational notes

All hydrodynamic parameters are from WAMIT (Lee, 1996; Lee and Newman, 2006),

a linear frequency-domain panel method. To ensure that our grids are well suited to

the method, we ensure close to square panels. Furthermore, we have a wrapper around

each run to make sure the hydrodynamic parameters do not differ by more than 3 %

after adding another panel to the smallest arclength, and also adding corresponding

panels to other arclengths to keep the panels close to squares.

For thin, shallow shapes, we interpolate the functions to pure disks (𝐻 = 0). For

heave hydrodynamic parameters, we use a linear interpolation, and for surge and

pitch parameters we use a quadratic interpolation. In both cases we found that this
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interpolation converged to the actual parameters. For asymptotic values (for 𝐻 = 0),

for heave hydrodynamic parameters we use the values from Miles (1987), and for

pitch hydrodynamic parameters we use the values from Kim (1963).

To speed up the optimization, we use a 2D+ interpolation among each group of shapes

for the roots of the resonance equations, 𝑅1 and 𝑅2, as well as the body motion for the

shape with 𝑅2, 𝜉3(𝑅). For example, for one-kink shapes, the interpolation is for 𝑟1, 𝑧1

and 𝑘𝑙𝑉 . For each group of shapes, we verified that the interpolation was well defined

and produced accurate values of the three parameters. This interpolation sped up

the process of finding the Pareto Front considerably, and once the final Pareto Front

was determined, the shapes on the Pareto Front were checked by running WAMIT to

ensure the accuracy.

4.3 General observations and conclusions for any

given class of shapes

In our optimization runs, we run the optimization for entire groups of shapes, but it

is informative to look at general observations and conclusions that can be made for

any given class of shapes.

The populations and Pareto Fronts will be plotted in the 𝑘𝑙𝑉 −𝑘𝑙𝑆 space. The plot of

the shape of the curve of the population in 𝑘𝑙𝑉 −𝑘𝑙𝑆 will directly impact the resulting

Pareto Front, so determining a general pattern in the curve of the population in the

𝑘𝑙𝑉 − 𝑘𝑙𝑆 plot will enable us to make conclusions about the resulting Pareto Front.

The symbol 𝒮 will symbolize the curve of a set in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space. For example,

the curve of the heave population would be represented as 𝒮(P3).

We start with the set of shapes that solve the heave resonance equation, R3, since

the population is the intersection of R3 with the sets of shapes that adhere to the

heave motion constraint, A3, and heave steepness constraint, E3. Given B𝐸, the set

of shapes in C B𝐸 that solve the heave resonance equation will be called RB𝐸
3 . That
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is, C B𝐸 ∩ R3 = RB𝐸
3 . Given 𝛼 and 𝜖, the heave population for C B𝐸 will then be

PB𝐸
3,𝛼,𝜖 = RB𝐸

3 ∩ A3(𝛼) ∩ E3(𝜖)

To form the heave-surge-pitch population, we again start with RB𝐸
3 , since the pop-

ulation is the intersection of RB𝐸
3 with the set of shapes that adhere to the heave

motion constraint, A3, the heave steepness constraint, E3, the surge motion con-

straint, A1, the pitch motion constraint, A5, the pitch steepness constraint, E5,

the pitch moment of inertia constraint, I15, and the center of gravity constraint,

Z15. That is, for a given 𝛼 and 𝜖, the heave-surge-pitch population for C B𝐸 will be

PB𝐸
135,𝛼,𝜖 = RB𝐸

3 ∩ A3(𝛼) ∩ E3(𝜖) ∩ A5(𝛼) ∩ A1(𝛼) ∩ E5(𝜖) ∩ I15 ∩ Z15.

Therefore, we first need to examine 𝒮(RB𝐸
3 ), the curve of the plot of RB𝐸

3 in the

𝑘𝑙𝑉 − 𝑘𝑙𝑆 space, and then see how 𝒮(RB𝐸
3 ) is affected by the different constraints. In

the next chapter, we use the cylinder as an example to demonstrate these principles

with an easily describable shape.

4.3.1 The set of all shapes in a class that solve the heave

resonance equation

To understand the shape of 𝒮(RB𝐸
3 ), we look at the equations for 𝑘𝑙𝑉 and 𝑘𝑙𝑆 of

resonating bodies, given B𝐸. We can solve the heave resonance equation, with the

approximation for added mass, given in equation 4.2.5, for 𝑘𝑙𝑉 , to get an implicit

expression for 𝑘𝑙𝑟𝑒𝑠𝑉 , in terms of 𝐴(𝑘𝑙𝑟𝑒𝑠𝑉 )

𝑘𝑙𝑟𝑒𝑠𝑉 = 𝜋𝑅
2

1 + 𝐴(𝑘𝑙𝑟𝑒𝑠𝑉 )𝑅3 (4.3.1)

Since the geometry is described by piecewise parametric equations, and since the

body is axisymmetric, we know that 𝑘𝑙𝑆 can be expressed as

𝑘𝑙𝑆 = 𝑘𝑙𝑉

⎯⎸⎸⎸⎸⎷2𝜋𝑅
𝐽∑︁
𝑗

∫︁ 1

0
𝑟𝑗(𝑠)

⎯⎸⎸⎸⎷𝑅2
𝑟𝑗(𝑠)

′2 + 𝑧𝑗(𝑠)
′2

𝜋2𝑅
4
𝐼(B𝐸)2

𝑑𝑠 (4.3.2)
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where 𝐽 is the number of piecewise continuous segments of the shape, 𝑟𝑗(𝑠) and 𝑧𝑗(𝑠)

are the parametric equations for piece 𝑗, and 𝐼(B𝐸) is defined in equation 4.1.30.

𝑟𝑗(𝑠) = 𝑟𝑗(𝑠)
𝑅

and 𝑧𝑗(𝑠) = 𝑧𝑗(𝑠)
𝐻

, so given B𝐸, everything in the square-root expression

in equation 4.3.2 is known besides 𝑅.

We can put equation 4.3.1 into equation 4.3.2 for 𝑘𝑙𝑉 to get an expression for 𝑘𝑙𝑆 of

resonating bodies in terms of 𝑅 and 𝐴(𝑘𝑙𝑉 ):

𝑘𝑙𝑟𝑒𝑠𝑆 = 𝜋𝑅
2

1 + 𝐴(𝑘𝑙𝑟𝑒𝑠𝑉 )𝑅3

⎯⎸⎸⎸⎸⎷2𝜋𝑅
𝐽∑︁
𝑗

∫︁ 1

0
𝑟𝑗(𝑠)

⎯⎸⎸⎸⎷𝑅2
𝑟𝑗(𝑠)

′2 + 𝑧𝑗(𝑠)
′2

𝜋2𝑅
4
𝐼(B𝐸)2

𝑑𝑠 (4.3.3)

Therefore, equations 4.3.1 and 4.3.3 give parametric equations for 𝑘𝑙𝑉 and 𝑘𝑙𝑆 in terms

of parameter 𝑅. These are equations for the cube-root of volume and square-root of

surface area of heave-resonating bodies.

For all B𝐸 considered in this thesis, we have observed that equations 4.3.1 and 4.3.3

result in a curve in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space such as the one shown in figure 4-15.
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Figure 4-15: Example of 𝒮(RB𝐸
3 ), the curve of the set of all shapes in class C B𝐸 that

solve the heave resonance equation in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space

The characteristics of this curve, labeled 𝒮(RB𝐸
3 ), which are true for any given B𝐸,

are that it

∙ Is one-to-one

∙ Is concave down

∙ Starts at (0,0)

∙ Has a maximum at 𝑘𝑙𝑚𝑎𝑥𝑉

∙ Has a positive slope for the left ‘branch,’ consisting of the lower roots of the

resonance equation, 𝑅1, and a negative slope for the right ‘branch,’ consisting

of the larger roots of the resonance equation, 𝑅2.

Recall the relation between 𝐻 and 𝑅, given B𝐸 (equation 4.1.31). Therefore, for

𝑅 = 0 (and thus 𝐻 = ∞), 𝑘𝑙𝑆 = 𝑘𝑙𝑉 = 0. As 𝑅 increases (and thus 𝐻 decreases), we

have observed that 𝑘𝑙𝑆 increases as well, so we can think of the curve as a parametric
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equation curve, with the parameter being 𝑅. Progressing along the curve, 𝑅 gets

larger and 𝐻 gets smaller. Therefore, for the lowest left part of the curve the shapes

are deep and narrow (like a SPAR buoy), and for the lowest right part of the curve

the shapes are shallow and wide (like a disk). This is illustrated in figure 4-16.

Figure 4-16: Some general characteristics observed for the set of all shapes of a
given class that solve the heave resonance equation, plotted in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space:
for 𝑘𝑙𝑉 = 𝑘𝑙𝑆 = 0, the shape is deep and narrow. Progressing along the curve, 𝑅
increases and 𝐻 decreases, until the bottom left where the shape is wide and shallow
(like a disk)

These observations and resulting conclusions are true for any given class of shape that

we considered in this thesis. For a different class, the value of (𝑘𝑙𝑉 )𝑚𝑎𝑥 will change,

as well as the value of 𝑘𝑙𝑆 when 𝑘𝑙𝑉 = (𝑘𝑙𝑉 )𝑚𝑎𝑥, and the slopes of the left and right

branches. Figure 4-17 shows a few examples of 𝒮(RB𝐸
3 ) for different B𝐸. But the

general characteristics of the curve (one-to-one, concave down, with a maximum at

(𝑘𝑙𝑉 )𝑚𝑎𝑥) are true for each class.
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Figure 4-17: Examples of 𝒮(RB𝐸
3 ) for different B𝐸

Therefore, we have shown general observations about the general shape of 𝒮(RB𝐸
3 ),

the curve of the set of shapes in class C B𝐸 that solve the heave resonance equation,

plotted in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space. Knowing these general characteristics of 𝒮(RB𝐸
3 ), we

can now determine how and where the constraints affect it, to be able to determine

the shape of the final heave population.

4.3.2 Heave motion constraint

The heave motion constraint is, given 𝛼,

|𝜉3|
𝐴

< 𝛼 (4.3.4)

In this section, we will consider the case of a SPAR buoy to show that deep, narrow

shapes move the most at resonance. From this fact, we can conclude that the heave

motion constraint will eliminate shapes from the bottom left branch of 𝒮(RB𝐸
3 ).

Consider a long, thin vertical cylinder. If we assume 𝑅/𝐻 << 1, with 𝜆/𝐻 = 𝑂(1),
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slender-body theory tells us that we can approximate exciting force by the Froude-

Krylov force. The heave exciting force is

𝑋3 =
∫︁∫︁

𝑝𝑛3𝑑𝑆 (4.3.5)

Since we assume the shape is a cylinder, the only surface with 𝑛3 ̸= 0 is the bottom.

Therefore, the force will be:

𝑋𝐹𝐾
3 = (𝜋𝑅2)𝑝|𝑧=−𝐻,𝑥=𝑦=0 (4.3.6)

The Froude-Krylov force uses the incident potential. For deep water, the incident

wave potential is

𝜑𝐼 = 𝑅𝑒
{︂
𝑖
𝑔𝐴

𝜔
𝑒𝑘𝑧𝑒𝑖(𝑘𝑥−𝜔𝑡)

}︂
(4.3.7)

From the linear Bernoulli equation, pressure is

𝑝 = −𝜌𝜕𝜑
𝜕𝑡

(4.3.8)

Putting equation 4.3.7 into equation 4.3.8, and calculating the value at 𝑧 = −𝐻 and

𝑥 = 𝑦 = 0, and inputting that into equation 4.3.6, we get

𝑋𝐹𝐾
3 = 𝑅𝑒

{︁
𝜋𝑅2𝜌𝑔𝐴𝑒−𝑘𝐻𝑒𝑖𝜔𝑡

}︁
(4.3.9)

Using the Haskind relation (Haskind, 1957), the heave damping coefficient can be

expressed as

𝐵33 = 𝑘|𝑋3|2

4𝐴2𝜌𝑔𝑉𝑔
(4.3.10)

Since we are approximating exciting force by the Froude-Krylov force, |𝑋3| will be

|𝑋𝐹𝐾
3 |. Therefore, the damping coefficient will be

𝐵33 = 𝑘 (𝜋𝑅)2 𝜌𝑔𝐴2𝑒−2𝑘𝐻

4𝑉𝑔
(4.3.11)
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The square of the amplitude of heave body motion at resonance is

|𝜉3|2

𝐴2 = |𝑋3|2

4𝜔2𝐵2
33

(4.3.12)

Using the Haskind relation again, this becomes

|𝜉3|2

𝐴2 = 𝜌𝑔𝑉𝑔
𝑘𝜔2𝐵33

(4.3.13)

Therefore, putting in our expression for approximate heave damping coefficient, given

by equation 4.3.11, taking the square-root, and assuming unit-amplitude, we get an

expression for the amplitude of heave body motion for a long vertical body:

|𝜉3|=
𝑉𝑔𝑒

𝑘𝐻

𝑘𝜔𝜋𝑅2 (4.3.14)

We can see from this equation that as 𝑅 decreases and 𝐻 increases, this motion will

increase. In the limit, all long slender bodies can be approximated by a cylinder,

so we justify the approximation that as shapes become deeper and narrower, their

resonance motion becomes larger.

The heave motion constraint eliminates any shape for which |𝜉3|
𝐴
> 𝛼, for a given 𝛼.

Therefore, it will eliminate the shapes which have the largest heave motion value. As

mentioned earlier, the shapes at the lower left branch of 𝒮(RB𝐸
3 ) are the ones that

are deepest and narrowest, so these are the shapes that will be eliminated first by

the heave motion constraint. This is illustrated in figure 4-18. As 𝛼 decreases (and

thus the motion constraint becomes more restrictive), more of the lower left branch

of 𝒮(RB𝐸
3 ) is eliminated.
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Figure 4-18: The effect of the heave motion constraint: as 𝛼 decreases (so that
the constraint becomes more restrictive), more of the left branch of 𝒮(RB𝐸

3 ) will be
eliminated.

This shows how the heave motion constraint affects 𝒮(RB𝐸
3 ): it eliminates shapes

from the bottom left branch.

4.3.3 Heave steepness constraint

The heave steepness constraint is, given 𝜖,

𝑘𝐻 > 𝜖
|𝜉3|
𝐴

(4.3.15)

This constraint will affect shapes that are shallow (with a small 𝐻) and shapes with a

large resonance motion (large |𝜉3|
𝐴

). As shown in the previous section, the shapes with

the largest |𝜉3|
𝐴

are the ones on the bottom left branch of 𝒮(RB𝐸
3 ). The shapes with

the smallest 𝑘𝐻 values are those at the bottom right branch. Therefore, as illustrated

in figure 4-19, the heave steepness constraint eliminates shapes from the bottom left

and bottom right branch. Larger 𝜖 gives a more restrictive constraint, so the higher

𝜖 will eliminate more from each side.
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Figure 4-19: The effect of the heave steepness constraint on 𝒮(RB𝐸
3 ). The heave

steepness constraint eliminates shapes where 𝑘𝐻 < 𝜖 |𝜉3|
𝐴

, so as 𝜖 increases (so that
the constraint becomes more restrictive), more from the ends of both branches will
be eliminated.

This shows how the heave motion constraint affects 𝒮(RB𝐸
3 ): it eliminates shapes

from the bottom left branch and the bottom right branch.

4.3.4 Resulting shape of the heave population curve and Pareto

Front

The heave population for class C B𝐸 is made up of all shapes in C B𝐸 that are in

resonance in heave and adhere to the heave motion constraint and the heave steepness

constraint. 𝒮(RB𝐸
3 ), the curve of the set of all shapes from class C B𝐸 that resonate in

heave in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space looks something like the ones shown in figure 4-17. The

𝛼 constraint affects the graph as shown in figure 4-18, and the 𝜖 constraint affects the

graph as shown in figure 4-19.

Therefore, given B𝐸 the shape of the final heave population, P3, will be one of the

132



three general shapes shown in figure 4-20. Which of these shapes P3 will take depends

on the shape of 𝒮(RB𝐸
3 ), and where the constraints affect the particular class of shapes.

The shapes of these curves for the population in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space will be referred

to as P𝐴, P𝐵, and P𝐶 .

Figure 4-20: Different options for the shape of P3, the final heave population curves,
for a given class of shapes. The shapes of curves for the population will be referred
to as P𝐴, P𝐵, and P𝐶

The resulting Pareto Fronts for each of these three options for the population shape
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are given in figure 4-21. For option A, the PF is a single dot from the left branch and

a cluster of points from the right branch. For option B, it is just the single dot from

the left branch. For option C, it is a cluster of shapes from the right branch. The

shapes of these curves for the Pareto Front in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space will be referred to

as PF𝐴, PF𝐵, and PF𝐶 .

Figure 4-21: Corresponding Pareto Fronts for the options for the shape of the final
heave population curve, shown in figure 4-20. The shapes of curves for the Pareto
Front will be referred to as PF𝐴, PF𝐵, and PF𝐶
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Following the observation of the shape of curve 𝒮(RB𝐸
3 ), we have shown in this section

that, after eliminating shapes that do not adhere to the heave constraints, the shape of

the final heave population, P3,𝛼,𝜖, will fall into one of three categories, called P𝐴,P𝐵
and P𝐶 , shown in figure 4-20, and the corresponding shapes of the Pareto Fronts,

called PF𝐴,PF𝐵 and PF𝐶 , are shown in figure 4-21.

If PF3 has shape PF𝐴 or PF𝐵, we know that the lone point is determined by one

of the two constraints. Since both the heave motion constraint as well as the heave

steepness constraint eliminate shapes from the lower left branch of 𝒮(RB𝐸
3 ), we cannot

predict which constraint will determine this point. Furthermore, we do not know what

the geometry of the WEC represented by this point will be since it depends on its

added mass and damping coefficients. In fact, we cannot say a priori which shape

– PF𝐴,PF𝐵 or PF𝐶 – the Pareto Front will take for a given B𝐸 because we cannot

know the shape of 𝒮(RB𝐸
3 ), and furthermore we cannot say how much of 𝒮(RB𝐸

3 ) the

constraints will eliminate.

An interesting, somewhat counter-intuitive phenomenon occurs because of the nature

of the shape of 𝒮(RB𝐸
3 ) and how the constraint affect it: as the constraints affecting

the lower left branch become stricter, more of the lower left branch is eliminated. So,

the Pareto Front could go from PF𝐵 to PF𝐴 to PF𝐶 . Therefore, as the constraints

become stricter, the Pareto Front becomes fuller : there are more shapes on the

Pareto Front, and less determined by the constraints. This conclusion, which is true

for any given class of shapes, was enabled by the observation of the general shape of

𝒮(RB𝐸
3 ), as well as our conclusions about the how the constraints form the shapes of

the population and resulting Pareto Front.

4.3.5 Resulting shape of the heave-surge-pitch population

curve and Pareto Front

Given B𝐸, 𝛼 and 𝜖, the final population for the heave-surge-pitch case, called P135,𝛼,𝜖,

is formed by eliminating shapes from RB𝐸
3 that do not adhere to the heave-surge-pitch
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constraints. We know that the stability of the shape will increase with increasing 𝑅,

so we can say that the upper-bound of the center of gravity constraint (𝑧𝐺 < 𝑧𝑚𝑎𝑥𝐺 )

will affect the lower left branch. The pitch moment of inertia constraint (that the

expression for 𝐼55 must be greater than 0) will affect shapes with large 𝐴55, large 𝐴15,

small 𝑅, small volume and/or small 𝑧𝐵. Otherwise, however, generally determining

the shape of the populations and Pareto Fronts for the heave-surge-pitch case is much

more difficult than for the heave-only case. This is because the constraints do not

only affect the ends of the curves. Since they can affect the middle, the populations in

the end could be disjointed, making it impossible to generalize what the shape of the

curve will be. We go through each constraint in the next chapter for the case of the

cylinder and show where and how they affect the shape of the final heave-surge-pitch

population.

4.3.6 Summary

In this section, we examined the behavior of the population of any given class of

shapes in the context of our optimization process and goals. Because our optimization

functions are to minimize 𝑘𝑙𝑉 and 𝑘𝑙𝑆, we examined the population in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆

space.

Given B𝐸, the curve of the set of shapes in C B𝐸 that solve the heave resonance

equation in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space is called 𝒮(RB𝐸
3 ). We observed that, for any given

B𝐸, 𝒮(RB𝐸
3 ) has certain common characteristics: the curve is one-to-one and concave

down, with a maximum 𝑘𝑙𝑉 value at (𝑘𝑙𝑉 )𝑚𝑎𝑥, a positive slope before this maximum

point and a negative slope after the maximum point. Examples are shown in figure

4-17.

The left branch of 𝒮(RB𝐸
3 ) corresponds to the shape with 𝑅 value given by the smaller

of the two roots of the heave resonance equation, and the right branch of 𝒮(RB𝐸
3 )

corresponds to the shape with 𝑅 value given by the larger of the two roots of the

heave resonance equation.
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The lower left branch of 𝒮(RB𝐸
3 ) corresponds to shapes with small 𝑅, and thus large

𝐻, meaning that the shapes are deep and narrow. Along the curve, 𝑅 increases and

𝐻 decreases, meaning that the shapes become wider and thinner, until the lower right

branch which corresponds to an infinitely thin disk.

As shown in section 4.3.2, deeper, narrower shapes move more at resonance. There-

fore, the heave motion constraint will affect the lower left branch of 𝒮(RB𝐸
3 ). The

heave steepness constraint affects shapes with small 𝑘𝐻 or large |𝜉3|
𝐴

values. Therefore,

it affects both the lower right branch and the lower left branch of 𝒮(RB𝐸
3 ).

The heave population consists of all the resonating shapes that adhere to the heave

motion constraint and the heave steepness constraint, so we concluded that the three

possible general shapes of the curve of the population in the 𝑘𝑙𝑉 −𝑘𝑙𝑆 plane are shown

in figure 4-20. The corresponding Pareto Front curves are shown in figure 4-21.

In the next chapter, we look at the cylinder class. This will give a concrete example to

all of the observations and conclusions we discussed in this section. We will show what

𝒮(RB𝐸
3 ) looks like and how each constraint affects this curve to form the populations.

4.4 Forming heave and heave-surge-pitch popula-

tions and Pareto Fronts for groups of shapes

In the previous section, we examined populations and Pareto Fronts for a single class

of shapes. In this section, we will discuss how populations and Pareto Fronts are

formed when looking at groups of classes of shapes, since that is what we optimize

and present in chapter 6.

Recall from section 4.1.5 that a group of shapes is a set of classes of shapes. For

example, group G 𝐹𝐵 contains all shapes consisting of two piecewise linear sections

with one kink with a flat bottom. Class C 𝑟1=𝑟1𝑖 , defined in equation 4.1.44, is the set

of shapes with 𝑧1 = −1 and 𝑟1 = 𝑟1
𝑖. The group of flat-bottomed shapes contains all
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such shapes: that is, it is the set of classes of shapes with different 𝑟1 values.

In the previous section, we looked at a single class of shapes, given by B𝐸, and we

examined the shape of 𝒮(RB𝐸
3 ), the entire set of shapes that solve the heave resonance

equation, and the shapes of the final heave and heave-surge-pitch populations, P3 and

P135, and the resulting Pareto Fronts, PF3 and PF135.

These conclusions aid in describing populations and Pareto Fronts for groups of

shapes, too. For example, consider figure 4-22, which shows an example of a popula-

tion from three classes of shapes: B𝐸
1
,B𝐸

2 and B𝐸
3. The population for the group

consisting of these three classes consists of all of the shapes from all three curves.

Figure 4-22: Examples of a population from a group of shapes consisting of three
classes: B𝐸

1
,B𝐸

2 and B𝐸
3

The resulting Pareto Front for this group is shown in figure 4-23. We see that none of

the shapes from B𝐸
2 are in the Pareto Front. The Pareto Front consists of a single

dot from the left branch of B𝐸
1, a single dot from the left branch of B𝐸

3, and a

cluster from the right branch of B𝐸
1. The observations and conclusions we made
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about any given class of shapes enables us to know that the single points are from the

left branch, and from different classes, and that the cluster is from the right branch.

Figure 4-23: Resulting Pareto Front for the population shown in figure 4-22

In the next chapter, we show the example of a single class of shapes: cylinders. But

in chapter 6, we look at groups of shapes, so the Pareto Fronts will not have the same

easily describable characteristics as for a single class.

Figure 4-24 shows a flow chart of the optimization process for a group of shapes.

The details of the multi-objective evolutionary algorithm are described in the next

section. But figure 4-24 shows the overall process. Firstly we specify the group we

are optimizing, the 𝛼 value, the 𝜖 value, and if it is a heave-only optimization or a

heave-surge-pitch optimization. Within the optimization algorithm, each organism is

specified by a vector 𝑉𝑖:

𝑉𝑖 =
{︁
(𝑘𝑙𝑉 )𝑖, (B𝐸)𝑖

}︁
(4.4.1)

The theorem from section 4.2 is then used to find the roots, given 𝑉𝑖, if they exist:

𝑅1(𝑉𝑖), 𝑅2(𝑉𝑖). The relevant parameters for the shapes defined by𝐵1 =
{︁
𝑅1, 𝑘𝑙𝑉 ,B𝐸

}︁
139



and 𝐵2 =
{︁
𝑅2, 𝑘𝑙𝑉 ,B𝐸

}︁
are tested to determine if they adhere to the constraints (for

the heave-only optimizations, this is the heave motion constraint and heave steepness

constraint, and for the heave-surge-pitch optimizations, this is the heave motion con-

straint, heave steepness constraint, surge motion constraint, pitch motion constraint,

pitch steepness constraint, the center of gravity constraint, and the pitch moment of

inertia constraint). For each shape, if it adheres to the constraints of the specified

problem, it is added to the population. Otherwise, it is discarded. Therefore, the

population does not correspond to the number of organisms: for each generation,

sometimes there are 0 shapes added to the population, sometimes 1, and sometimes

2.

