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ABSTRACT

The route choice problem in general, and in the presence of information in
particular, is not a very well understood problem in the transportation literature. Most
route choice models are based on the random-utility discrete-choice paradigm and assume
that users choose the aiternative with maximum utility value among the different
alternatives.  Recently, with the increased interest in the area of Intelligent
Vehicle/Highway Systems (IVHS) and specifically Advanced Traveller Information
Systems (ATIS), limitations of existing models have become very apparent. ATIS
provide drivers with real-time traffic information in order to facilitate better route choice
decisions. Under these conditions drivers are required to incorporate verbal, visual and
prescriptive information into their own perceptions and consequently make route choices.

In this thesis we propose three hypotheses regarding drivers behavior in the
presence of information. The simultaneous hypothesis which assumes that drivers
incorporate all the factors that affect their decision simultaneoasly (including traffic
information). The two-stage hypothesis according to which the drivers first update their
perceptions based on the new information that they have acquired or experienced, and
subsequently they make route choice decisions based on their updated perceptions.
Finally, the default hypothesis which assumes that there is an underlying behavioral
pattern for each driver which serves as default behavior if no unusual or unexpected
conditions occur. Information on unexpected conditions triggers reevaluation of the
default behavior.

The two main elements required in order to implement the above hypotheses are
models of drivers perceptions, and models of the decision process itself. We present a
framework for modeling both perceptions and the route choice process in the presence of
information using concepts from fuzzy sets theory, approximate reasoning, and fuzzy
control.

Linguistic variables and possibility distributions are used to model perceptions of




both network attributes and the provided information. For modeling the decision process
itself two main approaches, which use as inputs fuzzy perceptions, are suggested.

The first approach is based on the classical discrete choice paradigm appropriately
extended to incorporate fuzzy attributes in the systematic utility component. The
maximum likelihood function of the fuzzy utility model is formulated and used for the
calibration of its parameters.

The second approach is based on concepts from approximate reasoning and fuzzy
control. Linguistic rules of the form: "IF ... THEN ..." are used. The rules describe
attitudes towards taking a specific route given (possibly vague) perceptions on network
attributes. They are used as anchoring sct.lemcs for decisions, while the adjustments of
the rules to changing conditions is done by an approximate reasoning mechanism. The
use of the fuzzy, approximate reasoning methodology, facilitates a flexible rule
interpretation by automatically deriving rules that are close to the original rules. Hence
the suggested approach requires existence of a relztively small rule base (compared to
cther rule-based systems). All the adjusted rules are then applied simultaneously (each
with the appropriate degree) and the process results in the final attractiveness of each
alternative. From a behavioral point of view this approach may provide a more natural
framework for modeling route choice decisions (especially when they are made under
time pressure). The underlying assumption is that drivers have limited information
processing capabilities and therefore use simple rules to make decisions. A rigorous
approach, based on a mathematical programming formulation of the problem, has been
developed for estimation of the parameters of the model.

We conclude by presenting results from a case study. The data for the case study
was collected using a driver simulator that we have designed and implemented. Ten
subjects participated in the experiment, and each performed 20 trips under various traffic
conditions (congestion levels, incidents, etc). The data collected includes prior
perceptions (based on interviews), observed traffic conditions while driving, the available
pre-trip and en-route information, and the resulting choices made. A rule matrix was
estimated both for each subject individually, and for the entire population. Preliminary
results support our hypothesis that route choice behavior in the presence of information
can be modeled by a small set of intuitive and reasonable rules. The results also compare
favorably to results obtained by more traditional approaches.

Thesis Supervisor:  Dr. Haris N. Koutsopoulos
Title: Assistant Professor of Civil and Environmental Engineering
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CHAPTER 1: INTRODUCTION
1.1 Motivation

Provision of real time information on traffic conditions to drivers has become
technically possible due to emergence of new technologies and recent advances in existing
technologies. There has been a lot of enthusiasm and hope that in-vehicle navigation and
route guidance systems (Advanced Traveler Information Systems, ATIS), will become an
integral part of the solution to the traffic congestion problem.

Many theoretical studies are underway to address design issues of such systems
and their effectiveness (for example Jayakrishnan and Mahmassani, 1991, Koutsopoulos
and Xu, 1992, Kaysi, 1992). The effectiveness of such systems and their potential for
reducing congestion, depends heavily on drivers’ reaction to the additional information
that might be available to them. However, most studies make major simplifying
assumptions regarding drivers’ behavior such as drivers have complete information,
infinite information processing capabilities, and are able to make optimal decisions, or
that a certain compliance rate with the information provided is achieved.

Modeling route choice decisions in the presence of information can be extremely
difficult. The model has to consider all the usual factors that affect travel decisions such
as: travel time, travel distance, type of road, travel speed, weather conditions, personal
preferences and more. In addition, the model has to incorporate drivers’ acquired
information and its processing. Furthermore, decisions have to be made in real-time, in
a limited time period, and often while en-route where the driver is primarily occupied
with the driving task. Therefore, zvailability of pre-trip and en-route traffic information
to drivers, adds a new dimension to route choice decisions. It adds the following
complicating factors to the decision process:

. Information forces route choice decisions to become inherently dynamic, since
traffic information can change continuously and might be unpredictable.

. Information not only affects the attractiveness of the alternatives in the choice set,
but it may also change the choice set itself. Information can force drivers to
consider new alternatives in their choice sets on one hand, and can make existing
alternatives infeasible on the other hand.

. Route choice decisions in the presence of information are made under time
pressure. Furthermore, drivers have limited information processing capabilities.

. Information has to be considered in light of existing behavior patterns (when no

traffic information is available), and could have various effects; it can support the
existing behavior patterns, it can change them, or its impact may be unclear.
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J Information can come from various sources and have different degrees of
reliability.

J There is a learning process as drivers gain more experience with existing
information systems. This affects the way drivers acquire, interpret, and react to
information.

1.2 Advanced Traveler Information Systems

Existing information systems vary from pre-trip information, through roadside
displays and broadcasting systems, to electronic in-vehicle route guidance systems (OECD
1988, Boyce 1988, Koutsopoulos and Lotan 1990). Traffic information helps users not
only to widen their choice set by exposing them to alternatives which they were not
aware of before, but also to avoid bottlenecks due to incidents, construction etc. The
overall objective of Advanced Traveler Information Systems is to utilize the available
network capacity more efficiently, and to reduce the stress associated with driving by
reducing the uncertainty related to driving conditions.

The most important parameters of the information that is being provided to users are:

© Type—what-typeof -information—is—beingconveyed (general network
description, congestion levels, navigation information, prescriptive,
descriptive etc).

o Spatial distribution and frequency - on what parts of the network is
information available and how often is it updated.

o) Temporal Characteristics - does the information pertain to average traffic
conditions (historic), current conditions or future projected conditions.

Kaysi (1992) provides a comprehensive review of frameworks and models for
provision of real-time information to drivers. He categorizes the various types of driver
information systems into:

. Pre-trip route planning systems.

. Autonomous navigation aids.

. Broadcasting systems and roadside variable message signs.
. Automatic route guidance systems.

Some of the major demonstration projects currently underway are (see French,
1990, and Kaysi, 1992, for more details):

. ALI-SCOUT and LISB in Germany are route guidance systems that use infrared
transmitters and receivers to transfer navigation information between roadside

11



beacons and on-board displays in equipped vehicles.

. AUTOGUIDE in London provides route recomimendations vased on real-time
information on area-wide traffic conditions. The recommendations are intended
to guide drivers over the shortest route to their destinations.

. AMTICS in Japan uses roadside beacons to transmit real time traffic informaticn
from a traffic control center to an in-vehicle navigation system. It does not
recommend any specific route, rather displays road maps, and navigarior: and
parking information.

° TRAVTEK in Florida determines the best route for a given destination (selected
by the driver), and uses graphic displays as well as audio to provide instructions,
traffic incidents and traffic congestion locations.

It is common that information is transmitted to drivers verbally (such as
information provided by broadcasting traffic reports on the radio o. through voice
synthesizers on board), or visually (such as roadside displays or in-vehicle equipment).
Important safety issues are associated with these systems (particularly in-vehicle devices)
because they could distract the driver’s attention (Sheridan, 1991a). No clear standard
for provision of information has emerged from the current demonstration projects.

1.3 Literature Review

There is extensive literature on the route choice problem, and recently Bovy and
Stern (1990), provided a comprehensive literature review. Their general framework
presents the route choice process as synthesizing, through a black box, two sources of
inputs: drivers characteristics and transport network characteristics. Studies of route
choice behavior can then be categorized according to the degree of detail at which they
explain the interior of the black box.

The general framework for making route choice decisions includes the following
stages: first the driver forms a choice set which is composed of alternatives that are
considered feasible. Next the driver evaluates the alternatives in the choice set, and
finally chooses the most attractive alternative. However, as Bovy and Stern (1990)
indicate, none of these stages is straightforward. The choice set formation stage is based
on a factor-importance hierarchy according to which the driver first sifts through a fairly
sizable set of available alternatives, and eliminates all that are not sufficiently attractive.
Only after the choice set has been reduced significantly, does the driver make an in-depth
evaluation of the remaining alternatives. The evaluation is done on the basis of a
composite utility function which reflects the relative evaluation of all aspects, resulting
in a preference rank order. The driver then chooses among the ranked alternatives
according to a certain decision rule (the alternative with the highest utility, or the routine
alternative provided it is not significantly worse than others, etc.).

12



Bovy and Stern (1990) suggest that the content of the black box (which
corresponds to the decision process itself) is a complicated system of filters through
which information is selected and transformed. They signify two types of filters:

. Perception filter through which the individual’s cognition of alternatives and
attributes’ values are processed.

. Evaluation filter through which the perceptions are transformed into a desirability
scale.

There are many factors that are used for the evaluation of each alternative and
affect route choice behavior. Bovy and Stern (1990), provide a comprehensive discussion
of the main attributes that influence route choice behavior. They categorize those factors
into 4 major groups:

o Personal characteristics of the driver.

. Route attr’butes which relate to road characteristics, traffic conditions, and
environmental considerations.

J Trip characteristics (e.g. trip purpose, mode, etc.).
J Other circumstances such as weather conditions, time of day, accidents, and more.

They report that a common finding in many studies is that travel time is usually
the most important independent choice factor, although other factors can not be
disregarded. Travel time often serves as a compound measure of other attributes, and
Horowitz (1978) claims that "value of time spent in travel is a surrogate measure of the
comfort, convenience, and reliability of the travel experience".

Most route choice models make two major assumptions:
1. The choice set from which a single alternative is chosen, is given.

2. Drivers are well informed about attribute values, and are capable of making an
optimal selection based on those values.

Most existing route choice models fall under the category of random utility theory
(Ben-Akiva and Lerman, 1985). In a random utility model it is assumed that U, the
utility of alternative i for individual n, is given by: U=V +€, where V,, is the
systematic component corresponding to some functional form of the attributes that affect
the utility, and g, is the random error corresponding to unobserved attributes and taste
variations, measurement errors, imperfect information, and instrumental variables. It is
assumed that each individual attempts to maximize his/her utility. Thus the probability

13



that individval n will choose alternative i is given by:
Prob,(i)=Prob(V,+€,2V;,+€;,) for all j=i

Depending on the assumptions made about the functional form of V, and the distribution
of the disturbance €, various discrete choice models may be formulated.

Another modeling approach, is the production-rule systems approach. The premise
underlying production rule systems is that choice behavior in a certain context (e.g. route
choice) can be described by a series of "if-then” rules. If the condition in the "if" part
is true, then the action of the "then" part follows (see for example Clark and Smith,
1985). This approach has shown the potential to model complicated cognitive processes,
however, Bovy and Stern (1990), comment that more research is needed to make such
approaches operational.

Teodorovic and Kikuchi (1990), used fuzzy inference techniques to address the
standard route choice problem (without presence of information). However, their method
is limited to a binary choice, and the methodology suggested can not easily be generalized
to deal with multiple choices and attributes other than travel time.

Research on route choice behavior in the presence of information is still in its
infancy. Most recently, motivated by the developments in the IVHS area outlined above,
the problem of the effect of information on travel behavior in general, and route choice
in particular, has received a lot of attention.

Ben-Akiva et al. (1991) propose a framework for modeling the process of drivers’
information acquisition and travel behavior. Khattak et al. (1992) investigated commuters
diversion propensity using data collected in the Chicago area, and evaluated the ways in
which drivers use real-time information. Adler et al. (1992) suggest a framework based
on conflict assessment and resolution theories to model individual en-route behavior in
response to real time traffic information.

1.4 Thesis Objectives

The purpose of this thesis is to propose a new methodology for modeling route
choice behavior in general, and in the presence of information in particular. The main
objective is to provide natural and intuitive models that have the potential to capture
realistic reasoning and thinking about the route choice decision. The main elements of
the methodology are:

1. Modeling perceptions. Perceptions of systems’ attributes and of the provided

information are of great importance. Modeling of perceptions encompasses
diverse problematic issues, including:

14



. Perceptions can not easily be associated with exact numerical
measuremenis, and often they can only be expressed linguistically.

J The same attribute’s value can be perceived differently by different

individuals.
J The same "declared" perception can correspond to different actual attribute
values.
. Perceptions are being updated continuously.
2. Modeling the decision process. The decision process that accompanies route

choice decisions is very compiex. * Most models make simplifying assumptions
regarding this process (e.g. utility maximization, existence of complete
information, choosing the optimal alternaiive and more). In this thesis we suggest
a new modeling approach based on fuzzy rules which aims at modeling a more
realistic decision making process.

1.5 Thesis Outline

The thesis is organized as follows: In Chapter 2 we present three hypotheses for
route choice behavior in the presence of information. Chapter 3 presents approaches for
modeling perceptions of network attributes and information using concepts from fuzzy set
theory. It also suggests methods for mtegranon of existing knowledge and available

information. In Chapter 4 we present two fuzzy rovte choice models whichk cam———
accommodate perceptions modeled by fuzzy sets: the fuzzy shortest path, and the fuzzy

utility model. Chapter 5 presents a new methodology for route choice behavior in the

presence of information: the approximate reasoning model which can be used to

implement the three hypotheses developed in Chapter 2. In Chapter 6 the approximate

reasoning model is implemented on a small data set that was collected using a driver

simulator. Finally Chapter 7 summarizes the major findings and contributions of the

thesis and suggests directions for future research.

15



CHAPTER z: ROUTE CHOICE BEHAVIOR IN THE PRESENCE OF
INFORMATION

A route choice decision can be viewed as an information processing operation in
which personal characteristics, physical network attributes, prior experience, prior
knowledge. current observations and information are processed together in order to come
up with a final choice. An important characteristic of the information processing task
involved in making a route choice decision is the need to aggregate different stimuli, data,
signs and symptoms, indications, evidence and infermation in order to reach a final
choice.  Unfortunately a generic model for information processing, expressed
independently of the specific system under consideration, does not exist. However,
human behavioral models for judgement, decisicn and choice have received a lot of
attention in general and in the psychology literature in particular (see for example
Hammond et al., 1980, for a review of different approaches). The discussion that follows
uses the framework for cognitive task analysis proposed by Rasmussen (1986) for
information processing in human-machine interactions. This framework aims primarily
at the control of a physical system in which the decision maker first detects the need for
intervention, then observes important and relevant data, then analyzes the evidence
available in order to identify the present state, and evaluates its consequences on the
systems goals, and finally chooses a target state and a task procedure to achieve this
desired target state. We use the above framework to describe the route choice process
in the presence of information as an information processing task. The general scheme,
as described by Rasmussen (1986), is demonstrated in Figure 1, in which rectangles
correspond to information processing activities and circles to states of knowledge. The
left-hand-side of the Figure corresponds to evaluating the state of the system by
processing the data and the information available, and the right-hand-side corresponds to
interpreting the identified state of the system in light of the relevant goals, and to making
the appropriate choice. 'n a utility maximization framework, for example, the left-hand-
side corresponds to data acquisition and coefficients estimation, and the right-hand-side
corresponds to choosing the alternative which has maximal utility. The framework in
Figure 1 can be used to describe other forms of decision processes, for example, rule-
based systems which associate system conditions (left-hand-side) with choices (right-hand-
side).

Figure 1 illustrates the various possible ways (paths) to get from the "activation"
node (which defines the task to be performed) to the "execution" node (corresponding to
completion of the task). For example, the path connecting the activation node directly
to the execution node corresponds to a case of a captive user who does not really make
a route choice decision but rather follows the same path whenever at the same decision
point. On the other hand, a path that visits all the nodes in the Figure corresponds to a
thorough information processing operation in which all the information processing
activities are being carried out with no short-cuts or constraints on information processing
capabilities. Typically we would expect experienced drivers who do not encounter
unusual conditions to have shorter paths (measured in terms of number of links) than
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those of inexperienced drivers, or of drivers facing situations in which unusual conditions
occur. Shortcuts from the left-hand-side of Figure 1 to its right-hand-side may also ref’ect
the time pressure constraints, or limited information processing capabilities, or other
biases that occur in information processing. Among those biases Hogarth (1980),
mentions selective perception according to which people seek information consistent with
their own views and when found utilize the law of least resistance (Rasmussen, 1986),
meaning that as soon as an indication is found that a familiar, general search routine may
be applied, it is chosen without considering a possibly more efficient procedure. There
also seems to be a "point of no return” in the huma\’s attention the moment he/she makes
such a decision. The later behavior corresponds, for example, to a user who has decided
to take path i as soon as an indication that path j is congested is encountered, without
looking further into the state of path i (which could still be worse than path j). In
Chapter 5 we discuss rules which associate conditions on an alternative i with attitudes
towards taking alternative j for j#i. Other biases as explanations for shortcuts include the
use of heuristics such as rules of thumb, and anchoring and adjustments.

A unique characteristic of route choice as a human information processing task is
the necessity to perform this task at a low priority, since the first priority is the driving
task. Rasmussen (1986), categorizes human behavior into three levels of performance;
the skill-based behavior which represents sensorimotor performance without conscious
control and corresponds in our case to the driving task (for experienced drivers); the rule-
based behavior which is a sequence of sub-routines in a familiar work situation
consciously controlled by a stored rule, or prepared by conscious problem solving and
planning, and corresponds, in our case, to the choice process under familiar conditions;
and the knowledge based behavior which corresponds to unfamiliar situations, in which
a new behavior pattern has to be learned, and corresponds, in our case, for example, to
establishing new behavioral rules that would accommodate new alternaiives in the choice
set, or reaction to information.

An added complication for representing route choice behavior as an information
processing task is the possibility of the existence of several processes (modeled as
directed paths in Figure 1) running either sequentially or in parallel. The existence of
multi-processes corresponds to the existence of multiple considerations and attributes, or
to the availability of multiple data sources. Thus, the decision process has to evaluate all
existing processes together and derive the resulting choice which could then be viewed
as a compromise among the various (possibly conflicting) processes.

2.1 Hypotheses on Models for Route Choice Behavior in the Presence of Information
A unique feature of the route choice problem we are addressing in this work is the
existence of dynamic on-line current (or projected) traffic information. In this section we

present three hypothesis relating to the way users respond to the existence of on-line
information while making route choice decisions.
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2.1.1 The Simultaneous Model

In this model ali the inputs of the problem are fed simultaneously into the decision
process. The inputs include existing knowledge, observation, new acquired information,
and other user and network characteristics.

In the simultaneous model no differentiation is made between static-type data
(relating for example, to prior perceptions and experience) and dynamic-type data (e.g.
on-line information). This model does not make explicit assumptions regarding the nature
of the information integration task which processes the new information. Possible
implementations of the simultaneous model include:

. Random utility model (to be discussed in Section 4.2.3).
. Approximate reasoning model (to be discussed in Chapter 5).

2.1.2 The Two-Stage Model

This model assumes a two-stage process in which the output from the first stage
serves as input to the second stage. At the first stage driver’s perceptions are being
updated based on the available information. At the second stage, a decision is made
based on the updated perceptions. The updating of perceptions at the first phase is short-
term, that is, perceptions are being updated for the current state of the system.

ROUTE
CHOICE

To implement the two-stage model, two separate models are needed: one for
updating perceptions (to be discussed in section 3.4), and the other for route choice based
on updated perceptions.

2.1.3 The Default Model

The default model is based on the premise that the driver has developed a route
choice behavior that lies in the background of his/her mind, and that new information is
incorporated in light of this existing "default” behavior. Default reasoning corresponds
to the process of deriving conclusions based upon patterns of inference of the form: "in
the absence of any information to the contrary, assume..". Reasoning patterns of this kind
are required whenever conclusions must be drawn despite the absence of complete
knowledge.
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Common-sense reasoning appears to rely heavily upon the ability to use general
rules subject to exceptions. Virtually none of the decisions one makes every day are
made with complete certainty. The need to make default assumptions is frequently
encountered in reasoning about situations that are not well specified. Default inferences
are best viewed as beliefs which may well be modified or rejected by subsequent
observations. Default reasoning is tentative ir. nature. Conclusions drawn from default
reasoning can be wrong, but anyone using rules of thumb as common-sense information,
is aware that the resulting conclusions would have to be abandoned if contradicted by
further evidence.

Recently it has been noted that monotonic logic seems inadequate to capture the
tentative nature of human reasoning (see for example, McDermott and Doyle, 1987).
Since people’s knowledge about the world is necessarily incomplete, there will always be
times when they will be forced to draw conclusions based on an incomplete specification
of the situation. Under such circumstances, assumptions are made (implicitly or
explicitly) about the state of the unknown factors. Because these assumptions are not
irrefutable, they may have to be withdrawn at some later time should new evidence prove
them invalid. If this happens, the new evidence will prevent some assumptions from
being valid, hence all conclusions which build upon those assumptions will no longer be
derivable. This causes any system which attempts to reason consistently to exhibit
nonmonotonic behavior.

The default model assumes a choice process in which at the basic level there
exists underlying knowledge, based on prior experience and perceptions. On top of that,
additional information may exist which is evaluated in light of the existing knowledge.
Naturally default knowledge corresponds to the more static attributes of the problem,
while the additional information gathered corresponds to the dynamic attributes. The
default model assumes minimal information processing under "usual" conditions.
Additional motivation for the default model comes from the conjecture that drivers often
"drive without thinking", meaning they do not consciously make a route choice decision,
rather they follow their usual pattern, and change it only if unusual conditions occur.
This phenomenon is naturally modelled by default reasoning in which the defaults assume
absence of unusual events. Furthermore, it is known that information has the
(undesirable) effects of concentration and overreaction caused by extreme reaction to
information, which is naturally expressed in the default model as departure from default
behavior due to the existence of unusual conditions. Thus, the default model assumes
minimal information processing under "usual" conditions. Detection of unusual
conditions, though, triggers the need to re-evaluate the default behavior and to check
whether it needs to be modified. The attitude towards information in this model is to
evaluate whether it is "strong" enough to modify the default choice.

Default reasoning is especially attractive for the current state-of-the-art of existing

information systems (demonstration projects phase), for which there is still no clear
standard as to the best way to provide information, and in which drivers are not yet
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familiar with the option of getting on-line information while driving. Thus drivers
reaction to information could be based on their behavior in the absence of information,
updated to accommodate the new information provided.

In the default model, information on current traffic conditions is used to make
specific decisions on whether and how to change the default behavior. This model is
consistent with our a priori expectation that drivers resort to heuristics, such as habits and
rules of thumb in order to reduce the amount of information processing that is required
to make a decision (especially in real time). Hogarth, (1980), calls such behavior
anchoring and adjustment, in which an individual has some anchor behavior related to a
familiar situation, and this familiar situation is adjusted to current conditions. Hence,
according to this hypothesis, drivers may not re-evaluate all parameters involved in the
decision process at each point in time, but rather make the necessary adjustments to
accommodate current conditions. This behavior alsc reflects the fact that drivers have to
make decisions in real time and have limited information processing capabilities, and thus
try to minimize the amount of effort needed to process new information. Furthermore due
to the dynamic nature of the problem, special conditions may dominate the decision. An
accident report, for example, may cause drivers to divert even if the accident is minor.
Thus anchoring and adjustment may be important characteristics of the decision making
mechanism.

The default model is also attractive for dealing with prescriptive information
systems (such as ALI-SCOUT for example), in which the information provided is the
recommended path {or link). In such systems, the recommendation is compared with the
original alternative and in case of disagreement between the two, a decision whether to
ignore or respond to the information has to be made.

2.2 Discussion of Models

The differences among the three models are demonstrated in Figure 2. As in
Figure 1, the left side of Figure 2 corresponds to system evaluation, and the right side to
the choice process. When on-line information is available (thick lines), it is fed into
different parts of the process depending on the specific model used. In the simultaneous
model, current information together with existing perceptions are fed into the system
evaluation phase and no direct interactions between prior perceptions and information
exist. In the two-stage model, information seYves as an input to the existing perception
block. Interactions among prior perceptions, observations and information exist, resulting
in updated perceptions which are fed into the continuation of the process. As for the
default model, there are two processes: first there is a process which derives a choice
based on existing perceptions (thin lines), and then, when on-line information is available,
it is weighted either directly against the choice from the first phase, or against the
decision prccess which leads to the default choice.
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Figure 2: Information Integration Scenarios
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The differences among the behavioral assumptions underlying the three models is
that in the simultaneous model information is treated as any other attribute that could
affect choice and no explicit integration of information is assumed, in the two-stage model
information serves to updaie existing perceptions, and in the default model information
is evaluated against the existing behavior pattern (choice).

The choice of model also depends, among other things, on the specific information
system available and its reliability. For example, information from a reliable information
system is more likely to be integrated at a more basic level (using the two-stage model
for example), whereas information that is less reliable (or less available) is more likely
to be integrated in light of existing behavior (utilizing the default model). The case in
which drivers respond to information only if it reports extreme traffic conditions (e.g.
accidents) can be handled more naturally using the default model. It has already been
mentioned that for the current state-of-the-art of information systems, the default model,
which is based on drivers behavior in the absence of information updated to accommodate
the new information, is more appropriate. However, when information systems become
an integral part of the driving task, a model which integrates information at a more basic
level would be appropriate. The choice of model also depends on drivers personal
characteristics. For example, more familiar drivers may do less information processing
while driving (thus utilizing the default model, for example).
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CHAPTER 3: MODELING PERCEPTIONS AND INFORMATION

In this Chapter we introduce the basic elements of fuzzy set theory, and use them
to model perceptions and information. We also discuss methods for integrating
information into existing knowledge.

3.1 Fuzzy Set Theory -

Fuzzy set theory was developed by Zadeh (1965), as a tool to deal with problems
that are characterized by uncertainty and vagueness. The development of fuzzy set theory
was motivated by the observation that classical crisp sets are not natural, appropriate or
useful in describing human behavior, and by the realization that "... as the complexity of
a system increases, our ability to make precise and yet significant statements about its
behavior diminishes" Zadeh (1973). Zadeh claims that traditional techniques of systems
analysis are not well suited for dealing with human systems, because they fail to take into
account the existence of fuzziness in human perception and behavior. Thus in order to
deal with such systems realistically, approaches which tolerate vagueness, imprecision and
partial iruth are needed. Zadeh suggests an approach which is based on the premise that
the key elements in human thinking are not numbers but labels of fuzzy sets. According
to his approach, the logic behind human reasoning is not the traditional binary valued
logic, but a logic with fuzzy perceptions, fuzzy truth values, and fuzzy rules of inference.

A fuzzy set is a generalization of a crisp set which allows each element to belong
to the set with a certain degree of membership p, (0<p<1), where higher p values
represent higher degrees of set membership. The degree of membership p(x) for a value
x, represents the degree with which the value x belongs to the corresponding set. The
concept of membership function allows the definition of sets with vague boundaries. In
general, fuzzy sets enable us to model human oriented systems more realistically by
allowing the use of linguistic descriptors, phrases, hedges and modifiers (Zadeh, 1973).
Each set represents a linguistic label such as: "usual traffic conditions”, "HIGH travel
times", or "congested intersection”.

