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Abstract

Robotic swarms are becoming increasingly complex on the surface and in air due to high-
speed and reliable communication links, Global Positioning Satellites (GPS), and visual
support to relative navigation. However, the limited propagation of these signals in the
ocean has impacted similar advances in undersea robotics. Autonomous underwater vehi-
cles (AUVs) often rely on acoustics to inform navigation solutions; however, this approach
presents challenges for scalable robotic swarms. Acoustic navigation is a means to inform
range and bearing to a target. Many methods for range and bearing estimation, including
current low-cost solutions, rely on precision time synchronization or two-way communication
to compute ranges as part of a full navigation solution. The high cost of reliable Chip-scale
atomic clocks (CSACs) and acoustic modems relative to other vehicle components limits
large-scale swarms due to the associated cost-per-vehicle and communications infrastruc-
ture. We propose a single, high-cost vehicle with a reliable navigation solution as a "leader"
for a scalable swarm of lower-cost vehicles that receive acoustic signals from a source onboard
the lead vehicle using a single hydrophone. These lower-cost "followers" navigate relative
to the leader according to the preferred behavioral pattern, but for simplicity, we will refer
to a simple following behavior in this work. This thesis outlines a method to obtain range
estimates to sound sources in which the signal content, including frequency and power at
its origin, can be reasonably approximated. Total transmission loss is calculated based on
empirical equations for the absorption of sound in seawater and combined with geometric
spreading loss from environmental models to estimate range to a source based on the loss
at differential frequencies. We refer to this calculation as the signal absorption-based range
estimator (SABRE). This method for obtaining range combines with Doppler-shift methods
for target bearing based on the maximum frequency detected within a banded limit around
a known source frequency. A primary objective for SABRE is to address techniques that
support low-cost options for undersea swarming. This thesis’s contributions include a novel
method for range estimation onboard underwater autonomous vehicles that supports nav-
igation relative to a known source when combined with Doppler-shift methods for target
bearing. This thesis seeks to develop the theory, algorithms, and analytical tools required
and apply those tools to real-world data sets to investigate the feasibility, sources of error,
and accuracy of this new approach to range estimation for underwater swarms.
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Chapter 1

Introduction

This chapter provides the motivation that led to this thesis, and a brief overview for each

chapter.

1.1 Motivation

Robotic swarms are executing tasks that require diverse platforms and are dependent on

careful coordination in space and time. These tasks range from entertainment, environmental

sampling, map generation, and even time-sensitive search and rescue operations. Swarms

are significantly more difficult in ocean environments due to the rapid attenuation of high-

frequency signals in an underwater environment. However, robotic swarms have immense

potential to expand existing capabilities in an environment that varies widely across latitude,

longitude, depth, and time. Billions of dollars have been spent on cabled ocean observatories

to address the difficulties in collecting long-time realizations across comparable spatial areas

of focus [1], but this approach has limits due to its high cost, lack of mobility, and limited

reach. For these reasons, the prospect of a scalable method for undersea robotic swarms can

increase awareness of how phenomena in an ocean environment vary across these multiple

dimensions. Current swarming techniques for undersea operations have limits in scalability

due to cost-per-vehicle and communication techniques that do not support large numbers

of robots. Addressing the limits on underwater robotic swarming will drastically increase

accessibility to the advantages of a multi-agent approach. Increased accessibility to undersea

robotic swarms will enhance prediction models for weather events, algae blooms, and climate

change monitoring. Swarms of underwater vehicles can sample large volumes in space while

17



taking simultaneous measurements in time that expand input for predictive models and

allow complex vehicle formations to support operational requirements. Air and ground-based

robotics can rely on sensors that utilize vision and radio communication in order to calculate

and share full navigation solutions in real-time [2] [3] [4] [5]. However, while complex even

above water, these techniques have severe limitations in an undersea environment due to

the rapid attenuation of most in-air communication signals.

Underwater communication is generally addressed through lower-frequency acoustic sig-

nals, pre-positioned beacons, precision clocks, and intermittent surfacing to update position

fixes. These approaches have significant barriers when it comes to large-scale swarms. Cur-

rent methods for underwater navigation, particularly swarming, rely on a combination of

Inertial Mapping Units, precision time synchronization for acoustic signals, and cooperative

localization techniques. Such methods necessitate precision timing between the source and

receiver or the ability to transmit detailed localization information between platforms, both

of which can limit scalability due to cost and communication architecture. In addition,

many current methods cannot achieve localization passively, and require active signals in

the environment which may be undesirable. Thus, otherwise low-cost autonomous underwa-

ter vehicles (AUVs), must rely on a combination of costly chip-scale atomic clocks (CSAC)

and acoustic modems for reliable localization which can account for half the cost of a $10k

underwater vehicle. The motivation for this thesis is to address these high-cost items as

obstacles to scalable AUV swarms.

1.2 Thesis Overview

This thesis evaluates the feasibility and effectiveness of range estimations via differential fre-

quency attenuation in seawater. Signals are evaluated through various processing techniques

to calculate the received pressure level at a single hydrophone at two adequately separated

frequencies. This method relies on known source frequency content to calculate the differ-

ence in total transmission loss at each frequency. Differential frequency transmission loss

and environmental modelling provide the basis for range estimation within a bounded error.

Chapter 2 reviews background and related works such as the acoustic methods for long

baseline (LBL), short baseline (SBL), and ultra-short baseline (USBL) localization. A short

discussion on inertial navigation systems (INS) and Doppler velocity logs (DVL) will provide
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a baseline for some common sensor payloads. The chapter includes a review of acoustic

modems for data packet transmission in conjunction with and separate from these systems.

A notable difference is that the range estimates from these techniques rely on one-way or

two-way travel time (OWTT or TWTT) of acoustic transmissions. There are advantages

and associated limitations to these approaches that more clearly enumerate the motivation

behind this work.

The theoretical foundations, methods, environmental models, and empirical equations

used to estimate range through measured transmission loss form Chapter 3. This chapter

will review the signal processing techniques necessary for SABRE to analyze real-world

hydrophone data. The calculations will give expectations for the performance of differential

frequency transmission loss as a means to estimate range. This portion will model several

different environments and establish hypotheses for the ideal conditions under which SABRE

will succeed. The sources of error and their sensitivity will also be assessed.

Chapter 4 describes the experimental protocols and real-world data collection setup,

equipment, and techniques. Due to this thesis’s timing, environment options for data col-

lection were severely limited and subject to areas that remained open and safe for collection

during the COVID-19 pandemic. While this period was limiting, it provided opportuni-

ties to address more difficult collection environments and overcome the many hardware and

software challenges presented by single-person experiments. Ultimately, these challenges

contributed to a more well-rounded thesis and educational experience. The theory put forth

in Chapter 3 provides a basis to evaluate signal detections, estimate ranges, and establish

the error bounds for this method based on real-world data collection and ground truth

ranges. These results will allow further evaluation of the feasibility and scalability of this

methodology.

Chapter 5 contains details on the results and conclusions for the experimental data. This

chapter describes the updated experimental protocols and lessons learned. To effectively

evaluate this method’s potential, Chapter 5 will also compare the algorithm’s performance

to the current state of the art approaches concerning cost, environmental requirements, and

associated error. While we anticipate increased error margins, that error will be bounded

over time and mitigated during the mission planning phase with proper vehicle spacing.

The cost comparison and error associated with this technique will determine whether it

provides a more cost-effective solution for scalable swarm formations in undersea sampling
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operations. Chapter 5 will close with an assessment of opportunities for future work along

this research path.
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Chapter 2

Background

This chapter will provide background on current approaches to localization for AUVs as well

as their associated strengths and limitations in large-scale swarm operations.