The optimization optimizes 𝑉𝑖 vectors to find the best 𝑘𝑙𝑉 and B𝐸’s to minimize 𝑘𝑙𝑉
and 𝑘𝑙𝑆. The details of this optimization algorithm are found the next section.

Here, we highlight another benefit of the theorem described in section 4.2. For a

given 𝑉
* =

{︁
𝑘𝑙*𝑉 ,B𝐸

*}︁ there are 0 roots of the heave resonance equation, we know

that 𝑘𝑙*𝑉 is greater than (𝑘𝑙𝑉 )𝑚𝑎𝑥 for B𝐸
*, so we can disregard any 𝑉𝑖 with 𝑘𝑙𝑉 > 𝑘𝑙*𝑉

and B𝐸𝑖 = B𝐸
*.
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Figure 4-24: Flow chart of optimization process (not algorithm)

4.5 Multi-objective evolutionary algorithm

We use a multi-objective evolutionary algorithm. For more information, see (Deb,

2011). This algorithm is a genetic algorithm for multiple objective functions. In this

section, we will summarize the algorithm. We did a sensitivity study for the algorithm,

which is shown in Appendix C. The multi-objective evolutionary algorithm is based

on the algorithm developed by Deb (2011) but has been adapted to our problem.

4.5.1 Flow chart and explanation

The flow chart of the optimization is shown in figure 4-25. For each optimization run,

the group to optimize is defined, as well as 𝛼 and 𝜖. For a given group, the range of

values of each parameter in B𝐸, as well as the range of values of 𝑘𝑙𝑉 are specified.

141



For example, for flat-bottomed shapes, the changing parameter in B𝐸 is 𝑟1, since

𝑧1 = −1 and all coefficients of the parametric polynomial basis functions are 0. So,

the range of 𝑟1 could be specified as all values between 0.1 and 2, with a stepsize of

0.02, and the range of 𝑘𝑙𝑉 could be specified as all values between 0.3 and 1.7, with

a stepsize of 0.05.

Figure 4-25: Flow chart of optimization algorithm

1. Generate initial population

The initial population size, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, specifies how many organisms are randomly

selected, given the ranges of the parameters. Each organism is specified by 𝑉𝑖 ={︁
(𝑘𝑙𝑉 )𝑖, (B𝐸)𝑖

}︁
, so for flat-bottomed shapes it would be 𝑉𝑖 = {(𝑘𝑙𝑉 )𝑖, (𝑟1)𝑖}.

For one-kink shapes, it would be 𝑉𝑖 = {(𝑘𝑙𝑉 )𝑖, (𝑟1)𝑖, (𝑧1)𝑖}.

For 𝑖 = {1, 2, ..., 𝑝𝑜𝑝𝑠𝑖𝑧𝑒}, we find the roots of the heave resonance equation,

using the theorem described in section 4.2, labeled 𝑅1(𝑉𝑖) and 𝑅2(𝑉𝑖), if they

exist. For the resulting shapes, 𝐵1 =
{︁
𝑅1(𝑉𝑖), 𝑉𝑖

}︁
and 𝐵2 =

{︁
𝑅2(𝑉𝑖), 𝑉𝑖

}︁
, the

parameters needed to determine if they adhere to the constraints are found. If
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they do adhere to the constraints, they are added to the population. If not,

they are disregarded. Therefore, the size of the population will not necessarily

be 𝑝𝑜𝑝𝑠𝑖𝑧𝑒, since for each 𝑉𝑖 there could be 0, 1, or 2 shapes added to the

population. For each optimization run, the initial population size, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒,

the mutation probability, P𝑀 , and the number of generations, 𝑛𝑢𝑚𝑔𝑒𝑛𝑠, are

specified.

2. Extract initial Pareto Front

The Pareto Front is the set of nondominated 𝐵 vectors. For two vectors 𝐵1 and

𝐵2, vector 𝐵1 dominates vector 𝐵2 if 𝑘𝑙𝑉 (𝐵1) ≤ 𝑘𝑙𝑉 (𝐵2), 𝑘𝑙𝑆(𝐵1) ≤ 𝑘𝑙𝑆(𝐵2)

and 𝑘𝑙𝑉 (𝐵1) < 𝑘𝑙𝑉 (𝐵2) or 𝑘𝑙𝑆(𝐵1) < 𝑘𝑙𝑆(𝐵2).

For each 𝐵 in the initial population, we test it against the rest of the population.

If it is dominated by any other organism, it is eliminated. Once these tests are

done for the entire population, the set of all nondominated organisms is the

Pareto Front.

3. Select parent 1

Then, the optimization loop begins. Two 𝐵 vectors are chosen randomly from

the current population. If one dominates the other, choose the dominant one.

If neither dominates the other, we choose randomly among them. The result is

Parent 1.

4. Select parent 2

One 𝐵 vector is chosen randomly from the current Pareto Front. This is Parent

1.

5. Create child

Parent 1’s 𝑉 vector is labeled 𝑉 𝑝1 and parent 2’s is 𝑉 𝑝2. We first perform

crossover to create 𝑉 𝑐. A number between 1 and the length of 𝑉 minus 1 is

randomly chosen, labeled c_idx. For example, for the one-kink group, since
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each 𝑉 has length 3, c_idx can be either 1 or 2. 𝑉 𝑐 is defined as the first c_idx

values from 𝑉 𝑝1 and the rest from 𝑉 𝑝2.

Then, a biased coin is flipped with probability P𝑀 . If the coin is a head,

mutation is performed. Otherwise, the final child 𝑉 vector is defined to be 𝑉 𝑐.

If mutation is performed, a number between 1 and the length of 𝑉 is randomly

chosen, labeled m_idx. The parameter in position m_idx is then mutated: the

resulting 𝑉 vector, 𝑉 𝑚, takes its values from 𝑉 𝑐 except for in position m_idx,

where a new value is randomly selected within the constraints of the parameter.

The final child 𝑉 vector, 𝑉 𝑜, is defined by 𝑉 𝑐 if mutation is not performed, and

𝑉 𝑚 otherwise.

6. Update population and Pareto Front:

Using a similar procedure to in the initial population, the roots of the heave

resonance equation are found for the given 𝑉 𝑜, and if they adhere to the heave

constraints, it is added to the population. So for each generation, there could

be 0, 1, or 2 shapes added to the population. The updated Pareto Front is

found from the updated population.

If we have reached num_gens, output the current population and Pareto Front.

If not, return to step 3 to go through another generation.

This section describes the multi-objective evolutionary algorithm specific to our op-

timization. We show convergence using the sensitivity study in Appendix C. This is

an efficient procedure, and is made more efficient by using our new theorem to find

roots of the resonance equation, which essentially decreases the degree of freedom of

the optimization.

4.6 Summary

In chapter 3, we described our optimization framework. We showed why we defined

optimality by requiring maximum power for all shapes and minimizing surface area
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and volume, and why we introduce constraints to the problem.

In this chapter, we described the procedure to execute this optimization. In section

4.1, we outlined our description of geometric shape by piecewise parametric polyno-

mial basis functions. In this way, we can represent very general geometries by entire

functions, with the coefficients of the basis functions to be the parameters to put into

the optimization, instead of panel locations, for example. We then introduced the

definitions of a class of shapes and a group of shapes.

In section 4.2, we introduce a novel theorem to find roots of the heave resonance

equation, using an approximation for added mass which turns the equation into a

cubic equation for 𝑅 which can be solved explicitly. This approximation and theorem

add to our understanding of the heave resonance equation and the dependence on

geometric shape, and it also significantly reduces the computational effort required

for optimization. Using the theorem we essentially reduced the degrees of freedom of

the optimization by one, increasing the efficiency 100x compared to brute-force tests

In section 4.3, we presented some general observations and conclusions for any given

class of shapes. Given B𝐸, we know that 𝒮(RB𝐸
3 ), the curve of the set of shapes in

class C B𝐸 that solve the heave resonance equation in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space will have

certain characteristics: it will be a one-to-one, concave down curve, starting at the

origin with maximum at (𝑘𝑙𝑉 )𝑚𝑎𝑥. The left and right branches correspond to the

smaller and larger roots of the heave resonance equation, respectively. The lower left

branch has deep, narrow shapes and the bottom right branch has wide, shallow shapes.

Consequently, the heave motion constraint will affect the lower left branch and the

heave steepness constraint will affect the lower left and lower right branches. We can

conclude that there are three possible shapes of the heave population for a given class

of shapes, as shown in figure 4-20, with corresponding Pareto Fronts shown in figure

4-21. We also saw the counter-intuitive phenomenon that, as the motion constraint

becomes stricter, and thus more of the lower left branch is eliminated, the Pareto

Front becomes fuller and less determined by the constraint.
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In section 4.4 we describe the procedure for forming populations of groups of shapes,

showing how using the theorem from section 4.2 increases efficiency, and how we can

perform systematic investigations of a broad range of shapes and see how constraints

affect the optimal shapes.

In section 4.5 we presented the details for the multi-objective evolutionary algorithm,

showing a flow chart and explaining each step of the algorithm.

In this chapter, we presented our general, efficient and efficacious procedure to execute

the optimization and provide insights. In the next chapter, we use the cylinder to

showcase the optimization framework and procedure.
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Chapter 5

Optimizing the dimensions of a

cylinder

In chapter 3, the framework of our optimization problem was presented, while in

chapter 4 the specific approach that we take to solve the optimization was explained.

In this chapter, the framework and optimization approach will be demonstrated for

the case of a simple set of shapes: cylinders.

The goal is to optimize the dimensions of the cylinder to minimize the volume and

surface area, while keeping extractable power maximum, under different constraint

regimes. Limiting the scope of this chapter to only cylinders allows for a physically

intuitive and relevant exploration of the process to be developed, without overcom-

plication. We will look at how the population is formed, first by finding roots to

the heave resonance equation and then by studying how each constraint affects the

population and the resulting Pareto Front.

In addition to being a helpful aid which demonstrates our framework and optimiza-

tion, the results of the cylinder are of significant interest themselves, since the cylinder

is one of the simplest and most common shapes used in ocean engineering. There-

fore, this chapter yields the dimensions of the best cylinders that should be used under

differing constraints to minimize volume and surface area, while keeping extractable
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power maximum. Since this is a multi-objective optimization, the results of the op-

timization for different constraint values are sets of optimal cylinders. Information

about the dimensions, body motions and some other physical parameters is provided,

which could aid a developer in deciding which cylinder would be ideal. Within these

sets, other parameters could be used to find an optimal engineering design (for ex-

ample cost, manufacturing techniques, survivability, etc.) but it is outside the scope

of this thesis to decide within these sets which specific cylinder should be used.

The focus on cylinders only in this chapter also provides us with a useful benchmark to

which other shapes may be compared. Therefore, when detailing the results from more

complicated optimizations with multiple shape classes in the next chapter, we will

compare the results to the cylinders found in this chapter. This allows us to determine

how much ‘better’ (i.e. how much smaller is the surface area and/or volume) than

the cylinder it is possible to achieve with more general geometries.

In the first section of this chapter, the approach described in the previous chapter is

applied to cylinders, showing how populations are formed by finding roots to the heave

resonance equation and eliminating shapes that do not adhere to the constraints. In

the second section, the results for the heave-only optimization are presented and the

results discussed. In the third section, the results for the heave-surge-pitch optimiza-

tion are presented and the results are again discussed.

5.1 Detailed example of approach

In this section, the optimization framework, described in chapter 3, and the approach

we developed, described in chapter 4, are demonstrated for cylinders. We will first

show how the theorem described and proved in section 4.2 enables us to find the roots

of the heave resonance equation, thus giving us shapes that are in resonance in heave.

As discussed in chapter 3, to form the population for the optimization for a WEC

moving and extracting energy in the heave mode only, we consider all shapes that
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are in resonance in heave and then eliminate shapes that do not adhere to the heave

constraints. To form the population for the case of a WEC moving and extracting

energy in heave, surge and pitch, we consider all shapes that are in resonance in

heave and then eliminate shapes that do not adhere to the heave, surge and pitch

constraints. The reason that we start with shapes that solve the heave resonance

equation is because there are passively controllable terms in the surge and pitch reso-

nance equations, so the geometric shape can be defined first (by the heave resonance

equation), and then these controllable terms ensure resonance in surge and pitch, and

the constraints eliminate impractical shapes.

In this section, we demonstrate this process by first showing the set of all truncated

cylinders that solve the heave resonance equation, and then going through each heave,

surge and pitch constraint individually to demonstrate which shapes are eliminated

by each constraint.

5.1.1 Finding roots of the heave resonance equation

In the previous chapter we presented a novel theorem that uses an approximation for

heave added mass to get solutions to the heave resonance equation for any class of

shape. In addition to aiding our understanding of the problem generally, one benefit of

this theorem is that it allows us to decrease the optimization by one parameter. Since

the heave resonance equation depends on heave added mass, which does not have an

analytic form for most geometries, without this theorem we would need to solve the

heave resonance equation by the brute-force testing of many shapes. However, using

this theorem allows us to approximate the roots and then perform a local optimization

to find more accurate values, speeding up the process tremendously.

The theorem states that if, given a class of shapes – that is, given B𝐸 – the nondi-

mensional heave added mass coefficient, 𝐴33 = 𝐴33
𝜌𝑙3𝑉

can be approximated as

𝐴33 = 𝐴(𝑘𝑙𝑉 )𝑅3 (5.1.1)

149



with further restrictions on 𝐴(𝑘𝑙𝑉 ), given in section 4.2), then there will be two roots

to the heave resonance equation for 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥, and none for 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥.

The heave resonance equation, using the approximation given in equation 5.1.1 is

𝜋𝑅
2 − 𝑘𝑙𝑉

(︁
1 + 𝐴(𝑘𝑙𝑉 )𝑅3)︁ = 0 (5.1.2)

Given 𝑘𝑙𝑉 , this is simply a cubic equation for 𝑅. In our optimization, each organism is

defined by 𝑘𝑙𝑉 and B𝐸. So, we can use this theorem, and the resulting simplification

of the heave resonance equation, for each organism:

∙ Given 𝑘𝑙𝑉 and B𝐸, look at 10 values of 𝑅. Run WAMIT for these 10 shapes to

get 𝐴33 values.

∙ Fit the curve 𝐴33 = 𝐴𝑐𝑅
3 to the data points to find the constant 𝐴𝑐.

∙ Use this constant in equation 5.1.2, which becomes

𝜋𝑅
2 − 𝑘𝑙𝑉

(︁
1 + 𝐴𝑐𝑅

3)︁ = 0 (5.1.3)

where 𝑘𝑙𝑉 is given. This is a cubic equation which can be solved analytically to

find the roots of the equation. When 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥, there are two real roots,

which will be called 𝑅
𝑎

1 and 𝑅
𝑎

2.

∙ From the theorem, we saw that there will either be 0 or 2 roots.

Once we have 𝑅𝑎
1 and 𝑅𝑎

2, we can perform local optimizations using 𝐴33 from WAMIT

instead of the approximation 𝐴𝑐𝑅
3 to find more accurate values for the roots, which

will be called 𝑅1 and 𝑅2. Figure 5-1 helps to illustrates this procedure. The plot shows

the heave resonance equation as a function of 𝑅. Each color represents a different 𝑘𝑙𝑉
value. The solid curve shows the resonance equation using 𝐴33 values from WAMIT,

whereas the dashed curve shows the equation with the added mass approximation

(given by equation 5.1.3). The solid vertical lines show the roots of the resonance

equation which were found by brute-force evaluation, and the dashed vertical lines
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show the approximate values, found by solving the cubic equation for 𝑅. The roots

represented by the dashed lines are then used to perform local optimizations which

finds more accurate values of the roots

Figure 5-1: Illustrating how roots of the heave resonance equation are found by using
the added mass approximation and theorem presented in the previous chapter

Figure 5-1 is also helpful in visualizing the heave resonance equation. For smaller 𝑘𝑙𝑉 ,

the roots of the resonance equation are far apart from each other. As 𝑘𝑙𝑉 increases,

the resonance equation curve moves down, and the roots approach one another. Even-

tually, at 𝑘𝑙𝑉 = (𝑘𝑙𝑉 )𝑚𝑎𝑥, the roots become a double root, and the resonance equation

meets the y-axis once, at that double root. For 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥, the resonance equa-

tion does not cross the y-axis and there are no roots to the resonance equation.

For each 𝑘𝑙𝑉 , the above procedure is performed. The result is R𝑐𝑦𝑙
3 , the set of all

cylinders that solve the heave resonance equation. In figure 5-2, we plot this set. In

the left plot, each organism in the set is plotted in a 𝑘𝑙𝑉 − 𝑘𝑙𝑆 scatter plot. This

curve is called 𝒮(R𝑐𝑦𝑙
3 ). Each organism is given a color, ranging from purple to red,

corresponding to increasing 𝑘𝑙𝑆. The right plot shows the shape of some of the

cylinders in R𝑐𝑦𝑙
3 . The colors correspond to the left plot, so the deeper narrow purple

cylinder corresponds to an organism on the lower left branch of 𝒮(R𝑐𝑦𝑙
3 ), whereas the

wide shallow orange cylinder corresponds to the lower left branch of 𝒮(R𝑐𝑦𝑙
3 ).
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Figure 5-2: R𝑐𝑦𝑙
3 , the set of cylinders that solve the heave resonance equation. The

left plot shows 𝒮(R𝑐𝑦𝑙
3 ), the curve of R𝑐𝑦𝑙

3 in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space, where the colors,
from purple to red, correspond to increasing 𝑘𝑙𝑆. The right plot shows the shape,
in the 𝑟 − 𝑧 plane of some of the cylinders in the set, with colors corresponding to
the left plot. Shapes at the lower left branch of 𝒮(R𝑐𝑦𝑙

3 ) correspond to deep, narrow
cylinders. Along the curve, 𝑅 increases and 𝐻 decreases, so the shapes at the lower
right branch correspond to wide, shallow cylinders.

Section 4.3 discusses general observations and conclusions the shape of the curve of

R3 in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space, 𝒮(RB𝐸
3 ). 𝒮(R𝑐𝑦𝑙

3 ), shown in figure 5-2, is a real example of

this observation. The characteristics of this curve that are general to any given class

are that it is a one-to-one concave down curve with a maximum value of (𝑘𝑙𝑉 )𝑚𝑎𝑥.

The left branch corresponds to the smaller roots of resonance equation, 𝑅1, and the

right branch corresponds to larger roots of the resonance equation, 𝑅2.

5.1.2 Heave constraints and where they affect the population

From R𝑐𝑦𝑙
3 , the heave population, P3 is formed by eliminating shapes that do not

adhere to the two heave constraints: the heave motion constraint and the heave

steepness constraint. We will now who which cylinders these constraints eliminate.

We look at each constraint starting from R3, instead of considering them cumulatively.

Heave motion constraint

The heave motion constraint is, given 𝛼,

|𝜉3|
𝐴

< 𝛼 (5.1.4)
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As shown in section 4.3, the heave motion constraint will affect the lower left branch of

𝒮(R𝑐𝑦𝑙
3 ), since these deep, narrow shapes are the ones that move the most at resonance.

Figure 5-3 shows which regions are eliminated for a few different 𝛼 values: 𝛼 = 3,

2, and 1. As 𝛼 becomes smaller, the motion constraint becomes more restrictive,

therefore eliminating shapes further up the left branch. All of the shapes given a red

color will be eliminated when 𝛼 = 3 – that is, if you require that |𝜉3|
𝐴
< 3. If 𝛼 = 2,

all shapes given a green or red color would be eliminated. If 𝛼 = 1, shapes given a

purple, red or green color will be eliminated. All shapes given a blue color, then, have
|𝜉3|
𝐴
< 1.

Figure 5-3 also labels the 𝐻/𝑅 value of the cylinders at transitions from one constraint

‘regime’ to another. For example, if 𝛼 = 3, the cylinder with 𝐻/𝑅 = 1.18 is the

deepest cylinder that is in R𝑐𝑦𝑙
3 and adheres to the constraint |𝜉3|

𝐴
< 𝛼. Therefore,

we know that |𝜉3|
𝐴

= 3 for this cylinder. When 𝛼 = 2, the deepest shape in R𝑐𝑦𝑙
3

adhering to the constraint |𝜉3|
𝐴
< 2 has an 𝐻/𝑅 value of 0.85, and when 𝛼 = 1, the

corresponding cylinder has 𝐻/𝑅 = 0.47. As 𝛼 decreases, the point where |𝜉3|
𝐴

= 𝛼 is

further up the left branch, corresponding to a larger 𝑘𝑙𝑉 and 𝑘𝑙𝑆 and a smaller 𝐻/𝑅.

Figure 5-3: Illustration of the effect of the heave motion constraint on 𝒮(R𝑐𝑦𝑙
3 ). The

purple shapes are eliminated when 𝛼 = 3. The red and purple shapes are eliminated
when 𝛼 = 2. The green, red, and purple shapes are eliminated when 𝛼 = 1.
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Heave steepness constraint

The heave steepness constraint is, given 𝜖,

𝑘𝐻 > 𝜖
|𝜉3|
𝐴

(5.1.5)

The heave steepness constraint will affect both the lower left and lower right branches

of the 𝒮(R𝑐𝑦𝑙
3 ), as explained in section 4.3. Figure 5-4 demonstrates the specific regions

that are eliminated for a few different 𝜖 values: 𝜖 = 0.1 and 0.2. As 𝜖 increases, the

constraint is more restrictive. All shapes given a purple color will be eliminated if

𝜖 = 0.1 – that is, if you require that 𝑘𝐻 > 0.1 |𝜉3|
𝐴

. If 𝜖 = 0.2, all shapes given a

purple or orange color will be eliminated. For all shapes that are blue, therefore,

𝑘𝐻 > 0.2 |𝜉3|
𝐴

.

Since this constraint affects shapes with larger |𝜉3|
𝐴

, a similar effect to 𝒮(R𝑐𝑦𝑙
3 ) as for

the 𝛼 constraint occurs: the more restrictive the constraint, the shallower the deepest

shape not eliminated will be. However, we know that the 𝜖 constraint also affects the

lower right branch of 𝒮(R𝑐𝑦𝑙
3 ), where the shallowest shapes are, and thus the more

restrictive the constraint, the deeper the shallowest shapes not eliminated with be.

Therefore, the range of 𝐻/𝑅 will be limited from both ends, as labeled in figure 5-4.

For 𝜖 = 0.1, the deepest shape has 𝐻/𝑅 = 2.28, and for 𝜖 = 0.2 the deepest shape

has 𝐻/𝑅 = 1.29. For 𝜖 = 0.1, the shallowest shape has 𝐻/𝑅 = 0.01 and for 𝜖 = 0.2,

the shallowest shape has 𝐻/𝑅 = 0.03
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Figure 5-4: Illustration of the effect of the heave steepness constraint on 𝒮(R𝑐𝑦𝑙
3 ).

The yellow shapes are eliminated when 𝜖 = 0.1, and the pink and yellow shapes are
eliminated when 𝜖 = 0.2.

5.1.3 Surge pitch constraints and where they affect the pop-

ulation

As discussed in detail in section 3.2, the heave-surge-pitch population is formed by

starting with R3, the set of shapes that solve the heave resonance equation, and then

eliminating shapes that do not adhere to the heave, surge, and pitch constraints.

In addition to the heave motion constraint and the heave steepness constraint, the

five additional constraints to consider when looking at WECs that move and extract

energy in surge and pitch, are the surge and pitch motion constraints, the pitch

steepness constraint, the pitch moment of inertia constraint, and the center of gravity

constraint. Section 3.2 discusses the motivation behind all of these constraints. In

this section, we will go through each one for the cylinder to show which parts of

𝒮(R𝑐𝑦𝑙
3 ) each constraint eliminates.

Surge motion constraint

The surge motion constraint is, given 𝛼,
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|𝜉1|
𝐴

< 𝛼 (5.1.6)

Figure 5-5 shows the specific regions on 𝒮(R𝑐𝑦𝑙
3 ) that are eliminated for a few 𝛼

values: 𝛼 = 3, 2 and 1. The purple shapes are eliminated when 𝛼 = 3. That is, all

of the shapes given a purple color have |𝜉1|
𝐴
> 3. The shapes given a red color have

2 < |𝜉1|
𝐴

< 1, so if 𝛼 = 2 all purple and red shapes are eliminated. Shapes given

a green color have 1 < |𝜉1|
𝐴

< 2, so if 𝛼 = 1 all purple, red and green shapes are

eliminated. All blue shapes have |𝜉1|
𝐴
< 1.

We see that the surge motion constraint affects both ends of the population curve.

As 𝛼 decreases (so the motion constraint becomes more restrictive), the constraint

eliminates shapes further up each branch, meaning that the range of 𝐻/𝑅 becomes

more limited. For 𝛼 = 3, the cylinders have 𝐻/𝑅 values ranging from 0.02 to 2.59.

For 𝛼 = 2, this reduces to 0.03 to 1.89, and for 𝛼 = 1 it is reduced further to 0.09

to 1.02. We notice that the surge motion constraint does not affect the left branch

as much as the heave motion constraint did. For the heave motion constraint, the

deepest cylinder left when 𝛼 = 3 had an 𝐻/𝑅 value of 1.18 (compared to 2.59 here).

Figure 5-5: Illustration of the effect of the surge motion constraint on 𝒮(R𝑐𝑦𝑙
3 ). The

purple shapes are eliminated when 𝛼 = 3, the red and purple shapes are eliminated
when 𝛼 = 2, and the green, red and purple shapes are eliminated when 𝛼 = 1.
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Pitch motion constraint

The pitch motion constraint is, given 𝛼,

|𝜉5|
𝐴/𝑅

< 𝛼 (5.1.7)

Figure 5-6 shows where the pitch motion constraint affects 𝒮(R𝑐𝑦𝑙
3 ). Compared to the

constraints so far, the pitch motion constraint affects 𝒮(R𝑐𝑦𝑙
3 ) in the least straightfor-

ward way.