To demonstrate the basic concepts of fuzzy set theory let us consider travel time
as a linguistic variable, that is, a variable whose values are linguistic labels. Then
modeling the statement: "travel time is very high" is illustrated in Figure 3. Each travel
time, t, has a membership degree p(t) which is interpreted as the degree to which the
specific travel time t belongs to the set of "very high travel times". Thus t, belongs to
the set of "very high travel times" with membership degree 0, t, has membership degree
of p(t), and t, has full membership in the set.
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Fuzzy sets are used as the basis for the theory of possibility (Zadeh, 1978).
Possibility theory relates to the theory of fuzzy sets by defining the possibility distribution
of a variable as a fuzzy restriction on the values that may be assigned to that variable.
More specifically, if A is a fuzzy set defined on the universe X={x}, characterized by the
membership function p,, then a proposition of the form: "U is A", where U is a variable
taking values in X, induces a possibility distribution I'l; which assigns the possibility of
U taking a value x to p,(x). Thus a fuzzy variable is associated with a possibility
distribution in a similar manner as a random variable is associated with a probability
distribution. Zadeh ciaims, that the importance of possibility theory stems from the fact
that much of the information on which human decisions are based is possibillistic rather
probabilistic in nature. In particular, the inherent fuzziness of natural languages is
possibilistic in origin. As an example, consider the statement: "travel time is very high",
which induces a possibility distribution of travel time as given in Figure 3. The
possibility degree of travel time being t, is given by p(t,), which is interpreted as the
compatibility of t, with the concept labeled: "very high travel time". The definition of
a possibility distribution, I1, implies that the degree of possibility may be any number in
the interval [0,1] rather than just O or 1. The continuity of possibility degrees relies on
the existence of a variety of concepts related to possibility such as: "it is quite possible
that..", "it is almost impossible that..", "there is a slight possibility that..".

An ever-lasting debate exists in the literature whether possibility is merely
probability in disguise. Clearly the two theories are related: an impossible event is also
improbable. However, high degree of possibility does not imply high degree of
probability, nor does a low degree of probability imply a low degree of possibility.
Yager (1979) suggests using possibility theory when information concerning the
uncertainty is not strong enough to make probabilistic statements, or when information
does not have the characicr of probability. He relates possibilistic information to ordinal
theory of uncertainty, and probability theory to cardinal uncertainty. Zadeh (1978) views
possibility theory as a means to deal with the meaning of information as opposed to the
measure of information. Similarly Kosko (1992) claims that fuzziness describes event
ambiguity and measures the degree to which an event occurs, not whether it occurs. An
example relevant to our problem, which demonstrates the above differences, is the
description of traffic conditions. The occurrence of the event "the intersection is
congested" has a certain probability associated with it, while the exact interpretation of
congested, or the degree to which the event occurs (or it is perceived to occur) is fuzzy.
We believe that possibility should be used to model linguistic concepts, and to represent
weaker forms of knowledge than probability, and in section 3.2 we will differentiate
between the two theories in the context of our problem.

An important motivation for using fuzzy sets to model perceptions, is their ability
to relate to linguistic terms. However, the association between fuzzy sets (represented by
membership functions) and their linguistic labels is usually not clear-cut. The problem
is two-folded:
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. given a linguistic label, what is its corresponding membership function, and:
° given a membership function, what is its corresponding linguistic label.

The first issue relates to the more general issue of generation of membership
functions, and the second to the area of linguistic approximation which is still an open
research area. Follows is a brief general discussion of membership function generation,
and then a discussion of the specific membership functions used for modeling travel time
perceptions.

Membership Function Generation

Obtaining or estimating values of membership functions is problematic since by
definition they correspond to vague concepts. Furthermore, they represent subjective
evaluation and are context dependent. We briefly review here the most common methods
for constructing membership functions (see Smithson, 1987, and Turksen, 1986, for
further discussion).

The normative approach follows Zadeh’s original ideas and states that
imprecision conveyed by a linguistic variable is subjective and thus needs to be defined
directly as a function. According to this approach membership functions have specific
mathematical properties, thus the general distribution shape is assumed and parameters
of the distribution are estimated from sample data.

The experimental approach on the other hand relies on the objectivity of an
experimental procedure of measuring and estimates membership values from sample
statistics. Under this approach the simplest scheme for generating membership functions
is the binary direct rating method (or polling) in which subjects are asked whether a
value x belongs to a set A. p,(x) is defined as the proportion of subjects who responded
"yes". The criticism of this approach is the restriction of the response to yes/no which
by itself contradicts the basic idea behind fuzzy sets. In continuous direct rating, on the
other hand, selected elements are presented to a subject in a random order and the subject
is asked to respond to the question: "how A is x" where A is a linguistic label of a set
and x is the element. The subject’s response is a value on the relevant scale and it is
determined by a movement of an indicator along that scale. The same elements are
presented a number of times and p,(x) is the appropriate statistic of the responses. In
Reverse Rating the subject is asked to respond to the question: "identify an element that
possesses o grade of membership in A", where A is a label of a fuzzy set and 0<o<l.

Fuzzy Set Theory and Route Choice Behavior
Fuzzy sets can be used to model driver behavior with respect to route choice at
two levels. At the first level fuzzy sets may provide a natural mechanism to model

network attributes (and in the context of ATIS, information) as perceived by the drivers,
and to relate to linguistic (and sometime abstract) concepts rather than to exact numerical
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measures. And at the second level, fuzzy set theory may provide the foundation for
modeling the route choice mechanism itself.

3.2 Modeling Driver Perceptions

Driver perceptions of network attributes may be inaccurate, erroneous or inexact
due to uncertainty. Uncertainty, however, has two main sources: randomness and
vagueness.

Randomness relates to uncertainty that is due to the nondeterministic nature of the
problem. For example, (apparently) under similar conditions, a driver experiences
different travel times on the same route on different days. A driver familiar with the
route then, is able to derive an (approximate) distribution of travel times. Therefore,
probability measures may be used to model the perceptions of the very familiar driver.

On the other hand uncertainty due to vagueness is mainly related to poor
knowledge, no experience, or lack of familiarity with the network. Vague perceptions can
not be modeled by probability distribution functions, since those require knowledge of
frequencies or likelihood of occurrence, whereas a user who has unclear knowledge about
a certain phenomenon can not associate reasonable probability measures with it. Fuzzy
sets can be used to model driver perceptions, and incorporate vague knowledge. If, for
example, a user is advised to use a path which he/she has never (or hardly ever) used
before, then he/she can not associate a probability distribution function with trave! times
on thai path. Instead the user may have some vague idea, based on map information or
physical attributes of the path. of which travel times might be possible on that path.

In section 1.3 we briefly mentioned factors that affect route choice behavior. The
most important factor seems to be travel time, and this factor will be used for
demonstration purposes in our discussion. Another group of factors which does not
appear there and which is crucial for the current study are factors relating to traffic
information. Those factors include the type of information provided, its relevance,
frequency, and spatial characteristics, as well as the reliability of the information source.

As discussed in Chapter 2, some of these elements have a dynamic nature, and thus their
inclusion in any route choice model needs special considerations. In what follows we will
focus on two major groups of factors for explaining route choice behavior: travel time
perceptions, and traffic information. Other factors could be incorporated in a similar way.

3.2.1 Travel Time Perceptions
For modeling travel time perceptions, we define a fuzzy set A such that:
A = "travel times experienced along a certain facility"

To represent this fuzzy set we suggest using a trapezoidal fuzzy number (TFN) as
illustrated in Figure 4. The definition of a fuzzy number appears in Appendix A.
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The two main properties of fuzzy numbers, of interest in our case, are normality and
unimodularity. Normality of a fuzzy set means that there is at least one value which has
full membership in the set (i.e. there exists some x such that p,(x)=1). It is a desirable
property for the set "travel times experienced along a certain facility" since the attribate
under consideration describes a phenomenon that must occur: a certain travel time will
materialize. Unimodularity forces the shape of the set to have a single global peak, and
moaotonicity of membership values towards and/or from that peak. This prohibits cases
in which p(x)>u(y) and p(y)<p(z), with x<y<z.

A TFN is determined by 4 points: a,, a,, a,, and a,, and is characterized by having
a range, [a,,a,], of very possible values (with membership degree of 1). It is worth
mentioning that in most applications trapezoidal fuzzy numbers or triangular fuzzy
nurbers (which are a special case in which a,=a,) are commonly used (see for example
Sugeno, 1985). We argue that a T,FN is appropriate for our case since we expect to have
a range of travel times that are very possible, corresponding to travel times that occur
under "usual" conditions. The existence of this range is the result of the fact that even
under similar traffic conditions, different travel times realizations may occur, and thns
more than one travel time gets a membership degree of one. The extreme points of the
T,FN correspond to unusual conditions; a, and a, in Figure 4 represent the shortest and
the longest travel times respectively that are thought tc be possible.

In general, we assume that given some physical characteristics of a link (or
facility), drivers determine an interval of possible travel times along that link: [a,,a,]. For
each travel time value t, te [a,,a,], a membership degree, p,(t), is associated, representing
the degree of belief with which the driver thinks that travel time t will be experienced.
Different familiarities with the link are modeled through both the shape and the range of
the membership function. That is, users with poor knowledge can guess the range of
possible values of travel time, but have no idea which of these values are more possible
than others, while users with good knowledge have a better idea of what values of travel
times are possible, and to what degree they are possible.  Thus, the shape of the
membership function is used to capture the degree of familiarity of users with a particular
facility. The more diffused the shape - the higher the ambiguity and the vagueness. In
Figure 5, for example, a membership function with rectangular shape corresponds to poor
knowledge, meaning that the driver is unable to differentiate among the (long) range of
all possible travel times. It is worth repeating the conceptual difference between possi-
bility and probability in this context: the rectangular-shaped membership function in
Figure 5 does not represent a uniform distribution according to which all travel times are
equally likely to occur; rather it indicates that all travel times within the specified range
could occur and the driver is unable to distinguish wiich values are more possible than
others. A better knowledge is characterized by a less diffused (trapezoidal) possibility
distribution, corresponding to the case in which a driver can specify a range of very
possible travel times, and has knowledge on unusual travel times as well. Even better
knowledge can be represented by a probability density function, and deterministic
knowledge as illustrated in Figure 5.
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The range and the shape of the possibility distribution also reflect driver and
facility characteristics. A daring driver, for example, would consider a narrower range
of possible travel times and the range would probably be located around shorter travel
times than those of a conservative driver. In a similar fashion, different facilities may be
characterized by various widths of the range of very possible travel times.

The interpretation of fuzzy sets presented above is also supported by the fact that
uncertainty is related to ambiguity of evidence. For measuring ambiguity, Klir and Folger
(1988) have generalized Hartley’s information measure into a measure of non-specificity
U(n,) associated with a fuzzy set A. Let p, be the membership function of the fuzzy
number A, then its non-specificity measure, U(p,), is defined by:

U= log, A, |da @3-1)

where A, = (xe X | p,(x)>a} and |A, | is the length of the interval A,.
This measure of uncertainty satisfies (among others) the following desirable properties:

. Monotonicity - for any pair of fuzzy numbers A and B with possibility
distributions p, and pg with the same support, if p,(x) < pg(x) for all x,
then U(p,) < U(pg).

J Maximum - among all possibility distributions of the same support, the
possibility distribution with all elements having membership degree of 1
has the highest U(p) value.

. Minimum - U(p)=0 iff exactly one member of p has membership degree
1 and the rest - zero.

Thus the non-specificity measure is consisient with our hypothesis that the more
diffused is the shape, the weaker (less specific) is the knowledge. A rectangle-shaped
membership function, which corresponds to unfamiliar drivers who can not differentiate
among the different possible travel times, has a maximum U(p) value (over the given
range). Corresponding to better knowledge, is a trapezoidal-shaped membership function
which has a lower U(p) value.

3.2.2 Empirical Evidence

So far we have argued that the shape of fuzzy sets used for modeling travel time
perceptions is influenced by three main groups of factors: personal characteristics (such
as socio-economic attributes, risk aversion, etc.), facility-related attributes (such as length,
number of lanes, etc.), and familiarity with the facility. In this section we explore these
assumptions using data collected in a commuter survey.
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In May 1991 we conducted a survey among the MIT parking permit holders,
concerning their home to work commute. The survey (see Appendix C) was composed
of two parts. PART I related to the usual commute to MIT, and asked questions
concerning usual routes, departure time, travel time, attitude towards traffic reports on the
radio, and personal characteristics. PART II related to the day-to-day commute during
a specific week, with emphasis on route choice, route switching, traffic information
received on the radio, and actual traffic conditions. A total of approximately 1300 sticker
holders responded to PART I of the survey. 1200 of them were drivers who regularly
commute by car to MIT. Approximately 900 drivers responded to PART II. A total of
3800 trips were made by those drivers.

In this section we explore the response to questions 6, 8, and 9 in PART I of the
survey as indicative of travel time perceptions.

6. Think about a typical trip from your home to work. Assume "regular” traffic
conditions, i.e. no extreme traffic delays, no major incidents and no weather
related problems. Under these conditions, how long does it usually take you to
get from your home to work? please specify a range (e.g. from 40 to 55 minutes):

from to minutes.

8. What is the shortest time you have experienced during your home to work
commute? minutes

9. What is the longest time you have experienced during your home to work
commute? minutes

Question number 6 relates to the range of "usual" travel times which we interpret
as travel times that are very possible (with possibility degree of 1), and corresponds to
the flat part of the T,FN, that is the segment [a,,a,] in Figure 4. Questions 8 and 9 ask
about the extreme cases: what are the shortest and the longest possible travel times, and
the responses correspond to a, and a, in Figure 4 respectively. It is important to note that
questions 8 and 9 refer to extreme travel time values actually experienced by the driver,
and thus could include two types of biases; on one hand extreme traffic conditions could
be caused by unusual situations (such as major accident, or severe weather conditions)
which are not perceived as possible to occur on a daily basis, and on the other hand it
differentiates between experienced and unexpérienced drivers since experienced drivers
are more likely to have encountered more extreme values.

A total of 1138 commuters responded to all 3 questions. The frequency of the
different TFN shapes appears in Table 1. As expected, nobody reported a single value
as the "usual” travel time (i.e. for all cases we have: a,#a,). This supports our choice of
T.FN (and rot triangular fuzzy number).

33



| order relations frequency % general shape ;
a,<a,<a,<a, 74.0
| a,=a,, a;#a, 20.3 A
| a,#3,; a;=4a, 37 /—l
8 b 20

Table 1: Frequency of T,FN Shapes, General Population: K=1138

The results presented in Table 1 are consistent with our interpretations of "usual”" and
"extreme" traffic conditions.

Effect of Familiarity on Travel Time Perceptions

To examine the effect of familiarity on travel time perceptions, the length of time
at present address, and length of time at current job location (questions number 25 and
30 in PART I) were used as measures of familiarity with the network. In the survey 94%
of the 1138 respondents both lived at their present address, and served at their current job
location more than a year, so in general we can consider the overall population io be
"familiar”. This fact may explain the low percentage of drivers with rectangular shaped
travel time perceptions (2%). Table 2 shows the distribution of travel time perceptions
among the "unfamiliar" drivers (those who either lived at current address less (in the
strong sense) than a year, or served at current job location less than a year).

| order relations frequency % general shape :
a,<a,<a,<a, 62.2 : /[ \ |
| a,=a,; a,#a, 28.8 [\

{ a,#3,; a,=4,

Table 2: Frequency of TrFN Shapes, Unfamiliar Population: K=66

The results shown in Table 2 support our hypothesis that perceptions of unfamiliar
drivers are less distinct than perceptions in the overall population; the case of a,<a,<a,<a,
which corresponds to better knowledge is less frequent among the unfamiliar population,
and the frequency of the rectangular shaped fuzzy set (a,=a, & a,=a,) is larger than the

34



frequency in the overall population. Recall that the population in Table 2 is a subset of
the population in Table 1.

Table 3 shows averages, standard deviations, and medians of the four points that
constitute the T,FN distribution.

_ Familiar Population K=1054 |

Unfamiliar Population K=

{ mean 1 23.96 | 29.24 | 39.97 45 § 24. . 39.67 | 60.67 §
| std. dev. 13.65 | 15.23 | 17.95 00 § 14. . 21.17 }40.37 §
i median § 20.00 | 25.00 | 40.00 .00 j§ 20. . } 50.00 §

Table 3: TFN Distribution for Travel Times

The distributions show clear skewness towards high travel time values. Drivers
experienced very high travel times (relative to the "usual” range) which are farther from
the usual range than are the very low travel times. This phenomenon is indicated by a,
being closer to a, than a, is to a,, and by the median being (almost) always less than the
mean. This is explained by the fact that low travel times are bounded by the free flow
travel time, whereas high travel times are not bounded from above. The familiar
population exhibits a slightly smaller average a, value and a higher a, average value (but
the differences are not statistically significant). This is explained by the fact that familiar
commuters have more experience and thus they are more likely to encounter unusual
conditions (both good and bad), but it could also be related to O/D characteristics. Note
that typical commute time (as indicated by a, and a,) does not differ significantly between
the two populations.

To explore the effects of familiarity further, we define the ratio R by:

R-2% (3-2)

a,-3,

R serves as a measure of familiarity: the higher this measure - the less familiar is the
commuter, since for familiar users we expect to have larger [a,,a,] range and smaller
[a,,a;] range. And indeed the difference between the ratios in the two populations is
statistically significant.
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_ Famxhar Populanon K-1054 Unfamxhar Populanon K-66 }
I P U T Y

mean

std. dev.

median

Table 4: Ranges of Possible Travel Times

Effects of Origin on Travel Time Perceptions

Effects of the specific facility used can be inferred from the origin information.
From the survey we do not have exact origins specification, but we do have zip codes.
We look at two extreme cases: drivers who live in Cambridge and have the same zip code
as MIT (02139), and drivers who commute from Lexington (zip code 02173).

Carnbn'dge mean

K=20 ! std. dev.

41.25 | .35
30.76 | 474 |29.15 | .18

Lexington mean
K=52

Table 5: Travel Time Perceptions by Origin (Cambridge and Lexington)

The Lexington commuters experience a longer commute, and their R value is
significantly smaller than the R value of the Cambridge commuters. The ratio R
measures how diffused is the shape of the set, and accordingly, the Lexington commuters
have a less diffused shape, meaning that their [a,,a,] interval is relatively more focused,
and that their range interval, [a,,a,] is relatively larger. A large [a,,a,] range follows from
the fact that in a long commute, extreme values are more likely to occur, while relatively
small [a,,a,] range indicates that commuters have a better idea which travel times are
more possible than others.

3.3 Modeling Information

In general, information includes any type of knowledge acquired from the time the
driving task to be performed was initiated until it was accomplished. In particular, we
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focus on traffic information as the main source for dynamic knowledge, although other
information sources, such as observation, can also be included.

Although there are several demonstration projects underway, there is still no clear
standard with respect to the way traffic information should be provided. It is clear
however, that for most of the possible information provision scenarios, information would
be provided linguistically (e.g. congestion descriptions, accident information), or
symbolically (e.g. map information, shortest path indication).

Fuzzy set theory provides an intuitive and natural way for modeling the
information provided under the different scenarios. Fuzzy sets can be used to model
vague concepts conveyed by the information system (e.g. "traffic is bad this morning"),
ambiguous descriptions (e.g. "the bridge is congested"), recommendations (e.g. "you’ll do
slightly better on the other side of the river"), accident reports and more.

The three hypothesized models that were presented in section 2.1 handle existence
of traffic information differently, and thus require different modeling of information:

. The simultaneous and the default models treat information as another source of
input, and thus are quite flexible in handling different types of information.

. The two-stage model uses information to update perceptions at the first stage.
Thus, a natural way to model information for this case is on the same scale as
perceptions are modeled. Therefore this model is less flexible in relating to the
various information provision scenarios.

Information can be absolute or relative. Absolute information pertains to
information that is conveyed as objectively as possible, such as: queue lengths, closed
lanes, detours, malfunctioning or defective traffic lights, etc. Relative information, on the
other hand, relates to subjective estimates of traffic conditions, such as descriptions of
congestion levels in comparison to some reference state. Given the type of information
used (absolute or relative), there remains the issue of its units. For example; an accident
report can be modeled in various ways: it can be reported linguistically (e.g. there is a
major accident), or it can be translated into its travel times, delays, and queue
consequences.

An important issue with respect to modeling information is that of perception:
different drivers might perceive the same information in different ways depending on their
specific O/D pair and their personal characteristics. On one extreme, information could
be modeled as is (if possible), and personal characteristics could then be captured through
the existing knowledge, or the decision process. On the other extreme, information is
modeled as perceived by individual users.
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3.4 Information Integration and Update of Perceptions

A crucial component in the information processing scheme is drivers ability to
combine different pieces of data, signs and symbols, together with existing concepts,
perceptions, experience and knowledge. Evidence aggregation has many manifestations
in a route choice process. It pertains to combining a priori expectations with current
observations, observation with information, a priori perceptions with current perceptions
or information, and information from different sources. Before and while a route choice
decision is made, a user acquires current traffic information. A route choice decision
made after new information has been acquircd, usually takes into consideration the new
information along with existing knowledge. Thus information integration relates to
combining two types of knowledge: static with dynamic. The static-type knowledge
pertains to static system attributes such as network topolegy, and typical conditions. It
also relates to existing long term perceptions and knowledge, based on prior experience
and familiarity with the system. Dynamic-type knowledge on the other hand, pertains to
specific current (or projected) conditions in the system which relate to the current choice
(and not necessarily to other similar choices). The dynamic-type information can be
acquired from several sources (e.g. observation, traffic reports).

An explicit model for updating perceptions is needed in order to implement the
two-stage model, whereas in the simultaneous model no differcntiation between static and
dynamic attributes is made, and in the default model, the interaction between static and
dynamic attributes is part of the decision process. In this section we focus on information
integration for combining existing knowledge with information as it pertains to the first
stage of the two-stage model. The problem of information integration can be phrased:
how to combine the existing knowledge on travel time, "T is A" with the on-line
(possibly incomplete) information, "T is C", where A and C are fuzzy sets corresponding
to possible travel times as discussed before, and are modeled on the same scale.

The state of the art in the area of information integration is very limited and the
difficulty in developing realistic models has been recognized by other researchers (Ben-
Akiva and Kaysi, 1991). Furthermore the lack of any systematic data of drivers’
perceptions before and after receiving information, makes the task of developing and
testing even the simplest of models very difficult.

A priori factors that may influence the process of information integration include
the strength of drivers prior perceptions, reliability of the information system, salience,
relevance and quality of information, as well as driver and network characteristics. An
appropriate information integration model should be able to capture the following aspects:

. Non-linear update between prior perception and real time information may exist.

Extreme information may cause the updated perception to "jump", whereas mild
information could have a negligible effect.
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. Additional information does not always help the driver focus his/her perceptions,
and cases in which the driver’s perceptions after receiving the information are
"fuzzier" than before are possible. Similarly, the updated perceptions can be
"fuzzier" than the provided information.

. Information integration is a dynamic phenomenon. Updating of perceptions based
on information received at time ¢ is influenced by the information received at time
t-1.

In the following sub-sections, we discuss two approaches for information
integration: information integration theory (section 3.4.1), and default reasoning (section
3.4.2). .

3.4.1 Information Integration Theory

Information integration theory was developed by Anderson (1981, 1982) and has
since been implemented mostly in psychological and cognitive applications.

The underlying framework is as follows:

. A physical stimulus S is presented to a subject.

. The subject perceives this stimulus as having a psychological value s.

. Based on the psychological value, s, the subject establishes a response r to the
stimulus.

J The perceived response, r, is translated into an observed physical response R.

In this framework S and R are observed while s and r are latent, and they are related
through the following main functions:

Perception function: PS) —> s

Integration function: Is) —-r

Response function: M@) - R
For our case:

S is the information provided,

s is the perceived information,
r is the updated perception, and
R is the observed response, which can be either the reported updated perception, or the
observed choice.

The efficacy of the approach lies heavily in the hypothesis that stimulus

integration often obeys algebraic models. However, all models make the strong
assumption that the response function is linear, that is R is a linear function of r. This
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assumption is obviously not valid if R is the observed discrete choice. Thus use of the
models requires that R will be the updated perceptions as reported by the subjects.

The most common models that have been proposed for information integration are
summarized below:

e The linear model: Rucx = Ky + W, *s, + wWc¥se + €4

e The multiplicative model: R, = K, + s,¥s¢ + €,

e The averaging model: Racx = Kp + Wo/(Watwe)*s, + Wo/(WatWo)*se + Excy
where: K, is a constant,
A is existing knowledge,

C is the information provided,

w, and w. are weights of importance of stimuli A and C respectively,
R, is the observed response to stimuli A and C as reported by individual
x, and

€. is the error term

The linear type model for information integration ignores some of the important
characteristics of the problem, mainly it assumes no interaction between existing
knowledge and information. Of the three proposed models (linear, multiplicative, and
averaging), the averaging model seems the most appropriate for our problem. In this
model, the effect of each stimulus depends on what other stimuli it is combined with and
thus the model is inherently non-linear. It provides a natural way to model conservatism
on one hand (e.g. high w, value, if A is the "usual” condition), and dominance of certain
information pieces on the other {e.g. very high w. value, if C is an accident report).

If direct observations on updated perceptions become available (by interviewing

individual drivers with carefully designed questionnaires), then weight values can be
estimated or expressed as functions of the characteristics of the system and the drivers.

3.4.2 Default Reasoning

The concepts behind default reasoning that were presented in Chapter 2 in the
context of the default model, could be used for developing models to update perceptions.
For updating perceptions after receiving information, we treat the existing knowledge as
dcfault knowlcdgc, meanmg that 1t apphes as long as there is no su'ong cv1dcnce to

relauvely rchable source), the updatcd perceptlons are more llkcly to be closer to the new
evidence. Accordingly, travel time percepticns would have their "usual" values
(depending on experience, time of day, etc) as long as no information on accidents or
extremely unusual conditions exists.
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Dubois and Prade (1988) suggest=d the following approach for combining different
sources or pieces of information. Let n be the number of information pieces available,
p; the evidence from source i, w; the weight of importance of information i, and max;w,
= 1 (i.e. weights are normalized). Then the combined evaluation, p, is given by:

p = min, . max(u,l-w) (3-3)

For the discussion that follows we will assume that information comes from the
same source, and we will focus on integrating information into existing knowledge. Let’s
assume that the existing knowledge of travel time, T, is given by the fuzzy set A with
membership function p,( ). If no further information is available then p,( ) is used to
represent travel time perceptions. Now let us assume that information regarding travel
time, T, is available, and it is modeled by the fuzzy set C with membership function p(
). The combination scheme given by equation (3-3) can now be applied by observing that
there are two sources of evidence: existing knowledge and the provided information.
Hence, the evidence of the first source, is given by the membership function of the set
A, and similarly the evidence for the provided information is given by the membership
function of the set C. We assume that the information comes from a relatively reliable
source, and thus it has greater importance since it corresponds to actual conditions.
Therefore we set: we=1. A natural weight for w,, which captures the importance of
existing (default) knowledge, is the degree of consistency of existing knowledge A with
the information C, given by the possibility of A given C, that is:

w, = Poss[A|C] = max min(s,(x), pc(x)) (3-4)
Substituting we=1 and w,=Poss[A [C] in equation (3-3), the membership function of the
updated perception, C*A, becomes:
Beoa(v) = min[p (v), max(p,(v), 1-Poss[A|C])] 3-5)
Poss[A |C] measures the consistency between existing knowledge and the
information. If Poss[A | C]=0 then A and C are inconsistent and the updated perception

coincides with C and default knowledge is ignored. When Poss[A [C)=1, existing
knowledge and information are consistent, and equation (3-5) collapses into:

Heaa(V) = min(p (v), p,(v)) (3-6)

In this case A and C are treated equally and the updated perception is the intersection of
the two sets.