2.1 Current Methods

Underwater navigation has traditionally addressed the challenges of the rapid attenuation of

signals used in surface and air sensing and communication by relying primarily on acoustic

signals capable of traveling long distances through the ocean. However, this presents new

challenges based on how acoustic signals propagate in an underwater environment. Some

obstacles to acoustic sensing and communication include slower update rates due to the

speed of sound in water and distinguishing acoustic signals from ambient noise and envi-

ronmental effects. The fact that many commercial, scientific, and government projects in

underwater environments require time scales of weeks and spatial coverage on the order of

cubic kilometers further compounds these obstacles [6] [4].

Most non-acoustic sensing methods for undersea navigation utilize inertial navigation

systems (INS) to monitor the orientation, velocity, and acceleration of vehicles. These

systems approximate the distance and direction traveled over time, a process commonly

referred to as dead-reckoning. Modern dead-reckoning systems can provide low-error navi-

gation solutions, but their accompanying error, however small, grows unbounded with time

and distance traveled. The error associated with these systems can be minimized through

high-cost inertial sensors but is not eliminated and will not scale to long-time measurements

or long-distance transits. These systems require a means to reset the error accumulating
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from the INS to maintain accurate navigation solutions. Therefore, most underwater nav-

igation techniques utilize INS in conjunction with information from other sensors (aided

INS) to maintain a solution within a bounded error [7].

A common sensor pairing for INS is a Doppler velocity log (DVL). DVL’s provide 3-axis

velocity measurements for marine vehicles to combine with INS data, usually integrated into

a Kalman or extended Kalman filter (EKF). The vehicle calculates velocity based on a set of

transducers that send acoustic signals to the seabed, and the Doppler shift for the returned

signal. While these systems have made significant advances in improved accuracy they do

not achieve a bounded error without some reset such as GPS. Also, there can be scenarios

that heavily impact the accuracy of an INS/DVL combination such as failed transducers,

sudden changes in range to the seabed due to bathymetry, or sudden changes in vehicle

depth. Such systems are also less useful in the mid-water column of the deep ocean due to

the inability to bottom-track [52] [31] [32].

Amongst these techniques is long baseline localization (LBL), which relies on a set of

transponders with known positions to triangulate positions for underwater vehicles. An

AUV can then localize via the time of flight (TOF) of acoustic signals from the set of

transponders and their arrival at a receiver, typically onboard the AUV. However, vehicles

must also be able to identify from which transponder each signal originated. Vehicles can

establish this criterion based on known signal content from each transponder, the geometric

structure of the receiver, or using an acoustic modem, discussed later in this section. The

requirements for a prepositioned range of beacons with known locations can incur a high

cost. This increase in cost is often tied to the need for a support platform of some kind,

such as a surface, underwater, or airborne vessel to assist with transponder localization and

recovery. This method also limits the spatial reach for effective navigation solutions to the

range of the pre-deployed transponders. Setup, maintenance, and environmental factors can

present logistical challenges for LBL systems due to the costs of delays that could extend

timelines for support and recovery. LBL systems require a detailed sound speed profile for

the area of operations to localize AUVs accurately, and most utlize two-way communication

for navigation solutions. This two-way communication places a limit on the number of

platforms due to the communications architecture. However, if the setup and high-cost are

feasible, LBL solutions offer highly reliable calculations for undersea localization [8].

Short baseline (SBL) techniques closely resemble LBL, but typically utilize a surface
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platform to overcome environmental limitations such as ice or insufficient transponder range

to support the scope of operations. While this can present a mobile reference platform’s

advantage, it still uses a similar triangulation method. Typically these systems can only

support a fraction of the baseline of an LBL network due to limitations in platform size.

The size of the surface platform utilized to support this localization method imposes a limit

on the baseline between receivers and the system’s accuracy. The use of a mobile platform

in the ocean can be costly, and that cost typically rises along with platform size due to

increased personnel and fuel requirements. The addition of a mobile surface platform, if it

requires persistent human operators, limits the scope of autonomous operations.

Ultra-short baseline (USBL) techniques provide a more compact means to assess dis-

tance and bearing between source and receiver. A platform with regular position updates,

such as onboard a surface vessel with global positioning satellite (GPS) systems, transmits

an interrogation signal to a transponder at the ocean floor or onboard an AUV. This inter-

rogation signal triggers a response from the transponder. The vessel maintains a precisely

spaced array of transceiver elements to assess the TOF and phase arrival of incoming signals.

USBL techniques assess the angle between the source and receiver through the differences

in phase arrival at each element on the transceiver array. The TOF of the signal facilitates

a range estimation based on the local sound speed profile. Inverse USBL (iUSBL) utilizes

the same technique in reverse with transceiver elements onboard an AUV and signals origi-

nating from a platform with a known position, but the principle remains the same. iUSBL

has the advantage that an AUV can self-localize via one-way communication and onboard

processing relative to the platform with a known position. This condition makes iUSBL a

more scalable solution based on the communications architecture. [9] [10]

LBL, SBL, and USBL systems that integrate acoustic modems can communicate more

detailed localization data between platforms via transmitted data packages and the assessed

TOF of signals. These data package exchanges allow platforms with a known position to

explicitly share localization data, which improves the overall localization solution. For ex-

ample, rather than limiting the assessed position to TOF and angle estimates, a USBL

system could include GPS information transmitted via a surface platform’s acoustic mo-

dem to reduce the error in its localization. Also, AUVs with acoustic modems can perform

cooperative localization between vehicles by sharing their assessed positions in these data

packages. If at least one vehicle is capable of a reliable navigation solution, this removes the
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necessity for fixed beacons or a surface platform. AUV swarms can use acoustic modems to

maintain reliable navigation solutions via periodic surfacing for GPS fixes or feature-based

navigation methods such as simultaneous localization and mapping (SLAM). An AUV that

surfaces or observes an underwater feature that aids localization can then share that data

with other vehicles via an acoustic modem. In [11], direct measurements between vehicles

are combined with measurements to other features in the operational area to inform a more

reliable solution. However, these options are restrictive in their scalability based on the

sensors required for reliable navigation without outside support and detailed communica-

tion between multiple platforms. The environment must also have detectable features in

order for this approach to enhance localization. In many operational scenarios, there is no

opportunity to surface for a GPS fix, such as operations under the ice. Acoustic modems

also present limitations on scalability for swarms due to the number of vehicles communi-

cating and the bandwidth required to pass the necessary detail in an underwater-swarming

scenario. Time-division multiple-access (TDMA) protocols that allow multiple platforms

to communicate are the primary limiting factor regarding scalability. This approach can

enhance the reliability of each vehicle’s navigation but limits the number of total vehicles

that can reliably share the communication architecture. The high potential for data loss

in underwater communication environments makes sharing detailed location information to

a large number of vehicles through acoustic modems both challenging and high-risk. Ad-

ditional sensors, such as side-scan sonar or powerful cameras, are required to gather and

disseminate feature-based navigation details for cooperative localization [12] [11]. Acoustic

modems bring compelling advantages to underwater localization and incur challenges that

become more problematic in large-scale robotic swarms.

The techniques listed thus far require specialized equipment to maintain error bound lo-

calization estimates. Most architectures require close time synchronization between vehicles

to obtain range and bearing solutions based on the TOF of acoustic signals. Other ap-

proaches address this challenge through two-way communication and estimate range based

on the round-trip TOF for an initial transmission and reply. Range and bearing estimates

based on one-way travel time (OWTT) of acoustic signals necessitate precision timing be-

tween the source and receiver and require devices such as chip-scale atomic clocks (CSACs).

CSACs are currently the standard for low-cost AUVs but account for about half the baseline

vehicle cost and thus profoundly impact cost at scale. This assessment is based on a low-
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cost underwater vehicle being in the $10k range and the CSAC accounting for up to $5,500

of that amount. These cost estimates rely on previous work by Fischell et al. in [14] and

common low-cost underwater vehicles such as described in [28] and [29]. Two-way travel

time (TWTT) systems reduce the need for closely synchronized clocks but require vehicles

that can receive and respond to incoming signals, usually via an acoustic modem [13].