When 𝛼 = 3, the purple shapes are eliminated. That means that there is a hole in the

middle of the 𝒮(R𝑐𝑦𝑙
3 ), with a continuous section from 𝐻/𝑅 = 2.85 to 𝐻/𝑅 = 0.96,

a missing chunk, and then another continuous section from 𝐻/𝑅 = 0.34 and below.

For 𝛼 = 2, purple and red shapes are eliminated. That means that the section from

𝐻/𝑅 = 2.85 and 𝐻/𝑅 = 0.96 is eliminated, as is the section from 𝐻/𝑅 = 0.34 to

𝐻/𝑅 = 0.29. For 𝐻/𝑅 < 0.29, there is a continuous section. For 𝛼 = 1, purple,

red and green shapes are eliminated. Therefore, any shapes with 𝐻/𝑅 > 0.16 are

eliminated.

We see that this does not follow the pattern of any of the constraints we have dis-

cussed so far because it does not only affect the ends of 𝒮(R𝑐𝑦𝑙
3 ) (aka the deepest and

shallowest ones). It seems to affect the ‘intermediate’ shapes, too.
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Figure 5-6: Illustration of the effect of the pitch motion constraint on 𝒮(R𝑐𝑦𝑙
3 )

Pitch steepness constraint

The pitch steepness constraint is, given 𝜖,

𝑘𝐻 > 𝜖
|𝜉5|
𝐴/𝑅

(5.1.8)

Figure 5-7 shows where the pitch steepness constraint affects 𝒮(R𝑐𝑦𝑙
3 ) for a few different

values of 𝜖: 𝜖 = 0.1 and 0.2.

We see that the pitch steepness constraint affects the ends of each branch of 𝒮(R𝑐𝑦𝑙
3 ),

but it also affects the middle of the curve, where there are ‘intermediate’ (neither

very shallow nor very deep) shapes.

When 𝜖 = 0.1, the yellow shapes will be eliminated. We can see that the deepest

shapes (𝐻/𝑅 > 13.2), the shallowest shapes (𝐻/𝑅 < 0.04), and a section of the

‘intermediate’ shapes (0.68 < 𝐻/𝑅 < 0.39) are all affected, leaving two continuous

sections of the curve with a gap from 𝐻/𝑅 = 0.68 to 𝐻/𝑅 = 0.39). When 𝜖 = 0.2,

the yellow and pink shapes are eliminated. We see that the pink forms an ‘extension’

of the where the yellow shapes are– more of the left branch is eliminated, so that
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the deepest shape is now 𝐻/𝑅 = 5.31), more of the right branch is eliminated,

so that the shallowest shape is now 𝐻/𝑅 = 0.08, and more of the intermediate

shapes are eliminated, so that the two continuous segments that are allowed are

0.91 < 𝐻/𝑅 < 5.31 and 0.08 < 𝐻/𝑅 < 0.27.

Figure 5-7: Illustration of the effect of the pitch steepness constraint on 𝒮(R𝑐𝑦𝑙
3 ). The

yellow shapes are eliminated if 𝜖 = 0.1. If 𝜖 = 0.2, the yellow and pink shapes are
eliminated.

Pitch moment of inertia constraint

As discussed in section 3.2.2, when using 𝐼55 as a passively controllable parameter in

the pitch resonance equation, it is necessary to enforce that 𝐼55 is greater than 0. For

resonance in pitch, we set

𝐼𝑟55 = 𝜌𝑔𝜋𝑅4/4 + 𝜌𝑔𝑙3𝑣𝑧𝐵 − 𝑔𝐴15

𝜔2 − 𝐴55 (5.1.9)

However, we must enforce that

𝐼𝑟55 > 0 (5.1.10)

which is the pitch moment of inertia constraint. As shown in figure 5-8, this constraint

affects deep shapes, for 𝐻/𝑅 > 0.78, marked with pink in the figure. For 𝐻/𝑅 < 0.78,
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the expression in equation 5.1.9 is greater than 0. From looking at equation 5.1.9,

we can say that the reasons why it may affect deeper shapes is that they have larger

𝐴55, larger 𝐴15, smaller 𝑅 and/ore a more negative 𝑧𝐵.

Figure 5-8: Illustration of the effect of the pitch moment of inertia constraint on
𝒮(R𝑐𝑦𝑙

3 ). The pink shapes will be eliminated due to this constraint.

Center of gravity constraint

In the surge-pitch resonance equation, we use 𝑧𝐺 as the passively controllable parame-

ter, so we must ensure that the value for 𝑧𝐺 that enforces resonance is also practically

feasible. The center of gravity constraint is

−𝐻 < 𝑧𝐺 < 𝑧𝑚𝑎𝑥𝐺 (5.1.11)

where 𝑧𝑚𝑎𝑥𝐺 is determined by stability, as explained in appendix A. Figure 5-9 show

that for 𝐻/𝑅 > 1.41 this constraints all the shapes. We anticipated this because of

stability: deeper, narrow shapes are less stable, so the maximum value that the center

of gravity can be to ensure stability will be smaller. For 𝐻/𝑅 < 1.41, 𝑧𝑟𝐺, the value

for 𝑧𝐺 needed to enforce surge-pitch resonance, is greater than 𝑧𝑚𝑎𝑥𝐺 , so these shapes

are eliminated.
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The other part of the center of gravity constraint is that the center of gravity cannot

be below the bottom of the shape: 𝑧𝑟𝐺 > −𝐻. We found that this is always true for

the cylinder, so it does not eliminate any shapes.

Figure 5-9: Illustration of the effect of the center of gravity constraint on 𝒮(R𝑐𝑦𝑙
3 ).

The light blue shapes will be eliminated due to this constraint.

In this section, the framework discussed in chapter 3 and the approach discussed in

chapter 4 were applied on the simple case of the cylinder. The theorem discussed and

proved in section 4.2 was demonstrated to find the set of all cylinders resonating in

heave, R𝑐𝑦𝑙
3 . The curve of this set in the 𝑘𝑙𝑉 −𝑘𝑙𝑆 space was discussed, as an illustration

of the general conclusions for such curves, made in section 4.3. Each heave, surge,

and pitch constraint were considered, and we showed which cylinders from R𝑐𝑦𝑙 were

eliminated by each one, for a few values of each constraint value. We will now look

at the full optimizations for the cylinder for heave and heave-surge-pitch, for two

different values of 𝛼 and two different values of 𝜖.

5.2 Heave-only optimization

In this section the results of the optimizations for the case of a WEC moving and

extracting energy in the heave mode only are presented. Two values of 𝛼 are consid-

ered: 𝛼 = 3 and 𝛼 = 1. Since the heave motion constraint eliminates shapes such
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that |𝜉3|
𝐴
> 𝛼, a smaller value of 𝛼 corresponds to a stricter motion constraint, thus

eliminating more shapes. Additionally, two values of 𝜖 are considered: 𝜖 = 0.1 and

𝜖 = 0.2. Since the heave steepness constraint eliminates shapes such that 𝑘𝐻 > 𝜖 |𝜉3|
𝐴

,

a larger value of 𝜖 corresponds to a stricter steepness constraint, thus eliminating

more shapes.

5.2.1 Populations

Each population will be labeled first by mode (heave is 3, heave-surge-pitch is 135),

then by 𝛼, then by 𝜖. For example, the population for heave for 𝛼 = 3 and 𝜖 = 0.1

will be P3,3,0.1

Figure 5-10 shows the populations for the four cases as four rows: P3,3,0.1, P3,3,0.2,

P3,1,0.1, and P3,1,0.2. The left column shows 𝒮(P3), the population in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆

space. The right column shows the 2D shapes of the cylinders in the population

in the 𝑟 − 𝑧 plane. Each unique cylinder is designated a color in this figure, which

do not correspond to the colors in figure 5-2. Colors progress in a rainbow, where

purple corresponds to the shapes with the smallest 𝑘𝑙𝑆 value in P3,3,0.1) and the red

correspond to the largest 𝑘𝑙𝑆 value in P3,3,0.1), since this is the least restrictive case.

The colors are consistent between the different populations. That is, the cylinder

with 𝑘𝑅 = 𝑘𝑅* and 𝑘𝐻 = 𝑘𝐻* will be the same color in the first row as in the second

row, if it is in both populations.
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Figure 5-10: Heave-only populations of cylinders for different constraint values. Row
1 is the population for 𝛼 = 3, 𝜖 = 0.1, row 2 is for 𝛼 = 3, 𝜖 = 0.2, row 3 is for
𝛼 = 1, 𝜖 = 0.1 and row 4 is for 𝛼 = 1, 𝜖 = 0.2. In each row, the left figure shows
a scatter plot of the population in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space, and the right figure shows
the corresponding shapes of the cylinders in 2D 𝑟 − 𝑧 space. The colors range from
smaller 𝑘𝑙𝑆 (purple) to larger 𝑘𝑙𝑆 (red).

We can relate the shape of each population back to the three general categories that

a heave population can take given B𝐸, as discussed in section 4.3. P3,3,0.1,P3,1,0.1 and

P3,1,0.2 are P𝐴 shape, P3,3,0.2 is P𝐵 shape.

As we discussed above in section 5.1.2, changing 𝛼 from 3 to 1 eliminates the deepest

cylinders. It was also discussed in section 5.1.2 that increasing 𝜖 will eliminate the
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deepest shapes and the shallowest shapes. However, we see that the 𝛼 = 3 constraint

eliminates more shapes from the left branch of 𝒮(R𝑐𝑦𝑙
3 ) than the 𝜖 = 0.2 constraint

does, meaning that no further shapes are eliminated from the left branch as a conse-

quence of the steepness constraint.

5.2.2 Pareto Fronts

The Pareto Fronts corresponding to the heave-only populations shown in figure 5-10

are now presented. Similar to the populations, the Pareto Fronts will be labeled first

by mode, then by 𝛼, then by 𝜖. For example, the Pareto Front for heave for 𝛼 = 3

and 𝜖 = 0.1 will be called PF3,3,0.1.

To determine the effect of the constraints on the Pareto Front, we will consider how

the shape of the curve of the Pareto Front in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space, 𝒮(PF3), changes

with changing constraints. Additionally, we will determine how the shapes of the

cylinders on the Pareto Front change with changing constraints. And finally, we will

determine how the performance changes with changing constraints by comparing two

points across Pareto Fronts: the minimum 𝑘𝑙𝑆 value, (𝑘𝑙𝑆)𝑚𝑖𝑛, and the minimum 𝑘𝑙𝑉

value, (𝑘𝑙𝑉 )𝑚𝑖𝑛.

𝛼 = 3, 𝜖 = 0.1

Figure 5-11: PF3,3,0.1, the Pareto Front for the heave-only case of cylinders with an 𝛼
constraint value of 3 and 𝜖 constraint value of 0.1
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This Pareto Front, called PF3,3,0.1 follows the PF𝐵 shape, with a lone dot left from

the left branch and a cluster of shapes left from the right branch. The cylinder

represented by purple has an 𝐻/𝑅 value of 1.14, and its dimensions and body motion

are shown in table 5.1.

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉3|
𝐴

1.89 0.9 0.59 0.67 2.89

Table 5.1: Dimensions and body motion of the cylinder represented by a purple dot
in figure 5-11

The cylinders shown in the cluster from the right branch, with orange to red colors,

corresponding to increasing 𝑘𝑙𝑆, have𝐻/𝑅 values from 0.025 to 0.014. The dimensions

and body motion values for all of the shapes in this cluster are shown in table 5.2.

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉3|
𝐴

3.68 0.88 2.02 0.05 0.28

3.69 0.86 2.04 0.05 0.28

3.71 0.84 2.05 0.05 0.27

3.71 0.82 2.05 0.04 0.27

3.71 0.78 2.06 0.04 0.27

3.72 0.76 2.07 0.03 0.27

3.74 0.74 2.08 0.03 0.27

3.76 0.72 2.09 0.03 0.26

Table 5.2: Dimensions and body motion of the cylinders in the orange-red cluster in
figure 5-11

The lone purple dot was determined by the 𝛼 constraint, and the darkest red dot was

determined by the 𝜖 constraint. The Pareto Front provides a set of optimal shapes

that is the answer to the optimization problem. The purple dot has minimum surface

area, so if it is decided that minimizing surface area is the most important thing, that

would be the shape that would be built. The orange-red shapes have larger surface

area but smaller volume. There also may be other parameters that a developer would
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consider, such as survivability, ease of build, etc. It is beyond the scope of this thesis

to discuss these aspects further or recommend a specific shapes from this set.

𝛼 = 3, 𝜖 = 0.2

Figure 5-12: Pareto Front for the heave-only case of cylinders with a 𝛼 constraint
value of 3 and 𝜖 constraint value of 0.2

This Pareto Front follows a PF𝐴 shape: it consists of only a single dot. The dimensions

and body motion are shown in table 5.3.

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉3|
𝐴

1.89 0.9 0.59 0.67 2.89

Table 5.3: Dimensions and body motion of the cylinder represented in figure 5-12

We see that this cylinder is the same as the purple one in figure 5-11. All of the

orange-red cylinders from that figure were eliminated by the stricter 𝜖 constraint.

Going from 𝜖 = 0.1 to 𝜖 = 0.2, the minimum 𝑘𝑙𝑆 does not change. The minimum 𝑘𝑙𝑉

changes from 0.72 to 0.9 – a 25 % increase.

𝛼 = 1, 𝜖 = 0.1
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Figure 5-13: Pareto Front for the heave-only case of cylinders with a 𝛼 constraint
value of 1 and 𝜖 constraint value of 0.1

Figure 5-14 shows that PF3,1,0.1 is a PF𝐵 shape, like PF3,3,0.1 was. The purple dot

shown in figure 5-11 is eliminated because |𝜉3|
𝐴
> 𝛼 = 1. The lone dot in this Pareto

Front, shown in teal in figure 5-13, has 𝐻/𝑅 value 0.43. The dimensions and body

motion value are shown in table 5.4.

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉3|
𝐴

2.62 1.2 1.09 0.47 0.92

Table 5.4: Dimensions and body motion of the cylinder represented by a teal dot in
figure 5-13

We see that the teal cylinder is wider and shallower than the purple dot was in figure

5-11. The cluster of points from the right branch, which in figure 5-13 range from light

green to red, with increasing 𝑘𝑙𝑆 value, is a larger, more inclusive cluster of shapes

than the cluster in figure 5-11. It shows a wider range of shapes, with the lightest

green cylinder having a 𝐻/𝑅 value of 0.089, and including a range of shapes to the

same red cylinder as from figure 5-11 and table 5.2, which has a 𝐻/𝑅 value of 0.014.

The dimensions of the lightest green cylinder and the darkest red cylinder are shown

in table 5.5. Between these two ends of the cluster, 𝑘𝑙𝑆 increases, 𝑘𝑙𝑉 decreases, 𝑘𝑅

increases, 𝑘𝐻 decreases, and |𝜉3|
𝐴

decreases.
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉3|
𝐴

3.46 1.18 1.8 0.16 0.35

3.76 0.72 2.09 0.03 0.26

Table 5.5: Dimensions and body motion of the cylinders on the ends of the green-
yellow-orange-red cluster in figure 5-13. The first row shows the values for the lightest
green cylinder, and the second row shows the values for the darkest red cylinder.

So, a more restrictive motion constraint (𝛼 value going from 3 to 1) means that the

Pareto Front becomes more inclusive and expansive. Because of the nature of the

shape of the population (a one-to-one, concave down shape with a maximum value

at (𝑘𝑙𝑉 )𝑚𝑎𝑥, with positive slope before this and negative slope after this, and the fact

that 𝑅 is increasing as you go along the curve), decreasing 𝛼 will always result in a

larger minimum 𝑘𝑙𝑆 and shallower shapes on the Pareto Front. Going from 𝛼 = 3

to 𝛼 = 1, the shape of the cylinder with the smallest 𝑘𝑙𝑆 gets shallower, going from

having a 𝐻/𝑅 value of 1.14 to 0.43. The value of the minimum 𝑘𝑙𝑆 goes from 1.89 to

2.62 – a 39 % increase.

𝛼 = 1, 𝜖 = 0.2

Figure 5-14: Pareto Front for the heave-only case of cylinders with a 𝛼 constraint
value of 1 and 𝜖 constraint value of 0.2

PF3,1,0.2 again shows a PF𝐴 shape. As shown in table 5.6, the teal point in figure

5-14 is the same as the teal point from figure 5-13. However, the cluster of points in

figure 5-14 is smaller than the cluster in figure 5-13. This is because the 𝜖 constraint

eliminates the bottom right branch.
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉3|
𝐴

2.62 1.2 1.09 0.47 0.92

3.46 1.18 1.8 0.16 0.35

3.66 0.9 2.01 0.06 0.28

Table 5.6: Dimensions and body motion of three of the cylinders in figure 5-14. The
first row shows the values for the lone teal dot. The second row shows the values for
the cylinder on the upper left of the green-yellow-orange cluster: the lightest green
one. The third row shows the values for the cylinder on the lower right of the cluster:
the darkest orange one.

Table 5.6 shows the dimensions and body motion values for the teal dot, the lightest

green dot, and the darkest orange dot (the latter two being the two ends of the green-

yellow-orange cluster). As was the case when increasing 𝜖 from 0.1 to 0.2 when 𝛼

was 3, increasing 𝜖 from 0.1 to 0.2 when 𝛼 = 1 results in the minimum 𝑘𝑙𝑉 value

increasing. (𝑘𝑙𝑉 )𝑚𝑖𝑛 increases from 0.72 to 0.9 – a 25 % increase.

General trends/ observations

1. How the 𝒮(PF3) changes

∙ PF3,3,0.1,PF3,1,0.1 and PF3,1,0.2 are of the shape PF𝐴, and PF3,3,0.2 is of the

shape PF𝐵

∙ Somewhat counter-intuitively, as 𝛼 decreases (and thus the motion con-

straint becomes more restrictive), the Pareto Front becomes fuller and less

dominated by the motion constraint. There are more cylinders on PF3,1,0.1

than there are on PF3,3,0.1.

2. How the dimensions of the cylinders on the Pareto Fronts change

∙ For 𝛼 = 3, the Pareto Fronts are a pretty limited set, as shown in tables

5.1, 5.2 and 5.3 and figure 5-11 and 5-12, consisting of one point from the

left branch with 𝑘𝑅 = 0.59 and 𝑘𝐻 = 0.67, and either a small cluster

of very think disk-like shapes (with 0.014 < 𝐻/𝑅0.025) for 𝜖 = 0.1, or
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no cluster for 𝜖 = 0.1. Decreasing 𝛼 to 1 eliminates the cylinder given a

purple color, and the cylinder with minimum 𝑘𝑙𝑆 now has an 𝐻/𝑅 value

of 0.43, but it also enables many more cylinders from the population to be

on the Pareto Front, by ‘pushing’ the left branch up.

∙ Increasing 𝜖 results in the shape with the minimum 𝑘𝑙𝑉 being slightly

deeper and not as wide.

3. How the performance changes

∙ As 𝛼 decreases, (𝑘𝑙𝑆)𝑚𝑖𝑛 increases; (𝑘𝑙𝑉 )𝑚𝑖𝑛 does not change. This is be-

cause the deeper shapes had smaller 𝑘𝑙𝑆 and they were eliminated for the

smaller 𝛼. From 𝛼 = 3 to 𝛼 = 1, the minimum 𝑘𝑙𝑆 increases from 1.89 to

2.62 – a 39 % increase.

∙ As 𝜖 increases, the (𝑘𝑙𝑆)𝑚𝑖𝑛 does not change but (𝑘𝑙𝑉 )𝑚𝑖𝑛 increases. This

means that the 𝜖 constraint is only affecting the lower right branch (the

shallowest shapes). We can see from figure 5-4 that the 𝜖 constraint does

affect the lower left branch but at a point below the minimum value for

which the 𝛼 constraint affects it. The minimum 𝑘𝑙𝑉 value goes from 0.72

to 0.9 – a 25 % increase.

In this section, the results of the heave-only optimization were presented and dis-

cussed.

5.3 Heave-surge-pitch optimization

In this section, the results of the heave-surge-pitch optimization are presented and

discussed. We again use two values of 𝛼 and two values of 𝜖: 𝛼 = 3 and 1 and

𝜖 = 0.1 and 0.2. We use the same 𝛼 and 𝜖 across all modes. That is, if 𝛼 = 3, then
|𝜉3|
𝐴
< 3, |𝜉1|

𝐴
< 3 and |𝜉5|

𝐴/𝑅
< 3. And if 𝜖 = 0.1, 𝑘𝐻 > 0.1 |𝜉3|

𝐴
and 𝑘𝐻 > 0.2 |𝜉5|

𝐴/𝑅
. The

center of gravity constraint and the pitch moment of inertia constraint are always

applied.
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5.3.1 Populations

Figure 5-15 shows the populations for the four cases as four rows: P135,3,0.1,P135,3,0.2,P135,1,0.1,

and P135,1,0.2. The left column shows 𝒮(P135), the population in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space.

The right column shows the 2D shapes of the cylinders in the population in the 𝑟− 𝑧

plane. The colors correspond to the same colors as in the heave-only populations in

figure 5-10. Keeping the colors the same allows us to examine how these populations

are different than the heave-only ones.
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Figure 5-15: Heave-surge-pitch populations of cylinders for different constraint values.
Row 1 is the population for 𝛼 = 3, 𝜖 = 0.1, row 2 is for 𝛼 = 3, 𝜖 = 0.2, row 3 is for
𝛼 = 1, 𝜖 = 0.1 and row 4 is for 𝛼 = 1, 𝜖 = 0.2. In each row, the left figure shows a
scatter plot of the population in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space, and the right figure shows the
corresponding shapes of the cylinders. The colors correspond to the same colors in
figure 5-10.

P135,3,0.1 and P135,3,0.2 are of shape P𝐵. P135,1,0.1 and P135,1,0.2 are of shape P𝐶 .

5.3.2 Pareto Fronts

The Pareto Fronts corresponding to the heave-surge-pitch populations shown in figure

5-15 will be presented and discussed in this section. We will discuss how 𝒮(PF135)

changes with differing constraint values, how the shapes of cylinders on the Pareto

Front change with constraints, and how the performance changes with the constraints

by comparing (𝑘𝑙𝑆)𝑚𝑖𝑛 and (𝑘𝑙𝑉 )𝑚𝑖𝑛 across the constraints. Additionally, we will

compare these Pareto Fronts to the corresponding ones in the heave-only case, under

the same constraint values. For example, we will compare PF3,3,0.1 to PF135,3,0.1.

𝛼 = 3, 𝜖 = 0.1
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Figure 5-16: Pareto Front for the heave-surge-pitch case of cylinders with a 𝛼 con-
straint value of 3 and 𝜖 constraint value of 0.1

PF135,3,0.1 is shown in figure 5-16. The Pareto Front has a PF𝐵 shape: the lone

point is teal, and then there is a green-yellow-orange cluster. Table 5.7 shows some

of the relevant parameters for the heave-surge-pitch problem. Column 8 shows the

nondimensional surge spring coefficient:

𝑘1 ≡ 𝑘1

𝜌𝜔2𝑙3𝑉
(5.3.1)

Column 9 shows the nondimensional center of gravity:

𝑧𝐺 ≡ 𝑧𝐺
𝐻

(5.3.2)

Column 10 shows the nondimensional radius of gyration for pitch

𝑟𝑔 ≡ 𝑟𝑔
𝑅

(5.3.3)
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉1|
𝐴

|𝜉3|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.86 1.26 1.26 0.4 0.66 0.7 2.41 1.39 0.12 0.5

3.37 1.24 1.71 0.21 0.91 0.39 0.87 1.24 0.82 0.71

3.4 1.22 1.74 0.19 0.94 0.37 0.82 1.24 0.93 0.73

3.43 1.2 1.77 0.18 1.01 0.36 0.8 1.24 1.02 0.77

3.46 1.18 1.8 0.16 1.05 0.35 0.78 1.24 1.13 0.79

3.48 1.16 1.82 0.15 1.12 0.34 0.76 1.23 1.24 0.82

3.5 1.14 1.84 0.14 1.15 0.33 0.75 1.24 1.35 0.84

3.52 1.12 1.86 0.13 1.19 0.32 0.75 1.24 1.39 0.86

3.54 1.1 1.88 0.12 1.3 0.32 0.73 1.23 1.58 0.9

3.56 1.08 1.9 0.11 1.34 0.31 0.73 1.23 1.71 0.93

3.57 1.06 1.91 0.1 1.43 0.31 0.72 1.23 1.85 0.96

3.58 1.04 1.93 0.1 1.49 0.3 0.72 1.23 1.98 0.99

3.6 1.02 1.94 0.09 1.58 0.3 0.72 1.23 2.14 1.02

3.62 1.0 1.96 0.08 1.61 0.29 0.72 1.23 2.3 1.05

3.63 0.98 1.97 0.08 1.69 0.29 0.72 1.23 2.32 1.08

Table 5.7: Characteristics of the heave-surge-pitch Pareto Front for 𝛼 = 3, 𝜖 = 0.1,
called PF135,3,0.1. Columns 1, 2, 3, and 4 are the same as for the heave-only case:
they show 𝑘𝑙𝑆, 𝑘𝑙𝑉 , 𝑘𝑅 and 𝑘𝐻. Columns 5, 6 and 7 show the body motion for the
three modes: surge, heave and pitch, respectively. Column 8 shows the nondimen-
sional surge spring coefficient. Column 9 shows the nondimensional center of gravity.
Column 10 shows the nondimensional radius of gyration for pitch

We see that, for this Pareto Front, as 𝑘𝑙𝑆 increases, |𝜉1|
𝐴

increases, |𝜉3|
𝐴

decreases, |𝜉5|
𝐴/𝑅

decreases, 𝑘1 decreases, 𝑧𝐺 increases and 𝑟𝑔 increases.