For the case of Poss[A | C]=1 there could be three types of overlap between A and
C (as demonstrated in Figure 6):

41






1. CcA meaning that the information is more specific than existing default
knowledge as iliustrated in Figure 6a. The updated perception, given by the
shaded area set, coincides with C meaning that information has made existing
knowledge more specific.

2. AcC meaning that the information is less specific than existing knowledge (see
Figure 6b). The updated perception, given by the shaded area, coincides with A
meaning that the new information could neither change existing knowledge nor
refine it.

3. AcC and CzA, meaning that although A and C are consistent (their ranges of very
possible travel times overlap), each has elements that are not common to the other
as illustrated in Figure 6¢. For this case the updated perception is taken to be the
intersection of the two sets as illustrated by the shaded area in Figure 6¢. For that
case, information serves again (as in the first case) to refine existing knowledge.

Thus, when existing knowledge and information are consistent (i.e. Poss[A | Cl=1),
the updated knowledge is a more focused representation of either the prior knowledge
(Figure 6a), or the information (Figure 6b), or both (Figure 6¢). This result agrees with
our expectation that information which is consistent with existing knowledge is used to
refine it (if possible).

When 0<Poss[A | Cl<1, existing knowledge and information are consistent to some
degree. To explain the interpretation of the integration scheme for this case, we consider
the approach suggested by Dubois and Prade (1988} for modeling default sets. Their
approach aims at dealing with situations in which sufficient information to determine
whether an exceptional situation has occurred does not exist, and with cases in which the
nature of some of the exceptions is unknown. Given a fuzzy set A, Dubois and Prade
define a fuzzy default set A* with membership function:

pa@)=max(p,(),1-1) A<l W @3-7)

where A gathers the a priori, more plausible values on the phenomenon, and 1-A estimates
to what extent it is possible that the phenomenon described by the fuzzy set A takes its
value outside A (the values outside A are considered to be exceptions). A=0 corresponds
to complete lack of knowledge, and thus results in a flat shaped membership function
representing the worst case of knowledge as discussed in section 3.2, and A=1 corresponds
to the case of no exceptions (A* coincides with A).

Updated perceptions, as given by equation (3-5), can then be viewed as the
intersection of the information C with the default set A* given by equation (3-7) with
A=Poss[A | C]. That is, since A is not completely consistent with the information C, it is
generalized to accommodate exceptions, where 1-A is the possibility of exceptions. We
demonstrate the approach in Figure 7 by exarnining the two possible cases:
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Poss(AIC)<1/2, normalized Poss(AlC)>1/2, normalized

(©) )

Figure 7: Updated Perceptions, 0<Poss(AIC)<1
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1. 0<Poss[A | C]<: Existing knowledge, A, is quite inconsistent with the
information, C, and the possibility of exception, A=1-Poss[A | C], is greater than
14, meaning that the default set, A%, is very defused, and the information, C,
dominates the updated perception (represented by the shaded area in Figure 7a).

2. 16<Poss[A | Cl<1: In this case existing knowledge is quite consistent with the
information, and thus the possibility of exception is considerably low (less than
14). The updated perception is then composed of all elements which are common
to A and C (have positive membership degree in both sets), and elements
belonging to the information set, C, truncated by the possibility of exception, (as
illustrated by the shaded area in Figure 7b).

When 0<Poss[A |Cl<1 updated perceptions are always a truncated version of C,
and thus are not normalized (i.e. there is nd x such that p(x)=1). However, following the
case analysis above, it is clear that the height of the updated perceptions is always greater
or equal to %. Updated perceptions could be normalized by dividing the membership
function of C*A by the height of C*A. That is the membership function of the
normalized set C*A is given by:

bealx) (3-8)
maxy(Pc.A(Y))

Dubois and Prade (1988) indicate that this normalization means that the actual value
looked for definitely belongs to C*A. This is consistent with our previous discussion
about travel time perceptions (at least one value is certain to occur and thus its
membership degree is 1). The normalized versions of the updated perceptions in Figures
7a and 7b appear in Figures 7c and 7d respectively, and result in fuzzy numbers (as
defined in Appendix A). For the case of O<Poss[A IC]S‘/z, the normalized updated
perception is always a superset of the information C, and thus less specific than the
information (according to the specificity measure of equation (3-1)). This behavior is
consistent with our a priori expectations regarding the requirements from an integration
scheme; the fact that information overlaps with prior knowledge only to a small degree
(less than 14), results in updated perceptions which are a "fuzzier" version of the provided
information.

p'mc . A(x) =

In summary, the suggested combination scheme (as given by equation (3-5)),
shows that default knowledge is used to refinesthe available information when the two are
consistent, it is ignored when they are totally inconsistent, and it serves to modify the
information when quite consistent with it.

If the information source is not very reliable, then we could change the assumption
underlying equation (3-5) that the new information "T ;- C" has maximal importance, into
giving the maximal importance to the default knowledge, and using Poss[C | A] as degree
of consistency of the new information. The updated perception then is given by:
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Bc.a(V) = minfp,(v), max(p.(v),1-Poss[C|A])] (3-9)

The problem with this approach is that it would bias the integration towards information
that is consistent with default perceptions, even though the most useful information is
typically information concerning incidents and unusual events which is by definition
inconsistent with default expectations. Such information would be ignored if we utilize
the integration scheme given by equation (3-9): if Poss{C | A]=0, for example, (meaning
that information is completely different froin existing knowledge), then the updated
perception, C*A, coincides with prior knowledge A, and the information C is completely
ignored.

A better approach to deal with unreliable information sources would be to let the
information provided be subject to "exceptions”, where an exception in this context
corresponds to the possibility that the information is incorrect, and hence encountering
values outside the inferred possibulity distribution is possible. To implement this, let p
be the reliability of the informaiion and 1-p the possibility of encountering values
different from those provided. Then the membership function of the new information "T
is C" is given by:

Beo(¥) = max(pc(v), 1-p)  p<l W (3-10)

The information integration formula, given by equation (3-5), can now be used with the
set C instead of C:

Beeoa(V) = min[pe(v), max(p,(v),1-Poss[A|C*])] (3-11)

When p=1, the information source is reliable and equation (3-11) is equivalent to equation
(3-5). If, on the other hand, p=0, corresponding to completely unreliable information, then
the new information is ignored, and the resulting perception coincides with the default
knowledge p,. For the case of O<p<1 the behavior is very similar to the case of reliable
information (where the updated perception was always a subset of C), but for the new set
C*. For example, if Poss{A | CP1=0 then the updated perception is given by the set C*

Another possible weight for prior perception (instead of Poss[A I is the
conditional certainty of A with respect to C, Cert[A | CJ, as defined in Appendix A. Since
Cert[A | Cl<Poss[A | C] for all A and C, utilizing the certainty measure for weighing prior
perceptions, results in combination schemes that favor more the information and less
existing knowledge.
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CHAPTER 4: FUZZY ROUTE CHOICE MODELS

Route choice behavior in the presence of information, as described in chapter 2,
has two main components: drivers’ perceptions of attributes of the system, and the route
choice mechanism. In this chapter we adapt the principles of shortest path and utility
maximization for the solution of route choice problems with fuzzy perceptions.

4.1 Shortest Paths in Networks with Fuzzy Attributes

The major assumption underlying the route choice model we present in this section
is that drivers, based on their perceptions of travel times on links of the network, follow
the shortest path to their destination. Hence we develop algorithms for determining the
shortest path in a network with fuzzy travel times (costs) associated with its links.
Obviously, the assumption that drivers follow the shortest path is a very strong one, as
it assumes that drivers are well informed (i.e. know the costs on all links), have unlimited
information processing capabilities, and make optimal decisions. Still, the fuzzy shortest
path is of interest both for comparison with more realistic decision processes, and from
the point of view of information systems that provide shortest path recommendations. It
could also be that the fuzzy shortest path is a more-realistic decision process than
traditional shortest path behavior, because it corresponds to estimating and comparing
paths’ lengths based on linguistic, symbolic, or possibilistic evaluations (rather than exact
numerical measures).

In what follows we assume that all the fuzzy numbers we deal with have positive
values.

4.1.1 Addition and Comparison of Fuzzy Numbers

Two operations are of importance in the shortest path determination: addition and
comparison of fuzzy numbers.

Addition

Addition of two fuzzy numbers uses the extension principle as defined in
Appendix A; the sum of the fuzzy numbers A and B is given by the fuzzy number C
defined by the following membership function:

k(@) = max, . min(p,(x), k() @-1)

To illustrate how the above definition of the sum of two fuzzy numbers applies
in practice, let us introduce the following notation: let A, () and Az(a) denote the
smallest and the largest real numbers respectively that have membership degree o in the
fuzzy number A, that is: p(A (o)) = p(Ag(®)) = a and A, (o) < Ag(e). For the case of
a distribution that is vertically truncated, we define A;(a) and Ag(cx) to be the left and
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Figure 8: Addition of Two Fuzzy Numbers
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right real values that correspond to the two points of intersection of the membership
function with a horizontal line at level a. The fuzzy number C corresponding to the sum
of A and B is then given by:

C (%) = A(®) + B(a) for all ae[0,1] 4-2)

Cp@) = Ag(e) + By(a) for all ae[0,1] @-3)

Figure 8 demonstrates graphically the addition of two triangular fuzzy numbers (TFN) A
and B.

Comparison

Comparison of fuzzy numbers lacks a "golden rule". It is defined in the literature
in many ways, depending on the particular application (see for example Bortolan and
Degani, 1985, and McCahon and Lee, 1990, for reviews of available methods).
Unfortunately, to the best of our knowledge, from the methods available in the literature
on comparison of fuzzy numbers none is appropriate in the context of our problem. We
proceed by giving a brief review of existing comparison methods, especially those useful
in the context of the fuzzy shortest path problem. In section 4.1.2 we propose a new
method which is more appropriate for determining shortest paths in a transportation
network.

Freeling (1980) proposed the use of the extended maximum operation to compare
two fuzzy numbers. The extended maximum of two fuzzy numbers A and B, e~max, is
defined (following the extension principle as defined in Appendix A) by the membership
function:

Bomu(® = MaX, . o min(p,(x), Bgy)) @-4)

or equivalently:
e~max («) = max(A,(«), B («)) for all aef0,1] (4-5)
e~maxg(x) = max(Ag(x), By(a)) for all «e[0,1] 4-6)

The extended minimum of two fuzzy numbers A and B, e~min, is defined in a
similar fashion:
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Figure 9: Extended Maximum Operation
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Bompn(@ = MaX, .. min(p,(x), p()) @-7

or equivalently:
e~min, (@) = min(A,(«), B;(«)) for all xe[0,1] 4-8)
e~miny(«) = min(Ay(a), By(a)) for all ae[0,1] 4-9)

The fuzzy number which coincides with the extended maximum set is chosen as
the bigger of the two (or similarly, the fuzzy number which coincides with the extended
minimum set is chosen as the smaller). Figure 9 demonstrates this approach. In case 9a
the set B coincides with the extended maximum set (and A with the extended minimum),
and thus A is considered to be the smaller of the two. However in case 9b no set
coincides with the extended maximum set and the method fails to provide a crisp answer.
Complete overlap with the extended maximum set is a strong requirement, and typically
does not occur.

Another method is based on the use of a-cuts. An a-cut of a fuzzy number is the
set of values whose degree of membership is at least o, for 0<a<1 (as defined in
Appendix A). For high enough values of « it is possible, in some cases, to get a set
whose a-cut lies completely to the left of the other set and for that case this set would
be the smaller of the two. Consider for example Figure 10a; on the left A is considered
to be smaller than B for the given « level, whereas on the right, the order relation
between A and B is unclear. Therefore the method is not generally applicable.

Dubois and Prade (1983) suggest a method of comparing fuzzy numbers which is
based on four indices. For comparing two fuzzy numbers A and B, the indices are
determined based on the following relations:

The relative location of large values of A with respect to small values of B.
The relative location of large values of A with respect to large values of B.
The relative location of small values of A with respect to small values of B.
The relative location of small values of A with respect to large values of B.

The four indices aré used then either simultaneously or sequentially to get an idea how
the two numbers relate to one another (total dominance, larger on the left, smaller on the
right etc). However since the comparisons are based on relative locations of high and low
values and not on magnitudes of differences, counter intuitive results might occur. For
example, in Figure 10b the results of comparing A and B would be identical for both
cases. This result is inconsistent with our interpretation of fuzzy numbers representing
link travel times. According to this interpretation in the case on the left of Figure 10b
we would be inclined to designate B as the smaller of the two, whereas in the case on the
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Yager's method
Figure 10: Methods of Comparing Fuzzy Numbers
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right, A would probably be the smaller.

Yager (1981) proposed a ranking function which maps each fuzzy set into a scalar
in order to get an order relation among different fuzzy sets. His ranking function is based
on the mean line of a fuzzy set, defined as the collection of the mid-points for each
membership level. The ranking function is equal to the area between the vertical axis and
the mean line. For our problem this method is inappropriate since it suffers from the
common drawbacks of de.ling with averages, particularly that it ignores the shape of the
possibility distribution. The two fuzzy numbers in Figure 10c, for example, have the
same mean line and thus will get the same ranking, however for our case they represent
different levels of familiarity with the facility whose travel time they model.

In a recent paper, McCahon and Lee (1990) present the "proportion of the
optimum"” method for comparing fuzzy numbers. Their method is hierarchical and is
based on two indices: MP(A) and mp(A), which measure the degree of agreement
between the fuzzy number A and the extended maximum and minimum respectively, and
are given by:

min[p (x) , p(x)]dx
MP(A) = /. A (4-10)

[ padx

and:
[ minl i 58 5 1A
[, ua@ax

mp(A) = 4-11)

They compare their method with 8 other comparison methods using several criteria
(robustness, accuracy, flexibility, and ease of use), and conclude that it satisfies all the
criteria. However, their method is evaluated based on 5 examples, and no global
properties are proved. As it turns out, the proportion of optimum method does not always
satisfy the transitivity property. Consider the following example: A, B, and C are
trapezoidal fuzzy numbers each defined by four parameters:

A = (14,16,16,30)
B = (10,18,22,28)

C = (1,26,26,26)

The suggested comparison results in: A<B, B<C, but A>C, which obviously violates the
transitivity property.
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Chen (1985), suggested a very appealing and intuitive approach for ranking fuzzy
numbers using their intersections with their maximizing set M, and their minimizing set
G. Let A,,...,A, be n fuzzy numbers to be ranked. The membership functions of M and
G are given by:

PM(X) = { [(x'xmm)/ (xnm'xmin)]k XpinSXSXppx
0 otherwise

Po(X) = { [(XX e/ Kz X )1 Ko SXSKa
0 otherwise

where x_,, = min{x | p,,(x)>0,i=1,..,n} and x_, = max{x |p,(x)>0,i=1,...,.n} for all the
sets A, that participate in the comparison.
The author defines the right index of each set A;, Uy(A)), by:

Uy (Ap) = max, min(p\(x) , 1, (x)) for i=12,..,n (4-12)

and the left index of each set A, Us(A)) is defined by: -
Ug(A) = max, min(ps(x) , pA‘(x)) for i=1,2,..n  (4-13)

The total index of each fuzzy number A, is then given by:

U, (A) + (1-UsA))

3 for i=1,2,...n 4-14)

U(A) =

and it serves to order the fuzzy numbers. However, the definition of the minimizing and
maximizing functions, depends on the specific numbers to be ranked (in particular on x;,
and x,,.), and thus inconsistencies and counter intuitive cases couid occur. Consider, for
example, the three trapezoidal fuzzy numbers given by:

A = (12,12,12,24)
B =(7,14,16,19)
C=(2,17,17,17)

Table 6 shows results of comparing different combinations of the fuzzy numbers A, B,
and C.
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Table 6: Comparing Three Fuzzy Numbers - Chen’s Method

It can be easily verified that the comparison in not transitive, and the result of ranking
the three numbers contradicts the pairwise comparisons. Thus it can not be applied in a
consistent way.

The above methods of comparing fuzzy numbers are often employed in algorithms
suggested in the literature for determining the shortest path in a network with fuzzy costs
associated with its links. However, given their inability to satisfy basic requirements, may
result in counter-intuitive results.

Dubois and Prade, (1978), adapt Ford’s and Floyd’s algorithm for the solution of
the shortest path problem with fuzzy costs. They suggest using the sum operation (as
defined in section 4.1.1) for addition of costs on links and the extended minimum for
performing the minimum operation required by the algorithm. That way they identify a
fuzzy number which represents the optimal path length. However this length usually does
not correspond to any path (because of the extended minimum definition). To identify
the shortest path they define a path criticality index to be the height of the intersection
of the fuzzy number representing the path length with the fuzzy number representing the
length of the optimal path length. The path with the highest criticality index is identified
as the shortest. However, as Chanas (1987) pointed out, the algorithm is equivalent to
solving a deterministic shortest path with arc lengths equal to the mode of the fuzzy
number (the mode is the value which has the highest degree of membership in the set).

To determine the fuzzy shortest path, Chanas and Kamburowski (1985) first
enumerate all paths and evaluate their lengths, then they proceed as follows. For two
fuzzy numbers A and B they define a preference relation p°(A,B)= max{p(A,B)-
n(B,A),0}, interpreted as the degree to which A is strictly less than B. p(A,B) is a
measure of the degree to which the relation A < B is true. The solution for the shortest
path problem then depends on the exact definition of the relation p(A,B). Chanas (1987)
suggests two definitions of p(A,B). One corresponds to solving a deterministic shortest
path with arc lengths equal to the mode of the fuzzy numbers (representing link costs).
The other corresponds to solving the shortest path problem with arc lengths equal to the
expectation of the fuzzy numbers given by:

55



1A (a) An(a) 4-15)

EQA)-[)

where A, (o) and Ag(o) are defined as before.

The major weakness of this algorithm is the averaging effect of the mode and
expectation of a fuzzy number which does not take into account the shape of the
distribution which is critical in our analysis.

In a recent paper Delgado et al., (1990), deal with optimization problems on fuzzy
graphs. They define a fuzzy graph as a graph whose nodes and arcs are fuzzy sets. An
o-cut of a fuzzy graph is defined as the sub graph which contains all nodes and arcs
whose degree of membership in the graph is at least o.. Since the node and arc sets are
finite, there exists a finite number of different a-cuts. For each distinct o-cut level they
solve the shortest path problem, and the set of solutions for all :he distinct a-levels -
constitutes a fuzzy solution to the problem. The shortest path problem for each a-level
is solved for two special cases: the case in which time is expressed linguistically, and the
case in which times are not normalized fuzzy numbers. Of particular interest is the
determination of the shortest path when times on links are expressed linguistically. The
authors suggest a fuzzy relation matrix which is used to obtain path lengths from link
lengths. However, the given fuzzy relation matrix is order-dependent and thus the
aggregation procedure is inconsistent (the length of a path consisting for example of three
links with labels "low" "null" and "highest" is "moderately low" if traversed from left to
right, and "verv low" when it is traversed from right to left). When times on links are
fuzzy numbers, instead of labels, Delgado et al. use classical shortest path algorithms to
find the minimum path. The method they propose for comparison of fuzzy numbers is
hierarchical in the sense that it first determines the shorter fuzzy set based on the mode
of the membership function. If this fails, the spread of the membership function is taken
into account.

4.1.2 A New Consistent Comparison Method

The various methods that were described in the previous section often fail to
provide reasonable results for all possible intersections among fuzzy numbers. Partially
the difficulty in comparing fuzzy numbers emanates from the different interpretations
associated with them.

A comparison method should satisfy the following requirements in order to be
consistently useful for any application. This is true in particular for the problem
addressed in this thesis.

. A comparison method should be sensitive to the specific range and shape of the
membership functions.
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J A comparison method should satisfy transitivity, that is if A<B and B<C then
A<C.

. The order relation between A and B that result from the comparison should not
depend on the existence of another fuzzy number, C, in the comparison.

None of the comparison methods described in the previous section satisfy all three
requirements. We propose a new method for ranking fuzzy numbers which takes into
consideration relative location, magnitude of differences and shape of the fuzzy numbers
involved. The method provides consistent results and satisfies all the three requirements
stated above. Consequently, the suggested comparison method can be used in algorithms
for the deterministic shortest path problem to find the minimum path length in a network
with fuzzy costs.

To facilitate the demonstration we present the approach for comparing two fuzzy
numbers. In comparing two fuzzy numbers A and B, we consider distances between them
and their extended minimum (denoted by e~min) and extended maximum (e~max).

Extending Dubois and Prade’s (1983) ideas about relations between A and B, in
order to ciaim that A is smaller than B we expect to have:

. large distance between A and the extended maximum and large distance
between B and the extended minimum.

. small distance between A and the extended minimum and small distance
between B and the extended maximum.

Kaufmann and Gupta (1985) define the distance between two fuzzy numbers A and B,
d(A,B), by:

d(A,B) = d,(A,B) + dy(A,B) (4-16)
where d, (A,B) is the distance from the left given by:

4-17
d.(AB) = [|A(«)-By()|da @1

and dg(A,B) is distance from the right given by:
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4-18
d(AB) = [|Ag(@)-By(e)|da o

The shaded areas in Figures 11a and 11b illustrate the distance from the left and from the
right respectively for the two sets A and B.

In order to compare two fuzzy numbers A and B we define indices I, and I such

that:
I, = w, - d,(A, e~min) - w, * dp(A, e~max) 4-19)
Iy = w, - d,(B, e~min) - w, - d;(B, e~max) 4-20)

where w, and w, are weights.

Note that d; (A,e~min) is a measure of the degree to which A is bigger than the extended
minimum. Thus, for A to be less than B we require that this measure is as small as
possible. On the other hand, dg(A,e~max) is a measure of the degree to which A is less
than the extended maximum and it should be as large as possible (to claim that A is less
than B). Therefore we use these indices to rank the fuzzy numbers and we define:

A<B « I, <1 @-21)

We use the weights w, and w, (associated with low and high values) to distinguish
between the importance that users associate with possible low and high values
respectively. That way we can, for example, model users who are risk averse (by
assigning larger values to w,), or risk prone. Naturally, w, will accompany distance to
the left whereas w, would be associated with distance to the right.

Using the definitions of distance to the left and right we obtain:

d(Ae-min) = [|(A,(d)-e~min (a))| da = (4-22)

= fol(AL(a) -min(A, («),B,(«)))da = f o'maX(O,A,_(a) -B, («))da
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Figure 11: Distances Between Two Sets
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and similarly:

4-23
dy(A c-max)=['|(e~maxy(@)-Ag(@))| da=['max(0,By(a)-Ag() aa "

Therefore the condition I, < I can be expressed as:

W, f:[max(O,AL(a)-BL(a))-max(O,B,_(a) A (a))] d& < (4-24)

< whj;l[mx(O.Bn(a)- r(®))-max(0,A (a)-Bg(a))] da
But max(0, x) - max(0, -x) = x, therefore:
A<B = wf'[A()-B(a)da < Wy, Be(@)-Ag(@)lda (425

The last inequality has an intuitive interpretation: A is less than B if the distance
to the left between A and B is big when A, is located to the left of B;, and small when
A, is located to the right of B;. Similarly A is less than B when the distance to the right
between A and B is big when By is located to the right of Ay, and small when Ay is -
located to the right B;.

We demonstrate the comparison method on three examples in Figure 12. Case (a)
is the trivial case for which most comparison methods would result in A being less than
B, and indeed our weighted-distance comparison method indicates that:

A<B « -w{area(ll)+arca(lll)] < w, {area(l)+area(ll)]  (4-26)

where the Roman letters correspond to the areas marked accordingly in Figure 12a.
Obviously, the condition is always true and thus A is indeed always less than B.

In Figure 12b the set B is contained in A. In this case the decision on which is
the smallest depends on areas I and II and the weights w, and w,. Applying equation
(4-25) we get that:

A<B « w, -area(l) < w, - area(l) (4-27)

which means that in order for A to be less than B, the area in A that corresponds to lower
A values (area I) has to be greater than the area in A which corresponds to higher values

60



Figure 12: Comparison of Two Fuzzy Numbers
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(area II), multiplied by the appropriate weights.
For the two sets in Figure 12c, we get that:

A <B « warea(l)+wyarea(IV) < warea(Il) +w,area(Ill) + (Wﬁwh)'(Vs“-zs)

An intuitive explanation for the above inequality follows from the fact that areas II and
IIT are "good" areas for claiming that A is less than B since they correspond to lower
possible A values and higher possible B values; similarly areas I and IV are "bad" areas
since they correspond to small B values and high A values; finally area V, although it
does not under any possibility distribution, it is a measure of the potential smaller A
values on one hand and potential larger B values on the other hand and thus is weighted
by both w, and w,.

So far we have shown that the suggested method fulfills the first requirement,
namely, it takes into account the exact shape and range of the sets being compared. Next
we prove that transitivity, the second requirement, holds.

4-29
A<B = w ol[A,_(a)-BL(a)]da < an; l[BR(a)- r(®)]lde ( )

B<C = w,fo l[B,_(a:)-C,_(oz)]dnz < whj; l[Cn(oz)—BR(cz)]doz (4-30)
Summing (4-29) and (4-30) and simplifying we obtain that:
w [ TAL@)-Cy@da < w, [ [Cy(@)-Ag(@)]da (4-31)

which implies A < C, thus the proposed comparison method satisfies the ransitivity
property.

The suggested weighted-distance comparison method satisfies the third requirement
as well, that is, it gives consistent results, which are independent of the specific number
of fuzzy numbers involved in the comparison. As a result, it can be used to rank n fuzzy
numbers (in a way consistent with pairwise comparisons).

Let Al,.,A" be n fuzzy numbers. We define the extended minimum and
maximum functions of them, e~min and e~max, by:
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e~min, () = {min Al ()} 1<i<n ; e~ming(®) = {min A ()} 1 €i<n
e~max (@) = {max Al (@)} 1<i<n ; e~maxy(0) = {max Al(a)} 1 <i<n

for every alevel, 0 sa < 1.
For every fuzzy number A', 1 <i < n, we define the index:

I = w, - d(A', e~min) - w, - (A", e-max) (4-32)
We claim that A’ < ... < A < ... < A" iff I, <..< I’;;<... < I,,. We will show that if
A’< A, based on I, and ,;, then it also holds that A'< AJ using I,; and I, (i.e. the
indices based on the extended min and max of A’ and Al ).
The index I’,; is given by:

- ' 4-33
"y = W, [A!(0)-¢-min (@) da-w, [ [e-maxy(a)-A'y(e)] du _¢43)

= w,fo A ! («)-min (A ¥ (a))] da-w, fol[maxk(A k (0)-A'y(@)] da

A< AViff I°y;< I, that is:
1 i . K 1 K i (4'34)
W, j; [A («)-min(A¥ ()] de-w, j; [max, (A £ (€))-A ‘()] da <

<wf 'A1 («)-min (A ¥ («))] de-w, fol[maxk(A k (@)-Al ()] da
which is equivalent to:
w [ (A (0)-AL ()] da < W, fo'[AJR(a)-A L ()] det (4-35)

Equation (4-35) however, is equivalent to equation (4-25), and thus it implies that A’ <
A’ when using I,; and 1,; (defined for two fuzzy numbers only).