2.2 Doppler Shift for Bearing Estimates

This thesis proposes a different method for range and bearing-based acoustic navigation

relative to a beacon, and with bounded error through information gathered from a single

hydrophone onboard a very-low-cost AUV. By relaxing the need for close time synchro-

nization, beamforming, and two-way communication methods the objective is to find the

minimum information requirements to localize the AUV in space, driving down the cost and

power consumption by orders of magnitude at the expense of precision. The extent of this

tradeoff with respect to range is the subject of this thesis.

Since our approach relies on Doppler shift to estimate bearing, this section briefly de-

scribes the bearing estimation though the contribution to the overall technique from SABRE

is specific to range estimation.

When a sound source and receiver are in relative motion, there is a detectable shift in

the frequency recorded at the receiver, known as the Doppler Effect. For the combined

leader-follower algorithm to be successful, it must address the relative motion between the

receiver onboard the follower AUV in the swarm, and the source onboard the leader. Each

follower must estimate the received frequency, 𝑓𝑟, within a band around a known frequency

broadcast by the source onboard the leader.

Figure 2-1 shows a two-dimensional example of this approach. The follower AUV’s

velocity is denoted as 𝑣𝑟 in keeping with our receiver notation, and 𝑣𝑠 represents the lead

vehicle’s velocity. 𝑛̂ represents the vector connecting the follower to the leader. The relative

angle between their respective velocity vectors, 𝜃𝑟𝑒𝑙, gives strong intuition on the bearing

estimate. If our follower AUV has a velocity vector directly in line with the leader then

𝜃𝑟𝑒𝑙 = 0.

𝑓𝑟 =
𝑓𝑠(𝑐 + 𝑣𝑟 · 𝑛̂)

𝑐 + 𝑣𝑠 · 𝑛̂
=

𝑓𝑠(𝑐 + |𝑣𝑟|𝑐𝑜𝑠(𝜃𝑟𝑒𝑙)
𝑐 + 𝑣𝑠 · 𝑛̂

. (2.1)
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Figure 2-1: Visualization of relative velocities and angles associated with Doppler effect

Equation 2.1 reinforces this intuition as 𝜃𝑟𝑒𝑙 = 0 produces a maximum in 𝑓𝑟. This

outcome is as expected since the Doppler shift increases the frequency observed when the

receiver moves toward the source, or at least minimizes the decrease in frequency by mini-

mizing the source’s movement away. The follower’s velocity, 𝑣𝑟, is subject to feedback control

based on the estimated range from the leader, but a continued estimation for the heading

is also necessary. The heading estimation is based on the maximum received frequency,

assuming that the relative velocity for the leader is unknown, and the follower will continue

to adjust heading at the prescribed interval in order to maximize the received frequency

within a predetermined band around the source frequency. The follower vehicle thus adjusts

heading at a predetermined interval and magnitude to observe ∆𝑓𝑟, where ∆𝑓𝑟 is the change

in the received frequency due to the heading adjustment.

∆𝑓𝑟 = 𝑓𝑟1 − 𝑓𝑟2 (2.2)

If ∆𝑓𝑟 is positive, the follower will continue to adjust heading, i.e., turn the same di-

rection. If ∆𝑓𝑟 is negative, then the follower will alter its turn in the opposite direction.

The interval at which a follower alters course can also be adjusted according to the mission

profile to maximize efficiency while allowing for periodic checks on frequency shift. Such
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an interval could also be dependent on a predetermined change in the range estimation.

Fischell, et al. describe this feedback control method in detail in [14] and the estimate for

target bearing provides half the required information for localization. SABRE provides the

second half with an estimate for range to accompany bearing to target. To estimate range

with a single hydrophone without close time synchronization we explored an environmental

property that effects every acoustic measurement in the ocean.

2.3 Absorption of Sound as a Navigational Aid

Most previous studies treat the absorption of sound in seawater based on frequency as a

source of distortion. In that context, an acoustics communication system must be robust to

the effects of absorption on signal transmission [15] [16]. However, Young proposes the use of

a single hydrophone to self-localize an autonomous vehicle, and presents some similarities to

our approach [17]. This work focuses on pairing Doppler shift with the waveguide invariant

to self-localize via sources of opportunity (SOOs) such as shipping traffic. The waveguide

invariant, 𝛽, is a parameter that describes the acoustic intensity pattern versus frequency

and range. This parameter is specifically related to the slope of the interference patterns

represented in this relationship such that for 𝐼(𝑟,𝑓) the striations of the interference pattern

for a broadband signal have a slope 𝛿𝑓
𝛿𝑟 = 𝛽(𝑓/𝑟). As a single-vehicle application, this

method supplements the onboard INS with a bounded error but requires the presence of

SOOs to estimate a bearing and range from their position. This method also proposes

acoustic updates of automatic identification system (AIS) data and assumes that surface

vessels can support acoustic transmitters for their AIS data. This approach also requires

the AUV to have equipment that reliably receives the location data, probably via an acoustic

modem. The required modems and computational cost associated with this method enable

localization; however, they do not provide a scalable solution for low-cost swarming of AUVs.

Therefore there is a need for a method that maintains low cost at scale for a swarm of

underwater vehicles to maintain formation while transiting a desired area of operations.

This thesis proposes an alternative to the CSACs currently utilized in low-cost AUVs

while allowing for range estimation scalable for AUV swarms. In conjunction with Doppler-

shift methods to obtain bearing information, range can be estimated with bounded error over

time through the differential transmission loss of multi-frequency acoustic signals in seawater.
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Our method allows for underwater swarms at set ranges with a single "lead" vehicle equipped

with robust navigation and a transceiver. Based on a review of existing methods, this thesis

proposes that reliable navigation for a single vehicle may be feasible without significantly

impacting the cost-per-vehicle at scale. The contributions proposed in this thesis will be to

explore low-cost solutions for underwater vehicle swarms and enhanced options for the spatial

and temporal sampling of ocean environments. Increased spatial sampling will support

greater efficiency in search operations, allow for more robust environmental modeling, and

expand our understanding of undersea processes.
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Chapter 3

Methods

As SABRE relies on the absorption of sound in seawater, this chapter reviews impacts from

specific chemical compounds in the water column and the methods employed to estimate

absorption loss over range from these compounds at specific frequencies. This chapter will

include the necessary empirical equations, and derivations for the acoustic properties at the

source and receiver.

3.1 Sound Absorption in Seawater

The Francois-Garrison equations form the basis for this section. These equations are derived

from theoretical principles, and then adjusted to fit empirical data [18] [19]. The general

equation described in the literature combines the effects of pure water, magnesium sulfate,

and boric acid in one equation to compute an absorption estimate. While other empirical

equations exist, the Francois-Garrison equations are the basis for this work due to their ac-

curacy and inclusion of critical environmental parameters such as pH, temperature, salinity,

and depth. Table 3.1 shows the three frequency regions in which each absorption factor

dominates. While other chemical reactions impact the absorption of sound in seawater,

these phenomena are considered negligible.

A fourth impact region at frequencies lower than 100 Hz is associated with leakage out

of the deep sound channel [20]. This work focuses on frequencies higher than one kHz

and therefore does not address this very-low-frequency region. Figure 3-1 shows absorption

coefficients for seawater and pure water versus frequency. Figure 3-2 shows how these curves

vary with temperature.
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Figure 3-1: Two-dimensional absorption curves for sea water and pure water based on the
Francois Garrison Equations at multiple temperatures [18] [19].

Figure 3-2: Three-dimensional representation of the absorption curves at varying frequency
and temperature [18] [19].
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Absorption Factors
Factor Dominant Frequencies
Viscous Absorption (Pure Water) >200kHz
MgSO4 10-200kHz
Boric Acid <10 kHz

Table 3.1: Frequency Ranges for dominant absorption factors.