The minimum 𝑘𝑙𝑆 value in this Pareto Front is 2.86 and the minimum 𝑘𝑙𝑉 is 0.98. The

corresponding heave-only PF, PF3,3,0.1, had a minimum 𝑘𝑙𝑆 of 1.89 and a minimum

𝑘𝑙𝑉 of 0.72. That is an increase of 𝑘𝑙𝑆 by 51 % and an increase of 𝑘𝑙𝑉 by 36 %. The

other difference between these two Pareto Fronts is that PF135,3,0.1 has more shapes

on the Pareto Front than PF3,3,0.1. So we again see that eliminating shapes from the

left branch enables more shapes on the Pareto Front.
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The shape of the cylinder with the minimum 𝑘𝑙𝑆 on the Pareto Front for heave-only,

PF3,3,0.1 had a 𝐻/𝑅 value of 1.14, and the shape with the minimum 𝑘𝑙𝑆 in this Pareto

Front has an 𝐻/𝑅 value of 0.32, so it is shallower (which makes sense since more of

the left branch is eliminated). The shape of the cylinder with the minimum 𝑘𝑙𝑉 on

the Pareto Front for heave-only, PF3,3,0.1 had an 𝐻/𝑅 = 0.041. On this Pareto Front,

the cylinder with minimum 𝑘𝑙𝑉 has 𝐻/𝑅 = 0.014 to 0.041.

We see from figures 5-8, 5-6 and 5-5 that for 𝐻/𝑅 > 0.78, the shape are eliminated by

the 𝐼55 constraint. For 0.34 < 𝐻/𝑅 < 0.96, the pitch motion is too large. The right

branch is determined by surge motion: for 𝐻/𝑅 < 0.04, the surge motion is too large.

The amount of extractable power for the heave-surge-pitch WECs is three times more

than that of the heave-only case. So, the increases to (𝑘𝑙𝑉 )𝑚𝑖𝑛 and (𝑘𝑙𝑆)𝑚𝑖𝑛 must be

weighed with the increase in power.

𝛼 = 3, 𝜖 = 0.2

Figure 5-17: Pareto Front for the heave-surge-pitch case of cylinders with a 𝛼 con-
straint value of 3 and 𝜖 constraint value of 0.2

Figure 5-17 shows PF135,3,0.2. Table 5.8 shows the characteristics of the cylinders on

the Pareto Front. From the table, we see that the lone point in this PF (teal) is not

the same as the one in PF135,3,0.1.
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉1|
𝐴

|𝜉3|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.03 1.3 1.38 0.37 0.67 0.6 1.69 1.34 0.22 0.53

3.31 1.28 1.64 0.25 0.82 0.43 0.97 1.25 0.62 0.66

3.34 1.26 1.67 0.23 0.86 0.41 0.91 1.25 0.72 0.69

3.37 1.24 1.71 0.21 0.91 0.39 0.87 1.24 0.82 0.71

3.4 1.22 1.74 0.19 0.94 0.37 0.82 1.24 0.93 0.73

3.43 1.2 1.77 0.18 1.01 0.36 0.8 1.24 1.02 0.77

3.46 1.18 1.8 0.16 1.05 0.35 0.78 1.24 1.13 0.79

Table 5.8: Characteristics of the heave-surge-pitch Pareto Front for 𝛼 = 3, 𝜖 = 0.2,
called PF135,3,0.2, shown in figure 5-17.

We see from figure 5-7 that the lone point from PF135,3,0.1 was eliminated because

of the pitch steepness constraint. So in contrast to the heave-only case, increasing

𝜖 causes an increase in the minimum 𝑘𝑙𝑆 value. It increases from 2.86 to 3.03 – a 6

% increase. The cylinder with the minimum 𝑘𝑙𝑆 value is shallower for the higher 𝜖

value.

We also see from table 5.8, compared to table 5.7 that the yellow-orange shapes from

the bottom right of the cluster from the right branch are eliminated. From figure 5-7,

we see that this is also because of the pitch steepness constraint. As 𝜖 increase, the

minimum 𝑘𝑙𝑉 value increases from 0.98 to 1.18 – a 20 % increase. The shape of the

cylinder with the minimum 𝑘𝑙𝑉 value gets deeper: the 𝐻/𝑅 value goes from 0.041 to

0.89. Compared to heave-only, PF3,3,0.2, the minimum 𝑘𝑙𝑆 increases from 1.89 to 3.03

– a 60 % increase, and the minimum 𝑘𝑙𝑉 increases from 0.9 to 1.18 – a 31 % increase.

PF3,3,0.1 only had one point on it, so this Pareto Front is more extensive.

𝛼 = 1, 𝜖 = 0.1
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Figure 5-18: Pareto Front for the heave-surge-pitch case of cylinders with a 𝛼 con-
straint value of 1 and 𝜖 constraint value of 0.1

Figure 5-18 shows PF135,1,0.1. This is a PF𝐶 shape. Table 5.9 shows the characteristics

for this Pareto Front.

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉1|
𝐴

|𝜉3|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.31 1.28 1.64 0.25 0.82 0.43 0.97 1.25 0.62 0.66

3.34 1.26 1.67 0.23 0.86 0.41 0.91 1.25 0.72 0.69

3.37 1.24 1.71 0.21 0.91 0.39 0.87 1.24 0.82 0.71

3.4 1.22 1.74 0.19 0.94 0.37 0.82 1.24 0.93 0.73

Table 5.9: Characteristics of the heave-surge-pitch Pareto Front for 𝛼 = 1, 𝜖 = 0.1,
called PF135,1,0.1, shown in figure 5-18.

Compared to PF135,3,0.1, decreasing 𝛼 from 3 to 1 increases the minimum 𝑘𝑙𝑆 from 2.86

to 3.31 – a 16 % increase. We see from figures 5-6 that the decrease in 𝛼 value meant

the teal shapes were eliminated because of the pitch motion constraint. The shallowest

shapes from PF135,3,0.1, shown in yellow-orange in figure 5-16, are eliminated. We can

see from figure 5-5 that this is due to the surge motion constraint. Consequently,

the minimum 𝑘𝑙𝑉 value increases from 0.98 to 1.22 – a 24 % increase. Compared the

PF3,1,0.1, the minimum 𝑘𝑙𝑆 has increased from 2.62 to 3.31 – a 26 % increase, and the

minimum 𝑘𝑙𝑉 has increased from 0.72 to 1.22 – a 69 % increase.

𝛼 = 1, 𝜖 = 0.2

177



Figure 5-19: Pareto Front for the heave-surge-pitch case of cylinders with a 𝛼 con-
straint value of 1 and 𝜖 constraint value of 0.2

Figure 5-19 shows PF135,1,0.2. We see that this is the same as PF135,1,0.1. Therefore,

increasing 𝜖 does not change the Pareto Front at all, when 𝛼 = 1.

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 |𝜉1|
𝐴

|𝜉3|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.31 1.28 1.64 0.25 0.82 0.43 0.97 1.25 0.62 0.66

3.34 1.26 1.67 0.23 0.86 0.41 0.91 1.25 0.72 0.69

3.37 1.24 1.71 0.21 0.91 0.39 0.87 1.24 0.82 0.71

3.4 1.22 1.74 0.19 0.94 0.37 0.82 1.24 0.93 0.73

Table 5.10: Characteristics of the heave-surge-pitch Pareto Front for 𝛼 = 1, 𝜖 = 0.2,
called PF135,1,0.2, shown in figure 5-19.

Comparing this to PF135,3,0.2 to show how decreasing 𝛼 from 3 to 1, we see that the

minimum 𝑘𝑙𝑆 value increases from 3.03 to 3.31 – a 9% increase, and the minimum

𝑘𝑙𝑉 value increases from 1.18 to 1.22 – a 3% increase. Compared to PF3,3,0.1, the

minimum 𝑘𝑙𝑆 value increase from 2.62 to 3.31 – a 26 % increase, and the minimum

𝑘𝑙𝑉 value increases from 0.9 to 1.22 – a 35 % increase.

General trends/ observations

1. How 𝒮(PF135) changes from the heave-only case to the heave-surge-pitch case

∙ Compared to the heave-only problem, more shapes are eliminated from the

populations.
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∙ However, for some constraint values (for example, 𝛼 = 3, 𝜖 = 0.2), there

are more shapes on the Pareto Front for the heave-surge-pitch case than

for the heave-only case.

∙ How 𝒮(P135) and 𝒮(PF135) changes for different 𝛼 and 𝜖 is not as straight

forward as in the heave-only case. For example, if 𝛼 = 3, changing 𝜖 from

0.1 to 0.2 eliminates shapes on both ends of 𝒮(P135,3,0.1) because of the

pitch steepness constraint. However, if 𝛼 = 1, changing 𝜖 from 0.1 to 0.2

does not change the population or Pareto Front at all.

∙ It is not the case that a stricter constraint means a fuller PF, like it was

for heave.

2. How the performance changed from heave

Table 5.11 shows the increase in (𝑘𝑙𝑆)𝑚𝑖𝑛 and (𝑘𝑙𝑉 )𝑚𝑖𝑛 when going from the

heave-only case to the heave-surge-pitch case.

constraint values % increase of (𝑘𝑙𝑆)𝑚𝑖𝑛 % increase of (𝑘𝑙𝑉 )𝑚𝑖𝑛

𝛼 = 3, 𝜖 = 0.1 51 % 36%

𝛼 = 3, 𝜖 = 0.2 60 % 31%

𝛼 = 1, 𝜖 = 0.1 26 % 69%

𝛼 = 1, 𝜖 = 0.2 26 % 35%

Table 5.11: The percent increase in minimum 𝑘𝑙𝑉 and minimum 𝑘𝑙𝑆 values from the
heave-only case to the heave-surge-pitch case, for each constraint regime

3. How the performance changes with 𝛼

∙ From PF135,3,0.1 to PF135,1,0.1, (𝑘𝑙𝑆)𝑚𝑖𝑛 increased by 16 % and (𝑘𝑙𝑉 )𝑚𝑖𝑛

increased by 16 %.

∙ From PF135,3,0.2 to PF135,1,0.2, (𝑘𝑙𝑆)𝑚𝑖𝑛 increased by 9 % and (𝑘𝑙𝑉 )𝑚𝑖𝑛 in-

creased by 3 %.

4. How the performance changes with 𝜖
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5. From PF135,3,0.1 to PF135,3,0.2, (𝑘𝑙𝑆)𝑚𝑖𝑛 increased by 6 % and (𝑘𝑙𝑉 )𝑚𝑖𝑛 increased

by 20 %.

6. From PF135,1,0.1 to PF135,1,0.2, (𝑘𝑙𝑆)𝑚𝑖𝑛 and (𝑘𝑙𝑉 )𝑚𝑖𝑛 do not change.

7. How the shapes change from heave

∙ The deepest shapes in PF3 ’s are eliminated in PF135’s

∙ This is due to the 𝐼55 constraint, the pitch motion constraint and the pitch

steepness constraint.

∙ Also, the shallowest shapes are eliminated. This is due to the surge motion

constraint and the pitch steepness constraint.

∙ Therefore, for each case, 𝐻/𝑅
(︁
(𝑘𝑙𝑆)𝑚𝑖𝑛

)︁
is smaller in PF135 compared to

PF135, and 𝐻/𝑅
(︁
(𝑘𝑙𝑉 )𝑚𝑖𝑛

)︁
is larger.

In this section, results of the heave-surge-pitch optimization were presented and dis-

cussed.

5.4 Summary

In this chapter, we used the cylinder as an example to show the optimization frame-

work and approach that we developed in this thesis, which were explained in chapters

3 and 4. But also, the cylinder is the simplest shape to build, and is often the pre-

ferred shape in ocean engineering, so these results show the dimensions of the the best

cylinders under our optimization definition, and also physical insights into why they

are the best shapes.

In section 5.1, we gave a detailed example of the approach. We showed how we used

the theorem developed and proved in chapter 4 to find R𝑐𝑦𝑙
3 , the set of all cylinders

that solve the heave resonance equation. We showed the plot of 𝒮(R𝑐𝑦𝑙
3 ), which is R𝑐𝑦𝑙

3

in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space, in figure 5-2, which also showed the physical dimensions of a

few of the cylinders in R𝑐𝑦𝑙
3 by plotting them in the 𝑟 − 𝑧 plane.
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We discussed in chapter 4 that we observed that, for every shape of WEC discussed

in this thesis, the shape of the curve of each R3 in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space followed a

similar pattern: they are all one-to-one, concave down curves, with a maximum at

(𝑘𝑙𝑉 )𝑚𝑎𝑥. Figure 5-2 confirmed these aspects for R𝑐𝑦𝑙
3 . We then showed how each

constraint affected the shape of 𝒮(R𝑐𝑦𝑙
3 ) to form the populations for the heave-only

problem (P3’s). We proved in chapter 4 that the heave motion constraint would

eliminate shapes from the lower left branch of R3, and figure 5-3 demonstrated this

for the cylinders. Additionally, we proved that the heave steepness constraint would

eliminate shapes from both the lower left branch as well as from the lower right

branch, and figure 5-4 demonstrated this for the cylinders.

We then showed how each constraint affected the shape of 𝒮(R𝑐𝑦𝑙
3 ) to form the pop-

ulations for the heave-surge-pitch problem (P135’s). Figures 5-5, 5-6, 5-7, 5-8 and 5-9

show which parts of R𝑐𝑦𝑙
3 are eliminated by the surge motion constraint, the pitch mo-

tion constraint, the pitch steepness constraint, the pitch moment of inertia constraint,

and the center of gravity constraint, respectively.

In section 5.2, we showed the results of the optimization for the heave-only case.

Figure 5-10 shows the populations for four different cases: 𝛼 = 3, 𝜖 = 0.1, 𝛼 = 3, 𝜖 =

0.2, 𝛼 = 1, 𝜖 = 0.1 and 𝛼 = 1, 𝜖 = 0.2. The resulting Pareto Fronts – PF3,3,0.1, PF3,3,0.2,

PF3,1,0.1, PF3,1,0.2 are shown in figures 5-11, 5-12, 5-13 and 5-14. Their dimensions

and heave body motion amplitudes are recorded in tables 5.1, 5.2, 5.3, 5.4, 5.5, and

5.6.

As 𝛼 decreases (so the motion constraint becomes more restrictive), the Pareto Front

becomes ‘fuller’ (there are more options, less constrained), since elimination of more

of the left branch opens up more of the right branch. As 𝛼 decreases from 3 to 1,

(𝑘𝑙𝑆)𝑚𝑖𝑛 increases by 39 %, but (𝑘𝑙𝑉 )𝑚𝑖𝑛 does not change. As 𝜖 increases from 0.1

to 0.2, (𝑘𝑙𝑆)𝑚𝑖𝑛 does not change, but (𝑘𝑙𝑉 )𝑚𝑖𝑛 increases by 25 %. As 𝛼 decreases,

the cylinder with (𝑘𝑙𝑆)𝑚𝑖𝑛 is shallower. As 𝜖 increase, the cylinder with (𝑘𝑙𝑉 )𝑚𝑖𝑛 is

deeper.
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In section 5.3, we showed the results of the optimization for the heave-surge-pitch

case. Figure 5-15 shows the populations for four different cases: 𝛼 = 3, 𝜖 = 0.1,

𝛼 = 3, 𝜖 = 0.2, 𝛼 = 1, 𝜖 = 0.1 and 𝛼 = 1, 𝜖 = 0.2.

The resulting Pareto Fronts – PF135,3,0.1, PF135,3,0.2, PF135,1,0.1, PF135,1,0.2 are shown

in figures 5-16, 5-17, 5-18 and 5-19. Their dimensions, heave, surge and pitch body

motion amplitudes, nondimensional surge spring coefficient, nondimensional center

of gravity, and nondimensional radius of gyration are recorded in tables 5.7, 5.8, 5.9,

and 5.10.

There are fewer shapes in the populations than for heave, because more shapes are

eliminated from R𝑐𝑦𝑙
3 by the surge-pitch constraints. In every case, (𝑘𝑙𝑉 )𝑚𝑖𝑛 and

(𝑘𝑙𝑆)𝑚𝑖𝑛 increased from PF3 to PF135: specific numbers given in table 5.11. The

cylinders on the heave-surge-pitch Pareto Fronts are generally less optimal than those

in the heave-only case, but it is important to recognize that the extractable power for

the heave-surge-pitch case is three times more than that for the heave-only case.

Decreasing 𝛼 increases (𝑘𝑙𝑆)𝑚𝑖𝑛 and (𝑘𝑙𝑉 )𝑚𝑖𝑛. Increasing 𝜖 increases (𝑘𝑙𝑆)𝑚𝑖𝑛 when

𝛼 = 3 but does not change the population when 𝛼 = 1. As 𝛼 decreases, the cylinder

with (𝑘𝑙𝑆)𝑚𝑖𝑛 is shallower, and the cylinder with (𝑘𝑙𝑉 )𝑚𝑖𝑛 is deeper. As 𝜖 increases,

the cylinder with (𝑘𝑙𝑆)𝑚𝑖𝑛 is shallower; for 𝛼 = 3 the cylinder with 𝑘𝑙𝑉 𝑚𝑖𝑛 is deeper

but for 𝛼 = 1 it does not change. Compared to heave, the cylinders with minimum

(𝑘𝑙𝑆)𝑚𝑖𝑛 are shallower and the cylinder with minimum (𝑘𝑙𝑉 )𝑚𝑖𝑛 are deeper. The

constraints do not change the PFs in as predictable of a way as in heave

We presented Pareto Fronts for eight optimizations in this chapter: four for the heave-

only problem, and four for the heave-surge-pitch problem. These Pareto Fronts are

sets of optimal solutions, according to our optimization framework. It is not in the

scope of this thesis to decide within the sets which cylinder is best. That could be

decided by the developer by other parameters, such as cost, survivability, and ease of

build.

182



In the next chapter, we will present the results for the optimizations of groups of

shapes. We will use the results from this chapter as a base case to determine how

much better (in terms of smaller surface area and/or volume) than a simple cylinder

we can achieve by optimizing geometry.
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Chapter 6

Optimization of a broad range of

general geometries

6.1 Introduction

In the previous chapter, we showed the optimization framework and procedure us-

ing the cylinder as an example, and we showed a detailed analysis of the optimal

dimensions of the cylinder. In this chapter, we present the optimization results from

a systematic investigation of a broad range of shapes.

We studied five different groups of shapes. Groups of shapes are sets of multiple

classes of shapes. Since every geometric shape in this thesis is axisymmetric, we

describe the properties in the 2D 𝑟 − 𝑧 plane. The four groups of shapes that are

presented in this chapter are:

1. ‘Flat-bottomed’ shapes: Piecewise-linear with one slope discontinuity at

(𝑟1, 𝑧1), where the segment from the centerline to the slope discontinuity is

horizontal. That is, 𝑧1 = −𝐻. Figure 4-10 shows examples of classes of shapes

in this group. The parameters to optimize are 𝑘𝑙𝑉 and 𝑟1 = 𝑟1
𝑅

. 𝑟1 can be any

number greater than 0. A value of 𝑟1 > 1 would signify a protruding outward

shape.
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2. ‘One-kink’ shapes: Piecewise-linear with one slope discontinuity at (𝑟1, 𝑧1).

Figure 4-12 shows examples of classes of shapes in this group. The parameters

to optimize are 𝑘𝑙𝑉 , 𝑟1 = 𝑟1
𝑅

and 𝑧1 = 𝑧1
𝐻

. 𝑟1 can be any number greater than 0,

and 𝑧1 can be any number less 0. A value of 𝑟1 > 1 would signify a protruding

outward shape. A value of 𝑧1 < −1 would signify a protruding downwards

shape.

3. Compound cylinders: One cylinder on top of another. The shape can be

described by four piecewise-linear segments. The segment from the waterline

to the first slope discontinuity is vertical, the segment from the first slope dis-

continuity to the second slope discontinuity is horizontal, the segment from the

second slope discontinuity to the third slope discontinuity is vertical, and the

segment from the third slope discontinuity to the centerline is horizontal. Figure

4-13 shows examples of classes of shapes in this group. The coordinates of the

second slope discontinuity are (𝑟2, 𝑧2). Therefore, the parameters to optimize

are 𝑘𝑙𝑉 , 𝑟2 = 𝑟2
𝑅

and 𝑧2 = 𝑧2
𝐻

. 𝑟2 is the ratio of the radii of the two cylinders and

𝑧1 is the ratio of the depths of the two cylinders. 𝑟2 can be any number greater

than 0, and 𝑧2 can be between 0 and -1. A value of 𝑟2 < 1 would signify a

larger cylinder on top of a smaller cylinder, and a value of 𝑟2 > 1 would signify

a smaller cylinder on top of a larger cylinder.

4. ‘No-kink-2nd-order’ shapes: A second-order continuous segment, with no

slope discontinuities. The parametric equations have coefficients of the second-

order polynomial basis function 𝑎2 (in the 𝑟 direction) and 𝑏2 (in the 𝑧 direction).

Figure 4-14 shows examples of different classes of shapes in this group. The

parameters to be optimized are 𝑘𝑙𝑉 , 𝑎2 = 𝑎2
𝑅

and 𝑏2 = 𝑏2
𝐻

. 𝑎2 can be any number

less than 0.1, and 𝑏2 can be any number greater than -0.1. A value of 𝑎2 < −0.1

signifies a protruding outwards shape, and a value of 𝑏2 > 0.1 would signify a

protruding downwards shape.

We run these groups separately to observe trends among certain groups, and then

we assess overall trends by combining the groups and comparing between the groups.
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We also considered ‘flat-sided’ shapes: piecewise-linear with one slope discontinuity,

where the segment from the waterline to the slope discontinuity is vertical (i.e., 𝑟1 =

1). These did not perform well compared to the other groups, so we show them in

Appendix D.

Similar to the cylinder analysis, for each group of shapes, we run eight optimizations:

four for the heave-only problem, and four for the heave-surge-pitch problem. For

each case, we run 2 values of 𝛼 (3 and 1) and 2 values of 𝜖 (0.1 and 0.2). Therefore,

the Pareto Fronts will be PF3,3,0.1, PF3,3,0.2, PF3,1,0.1, PF3,1,0.2, PF135,3,0.1, PF135,3,0.2,

PF135,1,0.1, and PF135,1,0.2. The multi-objective optimization is described in sections

4.5. The sensitivity study, shown in Appendix C, informs us on how large the initial

population size should be and how many generations we should run. These numbers

for the heave-only problem vs. the heave-surge-pitch problem are very different. Also

due to the sensitivity study, we set the mutation probability at 0.1 for all cases. For

each group, we describe the possible values of the parameters by their limits and the

step-size. For example, if for a specific group we say that the ‘possible values’ of 𝑟1

are [0.25,1,0.05], this means that in the optimization algorithm the defined possible

values for 𝑟1 are 0.25, 0.3, 0.35, ..., 0.9,0.95,1. These are the only values that 𝑟1 can

take in the algorithm. For some cases, after running the initial algorithm, we ran

all cases for a select range of values. We state these values at the beginning of each

section.

For each group, we only show the final Pareto Front and the corresponding shapes

for each organism on the Pareto Front. We do not show entire populations like we

did in the previous chapter for cylinders. For each run, the colors of the organisms

on the Pareto Front on the left plot correspond to the colors of the shapes shown

in the right plot. The colors from one run to the next are not related. After each

Pareto Front, we show a table with corresponding dimensions and characteristics of

the shapes, like we did for the cylinder. For the heave-only case, for each shape on the

Pareto Front we show 𝑘𝑙𝑆, 𝑘𝑙𝑉 , 𝑘𝑅, 𝑘𝐻, all other geometric parameters for that group,

and |𝜉3|
𝐴

. For the heave-surge-pitch case, for each shape on the Pareto Front we show
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𝑘𝑙𝑆, 𝑘𝑙𝑉 , 𝑘𝑅, 𝑘𝐻, all other geometric parameters for that group, |𝜉3|
𝐴
, |𝜉1|
𝐴
, |𝜉5|
𝐴/𝑅

, 𝑘1, 𝑧𝐺,

and 𝑟𝑔 where 𝑘1 = 𝑘1
𝜌𝜔2𝑙3𝑣

, 𝑧𝐺 = 𝑧𝐺

𝐻
and 𝑟𝑔 = 𝑟𝑔

𝑅
. The reason we show these tables is to

compare different shapes on the Pareto Front. One of the reasons why we present a

set of optimal shapes is that a developer could decide among this set which they would

want to build, based on the importance of minimizing surface area or volume, but also

potentially based on other parameters. The parameters in these tables are among the

ones that are potentially interesting to a developer. For example, if stability was the

most important thing to them, they could choose the one with the lowest 𝑧𝐺.

The parameters to optimize are described in each group above. We state that we

optimize 𝑘𝑙𝑉 and then any parameter that determines its B𝐸 vector. 𝑘𝑅 is determined

from requiring the body to be in resonance in heave, and 𝑘𝐻 is found once 𝑘𝑅,B𝐸

and 𝑘𝑙𝑉 are known. Therefore, we optimize the whole shape: we determine the best

sizes and dimensions the shape should be to maximize power and minimize surface

area and volume, while ensuring shapes are a practically realistic by requiring certain

constraints.

In each group, we show the results and discuss observations and trends within the

group, including the characteristics of shapes on the Pareto Front and how the motion

and steepness constraints affect shapes and performance. We will also compare results

from the heave-only problem to those from the heave-surge-pitch problem, and we

will compare shapes and performance from these Pareto Fronts to the ones found in

the previous chapter for the optimal cylinders.