We have shown that the new comparison method is transitive and consistent, thus
most shortest path algorithms (for example the algorithms described in Ahuja et al.,
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1988), can be applied, when appropriately modified for additions and comparisons, for
the solution of the shortest path problem in networks with fuzzy costs. These algorithms
correctly identify the shortest path (i.e. the path that has the lowest total fuzzy cost among
all paths).

4.2 Fuzzy Utility Models

As discussed in section 1.3, discrete choice models based on the utility
maximization principle are the most commonly used models for solving the route choice
problem. They are based on the assumption that the (latent) utility of each alternative in
the choice set can be expressed as a linear function of the main attributes that influence
the choice. In this section we extend the classical utility model to mcorporate fuzzy
attributes. We begin by reviewing methods for the fuzzy linear regression problem since
some of these ideas are used for the development of the fuzzy utility models presented
in this thesis.

4.2.1 Fuzzy Linear Regression - Literature Review

Surprisingly, there is not much work which deals with fuzzy linear regression.
Among the papers found in the literature, there seems to be unanimity on using the fuzzy
linear regression method suggested by Tanaka et al. (1982). This approach deals with a
linear model with crisp inputs and fuzzy coefficients. All existing models assume
symmetric triangular fuzzy numbers (T,FN). The membership function of a T,FN, A, is
given by:

BA(X) = { 1-lyx /e Y-cSXSy+e
0 otherwise

that is, a fuzzy set centered at y with left and right spreads equal to ¢, which models the
concept of "approximately y".

Fuzzy Linear Regression - Tanaka et al.

Tanaka et al. (1982), suggested the following regression model:

Y, = Axy + o+ AX, (@-36)

where: A,’s are TFN’s represented by two parameters: (y,.c,) p=1,....n
Y;’s are T,FN’s represented by two parameters: (y,¢) i=1,...K, and
X;p are scalars i=1,..., K, p=1,..,n

In traditional regression models, the error term: €, = y, - y’,, defined as the deviation
between the observed value y;, and the estimated value y°, is regarded as random variable
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with zero mean, and the objective function is to minimize a function of the error term of
all K observations. In fuzzy linear regression, on the other hand, deviations of the
estimated value from observed value are attributed to the fuzziness of the system.
Moreover, a fuzzy error term can be estimated by the constant of the regression equation
(i.e. the fuzzy coefficient corresponding to the case in which x;;=1 for all i).

Thus, estimation of the fuzzy coefficients A, is based on the minimization of

their vagueness (where vagueness is defined by c,, the spread of the TFN A, for
p=1,...,n), subject to the constraint that a certain degree of fit between observed and
predicted output values is achieved. Hence, the objective function minimizes the sum

of the individual spreads:

min 3° ¢, (4-37)

In order to formulate the constraints, a measure of the degree of fit between the
observed fuzzy output, Y; = (y,.€), and the estimated output, Y'; , is required, where:

Y = Al t et Alx, (4-38)

Tanaka suggested measuring this degree of fit by a containment relation between the
estimated and observed outputs. The degree of fit of the estimated output Y; with the
observed output Y,, is measured by an index h;,, which maximizes h subject to the
constraint: Y"CY,™, where:

Y ={y | py® 20} (4-39)

Y ={y | py:0) 20} (4-40)

An example of the determination of h, is illustrated in Figure 13.
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Figure 13: Degree of Fit Between Y ;and Y ;
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From Figure 13 we can see that:

1 @-41)
Yoaolml 4

wherz:
q = Iy &l * e(-B) (4-42)

hence:

Bo1- lyi-X0.1 Yo%l “3)
2.1 cplxlp| €

Consequently, the goodness of fit constraints are expressed as:
h =2 H for i=1,..K @d-44)
where H is the minimum accepted goodness of fit.
Using equation (4-43), the constraints (4-44) now become:
Yo Ee + (DY e lxp| 2y, + (1-H)e (4-45)
and:
Yo TR + FEY x| 2 -y, + (1-HDey @-46)

So the problem can be formulated as a linear programming problem (LP) with 2n
variables (the vector y and the vector c), and 2K constraints (for K observed choices).

Maximum Likelihood Estimation - Diamond’s Approach

Diamond (1988), modified Tanaka et al.’s approach to allow for stochastic
variations, and suggested two models that include a random fuzzy error term:

@) Y; = Bi+8,X;+...+8,X,+E;
@) Y, = BytBx;+..+B X, +E;

where capital letters correspond to fuzzy sets. In the first model, the output, the inputs
and the error term are fuzzy while the coefficients are crisp, and in the second model the
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inputs are crisp, while the output, the coefficients and the error term are fuzzy.

As did Tanaka et al., Diamond assumes symmetric triangular fuzzy numbers
(T,FN). The assumption about the random term, E,, is that it is also a T,FN, defined by
the two parameters: (Y,c;), where its endpoints: y;-c; and ¥;+c; are drawn from a uniform
distribution.

The major criticism of the suggested approach, which in our opinion makes it
inappropriate for various applications, is summarized below:

° Superficial ability to handle stochastic variation; the method eliminates the
stochastic nature of the error term by assuming a uniform distribution that leads
to a constant valued likelihcod function. The uniformity assumption for the error
term is problem specific. However, in most cases a non-truncated error term
distribution seems more reasonable.

° Generalization to other error terms is very difficult.

° The estimated parameters are level 2 and 3 fuzzy numbers (which correspond to
higher levels of uncertainty regarding the membership functions), whose
interpretation is not clear.

Furthermore, extension of the model to solve the discrete choice problem is not
at all straightforward.

After looking into the existing literature on fuzzy linear regression, it is clear why
it has not gained more attention. All models make very limiting assumptions regarding
the fuzzy sets involved: they all assume symmetric triangular fuzzy numbers.

Tanaka et al.’s approach is very appealing from a computational point of view;
transforming an estimation problem into a linear programming problem is very attractive.
However, an issue which is not addressed in their paper is the (pre-determined) value of
H. There is a tradeoff between H and the fuzziness of the parameters. A possible
approach to address the problem would be to treat H as a variable, and solve the problem
as a multi-criteria LP: minimize the sum of the spreads and maximize H. The
applicability of Tanaka et al.’s approach to the route choice problem is limited. The main
attraction for the use of fuzzy sets for the problem arises from the idea of fuzzy
perceptions, thus treating the inputs as crisp, and the coefficients as fuzzy is not useful.

Diamond’s approach assumes a special error term distribution, adds non-intuitive
levels of fuzziness, and can not be easily extended to discrete choice problems.
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4.2.2 Uiility Models with Fuzzy Parameters and Crisp Inputs

The concepts presented in the previous section can be applied for solving discrete
choice problems in general, and route choice problems in particular. In this section we
extend Tanaka’s approach such that it can be used for discrete choice problems.

Given a choice set with m alternatives, the utility of alternative i is given by:

U = Ax,; + . + AXy 4-47)
where: U, is the fuzzy utility of alternative i,
A,’s are fuzzy sets representing the importance of attribute p in the overall

utility, and
X;, are scalars corresponding to the value of attribute p for altenative i.

In the fuzzy utility model, x,)’s are given inputs, the fuzzy coefficients A,’s are
the parameters to be estimated, and U, are fuzzy latent utilities (which, unlike the
regression model, are not known or observed). For simplicity we omit the index
corresponding to a specific individual.

Following the utility maximization principle, we assume that alternative j is chosen
if U; 2 U; for all the alternatives i in the choice set (j#i). The problem is then to estimate
the fuzzy coefficients A, such that the agreement between observed and predicted choices
is maximized.

The underlying behavioral assumption of this model is that the inputs relating to
the important attributes of the utility (e.g. travel time, travel distance) are crisp, but their
contribution to the overall utility is modeled by fuzzy sets, and as a result the overall
utility is also represented by a fuzzy set. Consequently, the uncertainty in the problem
is attributed to the fact that the importance of the different attributes can not be modeled
deterministically, or even probabilistically (using a random coefficient model), and thus
is modeled by a fuzzy set. Individuals have the "correct” perceptions, however, their
weights (and importance) in the decision process are not clear. Thus coefficients may be
fuzzy when the utility is assumed to be fuzzy, and exact measurements (x;,) are available,
or when the nature of the contribution of specific factors to the overall autility is not
completely clear.

We assume that the coefficients A, are T,FNs (as in Tanaka’s approach),
represented by two parameters: (Y,,C,) p=1,...,n. From equation (4-47) it follows that the
utility U; is also a T,FN defined by the two parameters: (U;",C) where U;" is the center
point given by:
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LD JRER 49
and C; is the spread given by:
G = Tyl )

If alternative j was chosen, then we want U to be bigger than U, for all i#j. The measure
of fit used by Tanaka et al. is not appropriate for this case since it tries to maximize the
overlap between Y, and Y;, whereas for discrete choice we are interested in having the
two sets, U, and Uj, as far apart (in the right order) as possible, representing the fact that
when one alternative is chosen over anothtr, the utility of this alternative is better than
the utility of the other.

The discrete choice problem can then be formulated as follows:

min) ;-1 c, (4-50)
k k . (4'51)
such that: U 2 U for all ioc(k) k-=1,..K
oc(k)

where oc(k) is the alternative chosen at the k™ trip, and U is the utility of alternative i
for trip k.

For comparing the utilities, which are represcnted by fuzzy numbers, we suggest
using the comparison method proposed in section 4.1.2, which other than having desirable
properties such as transitivity and applicability to multiple-sets comparisons, results in
linear constraints for the discrete choice problem. The following claim translates the set
of constraints given by equation (4-51) to linear constraints (assuming that the weights
w, and w, are known).

Claim 1: .
Given U; and U; T,FNs defined by: U=(U”,C), U=(UPC), U< U iff:

m yym m m m ;,m m m 4-52
Wl[(Uj -U, )"'(Uj 'Cj)'(Ul -Gl > w,[(U; _Uj )+(U; +C[)_(Uj +Cj)]( )

where w, and w, are weights associated with low and high values respectively.
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Figure 14: Possible Intersections of
Two TsFN's
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Proof:

There are 8 possible intersections between two T,FN’s as it is shown in Figure 14. Cases
1 and 2 are trivial (U, is smaller in case 1 and U is smaller in case 2). We will prove
the claim for cases 4 and 6. The other cases can be proved in a similar way.

Case 4:
d,_(Uj,e~min) = dR(Uj,e~max) =0 = Iu, =0 (4-53)
dy(Uye~min) = %[(U;"-C)-(Uy"-C)] = %(C;-C) @-54)
dy(Uye~-max) = {(U;"+C)-(U;"+C)] = %(C;-C) (4-55)

Graphically, as shown in Figure 14, d, (U,e~min) is equal to area I, and dg(U;,e~max) to
area II

The condition Iy<Iy; is thus equivalent to: w(Ci-C)<wy(C-C) which is the
equivalent to equation (4-52) (after substituting U;"=U;"). For this case (case #4), C>C;
and thus:

U<l = w<w (4-56)

meaning that since areas I and II are equal, alternative j will be chosen if w, is larger (i.e. '
the individual is risk averse).

Case 6:
d, (U e~min) = 0 @-57)
dx(U,e~max) = %2(U;"-U;")1-h) (4-58)
d,(Uge-min) = ¥2[(U"-U")+(U;"-C)~(U"-C)] (4-59)
dp(Uye~max) = Y%[(U,"+C)~(Uy" +C)h, (4-60)
where:
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_ U460 @-61)
' (€,-C)

Graphically, as demonstrated in Figure 14, dg(U;,e~max) is equal to areas II and IV,
d, (U;,e~min) to area I and II, and dg(U,e~max) to area V.

Thus U, < U iff:

w20 -2U-Cp+C]l > wyl [U+C,~(U+C)Th, -(U"-U™)(1-hy)

which is equivalent to equation (4-52). =

Thus, for binary choice problems there would be one linear constraint for each
observed choice. In general, for multinomial choice, with a given choice set of size m,
there would be (m-1) linear constraints for each choice, thus the total number of
constraints will be 2K(m-1) where K is the number of observed choices.

4.2.3 Utility Models with Fuzzy Attributes and an Error Term

In this section we develop a discrete choice model based on fuzzy (or crisp)
attribute values, crisp coefficients, and a stochastic error term. This model fits our
problem better than the model presented in the previous section since it allows for fuzzy
inputs (which correspond to perceptions of network attributes). Furthermore, it includes
a random error term to account for the non-deterministic nature of the problem. In this
way, both aspects of uncertainty that were introduced in section 3.2 are being captured:
vagueness through allowing attribute perceptions to be fuzzy, and randomness through
inclusion of a random error term.

We assume again that a choice set of size m is given. The utility of alternative
i in the choice set is given by:

U =B+ B Xy + oo + B Xy * € (4-63)

where X,’s are fuzzy sets, 8,’s are scalars to be estimated, and ¢; is an error term. For
simplicity of notation, we omit the index corresponding to a specific individual. The
utility, U,, is best described as a hybrid number (see Kaufmann and Gupta, 1985), that is,
a fuzzy number that shifts according to some probability density function. The systematic
component of the utility, V,, is fuzzy since perceptions of attributes (e.g. travel time) are
fuzzy. The error term adds noise and serves to model inherent randomness plus other
omissions as discussed in Ben-Akiva and Lerman (1985).
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We assume that attribute perceptions are given by trapezoidal fuzzy numbers,
TFN, (rather than symmetric triangular fuzzy numbers). A TFN is determined by four
parameters: location parameter y and three spread parameters: c,, ¢, and c, as illustrated
in Figure 15. The systematic component of the utility of alternative i, V,, is also a TFN.

For a binary choice between aiternatives i and j the probability that a certain

individual will choose alternative j is given by:

Proby(j) =Prob(UlsUj) =pm1)(vl+elgvj+ej) =Prob(el—ejst -V)=Prob(e<V) (@-64)

where V is TFN and € is a random variable with known probability density function.

The probability of choosing alternative j can be also written as:

Prob(j) = Prob(esV) = [8(exVle=¢)f(e,) de, (4-65)
where: 8(e<v | e=g)= ( 1 if g.<V
0 otherwise
and g,e R.
Claim 2:

Using the weighted-distance comparison method of equation (4-25), for 2 TFN V defined
by (left) location parameter y and three spread parameters: c¢,, ¢, and c,, a random
variable €, and a scalar €, we have that:

8esv | e=£t)=( 1 if £,<x
0 otherwise
where:

x =y + Ve, + Vaw,(c,+2¢,+C,) (4-66)

Proof:

We use the comparison method proposed in section 4.1, to determine whether g, a
realization of €, is less than V. This is a special case of comparing two fuzzy sets (since
for this case one of the sets is deterministic). The comparison method is consistent in the
sense that if €<V for a specific g, value, then €<V for all g,<¢,. Thus, there exists a
threshold value, x, xe Support(V), such that for all g,<x, €<V, and for all g2x, 2V.
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To find x we have to examine the three cases demonstrated in Figure 15.

Case (a):
Applying equation (4-25) resulis in:

€<V <« w areal) < (w+w,) - area(ll) + w, - arca(l) (4-67)

where the roman letters correspend to the appropriate areas in Figure 15a as determined
by the threshold value x. Using the fact that wi+w,=1, we get that:

Vaw,(x-y)h, < Ve(y+c,-x)(1-h)) + w[%e(1+h)(y +c,-x)+c,+Vec;] (4-68)

where:

B, = XY (d-69)
¢

For x, the threshold value, we want equation (4-67) to hold as equality, hence:
x =y + Vo, + Vaw,(c,*+2¢c,+C;) (4-70)

€<V « w area(l) < w, - area(ll) @-71)

where areas I and II are determined by x, as demonstrated in Figure 15b.
hence:

w,(Vec, +x-v%) = wy(Vec,+y/+c,-x) @4-72)
and hence:

x = y/+wy(Vec te))-Yewie, (4-73)

Substituting ¥’ = y + ¢,, and w, = 1- w,, we get that equation (4-73) is equivalent to
equation (4-66).

case (C):

€ <V = w, -area() > (w;+w,) - area(lll) + w, - area() (4-74)
where areas I, I, and I are determined by x, as demonstrated in Figure 15c.
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hence:

" " n" 4-75)
Vewy(Y"-x)h, > Ve(x-y"+c)(1-h) + w[Vac,+c,+V2(1+h)(x-y"+¢y)]
where:
h, = ? ' (4-76)
3
hence:
x =y - Vic, - Vaw(c, +2¢c,+Cy) @-77)

Substituting y’’ = Y + ¢,+¢,+¢,, and w, = 1- w,, we get that equation (4-77) is equivalent
to equation (4-66). [ ]

Corollary:
The probability of choosing alternative j over i is given by:

Prob(j) = Prob(e<V) = f_:f(u) du (4-78)

where f is the probability density function of €, and x is given by equation (4-66).
The Estimation Procedure |

Without loss of generality, we assume that f3,’s, the coefficients to be estimated
for the utility function (as they appear in equation (4-63)) are non-negative. If, for
example, we expect that some attribute k has negative effect on the utility (e.g. travel
time), then we take the opposite image of the attribute value X,,. The opposite image of
a TFN A defined by: A = (a,,2,,,,3,) is given by (Kaufmann and Gupta, 1985 p. 70):

A™ = (-a,, -2, -2, -3,)
For two T,FN’s A and B such that:
A = (a},25,83,2,)
B = (b1’b29b31b4)

the result of adding A and B is a TFN given by (see section 4.1):

77



A + B = (a,8,8,,3) + (b,b,byb) = (a,+b,,8,+b,a;+b,8,+b)  (4-79)
Subtraction of B from A would again result in a TFN given by (Kaufmann and Gupta,
1985 p. 70):

A - B = (a,8,8,8) - (b,b,byb) = (3,-b8,-by8;-b8,-b)  (4-80)
Let 7, be the left point of the TFN X, and c';, ¢, and ¢’ its left, middle, and right

spreads respectively. Thus, it follows that the left-most point, v, and the spreads, C,, C,,
and C, of the T,FN, V=V,-V,, are given by:

¥ = X, Bl 1) - Cprgreyl (4-81)
C, = ¥, Blcptcy) (4-82)
C, = Y, Bcprey) (4-83)
Cy = ¥, Blcptey) (4-84)

If w, and w, are known, then for a given set of K observed choices, and for a
given pdf for € (typically normal or logistic), we can write the likelihood function as:

L*(Bys-Byp = T1L., Prob@”™ ProbGy™ (4-85)
where: Vi = { 1 if the k™ observed choice is i
0 if the k™ observed choice is j
and:
+.1C «1 (C,+
Prob) = Proble < V) = [120 N gy qu  (486)
Prob(i) = 1 - Prob(j) (4-87)

where v and C,, C,, and C, are given by equations (4-81), (4-82), (4-83) and (4-84).
Thus, maximum likelihood estimation techniques can be used to estimate the parameters
8,,....8, (see Ben-Akiva and Lerman, 1985, for the general methodology). If w, and w,
are unknown, then the estimation becomes non-linear.
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CHAPTER 5: APPROXIMATE REASONING ROUTE CHOICE MODELS

§.1 The General Decision Framework

The approximate reasoning models described in this Chapter utilize concepts from
approximate reasoning and fuzzy control. Appendix B describes briefly the general
approximate reasoning and fuzzy control frameworks. Figure 16 illustrates the general
scheme of the decision process adapted for the route choice problem as a three phase
process.

The Approximate Reasoning Phase:
Current inputs, A", are applied to a set of N rules, and the appropriate outcome
vectors (B,’(1),...,B;’(m)) are derived, i=1,...,N (m is the size of the choice set).

The Internal Presentation Phase:
All rules that were fired to a positive extent are combined simultaneously intc one

vector: (B°(1).....B°(m)), which serves as an internal presentation of the
attractiveness of the alternatives in the choice set.

The Defuzzification Phase:
The attractiveness of the alternatives in the choice set are compared, and the best

alternative is chosen.

This general framework is very attractive for modeling route choice decisions
made in the presence of information. The on-line information and its parameters (e.g.
reliability, relevance, and salience), the time pressure for making decisions, and possible
new alternatives which may have to be considered, impose additional constraints into the
decision process. The approach we propose for modeling this decision process has the
potential to account for some of the biases that exist in making choices which require
huge information processing capabilities (as discussed in Chapter 2). It is well suited for
dealing with missing data and unavailable information, and thus it has the potential to
model realistically route choice decisions made en-route while new information is being
acquired dynamically.

For the purpose of this work, we again assume that perceived travel time and

traffic information are the most important factors in making route choices, but the ideas
presented in what follows can also be applied when other factors are considered.
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5.2 Rules

The building blocks of the decision process are rules of the form: if A; then B;,
which associate the state of the system with choice-related attitudes and preferences. The
use of rules resembles other rule-based systems in which decisions are related to specific
input conditions (e.g. expert systems). However, the condition and the consequence part
of the rules can include fuzzy labels, and thus the rules become more general and
intuitive, especially when modeling human thinking. Examples of such typical reasonings
are:

. "It’s Monday, I’d better take Route 2".

J "If Storrow Drive is very bad - I'll probably take Memorial Drive".

J "I’ll never take the Mass. Pike in rush hour again".

° "Yesterday Memorial Drive was terrible, I'd better not take it today".

] "It looks like an accident , I am going to switch quickly to Route 9".

] "The radio report said that 128 is usual, but it looks bad to me, I'd better take

Highland Avenue".

° "Bumper-to-bumper on The Mass. Pike. - what can I do, that’s my only

alternative...".

These reasonings (or associations) correspond, for example, to directed paths from
the left-hand-side of Figure 1 to its right-hand-side, and the different short-cuts correspond
to different behavior patterns, and different information processing levels. In this section
we talk more formally about rules to model such reasoning, and we narrow down into
more specific rule structures. However, it should be kept in mind that the motivation for
the use of rules (as discussed in Chapter 2) stems from the fact that they correspond to
a natural and reasonable approach for modeling human thinking.

5.2.1 Rules Structure

To model the decision process we use rules; rule i has the general form: "if A;
then B;", where the lefi-hand-side (LHS) of the rule is represented by the statement A,
and the right-hand-side (RHS) by the statement B, Depending on the model used
(simultaneous, two-stage, or default), the LHS of a rule deals with the various possible
traffic conditions, traffic information, and other relevant data associated with the
alternative paths. The right-hand-side is choice related, but does not correspond directly
to choice, rather it serves to model attitudes and preferences with respect to the
alternatives in the choice set. In general A, and B, are multi-dimensional vectors defined
as:

A
B

Al,...A™ i=1,...N
(B},...B™) i=1,..N

where m is the number of alternatives in the choice set, AJ is the j’th compcnent of the
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LHS of the i’th rule and corresponds to the state of alternative j. Similarly, B} deals with
the attractiveness of choosing alternative j in view of the information conveyed by the

vector A;. For example:

. if travel dme on path p is very low then I'll take it
. if path p is much worse than usual and path q is usual then I’ll probably take path
q

. if there is an accident on path p then I'll definitely not take path p and I'll
probably take path q.

We do not expect to have all m components of A, and B, filled for every rule i, since we
do not expect that drivers make such complex multi-dimensional judgements when
making a route choice. Rather, our hypdthesis is that the final choice is based on a
combination of many simple considerations each of which is modeled by a relatively
"simple rule”. Rules may belong to two general categories:

1. rules dealing with perceived travel times (or other measures of atiractiveness),
2. rules dealing with traffic information.

The LHS of the first group of rules characterizes a given performance measure
(e.g. travel time) according to fuzzy labels. For example, travel time on a path can be
categorized into one of the following five fuzzy sets: Very Low, Low, Medium, High and
Very High travel times, as shown in Figure 17a. Thus for this case: A)e {VL, L, M, H,
VH]}. The specific design is influenced by the length of the interval {[min,max], the shape
of the membership function, and the amount of overlap between adjacent sets (see section
5.7.1 for discussion of generation of membership functions). The underlying design sets
in Figure 17a do not correspond necessarily to perceptions (we do not expect perceptions
to be symmetric), rather they serve as a conceptual scale for evaluation.

Rules dealing with traffic information are determined by the available traffic
information, and depend on the type of infoimation system. These rules are applicable
to the simultaneous and the default model, and hence their LHS directly relates to the
inputs given by the information system. For example, for an information system in the
form of radio traffic reports on major facilities and known bottlenecks, the LHS would
relate to traffic conditions on those facilities (provided that they overlap with paths in the
choice set). On the other hand, the LHS of rules relating to an information system which
provides path recommendations, will consist of the specific path recommendation, e.g. "if
path P, is recommended then...".
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When categorizing travel times, we have to define the underlying scale; the scale
can be O/D related on which all the m alternatives are placed, or it can be alternative
specific. The advantages of an O/D scale are generality of the rules and more natural
comparison of alternatives (for example, "Very High" does not depend on the specific
alternative under consideration). On the other hand, if ranges of travel times on the
various alternatives differ significantly, the 5 suggested travel time categories could not
provide fine enough characterization of a given perceived travel time if they are O/D
related. Constructing the initial rule matrix should be consistent with the scale used.

The right-hand-side of the rules, the "then" part, corresponds to aspects of the
final decision. The RHS serves as an intermediate step in the decision process and
corresponds to the stage at which attractiveness (or utility) of each alternative is evaluated
based on the input. The multi-dimensionality of the RHS representaticn captures the fact
that even if the LHS of a rule relates to a specific alternative j, it could also affect
perceptions of the attractiveness of another alternative k. Thus B; = (B/,...,B®), where
B/ is the attractiveness of alternative j in view of the knowledge A=(A/,...,A™). B/ is
measured on a scale ranging from -1 to 1, with -1 corresponding to the case of complete
aversion to taking alternative j, 1 comresponding to the case of choosing alternative j
without reservations, and 0 corresponding to the indifference point. We define five fuzzy
sets representing the driver’s attitude towards taking an alternative:

N corresponds to "I will Not take this alternative”,
PN corresponds to "I will Probably Not take this alternative”,
I corresponds to "I am Indifferent with respect to taking that alternative",
PY corresponds to "I will Probably take this alternative",
and Y corresponds to "I will take this altemnative".

Figure 17b demonstrates the design used for the preference sets on the given scale.
According to this design positive preferences are located in the [0,1] interval, and
negative preferences are located in the [-1,0] interval. The indifference atitude gives
equal weight to positive and negative values, and the N and Y attitudes cover all the
relevant preference intervals with clear inclination towards the extreme values of -1 and
1. Note that all 5 sets have equal area, a fact that simplifies the mathematical
formulation.

5.2.2 Rules Complexity
The general rules structure, described in the previous section, permits great

flexibility in generating the rules. In this section we categorize the rules into two levels
of complexity, and discuss the behavioral assumptions underlying both levels.

First-Level Rules

We call “first-level” rules, rules corresponding to the "rule-based behavior"
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@
discussed in Chapter 2. Rasmussen (1986), suggested that this behavior corresponds to rules
controlling a sequence of sub-routines in a familiar work situation. The rules have been
previously derived empirically, or communicated from other persons’ know-how as an instruction
or cook-book recipe. The performance at tnis level is goal-oriented but very often the goal is
not explicitly formulated.

At the first level the rules are simple. This simplicity is consistent with the
characterization of human behavior by Simon (1969), who claims that: " a man, viewed as a
behaving system, is quite simple. The apparent complexity of his behavior over time is largely
a reflection of the complexity of the environment in which he finds himself ". In the proposed
approach this simplicity is represented by simple and straightforward rules which correspond to
common-sense knowledge and intuitive behavior. The complexity of the overall decision process
is then captured by the existence of multiple (possibly conflicting) rules which are being
processed simultaneously. Use of simple rules is also very attractive in light of previous
discussion (in Chapter 2) about individuals using heuristics and rules of thumb to reduce the
amount of information processing needed when making decisions; it is natural and intuitive to
assume, for example, that under time pressure, drivers can not process rules with a high level of
sophistication.