The general absorption equation describes the frequency dependence of the absorption

coefficient, 𝛼, based on several constants defined below:

𝛼 =
𝐴1𝑃1𝑓1𝑓

2

𝑓2
1 + 𝑓2

+
𝐴2𝑃2𝑓2𝑓

2

𝑓2
2 + 𝑓2

+ 𝐴3𝑃3𝑓
2 (3.1)

where 𝛼 has units of dB·km−1 [18] [19].

This equation is a sum of the three main factors impacting the absorption of sound

in seawater. Each factor is assigned 𝐴, 𝑃 , and 𝑓𝑛 terms while including the frequency of

interest, 𝑓 . The 𝐴 term was originally intended as an adjustment constant but was later

determined to depend on environmental conditions. 𝐴1 is specifically dependent on sound

speed and pH and carries the units (dB km−1 kHz−1). Subsequently, 𝐴2 carries the same

units as 𝐴1 and is dependent on sound speed, temperature, and salinity. 𝐴3 is associated

with the pure water contribution and has units of (dB km−1 kHz−2) due to the absorption

from pure water being proportional to the square of the frequency. 𝑃1, 𝑃2, and 𝑃3 serve as a

pressure adjustments in order to fit curves to experimental data. The 𝑓𝑛 terms represent a

relaxation frequency calculated based on the associated element’s absorption per wavelength

of a given frequency. Each relaxation frequency is designated to match the contributions

of that factor to absorption. The terms 𝑓1 and 𝑓2 carry the units (kHz). The viscous

absorption factor from pure water does not have a relaxation frequency, and it displays a

log-linear curve in frequency versus absorption.

The full breakdown of each term is listed below and fully described in [18] [19].
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𝐵𝑜𝑟𝑖𝑐 𝐴𝑐𝑖𝑑 𝐹𝑎𝑐𝑡𝑜𝑟

𝐴1 =
8.86

𝑐
× 100.78pH−5

𝑃1 = 1

𝑓1 = 2.8 × (
√︀

𝑆/35) × 104−1245/𝜃

(3.2)

𝑀𝑔𝑆𝑂4 𝐹𝑎𝑐𝑡𝑜𝑟

𝐴2 =
21.44 × 𝑆

𝑐
(1 + 0.025𝑇 )

𝑃2 = 1 − 1.37 × 10−4𝐷 + 6.2 × 10−9𝐷2

𝑓2 =
8.17 × 10(8−

1990
𝜃

)

1 + 0.0018(𝑆 − 35)

(3.3)

𝑃𝑢𝑟𝑒 𝑊𝑎𝑡𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟

For 𝑇 ≤ 20∘C

𝐴3 =4.937 × 10−4 − 2.59 × 10−5𝑇

+ 9.11 × 10−7𝑇 2 − 1.50 × 10−8𝑇 3

𝑃3 =1 − 3.83 × 10−5𝐷 + 4.9 × 10−10𝐷2

(3.4)

For 𝑇 > 20∘C

𝐴3 =3.694 × 10−4 − 1.146 × 10−5𝑇

+ 1.45 × 10−7𝑇 2 − 6.5 × 10−10𝑇 3

𝑃3 =1 − 3.83 × 10−5𝐷 + 4.9 × 10−10𝐷2

(3.5)

Note: 𝑇 is temperature in ∘C, 𝑐 is sound speed in (m/s), 𝑓 is frequency in (kHz), 𝜃 is 𝑇 +273

or absolute temperature in Kelvin (K), 𝑆 is salinity in parts per thousand (%�), and 𝐷 is

depth in meters (m).
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3.2 Assessing the Acoustics at Source and Receiver

In the mission profile considered for this thesis, a swarm of underwater vehicles consists of

a leader and multiple followers. The lead vehicle is assumed to have reliable navigation in

support of the overall mission, e.g., GPS, high-end INS, and Doppler velocity log (DVL).

The followers are assumed to have poor internal navigation, e.g., a MEMS IMU, leading

to rapid navigation error accumulation, up to 10% of distance travelled. This approach

restricts the high cost to one vehicle in the swarm: by equipping the "leader" with a sound

source capable of broadcasting at multiple frequencies, "follower" vehicles can estimate a

relative position.

This navigation estimate is assumed to consist of two estimates based on data collected

from a single hydrophone: range and bearing. The Doppler frequency shift method ap-

proximates the bearing from the follower to the leader and clarifies any spatial ambiguity

associated with the range estimation for this thesis’s scope. Thus, to enable follower al-

gorithms, the range estimation must only be consistent within a bounded error. Under

these circumstances, a swarm of AUVs can operate in a set geometric formation with each

vehicle remaining inside an assigned sphere at a set range and bearing from the leader. A

pre-planned formation determines the location of each follower’s sphere, and the error asso-

ciated with the range estimation from the leader dictates the size of the sphere as denoted

in Fig. 3-3. In this way, AUVs can sample a volume of space without conflicting with each

other and relying on the path planning of the lead vehicle.

This work focuses on estimating range from a follower to a beacon of known frequency

characteristics based on the difference in transmission loss across multiple frequencies.

For notation purposes the ˜ , or tilde operator is used to denote that a value is from

a measurement or an estimate, and not a perfect value based on the stochasticity of the

environment and associated errors in measurements.

A single hydrophone onboard each follower records the measured received level of sound

(𝑅𝐿) at the follower vehicle. This 𝑅𝐿 is a function of the measured source level (𝑆𝐿) at

a reference distance from the lead vehicle, and the transmission loss (𝑇𝐿) along the path

between the lead and follow vehicle. However, according to [53], both 𝑆𝐿 and 𝑅𝐿 are subject

to the noise such that:
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Figure 3-3: A group of AUV followers navigate relative to a leader via range and bearing
estimation from Doppler shift and total transmission loss using a single-hydrophone.

𝑅𝐿 = 𝑆𝐿− 𝑇𝐿 + 𝑁̃ (3.6)

where 𝑅𝐿, 𝑆𝐿, and 𝑁̃ include any error associated with the actual measurement.

𝑇𝐿 represents a combination of the transmission loss due to geometric spreading, ab-

sorption, and environmental scattering. Transmission loss due to geometric spreading will

be based on range, and the depths of the source, receiver, and water column. However, the

absorption coefficient, 𝛼, remains directly dependent on frequency and has units dB/km

such that: 𝑇𝐿 = 𝑇𝐿𝑔𝑒𝑜𝑚 + 𝛼𝑟. Figure 3-5 shows graphically via environmental models

that, when calculating the total transmission loss minus the geometric spreading loss, the

remainder is a log-linear function of range.

For clarity, using [22] and [21] as a guide, intensity, 𝐼, at a given point in space supports

the derivation for the transmission loss. 𝐼 is defined as:

𝐼 =
|𝑝|2

𝜌𝑐
(3.7)

where 𝜌 is the water density, and 𝑐 is the sound speed.

The rate of loss due to absorption, i.e. due to the heat loss to the particles in the medium,
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is modelled as an exponential loss factor.

∆𝐼 = 𝐼(𝑟 + 𝑑𝑟) − 𝐼(𝑟) = −𝑎(𝐼(𝑟))𝑑𝑟 (3.8)

𝑑𝐼

𝑑𝑟
= −𝑎(𝐼(𝑟)) (3.9)

𝐼(𝑟) = 𝐼0 · 𝑟−2𝑒−𝑎𝑟. (3.10)

For spherical spreading, Equation 3.9 is adapted to include the inverse square of the radius.