In section 2, we present the ‘flat-bottomed’ results, in section 3 we present the ‘one-

kink’ results, in section 4 we present the compound cylinder results, in section 5 we

present the ‘no-kink-2nd-order’ results. In section 6, we combine the results from all

five groups to make overall Pareto Fronts for each of the 8 optimizations (heave-only

and heave-surge-pitch for the different 𝛼 and 𝜖 values). In section 7 we discuss overall

observations, trends, and conclusions. We discuss physical insights we gained from

these results, and make conclusions and hypotheses about why they are true. In
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section 8, we show the benefit of the optimization by showing how much less material

optimal shapes have compared to the optimal cylinders, to extract the same power,

and we also show physical dimensions and amount of extractable power in a typical

sea state. In section 9, we discuss the overall optimal shape. And finally, in section

10 we summarize the chapter.

6.2 Flat-bottomed

Since this was used as the basis for the sensitivity study (see Appendix C), we ran

every possible value of each of the parameters. For both the heave-only problem, as

well as the heave-surge-pitch problem, the possible values for 𝑟1 are [0.25,1.45,0.02],

and the possible values for 𝑘𝑙𝑉 are [0.3,1.7,0.05].

6.2.1 Heave-only

𝛼 = 3, 𝜖 = 0.1

Figure 6-1: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-bottomed’ shapes
for the heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1
|𝜉3|
𝐴

1.19 0.52 0.32 0.3 1.39 2.88

Table 6.1: Dimensions and characteristics of the ‘flat-bottomed’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.1 (shown in figure 6-1)
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𝛼 = 3, 𝜖 = 0.2

Figure 6-2: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-bottomed’ shapes
for the heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1
|𝜉3|
𝐴

1.59 0.72 0.5 0.39 1.21 1.93

3.77 0.7 2.13 0.05 0.27 0.25

Table 6.2: Dimensions and characteristics of the ‘flat-bottomed’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.2 (shown in figure 6-2)

𝛼 = 1, 𝜖 = 0.1

Figure 6-3: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-bottomed’ shapes
for the heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1
|𝜉3|
𝐴

1.8 0.56 0.64 0.1 1.31 0.95

Table 6.3: Dimensions and characteristics of the ‘flat-bottomed’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.1 (shown in figure 6-3)

𝛼 = 1, 𝜖 = 0.2

Figure 6-4: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-bottomed’ shapes
for the heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1
|𝜉3|
𝐴

2.22 0.8 0.88 0.17 1.19 0.72

2.26 0.78 0.91 0.15 1.19 0.68

3.75 0.76 2.11 0.05 0.53 0.25

3.75 0.74 2.12 0.05 0.45 0.25

3.76 0.72 2.12 0.05 0.37 0.25

3.77 0.7 2.13 0.05 0.27 0.25

Table 6.4: Dimensions and characteristics of the ‘flat-bottomed’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.2 (shown in figure 6-4)

Trends/ observations

∙ We notice that generally these optimal shapes are protruding outward. That is,

𝑟1 > 1. We will see that this is a general trend, and we will show our hypothesis

for why this is true in the discussion in section 6.7.
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∙ For a stricter motion constraint (i.e. when 𝛼 decreases), shapes are wider (𝑘𝑅

increases) and shallower (𝑘𝐻 decreases), with a similar level of ‘protrusion’ (𝑟1

stays about the same).

∙ For a stricter steepness constraint (i.e. when 𝜖 increases), the shapes are larger

(both 𝑘𝑅 and 𝑘𝐻 increase) and less protruding (𝑟1 decreases).

6.2.2 Heave-surge-pitch

𝛼 = 3, 𝜖 = 0.1

Figure 6-5: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘flat-bottomed’ shapes for
the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.37 0.82 0.98 0.16 1.17 0.64 2.3 1.47 1.31 1.28 0.24

2.39 0.8 0.99 0.14 1.17 0.62 2.44 1.37 1.31 1.53 0.19

Table 6.5: Dimensions and characteristics of the ‘flat-bottomed’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.1 (shown in figure 6-5)

𝛼 = 3, 𝜖 = 0.2
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Figure 6-6: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘flat-bottomed’ shapes for
the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.84 1.1 1.29 0.24 1.07 0.52 1.11 1.19 1.3 0.75 0.49

3.58 1.08 2.0 0.11 0.89 0.28 1.77 0.56 1.17 4.03 0.93

3.62 1.06 2.02 0.11 0.85 0.28 2.12 0.52 1.14 4.71 0.95

3.63 1.04 2.04 0.1 0.83 0.27 2.36 0.51 1.14 5.19 0.98

3.65 1.02 2.05 0.1 0.81 0.27 2.73 0.48 1.12 5.71 1.01

Table 6.6: Dimensions and characteristics of the ‘flat-bottomed’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.2 (shown in figure 6-6)

𝛼 = 1, 𝜖 = 0.1

Figure 6-7: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘flat-bottomed’ shapes for
the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.15 1.18 1.52 0.22 1.03 0.98 0.43 0.94 1.27 0.86 0.62

Table 6.7: Dimensions and characteristics of the ‘flat-bottomed’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.1 (shown in figure 6-7)

𝛼 = 1, 𝜖 = 0.2

Figure 6-8: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘flat-bottomed’ shapes for
the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.15 1.18 1.52 0.22 1.03 0.98 0.43 0.94 1.27 0.86 0.62

Table 6.8: Dimensions and characteristics of the ‘flat-bottomed’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.2 (shown in figure 6-8)

Trends/ observations

∙ We notice again that generally the optimal shapes protrude outwards. There-

fore, this is a trend for the heave-only problem as well as the heave-surge-pitch

problem.

∙ Compared to the optimal shapes for the heave-only problem, the optimal shapes

on these Pareto Fronts are generally wider and less protruding (i.e., the shapes

on the heave-surge-pitch Pareto Fronts have larger 𝑘𝑅 values and smaller 𝑟1

values).
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∙ Decreasing 𝛼 for the heave-surge-pitch problem results in wider shapes (i.e. 𝑘𝑅

increases), but unlike the heave-only problem, the shape are not shallower.

∙ The Pareto Fronts are identical for 𝛼 = 1, 𝜖 = 0.1 and 𝛼 = 1, 𝜖 = 0.2.

6.3 One-kink shapes

6.3.1 Heave-only

For the heave-only problem, the possible values of 𝑘𝑙𝑉 were [0.3,1.5,0.05], the possible

values of 𝑟1 were [0.25,1.6,0.05], and the possible values of 𝑧1 were [-1.5,-0.1,0.05].

The initial population size was 500, and the number of generations was 7500. Once

we did this initial optimization and noticed the trend that shapes with 𝑟1 > 1 and

−1 < 𝑧1 < 0 were optimal, we evaluated all values of 𝑘𝑙𝑉 = [0.3, 0.75, 0.05], 𝑟1 =

[1, 1.7, 0.05] and 𝑧1 = [−1,−0.1, 0.05].

𝛼 = 3, 𝜖 = 0.1

Figure 6-9: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘one-kink’ shapes for the
heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint 𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1
|𝜉3|
𝐴

1.0 0.4 0.25 0.3 1.65 -0.2 2.87

3.79 0.3 2.14 0.03 0.25 -0.1 0.25

Table 6.9: Dimensions and characteristics of the ‘one-kink’ shapes on the Pareto Front
for the heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1 (shown in figure 6-9)
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𝛼 = 3, 𝜖 = 0.2

Figure 6-10: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘one-kink’ shapes for the
heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint 𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1
|𝜉3|
𝐴

1.18 0.55 0.31 0.6 1.45 -0.25 2.71

3.79 0.46 2.14 0.08 0.25 -0.15 0.25

Table 6.10: Dimensions and characteristics of the ‘one-kink’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.2 (shown in figure 6-10)

𝛼 = 1, 𝜖 = 0.1

Figure 6-11: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘one-kink’ shapes for the
heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint 𝜖 = 0.1
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1
|𝜉3|
𝐴

1.8 0.56 0.64 0.1 1.31 -1.0 0.95

1.81 0.5 0.63 0.11 1.35 -0.35 0.92

1.83 0.46 0.63 0.1 1.35 -0.2 0.89

3.78 0.41 2.14 0.05 0.3 -0.15 0.25

3.79 0.35 2.14 0.04 0.25 -0.15 0.25

Table 6.11: Dimensions and characteristics of the ‘one-kink’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.1 (shown in figure 6-11)

𝛼 = 1, 𝜖 = 0.2

Figure 6-12: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘one-kink’ shapes for the
heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint 𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1
|𝜉3|
𝐴

1.83 0.6 0.63 0.25 1.35 -0.1 0.92

2.24 0.57 0.87 0.13 1.25 -0.1 0.26

3.78 0.41 2.14 0.05 0.3 -0.15 0.26

Table 6.12: Dimensions and characteristics of the ‘one-kink’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.2 (shown in figure 6-12)

Trends/ observations

∙ Similar to the flat-bottomed shapes, generally the optimal shapes are protruding

outwards.
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∙ We also notice that generally −0.5 < 𝑧1 < 0 – that is, the protrusion is closer

to the waterline (𝑧 = 0) than the maximum draft (𝑧 = −𝐻).

∙ If we compare these Pareto Fronts to the ones from the flat-bottomed groups,

we see that minimum 𝑘𝑙𝑆 values and minimum 𝑘𝑙𝑉 values for the one-kink group

are smaller than the flat-bottomed group. For example, comparing the purple

shape in figure 6-1 to the purple shape in figure 6-9, the 𝑘𝑙𝑆 values are 1.19

(flat-bottomed) vs. 1 (one-kink), and the 𝑘𝑙𝑉 values are 0.52 (flat-bottomed)

vs. 0.4 (one-kink).

∙ For PF3,1,0.1, this includes a flat-bottomed shape, as well as shapes with −1 <

𝑧1 < 0. The flat-bottomed shape has the smallest 𝑘𝑙𝑆 value. As 𝑧1 increases,

𝑘𝑙𝑆 increases slightly and 𝑘𝑙𝑉 decreases significantly, creating an almost vertical

Pareto Front for those shapes.

∙ As 𝛼 decreases, 𝑘𝑅 increases, 𝑘𝐻 decreases. That is, shapes get wider and

shallower.

∙ As 𝜖 increases, 𝑘𝑅 stays about the same, 𝑘𝐻 increases, 𝑟1 stays about the same.

That is, shapes get deeper but with a similar protrusion.

6.3.2 Heave-surge-pitch

For the heave-surge-pitch problem, the possible values of 𝑘𝑙𝑉 were [0.6,1.5,0.05], the

possible values of 𝑟1 were [0.25,1.6,0.05], and the possible values of 𝑧1 were [-1.5,-

0.1,0.05]. The initial population size was 300, and the number of generations was

1500. We also evaluated all values of 𝑘𝑙𝑉 = [0.8, 1.3, 0.05], 𝑟1 = [1, 1.6, 0.05] and

𝑧1 = [−1,−0.1, 0.05].

𝛼 = 3, 𝜖 = 0.1
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Figure 6-13: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘one-kink’ shapes for the
heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.37 0.82 0.98 0.16 1.17 -1.0 0.64 2.3 1.47 1.31 1.28 0.24

2.39 0.8 0.99 0.14 1.17 -1.0 0.62 2.44 1.37 1.31 1.53 0.19

Table 6.13: Dimensions and characteristics of the ‘one-kink’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.1 (shown in figure 6-13)

𝛼 = 3, 𝜖 = 0.2

Figure 6-14: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘one-kink’ shapes for the
heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.2
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.79 1.05 1.26 0.28 1.1 -0.6 0.5 1.41 1.06 1.24 0.97 0.13

2.79 1.0 1.26 0.22 1.1 -0.75 0.49 1.57 1.04 1.25 1.18 0.3

2.84 0.95 1.31 0.19 1.1 -0.65 0.45 1.91 0.91 1.21 1.72 0.34

2.97 0.9 1.39 0.17 1.1 -0.45 0.41 2.64 0.8 1.15 2.37 0.45

Table 6.14: Dimensions and characteristics of the ‘one-kink’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.2 (shown in figure 6-14)

𝛼 = 1, 𝜖 = 0.1

Figure 6-15: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘one-kink’ shapes for the
heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.02 1.25 1.43 0.45 1.05 -0.45 0.46 0.94 0.97 1.24 0.63 0.28

3.15 1.18 1.52 0.22 1.03 -1.0 0.43 0.98 0.94 1.27 0.86 0.62

Table 6.15: Dimensions and characteristics of the ‘one-kink’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.1 (shown in figure 6-15)

𝛼 = 1, 𝜖 = 0.2
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Figure 6-16: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘one-kink’ shapes for the
heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.02 1.25 1.43 0.45 1.05 -0.45 0.46 0.94 0.97 1.24 0.63 0.28

3.15 1.18 1.52 0.22 1.03 -1.0 0.43 0.98 0.94 1.27 0.86 0.62

Table 6.16: Dimensions and characteristics of the ‘one-kink’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.2 (shown in figure 6-16)

Trends/ observations

∙ We once again notice that generally the optimal shapes are protruding outwards.

∙ We notice that the maximum radius occurs when −1 < 𝑧1 < 0. Compared to

the heave-only problem, the 𝑧1 values are smaller: recall that for the heave-only

problem the optimal shapes had −0.5 < 𝑧1 < 0, whereas for the heave-surge-

pitch problem −1 < 𝑧1 < −0.5 mostly. We see that shapes that ‘protruding

downward’ (i.e. 𝑧1 < −1) is generally not optimal.

∙ As 𝛼 decreases, 𝑘𝑅 and 𝑘𝐻 increase, 𝑟1 decreases. That is, shapes generally

get wider, deeper and less protruding outwards.

∙ Compared to the heave-only problem, the optimal shapes on these Pareto Fronts

are wider, shallower, and less outwardly protruding.

∙ The Pareto Fronts for 𝛼 = 1, 𝜖 = 0.1 and for 𝛼 = 1, 𝜖 = 0.2 are identical.
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6.4 Compound cylinder

6.4.1 Heave-only

For the heave-only problem, the possible values of 𝑘𝑙𝑉 were [0.3,1.4,0.05], the possible

values of 𝑟2 were [0.25,1.4,0.05], and the possible values of 𝑧2 were [-0.9,-0.25,0.05].

The initial population size was 500, and the number of generations was 4300. Addi-

tionally, however, we ran every compound cylinder with 𝑟2 values [1,1.4,0.05] and 𝑧2

[-0.9,-0.25,0.05].

𝛼 = 3, 𝜖 = 0.1

Figure 6-17: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘compound-cylinder’
shapes for the heave-only problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟2 𝑧2
|𝜉3|
𝐴

1.33 0.55 0.35 0.27 1.35 -0.3 2.73

3.79 0.5 2.13 0.03 0.35 -0.25 0.25

Table 6.17: Dimensions and characteristics of the ‘compound-cylinder’ shapes on the
Pareto Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.1 (shown in figure 6-17)

𝛼 = 3, 𝜖 = 0.2
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Figure 6-18: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘compound-cylinder’
shapes for the heave-only problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟2 𝑧2
|𝜉3|
𝐴

1.65 0.7 0.48 0.42 1.2 -0.75 2.08

3.79 0.65 2.11 0.05 0.3 -0.3 0.26

Table 6.18: Dimensions and characteristics of the ‘compound-cylinder’ shapes on the
Pareto Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.2 (shown in figure 6-18)

𝛼 = 1, 𝜖 = 0.1

Figure 6-19: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘compound-cylinder’
shapes for the heave-only problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟2 𝑧2
|𝜉3|
𝐴

1.92 0.55 0.66 0.1 1.3 -0.7 0.95

3.79 0.5 2.13 0.03 0.35 -0.25 0.25
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Table 6.19: Dimensions and characteristics of the ‘compound-cylinder’ shapes on the
Pareto Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.1 (shown in figure 6-19)

𝛼 = 1, 𝜖 = 0.2

Figure 6-20: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘compound-cylinder’
shapes for the heave-only problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟2 𝑧2
|𝜉3|
𝐴

2.35 0.75 0.88 0.15 1.2 -0.65 0.71

3.79 0.65 2.11 0.05 0.3 -0.3 0.26

3.79 0.6 2.12 0.05 0.25 -0.25 0.26

Table 6.20: Dimensions and characteristics of the ‘compound-cylinder’ shapes on the
Pareto Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.2 (shown in figure 6-20)

Trends/ observations

∙ Generally the optimal shapes are protruding outwards – that is, 𝑟2 > 1 – so

that the bottom cylinder is larger than the top one.

∙ Compared to the optimal cylinders, the surface area and volume of these optimal

compound cylinders are significantly smaller. For example, for 𝛼 = 3, 𝜖 = 0.1,

𝑘𝑙𝑆 is 30 % smaller (meaning surface area is 50 % smaller) and 𝑘𝑙𝑉 is 39 %

smaller (meaning volume is 77 % smaller). We point this out because compound

cylinders are relatively easy to build (being just one cylinder on top of another),

204



but the fact that surface area and volume can be decreased so much by simply

adding another cylinder shows that (1) geometric optimization is important

to decrease the amount of material needed to extract the same power, and (2)

allowing the shape to protrude outwards greatly improves the performance (that

is, allows the body to resonate at smaller volumes/ surface areas).

∙ Similarly to the flat-bottomed and one-kink groups, decreasing 𝛼 increases 𝑘𝑅

and decreases 𝑘𝐻. 𝑧2 decreases, while 𝑟2 is similar. That is, for a stricter motion

constraint shapes are wider, shallower and similarly protruding.

∙ As 𝜖 increases, 𝑘𝑅 and 𝑘𝐻 increase, and 𝑟2 decreases. So generally the shapes

get larger and less protruding, which is the same as for the one-kink group and

the flat-bottomed group.

∙ We notice that the 𝑘𝑙𝑆 and 𝑘𝑙𝑉 values are larger for the compound cylinders

than they were for the flat-bottomed and one-kink shapes.

6.4.2 Heave-surge-pitch

For the heave-surge-pitch problem, the possible values of 𝑘𝑙𝑉 were [0.6,1.4,0.05], the

possible values of 𝑟2 were [0.25,1.4,0.05], and the possible values of 𝑧2 were [-0.9,-

0.25,0.05]. For the 𝛼 = 3 runs, the initial population size was 110, and the number

of generations was 400, and for the 𝛼 = 1 runs, the initial population size was 200,

and the number of generations was 500.

𝛼 = 3, 𝜖 = 0.1
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Figure 6-21: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘compound-cylinder’
shapes for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟2 𝑧2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.53 0.9 0.99 0.2 1.15 -0.35 0.67 1.74 1.61 1.31 0.86 0.11

2.62 0.85 1.06 0.14 1.15 -0.3 0.58 2.22 1.27 1.26 1.48 0.37

2.64 0.8 1.08 0.13 1.15 -0.7 0.56 2.48 1.19 1.31 1.89 0.16

Table 6.21: Dimensions and characteristics of the ‘compound-cylinder’ shapes on the
Pareto Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and
steepness constraint 𝜖 = 0.1 (shown in figure 6-21)

𝛼 = 3, 𝜖 = 0.2

Figure 6-22: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘compound-cylinder’
shapes for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.2
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟2 𝑧2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.03 1.3 1.38 0.37 1 -1 0.6 0.67 1.69 1.34 0.22 0.53

3.31 1.28 1.64 0.25 1 -1 0.43 0.82 0.97 1.25 0.62 0.66

3.34 1.26 1.67 0.23 1 -1 0.41 0.86 0.91 1.25 0.72 0.69

3.37 1.24 1.71 0.21 1 -1 0.39 0.91 0.87 1.24 0.82 0.71

3.4 1.22 1.74 0.19 1 -1 0.37 0.94 0.82 1.24 0.93 0.73

3.43 1.2 1.77 0.18 1 -1 0.36 1.01 0.8 1.24 1.02 0.77

3.46 1.18 1.8 0.16 1 -1 0.35 1.05 0.78 1.24 1.13 0.79

3.63 1.15 1.91 0.18 0.35 -0.7 0.32 1.39 0.64 1.18 1.59 0.81

3.66 1.1 1.95 0.15 0.35 -0.7 0.3 1.61 0.62 1.17 1.96 0.88

3.68 1.05 1.97 0.13 0.35 -0.7 0.29 1.78 0.61 1.18 2.41 0.95

3.69 1.0 2.0 0.12 0.3 -0.65 0.29 2.22 0.58 1.16 2.72 1.04

Table 6.22: Dimensions and characteristics of the ‘compound-cylinder’ shapes on the
Pareto Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and
steepness constraint 𝜖 = 0.2 (shown in figure 6-22)

𝛼 = 1, 𝜖 = 0.1

Figure 6-23: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘compound-cylinder’
shapes for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.1
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟2 𝑧2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.31 1.28 1.64 0.25 1 -1 0.43 0.82 0.97 1.25 0.62 0.66

3.34 1.26 1.67 0.23 1 -1 0.41 0.86 0.91 1.25 0.72 0.69

3.37 1.24 1.71 0.21 1 -1 0.39 0.91 0.87 1.24 0.82 0.71

3.4 1.22 1.74 0.19 1 -1 0.37 0.94 0.82 1.24 0.93 0.73

3.46 1.2 1.78 0.18 0.85 -0.8 0.35 0.93 0.86 1.26 1.03 0.74

Table 6.23: Dimensions and characteristics of the ‘compound-cylinder’ shapes on the
Pareto Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and
steepness constraint 𝜖 = 0.1 (shown in figure 6-23)

𝛼 = 1, 𝜖 = 0.2

Figure 6-24: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘compound-cylinder’
shapes for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟2 𝑧2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.31 1.28 1.64 0.25 1 -1 0.43 0.82 0.97 1.25 0.62 0.66

3.34 1.26 1.67 0.23 1 -1 0.41 0.86 0.91 1.25 0.72 0.69

3.37 1.24 1.71 0.21 1 -1 0.39 0.91 0.87 1.24 0.82 0.71

3.4 1.22 1.74 0.19 1 -1 0.37 0.94 0.82 1.24 0.93 0.73

3.44 1.2 1.77 0.18 0.9 -0.8 0.35 0.92 0.88 1.26 0.98 0.74

Table 6.24: Dimensions and characteristics of the ‘compound-cylinder’ shapes on the
Pareto Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and
steepness constraint 𝜖 = 0.2 (shown in figure 6-24)
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Trends/ observations

∙ These Pareto Fronts are the first so far in this chapter that are not generally

protruding outwards. For 𝛼 = 3, 𝜖 = 0.1, the shapes are protruding outwards,

but for the other constraint regimes they are not.

∙ Cylinders are on the Pareto Fronts, for all other constraint regimes besides 𝛼 =

3, 𝜖 = 0.1. This suggests that for heave-surge-pitch, as the constraint regimes

get stricter, the shape optimization for compound cylinders does not provide a

very strong benefit, and that the optimal shapes are similar to cylinders (or are

cylinders).

6.5 No-kink-2nd-order

6.5.1 Heave-only

For the heave-only problem, the possible values of 𝑘𝑙𝑉 were [0.3,1.4,0.05], the possible

values of 𝑎2 were [-0.5,0.1,0.05], and the possible values of 𝑏2 were [-0.1,0.8,0.05]. The

initial population size was 400, and the number of generations was 3500. Once we did

this initial optimization and noticed the trend that shapes with 𝑎2 < −0.1 and 𝑏2 < 0.1

were optimal, we evaluated all values of 𝑘𝑙𝑉 = [0.4, 0.75, 0.05], 𝑎2 = [−0.5,−0.1, 0.05]

and 𝑏2 = [−0.1, 0.1, 0.05].
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𝛼 = 3, 𝜖 = 0.1

Figure 6-25: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘no-kink-2nd-order’ shapes
for the heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑎2 𝑏2
|𝜉3|
𝐴

1.25 0.6 0.34 0.55 -0.4 -0.05 2.7

1.5 0.5 0.46 0.17 -0.45 -0.1 1.33

3.78 0.45 2.13 0.03 0.05 -0.05 0.25

Table 6.25: Dimensions and characteristics of the ‘no-kinks-2nd-order’ shapes on the
Pareto Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.1 (shown in figure 6-25)

𝛼 = 3, 𝜖 = 0.2

Figure 6-26: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘no-kink-2nd-order’ shapes
for the heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.2
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑎2 𝑏2
|𝜉3|
𝐴

1.25 0.6 0.34 0.55 -0.4 -0.05 2.7

3.78 0.55 2.13 0.06 0.05 -0.05 0.25

Table 6.26: Dimensions and characteristics of the ‘no-kinks-2nd-order’ shapes on the
Pareto Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.2 (shown in figure 6-26)

𝛼 = 1, 𝜖 = 0.1

Figure 6-27: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘no-kink-2nd-order’ shapes
for the heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑎2 𝑏2
|𝜉3|
𝐴

1.76 0.55 0.59 0.14 -0.4 -0.05 0.99

2.12 0.5 0.78 0.08 -0.35 -0.1 0.7

3.78 0.45 2.13 0.03 0.05 -0.05 0.25

Table 6.27: Dimensions and characteristics of the ‘no-kinks-2nd-order’ shapes on the
Pareto Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.1 (shown in figure 6-27)

𝛼 = 1, 𝜖 = 0.2
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Figure 6-28: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘no-kink-2nd-order’ shapes
for the heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑎2 𝑏2
|𝜉3|
𝐴

1.95 0.7 0.7 0.19 -0.35 0.05 0.86

2.07 0.65 0.76 0.18 -0.35 -0.1 0.75

3.78 0.6 2.13 0.07 0.05 -0.05 0.25

3.78 0.55 2.13 0.06 0.05 -0.05 0.25

Table 6.28: Dimensions and characteristics of the ‘no-kinks-2nd-order’ shapes on the
Pareto Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.2 (shown in figure 6-28)

Trends/ observations

∙ We notice that generally the optimal shapes are protruding outwards. For the

‘no-kink-2nd-order’ shapes, that corresponds to 𝑎2 < −0.1.