Consequently, we define the first-level rules to have one dimensional LHS and RHS.
First-level rules capture, as expiained before, common-sense behavior, for example, on the same
path low travel times are preferred to high travel times, and paths with "bad" traffic conditions
(e.g. paths with accidents) have low attractiveness. First-level rules are organized in a block
matrix of the form:

where xe{ VL,L,M,H,VH} or x is the available traffic information, and ye{N,PN,I,PY,Y}.

From a behavioral point of view first-level-rule type of behavior is analog to a
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random utility model in which the utility of alternative i is comprised of a group of
factors and considerations regarding only the state of alternative i, and no explicit
interactions are allowed. The intuitive appropriateness of the model is then determined
by the coefficients having the expected sign (+/-) and a reasonable (relative) magnitude.

Second Level Rules

At the second level, allowance for more complicated behavior is made,
corresponding to the knowledge-based behavior that was discussed in Chapter 2. At this
level performance is goal-controlled as it has to be able to deal with unfamiliar situations.
The rules of this level can capture more complex reasoning and interactions, implicit
preferences, as well as apparently irrational and non-intuitive behavior. Rules at the
second level are characterized by:

(a) Multi-dimensional LHS
(b) Multi-dimensional RHS
(c) Mult-dimensional LHS and RHS

Interactions of type (a) correspond to the case in which the driver considers
simultaneously traffic conditions on several alternatives, and concludes about the
attractiveness of a certain path. Interactions of type (b) correspond to the case in which
traffic conditions on one path also affect the attractiveness of other paths. Interactions
of type (c) typically comrespond to complex information processing which could exceed
the limited human information processing capabilities. Furthermore, their computational
complexity is enormous. Hence, for the discussion that follows, we concentrate on
interactions of types (a) and (b).

The interactions of type (a) and (b) above have a similar flavor: travel time on
alternative i affects the attractiveness of another alternative j. But the strength of the
effect differs; type-(b) interactions are stronger since the condition part in the LHS is less
restricted. And indeed interactions of type (b) correspond to a higher level of knowledge
since limited information has multi-dimensional consequences, whereas in interactions of
type (a) multi-dimensional information results in a single dimension preference.
Furthermore, interactions of type (a) are less attractive because they relate more to the
choice itself rather than to medeling the internal representation of the attractiveness of a
single alternative which eventually leads to a choice. Hence, we assume that, given
traffic conditions on several alternatives, a user can come up with the resulting choice,
but not necessarily with the attractiveness of a specific alternative. The decision process
that we try to capture is the process in which information is translated into attractiveness
and then into choice, whereas it seems that in (a) information is translated directly into
choice.

The structure of the rules (first and/or second level) is correlated with the amount
of experience that the driver has. Experienced drivers may utilize more second-level rules
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since good knowledge and understanding are needed in order to deduce how traffic
conditions on alternative i will affect the attractiveness of alternative j. Inexperienced
drivers, on the other hand, can deduce only the simple rules that relate to each alternative
separately, and are unaware of existence of interactions or implicit relations among
alternatives.

Thus if we allow first level rules, and type (b) interactions, we can capture the two
extremes regarding user’s experience and sophistication, and allow enough flexibility in
between to model a realistic decision process. Our approach would be to start with a set
of rules at the first level, and to use observed choices to:

° Validate and modify first-level rules.
J Generate interactions of type (b).

5.2.3 Model-Specific Rules

The general rule structure discussed in the previous two sections depends on the
specific model used. In this section we present a general rule structure for the three
models that were introduced in section 2.1.

The Two-Stage Model. In the two-stage model, the LHS of the rules relates to
perceived travel times. Perceived travel times are updated based on prior knowledge and
information that was available at an earlier stage. The number of initial rules is of order
m*k, where m is the number of alternatives in the choice set, and k is the number of
categories of travel time. A typical rule has the form: "if travel time on path j is very
low then I'll probably take path j".

The Simultaneous Model: In the simultaneous model, perceived travel times, and
information compose the LHS of the rules. However, due to the underlying assumptions
of the model, there are no direct interactions among all those factors, meaning that there
is a set of rules dealing with perceived travel times, and a separate set of rules related to
information (as discussed in section 5.2.1). The number of initial rules is of order
m*(k+r), where k and m are as before, and r is the number of categories of the provided
information.

The Default model: In the default model, as in the simultaneous model, there
are two groups of rules: rules related to prior knowledge, and rules related to information.
However, unlike the simultaneous model, the rules pertaining to prior knowledge are
being treated as default rules, and hence they are being applied if no exception occurs.
The default reasoning logic that was explained in section 3.4.2 is used to determine the
extent to which an exception has occurred, this process is explained in more detail in
section 5.5.
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5.3 Input Propagation through Rule Premises

The core of the information processing part of the decision process lies in the
approximate reasoning scheme which allows flexible rule interpretation, as well as rule
adjustments (as explained in Appendix B). This phase distinguishes the suggested model
from traditional rule-based models (e.g expert systems). Flexible rule interpretation is
achieved by allowing rule premises to be partially true. The extent to which a rule
premise is fulfilled is determined by the degree with which the given inputs match the
rule premise, and that determines the extent to which the rule will be fired. In this
section we describe how the match between inputs and rule premises is determined.

The inputs to the decision process are values of the attributes under consideration.
For our case this includes perceived travel times (based orn observation and/or prior
experience), and traffic information on the various alternatives. The inputs feeding the
decision process differ among th- three different models that were proposed in section
2.1. For the simultaneous model the inputs include prior perceptions, information, current
observations and possitly other factors. For the two-stage model the inputs for the

second stage include updated perceptions of the relevant atributes (assuming that those @~

perceptions were updated using information at the first stage). As for the default model,
its input is default behavior and its relevant inputs, and information. Thus in general, the
input A® is a vector: A"=(A",...,A™") where m is the number of alternatives in the choice
set. For rules dealing with perceived travel times, A" is the travel time, as actually
perceived by the driver, on alternative i. Perceived travel times will typically be modeled
as fuzzy sets following the discussion in section 3.2.1. For rules dealing with traffic
information, AJ® corresponds to the information conveyed on traffic conditions on
alternative j, and depends of the type of information system available.

The perceived travel time on alternative j, A’°, does not necessarily coincide with
one of the travel time categories described in section 5.2.1 and illustrated in Figure 17a;
rather it is likely to have some overlap with more than one of the underlying design sets.
The relationship between the underlying design sets of the LHS of the rules and the input
to the rules is illustrated in Figure 18 where the thick lined membership functions
corresponds to the input A*. In Figure 18a the input is deterministic (corresponding for
example, to exact prediction of travel time), and in case (b) the input corresponds to the
fuzzy set labeled "travel times experienced on alternative j" as discussed in Chapter 3.
For illustration purposes lets look at a single alternative, and let p,.() be the membership
function of the input A® on that alternative. Let 04, 04, Oy, Oy, and Oy be the amount
of overlap between the input A and the sets "Very Low", "Low", "Medium" "High", and
"Very High" travel times on that alternative respectively.

88



travel time

travel time

Figure 18: Overlap Between Perceptions and
Design Sets

89



o, the degree of overlap between A" and the fuzzy set represented by the
membership function p, is given by the max-min composition:

o, =maxmin(y , .(x), (X)) 5-1)

The max-min composition corresponds to the highest membership degree among all
elements that are common to both sets. o can get values in the interval [0,1]; a=1
means that there is overlap between the flat section of the T,FN and the peak of the
design set, and =0 corresponds to the case where there are no common elements to the
two sets. The deterministic travel time in Figure 18a, belongs with degree o to the set
“very high travel time", and with degree oy, to the set "high travel time". Thus we can
categorize this travel time as being somewhere between “very high" and "high", and since
o, >0y, We can conclude that it is closer to "high" travel times than to "very high" travel
times. In a similar way, we can categorize linguistically a fuzzy set corresponding to
travel time perceptions, such as the fuzzy set A®, demonstrated by the thick line in Figure
18b. The perceived travel time, A", is "very low" with a degree o,; =0, "low" with degree
o, "medium" with degree o, "high" with degree oy, and "very high" with degree o.

It is easy to verify that given the underlying design sets of Figure 18 and the
values of Oty;, 0, Oy, Oy, and Oy , the input set, A’, is uniquely defined. This is a very
desirable property for the presentation of perceptions, and an important guideline in
determining the underlying design sets.

The fact that a certain input agrees with different design sets, reflects the fact that
travel time can not necessarily be exactly associated with one pre-determined category,
rather it can be looked at as belonging to different categories. The various degrees
associated with the overlap of a given input with the different design categories, reflect
partial truth values, and will be utilized in executing the relevant rules as explained in the
next section.

5.4 Rule Execution

In this section we discuss how rules whose premises have positive overlap with
the given inputs are executed (or fired). Rule execution is based on the approximate
reasoning scheme described in Appendix B, and results in modified rule consequences as
illustrated in Figure 16.

This process is consistent with the description of human performance models that
can be found in the literature. Rasmussen (1986), for example, asserts that: "the efficiency
of human cognitive processes seems to depend upon an extensive use of model
transformations together with a simultaneous updating of the mental models in all
categories with new input information, an updating which may be performed below the
level of conscious attention and control”. We use the approximate reasoning scheme,
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described in Appendix B, to account for model transformations and unconscious updates.
Thus the approximate reasoning phase deals with rule interpretations, and serves to adjust
the rule-base to current inputs, and to allow adaptable rule structure. It agrees well with
information processing under pressure and imperfect and limited information processing
capabilities.

The main issue regarding rule execution, is which implication scheme to use to
model the relation "if A then B". In Appendix B we presented the two most commonly
used implications and discussed the way they influence the resulting RHS set B’
(Mamdani’s implication, and Kosko’s correlation-product encoding). In general,
implication schemes can be categorized into two broad families:

. Implication schemes which result in B'cB
° Implication schemes which result in B°2B

Mamdani’s implication and the correlation-product scheme implication belong to
the first group. The decision of which family to use is context dependent, although we
have not yet found any application of fuzzy control Wthh uses the second family of
implication schemes.

For our case, the set B and its transformation B" correspond to the attractiveness
of a certain alternative (as represented by a fuzzy set). To assess the appropriateness of
an implication scheme, we examine the effect on attractiveness when attractiveness
becomes vaguer: does it become more or less diffused? Let us look, for example, at the
case B="1 will probably take alternative j". In order to make this statement vaguer we
could have a set B* which would be either a subset or a superset of the original set B.
A subset interpretation seems more appropriate for this case since it would infer that we
can not guarantee that "I will probably take alternative j" will be definite (n=1) for some
value on the possible scale, whereas a superset B* will guarantee that the attitude "I will
probably take alternative i" will definitely take place for some interval on the relevant
scale. When modeling travel time, in section 3.2, we insisted on having normalized fuzzy
sets since at least one travel time was certain to be realized. However, the phenomenon
that we are modeling on the RHS of the rules is different; it does not relate to event
occurrence, rather it relates to attitudes and preferences, and thus the normalization
requirement is not desirable. Having a set B" that is a subset of the original set B would
imply that the preference modeled by B® is weaker and thus gets lower r:embership
values, whereas a superset would imply stronger membership values for that preference.
Thus we use implication schemes for which B'CB. Among them we use the correlation-
product encoding scheme (as given by equation (B-6)) which preserves the shape of the
original set B, and in addition it has some desirable mathematical properties (which will
be used in the ILP formulation for rule calibration, discussed in section 5.7.2.1).

In general the input A” is m dimensional, and thus o of equation (B-5) has to be
changed accordingly. Let A’=(A",..,A™), and let the LHS of the i’th rule be
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A=(A]....A™). Each element A" of A° is matched against the corresponding element A/
from A, in order to obtain , the overall degree with which the i’th rule is being fulfilled:

o mingal )

where:

of = max min(j, (%), 1 (X)) (5-3)

The minimum operation used in equation (5-2) captures the fact that all the condition
parts of rule i (the elements of the vector A;) have to be fulfilled simultaneously. Thus .
o, is the degree with which the condition: "A" is A, and ... and A™ is A™ is true.

0, is interpreted as the strength of the i’th rule (given the current inputs), and thus
it serves as the degree with which the i'th rule is being "fired" or executed. It is clear
that more than one rule can have >0, thus more than one rule can contribute to the final
decision. Figure 19a shows aa example in which 4 rules were fired, each to a different
extent. Thus the atu.. .veness of the alternative, is the result of the 4 reievant rule
consequences. It can be seen that in general the alternative has a positive attractiveness
since the "PY" and "Y" RHS values were fired to the largest degrees. The non-linear
nature of the process can also be seen in Figure 19a; a change in the degree with which
a certain rule is fired, will cause an increase or decrease in the amount by which the
corresponding RHS is fired. As a result the relevant rule can dominate the overall
attractiveness or have negligible effect.

5.5 Rule Combination

All rules whose premises have non-empty overlap with current inputs (i.e. rules
i with a,>0), are being fired, each with a different degree (o). The result is N (or less)
B, vectors, B;*=(B,'*,...,.B/¥) as illustrated in Figure 16, each of which corresponds to
the attractiveness of the m alternatives. Consequently, the attractiveness of an alternative
is composed of results of several rules, each contributing to a different aspect of the final
decision as shown in Figure 19a. Suppose that there are N rules "if A, then B,". After
applying the input A’ to all the rules, we obtain up to N vectors of fuzzy sets B/,
B, ’=(B,"",...B™"). For each alternative j, we have to combine the individual B/’s over all
the rules i into a set B,

Combing the B/s is a critical part of modeling the decision process and thus
requires careful consideration. The aggregation scheme used to combine B;” should reflect
the nature of the problem under consideration and the interpretation of the fuzzy sets
involved. The aggregation corresponds to the process in which different pieces of
information and their resultant implications are combined.
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Figure 19: Attractiveness of an Alternative
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The fuzzy control framework provides a mechanism to combine the inferred sets
B/’ given by equation (B-7) in Appendix B, which corresponds to taking the union of all
B/"’s. This approach is motivated by the fact that pg.(y) dominates pg,o(y) if pgy(y) 2
Pgie(y) since it represents a higher possibility for the value y to occur. The idea of
dominance, however, is not appropriate for the process we model; The set B is the final
attractiveness of alternative j, obtained by application of different rules, where each rule
corresponds to a different aspect of alternative j being attractive or not. Thus taking the
union, as suggested by equation (B-7), and as demonstrated in Figure 19b by the thick
line, would correspond to loss of information. In order to make sure that all the
evidence contributing to the attractiveness of alternative j is considered (and not only the
strongest evidence), we use the following aggregation scheme (Kosko, 1992):

ba @)=Y, Bap) (5-4)

This aggregation scheme considers the contribution of all rules (and the shapes of their
membership functions) to the attractiveness of each alternative, and thus it is more
appropriate. It is demonstrated in Figure 19¢ by the thick line.

A more general version of this aggregation scheme is given by:
)=, WiHp ) 5-5)

where w; is the weight of rule i. Rule weights were suggested by Kosko (1992), to model
credibility, frequency or strength of rules. For our case rule weights can have two major
applications: to weigh default rules in the default model, and to model reliability of the
provided information the simultaneous and the default models. The rule weights that we
use are always less than 1, thus we can view them as a way to discount the degree with
which a rule is fired by changing ¢ into oyw;.

In the default model we distinguish between two groups of rules: default rules
which correspond to routine behavior under usual circumstances, and information rules
, relating to the provided traffic information. Default rules are fired only to the extent to
which usual conditions have occurred. This is done by weighing the default rules by
weights corresponding to the consistency between usual conditions, and actual conditions
(as reported by the information system). If conditions are usual, default rules are fired
to the full extent. However, when unusual conditions are reported, the associated
information rules dominate the decision, while default rules are fired to a lesser extent.
For a default rule, "if A, then B;", where A, relates to perceptions of usual conditions, we
propose to use: Poss[A" | A™] or Cert[A"lA”] (as defined in Appendix A) as w;, the
weight for rule i, where A’ represents travel time perceptions, and A™ is the information.
Thus, default rules are being fired only to the extent with which they relate to perceptions
that are consistent with information, while they are ignored when they are not consistent.
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If no information exists then they are fired to the full extent (depending of course on the
agreement between A, and A%). If for example, w; is given by Poss[A” |A™], and
Poss[A’ | A*]=0, then prior perceptions do not have any overlap with the provided
information, and the relevant default rule is ignored. However, if Poss[A” |A"]=y,
0O<y<1, then perceptions and information overlap to the extent Y, and thus the strength
of the i’th rule is decreased by 1-v, the amount by which perceptions and information are
not consistent.

Rule weights can also be used to model the ieliability of the information provided.
If the information source is reliable the corresponding rules are fired as determined by the
appropriate o, whereas unreliable information source will result in discounting the
strength of the fired rule. .

5.6 Defuzzification
5.6.1 General

The defuzzification phase deals with translating the combined RHSs, B''s, into a
control action, or as in our case into choice. In fuzzy control, the defuzzification scheme
most often used is the center of gravity method given by equation (B-8) in Appendix B.
The final control action, z, usually corresponds to the level of operating a certain control
device such as speed, temperature, flow etc. If several devices are operated then the
output is multi-dimensional, and each action to be taken has a corresponding membership
function. The membership functions are defuzzified separately and independently and
result in operating instructions to be executed by the corresponding device.

However, the route choice problem is a discrete choice problem, hence even
though the output is multi-dimsnsional, giver the attractiveness of each of the m
alternatives, the model should finally provide a single discrete choice. That is, the
defuzzification scheme has to result in a discrete choice based on m fuzzy sets (and not
one). There are several possibilities to address this problem. Two main approaches are
described below:

. Compare m fuzzy sets using some comparison method, and choose the alternative
whose attractiveness is the highest.

. Defuzzify each of the m membership functions, B, separately into its
centroid: z, and:
i. choose the alternative with the highest centroid, or
ii. treat the centroids as the systematic components of a random utility model.

There are different behavioral assumptions underlying the two approaches; in the
first approach the final choice is based on the result of comparing m fuzzy sets, and in
the second on comparing m scalars that are either deterministic or subject to random
noise. For the first approach there is the issue of which is the appropriate comparison
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method (which by itself imbeds behavioral assumptions), and the result is deterministic
in the sense that the same user will make the same decision under identical conditions.
We will focus on the second approach, which is very appealing for modeling the final
choice since it can incorporate noise in the choice process.

5.6.2 A Random Utility Model (RUM) Defuzzification Scheme

Let 2 be the center of gravity of the fuzzy set B as given by equation (B-8) in
Appendix B. B” corresponds to the combined attractiveness of alternative j, and 2 to its
defuzzification into a scalar. Thus, Z can be viewed in a deterministic framework as the
attractiveness of alternative j, and in a probabilistic framework as the systematic
component of the utility of alternative j in a random utility model. That is, the utility of
alternative j for individual n is given by: Z,,,=z‘,,+sj,,, where g, is the random component.
The underlying behavioral assumptions of this model are similar to those of the general
RUM (Ben-Akiva and Lerman, 1985).

We call the model: Zj,,=zj,,+(-:jn ARRUM (Approximate Reasoning Random Utility
Model). ARRUM can be viewed as a combination of two processes:

. The systematic component, z,, modeled by an approximate reasoning
process, which associates the available (possibly fuzzy) inputs into
attractiveness of the various alternatives in a non-linear fashion. This
process models the underlying decision process as a combination of "if-
then" considerations which are processed together to come up with a final
attractiveness for each alternative. Thus, the attractiveness of each
alternative is the result of simple and rational considerations as well as
multi-causalities, interactions among alternatives, and possibly irrational
behavior.

. The random component, €, corresponds to random noise in human behavior.
This random noise accounts for, empirically observed, inconsistent behavior. The
same individual, for example, may choose different alternatives under
(hypothetical) identical conditions. It also captures unexplained behavioral factors
in the approximate reasoning process (e,g. missing rules or parts of rules).

In summary, both the traditional RUM and the suggested ARRUM model are
random utility models in which the utility of each alternative i in the choice set is given
by: U,=V,,+€,, and the underlying assumption is that individuals try to choose the
alternative with maximal utility. The difference lies in the underlying assumptions about
the structure of the systematic component V;,. Most existing RUM models assume a
linear form for the systematic component (i.e. V;;=p’X;)). The suggested model, on the

other hand, assumes an approximate reasoning process resulting in V,,.
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5.7 Implementation and Calibration

The implementation and calibration of the models depends on the nature of the
specification: aggregate or disaggregate. The ultimate objective for practical use,
prediction, and planning is aggregate modeling. However, disaggregate modeling is
important by itself when implementing and testing new methodologies, and recently has
gained additional motivation from detailed simulation models in which the behavior of
individual drivers is being simulated. We assume that individual characteristics are
captured by the different membership functions used to model perceptions as was
discussed in chapter 3. With respect to rules, the models presented in this chapter can
be implemented both for disaggregate and aggregate modeling. In disaggregate modeling
we assume that each individual has its own set of rules that correspond to its own
behavior pattern. For aggregate modeling we assume that a homogeneous group of users
has a common set of rules, and the individual differences are being accounted for by the
different individual perceptions that serve as inputs to the rules.

There are two major groups of variables in the approximate reasoning model:
membership functions, and rules. As was discussed in section 3.2.1, travel time
perceptions as modeled by membership functions are individual-specific and are
influenced by the specific individual characteristics. Thus in implementing the models
we maintain individual-specific membership functions in order to capture the differences
among individuals.

The rule matrix car be individual-specific, or global (the same rules matrix for
different individuals). Ultimately we believe that one rule matrix can be common to .
several individuals whereas the differences among individuals are captured through the
different perceptions as modeled by the individual-specific membership functions. We
do not think that different individuals have identical rules, however, because of differing
perceptions, different rules will be fired to different extent for similar circumstances.

5.7.1 Generation of Membership Functions

In the proposed model there are two types of membership functions. The first
corresponds to driver’s perceptions of system attributes and information, and the second
to design aspects of the model. The first type is the input to the model (A®), and the
second corresponds to rules’ premises (A)).

Modeling driver’s perceptions of travel times and the generation of the
corresponding membership functions was discussed in Section 3.2. In most applications
of fuzzy set theory TFN’s (triangular fuzzy numbers) or TrFN’s (trapezoidal fuzzy
numbers) are used, thus limiting the membership function estimation to 3 or 4 parameters.
It is assumed that the shape of the membership function captures many of the individual
characteristics with respect to the way the driver perceives the system, as well as personal
attributes, preferences and familiarity with the system. Currently it seems that personal
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interviews or surveys are needed in order to generate the membership functions involved.
For further applications, we nope that future research will provide mechanisms to generate
membership functions which would capture personal and system characteristics.

The second type of membership function is used to divide the feasible range of
a given attribute into labels. These labels constitute the LHS and the RHS of the rules.
An example appears in Figure 17a where the range of possible travel times is divided into
5 categories ranging from Very Low to Very High, and each set is modeled as a
Triangular Fuzzy Number with 50% overlap between neighboring sets. The membership
functions of the labels presented in Figures 17a and 17b do rot correspond to actual
perceptions and serve as a standard base on which different drivers perceptions could be
compared.

5.7.2 Rule Generation

The rules are the building blocks of the approximate reasoning models presented
in this chapter, and thus their generation needs careful consideration. In this thesis we
assume that membership functions are obtained first, and rules are subsequently
calibrated. An interesting future research activity would be to develop approaches for the
calibration of fuzzy inputs and rules simultaneously.

In this section two approaches for rule generation are suggested. The first
approach is an optimization approach which formulates the rule generation problem as an
integer linear programming problem (section 5.7.2.1), and the second approach is heuristic
in nature (section 5.7.2.2).

5.7.2.1 Integer Linear-Programming Based Rule Calibration

In this section we formulate the approximate reasoning model as an integer linear
programming (ILP) problem. Typically we can not expect to have closed form
representation and solutions for the models, but the special case considered in this section
obeys all the requirements that we have specified in the previous sections, and thus
presents a very attractive implementation of the model.

We assume that membership functions are given. If there are major faults with
the way membership functions are generated, we expect to detect them through a poor fit
with observed choices. Thus the rules are the unknowns of the problem. We start with
an initial rule matrix, and use an improvement procedure to fill it, or test its
appropriateness. Following the discussion in section 5.2, we treat the LHS structure of
the rules as given, and weat the RHS vectors as variables. How many of the RHS
components are variables depends on the degree of rule complexity that is being
implemented (first or second level rules). Thus in general, the variables are the possible
RHS entries, which can take exactly one of the following values: Y,PY,[LPN,N.
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For implementing the approximate reasoning model, we use the product-correlation
implication scheme as given by equation (B-6) in Appendix B for rule execution, and the
summation rule combination scheme given by equation (5-4). For this case Kosko (1992)
showed that there is a closed form representation for the centroid of the combined set B’
which is given by:

) Eﬁx AL (5-6)

E:i S,

where ¢ is the degree to which the i’th rule was fired, V; is the centroid cf the fuzzy set
corresponding to the RHS entry of rule i, and S, is the area of this set (if Z,;N0;S,=0 z is
equal to 0). If all the possible RHS outcomes have equal area (such as in the case of
Figure 17b), then we have:

z

- 2 Vi )

ZiN-l «;

Notation and Definitions

Inputs:

K : number of observed choices (index k)

N :  number of rules (index i)

m :  number of alternatives (index j)

P:  number of possible RHS outcomes (index p)

oy(k): degree with which rule i is fired for the k™ choice, (as calculated by equation
(5-2) '

oc(k): the k'™ observed choice

V., : the centroid value for outcome p

M:  a very big number
Variables:
Z)(k) = centroid of alternative j for trip k

Ci’p = { 1 if RHS/=p
0 otherwise
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Ve = { 1 if correct choice was made for trip k
0 otherwise

Formulation:

mafo-l Y

subject to:

Zj(k) = EIN-I al(k) g-l Clivp v j,k
2:11 (k)

3. Cp=1 Vi

Z°Wk) > ZJK)-e, Vjroc®) Vk

€ s (1-y M Vk

€20 Vk
Cl e .1} V ij,p

¥, € 0,1} vk

(5-8)

(5-9)

(5-10)

(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

The objective function as given by (5-8) maximizes the number of trips that are
correctly predicted by the model. The set of constraints given by (5-9) defines the
centroids Z/(k) as a function of the variables of the problem by utilizing equations (5-6)
and (5-7). The set of constraints given by (5-10) guarantees that exactly one RHS entry

is chosen. The group of constraints (5-11) corresponds to

the deterministic

defuzzification scheme in which the alternative which corresponds to the aighest centroid
value is chosen. It requires that the centroid of the chosen alternative (as observed) will
be greater than the centroids of all other alternatives. However, since it is not clear
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whether a feasible solution exists, we allow this group of constraints to be violated by
amount &, for each trip k. If the correct choice was made, we want g, to be zero and y,
to be equal to one. This is guaranteed by the set of constraints (5-12); the objective
function drives y, to be equal to one whenever possible, and if y, is one then g must
equal zero. Constraints (5-14) and (5-15) are the integrality constraints.

The number of variables for first level rules are N*P (there is a single RHS entry
for each rule), and N*P*m for second level rules.

Another group of constraints that can be added to the formulation are monotonicity
constraints. Monotonicity constraints require that preference towards taking a specific
alternative obeys direct weak monotonicity with respect to traffic conditions on that
alternative. For example, they do not allow the following mapping {concerning the same .
alternative):

VL - PN
H - PY

which implies that if travel time is Very Low the alternative will probably not be chosen,
whereas if travel time is High it will probably be chosen. This consistency requirement
is somewhat analog to the "right" sign expectation in random utility models (we expect
the sign of the travel time coefficient to be negative). This requirement can be imposed

by the constraints:
J J -
2:.,1 Cl'pVP s Z?;l Ci”pvP (5-16)
whenever LHS,/ is worse than LHS,/.