[22]. Transmission loss is then described as the ratio 𝐼0/𝐼(𝑟) in dB:

𝑇𝐿 = 10 log
𝐼0
𝐼(𝑟)

= 20 log
𝐼0
𝐼(𝑟)

+ 10 log(𝑒−𝑎𝑟). (3.11)

However, TL with absorption can also be derived by examining the more basic form for

geometric spreading in a lossless medium as proportional to the inverse square of the radius

for omni-directional point sources, beginning with the formula for pressure.

𝑝(𝑟, 𝑡) =
𝐴

𝑟
𝑒𝑗(𝑘𝑟−𝜔𝑡) (3.12)

|𝑝|2 =
𝐴2

𝑟2
. (3.13)

This equation, however, ignores the contribution from absorption along that path in a lossy

homogeneous medium. Using 3.7 and 3.10 the square modulus of the pressure is represented

as:

|𝑝|2 = 𝜌𝑐𝐼 = 𝐼0 · 𝑟−2𝑒−𝑎𝑟. (3.14)

The magnitude of the pressure including absorption is obtained by substituting 3.13 for 𝑝

and maintaining the absorption factor,

|𝑝|2 =
𝐴2

𝑟2
𝑒−𝑎𝑟 (3.15)

𝑝(𝑟, 𝑡) =
𝐴

𝑟
𝑒𝑗(𝑘𝑟−𝜔𝑡)𝑒−𝑎𝑟/2. (3.16)

This description of pressure from the combined impacts of geometric spreading loss and

environmental absorption is utilized to reevaluate the sound pressure level. Simplifying
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with logarthmic rules and ignoring noise contribution:

𝑆𝑃𝐿 = 10 log
|𝑝|2

|𝑝𝑟𝑒𝑓 |2
= 10 log(

𝐴2

𝑟2𝑝2𝑟𝑒𝑓
𝑒−𝑎𝑟)

= 20 log
𝐴

𝑟𝑟𝑒𝑓𝑝𝑟𝑒𝑓⏟  ⏞  
source level

− (20 log
𝑟

𝑟𝑟𝑒𝑓
+ 𝑎𝑟(10 log(𝑒))⏟  ⏞  

transmission loss

). (3.17)

Transmission loss is then calculated as a combination of geometric spreading and transmis-

sion loss.

𝑇𝐿 = 20 log
𝑟

𝑟𝑟𝑒𝑓⏟  ⏞  
Geometric Spread

+ 𝑎𝑟(10 log(𝑒))⏟  ⏞  
Absorption

. (3.18)

For the absorption term the more common notation in which the constant 𝑎 is combined

with log(𝑒) into the absorption coefficient 𝛼, a 10−3 factor is added since 𝛼 is in units of dB
km ,

𝑎𝑟(10 log(𝑒)) = 𝛼𝑟(10−3).

3.2.1 Geometric Spreading Loss

While the assumption of spherical spreading allowed for simplicity, the geometric spreading

loss is a combination of spherical and cylindrical spreading based on the distance at which

the signal meets the surface and bottom boundaries. For example, if the water column depth

is 100 m, the source depth is 50 meters, and 𝑟𝑟𝑒𝑓 = 1 meter the geometric spreading loss at

1 km is calculated as:

𝑇𝐿𝑔𝑒𝑜𝑚 = 10 log(
1000

1
)⏟  ⏞  

Cylindrical Spreading

+ (20 log(
50

1
) − 10 log(

50

1
))⏟  ⏞  

Addition from Spherical Spreading

.

3.3 Environmental Models and Transmission loss

The next step is to evaluate the total transmission loss in various environments. Simulation-

based environmental modeling demonstrates the feasibility of SABRE in multiple environ-

ments. Environmental modelling gives insight into the contributions of different aspects of

transmission loss: six environments with varying depths, listed in Table 3.2, were modelled

using BELLHOP [23].

36



Environment Depth Range Source and Receiver Depth Sound Speed Profile
1 3 m 10 km 1.5 m Constant
2 10 m 10 km 5 m Constant
3 100 m 10 km 50 m Constant
4 500 m 10 km 250 m Munk
5 1 km 10 km 500 m Munk
6 5 km 10 km 2.5 km Munk

Table 3.2: List of Environmental Model Parameters

Figure 3-4: Transmission Loss Models for varied Environments
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BELLHOP models do not account for environmental parameters that impact absorption,

such as temperature, salinity, and pH, and are expected to reflect solely geometric spreading

loss. However, analysis of Environment 6 with 5 km in-depth, a Munk sound speed profile,

and source/receiver depths of 2.5 km indicates otherwise. For this environment, the geo-

metric spreading is spherical out to a range equal to the receiver’s depth and cylindrical,

spreading beyond that based on the water column acting as a waveguide [20]. This approach

is equivalent to modeling the entire distance as a cylindrical spread and adding the dB differ-

ence from the first 2.5 km of spherical spreading. The sound source and the receiver depths

in the middle of the water column allow for this convenient calculation. This environmental

model also has the least amount of loss due to scattering and multipath effects based on the

selected depth and range for the source and receiver.

𝑇𝐿𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = 20 log(𝑟) ≈ 68.0 dB, for spherical spreading out to 2500 m

𝑇𝐿𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 = 10 log(𝑟) ≈ 34.0 dB, for cylindrical spreading out to 2500 m

𝑇𝐿𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑇𝐿𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 ≈ 34.0 dB, difference at 2500 m

𝑇𝐿𝑔𝑒𝑜𝑚 ≈ 10 log(𝑟) + 34.0, total geometric spreading loss for distances > 2500 m

It is apparent that BELLHOP models account for transmission loss beyond geometric

spreading when comparing the calculations at 10 km in Table 3.3. Absorption coefficients

are calculated based on assumed values for temperature (𝑇 = 15∘C), salinity (𝑆 = 35 %�),

and 𝑝𝐻 = 8. The frequency-based calculation from [20] and [21] for attenuation is included

in this comparison based on the assumption that the BELLHOP output is this estimate

plus an added noise and loss from interaction with surface and bottom boundary layers.

The frequency-only estimation does not account for environmental parameters, but instead

provides a simpler estimate via:

𝛼′ ≃ 3.3 × 10−3 +
0.11𝑓2

1 + 𝑓2
+

44𝑓2

4100 + 𝑓2
+ 3.0 × 10−4𝑓2 (dB/km) (3.19)

This comparison highlights that while the formulas used to estimate absorption are dif-

ferent, there is consistency in their frequency dependence. The Francois-Garrison equations

will provide superior accuracy to the non-environmentally dependent BELLHOP model, as
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Figure 3-5: The model estimates transmission loss for a very shallow environment at 6 and
15 kHz. BELLHOP’s output for transmission loss is smoother using a moving mean prior
to subtracting the loss attributed to geometric spreading. The log-linear curve that results
when geometric spreading loss is removed supports the assumption that the difference in

transmission loss will allow comparison of log-linear absorption functions. This
environmental model will be discussed in more detail in Chapter 4.

39



𝑓 Spreading (dB) 𝛼 Total (𝛼) Total(𝛼’) BELLHOP (dB)
1 kHz 74.0 0.053 74.5 74.7 72.3
10 kHz 74.0 0.612 80.1 85.9 85.0
20 kHz 74.0 2.007 94.1 115.4 128.4
30 kHz 74.0 4.169 115.7 157.0 152.24
40 kHz 74.0 6.902 143.0 203.4 205.7
50 kHz 74.0 9.998 174.0 249.3 243.7
60 kHz 74.0 13.267 206.6 291.6 288.9
70 kHz 74.0 16.562 239.6 329.4 322.8
80 kHz 74.0 19.779 271.8 362.5 338.0
90 kHz 74.0 22.855 302.5 391.5 367.5
100 kHz 74.0 25.758 331.6 417.2 393.7

Table 3.3: Comparing TL over 10 km from Francois-Garrison, frequency-only estimates,
and BELLHOP models

is stated in [20]. However, Figure 3-5 shows the log-linear curve that results when the en-

vironmental model is smoothed, and geometric spreading loss is removed. These log-linear

curves are the environmental model’s estimated loss to absorption.