∙ Similar to the one-kink group, we also notice here that generally the protrusion

is close to the waterline (that is, 𝑏2 < 0). And again, we notice that the shapes

for which the protrusion is closer to the waterline have smaller 𝑘𝑙𝑉 values and

slightly larger 𝑘𝑙𝑆 values.

∙ In fact, the shapes on each of these Pareto Fronts look very similar to the ones

on the corresponding Pareto Fronts for the one-kink group. This shows that

the observed trends are not specific to groups but are generally true.
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∙ As 𝛼 decreases, as was the case for all previous groups, shapes get wider and

shallower.

∙ The 𝑘𝑙𝑆 and 𝑘𝑙𝑉 values are generally smaller than for the compound cylinder

group and the flat-bottomed group, but slightly larger than for the ‘one-kink’

group.

6.5.2 Heave-surge-pitch

For the heave-only problem, the possible values of 𝑘𝑙𝑉 were [0.6,1.4,0.05], the possible

values of 𝑎2 were [-0.5,0.1,0.05], and the possible values of 𝑏2 were [-0.1,0.8,0.05]. The

initial population size was 100, and the number of generations was 1000. Once we did

this initial optimization and noticed the trend that shapes with 𝑎2 < −0.1 and 𝑏2 < 0.1

were optimal, we evaluated all values of 𝑘𝑙𝑉 = [0.8, 1.3, 0.05], 𝑎2 = [−0.5,−0.1, 0.05]

and 𝑏2 = [−0.1, 0.1, 0.05].

𝛼 = 3, 𝜖 = 0.1

Figure 6-29: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘no-kink-2nd-order’ shapes
for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑎2 𝑏2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.53 0.95 1.15 0.14 -0.25 0.5 0.59 1.49 1.3 1.31 1.5 0.45

2.68 0.9 1.32 0.13 -0.25 0.35 0.5 1.97 1.05 1.25 2.23 0.52

Table 6.29: Dimensions and characteristics of the ‘no-kinks-2nd-order’ shapes on the
Pareto Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and
steepness constraint 𝜖 = 0.1 (shown in figure 6-29)
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𝛼 = 3, 𝜖 = 0.2

Figure 6-30: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘no-kink-2nd-order’ shapes
for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑎2 𝑏2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.62 1.25 0.9 0.45 -0.2 0.1 0.69 0.72 1.99 1.38 0.28 0.28

2.7 1.0 1.19 0.23 -0.25 0.1 0.5 1.67 1.03 1.2 1.39 0.21

2.81 0.95 1.32 0.2 -0.25 0.05 0.46 2.12 0.92 1.16 1.85 0.32

Table 6.30: Dimensions and characteristics of the ‘no-kinks-2nd-order’ shapes on the
Pareto Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and
steepness constraint 𝜖 = 0.2 (shown in figure 6-30)

𝛼 = 1, 𝜖 = 0.1

Figure 6-31: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘no-kink-2nd-order’ shapes
for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.1
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑎2 𝑏2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.02 1.25 1.14 0.24 -0.2 0.2 0.46 0.94 0.98 1.22 0.88 0.48

3.31 1.15 1.53 0.08 -0.15 0.7 0.34 0.98 0.9 1.27 2.16 0.82

Table 6.31: Dimensions and characteristics of the ‘no-kinks-2nd-order’ shapes on the
Pareto Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and
steepness constraint 𝜖 = 0.1 (shown in figure 6-31)

𝛼 = 1, 𝜖 = 0.2

Figure 6-32: Pareto Front (left) and corresponding shapes in the 𝑟−𝑧 plane (right), re-
sulting from the multi-objective evolutionary algorithm for ‘no-kink-2nd-order’ shapes
for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑎2 𝑏2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.02 1.25 1.14 0.24 -0.2 0.2 0.46 0.94 0.98 1.22 0.88 0.48

3.31 1.15 1.53 0.08 -0.15 0.7 0.34 0.98 0.9 1.27 2.16 0.82

Table 6.32: Dimensions and characteristics of the ‘no-kinks-2nd-order’ shapes on the
Pareto Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and
steepness constraint 𝜖 = 0.2 (shown in figure 6-32)

Trends/ observations

∙ These shapes are all protruding outwards, similar to the other groups presented

in this chapter.

∙ However, unlike the other groups, for some of the Pareto Fronts in this group,

the shapes are protruding downwards. That is, 𝑏2 > 0.1. The only time this is

not true is in PF135,3,0.2.
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∙ Compared to the heave-only problem, the shapes on these Pareto Fronts are

wider and less protruding outwards.

∙ For all of the shapes on these Pareto Fronts, 𝑎2 = −0.2 or -0.25.

∙ As 𝛼 decreases, shapes get wider.

∙ The Pareto Fronts for 𝛼 = 1, 𝜖 = 0.1 and for 𝛼 = 1, 𝜖 = 0.2 are identical.

6.6 Overall

In this section, we combine all Pareto Fronts, in the corresponding constraint regimes,

from all of the groups of shapes shown above (flat-bottomed, one-kink, compound

cylinders, no-kink-2nd-order, and flat-sided). For each constraint regime, we present

the overall Pareto Front from all shapes considered. Since the only groups represented

in these overall Pareto Fronts are one-kink shapes and no-kink-2nd-order, the only

geometric parameters in the tables after the plots are 𝑟1, 𝑧1, 𝑎2 and 𝑏2.

6.6.1 Heave

𝛼 = 3, 𝜖 = 0.1

Figure 6-33: The overall Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧
plane (right), after combining the Pareto Fronts from all 6 groups in this chapter,
for the heave-only problem with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1 𝑎2 𝑏2
|𝜉3|
𝐴

1.0 0.4 0.25 0.3 1.65 -0.2 0 0 2.87

3.79 0.3 2.14 0.03 0.25 -0.1 0 0 0.25

Table 6.33: Dimensions and characteristics of the shapes on the overall Pareto Front
for the heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1 (shown in figure 6-33)

𝛼 = 3, 𝜖 = 0.2

Figure 6-34: The overall Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧
plane (right), after combining the Pareto Fronts from all 6 groups in this chapter,
for the heave-only problem with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1 𝑎2 𝑏2
|𝜉3|
𝐴

1.18 0.55 0.31 0.6 1.45 -0.25 0 0 2.71

3.79 0.46 2.14 0.08 0.25 -0.15 0 0 0.25

Table 6.34: Dimensions and characteristics of the shapes on the overall Pareto Front
for the heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.2 (shown in figure 6-34)

𝛼 = 1, 𝜖 = 0.1
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Figure 6-35: The overall Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧
plane (right), after combining the Pareto Fronts from all 6 groups in this chapter,
for the heave-only problem with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1 𝑎2 𝑏2
|𝜉3|
𝐴

1.76 0.55 0.59 0.14 0 0 -0.4 -0.05 0.99

1.81 0.5 0.63 0.11 1.35 -0.35 0 0 0.92

1.83 0.46 0.63 0.1 1.35 -0.2 0 0 0.89

3.78 0.45 2.13 0.03 0 0 0.05 -0.05 0.25

3.78 0.41 2.14 0.05 0.3 -0.15 0 0 0.25

3.79 0.35 2.14 0.04 0.25 -0.15 0 0 0.25

Table 6.35: Dimensions and characteristics of the shapes on the overall Pareto Front
for the heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1 (shown in figure 6-35)

𝛼 = 1, 𝜖 = 0.2
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Figure 6-36: The overall Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧
plane (right), after combining the Pareto Fronts from all 6 groups in this chapter,
for the heave-only problem with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1 𝑎2 𝑏2
|𝜉3|
𝐴

1.83 0.6 0.63 0.25 1.35 -0.1 0 0 0.92

2.24 0.57 0.87 0.13 1.25 -0.1 0 0 0.26

3.78 0.55 2.13 0.06 0 0 0.05 -0.05 0.25

3.78 0.41 2.14 0.05 0.3 -0.15 0 0 0.26

Table 6.36: Dimensions and characteristics of the shapes on the overall Pareto Front
for the heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1 (shown in figure 6-35)

Trends/ observations

∙ Generally, the optimal shapes are protruding outwards. That is 𝑟1 > 1 or

𝑎2 < −0.1.

∙ All of the shapes are either ‘one-kink’ or ‘no-kink-2nd-order’ shapes.

∙ As the motion constraint becomes stricter (as 𝛼 decreases), the optimal shapes

are generally wider and shallower.

∙ As the steepness constraint becomes stricter (as 𝜖 increases), the optimal shapes

are generally deeper. This is more pronounced for 𝛼 = 3.

∙ None of the shapes are protruding downwards. That is, −1 < 𝑧1 < 0 or 𝑏2 <

0.1. For most of the shapes, the protrusion is closer to the waterline than the

maximum draft (−0.5 < 𝑧1 < 0 or 𝑏2 < 0).

6.6.2 Heave-surge-pitch

𝛼 = 3, 𝜖 = 0.1
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Figure 6-37: The overall Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧
plane (right), after combining the Pareto Fronts from all 6 groups in this chapter, for
the heave-surge-pitch problem with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1 𝑎2 𝑏2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.37 0.82 0.98 0.16 1.17 -1.0 0 0 0.64 2.3 1.47 1.31 1.28 0.24

2.39 0.8 0.99 0.14 1.17 -1.0 0 0 0.62 2.44 1.37 1.31 1.53 0.19

Table 6.37: Dimensions and characteristics of the shapes on the overall Pareto Front
for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.1 (shown in figure 6-37)

𝛼 = 3, 𝜖 = 0.2

Figure 6-38: The overall Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧
plane (right), after combining the Pareto Fronts from all 6 groups in this chapter, for
the heave-surge-pitch problem with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.2
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1 𝑎2 𝑏2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.62 1.25 1.13 0.57 0 0 -0.2 0.1 0.69 0.72 1.99 1.38 0.28 0.28

2.7 1.0 1.19 0.23 0 0 -0.25 0.1 0.5 1.67 1.03 1.2 1.39 0.21

2.75 0.95 1.23 0.18 0 0 -0.25 0.1 0.48 2.05 0.95 1.17 1.83 0.33

2.8 0.9 1.26 0.15 0 0 -0.25 0.1 0.46 2.61 0.87 1.15 2.36 0.43

Table 6.38: Dimensions and characteristics of the shapes on the overall Pareto Front
for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.2 (shown in figure 6-38)

𝛼 = 1, 𝜖 = 0.1

Figure 6-39: The overall Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧
plane (right), after combining the Pareto Fronts from all 6 groups in this chapter, for
the heave-surge-pitch problem with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1 𝑎2 𝑏2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.02 1.25 1.43 0.45 1.05 -0.45 0 0 0.46 0.94 0.97 1.24 0.63 0.28

3.15 1.18 1.52 0.22 1.03 -1.0 0 0 0.43 0.98 0.94 1.27 0.86 0.62

3.31 1.15 1.76 0.09 0 0 -0.15 0.7 0.34 0.98 0.9 1.27 2.16 0.82

Table 6.39: Dimensions and characteristics of the shapes on the overall Pareto Front
for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.1 (shown in figure 6-39)

𝛼 = 1, 𝜖 = 0.2
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Figure 6-40: The overall Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧
plane (right), after combining the Pareto Fronts from all 6 groups in this chapter, for
the heave-surge-pitch problem with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑟1 𝑧1 𝑎2 𝑏2
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.02 1.25 1.43 0.29 0 0 -0.2 0.2 0.46 0.94 0.98 1.22 0.88 0.48

3.15 1.18 1.52 0.22 1.03 -1.0 0 0 0.43 0.98 0.94 1.27 0.86 0.62

Table 6.40: Dimensions and characteristics of the shapes on the overall Pareto Front
for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.2 (shown in figure 6-39)

Trends/ observations

∙ Generally, the optimal shapes are protruding outward (𝑟1 > 1 or 𝑎2 < −0.1).

∙ The shapes are either ‘one-kink’ shapes or ‘no-kink-2nd-order’ shapes

∙ Compared to the heave-only problem optimal shapes, the optimal shapes for the

heave-surge-pitch problem are wider, generally shallower, and less protruding

(that is, smaller 𝑟1 values, but still greater than 1 generally).

∙ As the motion constraint gets stricter (as 𝛼 decreases), shapes generally get

wider.
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6.7 Discussion of general trends and physical in-

sights

In this section, we will discuss some of the general trends we noticed from the op-

timization results. We will make hypotheses of why these trends are true, using

hydrodynamics to develop physical insights.

The main insights/ conclusions from the overall results are:

1. The optimal shapes generally protrude outwards.

2. In general, the maximum radius occurs closer to the waterline than the maxi-

mum draft (when allowed by the shape definition).

3. The trends that we observe in the optimal shapes are consistent across all the

groups of shapes, implying these may be features of a general optimum.

4. As the motion constraint becomes stricter (i.e. 𝛼 decreases), the optimal shapes

for the heave-only problem typically become wider and shallower, and the op-

timal shapes for the heave-surge-pitch problem typically become wider.

5. Compared to the heave-only problem, the optimal shapes from the heave-surge-

pitch problem are generally wider and less protruding outwards, resulting in a

larger volume and surface area.

6. Shapes that protrude downwards are generally not optimal

We will now discuss each of these trends separately.

The optimal shapes generally protrude outwards

To determine why shapes that protrude outwards are better, consider figure 6-41. In

this figure, we show the heave populations for four flat-bottomed shape classes, for

𝛼 = 3, 𝜖 = 0.1. The purple dots show the population for 𝑟1 = 1, the blue for 𝑟1 = 1.1,

the green for 𝑟1 = 1.2, and the orange for 𝑟1 = 1.25. In this figure, we see that for a
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given 𝑘𝑙𝑉 , the class with the smaller 𝑟1 (i.e. shapes that are less protruding), have a

larger 𝑘𝑙𝑆 on their right branch but a smaller 𝑘𝑙𝑆 on their left branch, compared to a

class with larger 𝑟1 (i.e. shapes that are more protruding).

We know that both the heave motion constraint and the heave steepness constraint

eliminate shapes on the lower left branch. We cannot say here which constraint will

eliminate more of the lower left branch, but if we call the point on the left branch with

minimum 𝑘𝑙𝑉 and minimum 𝑘𝑙𝑆 point 𝐿, we know that 𝐿 is either where |𝜉3|
𝐴

= 𝛼 or

𝑘𝐻 = 𝜖 |𝜉3|
𝐴

. We see in figure 6-41 that (𝑘𝑙𝑉 )𝐿 and (𝑘𝑙𝑆)𝐿 are smaller for larger 𝑟1 (i.e.

shapes that protrude outwards more). That is, less of the left branch is eliminated

for the shapes that protrude outwards more.

Figure 6-41: Demonstrating populations for ‘flat-bottomed’ shapes with different
𝑟1 = 𝑟1

𝑅
values, which shows that the shapes that protrude outward more are better

since they have smaller minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values

To see why more of the left branch is eliminated for shapes that protrude outwards

more, consider figure 6-42. In this figure, we consider the heave added mass and

damping coefficients for six flat-bottomed shapes with constant 𝑘𝐻 and 𝑟𝑚𝑎𝑥, but

varying 𝑟1 (and thus varying 𝑘𝑅). We plot heave added mass and damping as func-

tions of 𝑟1, and we see that both 𝐴33 and 𝐵33 increase with increasing 𝑟1. But while

𝐴33 seems to increase linearly, 𝐵33 seems to be logarithmic or similar (i.e. the rate
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of increase is decreasing). We recall that when the body is in resonance the heave

motion is

|𝜉3|
𝐴

𝑟𝑒𝑠

=
√︃

𝜌𝑔𝑉𝑔
𝑘𝜔2𝐵33

(6.7.1)

Therefore, we can see that a shape with larger𝐵33 will have smaller heave body motion

at resonance, meaning that it is less likely to be eliminated due to the heave motion

constraint or heave steepness constraint. We know that all shapes can resonate at

smaller 𝑘𝑙𝑉 , but they are eliminated due to the motion constraint and/or the steepness

constraint. From figure 6-42, and equation 6.7.1, we can hypothesize that shapes that

protrude outwards are optimal because they have higher heave damping, but that at

a certain 𝑟1 the benefit of the damping diminishes.

Figure 6-42: Showing how heave added mass (𝐴33) and heave damping (𝐵33) increase
with increasing 𝑟1, keeping 𝑟𝑚𝑎𝑥, 𝑧1 and 𝑘𝐻 constant

In general, the maximum radius occurs closer to the waterline than the
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maximum draft (when allowed by the shape definition)

Flat-bottomed shapes and compound cylinders by definition must have horizontal

segments from the centerline at the body’s maximum draft. So for a flat-bottomed

shape protruding outwards, the maximum radius would occur at 𝑧 = −𝐻. For a

compound cylinder protruding outwards, the maximum radius would be when −𝐻 ≤

𝑧 ≤ 𝑧2 (since it is a vertical segment). However, for ‘one-kink’ and ‘no-kink-2nd-order’

shapes that protrude outwards, the maximum radius could occur for any 𝑧 < 0. We

found that, generally, the maximum radius occurs between 𝑧 = −𝐻 and 𝑧 = 0. For

the heave-only problem, we saw it generally occurred between 𝑧 = −𝐻/2 and 𝑧 = 0,

and for the heave-surge-pitch problem, we saw it generally occurred between 𝑧 = −𝐻

and 𝑧 = −𝐻/2.

To discuss why this trend is true, consider figure 6-43. In this figure, we consider

the heave added mass and damping coefficients for five one-kink shapes with con-

stant 𝑘𝐻, 𝑘𝑅 and 𝑟1, but varying 𝑧1 from -1 to 0. We plot the heave added mass

and damping coefficients as a function of 𝑧1, and we see that as 𝑧1 increases (i.e.

the protrusion moves closer to the waterline), added mass decreases and damping

increases.
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Figure 6-43: Showing how heave added mass (𝐴33) decreases and damping (𝐵33)
increases with increasing 𝑧1, keeping 𝑅, 𝑟1 and 𝑘𝐻 constant

Therefore, added mass increases as shapes are more protruding but decreases as the

protrusion is closer to the waterline, and damping increases in both cases. Since both

of these trends are generally optimal, we can conjecture that increased heave damping

generally leads to optimal shapes.

We must discuss the limitations of this trend and resulting conclusions. Our steepness

constraint ensures that 𝐻 > |𝜉3|, but perhaps we should ensure that |𝜉3| is less than

the 𝑧1, the 𝑧 coordinate of the slope discontinuity, to ensure that the protrusion does

not leave the ocean surface (with a small but finite steepness).

We are also aware that the uniqueness of the boundary-value problem for shapes

that protrude outwards has not been proven. As mentioned in chapter 4, we ensure

that the solution is not sensitive to discretization by running a wrapper around it,

making sure that the hydrodynamic parameters do not change by more than 3 %

when increasing the number of panels. We also ensure that the panels close to the

surface are small and close to squares.

In this thesis, we assume potential flow. To show the relative importance of drag

forces to inertia forces, the Keulegan–Carpenter number is used:

𝐾𝑐 =
𝜔 |𝜉3|

𝐴
𝐴𝑇

𝑙
(6.7.2)
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where 𝑙 is a characteristic length scale. Consider the purple shape in figure 6-33. We

use the diameter at the widest part of the shape as the characteristic length scale, so

𝑙 = 𝑘𝑟/𝑘, where 𝑘𝑟 = 0.41. For a 10 second wave with amplitude 𝐴 = 0.5𝑚, the K-C

number is 0.44. Since 𝐾𝑐 < 1, this shows that there is no appreciable flow separation,

and therefore vortex shedding should not occur. Also, although the corners in these

shapes are sharp, in reality they would be rounded to avoid vortex shedding. This

shape has the smallest maximum diameter out of all of the shapes on the overall

Pareto Fronts, so any other shape would have a smaller 𝐾𝑐 number, implying that

drag forces are even less important relative to the inertia forces.

The trends that we observe in the optimal shapes are consistent across all

the groups of shapes, implying these may be features of a general optimum

When we compare the shapes on Pareto Fronts across different groups, the shapes look

very similar, and follow similar patterns of how they change with different constraint

values. As we will discuss next, one of these general trends is that as the motion

constraint becomes stricter (i.e. 𝛼 decreases), for the heave-only problem the optimal

shapes get wider and shallower and for the heave-surge-pitch problem the optimal

shapes get wider. Also, compared to the optimal shapes for the heave-only problem,

the optimal shapes for the heave-surge-pitch problem are wider and less protruding.

These trends are true for the overall Pareto Fronts, but they are also true within each

group.

But moreover, the actual dimensions of shapes are similar between different groups.

For example, consider the heave-only problem for 𝛼 = 3, 𝜖 = 0.1. Comparing the

shapes with minimum 𝑘𝑙𝑆 in all of the four groups presented in this chapter, we see

that all 𝑘𝑅 values are between 0.31 and 0.35, and all 𝑟𝑚𝑎𝑥 values are between 0.44

and 0.5. 𝑘𝐻 values range a bit more: 0.21 to 0.55. The other constraint regimes also

have similar dimensions across all of the groups of shapes.

We also see a general trend that for the heave-surge-pitch problem, the shapes on the
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Pareto Front for 𝛼 = 1, 𝜖 = 0.1 are the same as the shapes on the Pareto Front for

𝛼 = 1, 𝜖 = 0.2. This is true for flat-bottomed, one-kink, and for no-kink-2nd-order.

These similarities are evident when just glancing through the different groups. This

suggests that these trends are general. This suggests that these are features of a

general optimum.

As the motion constraint becomes stricter (i.e. 𝛼 decreases), the optimal

shapes for the heave-only problem typically become wider and shallower,

and the optimal shapes for the heave-surge-pitch problem typically become

wider

We know that as 𝛼 decreases, for a given class, more of the left branch of R3 is

eliminated, and we know that going along the curve of 𝒮(R3), the shapes get shallower

and wider. Therefore, we can see why as 𝛼 decreases, the optimal shapes are shallower

and wider, but have similar 𝑟𝑚𝑎𝑥

𝑅
values (i.e. are similarly protruding).

We saw in the previous chapter for the cylinder that the surge motion constraint

affected the right branch, so that as 𝛼 decreased more of the right branch was elimi-

nated. And we saw that the pitch motion constraint affected the ‘middle’ of the 𝒮(R3)

curve and that as 𝛼 decreased more from the middle of the left branch was eliminated.

Therefore, we hypothesize that as 𝛼 decreases, entire classes are eliminated. This is

why the shapes are deeper.

Compared to the heave-only problem, the optimal shapes from the heave-

surge-pitch problem are generally wider and less protruding outwards,

resulting in a larger volume and surface area

As we saw with the cylinder in the previous chapter, shapes from the left branch of

the population are eliminated due to stability, the pitch moment of inertia constraint

(namely, that the expression for 𝐼55 necessary to achieve resonance is less than 0, and

therefore not possible), and the pitch motion constraint.
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We also saw with the cylinder that shapes on the heave-surge-pitch Pareto Front were

‘moderate’ in terms of shapes (that is, they were neither very disk-like nor deep), since

both ends of the 𝒮(R3) curve were eliminated. This appears to be the case for the

general shapes. We believe they are still protruding outwards for the same reasons as

in the heave-only case, but that for shapes with larger 𝑟1, all of the shapes from R3

were eliminated due to stability, pitch moment of inertia constraint, or pitch motion

constraint. Garrison (1974) shows that the pitch motion is very large at resonance

for shapes with 𝐻/𝑅 ≈ 0.5.

Shapes that protrude downwards are generally not optimal

Looking at the optimal shapes, we see that almost none of them are protruding

downwards (that is, almost none of them have 𝑧1 < −1 or 𝑏2 > 0.1. We saw that

shapes that protrude outwards have larger heave damping coefficients than those

that do not protrude outwards. Additionally, shapes whose protrusion is closer to the

waterline have larger heave damping coefficients than those whose protrusion is deeper

(further from the waterline). So, we hypothesized that shapes are generally better

with larger heave damping coefficients. Our hypothesis is strengthened, then, when

we see that shapes that protrude downwards have lower heave damping coefficients,

as shown in figure 6-44.
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Figure 6-44: Demonstrating protruding downwards shapes, and showing how heave
added mass (𝐴33) increases and heave damping (𝐵33) decreases with decreasing 𝑧1,
keeping 𝑅, 𝑟1 and 𝑘𝐻 constant

Therefore, since almost none of the optimal shapes protrude downwards, and since

heave damping decreases as 𝑧1 decreases, we can again hypothesize that generally

shape with larger heave damping are optimal.

It is important to note that many of the conclusions we were able to make in this

section was from our study of the cylinder, as well as the conclusions and observations

we made in section 4.3, which are true for any given class of shapes. Although we

optimize entire groups in this chapter, we used the physical insights we gained from

the general shape of the curve of 𝒮(R3) for a given class, and how it is affected by

constraints, to make some conclusions about why certain shapes are optimal and how

the optimal shapes change with the constraints.

Hemisphere and other axisymmetric shapes

Another conical axisymmetric shape is the hemisphere. We will mention here that

there is only one hemisphere that is in resonance in heave. This hemisphere has a

𝑘𝑅 value of 1.055, corresponding to 𝑘𝑙𝑉 = 1.35 and 𝑘𝑙𝑆 = 2.64. These numbers are

not optimal in any case, so we do not consider the hemisphere further anywhere.

Furthermore, we did not consider any toroidal shapes. This could be an interesting

shape to look at, but it is very different dynamics to the solid axisymmetric shapes
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we consider in this thesis.

6.8 Showing the benefit of optimization

In this section, we will demonstrate the benefit of this thesis by showing how much the

optimization can improve the performance of a wave energy converter. Specifically,

we will discuss how much less material (i.e. surface area and volume) the optimal

shapes have, compared to the optimal cylinders found in the previous chapter. That

is, to extract the same power, how much less material does the optimal shape have,

compared to the optimal cylinder?