Typically there are no closed-form representations for fuzzy control applications,
hence the formulation presented in this section is very appealing. Furthermore, the
specific design used for the RHS (all categories having equal area), results in a linear
(integer) formulation which is also very appealing from a computational point of view.

5.7.2.2 Heuristic Approach for Rule Calibration

In this section we assume that we have an initial rule matrix, which is used as a
basis for changes to improve the predictive po‘wcr of the model. In the extreme case the
calibration procedure can be done on an "empty" rule matrix, and in that case all the
parameters of the rules are generated.

The calibration of the approximate reasoning model can be done in two phases;
in the first phase the process is evaluated and problems are detected; and in the second
phase an improvement procedure tries to eliminate the problems detected in the first
phase, and generate missing parameters. The second phase can take place without the
first, but it seems that the first phase can make the second phase computationally more
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efficient.

For the first phase, an initial set of rulss may be formed by techniques similar to
the ones used for knowledge acquisition in expert systems. The experts in this case are
the drivers themselves. Once an initial set of rules has been established, it can be tested,
updated and expanded so that the accuracy of the mecdel is improved. The first phase is
demonstrated in Figure 20; given an initial rule matrix we implement the choice process,
compare its outcome with the observed choice, and use the result of this comparison to
"reward" good rules (rules that supported a correct choice) and "punish” bad rules (which
supported a wrong choice). We compare each .predicted choice Z(k) with the observed
choice oc(k). Based on the outcome of this comparison we construct a weight vector
W=(W,,...,Wy) which assigns a weight W, to each rule i. Each rule i is being "fired" to
a degree ay(k) for the k™ observed choice. Thus rule i contributes (k) to W, if the k™
observed choice coincides with the predicted choice, and -oy(k) otherwise. The weight
of rule i based on all observations is then given by:

wi=2“ 63G)-Y., ,()(1-3G))

Y Fr@)

for i=1,..,.N (5-17)

where: 8(k) = { 1 if Z(k)=oc(k)
0 if Z(k)=oc(k)

Fa(k)

{ 1 if oy(k)>0
0 otherwise

We take the effective average (by dividing by the number of cases in which each
rule was actually fired to some degree) since we may have "good" rules that are fired
very rarely (such as rules dealing with special events or incidents). We expect to have
all weights W, positive and cf about the same magnitude, meaning that existing values
are consistently good. Rules with weights that are significantly lower than the other
weights indicate some problems, possibly in the rules themselves, the reievant
membership functions, or some combination of the above.
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Figure 20: Rule Calibration
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At the second phase, depending on the defuzzification scheme used, we try to
maximize the fit between the model choices and the actual choices. For example, if we
implement the ARRUM with probabilistic defuzzification scheme, we maximize the
likelihood of the actual choices. For demonstration purposes let’s look at a binary choice
between alternatives q and r. Assuming a probit-type model, the probability that
alternative q is chosen for the k™ trip is given by:

pq&):@(w) (5-18)

where @( ) denotes the standardized cumulative normal distribution, and:

02=o:+of—2oq, (5-19)

where 6” and o2 are the variances of the error terms associated with the utility of
alternatives q and r respectively.

Thus, the likelihood function is given by:

LT, P00 20
where: Vi = { 1 alternative j was chosen for the k™ trip
0 otherwise

The centroids Z/(k) depend on the specific design used. For example, the model
which uses product correlation encoding, and the aggregation scheme described in 5.5,
has a closed form for the centroids as given by equation (5-7).

The maximization is complicated by the fact that most parameters involved are
discrete, and thus the likelihood function can not be differentiated. However, we can take
advantage of the discreteness of the problem in the following way; the discrete parameters
correspond to missing entries in the rules, and can take a finite (and small) number of
values according to the pre-determined design. Missing LHS entries (for a specific
alternative) belong to the group {VL,L,M,H,VH}, and missing RHS entries belong to the
group {N,PN,IPY,Y} for which the centroids V] and the areas S/ are known. Thus the
optimization problem is to maximize the likelihood function (or log of the likelihood
function) as given by equation (5-20) subject to the constraints that exactly one possible
value from the relevant group will be chosen, and that S} will have a non-zero value only
for the chosen V/ entry.
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An attractive way to solve the above described optimization problem is to use a
branch-and-bound (B&B) procedure. A B&B algorithm is appropriate for solving
combinatorial problems with few integer variables, especially when their possible values
are finite, since in that case the branching phase does not involve large computational
requirements. Moreover, if the first phase of the calibration process is done properly, we
can obtain good bounds, since the optimization treats as variables only components of
rules that were identified as "problematic”. An inherent difficulty of any B&B algorithm
is to come up with a good branching rule. In our case, we might have some idea which
values are more likely than others from the problem structure; for example if the LHS of
a specific rule conveys "bad" information on the state of a certain alternative i, then the
attractiveness of other alternatives j, j#i, will tend to increase. Thus, branching on more
possible values might give better bounds and help in eliminating branches, and branching
on less possible values might eliminate them at an earlier stage. The other inherent.
difficulty is the bounding phase. For our case, we <an generate bounds from existing rule
matrix results and from the fact that every Z(k) is bounded from below by -1 and from
above by +1.
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CHAPTER 6: CASE STUDY

The data needed for the calibration, and refinement of the approaches presented
in Chapters 4 and 5 should represent a diary for drivers and their behavior under various
scenarios of traffic information availability The various demonstration projects will
hopefully provide this sort of data in the near future. However, in the absence of any
such data currently, we use data from a driver simulator designed and implemented for

this purpose.
6.1 Driving Simulator

There is evidence that ’real-world’ behavior is related to behavior in computer-
simulated environments (Clark and Smith, 1985), thus computer simulators can be used:

. to simulate real world decision making environments and to record the behavior
of human subjects interacting with this simulated environment;

. to aid in calibrating models of the decision making behavior;
. to permit simulations of decision making behavior in a large variety of
contexts.

Hence, driving simulators for advanced driver information systems (see for
example Bonsall, 1991) provide means to collect data on driver behavior (route choice,
reaction to information, etc.) which can be used together with interviews and direct
observations on route choice, to calibrate models similar to the ones presented in this
thesis. Driving simulators facilitate controlled experiments in a realistic environment;
information, for example, can be provided on one link at a time during a simulated trip,
so that the response is clearly associated with the changing condition of that link.

In order to collect the data necessary for implementing our route choice models,
we have designed and implemented a two-dimensional driving simulator (see Figure 21)
which has the following characteristics:

J Travel times on links are sampled from a normal distribution and are
updated during the trip.

. Link congestion levels are indicated by colors according to the following
categories:
FREE FLOW - GRAY
LIGHT TRAFFIC - YELLOW
USUAL TRAFFIC - GREEN
HEAVY TRAFFIC - BLUE
BUMPER TO BUMPER - MAGENTA
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Driving Simulator




Accidents appear as magenta-colored squares on nodes. Their location is
randomly distributed among the nodes (excluding the origin and the destination
nodes), and their starting time and duration are randomly sampled from a uniform
distribution with appropriate parameters.

The screen is composed of two major windows (see Figure 21):

- The right window, the information window, corresponds to the provided
information, and includes (other than the map), link congestion levels
(indicated by link colors), and indications of accident locations.

- The left window, the observation-window, corresponds to the driving itself
and is dynamic in nature; at each intersection it freezes and the driver has
to make a choice. Once a choice has been made, the car starts moving
along the chosen link. While "driving" the driver has to accomplish a very .
simple task: to keep a randomly-moving ball within the car frame without
hitting its edges. This simple requirement corresponds to the driving task,
which is the primary task the driver is engaged in, and forces the driver to
make decisions and to process all the available information while "driving"
(Sheridan, 1991b). While "driving" the driver sees his/her car moving
along the chosen link, and can observe only the part of the network that
includes links adjacent to the current location of the car. At the same
time, on the information window, the driver can see his/her car moving
along the overall network map.

The general direction of the destination, compared to the driver’s current location,
is being shown continuously and is being updated according to the direction
traveled.

While traveling on a link, a sound that is associated with the congestion level, is
being heard.

Current time, and elapsed time since the trip has started are continuously shown
and updated.

Time advances in real-time at decision nodes while waiting for a decision, and
faster while moving along links.

After the completion of each trip, the subject gets general information concerning
the trip; total travel time (in minutes), total decision time at nodes (in seconds),
a score of how well the subject did compared to the shortest path, and a safety
score which indicates how well the subject performed the driving task.
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6.2 Data Collection

The Network

The experiment was conducted among drivers commuting on the "Newton
Network", the commuting corridor between south-west Newton and MIT. The network,
as presented to the drivers, appears in Figure 22. It includes three major alternatives:

Beacon Street,
Commonwealth Avenue, and
The Mass. Pike.

Paths that do not match one of the pre-specified 3 alternatives are considered diversions.
For example: if a subject traveled from node 1 to 2 and then to 3, it is considered a
diversion from Beacon to Coram. Ave. In order to simplify the network and limit the
possible choices, all links are one-way directed towards MIT, except links 2¢53 and 45.

Sample

Ten subjects participated in the case study. Most subjects were familiar with the
Newton network, and were identified from the responses to a survey that we conducted
in May 1991 (the survey that appears in Appendix C). The sample size was ten people
of whom eight commute regularly from Newton to MIT, and the other two are familiar
with the network.

Interview

We conducted a short interview before the subjects actually drove the simulator.
The purpose of this preliminary session was to learn more about the individual choice-set
of each subject, a: 1 to associate the alternatives that the subject actually knows and uses,
with the given network. Thus for different subjects, the "Beacon" option can represent
different but similar alternatives, which use Beacon street for some portion of the trip.
In addition, we asked about the favorite alternative, about travel time perceptions (as
discussed in section 3.2.1) on the three major alternatives, and the percentage of time
spent on each link. A copy of the preliminary session appears in Appendix D.

Driving the Simulator
Each subject performed a total of 22 trips from the home node to MIT. The first

two were considered to be practice trips, thus a total of 200 trips were performed. Traffic
scenarios for the 20 trips varied randomly according to the following design parameters:
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Figure 22: The Newton Network
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. congestion levels
. accidents
. information availability

More specifically, in 4 trips no information was available (the information window did
not appear), 11 trips had node accidents (on at most one node), and in 50% of the trips
link accidents (on one link) occurred. Congestion levels appeared in all trips as link
colors, and varied from 0.8*mean-travel-time to 1.8*mean-travel-time. Information was
always reliable, where the reliability of the information could be inferred by the match
between observed link colors (at the observation window), and provided link colors (in
the information window). Overall, traffic conditions in the network were worse than
typical traffic conditions in order to focus on conditions in which information is
important, and route choice behavior has to be re-evaluated.

While subjects were driving the simulator, the following data were collected: at
each decision point all link colors (information and observation), shown accidents,
decision time, and route choices. Table 7 summarizes the choices of thc participants
during the experiments.

- chosen altermative diversions | unfinished ’
alternative Beacon Comm. Mass. | trips
6 1 7 1
16 2
3 3 11 1
4 Beacon 4 5 7
5 Beacon 4 9
6 Beacon 10 2 8
7 Beacon 5 10 5
" 8 Beacon 9 4 3 4
Mass 1 17 2
Beacon 3

Table 7: General Sample Information (totals)
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The favorite alternative corresponds to the alternative most often chosen, as declared in
the preliminary session. Unfinished trips are trips that were not completed because the
subject was delayed in traffic due to an accident. Diversions are choices that do not
correspond to the pre-defined 3 alternatives. They include diversions between the Beacon
alternative and Comm. Ave., (no diversions are allowed once the Mass. Pike has been
chosen).

6.3 The Approximate Reasoning Model Implementation

In order to implement the approximate reasoning model that was presented in
Chapter 5, we need to specify all the und«rlying design parameters, and a method to
derive the inputs from the available data. Since this case study is the first attempt at
implementing the approximate reasoning model, we focussed on a relatively simple
version of the algorithms involved. We focus on medeling individual behavior
(disaggregate analysis) as a starting point, and then get a general fecling of the behavior
of the participants as a group (aggregate analysis).

Input Variables

The inputs to the approximate reasoning models (A" in Figure 16), are observed
traffic conditions and the information available. Thus they belong to two major groups:
observation and information. Another possible group of inputs is a priori perceptions.
The specific scenarios used for data collection in this case study, simulated traffic
conditions which are much worse than typical traffic conditions in the network, and
moreover, observation was always available. Thus, it was found that the subjects, in
general, followed the information and observation rather than their own perceptions since
it related to situations with which they were not familiar and was always reliable.

Observation inputs are the current traffic conditions (conveyed by link colors), as
can be seen from the current node in the observation window (the driving window), and
thus relate to congestion levels on links adjacent to the current node. Inputs relating to
the information available are of two types: congestion levels on all the links in the
network (as displayed in the information window), and accidents shown in the network.
The uniqueness of the input presentation in the AR model presented in Chapter 5, lies in
its being symbolic and linguistic (i.e. colors that correspond to linguistic categories such
as "heavy traffic", and accident indications).

We need to define the membership functions corresponding to each of these input
groups. Since information that is related to travel times and congestion levels is conveyed
symbolically in the simulator (by link colors and the appropriate translation), we need to
model travel time perceptions according to the provided categories (free flow, light traffic,
usual traffic, heavy traffic, and bumper-to-bumper).

For modeling the fuzzy set corresponding to "travel times experienced along a
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given path" we use, following the discussion in section 3.2.1, the responses to the
questions in the preliminary session concerning the range of most possible travel times,
and the minimum and maximam possible travel times. For example, the fuzzy set in
Figure 23a corresponds to a person who specified that usually it takes 25-30 minutes to
travel on that specific path. The shortest possible commute time is 20 minutes, and the
longest is 45 minutes. As discussed in section 3.2.1, the shape of the membership
function captures a lot of the individual and the facility characteristics, and these should
be maintained when determining the fuzzy sets corresponding to the specific travel time
categories.

For determining the ranges and the shapes of the 5 travel time categories for each
alternative, we use the following guidelint;s (sec Figure 23b):

. The range of the fuzzy set corresponding to "usual" travel times is defined to be
the range which the user stated (during the preliminary session) as the range of
usual travel times, that is: [a,,a,].

. The shape of the fuzzy sets "light traffic" and "heavy traffic" over a given range,
is proportional to the shape of the T,FN that defines "possible travel times" as
appears in Figure 23a.

J The extreme sets of "free flow" and "bumper-to-bumper" do not overlap the set
of "usual" travel times.

. Each travel time in the range {a;,a,] belongs to two different sets with positive
membership degree (except possibly points in which a set starts or ends).

. The set of "light traffic" and the set of "heavy traffic" meet where the flat portion
of the "usual” travel times ends.

o The minimum possible travel time (a,) belongs to the set of "free flow" with

membership degree of 1, and similarly the maximum possible travel time (a,) has
full membership in the set of "bumper-to-bumper”.

. The extreme sets ("free flow" and "bumper-to-bumper") are Triangular Fuzzy
Numbers.

The above guidelines uniquely determine the TFNs corresponding to the 5
categories of travel times. Figure 23b illustrates the 5 travel times categories
corresponding to the general path perception of Figure 23a. As it can be seen, the
resulting design is not symmetric due to the fact that the underlying perception set (in
Figure 23a) is clearly skewed towards high travel time values, which is often the case
with travel time perceptions, as was explained in section 3.2.1. The suggested design
preserves the general shape of Figure 23a, except for the extreme sets that are clearly
biased towards the extreme values. The resulting membership functions, as shown in
Figure 23b, represent a categorization of the feasible range, as stated by the driver, into
travel time perceptions. It is motivated by two major principles: preserving the general
shape of the declared overall path perceptions, and treating the range of travel times that
occur frequently as the range of "usual” travel times. Sensitivity to this suggested design
is explored in section 6.5.1.5.
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Given the above path perceptions (for each path in the choice set), link perceptions
are derived proportionally by taking the corresponding link percentage (as reported by the
subject) of the overall path. Thus for each link we have defined 5 fuzzy sets
corresponding to the 5 possible colors observed or provided on that link. For deriving
A, the information provided on the Mass. Pike, for example, we add the two fuzzy sets
corresponding to the given colors on the two links that compose the Mass. Pike path.

As discussed before, there are three types of inputs (observation, information on
link congestion levels, and accident indication). The observation inputs rely on the
observed link condition as conveyed by the link color in the observation window. For
the unobserved links in the path, we assume that they have the same color, that is if the
first link on Beacon street indicates "heavy traffic", it would certainly also bias the
perception of Beacon street towards heavy. Furthermore, link traffic conditions for the
entire network are always sampled according to the same severity (captured by the factor
which multiplies the mean travel time), so in general we can expect, that if traffic is
"bad" (high factor) then most of the links will have dark colors. This design captures the
correlation among link travel times in the network. However, special conditions that may
affect only a few links, such as accidents, are modeled separately. Hence, the input to
the accident rules is binary: either there is an accident on a path, or there is not.

For the information rules, the input is given by the summation of the link
conditions (as conveyed in the information window) that correspond to the various
alternatives.

LHS & RHS DESIGNS

The LHS design is symmetric as was discussed in section 5.7.1 and illustrated in
Figure 17a. It divides the range of possible travel times into 5 symmetric categories:
Very Low, Low, Medium, High, and Very High travel times. As it was discussed in
section 5.7.1, those categories serve as underlying design sets on which different
perceptions can be compared . For determining the minimum and maximum values (min
and max in Figure 17a), we take the lowest and the highest possible travel time on all
three alternatives in the choice set. The advantage of this approach is that it facilitates
sets that are O/D related, and a direct comparison among the different alternatives is
possible. The RHS follows the design of Figure 17b, with equal areas for all 5 sets.

Rule Matrices

The structure of the rules follows the discussion in section 5.2.1. There are three
groups of rules: observation rules, information rules, and accident rules. The structure
of the observation and information rules is similar. The structure of the rule matrix
follows the discussion of rule complexity in section 5.2.2, that is the LHS is one
dimensional, and the RHS is one dimensional for first-level rules, and possibly multi-
dimensional for second level rules. Since the LHS is one-dimensional, it determines the
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size of the rule matrix. The number of observation and information rules is equal to the
product of the number of alternatives by the number of categories, and the number of
accident rules is equal to the number of alternatives in the choice set. For the initial rule
matrix we define the rules to be the intuitive rules resviting from the trivial mapping
between the 5 LHS and RHS categories:

VL - Y
L - PY
M - I
H - PN

VH - N

The initial rules concerning accidents are again intuitive: "if there is an accident on path
j then I will not take path j". Table 8 shows the initial rule matrix for decisions made at
the home node (node 1).

Decision Variables

The decision variables are the RHS entries of the rule matrix. For the first -level
rule matrix, their number is equal to the number of rules, while in the second-level
design, the number of the design variables is equal to the product of the number of rules
by the number of alternatives. The decision variables are discrete and can take one of 5
possible outcomes (Y/PY/I/PN/N). Their initial values are determined by the trivial
mapping discussed above. The only constraint imposed on the RHS values is that the
preference towards taking a specific alternative satisfies weak monotonicity with respect
to traffic conditions on that alternative. For example, we do not allow the following
mapping (concerning the same alternative):

VL - PN
H - PY

which implies that if travel time is Very Low the alternative will probably not be chosen,
whereas if travel time is High it will probably be chosen. As discussed in section 5.7.2.1,
this consistency requirement is somewhat analogous to the correct sign expectation in
random utility models (we expect the sign of the travel time coefficient to be negative).

Other parameters of the model can also be treated as variables (i.e. membership
function values), however in this case study we only treat the RHS entries as variables,
and check the sensitivity of the results to other parameter values (such as membership
function values).
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Table 8: Initial Rule Matrix for Node 1
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The Model

We implemented the specific version of the approximate reasoning model that was
described in Chapter 5. For rule execution we used the correlation-product encoding
scheme given by equation (B-6) in Appendix B, and for rule combination we used the
weighted combination scheme of equation (5-5). For defuzzification we used the simple
defuzzification scheme according to which the alternative with the highest centroid value
is chosen. That is, the chosen alternative for trip k is the alternative p such that:

ZP(k) = max; Z(k)
where ZJ(k) is the centroid of the set B! (the attractiveness of alternative j) for trip k.
6.4 Calibration Algorithm
In order to calibrate the model, we implemented a simple heuristic based on the

general guidelines for calibration that were discussed in section 5.7.2.2 and illustrated in
Figure 20. The calibration algorithm is described by the following steps:

0. Calculate model choices based on the given rule matrix.
1. Calculate rule weights by using equation (5-17).
2. Choose rule i with the lowest weight.

3. For the chosen rule i, try all possible RHS outcomes (Y/PY/I/PN/N), calculating
the fit for each possible outcome.

4. Choose the outcome with the highest fit and update the rule matrix
5. Mark rule i as examined; stop if all rules have been examined.
6. Go to step 0.

Step 3 of the algorithm depends on whether it is being applied to first or second
level rule improvements. For the first-level, only the RHS column corresponding to the
alternative under consideration is checked, as for the second-level rules, all the RHS
entries in the chosen rule are checked sequentially. Since this algorithm considers each
rule separately, the resulting rules may violate the monotonicity requirement discussed
before, and thus monotonicity should be forced on its results, as will be demonstrated in
the next section.
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6.5 Disaggregate Analysis
6.5.1 Decisions at the Origin

Decisions made at the origin (node 1, or HOME) correspond to choosing one of
three alternatives: Beacon street, Commonwealth Avenue, and the Mass. Pike. These
decisions are the most crucial for the given network. A user who chooses the Mass. Pike,
for example, can not change to another alternative at all. Users who choose Beacon or
Comm. Ave. can still divert, but at a higher cost. Choices at the origin can also be
viewed as pre-trip decisions, and require a large amount of information processing to
evaluate all the alternatives. Furthermore, for decisions made at the origin we have the
largest number of observations (20 choices for each of the 10 subjects) since each subject
started all the trips at the home origin. Thus choices at the origin will be thoroughly
explored.

6.5.1.1 Calibration of the Rule Matrix

Tables 9 gives detailed cross tabulation of observed choices and choices predicted
by the model using the initial rule matrix, and using the rule matrix resulting from the
suggested first-level improvements (without monotone fit). The rows in correspond to
observed choices of each of the three alternatives. The columns correspond to choices
predicted by the model, where the initial fit is based on the model with the initial rule
matrix (as given in Table 8), and the first-level improvement results are based on the
improved rule matrix (after applying the first-level improvement algorithm to each subject
separately). For example, subject #2 chose Beacon Street 3 times and Comm. Ave. 17
times. Both models (the one based on the initial rule matrix and the one after the first-
level improvement) predicted correctly all the Comm. Ave. choices, and 2 out of the 3
Beacon choices (the incorrectly predicted trip was "Comm. Ave." instead of "Beacon").
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Note that the initial fit, without calibration, estimation or optimization, is quite
good (the average fit is 62%). This supports our hypothesis regarding the intuitive and
simple reasoning process associated with route choice behavior: a very simple and
intuitive initial rule matrix provides a good initial fit. The first-level calibration improves
the average fit with a value of 83.5%. As mentioned before, the fit after applying the
first-level improvement is not necessarily monotone. After forcing monotonicity (as will
be demonstrated shortly), we end up with the results presented in Table 10 (with average
fit of 80.5%). Note that the initial fit and its average of 62% corresponds to a global
fit in the sense that the same rule-matrix (the initial matrix) applies to all 10 subjects,
whereas the improved first-level and the resulting monotone rule matrices are individual-

specific.
. . !
§ subject initial fit % | monotone fit % |

!

1
2
3
4
5

[ 6

7
8

[ o

—
o

Table 10: Improved Monotone Fit (node 1)
In order to provide some insight on how the calibration process works, we
examine more closely subject #6 (with an initial fit of 25% and an improved fit of 95%),
and subject #4 (with an initial fit of 45% and an improved fit of 60%).

The changes recommended by the first-level improvement algorithm for subject
#6 were as follows:
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rule # LHS alternative initial RHS entry recommended RHS entry
Y

2 Beacon St; PY
3 Beacon St; PY Y
7 Comm. Ave; PY I

The recommended changes indicate a stronger preference for Beacon Street, and a slightly
iower preference for Comm. Ave., and all of the changes satisfy the monotonicity
requirements. A closer look at the rule weights for the initial fit and the fit after the three
recommended changes, reveals that indeed they have improved signiticantly. For
example, the initial weight of rule #2 was -0.473 (which was the second-worst rule
weight), and after the changes it improved to 0.818 (the second-best rule weight). The
average of the rule weights increased from -0.056 to 0.27. It is also interesting to observe
improvements in rule weights of rules that were not changed. For example, rule # 12
(which says: "if Mass. Pk. is L, then PY"), initially got the worst rule weight (-0.5),
however it was not recommended for change because neither the model nor observed
choices picked the Mass. Pike, thus making the Mass. Pike less attractive would not
improve the fit. Nevertheless, when other rules were changed, the weight of rule #12
increased to 0.9 (the best weight), since this rule now was part of correct choices.

The recommended changes for subject #4 were:

rule # LHS alternative initial RHS entry recommended RHS entry
9 Comm. Ave; PN Y
17 Beacon St; PY N
21 Comm. Ave; Y I

The changes indicate higher preference for Comm. Ave. and lower preference to Beacon
Street. However, none of them satisfies the monotonicity requiremeni. In order to
achieve monotonicity we either change other rules (that were not recommended for
change) so that the overall rule matrix satisfies the monotonicity requirement, or change
the recommended rules such that they will be monotone with other rules. .The best fit
achieved after forcing monotonicity was 60%, and it was achieved by the following
changes (compared to the initial rule matrix):

rule # LHS alternative initial RHS entry monotone RHS entry
17 Beacon St; PY N
18 Beacon St; I N
19 Beacon St; PN N

Thus the monotone fit was achieved by adjusting the changes suggested to rule #17, and
ignoring the other suggested changes. A closer look at that rule reveals that the
improvement achieved due to its change was indeed the largest (from 40% to 60%), and
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its weight was the lowest. Moreover, the optimal monotone fit for that subject is 60%
(as will be presented in section 6.5.1.2).

Second-Level Rules

When the heuristic was applied with second-level rule improvements, the
following results were obtained:

)

initial fit % | monotone fit % §

Table 11: Improved Monotone Fit, Second-Level (node 1)

The symbol T corresponds to a result that is higher than the first-level updates,
and no symbol means the same fit. Overall, the second-level rules perform slightly better
than the first-level updates.

Second level improvements take advantage of their ability to model interactions
among the three alternatives. For example, as was mentioned before, subject #6 had a
very low weight for rule #12, but the rule did not change in the first level because it
could relate only to the Mass. Pike option. However the second-level improvements
suggest changing it to:
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, LHS - LHS- LHS- | RHS- RHS- RHS-Mass. §
| Beacon St. | Comm. Av. | Mass. Pike f Beacon St. | Comm. Av. | Pike :

Indicating that even though the Mass. Pike is Low, Beacon Street is preferred, and indeed
a look into the choices of subject #6, shows that the Mass. Pike was never chosen,
whereas Beacon Streei was chosen 18 times out of 20.

6.5.1.2 Comparison with Optimal Results

As was suggesied in Chapter 5, a branch and bound algorithm has the potential
to optimize the solution efficiently (find the RHS entries that maximizes the number of
correctly predicted choices). For the purposes of this case study we used explicit
enumeration. The results of this optimization will be used to assess the performance of
the heuristic method presented in the previous section.

The optimization procedure had three groups of constraints:

1. Only first-level rules are allowed,;
2. Monotonicity constraints; .
3. Observation rules are equal to information rules.