3.4 Formulating Range Estimations

The first observation is that geometric spreading is frequency independent, and the fre-

quency dependence in the models comes from absorption, scattering, and multipath effects.

Acoustic absorption is modelled versus frequency similarly in Figure 3-6, which shows a

log-linear behavior at all ranges in each environment. Environments and frequencies that

minimize multipath are optimal the only model for these effects must be extracted from

BELLHOP and accuracy will suffer in extreme environments. However, it is notable that

increased source and receiver depths slightly decrease the transmission loss due to absorption

according to [18] [19]. The difference in absorption between frequencies also decreases as

depth increases according to the pressure contribution in the Francois-Garrison equations.

These impacts are minimal at frequencies below 10 kHz, but are more notable at higher

frequencies. For example, at 10 kHz the absorption at a 10 meter depth is about 0.1 dB

greater than at a 1 kilometer depth. However, at 40 kHz the difference is 1.4 dB, and at 100

kHz it rises to 3.7 dB. This is important to note as it impacts the difference in absorption

between the two frequencies and at significant depth their separation may be decreased, but

those depths will still be desirable if they mitigate multipath effects. Absorption coefficients
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Figure 3-6: Absorption Models

that are too close together will be more sensitive at closer ranges as minor fluctuations in

𝑅𝐿 will indicate significant shifts in the range estimate.
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Separating geometric spreading as frequency independent:

∆𝑅𝐿 = 𝑅𝐿𝑓1 −𝑅𝐿𝑓2 = 𝑆𝐿𝑓1 − 𝑇𝐿𝑓1 + 𝑁𝑓1 − (𝑆𝐿𝑓2 − 𝑇𝐿𝑓2 + 𝑁𝑓2)

= (𝑆𝐿𝑓1 − 𝑇𝐿𝑔𝑒𝑜𝑚 − 𝛼𝑓1𝑟 + 𝑁𝑓1) − (𝑆𝐿𝑓2 − 𝑇𝐿𝑔𝑒𝑜𝑚 − 𝛼𝑓2𝑟 + 𝑁𝑓2)

= 𝑆𝐿𝑓1 − 𝛼𝑓1𝑟 − 𝑆𝐿𝑓2 + 𝛼𝑓2𝑟 + 𝑁𝑓1 −𝑁𝑓2 (3.20)

and range is calculated through ∆𝑅𝐿.

𝑟 =
∆𝑅𝐿 + 𝑆𝐿𝑓2 − 𝑆𝐿𝑓1 −𝑁𝑓1 + 𝑁𝑓2

𝛼𝑓2 − 𝛼𝑓1

(3.21)

It remains feasible to estimate range directly from a single frequency, but that estimation

would include geometric spreading loss. Since geometric spreading loss does not follow a log-

linear trend until a set range, a single frequency estimation will be more sensitive to error,

especially at shorter ranges. Using the difference in total transmission loss at two frequencies

the goal is to remove the loss from geometric spreading and assess range in terms of two

log-linear, frequency-dependent functions. Frequencies with adequate separation in their

absorption rates are ideal to maximize the detectable difference in total transmission loss

between the two.

In the case in which the source level at a particular frequency is unknown, and assuming

that the source level does not fluctuate considerably, estimation is based on a change in the

range between measurements at a single hydrophone via ∆𝑅𝐿.

𝑟2 − 𝑟1 =
∆𝑅𝐿2 − ∆𝑅𝐿1

𝛼𝑓2 − 𝛼𝑓1

(3.22)

In this way, if it is feasible to establish an initial range measurement for a follower vehicle,

then future range estimates can be based on that reference. This method is sensitive to

fluctuations in the sound level at the source and assumes that the reference point chosen

is reliable. There are also potential sensitivities to environmental mismatch and multipath

effects.
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3.5 Evaluating Factors for Estimation Accuracy

The selection for 𝛼 and measured sound levels are assumed to be accurate, but in reality,

there will be some error in comparison to the actual absorption and sound level values,

and it will vary in space and time. These errors must be accounted for and understood to

determine their impact on the range estimate. The error associated with the range estimate

includes any errors in calculating the difference in received sound level. These errors will

include the absorption coefficients and noise in the measurements. The calculation of the

received sound level takes into account; the source level (𝑆𝐿), the transmission loss (𝑇𝐿),

and the ambient noise (𝑁) at each frequency.

An average measurement at reference range (𝑟𝑟𝑒𝑓 ) represents the measured source level.

The received level is determined based on the data received at the single hydrophone onboard

the follower AUV and is subject to the error associated with this instrument. Measurements

during periods in which the source is not transmitting represent measured noise levels. The

source’s far field is represented by

𝑟 >
𝐿2

𝜆
(3.23)

where 𝐿 is the length of the source aperture and 𝜆 is the wavelength of the signal. This is

important to ensure our reference distance and measurements are consistent based on the

far field assumption.

43



Figure 3-7: Differential frequency Transmission Loss at 100 meters.
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Figure 3-8: Differential frequency Transmission Loss at 1 km.
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Calculations for the difference in 𝑇𝐿 at two frequencies at distances of one hundred

meters and one kilometer in various environments identify the separation in dB attainable

at different frequency pairings. Figures 3-7 and 3-8 display how this difference grows with

the separation of frequencies based on their different absorption coefficients. The difference

in coefficients represents the difference in absorption-based transmission loss over 100 meters

and one kilometer respectively. This analysis allows us to choose frequencies based on an

assessment of the environment, hardware limitations, and operational requirements. The

frequencies selected must support the desired ranges and have enough separation to provide

a discernible difference in received sound level at a single hydrophone. Therefore the pre-

mission assessment should take into account the source level, potential noise levels, calculated

transmission loss, and calculated difference in transmission loss at each frequency. This last

consideration will determine detection range as increased separation of frequencies will have

an increased rate of change in ∆𝑅𝐿 while closer frequencies will require longer ranges to

provide a consistent difference in transmission loss.

𝑟 =
∆𝑅𝐿 + ˜𝑆𝐿𝑓2 − ˜𝑆𝐿𝑓1 −𝑁𝑓1 + 𝑁𝑓2

𝛼𝑓2 − 𝛼𝑓1

(3.24)

where 𝛼𝑓2 and 𝛼𝑓2 are estimates for absorption with some associated error when compared

to the actual absorption in the environment. Equation 3.20 allows substitution for ∆𝑅𝐿

based on the actual values for 𝑆𝐿, 𝑁 , and 𝛼 at each frequency. 𝑟 is left as a function of the

error in each term, the actual absorption coefficients for the environment, and range:

𝑟 =
𝜀𝑆𝐿2 − 𝜀𝑆𝐿1 − 𝜀𝑁1 + 𝜀𝑁2 + (𝛼𝑓2 − 𝛼𝑓1)𝑟

𝛼𝑓2 − 𝛼𝑓1

(3.25)

The measured sound levels at the source and hydrophone onboard the follower vehicle are

sources of error in this range estimation. Also, the absorption coefficients and model for

spreading loss at each frequency are estimations containing some error. The goal is to

identify the bounds of that error within ranges that support the detection of two distinct

frequencies from the source. The errors in measured sound level are combined into one error

term, 𝜂, so the range estimation’s sensitivity to the accuracy of the absorption coefficients

may be assessed.

𝑟 − 𝑟 = 𝑟 −
𝜂 + (𝛼𝑓2 − 𝛼𝑓1)𝑟

𝛼𝑓2 − 𝛼𝑓1

(3.26)
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The sensitivity to an error in 𝛼 is assessed by selecting prospective frequency pairings

and determining the total transmission loss and range estimation impact. The difference

in transmission loss at frequencies from 10-100 kHz in the six environmental models at 100

meters and 1 km in range informs options for frequency pairings. Based on Figure 3-7

and 3-8 plots, 10 kHz and 40 kHz present a good prospect for frequency pairing due to

the significant separation while maintaining frequencies that can still broadcast distances

in kilometers. This pairing will perform well at maximum source depths, as these will

be significantly less than Environment 6 for nearly all sound sources. The goal will be

to optimize the transmission range of the frequencies while mitigating multipath wherever

possible.