In tables 6.41 - 6.44, we show the decrease of surface area and volume, in percent-

age, for the optimal shapes from the overall Pareto Fronts (figures 6-33 to 6-40),

compared to the optimal cylinders. So for the percentages for surface area, it is the

percent difference of the surface area of the shape on the overall Pareto Front in the

corresponding constraint regime with the minimum surface area, compared to the sur-

face area of the cylinder on the Pareto Front in the corresponding constraint regime

with the minimum surface area. Similarly, for volume, it shows the percent difference

of the volume of the shape on the overall Pareto Front in the corresponding constraint

regime with the minimum volume, compared to the volume of the cylinder on the

Pareto Front in the corresponding constraint regime with the minimum volume.

𝜖 = 0.1 𝜖 = 0.2

𝛼 = 3 72 % 61 %

𝛼 = 1 55 % 51 %

Table 6.41: Percentage decrease of surface area for the optimal heave-only shapes,
compared to the optimal cylinders

𝜖 = 0.1 𝜖 = 0.2

𝛼 = 3 93 % 87 %

𝛼 = 1 89 % 91 %
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Table 6.42: Percentage decrease of volume for the optimal heave-only shapes, com-
pared to the optimal cylinders

𝜖 = 0.1 𝜖 = 0.2

𝛼 = 3 31 % 15 %

𝛼 = 1 17 % 17 %

Table 6.43: Percentage decrease of surface area for the optimal heave-surge-pitch
shapes, compared to the optimal cylinders

𝜖 = 0.1 𝜖 = 0.2

𝛼 = 3 46 % 56 %

𝛼 = 1 16 % 10 %

Table 6.44: Percentage decrease of volume for the optimal heave-surge-pitch shapes,
compared to the optimal cylinders

Figures 6-45 and 6-46 show visual representations of these decreases of material. The

optimal shapes are shown in green and the optimal cylinders are shown in blue. For

simplicity, we only plot the shape on the overall Pareto Front for the corresponding

constraint regimes with the minimum surface area, and the cylinder on the Pareto

Front for the corresponding constraint regime with the minimum surface area. These

figures show that the optimal shapes require significantly less surface area and volume

than the optimal cylinders. We note that the differences for the heave problem are

greater than the differences for the heave-surge-pitch problem.
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Figure 6-45: Comparing the optimal shapes from the overall Pareto Fronts to the
optimal cylinders, for the heave-only problem

Figure 6-46: Comparing the optimal shapes from the overall Pareto Fronts to the
optimal cylinders, for the heave-surge-pitch problem

These plots and tables show that to extract the same power, the optimal shapes have

up to 72 % less surface area and 93 % less volume than the optimal cylinder.

We can also see the benefit of our optimization framework by considering figure 6-47.

This figure shows the optimal shape from the heave-only problem for 𝛼 = 3, 𝜖 = 0.1

in green. We compare it to a cylinder with radius equal to the maximum radial
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dimension for the green shape and the same draft as the maximum depth dimension

for the green shape, which is shown in red. The green shape will produce 9.1 times

the amount of power compared to the red shape. This number was calculated by

assuming that 𝛽3 = 𝐵33. This shows the benefit of our framework, as well: changing

geometry can drastically increase the energy you can get from a WEC.

Figure 6-47: Comparing one of the optimal shapes with the cylinder with radius
equal to the maximum 𝑟 dimension and draft equal to the maximum 𝑧 dimension.
The green shape extract more than 9 times the red cylinder.

Physical dimensions and power output for typical wave

We will know calculate actual dimensions and power output for the optimal shapes

for a typical sea state. The extractable power is

𝑃 = 𝑘𝑊

𝑘

1
2𝜌𝑔𝐴

2𝑉𝑔 (6.8.1)

For the heave-only problem, 𝑘𝑊3 = 1, so a 10-second wave with amplitude 𝐴 = 1

would produce approximately 1 MW. Let’s consider the optimal shapes in the least

and most restrictive constraint regimes. For simplicity, let’s consider the shapes on the

Pareto Fronts with minimum 𝑘𝑙𝑆. For 𝛼 = 3, 𝜖 = 0.1, the dimensions of the optimal

shape (shown in purple in figure 6-33) would be 𝑅 = 6.25m (with 𝑟𝑚𝑎𝑥 = 10.3m)

and 𝐻 = 7.5m. The optimal cylinder in this constraint regime has 𝑅 = 14.8m and

𝐻 = 16.8m. For 𝛼 = 1, 𝜖 = 0.2, the dimensions of the optimal shape (shown in

purple in figure 6-36) would be 𝑅 = 15.8m (with 𝑟𝑚𝑎𝑥 = 21.3m) and 𝐻 = 6.25m. The

optimal cylinder in this constraint regime has dimensions 𝑅 = 27.3m and 𝐻 = 11.8m.
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For the heave-surge-pitch problem, 𝑘𝑊135 = 3, meaning that the WEC would produce

approximately 3 MW. For 𝛼 = 3, 𝜖 = 0.1, the optimal shape, shown in purple in figure

6-37, would have dimensions 𝑅 = 24.5m (with 𝑟𝑚𝑎𝑥 = 28.7m) and 𝐻 = 4m. The

optimal cylinder in this constraint regime has dimensions 𝑅 = 31.5𝑚 and 𝐻 = 10𝑚.

For 𝛼 = 1, 𝜖 = 0.2, the optimal shape, shown in purple in figure 6-40, would have

dimensions 𝑅 = 35.8m (with 𝑟𝑚𝑎𝑥 = 37.5m) and 𝐻 = 11m. The optimal cylinder in

this constraint regime has dimensions 𝑅 = 41𝑚 and 𝐻 = 6.25𝑚.

Compare these numbers to a wind turbine. According to their website, GE’s 1 MW

wind turbine has a rotor diameter of 82.5 to 103 meters. The optimal cylinders even

have smaller dimensions than this, but the optimal shapes have considerably smaller

dimensions.

Figures 6-45, 6-46 and 6-47, along with these analyses of real dimensions and ex-

tractable power amount show the advantage that the optimization framework and

results give. Through the discovery of WECs that extract maximum power and re-

quire less material, whilst ensuring the WEC shapes are practically feasible, this

thesis is a step forward in our understanding of WECs and ultimately could pave the

way for wave energy becoming a viable source of renewable energy in future.

6.9 Discussing the overall optimal shape

In this section, we will discuss the shape with the minimum 𝑘𝑙𝑆 value for the heave-

only problem, for 𝛼 = 3 and 𝜖 = 0.1. This is the green shape in the first plot in figure

6-45 and in figure 6-47. This is a linear piecewise one-kink shape with 𝑘𝑅 = 0.25,

𝑘𝐻 = 0.3, 𝑟1 = 1.65, and 𝑧1 = −0.2. The 𝑘𝑙𝑉 value is 0.4 and 𝑘𝑙𝑆 is 1.

Response to irregular waves

This thesis is based on a single monochromatic wave with a given wavenumber 𝑘.

However, in real seas an ocean spectrum is used to describe the spread of incoming
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frequencies. A commonly used spectrum to describe real seas is the Bretschneider

Spectrum. For figure 6-48, we assume a 7.5 second wave (𝑘 = 0.07m−1) in blue, tune

the optimal shape to that wave (that is, for example 𝑅 = 0.25/0.07 = 3.57m), fix

that shape, and then consider a range of different frequencies. In figure 6-48 we plot

𝑘𝑊3 at the different frequencies (𝑘𝑅 is changing wavenumber 𝑘 times fixed radius

𝑅 = 3.57m). Note that we assume here that for each frequency 𝛽3 = 𝐵33. In purple,

we plot the Bretschneider spectrum, with a peak at 7.5 seconds (𝜔 = 0.84) and a

significant wave height of 3m (just so we can see the response in the same range as

𝑘𝑊 ). We can see that the bandwidth of the response of the optimal shape is wide,

suggesting it will do well in real seas.

Figure 6-48: The response (in blue) of the optimal shape (shown in figure 6-47 in
green), compared to a typical ocean spectrum - the Bretschneider spectrum (in purple)

Sensitivity of the shape

To consider the sensitivity of the shape, we changed each geometric parameter and

calculated 𝑘𝑊3. If changing a geometric parameter by 5% resulting in a large change

in 𝑘𝑊3, this would suggest that the performance of the shape was very sensitive. We

found, however, that this was not true: a small change in each parameter corresponded

to a small change in 𝑘𝑊3. When the parameters are as described at the beginning

of this section, 𝑘𝑊3 = 1. When 𝑘𝑅 = 0.238 instead of 0.25, which is a 5% change,

and all other parameters are the same, 𝑘𝑊3 = 0.989, which is a 1.1% decrease. We
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did this sensitivity analysis for each other geometric parameter, changing it by 5%

while keeping all the other geometric parameters at their optimal value. For 𝑘𝐻, this

resulted in a 0.4% decrease in 𝑘𝑊3, for 𝑟1, this resulted in a 5.5% decrease, and for 𝑧1,

this resulted in a 0.3% decrease. These numbers suggest that the results are not very

sensitive. If geometric shape changes slightly, it will not result in a significant loss

of performance. This is very important for real-world application. Additionally, this

suggests to us that if we were to round the edge of the shape instead of keeping it as

a sharp corner, which is important to prevent flow separation, it would be essentially

the same performance. This is in contrast to the phenomenon discussed in Tokić and

Yue (2019), whereby arrays are very sensitive to configuration, with narrow banded

spikes.

6.10 Summary

In the previous chapter, we presented the results of the optimal cylinders. In this

chapter, we presented the rest of the results of the optimal shapes, through a system-

atic investigation of a broad range of shapes. In the introduction, we presented the

four groups of shapes that we considered in this thesis: flat-bottomed shapes, one-

kink shapes, compound cylinders, and no-kink-2nd-order shapes. In the following four

sections, we presented 8 Pareto Fronts for each group. There were 4 Pareto Fronts

for the heave-only problem, corresponding to the two values of 𝛼 and two values of

𝜖, and 4 Pareto Fronts for the heave-surge-pitch problem, corresponding to the two

values of 𝛼 and 𝜖. After each Pareto Front, we also included a table of the dimensions

and characteristics of each shape on that Pareto Front. In section 6, we presented

the overall Pareto Fronts from all of the groups together, for each constraint regime.

In section 7 we discussed general trends and physical insights gained through these

optimizations. The six main trends/ insights were (1) The optimal shapes generally

protrude outwards, (2) In general, the maximum radius occurs closer to the waterline

than the maximum draft (when allowed by the shape definition), (3) The trends
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that we observe in the optimal shapes are consistent across all the groups of shapes,

implying these may be features of a general optimum, (4) As the motion constraint

becomes stricter (i.e. 𝛼 decreases), the optimal shapes for the heave-only problem

generally get wider and shallower, and the optimal shapes for the heave-surge-pitch

problem generally get wider and deeper, (5) Compared to the heave-only problem,

the optimal shapes from the heave-surge-pitch problem are generally wider and less

protruding outwards, resulting in a larger volume and surface area, and (6) Shapes

that protrude downwards are generally not optimal.

We went over each of these trends to dissect, using hydrodynamics, why each trend

is true. For example, we concluded that the best shapes protrude outwards because

they have larger heave damping, compared to shapes that do not protrude outwards

as much.

In section 8, we showed the benefit of our optimization: to extract the same, maximum

power, the optimal shapes have up to 72 % less surface area and up to 93 % less

volume than the optimal cylinder for the heave-only problem. For the heave-surge-

pitch problem, to extract the same, maximum power, the optimal shapes have up to

31 % less surface area and up to 56 % less volume than the optimal cylinder. This

is shown in figures 6-45 and 6-46. We also showed that the optimal shape extracts

more than 9 times more power than the cylinder with radius equal to the maximum

radial dimension and equal draft (shown in figure 6-47), demonstrated that geometry

greatly affects the extractable power from a WEC.

Furthermore, we looked at real, physical dimensions and power numbers. For a

10 second wave with amplitude of 1 meter, the WECs for the heave-only problem

extract approximately 1MW, and the WECs for the heave-surge-pitch problem extract

approximately 3MW. The dimensions of the WECs that produce that power from

our optimization are significantly less than the corresponding dimensions of a wind

turbine that extracts the same energy. Therefore, our optimization could pave the

way to significantly improve wave energy converter technology to move it towards a
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viable source of renewable energy.

And finally, in section 9, we looked more at the overall optimal shape. We define

this as the shape with minimum 𝑘𝑙𝑆 for the heave-only problem, for 𝛼 = 3, 𝜖 = 0.1.

We see that the response of the optimal shape has a wide bandwidth, suggesting it

will perform well in real, irregular seas. We also showed that the geometry is not

overly sensitive: a small change in geometric parameter results in a small change in

performance, 𝑘𝑊3.
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Chapter 7

Conclusions

In this chapter, we will summarize the main contributions of this thesis. We will also

discuss future work that is informed by the research done in this thesis.

7.1 Thesis contributions

Although there have been many ideas for wave energy converter technologies, as yet

there is no convergence on the optimal shape of a wave energy converter. Furthermore,

there is no agreed-upon definition of what it means for a WEC to be ‘optimal’ and

no established framework to find optimal shapes. The main contributions from this

thesis are:

1. A novel, scientifically rigorous framework to find practically realistic optimal

shapes of WECs

2. A general, efficient and efficacious procedure to execute the optimization and

provide physical insights

3. Comprehensive and unforeseen results for the optimal shapes of axisymmetric

WECs, found by performing a systematic investigation of a broad range of

shapes

4. Original insights to gain physical intuition about the best WEC shapes
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We will now elaborate on these four contributions.

A novel, scientifically rigorous framework to find practically realistic opti-

mal shapes of WECs

When optimizing a wave energy converter, the main goals are to maximize power

and minimize cost, while ensuring that the shapes are practically realistic. The

novel framework described in this thesis accomplishes these goals. Because for an

axisymmetric shape the maximum extractable power does not depend on the geo-

metric shape, we identified that we cannot define optimality by shapes that extract

maximum power alone. Rather all shapes that can achieve resonance can extract

maximum power, so we impose the requirement of resonance and establish a clean,

well-defined method to compare shapes while ensuring maximum power.

When incident frequency is known, the geometric shape becomes the independent

parameter in the heave resonance equation for which we must solve. There are design

parameters in each of the surge-pitch resonance equations that can be changed once

the geometry is known. Therefore, we realized that we must solve for geometric

shape using the heave resonance equation and then change the design parameters to

ensure resonance in the surge-pitch equations. This formulation, to the best of our

knowledge, is novel and has not been covered in previous literature.

With the requirement that bodies be in resonance, we recognized that there was a

need for motion constraints. Additionally, there was a need for constraints on the

design parameters used to ensure resonance in surge-pitch. All of these constraints

ensure that the discovered shapes are practically realistic and feasible. This grounds

our theoretically rigorous and novel framework, ensuring that the shapes it yields are

achievable options for real devices.

A general, efficient and efficacious procedure to execute the optimization

and provide physical insights
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Our developed procedure allows us to evaluate a large number of general geometries

efficiently. By describing geometries using piecewise parametric polynomial basis sets,

we are able to describe and optimize a very wide range of shapes with relatively few

parameters.

A novel theorem to find the roots of the heave resonance equation was presented and

proved, with the implications discussed. This theorem adds to our understanding of

the heave resonance equation and significantly decreases the computation time for the

optimization. Using the theorem we essentially reduced the degrees of freedom of the

optimization by one, increasing the efficiency 100x compared to brute-force tests. The

heave resonance equation is difficult to solve due to the presence of the heave added

mass, therefore in this theorem, we use an approximation for heave added mass. The

theorem states that for a given class of shape, below a certain volume there are two

roots of the heave resonance equation, which using the added mass approximation

can be found by solving a simple cubic equation. Above that volume there are no

roots of the heave resonance equation. This approximation was used in other areas of

this thesis to better understand why certain shapes are optimal. For example, from

this theorem we can understand the curve of the heave population and Pareto Front,

discussed in chapter 4.

Comprehensive and unforeseen results for the optimal shapes of axisym-

metric WECs, found by performing a systematic investigation of a broad

range of shapes

We started with a simple, easily describable shape: the cylinder. In chapter 5, we

showcased our optimization framework and procedure on the cylinder and presented

the best cylinders under different constraint regimes, for the heave-only problem and

the heave-surge-pitch problem. Before this thesis, the dimensions (draft and radius)

of the optimal cylinders were not known. We also discuss how the optimal cylinders

change due to stricter motion and steepness constraints.
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In chapter 6 we presented the optimization results for the rest of generalized ge-

ometries. We perform a systematic investigation of a vast range of shapes, spanning

shapes with a flat bottom to compound cylinders to shapes described by second-order

functions. For each group of shapes we performed eight optimization runs: four for

the heave-only problem and four for the heave-surge-pitch problem, corresponding to

two values of the motion constraint parameter, 𝛼, and two values of the steepness

constraint, 𝜖.

The results show shapes that are able to achieve maximum power with minimum

material, while ensuring the shapes are practically feasible. To demonstrate the

benefit of the optimization, we showed that to produce the same maximum power,

the optimal shapes found in this thesis have up to 72 % less surface area and 93 % less

volume than the optimal cylinders. Another way to show the benefit of optimization

is that the optimal shape extracts more than 9 times more power than the cylinder

with radius equal to the maximum radial dimension and equal draft of the optimal

shape. Furthermore, we saw that the optimal shapes have wide bandwidth responses,

suggesting that it will do well in real, irregular seas. These numbers show that

optimizing the geometry of a WEC could move WEC technology significantly closer

to becoming a viable source of renewable energy.

Optimizing the geometry of a WEC could provide the significant improvement needed

in WECs to extract more power for less cost. By nondimensionalizing all geometric

parameters by wavenumber 𝑘, we can tune the optimal shapes to any incoming wave.

Currently, WECs are only considered in very energetic locations, which corresponds

to sea states with very large wave periods and extreme events. By finding optimal

shapes that minimize material while extracting power, it could be possible for WECs

to be efficient in sea states that have fewer extreme events and thus increase their

survivability.

Original insights to gain physical intuition about the best WEC shapes
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In chapter 4, we presented our observations and conclusions for any given class of

shapes. We observed that, for any given class, the curve of the set of shapes in

resonance in heave in the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space has certain characteristics: it is one-to-

one, concave down, starting at the origin with a maximum at (𝑘𝑙𝑉 )𝑚𝑎𝑥, where the

left ‘branch’ corresponds to the smaller roots of the heave resonance equation, and

the right ‘branch’ corresponds to the larger roots of the heave resonance equation.

The heave motion constraint will eliminate shapes on the lower left branch and the

heave steepness constraint will eliminate shapes on the lower left branch and the lower

right branch. As the constraints become stricter, more of the corresponding branches

are eliminated. Therefore, there are three possible shapes a heave population in

the 𝑘𝑙𝑉 − 𝑘𝑙𝑆 space can take, and three corresponding shapes for the heave Pareto

Front. From this, we were able to show a counter-intuitive phenomenon whereby

stricter motion constraints can result in fuller Pareto Fronts for a given class. This is

demonstrated in chapter 5 for the cylinder. Furthermore, the general description of

the shape of the heave population added to our physical intuition and enabled us to

draw conclusions about more complex shapes and general optimizations.

In chapter 6, we presented and discussed six main conclusions from the overall results:

1. The optimal shapes generally protrude outwards below the waterline.

2. In general, the maximum radius occurs closer to the waterline than the maxi-

mum draft (when allowed by the shape definition).

3. The trends that we observe in the optimal shapes are consistent across all the

groups of shapes, implying these may be features of a general optimum.

4. As the motion constraint becomes stricter (i.e. 𝛼 decreases), the optimal shapes

for the heave-only problem typically become wider and shallower, and the op-

timal shapes for the heave-surge-pitch problem typically become wider and

deeper.

5. Compared to the heave-only problem, the optimal shapes from the heave-surge-
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pitch problem are generally wider and less protruding outwards, resulting in a

larger volume and surface area.

6. Shapes that protrude downwards are generally not optimal.

The combination of points 1 and 2 above shows that shapes which protrude outwards

below the waterline, with their maximum radius occuring closer to the waterline than

the maximum draft, are generally optimal. We demonstrate that such shapes have

larger heave damping coefficients, and since the heave body motion at resonance is

inversely proportional to the heave damping coefficient, we hypothesize that allow-

ing shapes to protrude outwards enables smaller volumes while still adhering to the

motion constraints.

From our systematic investigation of a broad range of shapes, we studied four main

groups of shapes. When we compare the shapes on Pareto Fronts across different

groups, the shapes have many common features and follow similar patterns of how

they change with different constraint values. One of these general trends is that as

the motion constraint becomes stricter (i.e. 𝛼 decreases), for the heave-only problem

the optimal shapes get wider and shallower and for the heave-surge-pitch problem the

optimal shapes get wider. Also, compared to the optimal shapes for the heave-only

problem, the optimal shapes for the heave-surge-pitch problem are generally wider

and less protruding. These trends are true for the overall Pareto Fronts, but they are

also true within each group. Moreover, the actual dimensions of shapes are similar

between different groups. These similarities across the different groups of shapes

suggests that these trends are general in nature. This suggests that these are features

of a general optimum.

Limitations

This thesis has produced a number of novel and innovative contributions, but the

work also has some limitations. For example, we stated that one of the goals of

the optimization is to minimize cost. We use amount of material (volume and sur-
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face area) as a proxy for cost, but there will be other factors that will contribute

to cost, such as deployment costs, repair costs, costs associated with mooring, etc.

Furthermore, we only minimize surface and volume below the waterline. There must

be material above the waterline, too, and so it would be important to consider this

when estimating cost. We model the PTO as a simple linear damper, which is a good

approximation for a linear direct-drive generator, but more sophisticated modeling

should be considered as well. We modeled mooring forces as a linear spring in surge,

but more sophisticated models for mooring forces should be considered, as well.

7.2 Future work

This thesis provides a significant step in advancing our understanding of WECs, and

consequently also helps us realize what the next steps should be in this research field.

Experimental validation

We found exciting new optimal shapes and trends that were previously unknown.

These results were found computationally, so experimental validation is needed. The

shapes found by our optimization framework and procedure are feasible theoretically

and computationally, but the feasibility in real fluid still needs to be assessed. A

logical next step would be to test them in a laboratory, in a small scale experiment.

Because the results are novel, experimental information is not available, particularly

for the more complex optimal shapes which differ from the shapes of current WEC

designs.

It would be advisable to start with the simplest shapes to build, such as a cylinder,

to assess how accurate the models and approximations in this thesis are at modeling

real-fluid effects. And then, the more complex shapes (particularly the protruding

outwards shapes) should be tested. For example, we saw that to extract the same

power, optimized compound cylinders can have 50 % less surface area and 77 % less

volume than optimized cylinders. Compound cylinders are relatively easy to build,
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so this would be a good experiment to run.

It would be prudent to test the heave-only shapes first, since this is an easier way to

extract energy. It is important to test the heave-surge-pitch shapes as well, to test

the viability of our novel formulation of how to ensure resonance in surge-pitch by

changing the design parameters 𝑘1, 𝑧𝐺 and 𝐼55, and also to test the optimal shapes

from the heave-surge-pitch optimization.

Spectrum

In this thesis, we only consider a unidirectional monochromatic wave. In section 6.8

we did show the response of the optimal shape in other frequencies, and found that

the response has a wide bandwidth, suggesting it will do well in irregular seas. How-

ever, to further this research, real narrow-banded frequency and directional ocean

spectra need to be introduced to the overall problem. Even for axisymmetric bodies

these results are as yet unknown. The optimization framework would need to be

updated, since the body would not be in resonance at every frequency. One idea

would be to require it be in resonance at the peak frequency, and then change the

objective functions to (1) maximize power (integrated over the spectrum), and (2)

minimize surface area or volume. The reason we need to maximize power is that

shapes with narrow bandwidths would not work as well as those with wider band-

widths. Shapes with narrow bandwidths are usually deep, narrow shapes, and our

motion constraint eliminates these shapes, so we hypothesize that the optimal shapes

found in this thesis would perform well when evaluated across a spectrum. Since body

motion is maximum at resonance, the motion constraints and steepness constraints

at resonance would still apply. Everything else in the optimization framework could

then stay the same. We could still find the resonating bodies for a given 𝑘𝑝 using

the theorem developed in this thesis, again reducing the computational time needed

considerably. Then, the Pareto Front would be evaluated to maximize extractable

power over incident power integrated across the spectrum and to minimize surface

area or volume (or, perhaps, a three-objective algorithm could be developed, to mini-
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mize both surface area and volume). These objective functions would be well-defined

since resonance is still required for the peak frequency. Another important aspect

to be considered are the PTO coefficients. Setting the PTO coefficient equal to the

radiation damping at resonance is optimal if the body is in resonance, but considering

irregular seas this may no longer be true. Therefore, it would be necessary to make

a formulation about how to optimize that parameter.

Non-axisymmetric shapes

This thesis only considers axisymmetric WECs, because in real oceans the direction

of the incoming wave is not constant. However, it would be a good next step to

consider non-axisymmetric shapes. The limits of capture width do not apply to non-

axisymmetric shapes, so we would need to change the optimization framework, since

the maximum power would now depend on the geometric shape and size.