The last constraint was imposed for computational reasons. Hence the performance of
the generated rule matrix may not be the absolute best. However, given that the traffic
conditions simulated in most of the trips are worse than usual, and that the information
source is assumed reliable, we expect that dbservation and information rules would be
similar. Therefore we do not expect the effect of this additional constraint to be of
significance. The results obtained from this explicit enumeration are summarized in Table
12. The symbol T corresponds to a higher fit than the monotone fit obtained by the
heuristic calibration algorithm (as was summarized ir Table 10), and the symbol {
corresponds to a lower fit. A lower fit (such as for subject #8) is possible because of the
tnird constraint imposed in the optimization (i.e. identical rules for observations and
information). The optimal results are not significantly better than the results obtained by
the heuristic calibration algorithm and the monotone fit. This ouservation supports our
hypothesis that the decision process is simple and intuitive, such that a trivial initial
matrix and an intuitive and simple improvement procedure can yield results that arc quite
close 0 optimum.
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Table 12: Optimal Results

6.5.1.3 Comparison with Random Utility Model

In order to get an idea how the results presented so far compare with the widely
used traditional random utility models, we estimated two random utility models in which
the explanatory variables are: observation, information, and accidents. We used the
multinomial logit model according to which the probability that individual n will choose
alternative i is given by:

Va

Prob (i) = - (6-1)
e

]

wheie V; is the systematic component of the utility of alternative i for individual (or trip)
n. We estimated two alternative specifications:

model 1: Vi=B; +Bir Xiinr + Bui ACC
model 2: Vi=B; + By Xip + Biar Xijor + Bui ACC,

where X, is the travel time on alternative i, X, is the travel time information on
alternative i, and ACC, =1 if there was an accident on alternative i and 0 otherwise. In
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order to obtain discrete values for the explanatory variables, we used the center of
gravity of the TFNs that represent perceptions on observation and information. The
resulting fit (%) for each individual is given in Table 13.

i 1

AN | s W I | =)

- 00 |
o

average | 122 76.11 j

e e e ———— e

Table 13: Results of Random Utility Models

The symbol § corresponds to results that are lower than the ones obtained by the
approximate reasoning model (as appear in Table 11), and T corresponds to higher values.
The random utility model did not converge for subject #9. The fit of both logit
specifications is generally worse than the fit obtained by the approximate reasoning
model. The above comparison however is only intended to provide some preliminary
evidence regarding the appropriateness of the suggested framework. Further work is
necessary in order to compare it to alternative approaches and draw definite conclusions.
Due to the small sample most of the coefficients are not significantly different from zero,
and do not always have the expected sign (negative sign for travel time observation and
information).

6.5.1.4 Prediction

In the results that we have presented so far we used the available data for both
calibration of the models and predictions. A better (less biased) validation of the models
can be achieved by using for prediction purposes, data that have not been used for the
estimation. Although such data is not readily available, one subject of the 10 (subject #
8) did perform 60 additional trips. The prediction results for the additional trips with the
initial matrix, and the matrices derived by first and second level improvements (for that
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subject) are as follows:

rule-matrix fit of 1st session % (K=20) fit of prediction % (K=60)
initial rule matrix 60 60
first-level calibration 85 80
second-level calibration 90 80

For comparison, we also predicted the choices made by subject #8 using the
results of the random utility model. For the initial set of data the derived coefficients for
subject #8 were:

1.38 -.287 -59 -15 -9.79 -14
78 639 208 1633 |G 136 |

where B, and B, are the constants for the Beacon St. and Comm. Ave. alternatives
respectively, B, is the coefficient associated with observation of travel time, B, is the
coefficient of the provided information value, and B, is the coefficient of accident i.
These coefficients were used to calculate the probabilities of choosing each alternative for
the additional 60 trips (according to equation (6-1)). It was found that whereas the fit
obtained by these coefficients for the initial data set was 75%, the fit for the new data set
was only 65%. Thus we see, that for this case, the approximate reasoning provided a
better prediction tool.

6.5.1.5 Sensitivity Analysis

In this section we check the sensitivity of the results to some of the underlying
design parameters of the model.

Sensitivity to Type of Model '

So far we have been implementing the simultaneous model in which all the rules
are being fired to the extent with which the given input matches the LHS of the rule.
Next we examine the default model for which the degree with which the rules relating
to observation rules (rules 1-15 in Table 8) are fired is discounted as was explained in
section 5.5. The discounting factor for a rule whose LHS deals with alternative j, is equal
to Poss[A” | AI"*] (as defined in Appendix A) where A" is the observed travel time on
alternative j, and A" is the information regarding travel time on alternative j. The results
of the initial fit and the monotone fit after first and second level improvements are given
in Table 14.
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Table 14: Results of Default model

The results are identical to the results of the simultaneous model with two cases that have
a higher fit. The higher fit was achieved due to the different order in which rules are
picked (based on their weight) by the improvement procedure, rather than the different

model structure (when the rule matrices that correspond to this higher fit were applied
using the simultaneous model, the results were identical). Note also that the fit for
subject #7 is higher than the optimal fit of 60%, because the optimal results were
achieved under the constraint that the obser ‘on and information rules are the same.
This comparison shows that the simultaneous model and the default model give identical
results. This could be explained by the nature of the data collected by the simulator. In
the simulator, observation and information are highly correlated, since the observation on
links adjacent to the current decision node coincides with the information on those links
(they always have the same colors). Moreover, link congestion levels are sampled
according to the same congestion factor, thus if the observed links are highly congested
(e.g. bumper-to-bumper), it is also assumed that other links along the path are highly
congested. Furthermore, most congestion scenarios are worse than the typical congestion
levels in that network, and thus users are likely to forget their a priori perceptions and
adapt to the conditions porirayed by the simulator. A more realistic implementation of
the default model could assume "usual" traffic condition for the observation rules
(possibly by no observation colors in the observation window), and for this kind of
implementation we expect that the default model would differ from the simultaneous
model.
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Sensitivity to LHS Design

The results presented so far are based on the symmetric LHS design as appears
in Figure 17a. Another possible LHS design is a relative design according to which the
LHS categories are: much better than usual, better than usual, usual, worse than usual,
and much worse than usual. We implemented the approximate reasoning model using
these relative categories as LHS entries, with the corresponding membership functions
derived according to the design of Figure 23b. The results of the initial fit and the
monotone fit after first and second level improvements are given in Table 15.
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Table 15: Non-symmetric LHS Design

Most of the results are significantly lower than the results obtained by the symmetric LHS
design of Tables 10 and 11. The main reason for the lower fit could be the fact that for
the non-symmetric LHS design more rules are being fired and to a higher average degree,
but with a lower average rule weight. This reflects the fact that for the non-symmetric
design the differentiation among rules decreases and thus their consequences can not
dominate each cther, whereas in the symmetric design less rules are being fired, and
typically few rules dominate the final outcome, reflecting a more realistic decision

process.
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Sensitivity to Modeling of Perceptions

So far, modeling of travel time perceptions was done according to the design of
Figure 23b. In this section we examine the sensitivity of the results to this design. The
most characteristic feature of this design is that it is highly non-symmetric (as dictated
by the stated path perceptions). We tested how the approximate reasoning model
performs on a more symmetric design. The new design, demonstrated in Figure 24, has
equal ranges for the three categories of: light traffic, usual traffic, and heavy traffic, and
over those ranges the distribution of the T,FN is determined prcportionally to the stated
relevant path perception. The design in Figure 24 for example, corresponds to a driver
who declared the range [25,30] as the range of most possible travel times, and 20 and 45
minutes as the minimum and maximum possible travel times respectively. The extreme
categories of free flow and bumper-to-bumper are modeled as truncated TFNs. The
ranges of the 5 categories in Figure 24 are identical to the ranges of the symmetric LHS
design as shown in Figure 17a. The results of implementing the approximate reasoning
model, with the design of Figure 24 for modeling the input perceptions, are given in
Table 16.

initial fit % | 1st-level fit % | 2nd-level fit %

30 50 4 551

__

{ 301 95 90

65 90 95 1
' 75 U
| 85
10 70 85 80

o m— s

Table 16: Fit of Different Perception Modeling

The results do not show a clear trend of being better or worse than the initial
design, and in general are not significantly different. Thus we conclude that the model
is not very sensitive to the design used as long as it reflects the underlying path
perceptions.
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Figure 24: Travel Time Categories - Version II
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6.5.2 Diversion Decisions

En-route decisions are made after the trip has started, and in general pertain to
decisions to divert from the planned route due to observed or acquired information. In
the Newton network (of Figure 22) diversion decisions could occur at nodes 2, 3, 4, and
5. We focus on diversion decisions at nodes 2 and 3 because the link 4—5 (which
corresponds to St. Paul street) is often considered as part of the Beacon Street alternative,
whereas link 2—3 is not very well known.

The total number of trips in which a diversion at node 2 occurred (continued from
node 2 to 3 rather than to 4) was 13 out of 100, and the total number of diversions at
node 3 (trips in which the link 352 was chosen) was 6 out of 76. We will model
diversion decisions at node 2 because of the 6 diversions at node 3, 1 was a mistake, and
4 were triggered by an accident at node 5.

A decision whether or not to divert is a binary decision. Furthermore, the two
alternatives are complementary (if diversion is the attractive alternative then no-diversion
automatically becomes unfavorable). Thus, the RHS of the rules is one-dimensional, with
attractiveness of the diversion alternative modeled by the following sets:

D - Divert

PD - Probably Divert

I - Indifferent

PND - Probably Not Divert
ND - Not Divert

The design of the fuzzy sets that correspond to the above categories is similar to the RHS
design of Figure 17b, and it is illustrated in Figure 25.

The LHS is two-dimensional and corresponds to traffic conditions on the pre-
planned path and on the diversion alternative. There are again three groups of rules:
observation, information, and accidents. The initial rule matrix corresponds to the trivial
mapping (if the pre-planned route is good - do not divert, if the alternative is good -
divert) shown in Table 17.
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Table 17: Initial Rule Matrix for Node 2

Note that the initial rule matrix gives equal preference to the pre-planned and to the
diversion alternatives, whereas in reality we expect drivers to have a stronger preference
for the pre-planned alternative. We expect the calibration algorithm to detect this trend
(if it really exists).
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6.5.2.1 Calibration of Rule Matrix

The results of applying the first-level improvement algorithm are given in Table
18 (note that for binary diversion decisions there are no second-level rules).

# of
diversions

Table 18: Diversion Decisions at node 2

Note that only 100 out the 200 trips passed through node 2. The rule matrix, calibrated
by applying the same heuristic approach, provides a very good fit between predicted and
actual choices. However, due to the small number of diversions, the success in predicting
diversions is only average.

Some of the changes observed between the initial and the calibrated rule matrix are:

Subject # rule # existing entry recommended entry
7 18 I ND
8 14 PD ND
9 3 I ND

The nature of the few recommended changes is to give higher preference to the "Not-
Divert" option, which supports our a priori expectation that drivers favor their pre-planned
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alternative. But even without these changes, the initial rule matrix provided a very good
fit. This is explained by the input values to the rules, which are higher when the divert
option is exercised, causing rules which deal with good traffic conditions on the diversion
option to fire only to a low degree.

6.5.2.2 Comparison with Optimal Results

The enumeration-based optimization with 10 decision variables (again assuming
monotonicity and equal rules for the observation and the information groups) yields the

following results:
| optimal fit % |

subject

.S\OOO\!O\UIAU)N—-

weighted §
average:

Table 19: Optimal Results - Node 2
These results present a fit that is not significantly better than the fit obtained by
the improvement procedure (as presented in Table 18), and supports again the good
performance of the improvement procedure.
6.5.2.3 Prediction
We used the data available for subject #8 who performed 60 additional trips, of which 32

passed through node 2, for prediction purposes. For those additional 32 trips, the initial
rule matrix resulted in a fit of 90.6%, the improved rule matrix resulted in a fit of
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93.75%, and the optimal matrix for subject #8 resulted in a fit of 96.9%. These
prediction results are very good, and in fact are even slightly better than the results for
the initial set of data from which the improved rule matrices were derived.

6.6 Aggregate Analysis

In aggregate analysis we try to fit the same rule matrix to all subjects. The
underlying assumption is that there exists a giobal rule matrix for all subjects and that
individual differences are accounted for through the different perceptions which serve as
inputs to the rules. In the aggregate analysis we should keep in mind that even though
most of the subjects are familiar with the network, and live in that area, they do not live
at the same origin, and thus their choice ses are not identical. For example, for some the
option of the Mass. Pike is not realistic, whereas for others the Mass. Pike is the most
favorable alternative. However, we expect the different input perceptions to induce higher
costs for alternatives that are not really feasible, and thus to cause rules which favor those
alternatives not to fire (or to fire to a low extent). The initial rule matrices presented in
Tables 8 and 17 provide examples of global rule matrices since the same matrices are
being applied to all 10 subjects.

6.6.1 Decisions at the origin

At the origin (node 1) subjects chose one of three alternatives: Beacon Street,
Comm. Ave., or the Mass. Pike. Although these alternatives are not exactly the same for
all 10 subjects, we treated them as the same in the analysis that follows.

6.6.1.1 Calibration of Rule Matrix
The initial fit using the rule matrix of Table 8 was 62%. The monotone global

fit resulting from first-level improvements was 72.5%, and included the following changes
to the initial rule matrix:

rule # initial RHS entry monotone RHS entry relevant path
1 Y PY Beacon

3 1 PY Beacon

5 N PN Beacon

6 Y PY ¥ Comm. Ave.
21 Y PY Comm. Ave.
29 I PN Mass. Pike

The nature of the changes indicates a stronger preference for Beacon Sweet, and
somewhat lower preferences to Comm. Ave, and the Mass. Pike.

The monotone rule matrix resulting from second-level improvements is more
complex (compared with the initial rule matrix) and it is given in Table 20.
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The rule matrix given in Table 20 results in a global fit of 75.5%. It is interesting
to note that the most important changes correspond to the addition of interactions among
alternatives rather than changing existing entries (as done in the first-level updates). The
interactions include:

. if Beacon Street is "bad" then Comm. Ave. becomes more attractive (rules 5, 20),

. if the Mass. Pike is "bad" then Comm. Ave. becomes more attractive (rules 13,
15, 30).

A better understanding of the importance of specific rules can be gained by
looking at their weights as calculated by equation (5-17). Figure 26 illustrates the rule
weights calculated for the rules in Table 20. As expected, the three accident rules (rules
#31, 32, and 33) are good rules and have the highest weights. Rules # 32 and 33 even
get additional entries such that Beacon Street is the favorable alternative when there is
an accident on Comm. Ave. or the Mass. Pike. The next 6 highest weights correspond
to the rules which map "L" to "PY" (rules #27, 22, 12, 17, 7, and 2). These rules not
only have very high weights, but they also maintain their original format. The dual rules
(with symmetric membership functions) which map "H" to "PN" do not get such high
weights and are often recommended to be changed. This reveals a reasoning logic
according to which if an alternative is "quite good" it is likely to be chosen, whereas if
an alternative is "quite bad" it does not necessarily mean that it will not to be chosen.
This supports our expectation that a "usual” or "favorable" path may be chosen even if
its congestion level is quite bad. Additional support for this is the fact that the group of
rules which have the lowest weights is the group which maps "VH" to "N". This trend .
supports our initial hypothesis that the reasoning behind the choice process in not linear;
good traffic conditions indicate high attractiveness, but poor conditions do not necessarily
indicate similar-in-magnitude low attractiveness.

6.6.1.2 Comparison with Optimal Results

As we did in the disaggregate analysis, we used explicit enumeration to calculate
the optimal fit in order to evaluate the solution obtained by the improvement procedure.
The enumeration had the same three groups of constraints that were described in section
6.5.1.2. The optimal fit achieved was 71.5% which is lower than the fit achieved by the
improvement procedure (which was 72.5 for first-level rules). The lower fit resulted from
forcing the observation rules and the information rules to be identical. This constraint has
affected the results only in the aggregate analysis, implying that in order to use one rule
matrix for several subjects we need the flexibility provided by being able to differentiate
between the observation and the information rules.
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6.6.1.3 Comparison with Random Utility Model

We estimated the two random utility models that were presented in section 6.5.1.3
using all the 200 observations with the following results:

where B, and B, are the constants for Beacon St. and Comm. Ave. respectively, B, is the
coefficient associated with observation of travel time, B, is the coefficient of the provided
information value, and B, is the coefficient of accident i.

The fit obtained by the random utility models is comparable to the fit obtained by
the approximate reasoning model with first level improvement (72.5%), but is slightly
lower than the fit obtained by second-level improvements (75.5%). It is also be
remembered that the approximate reasoning results have been calibrated based on a
heuristic approach, whereas the results from the random utility model are based on global
optimization. Thus we can conclude that the approximate reasoning model provides a
better fit. Based on our observation about the non-linearity of travel time (that was
explored in section 6.6.1.1), we can recommend a possible improvement to RUM by
treating travel time perceptions in categories rather than as a continuous variable, thus
allowing low travel times and high travel times to have non-linear effects on the utility.
However, a more systematic comparison of the models suggested in this thesis and other
more traditional approaches should be the subject of further research.

6.6.2 Diversion Decisions
The results obtained for diversion decisions using the initial rule matrix (as given
by Table 17) provide a global fit of 88%, which is a very good initial fit. The

improvement procedure does not provide any improvement to that fit, and the global
optimization provides a fit of 89%. Thus we can conclude that the initial rule matrix
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provides a very good global fit.
6.7 Discussion

The driving simulator turned out to be a very good tool to collect data for testing
and calibration of route choice models. The subjects who used the driving simulator were
entertained on one hand, and on the other hand could associate the trips made in the
simulator with their usual commuting behavior. The full potential of the simulator has
not been explored in this case study, and future use of it can include other scenarios such
as information on recommended paths, and provision of information from changeable
message signs. Another group of possible scenarios relates to the reliability of the
provided information, since in the current version information was always reliable (as
reflected by the same link colors in the observation and the information windows).

When analyzing the results of this case study we have to keep in mind some of
the inherent biases that are related to the sample used and the data collection procedure.
Although all subjects were chosen such that they were familiar with the Newton network,
they lived in different neighborhoods at the origin node, and thus their choice sets were
not identical. This fact is important when evaluating the aggregate models. Another bias
relates to the traffic conditions sampled. In order to study drivers reactions to
information, the traffic scenarios that were presented to the subjects comresponded to
worse-than-usual traffic conditions, because we assumed that under usual traffic
conditions, drivers follow their usual routes. Thus, subjects had a clear bias to trust the
information, not only because it was always reliable, but also because it conveyed
information on traffic conditions with which they were not familiar (the Newton network
is typically not congested). Therefore the role of a priori perceptions was downplayed.
As a result the simultaneous and the default models (which is based on a priori
perceptions), performed in a similar way.

Keeping those biases in mind, the results obtained are very supportive of the
concepts that motivated the development of the approximate reasoning model.
Furthermore, the favorable comparison with the well-established random utility model
lends credence to the approximate reasoning model.

An important finding was the good fit that was achieved by the initial rule
matrices, which correspond to the most irivial reasoning {i.e. "good" traffic conditions are
attractive, and "bad" traffic conditions are not attractive). It supports our hypothesis that
the final choice is composed of many simple considerations.

The results obtained also support our hypothesis regarding the non-linearity of the
reasoning process. It was found out that the mapping between congestion levels and
attractiveness of an alternative is non-linear: good congestion levels indicate high
attractiveness, but poor congestion levels do not necessarily imply a similar in magnitude
reduction in attractiveness.
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The importance of interactions among alternatives was also explored, and it was
found that only few interactions exist, and typically they relate to the attractiveness of
alternative j when traffic conditions on alternative i are very bad (i#j).

Finally, we would like to comment here cn the highly heuristic nature of the
improvement procedure used and the way monotonicity is forced. Thus occasionally we
obtained contradictory results which depend on the order in which rules were picked.
Still, the very simple heuristic that we used, performed well and resulted in solutions that
were quite close to the optimal solutions. This again strengthens our hypothesis about the
intuitive nature and simplicity of the overall choice process. However, there is a strong
need for a more rigorous and efficient optimization algorithm (such as implementation of
the ILP formulation suggested in section 5.7.2.1, or development of the branch-and-bound
algorithm as suggested in section 5.7.2.2) in order to obtain optimal results.
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CHAPTER 7: SUMMARY AND CONCLUDING REMARKS

7.1 Summary

The objective of the thesis was to develop new approaches for modeling route
choice behavior in the presence of information. We proposed three hypothescs regarding
the way drivers react and interact with traffic information systems:

. The simultaneous model, in which drivers simultaneously consider all the factors
that affect their route choice (including traffic information).

J The two-stage model according to which the drivers first update their perceptions
using the available information, and at the second stage make a route choice
decision based on their updated perceptions.

o The default model, according to which default behavior exists, and is followed
unless there is a good reason to divert from it. Information is considered in light
of this default behavior, and plays an active role in the decision process only if
it differs from usual or expected conditions.

Models for route choice behavior, for all three hypotheses, can be characterized
by two main components: perceptions of the system’s attributes, and a decision
mechanism based on given perceptions.

A new modeling approach for modeling perceptions and information was
introduced. It uses concepts from fuzzy set theory for modeling aspects relating to
vagueness of perceptions, and to the linguistic and symbolic nature of perceptions and
information. Fuzzy sets were used to model various aspects of travel time perceptions.
In Chapter 3 we used fuzzy sets to model the degree of belief with which each travel
time value is thought to be possible (along a certain facility). Later, in Chapters 5 and
6, we used fuzzy sets to model the underlying travel time concepts and perceptions. On
an absolute scale, we modeled travel time concepts according to the categories: Very
Low, Low, Medium, High, and Very High. These categories were then used to represent
the multi-dimensionality of human perceptions, by utilizing the idea of partial membership
in a set. Consequently, a certain travel time value could belong with different degrees
to several of the given travel time categories. We also suggested modeling travel time
on a subjective scale according to the categories: Much Better than Usual, Better than
Usual, Usual, Worse than Usual, and Much Worse than Usual. These categories were
then used to model the inputs to the approximate reasoning model. For modeling
information, we focused on modeling information related to travel time, and thus used the
same ideas described before. We also suggested an approach for integrating information
into current perceptions, when information and existing knowledge are modeled on the
same scale.
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In Chapters 4 and 5 we developed models for decision processes that can
incorporate fuzzy perceptions and linguistic information as inputs. Chapter 4 adapts
models based on the principles of shortest path, and utility maximization to handle fuzzy
perceptions as inputs. We derived a new method for comparing fuzzy numbers that
recognizes the specific interpretation of the fuzzy sets involved, is transitive, and provides
consistent results. This comparison method is used for solving the shortest path problem
with fuzzy costs on links. We expanded the fuzzy linear regression medel with fuzzy
coefficients (and crisp inputs) to discrete choice model with fuzzy utilities associated with
each alternative. We also developed a discrete choice model for fuzzy utilities with fuzzy
inputs as explanatory variables, and random error term, and formulated the corresponding
maximum likelihood function.

A new approach for modeling the route choice decision process, the approximate
reasoning model, is presented in Chapter 5. It is based on decision rules, but unlike
traditional rule-based systems, it offers flexible rule interpretation. This is achieved both
by using rules that relate to linguistic terms, and by allowing rule premises to be partially
true. The approximate reasoning mechanism is used to derive updated rule consequences,
which are added simultaneously into a combined attractiveness of each alternative. The
final choice is then presented by choosing the most attractive alternative in the choice set
either deterministically or in a random utility framework. The underlying behavioral
assumption of the model is that the route choice process can be viewed as a combination
of many simple considerations (rules) that are applied together, each contributing to a
different aspect of the final decision.

We showed how the three hypotheses can be implemented using various models; .
the shortest path model for implementing the two-stage model using default reasoning (as
suggested in section 3.4.2) for the first stage; the random utility model with fuzzy
attributes, and the approximate reasoning model, can be applied for the three hypotheses.
In the case study we implemented the simultaneous and the default models. Due to the
specific nature of the data collected, the two models provided very similar resuits. We
suspect that when data that corresponds to commuting behavior under more "typical”
conditions (rather than "worse than usual" scenarios) is available, the default model would
out-perform the simultaneous model.

For collecting data to test, validate, and calibrate models for route choice behavior
(such as the models presented in this thesis), two approaches were used. The first
belongs to the revealed preferences approach, and was based on conducting a commuter
survey, which corresponded to specific commuting behavior in the presence of radio
traffic reports. The second belongs to the stated preference approach and included design
and implementation of a driving simulator that collects data under various information
provision scenarios. It simulates pre-trip and en-route decisions while interacting with
a traffic information system. In the simulator the driver has to perform a simple task
corresponding to actual driving, while advancing along the network map from a given
origin to a pre-defined destination. Information is provided by colors and sounds that
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correspond to different congestion levels on links, accident indication, shortest path
indication, and changeable message signs. Current time and duration of the trip are
continuously displayed. The simulator collects all the available data that was displayed
to the driver, and the corresponding decisions at intersections.

The driving simulator was used to collect data for implementation of the
approximate reasoning model. The small case study presented in Chapter 6 shows that
the approximate reasoning model has potential, and supports our hypotheses regarding the
intuitive and simple nature of the decision process. The underlying simplicity of human
reasoning concerning route choice was demonsirated in the case study by the fact the
initial rule matrices, based on trivial reasoning provided a very reasonable fit. This agrees
with our prior expectation that: "a man, viewed as a behaving system, is quite simple.
The apparent complexity of his behavior over time is largely a reflection of the
complexity of the environment in which he finds himself" (Simon, 1969). Additional
support for the underlying simplicity, and thus the appropriateness of the approximate
reasoning model, was obtained from the good performance of the simple improvement
heuristic used. The case study also supported our prior expectation regarding the non-
linearity of human thinking. The results obtained in the case study show that the mapping
from travel time perceptions to the attractiveness of the alternatives is non-linear.

With respect to the three hypotheses suggested for route choice behavior in the
presence of information (the simultaneous, the two-stage, and the default models), we can
not, at this point, determine which model is more appropriate for a given scenario.

7.2 Contributions

The thesis provides a new direction for modeling route choice behavior in general,
and in the presence of information in particular. It is based on the premise that human
perceptions are more naturally modeled using linguistic terms, and that human behavior
can be more realistically modeled using flexible linguistic rules.

In Chapter 1 the route choice process was presented as a black box through which
the inputs are filtered , resulting in a choice. Two kinds of filters were mentioned: a
perception filter through which knowledge is processed, and an evaluation filter through
which perceptions are transformed into a choice. Route choice models are categorized
according to the degree of detail with which they explain the interior of the black box.
The contribution of this thesis to the explanation of the black box embraces both
dimensions: perception and evaluation. For modeling perceptions, we proposed models
based on fuzzy set theory, which have the potential to capture linguistic perceptions, as
well as weak forms of uncertainty, (and individual and system characteristics). For the
decision process, we proposed the ARRUM model, which is a behavioral model based on
(fuzzy) linguistic rules that are processed simultaneously in a flexible and adaptable
fashion.
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We also suggested three hypotheses on general route choice behavior in the
presence of information (the simultaneous, the two-stage, and the default models). We
implemented the simultaneous and the default models in a case study. However, due to
the nature of the data collected, conclusions about the relative performance of the
hypotheses are limited at this point.

From the modeling point of view, we extended the shortest path algorithm to be
able to handle inputs which are modeled by fuzzy sets. A contribution to the theory of
fuzzy sets is the derivation of a consistent comparison method of fuzzy numbers. The
comparison suggested takes into account the shape of the fuzzy numbers compared, is
transitive, and can be used for ranking. We also introduced fuzziness into random utility
models. The linear regression model with fuzzy coefficients was extended to a discrete
choice model, which estimates the fuzzy coefficients of the utilities. Furthermore, we
developed a utility model with fuzzy attributes and an error term which is more
appropriate for the problem addressed in this thesis.