If absorption in the environment is greater than the estimated absorption coefficient,

𝛼 > 𝛼̃, then 𝑟 < 𝑟 and vice versa. While the differences between each 𝛼 at a selected

frequency may vary, it is expected that if 𝛼𝑓1 is underestimated, the same will be true

for 𝛼𝑓2 . SABRE’s sensitivity is assessed by plotting the impact of errors in 𝛼 in Figure

3-9. Interestingly, if 𝛼1 and 𝛼2 are over or underestimated by approximately the same

amount, the error in range will be minimal. However, any misestimations will likely differ

in magnitude due to the selection of widely separated frequencies.

Range estimations will become less reliable at ranges where the signal to noise ratio

(SNR) approaches zero, e.g. 𝑅𝐿 = 𝑁 . It is near these ranges that the noise estimate

becomes most important. This transition is critical because a low estimate of the noise will

cause range estimations to continue after the pressure contribution of at least one frequency

has dissipated. For this reason, a conservative estimate for ambient noise is advisable,

and at that threshold, SABRE will cease to provide reliable estimations. This threshold

integrates into SABRE’s feedback control loop to maintain minimum distances to continue

range estimation or shift to an alternate navigation method until estimations return to a

reliable threshold.

For example, at a given frequency, if 𝑅𝐿 = 𝑆𝐿−𝑇𝐿+𝑁 and calculations for 𝑆𝐿 are from

the source’s sound pressure at a reference distance, then the limit on SABRE’s range is at

𝑇𝐿 = 𝑆𝐿. This limit exists because beyond that range 𝑅𝐿 = 𝑁 , ∆𝑅𝐿 would be a function

of the ambient noise, precluding range estimation. If the estimate for noise were lower than

the actual noise, range estimates would continue after reaching the noise threshold and would

be assumed valid while the target’s actual range could continue to change unpredictably.
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Figure 3-9: Errors in 𝛼 show a linear impact with range as expected. A frequency pairing
of 10 kHz and 40 kHz in Environment 4 maximizes frequency separation in an environment

deep enough to mitigate multipath. Real-world experiments will evaluate whether the
proposed depths are sufficient.
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3.6 Summary

This chapter reviewed the empirical equations used to calculate the absorption coefficient, 𝛼,

for a particular frequency and set of environmental conditions. The units for 𝛼 are dB/km.

The derivation for the transmission loss is shown through the acoustic intensity and

pressure at the source and receiver, highlighting the difference between an assumed lossless

medium and a lossy homogeneous medium. Transmission loss is treated as a combination

of geometric spreading loss and losses to absorption.

We also covered several environmental models that aid analysis on the environments in

which SABRE is anticipated to provide reliable estimates and environments that will be

more difficult due to increased impacts from multipath.

Lastly, we proposed a mathematical method for estimating range based on the difference

in transmission loss at two frequencies. The chapter closes with an evaluation of the sources

of error and sensitivity within this estimation.

49



50



Chapter 4

Experimental Protocols and Data

Processing

This chapter provides an overview of the equipment used, testing procedures, and experimen-

tal protocols. It includes a review of the signal processing techniques used to estimate range

via the differential frequency transmission loss, and provides initial results from SABRE in

the experimental environment. The goal for equipment testing and follow-on experimenta-

tion was to verify amplitude estimations methods as a means to support range estimation.

4.1 Experimental Setup

Prior to data collection the first goal was to test the equipment setup to demonstrate ampli-

tude estimation at short static ranges prior to conducting field trials. Initial data collection

focused on simplicity and addressed hardware limitations and environment access due to

COVID-19. The hardware used was the best equipment available on short notice before

quarantine measures took effect. However, a positive outcome from these limitations was

demonstrating that feasibility assessments for SABRE were not personnel-intensive. Initial

experiments required only a single operator and a non-participating safety observer. Exper-

iments were feasible due to private dock access on Bourne Pond, a tidal pond area in East

Falmouth, MA.
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4.1.1 Equipment

Equipment Purpose Specifications/Limitations
2 HTI-96-Min Hydrophones Receivers 2 Hz-30 kHz
USB-1608FS-PLUS DAQ Data Recording Sample Rate 100 kS/s

Raspi3 Data Storage 16 GB SSD
Laptop Dual-tone signal Limits source depth
Kayak Mobilize Receiver Human Operator

Garmin inReach Explorer GPS Ranges Irregular sampling
0.5-21 kHz, 18 m depth

Lubell LL916C Sound Source 0-41∘𝐶

Table 4.1: Equipment for Initial Data Collection

4.1.2 Preparation

During the complete shutdown for COVID-19 restrictions, equipment preparation and test-

ing was still feasible at home. Once acquired, the equipment in Table 4.1 was tested at home,

utilizing a deep bathtub. The intent was not to test SABRE’s performance, but instead to

ensure that the setup would adequately play and record data at the predetermined frequen-

cies should the opportunity for real-world data collection become available. The setup is

pictured below in Figure 4-1.

Figure 4-1: Equipment Setup for system tested during COVID-19 Stay Home advisory in
preparation for Data Collection.
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Dual-frequency tones were created in MATLAB using a sine wave at the desired fre-

quencies, as in Equation 4.1. The amplitude, 𝐴, was adjusted to avoid data clipping during

tone creation in MATLAB. The tone was played via laptop headphone jack to a Lubell

LL916-C-025 underwater speaker system. Two hydrophones attached to a USB digital ac-

quisition (DAQ) system and Raspberry Pi recorded received signal at each hydrophone.

Only a single hydrophone is necessary, but two allowed for redundancy if one of the chan-

nels were to perform poorly. This testing verified the equipment setup before transiting to

the data collection site and provided information on frequency selection and data acqui-

sition. A dual-frequency tone at 6 kHz and 15 kHz was selected based on the frequency

limitations of the source and anticipated noise bands in the experimental environment. At

these frequencies and environmental conditions, the difference in absorption rates is under 2

dB/km. The goal was to achieve 3 dB of separation in absorption for the desired range [14].

Given that the range in this experiment was approximately 230 meters, there is only a small

difference in absorption loss for the frequency pairing of approximately 0.5 dB at maximum

range, and even less at shorter ranges. 15 kHz is the highest frequency selected due to the

assessment that the source would not perform as reliably near the high end of its frequency

range. 6 kHz is the lowest frequency selected due to concerns that there would be increased

noise in the environment at lower frequencies. This testing setup provided valuable feedback

before field deployment, but one drawback was that the hydrophones became saturated at

higher volume tones due to the proximity of the source and receiver, and multiple reflective

boundaries in the testing tub.

𝑥[𝑡] = 𝐴 · 𝑠𝑖𝑛(2𝜋𝑓1𝑡) + 𝐴 · 𝑠𝑖𝑛(2𝜋𝑓2𝑡) (4.1)

The equipment referenced in Table 4.1 was then relocated to East Falmouth for testing in

Bourne Pond. Two hydrophones were attached onboard a single-person kayak and connected

to a USB digital acquisition device and Raspberry Pi to record received signals at each

hydrophone. An Adafruit Breakout GPS and Garmin inReach Explorer Plus Handheld

GPS record the kayak and hydrophone positions throughout data collection. The Garmin

GPS provides primary ground truth position, and the Adafruit GPS is for redundancy.