Arrays

An important aspect of wave energy research is in looking at arrays of WECs. The

interaction of WECs with one another in an array can significantly increase the ex-

tractable power. For example, Garnaud and Mei (2010, 2012) show that using a

compact array, instead of one large buoy, can broaden the bandwidth of power ex-

traction. Tokić and Yue (2019) found that WECs in arrays can extract up to 10

times that amount of power as isolated WECs. In their research, the configuration

of arrays of WECs are optimized, where they assume cylindrical and constant ge-

ometries. However, as we see in this research, the geometry of WECs greatly affects

the performance of WECs, and particularly enables the same amount of power to be

extracted with less material. It would be a good next step to test one of the optimal

geometries found in this research in an array configuration. But further, we could

use the framework and parameterization used in this thesis and apply it to the work

done on arrays to find if WEC geometry should change based on the location in an

array – that is, optimize the geometries of all of the WECs in an array.
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Nonlinear effects, viscous effects, and survivability in extreme conditions

In this thesis, we optimized WECs for normal operating conditions, instead of looking

at extreme conditions. Therefore, we assumed that wave motions are sufficiently small

to linearize. We also assumed that the bodies are large relative to the wave amplitude,

so flow separation is unimportant. However, it may be good to verify the conclusions

from this thesis with weakly or fully nonlinear theory, for example for non-wall-sided

shapes.

To summarize, this thesis sets up a theoretically rigorous foundation for how to best

optimize the geometry of a WEC and presents optimal shapes found computationally.

We believe these contributions can aid future research and development of wave energy

converters, and the framework and results from this thesis could move wave energy

significantly towards becoming a viable source of renewable energy.
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Appendix A

Stability constraint

In the heave-surge-pitch problem, one of the constraints is that the shape must be

in stable equilibrium in pitch. One of the controllable design parameters we change

to ensure resonance in surge-pitch is 𝑧𝐺, the vertical location of the center of gravity.

However, we know from stability analysis that there is maximum value that 𝑧𝐺 can

take such that above this value the body would be unstable. In this section, we

outline how to find 𝑧𝑚𝑎𝑥𝐺 for a given shape. For more information, see Principles of

Naval Architecture (Lewis, ed., 1988).

Consider a small angle of pitch displacement 𝛿𝜑, shown in figure A-1.

Figure A-1: A small angle 𝛿𝜑 of pitch displacement to a body.
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The original center of buoyancy is 𝑥𝐵 and changes to 𝑥′
𝐵 when the body rotates 𝛿𝜑.

𝑥𝑀 is the point of intersection between a vertical line through 𝑥′
𝐵 and a line through

the body’s center axis, as shown in figure A-1

When the body rotates, the new waterline will intersect the original waterline at the

body’s vertical centerline axis since the volume of the two wedges are equal, meaning

there is no change in displacement, as shown in figure A-1. If the volume of each

wedge is 𝑣, the total volume of the body is ∀ and the centers of gravity of the wedges

are 𝑥𝑔1 and 𝑥𝑔2, then the distance between 𝑥𝐵 and 𝑥′
𝐵 will be

𝑥𝐵𝑥′
𝐵 = 𝑣𝑥𝑔1𝑥𝑔2

∀
(A.0.1)

where 𝑥𝐵𝑥′
𝐵 is parallel to 𝑥𝑔1𝑥𝑔2. As 𝛿𝜑 → 0, 𝑥𝐵𝑥′

𝐵 becomes perpendicular to the

body’s vertical centerline axis, and so the distance between 𝑥𝐵 and 𝑥𝑀 is

𝑥𝐵𝑥𝑀 = 𝑥𝐵𝑥′
𝐵

tan 𝛿𝜑 (A.0.2)

Putting equation A.0.1 in for 𝑥𝐵𝑥′
𝐵 we get

𝑥𝐵𝑥𝑀 = 𝑣𝑥𝑔1𝑥𝑔2

∀ tan 𝛿𝜑 (A.0.3)

Since the body is axisymmetric,

𝑣𝑥𝑔1𝑥𝑔2 =
∫︁ 𝜋

0

2
3 tan 𝛿𝜑𝑅3 sin3 𝜃𝑅𝑑𝜃 = 8

9𝑅
4𝑡𝑎𝑛𝛿𝜑 (A.0.4)

Putting this into equation A.0.3, we get

𝑥𝐵𝑥𝑀 = 8𝑅4

9∀
(A.0.5)

Therefore, since 𝑧𝐺 must be below 𝑧𝑀 , we find 𝑧𝑚𝑎𝑥𝐺 to be

𝑧𝑚𝑎𝑥𝐺 = 𝑧𝑀 = 𝑥𝐵𝑥𝑀 + 𝑧𝐵 (A.0.6)

When putting equation A.0.5 in for 𝑥𝐵𝑥𝑀 , we get an expression for 𝑧𝑚𝑎𝑥𝐺 in terms of
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𝑧𝐵, 𝑅 and ∀:

𝑧𝑚𝑎𝑥𝐺 = 8𝑅4

9∀
+ 𝑧𝐵 (A.0.7)

This expression will serve as a maximum value of 𝑧𝑟𝐺, the value of 𝑧𝐺 needed to put

the body in resonance.
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Appendix B

Verifications for theorem

In chapter 4, we presented a theorem about the heave resonance equation. We also

explained a procedure to use this theorem to find roots of the heave resonance equation

that is 100x more efficient than brute-force searches. In this appendix we show some

examples of the verifications we did to validate this approach.

Theorem

Consider a WEC of volume 𝑙3𝑉 , with an incoming wave of unit-amplitude and wavenum-

ber 𝑘. Suppose body class vector B𝐸 is given. If nondimensional added-mass co-

efficient, 𝐴33 = 𝐴33
𝜌𝑙3𝑉

, where 𝐴33 is the dimensional added mass coefficient, can be

approximated by the function

𝐴33 = 𝑓(𝑅, 𝑘𝑙𝑉 ) = 𝐴(𝑘𝑙𝑉 )𝑅3 (B.0.1)

with the following restrictions on 𝐴(𝑘𝑙𝑉 ):

1. 𝐴(𝑘𝑙𝑉 ) > 0 for all 𝑘𝑙𝑉 > 0

2. Δ = 𝑘𝑙𝑉
[︁
−27 (𝐴(𝑘𝑙𝑉 ))2 (𝑘𝑙𝑉 )3 + 4𝜋3

]︁
must have 1 positive real root, (𝑘𝑙𝑉 )𝑚𝑎𝑥,

such that Δ > 0 for 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥 and Δ < 0 for 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥

then for 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥 there are two shapes, with 𝑅-values 𝑅1 and 𝑅2, that achieve

resonance, and for 𝑘𝑙𝑉 > (𝑘𝑙𝑉 )𝑚𝑎𝑥 there are no shapes that achieve resonance. The
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proof to this theorem is given in chapter 4.

How we use this theorem

In our optimization, each organism is given by 𝑘𝑙𝑉 and B𝐸. Given these, we can find

𝐴33 for a few values of 𝑅. Then, we fit this data to the function 𝐴𝑐𝑅
3 to find 𝐴𝑐. We

use this value of 𝐴𝑐 in the approximated version of the heave resonance equation:

− (𝑘𝑙𝑉 )𝐴𝑐𝑅
3 + 𝜋𝑅

2 − 𝑘𝑙𝑉 = 0 (B.0.2)

which, given 𝑘𝑙𝑉 is simply a cubic equation in 𝑅. We can solve explicitly for the two

roots of the equation (if they exist – that is, if 𝑘𝑙𝑉 < (𝑘𝑙𝑉 )𝑚𝑎𝑥), 𝑅𝑎
1 and 𝑅

𝑎
2, which

are the approximate roots of the resonance equation. Then, we can use 𝑅𝑎
1 and 𝑅

𝑎
2

to perform local optimizations (bracket methods using WAMIT values of 𝐴33) to find

more accurate values of 𝑅1 and 𝑅2, the actual values of the resonance equation.

What needs to be validated

In this appendix, we show examples from the two parts of the validation needed to

use this theorem. First, we look at the added mass approximation that given 𝑘𝑙𝑉 ,

𝐴33 can be approximated as 𝐴𝑐𝑅
3, where 𝐴𝑐 is a constant. The validation for that is

shown in section B.1. And then in section B.2 we show the validation of finding 𝑅1

and 𝑅2 – that is, we use the procedure described above and compare it to brute-force

searches to show that our procedure works well.

B.1 Verification of added mass approximation

In this section, we show a a few examples of verifications of the added mass approx-

imation. We performed these verifications for a wide range of classes of shapes, but

in this appendix we just show one example class from each group of shapes. In the

following figures, we look at a few values of 𝑘𝑙𝑉 , with different colors for different 𝑘𝑙𝑉
values. The solid line shows the heave added mass from WAMIT, for a range of 𝑅
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values. The dashed line is a fit to a function 𝐴𝑐𝑅
3, where 𝐴𝑐 is a constant. Then, we

plot 1 −𝑅2 vs. 𝑘𝑙𝑉 , where 𝑅2 is the coefficient of determination.

Cylinder

Figure B-1: Cylinder added mass approximation verification
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One kink shape

Figure B-2: One-kink shape added mass approximation verification
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Compound cylinder

Figure B-3: Compound cylinder added mass approximation verification
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No-kinks-2nd-order shape

Figure B-4: No-kink 2nd-order shape added mass approximation verification

From all of these plots, we can see that the approximation is valid for each class

tested. The minimum 𝑅2 value is 0.996. These plots only show one example from

each group of shapes, but in reality we tested a wide range of classes within each

group. For example, for the one-kink shapes, we tested 𝑟1 values less than 1 and

greater than 1, and we tested 𝑧1 values less than -1 and greater than -1. We found

similar results in all classes that we tested – that is, 𝑅2 values always greater than

0.995.

B.2 Verification of finding roots

In this section, we show the verification for the rest of the procedure we use to find

the roots of the resonance equation. We again show one example class for each group.
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We show the percent error of the roots found from our method against brute-force

searches for both 𝑅1 and 𝑅2. We look at a few values of 𝑘𝑙𝑉 for each shape. We look

at 10 values of 𝑅 from 0 to 3.5, record added mass, fit it to the cubic equation, find

approximate roots by solving the cubic equation, and then do a local optimization

to get a more accurate value of the root. We compare this to roots found from

brute-force method (looking at all values of 𝑅).

Cylinder

Figure B-5: Cylinder finding roots verification

261



One kink shape

Figure B-6: One-kink shape finding roots verification
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Compound cylinder

Figure B-7: Compound cylinder finding roots verification
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No-kinks-2nd-order shape

Figure B-8: No-kinks 2nd-order shape finding roots verification

As we can see from all of these plots, the percent error of the roots is never above

5%. Therefore, we can say that our method for finding roots works well. Again, these

are just examples of classes we looked at. We looked at many more classes of shapes

within each group.
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Appendix C

Sensitivity study for

multi-objective evolutionary

algorithm

In this appendix we show the sensitivity study performed for the multi-objective

optimization. From this sensitivity study we determined the mutation probability,

initial population size, and the number of generations for each run in the optimization.

We looked at the flat-bottomed group for this sensitivity study, because it only has two

geometric parameters (𝑘𝑙𝑉 and 𝑟1) to optimize. For each of the following sensitivity

studies, we looked at 𝑘𝑙𝑉 from 0.5 to 1.5, with a step-size of 0.02 – that is, the values

𝑘𝑙𝑉 could take were 0.5, 0.52, 0.54, ..., 1.48, 1.5. This corresponds to 51 possible

values for 𝑘𝑙𝑉 . We looked at 𝑟1 from 0.25 to 1.39, with a step-size of 0.02 – that is,

the values 𝑟1 could take were 0.25, 0.27, 0.29, ..., 1.37,1.39. This corresponds to 58

possible values for 𝑟1. Therefore, since every combination of 𝑘𝑙𝑉 and 𝑟1 is possible,

there are 2958 possible organisms.

We ran each of these 2958 organisms to determine the (actual) minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆
values. Then, we ran the optimizations using different mutation probability values

and different initial population (‘popsize’) values. We ran each optimization until
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the minimum 𝑘𝑙𝑉 and minimum 𝑘𝑙𝑆 in the optimization was within 5% of the actual

minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values. For each value of mutation probability and initial

population size, we repeated this process 20 times and recorded the average number

and the maximum number of generations needed to get within 5% of the actual

minimum 𝑘𝑙𝑆 and 𝑘𝑙𝑉 values.

C.1 Heave

C.1.1 Initial population size

For these tests, we kept the mutation probability at 0.1. We tested ‘popsize’ values

from 50 to 1000. The following plots show the average number of generations needed

for the minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values in the optimization to get within 5% of the

actual minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values, the maximum number of generations, and then

the average total number of runs (popsize + number of generations) and maximum

number of runs.
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Figure C-1: Sensitivity study for initial population size for the heave problem. The
first plot shows the average number of generations needed for the minimum 𝑘𝑙𝑉 and
𝑘𝑙𝑆 values in the optimization to get within 5% of the actual minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆
values, the second plot shows the maximum number of generations, the third plot
shows the total number of runs (popsize + number of generations) and the fourth
plot shows the maximum total number of runs

From this analysis, we determined that an initial population size of 200 performed

best since it had the smallest average total number of runs needed to get 𝑘𝑙𝑉 and 𝑘𝑙𝑆
values within 5% of the actual minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values. The maximum number

of generations needed for a ‘popsize’ value of 200 was approximately 2000, and the

average number of generations was 750. Comparing these numbers to the number

of possible values, 200/2958=0.07, 2000/2958=0.68, and 750/2958=0.25. Therefore,

for each optimization in the runs described in chapter 6, we generally chose an initial

population size of 0.07 times the total number of possible organisms and ran 0.5 times

the total number of possible organisms generations in each optimization run.
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C.1.2 Mutation probability

For these tests, the initial population size was 150. The following figures show the

average and maximum number of generations needed for the minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆

values in the optimization to get within 5% of the actual minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values.

We tested mutation probability from 0.05 to 0.9, and we tested each 20 times.

Figure C-2: Sensitivity study for mutation probability for the heave problem. The
first plot shows the average number of generations needed for the minimum 𝑘𝑙𝑉 and
𝑘𝑙𝑆 values in the optimization to get within 5% of the actual minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆
values, the second plot shows the maximum number of generations

From these tests, we concluded that a mutation probability of 0.1 is optimal, so we

use this in all of our optimization in chapter 6.

C.2 Heave surge pitch

We tested the same values for 𝑘𝑙𝑉 and 𝑟1. Of course, for the heave-surge-pitch problem

the minimum values for 𝑘𝑙𝑉 and 𝑘𝑙𝑆 are going to be different, so we again ran all

possible organisms to get the actual values for minimum 𝑘𝑙𝑉 and minimum 𝑘𝑙𝑆.

C.2.1 Initial population size

For these tests, we kept the mutation probability at 0.1. We tested ‘popsize’ values

from 50 to 200. The following plots show the average number of generations needed

for the minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values in the optimization to get within 5% of the

actual minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values, the maximum number of generations, and then
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the average total number of runs (popsize + number of generations) and maximum

number of runs.

Figure C-3: Sensitivity study for initial population size for the heave-surge-pitch
problem. The first plot shows the average number of generations needed for the min-
imum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values in the optimization to get within 5% of the actual minimum
𝑘𝑙𝑉 and 𝑘𝑙𝑆 values, the second plot shows the maximum number of generations, the
third plot shows the total number of runs (popsize + number of generations) and the
fourth plot shows the maximum total number of runs

From this analysis, we see that an initial popualtion size of 50 is best. That is 2%

of the number of possible organisms. It corresponds to an average of 75 generations

needed and a maximum of 220 generations needed. This corresponds to 7% of the

total number of possible organisms. So these are the percentages we use in the heave-

surge-pitch optimizations in chapter 6.

C.2.2 Mutation probability

For these tests, the initial population size was 150. The following figures show the

average and maximum number of generations needed for the minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆
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values in the optimization to get within 5% of the actual minimum 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values.

We tested mutation probability from 0.05 to 0.9, and we tested each 20 times.

Figure C-4: Sensitivity study for mutation probability for the heave-surge-pitch prob-
lem. The first plot shows the average number of generations needed for the minimum
𝑘𝑙𝑉 and 𝑘𝑙𝑆 values in the optimization to get within 5% of the actual minimum 𝑘𝑙𝑉
and 𝑘𝑙𝑆 values, the second plot shows the maximum number of generations

From these tests, we concluded that a mutation probability of 0.1 is optimal, so we

use this in all of our optimization in chapter 6.
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Appendix D

Wall-sided results

In this appendix, we present the optimal shapes of vertical wall-sided shapes. We

present them here instead of chapter 6 since they do not perform well compared to

the other groups of shapes. These shapes, which we will call ‘flat-sided’ shapes are

piecewise-linear with one slope discontinuity, where the segment from the waterline

to the slope discontinuity is vertical. That is, 𝑟1 = 1. Figure 4-11 shows examples of

classes of shapes in this group. The parameters to optimize are 𝑘𝑙𝑉 and 𝑧1. 𝑧1 can be

any number less than 0. A value of 𝑧1 < −1 would signify a protruding downwards

shape.

D.1 Heave-only

For the heave-only problem, the possible values of 𝑘𝑙𝑉 were [0.4,1.4,0.05], the possible

values of 𝑧1 were [-2,0.1,0.05]. The initial population size was 60, and the number of

generations was 500.
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D.1.1 𝛼 = 3, 𝜖 = 0.1

Figure D-1: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-sided’ shapes for the
heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint 𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑧1
|𝜉3|
𝐴

1.87 0.9 0.58 0.73 -0.92 2.96

1.92 0.85 0.58 0.38 -1.79 2.98

3.67 0.8 2.02 0.03 -1.44 0.27

3.7 0.75 2.05 0.03 -1.23 0.27

3.74 0.74 2.08 0.03 -1.0 0.27

3.76 0.72 2.09 0.03 -1.0 0.26

3.76 0.6 2.12 0.03 -0.2 0.25

Table D.1: Dimensions and characteristics of the ‘flat-sided’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.1 (shown in figure D-1)
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D.1.2 𝛼 = 3, 𝜖 = 0.2

Figure D-2: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-sided’ shapes for the
heave-only problem, with motion constraint 𝛼 = 3 and steepness constraint 𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑧1
|𝜉3|
𝐴

1.87 0.9 0.58 0.73 -0.92 2.96

3.71 0.85 2.05 0.06 -0.72 0.27

3.73 0.75 2.09 0.05 -0.36 0.26

Table D.2: Dimensions and characteristics of the ‘flat-sided’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 3 and steepness con-
straint 𝜖 = 0.2 (shown in figure D-2)

D.1.3 𝛼 = 1, 𝜖 = 0.1

Figure D-3: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-sided’ shapes for the
heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint 𝜖 = 0.1
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑧1
|𝜉3|
𝐴

2.58 1.25 1.05 0.76 -0.61 0.98

2.59 1.2 1.06 0.52 -0.92 0.97

2.59 1.15 1.04 0.34 -1.49 1.0

3.27 1.1 1.67 0.09 -2.0 0.38

3.38 1.05 1.77 0.07 -2.0 0.35

3.47 1.0 1.85 0.06 -2.0 0.32

3.51 0.95 1.89 0.05 -2.0 0.31

3.56 0.9 1.94 0.04 -1.95 0.29

3.6 0.85 1.97 0.03 -2.0 0.29

3.66 0.8 2.02 0.03 -1.49 0.28

3.7 0.75 2.05 0.03 -1.23 0.27

3.74 0.74 2.08 0.03 -1.0 0.27

3.76 0.72 2.09 0.03 -1.0 0.26

3.76 0.6 2.12 0.03 -0.2 0.25

Table D.3: Dimensions and characteristics of the ‘flat-sided’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.1 (shown in figure D-3)

D.1.4 𝛼 = 1, 𝜖 = 0.2

Figure D-4: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-sided’ shapes for the
heave-only problem, with motion constraint 𝛼 = 1 and steepness constraint 𝜖 = 0.2

274



𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑧1
|𝜉3|
𝐴

2.59 1.2 1.06 0.52 -0.92 0.97

2.59 1.15 1.04 0.34 -1.49 1.0

3.27 1.1 1.67 0.09 -2.0 0.38

3.38 1.05 1.77 0.07 -2.0 0.35

3.5 1.0 1.88 0.06 -1.59 0.31

3.61 0.95 1.96 0.06 -1.23 0.29

3.65 0.94 2.0 0.07 -1.0 0.29

3.66 0.9 2.01 0.06 -1.02 0.28

3.71 0.85 2.05 0.06 -0.72 0.27

3.73 0.75 2.09 0.05 -0.36 0.26

Table D.4: Dimensions and characteristics of the ‘flat-sided’ shapes on the Pareto
Front for the heave-only problem, with motion constraint 𝛼 = 1 and steepness con-
straint 𝜖 = 0.2 (shown in figure D-4)

Trends/ observations

∙ These shapes cannot protrude outwards, which is the trend we saw to be optimal

in other groups. We see that the 𝑘𝑙𝑉 and 𝑘𝑙𝑆 values are significantly higher than

the corresponding values for all of the other groups in chapter 6.

∙ There is generally not really a trend on if 𝑧1 less than -1 or greater than -1

is better. That is, it’s not clear if protruding downwards shapes are better or

worse.

∙ We still see that as 𝛼 decreases, shapes get wider and shallower.

D.2 Heave-surge-pitch

For the heave-only problem, the possible values of 𝑘𝑙𝑉 were [0.4,1.4,0.05], the possible

values of 𝑧1 were [-2,0.1,0.05]. The initial population size was 20, and the number of

generations was 400.
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D.2.1 𝛼 = 3, 𝜖 = 0.1

Figure D-5: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-sided’ shapes for
the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑧1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

2.86 1.26 1.26 0.4 -1.0 0.7 0.66 2.41 1.39 0.12 0.5

2.87 1.25 1.25 0.35 -1.18 0.71 0.66 2.56 1.41 0.07 0.07

3.22 1.2 1.59 0.16 -1.49 0.43 0.79 1.14 1.33 0.34 0.67

3.24 1.15 1.63 0.12 -1.74 0.41 0.84 1.19 1.35 0.1 0.76

3.41 1.1 1.78 0.1 -1.49 0.35 1.04 0.95 1.31 0.45 0.86

3.53 1.05 1.89 0.09 -1.23 0.31 1.31 0.81 1.27 1.21 0.96

3.58 1.04 1.93 0.1 -1.0 0.3 1.49 0.72 1.23 1.98 0.99

3.58 1.0 1.94 0.08 -1.13 0.3 1.53 0.77 1.25 1.8 1.04

3.63 0.98 1.97 0.08 -1.0 0.29 1.69 0.72 1.23 2.32 1.08

3.67 0.95 2.01 0.08 -0.82 0.28 2.08 0.66 1.19 3.54 1.12

3.69 0.9 2.03 0.07 -0.77 0.28 2.5 0.64 1.18 4.49 1.22

3.7 0.85 2.06 0.08 -0.36 0.27 2.45 0.72 1.19 5.1 1.32

Table D.5: Dimensions and characteristics of the ‘flat-sided’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.1 (shown in figure D-5)
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D.2.2 𝛼 = 3, 𝜖 = 0.2

Figure D-6: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-sided’ shapes for
the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness constraint
𝜖 = 0.2

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑧1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.03 1.3 1.38 0.37 -1.0 0.6 0.67 1.69 1.34 0.22 0.53

3.27 1.25 1.61 0.21 -1.18 0.43 0.81 1.03 1.28 0.54 0.61

3.37 1.24 1.71 0.21 -1.0 0.39 0.91 0.87 1.24 0.82 0.71

3.39 1.2 1.74 0.17 -1.08 0.37 0.96 0.85 1.26 0.9 0.72

3.46 1.18 1.8 0.16 -1.0 0.35 1.05 0.78 1.24 1.13 0.79

3.51 1.15 1.85 0.15 -0.92 0.33 1.17 0.72 1.22 1.45 0.8

3.6 1.1 1.93 0.13 -0.77 0.31 1.5 0.65 1.18 2.09 0.88

3.64 1.05 1.98 0.14 -0.51 0.29 1.68 0.65 1.18 2.48 0.95

3.71 1.0 2.04 0.12 -0.46 0.28 2.64 0.54 1.11 3.59 1.03

Table D.6: Dimensions and characteristics of the ‘flat-sided’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 3 and steepness
constraint 𝜖 = 0.2 (shown in figure D-6)
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D.2.3 𝛼 = 1, 𝜖 = 0.1

Figure D-7: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-sided’ shapes for
the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.1

𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑧1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.3 1.2 1.66 0.17 -1.28 0.4 0.85 0.98 1.3 0.58 0.68

3.34 1.15 1.71 0.13 -1.44 0.38 0.94 0.98 1.31 0.52 0.78

Table D.7: Dimensions and characteristics of the ‘flat-sided’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.2 (shown in figure D-8)

D.2.4 𝛼 = 1, 𝜖 = 0.2

Figure D-8: Pareto Front (left) and corresponding shapes in the 𝑟 − 𝑧 plane (right),
resulting from the multi-objective evolutionary algorithm for ‘flat-sided’ shapes for
the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness constraint
𝜖 = 0.2
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𝑘𝑙𝑆 𝑘𝑙𝑉 𝑘𝑅 𝑘𝐻 𝑧1
|𝜉3|
𝐴

|𝜉1|
𝐴

|𝜉5|
𝐴/𝑅

𝑘1 𝑧𝐺 𝑟𝑔

3.31 1.28 1.64 0.25 -1.0 0.43 0.82 0.97 1.25 0.62 0.66

3.32 1.25 1.65 0.22 -1.08 0.41 0.84 0.94 1.27 0.67 0.62

3.37 1.24 1.71 0.21 -1.0 0.39 0.91 0.87 1.24 0.82 0.71

3.39 1.2 1.74 0.17 -1.08 0.37 0.96 0.85 1.26 0.9 0.72

Table D.8: Dimensions and characteristics of the ‘flat-sided’ shapes on the Pareto
Front for the heave-surge-pitch problem, with motion constraint 𝛼 = 1 and steepness
constraint 𝜖 = 0.1 (shown in figure D-5)

Trends/ observations

∙ All of these shapes are either cylinders or very close to cylinders. There is still

not a clear trend on if it is better to protrude down or not.

∙ Compared to the heave-only shapes, these shapes are wider and shallower
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