In this thesis we used the fuzzy control framework for modeling human behavior
rather than machine behavior. Hence our models are chara:terized by having fuzzy inputs
feeding the decision rules (and not exact numerical values). This distinguishes human
oriented systems from machine and processes control, (the different perception inputs
trigger the appropriate rules). When inputs are fuzzy, more rules are typically fired,
which corresponds to more complex decision processes. Hence we suggested modeling
the complexity of human decision processes as a combination of many simple processes.
From a theoretical point of view, we expanded the fuzzy control framework to deal with
multi-dimensional outputs in which all dimensions relate to the same decision.
Consequently we developed defuzzification schemes which result in discrete choice. A
defuzzification scheme that is especially attractive for the route choice problem, iy the
random utility defuzzification, which adds a random noise term to the attractiveness of
each alternative, to account for the inherent randomness of the decision process.

Most rule-based systems assume that the rules are given, either by extraction from
experts knowledge, or by utilizing properties of the processes under control. However,
for human behavior modeling, each person is an expert, and there exists an infinite
number of possible rules. Thus we suggested consistent methods for rule generation and
calibration. The methods suggested vary from a rigorous optimization (formulated as an
ILP problem), to a simple and intuitive heuristic which seems to perform well.

7.3 Directions for Future Research
The research presented in this thesis could be extended in various directions. In
general, the modeling approaches proposed in this thesis need to be tested, validated and

calibrated using (preferably real) data in order to make them applicable and useful. In
this section we briefly discuss directions for future research.
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Relaxation of assumptions

Throughout the thesis we focused on route choice decisions in isolated decision
points (intersections). However, a route choice decision can be viewed as a sequence of
decisions at all decision points that exist from the origin to the destination. Choices at
two successive decision points along a path could be correlated. It would be interesting
to see whether the same (or slightly modified) rule matrix can be used for such decisions.

We also assumed that at each decision point the choice set is given. It seems that
in the dynamic environment created by the existence of on-line information, a more
flexible determination of choice sets is required. The approximate reasoning model might
provide such flexibility by adjusting (automatically) the appropriate rules for new
alternatives suggested by the information system.

Travel time and traffic information were assumed to be the most important factors
that affect route choices. This assumption could be easily relaxed to incorporate other
factors, and empirical work is necessary to examine the importance and role of other
factors.

Empirical work and testing

The three hypotheses suggested for route choice behavior in the presence of
information (the simultaneous, the two-stage, and the default models), should be further
evaluated and tested. We expect that for different scenarios of knowledge and experience
- different hypothesis would be appropriate. We speculate that for the current state of the
art regarding information systems, the default model is more appropriate since drivers are
not yet familiar with the new information systems, and thus have their typical behavior
pattern which is subject to changes only if a good enough reason for change exists.
When information systems become more widely used, it is likely that the two-stage or the
simultaneous models, which incorporate information at a more basic level would be
appropriate.

In this thesis we expanded the shortest path algorithm to handle fuzzy costs on
links using a consistent comparison method that we have developed. Although shortest
path behavior is not realistic, it could be that "fuzzy" shortest path behavior is more
realistic. Thus an implementation of the shortest path algorithm in networks with fuzzy
costs could be attractive. Furthermore, costs on links could correspond to updated
perceptions (after utilizing the default reasoning update mechanism of section 3.4.2), and
thus implementation of the shortest path would correspond to application of the two-stage
model.

An interesting application would be the implementation of the random utility

model with fuzzy atiributes and random error term (as was suggested in section 4.2.3).
It is of special interest to implement the fuzzy RUM since its comparison to traditional
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RUM is very straightforward. Estimation of the weights w, and w, is also of importance
both from estimation point of view, and for providing insight into drivers’ attitudes
towards risk.

Several approaches for modeling route choice behavior in the presence of
information were introduced in this thesis. It would be interesting to compare the various
approaches on the same set of data according to a common performance measure (such
as percent of correctly predicted choices). It would also be interesting to compare
performance with other traditional route choice models (such as randem utility model).
The comparison between the approximate reasoning model and the random utility model
provides such an example, although a more rigorous comparison is necessary. Based on
the results of such comparisons, conclusion.s on how to improve the various models could
be drawn.

Model development and extensions

The comparison method provides consistent results when comparing fuzzy
numbers. An interesting extension would be to generalize the comparison such that it
could handle general fuzzy sets.

The approximate reasoning model, as suggested in Chapter 5, could be extended
in numerous directions. Following the discussion on rule structure and complexity (in
sections 5.2.1 and 5.2.2), we concentrated on first-level rules, and second-level rules with
RHS interactions. Other rule structures could be tested and compared. For calibrating
the rule matrix in the approximate reasoning model we used a very simple heuristic.
Other more rigorous estimation techniques that could be used are the ILP formulation (as
suggested in section 5.7.2.1), and the branch and bound approach (as suggested in section
5.7.2.2) which needs to be developed further to accommodate the unique characteristics
of the model. For calibrating the approximate reasoning model, we determined the
membership functions as inputs, and treated the rules as decision variables. A combined
estimation of membership functions and rules could be a very interesting direction to
explore, both from a conceptual and a mathematical point of view. We implemented the
default reasoning hypothesis using the approximate reasoning model by utilizing a very
simple approach: weigh the existing knowledge rules by their consistency with the
provided information. Other schemes for implementation of the default model should be
explored as well. '

Development of empirical methods for data collection

The effort for collecting data on route choice behavior in the presence of
information should be continued for both revealed and stated preferences data. On the
revealed preferences front, hopefully the "real data" (which corresponds to actual choices
under the various information provision scenarios) will be available in the near future.
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Until such data is available, efforts should be concentrated on collecting revealed
preference data through surveys and interviews, including sequences of choices, and panel
data collection. As for the stated preferences front, we believe that driver simulators,
such as the one described in Chapter 6, have good potential to realistically simulate route
choice decisions under various information provision scenarios, with a fully controlled
environment. Use of the simulator that we have designed and implemented should be
extended to include other information provision scenarios (e.g. recommended shortest
path, changeable message signs), and different degrees of information reliability (through
degree of match between observed and provided traffic conditions).

Issues related to route choice behavior in the presence of information

We proposed using fuzzy sets for modeling perceptions, and suggested utilizing
trapezoidal fuzzy numbers (based on simple interview) to represent the corresponding
membership functions. More thorough investigation of other forms of membership
functions, and methods for generating membership functions are needed.

Reliability of the inforination provided is an important issue which requires further
research. In most of our discussions we assumed that the information comes from a
relatively reliable source. In sections 3.4.2 and 5.5 we discussed how to adapt the models
to unreliable information sources, however no estimation procedure was suggested.
Development of models which can estimate the reliability of the information source are
needed in order to be able to handle unreliable information or information with unknown
reliability.

As drivers gain experience with the network and the use of existing information
systems, their long term perceptions and behavior pattern may change. In this thesis we
focused on short-term decisions based on current conditions and existing knowledge, and
ignored the leaming processes associated with daily interaction with such new systems.
Models that include learning associated with the interaction with existing information
systems, formatior of perceptions regarding their reliability, and the resuiting behavior
pattern, should be the topic of future research.

Finally, we emphasized the human aspects of the decision process by utilizing
concepts from fuzzy set theory and approximate reasoning. If such models are indeed
appropriate for the problem addressed in this thesis, as the results obtained so far indicate,
then other human behavior decision processes might also benefit from models similar to
the ones presented in this thesis.
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APPENDIX A: FUZZY SET THEORY - DEFINITIONS AND NOTATIONS

X is a set of objects called the universe, whose elements are denoted by x.

A fuzzy set A is defined by a membership functicn p,:X—[0,1], where p,(x) is the
grade of membership of x in A, the higher p,(x) - the mere x belongs to A.

The support of a fuzzy set A is the subset: Support(A) = {xeX | pa(x) >0}.
The height of a fuzry set A is given by: Hgt(A) = max,x p,(x).
A, the a-cut of a fuzzy set A is given by: A, = {xeX | pa(x)>a).

A fuzzy number F is defined on R such that:

(a) F is normal, i.e. there exists xe R such that p{(x) = 1

(b) F is unimodal, i.e. for all Ac[0,1] and for all x,yeR:
Be(Ax+(1-A)y) 2 min(pe(x),px(y))

©) Pg is piecewise continuous

(d) F has a bounded support.

A fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets
X,,....X,, where tuples (x,,...,x;) may have various degrees of membership within
the relation. The membership grade is usually represented by a real number in the
closed interval [0,1], and indicates the strength of the relation present between the
elements of the tuple.

A t-norm is a function of two arguments: t:[0,1]x[0,1] — [0,1] such that for all
X,y 2,WE€E [O,l]:

i) it is non-decreasing in each argument: forx <y, w<z:
t(x,w) < t(y,z)
ii) it is commutative:  t(x,y) = t(y,x)
iii) it is associative: t(t(x,y),z) = t(x,4(y,z))
iv) it satisfies the set of boundary conditions: t(x,0) =0, t(x,1) =x

The extension principle allows performing an operation f between two fuzzy
numbers A and B results in a third fuzzy number C which is defined by the
following membership function (see Pedrycz 1989 for general conditions):
Pe(z) = max t [py(x) , pa(y)]

z=f(x,y)

where zeR and tis a t-norm. Usually the t-norm chosen is the min operation, that
is: t(x, y) = min(x,y).
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Fuzzy sets A and B are called equal if p,(x) = pg(x) for all xeX.

The possibility distribution function of U induced by the proposition: "U is A",
is a functon [;: X —[0,1] which is equal to p,.

The possibility of A is defined by:
Poss(A) = max_, p,(x) (A-1)

The possibility of A with respect to B, Poss(A I B) is defined as:
Poss(A|B) = max_, min(u,(x), pg(x)) (A-2)

The certainty (or necessity) of A with respect to B, Cert(A IB) is defined as:
Cert(A|B) = min,_ , max(p,(x), 1-pg(x)) (A-3)
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APPENDIX B: APPROXIMATE REASONING AND FUZZY CONTROL

Fuzzy Control has been used successfully in various control applications (see for
example Sugeno, 1985, for general applications, and Yasunobu and Miyamoto, 1985, for
automatic control of train operation). In this Appendix we describe briefly the approach,
more details can be found in Pedrycz (1989), De Mantaras (1990), and Kosko (1992).

The general fuzzy control scheme is illustrated in Figure 27. The building blocks
of the decision process are rules of the form: "if condition is A, then do B,", where A,
and B, are typically labels of fuzzy sets (e.g. "if temperature is low then decrease fuel rate
slightly”). Let the condition part of a rule be called left-hand-side and be denoted by
LHS, and the consequence part, right-hand-side and denoted by RHS. Rule-based systems
usually require existence of a huge set of rules in order to account for all possible states
of the system. However, in the fuzzy control framework the number of rules required is
reduced significantly by employing an approximate reasoning scheme. According to this
scheme, each rule is treated as a family of rules, and thus rules that are "close" to it can
be derived automatically.

Boolean logic assumes the following inference scheme (modus ponens):

if XisA,then Yis B
Xis A

YisB

That is, if the premise of the rule is true, then the consequence is also true. In
generalized modus ponens (Zadeh, 1975), A and B could be labels of fuzzy sets, and the
rules are being interpreted with more flexibility by allowing the premise to be partially
true as illustrated below:

if Xis A,thenYis B
Xis A’

Y is B

That is, the rule applies even though its premise is only partially true, and the
censequence is changed accordingly. The condition part is being fulfilled only to a
certain extent (the extent with which A’ is close to A), and as a result the consequence
part, B, is applied to the appropriate extent, resulting in the outcome B*. The membership
of the set B is given by:

pp-()=max, t(p, ) [p, @) Wy (B-1)

where t is the t-norm (as defined in Appendix A) and I, is an implication operator to be
discussed below.
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—®>{ IF Al THEN B! —8>B1%

—$» IF A2 THEN B2 —-52%

input ®
w ~ y
® (CONTROL ACTION )
e

—>{ IF An THEN Bn —>3n*

Figure 27: Fuzzy Control Scheme
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Equation (B-1) can be written more intuitively as:
B* =A® o A~B (B-2)

where © corresponds to the max-composition of a t-norm. The representation in equation
(B-2) shows that the new consequence set, B, is the result of the composition of the set
A* with the implication "if A then B". For implementing equation (B-2) the t-norm and
the implication operation I, have to be defined. In most fuzzy control applications the t-
norm used is the minimum operation, that is: t(a,b)=min(a,b). As for the implication
operator, various alternatives exist. The most popular implication scheme used is the one
given by Mamdani (1977) according to which:

Li(p o (x), pp())=min(p , (x), 1 5(¥)) (B-3)

Substituting the min t-norm and Mamdani’s implication operator in equation (B-1) we get:
Bp-(y)=min(a,p(¥)) (B-4)

where « is the degree with which the sets A and A® overlap given by their max-min
composition, and it is a measure of the degree with which the rule A—B is fired for a
specific A" set:

& =max, ,min(p, «(x),1,(x)) (B-5)

This implication operator has the desired property that if A"=A then B’=B. Figure 28a
illustrates the application of Mamdani’s operator. When the input A® is deterministic, that
is:

Pas(X) = { 1 X=Xo
0 X#X,
then ai=p,(x,).

Kosko (1992), suggested another inference scheme, called the correlation-product
encoding scheme, according to which the membership function of B is given by:

Hp-()=acup(y) (B-6)

This scheme, has the property (as with Mamdani’s implication), that if A"=A then B°=B.
In addition it has the advantage that it preserves the shape of the membership function
of the set B. Figure 28b demonstrates the application of the correlation-product encoding
scheme.
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(@ Mamdani's Implication

Figure 28: Implication Schemes
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In traditional rule-based expert systems, only one rule is being "fired ' at a time,
and the rule that is being fired is a rule whose LHS condition is fulfilled (with a conflict
resolution strategy to pick one rule whenever more than one rule can be fired). However,
in the fuzzy control decision framework a more flexible rule interpretation is utilized
(allowing degrees of truth to LHS conditions), thus more than one (updated) rule
consequence can be fired. Therefore, depending on the inputs, more than one rule may
contribute to the final decision. Let oy be the degree with which the input A® overlaps
with the i’th rule condition, A,, as given by equation (B-5). o dictates to what extent the
i’th rule consequence, B,, is being fired, and results in B°. In order to achieve the final
output, all B,”’s (resulting from the vaticus values with which the input A® overlaps) are
combined into one set B, and later defuzzified into control discreie action. In most fuzzy
control applications which use Mamdani’s implication, the membership function of B" is
given by (see e.g. Pedrycz , 1989):

Bp®) = MEXy o o) ®-7)

which is graphically equivalent to the union of all pg;.. The use of the maximum operator
over all the membership functions pg,. is motivated by the fact that the RHS action is
supposed to be consistent with all the different rules that were fired, and the rule that was
fired with the highest degree thus dominates the membership value for the specific value.

For defuzzifying the single combined fuzzy set B® into a control action, the

scheme most often used in fuzzy control applications is the center of gravity methed
given by:

. [yug-(r)dy (B-8)

f pp-(y)dy

where z is the discrete value for the control action. The centroid is unique and uses all
the information of the output set B". Kreinovich (1991) provides further mathematical
justifications for using the center of gravity defuzzification scheme.
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Appendix C

A Survey of
Your Home to M.I.T Commute

Center for Transportation Studies
Massachusetts Institute of Technology

May 1991

Attached is a questionnaire prepared by a research team in the Center for Transportation Studies
at MIT, in cooperation with the MIT Planning Office. This questionnaire is part of an on going
research at MIT in the area of Intelligent Vehicle Highway Systems (IVHS), which aim at
reducing congestion by providing on-line and user specific information to commuters using a
variety of technologies. It is designed to provide transportation planners with a better
understanding of the routes you follow on your daily commute, your preferences wiien it comes
to choosing those routes, your reliance on traffic reports, and your parking needs at MIT.

You are kindly requested to fill out this questionnaire. By filling out this questionnaire you will
help us design systems which will provide drivers with relevant, useful, and reliable information.
It will also allow the MIT Planning Office to be more responsive to your preferences and needs
in the future. All responses are strictly confidential.

How to fill out this questionnaire:
The questionnaire consists of *wo parts; Part I asks you about your usual commute to MIT, and

Part IT about your specific commute during the week of May 6 to May 10. Please fill out both
parts and return them in the envelope provided by May 16, 1991.
Please feel free to write comments in the margins wherever appropriate.

Thank you in advance for your time and effort.

PART I: Your iJsual Commute to MIT

1. In a typical 5 day work week, hOW many times do you use each of the following modes to commute to work:
_. Drive Alone —Carpool Driver __Carpool Passenger

__ Public Transpontation _other:
2. In a typical 5 day work week, how many days do you come to MIT? ____ days

3. Do you come to MIT on weekends? Oofien Doccasionally O never

FOR THE REST OF THIS SURVEY WE ARE INTERESTED IN DRIVERS BEHAVIOR AND
CHOICES. IF YOU NEVER DRIVE TO WORK, PLEASE DO NOT FILL THE REST OF THE
SURVEY. THANK YOU FOR YOUR WILLINGNESS TO PARTICIPATE.
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4. When driving 1o MIT:
a. What time do you usually leave home? hour ___ min ____ Oam Dp.m.

b. What time do you usually arrive at MIT? hour __ min_Dun Dp.m.

S. How much flexibility do you have in choosing the time you arrive at work on a daily basis?
Dnone DuptolSminms [ 16 - 30 minutes
331 - 60 minutes [ more than an hour

6. Think about a typical car trip from your home to work. Am‘regulﬂ'Mcoondiﬁons. i.e. no extreme traffic
delays, no major incidents and no weather related problems. Under these conditions, how long does it usually take you
to drive from your home to work? Please specify a range (e.g. from 40 (o 55 minutes): from _____to _____ minutes.

7. How often doces your driving time to work ezceed the range you specified in question 6?
Dvcryoften (more than once a week) [ ofien (approx. once a week)

[ occasionally (approx. twice amonth) [ rarely (approx. once a month)
Dvaymly (less than once a month)

8. What is the shortest driving time you have ever experienced during your home to work commuie? ___ minutes

9. What is the longest driving time you have ever experienced during your home to work commute? ___ minutes

10. In a typical 5 day work week, how many significantly different routes from home to MIT do you use? ____ routes
(by “significantly different” we mean routes which almost do not overlap, for example: Mass. Pike and Route 9, or 93
and Morrissey Blvd.)

11. Please describe below your most frequently used route to MIT by indicating the major streets, highways, and
bridges that compose the route:

12. Do you usually make stops on your way t0 MIT? Dno—owoeeedioqumionu
Dyu.mu;dmaﬁmofaopskwox._mimm

13. What is the purpose of your stops? Ddropaﬁassmga Dpickapasenser
Oeat [Jrun emrands Dﬁllgas O other:

14. Where do you usually park your car?
DauanTpatkinglot Clon street
Oon sireet at a meter O other:

15. To which MIT parking facility do you have a sticker?

16. How long does it usually take you to get from your parked car to your MIT destination? ___ minutes

17. Whar time do you usually leave MIT? hour___min____ [Jam me.
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Your Attitudes and Preferences

18. On a scale of 1 0 5, where 1 indicates “sirongly disagree” and 5 indicates “strongly agree”, indicate your level of

agreement with the following statements by checking the approprizie box:

strongly strongly not
disagree agree relevant
1 2 3 4 5

1 am very familiar with a least 2 significantly differers rostes 1o work.

Ioﬂmd:mgemyplamedmwwmlcdnvmg

I am willing to try new routes to avoid traffic delays
I always listen to radio traffic repons T

I usually follow the recommendations of radio traffic nepons
Radio traffic reports are usually reliable :

When traffic reports are different from my own observation, I ignore them

I ofen change my route after fistening to radio traffic reports - -

I trust my own judgement more than traffic reporis

Traffic reports do not provide relevant information -

I am willing to pay in order 10 get more useful wraffic information

19. On a scale of 1 10 5 where 1 indicates “not imponant at all” and 5 indicates
of the following factors in choosing your route (o0 work:

not important
atall
1 2

Time of day

Commute time

Time spent stopped in traffic
Number of mraffic lights
Traffic reports

Weather
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ABOUT YOURSELF

The information requested in this section relates to your personal and household data. We need
this information to better understand how personal and family characteristics affect commuting
choices. All information collected will remain strictly confidential,

20. Sex: 0O Male O Female
21. Marital status: O Married 0 Unmarried
Q
22, What is your age group?
0O Less than 20 years 020 - 29 years 030 - 39 years
040 - 49 years 050 - 64 years 065 or older
23. What is the highest level of education you have completed?
O High school or less O Some College
0O Graduated College O Post graduate work

24. What is your home Zip Code?
25. How long have you lived at your present home address? ____ years

26. Do you own o¢ rent your dwelling unit?
Oown Orent

27. How many persons including yourself live in your household? ______ persons
28. What is the total number of automobiles owned by your household? —— automobiles

”.Wisymnhus&ﬂ‘:amoximawyarlym&ommm(bdacm)?
0 Less than $70,000 [31.$20,000 - $40,000 [1$40,000 - $60,000
[1$60,000 - $80,000 [1$80,000 - $100,000 00 More than $100,000

30. How long have you worked at your present job location? ____ years

31. Which of the following categories best describes your position?
0 Undergraduate Student (3 Graduate Student 0O Academic Staff

3 Tenured Faculty DO Non-Tenured Faculty [ Administrative Staff
0O Sexvice 0O Support Staff O Research Staff
OOwher:___

General )

32.Wﬁteanyoﬂwrmmxsmhwdtoyourdailycommutetowak,mewayyoudiooserollowmm.youranimde
towards traffic reports, and your parking needs (optional):
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PART II: YOUR COMMUTE TODAY

THIS PART OF THE QUESTIONNAIRE RELATES TO YOUR DRIVING BEHAVIOR
DURING A SPECIFIC WEEK. IT CONTAINS 5 IDENTICAL SECTIONS, ONE FOR EACH
DAY FROM MAY 6 TO MAY 10. PLEASE FILL OUT EACH SECTION AFTER YOU
HAVE COMPLETED YOUR COMMUTE TO MIT FOR THAT DAY.

EVEN IF YOU MISS FILLING OUT THE SURVEY FOR ONE DAY DUE TO ANY
REASON, PLEASE FILL OUT THE INFORMATION FOR THE SUBSEQUENT DAYS.

Would you be willing to respond to a follow-up questionnaire
about your driving behavior during the next year? '
If so, please fill out the following:

Name:
MIT address:

Participants will also receive a summary of our findings.

If you wish to remain anonymous, please take the time to fill out PART II anyway.
All responses are strictly confidential.

This part is designed to monitor your daily commute from home to MIT. We need to know
whether the route you followed to work everyday was influenced by traffic information you
listened to, by unusual traffic conditions you encountered on your way to work, or by commuting
experience on the previous day. We are also interested in diversion decisions you made while

on your way to MIT.
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YOUR COMMUTE FOR MONDAY, MAY 6, 1991

(1) How did you get to MIT today? O Drive Alone [ Carpoot Driver
O Carpool Passenger 3 public Transpontation Oower.______

IF YOU DID NOT DRIVE YOURSELF TO WORK TODAY, PLEASE IGNORE THE
QUESTIONS FOR TODAY. CONTINUE TOMORROW WITH THE NEXT SECTION.

(2) Did you receive traffic information before you left home today?
Dyu,fmmmdio Dys.from'l'v
Ono = proceed 10 question 5

(3) Did the information that you received before leaving home influence your route choice for today?

Oaiot [ somewhat Dvuylinle Cnotatan

(4) What did the information you reccived indicate about traffic conditions on the route you decided to take?
Dmud!womeﬂmumal Dworsethmusual . Dnmaltrafﬁccmditions
[J better than usual [J much better than usual 1 gon't remember
Dminfauuﬁm O other:

(5) Once you started your trip, what were the traffic conditions you observed at the beginning of your trip?
Dmudtworsetlmmal Dworsethmnsual Dusulmfﬁcconditims
[ better than usual [J much better than usual O other:

(6) While driving, did you receive any information about the route you were following?
Dycs.whichmdiosmion?____ Ono — proceed to question 8

(7) What did the information indicate about traffic conditions on the route you were following?

Dmudlworseumusual Dmlhanusml Dunmlnfﬁcemdiﬁons
[J better than usual [J much better than usual 31 don't remember
Dnoinfomnion Dolher:

(8) After you started your trip to work, was there a way 0 switch 10 another route that will take you to your destination?
Dyu Dno — proceed to question 14

(9) While driving, did you switch from the route you were following ?

Dyec Ono — proceed to question 14

(10) Before you switched routes, did you get any radio information about the route you switched to?
Dyu Ono —» proceed to question 12

_ (1) What did the information indicate about traffic conditions on the route you switched to?
Dmndimlhmumal Dmthmnsual [ usual raffic conditions
[ better than usual ' O much better than usual O1 don't remember

[ no information O other:
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(12) Based on your observation, what were traffic conditions on the route you switched 10?

Dmud!mthmusul [J worse than usnal [ usuat wraffic conditions
O better than usual J much better than usual O other:

(13) Why did you switch? check all boxes that apply:

Dndionfﬁcmpms Dmmmmuﬂc‘mﬂiﬁm

[ forced detour [ other (please specify):

(14) Did you make any stops on your way? Dyes.mnlmmﬁmofmm_mhmm
Dno—)poeeedquaﬁmw

(15) What is the purpose of your stops? depapasenga Dpicka;msaxger
Oea O run errands Dﬁllgas . O other:

(16) When did you arrive at your MIT destination? hour___ min____ Oam. Dp.m.

(17) Please describe the route you took taday to MIT by indicating the major sireets, highways, and bridges that compose
the route:

About Your Trip Today

(18) On a scale of 1 o0 5, where 1 indicates "strongly disagree™ and 5 indicates “strongly agree”, indicate your level of
agreement with the following statements:

strongly strongly not
disagree agree relevant
1 2 3 4 5

Traffic conditions ioday were beter than usual
Tnﬁﬁcmfummrecuvedwdtymusdnl
Mymumw&ymmumm
lmmﬂiedulhmyrouwd:mcewdly

| Y could have saved &t least § min. had I taken another roste. ©
IcthvenvednleuSligmrdminfm

(19) Write any other comments related to yoxr trip to work today (optional):

165




Appendix D

A PRELIMINARY SESSION
(1)  What is your home address?

(2) How long have you lived at your present home address? ____ years
(3)  How long have you worked at your present job location? ____ years

(4)  How much flexibility do you have in choosing the time you arrive at work on a daily

basis?
O none O3 up to 15 minutes ] 16 - 30 minutes
[ 31 - 60 minutes O more than an hour

(5)  How many significantly different alternatives to get from home to MIT do you know?
____ alternatives

(6) How many significantly different alternatives to get from home to MIT do you use in
a typical 5 day week? ___ alternatives

(7)  Please describe your most often used alternative in as much detail as possible by
indicating names of streets, highways and bridges that compose it.:

(8) Ina typical 5 day work week, how many times do you choose the alternative
described in question (7)? ____ times

The attached map describes three alternatives to get from Newton to M.LT.: using Beacon
Street, using Commonwealth Avenue, and using the Mass. Pike. For each of the three
alternatives please indicate what is the range of most possible travel times, and what is the
shortest and the longest possible travel times on that alternative.

range of "usual” shortest possible longest possible
travel times (min) travel time (min) travel time (min)

Thank you for your willingness to participate in this survey.
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