This experiment’s goal was to demonstrate SABRE by measuring source level at a one-

meter static reference distance, using periods without signal for noise estimation, and vary
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Time (UTC) Event Purpose
10:24:30 GPS, DAQ, Hydrophones ON Noise Collection
10:29:30 Dual Tone 6/15 kHz ON Source Level at Reference Distance
10:30:30 Dual Tone OFF Create gap in signal prior transit
10:31:30 Dual Tone ON Data Collection with variable range

10:31:30-10:55:40 Transit to 230 m and return Increase/Decrease range to source
10:55:40 Dual Tone OFF Noise collection
10:56:38 GPS and DAQ OFF Experiment Complete

Table 4.2: Sequence of Events for May 14, 2020 Experiment

Parameter Value Justification
Salinity 25 %� June 15, 2020 CTD Measurement

Temperature 5∘𝐶 Estimated
pH 8.0 Estimated

Depth 2 meters Estimated
Source and Receiver Depth 1 meter Measured
Dual-tone Generator (𝐹𝑠)

Sampling Frequency 44.1 kHz Selected
Dual Tone (𝑓1/𝑓2) 6/15 kHz Selected

Table 4.3: May 14, 2020 Experiment Parameters

the range to the source via an out and back transit denoted in Figure 4-2. This experimental

protocol succeeded in providing relevant data, but also provided numerous lessons-learned

for subsequent protocols.

For clarity, the timeline in Table 4.2 and pictured in Figures 4-2 and 4-4 details the

events in chronological order. On May 14, 2020, the referenced equipment arrived at a pri-

vate dock on Bourne Pond in East Falmouth, MA. An audio jack connects the laptop with

the preloaded dual-frequency tone connected to the sound source. The two hydrophones

attached to the kayak bow. The front passenger area of the kayak housed the Raspberry

Pi, DAQ, and mini display screen. An external lithium-ion battery pack powered the Rasp-

berry Pi, and the DAQ. Hydrophone recording was activated via Linux Command Line to

begin recording ambient noise for one minute. A real-time command-line spectrogram ver-

ified noise collection and monitored received signal throughout the experiment. The sound

source remained on the dock during noise collection periods. A one-meter reference distance

marked the position for the Lubell sound source relative to the hydrophones. The dual-tone

frequency was turned on for one minute to establish the reference source level for future

calculations. The sound source was deactivated and removed from the water for one minute
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Figure 4-2: GPS track for May 14, 2020 Data Collection
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to create an identifiable gap in the signal before commencing the kayak transit. After one

minute, the sound source reentered the water at the same location and depth. The signal was

activated, and the kayak began the transit to approximately 230 meters south then return

to its start location. The sound source was deactivated and removed from the water, but

hydrophones continued to record for approximately one minute without signal to identify

the end of the transit.

The sampling rate and signal details relevant to the experimental protocol are in Table

4.3. The data sampling rate, 𝐹𝑠, was set at 44.1 kHz to satisfy the Nyquist frequency for

the 15 kHz portion of the dual-tone.

𝐹𝑠 ≥ 2 · 𝑓𝑚𝑎𝑥 (4.2)

The sample rate is over twice the rate of the highest band-limited frequency reconstructed

without aliasing [24].

4.2 Signal Processing

4.2.1 Data Parsing and Frequency Content

After the experiment, the Raspberry Pi uploads files for further analysis. The sampling rate

on the DAQ records .txt files that are one second in length and contain 44,100 samples per

file. To reconstruct the time series files are imported into MATLAB to form a two-channel

array of samples. One channel’s data is isolated to focus on a single hydrophone.

The details for the initial data and subsequent revisions are present in Table 4.4. The

first step is to trim the data to remove extraneous recordings caused by the latency between

the actual stop recording time, and the last file recorded. This lag results in sections of

data, particularly at the end of the experiment, with zero values that become problematic

if not removed due to the desire to assess received sound levels on a log scale. Data from

Data Size Details
All Hydrophone Data 83745900 × 2 2-channel data recorded on DAQ

Trimmed Data 82246500 × 1 Channel 2 Recorded Data
Data Snapshots 44100 × 1860 Averaging in Time Snapshots

𝑅𝐿 per Bin Width 1764 × 1860 25 Hz Frequency bands

Table 4.4: May 14, 2020 Data Collection Details
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channel two is analyzed, though both channels record similar outputs.

Figure 4-3 shows the trimmed data as the raw output from the hydrophones in a row

vector. The vector length and GPS data time stamps show that the two timelines are

synchronized.

Figure 4-3: Raw Data on a Single Hydrophone for MAY 14, 2020 Data Collection

This data is the response to the system, or 𝑦[𝑡]. The next step is to reshape this data from

an 𝐹𝑠 · 𝑡 length vector into a matrix with dimensions 𝐹𝑠 and 𝑡, where t is time in seconds.

In this way, the data forms a matrix that contains one second of data per column with

each row representing a specific sample from that second in time. The Fourier Transform

reconstructs the frequency content in 𝑦[𝑡], or computationally, the Discrete Short-Time

Fourier Transform, which uses the Fast Fourier Transform and a sliding frame over the time

series to create a spectrogram [24].

𝑌 [𝑒𝑗2𝜋𝑓 ] =
∞∑︁
𝑡=0

𝑦[𝑡] · 𝑒−𝑗2𝜋𝑓𝑡 (4.3)
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Graphically there is interest in 10 · log |𝑌 [𝑒𝑗2𝜋𝑓 ]|, where log is the base 10 logarithm of

the argument, but the main focus is the power spectral density (PSD),

𝑃𝑆𝐷 = 10 · log |𝑌 [𝑒𝑗2𝜋𝑓 ]|2 (4.4)

and plot the results in Figure 4-3 as a heat map [24]. The different plots for the PSD

represent variations in snapshot length, frequency bin size, and normalization. Snapshots in

time can address peaks and valleys in signal strength by averaging over variable time lengths.

Frequency bin widths allow us to broaden or narrow frequency bands to capture the energy

that may be associated with frequencies some ∆𝑓 from 𝑓1 or 𝑓2. This technique may be

more or less appropriate depending on the main lobe’s width at a frequency of interest.

These tools can also allow for more efficient computation when dealing with large amounts

of data. The average of multiple columns yields longer snapshots in time, and averaging

across rows produces a wider bin width for frequency.

The received signal content displayed in the spectrogram shows the experimental timeline

in Figure 4-4.

The different versions of the spectrogram provide details on the received signals, but also

relevant information on ambient noise. The 6 kHz band is subject to significantly higher

ambient noise with an identifiable noise band between 5 and 7.5 kHz, and intermittent high

levels of broadband noise, particularly at frequencies less than 10 kHz. There is a wide

main lobe at the 6 kHz frequency, and significant fluctuations in 𝑅𝐿 at close ranges, which

create issues in the subsequent analysis and range estimation. This impact is particularly

noticeable at 15 kHz during the outbound transit. However, the phenomenon does not

replicate itself during the return transit. This disparity is potentially due to the multipath

or the pose of the kayak relative to the sound source.

4.2.2 Exploring the Signals at 6 and 15 kHz

Investigation after this experiment showed several potential contributors to the poor reso-

lution at 6 kHz and fluctuations in 𝑅𝐿 at 15 kHz during the outbound transit, the choice in

frequency, and the method for powering the sound source, and the impacts of the shallow

water environment.

Additional analysis of the frequency choice revealed a potential issue with operating the
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Figure 4-3a: Spectrogram a) shows normalized frequency range such that 𝑓
𝑓𝑚𝑎𝑥

creates a
scaled frequency axis from zero to one and the output is scaled from -180 to 20 dB

Figure 4-3b: Spectrogram b) shows a higher resolution plot via one second snapshots in
time and 25 Hz frequency bins.

59



Figure 4-3c: Spectrogram c) uses ten second snapshots and 450 Hz frequency bins which
more clearly identifies frequency bands with significant ambient noise and broadband

interference.
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Figure 4-4: The spectrogram clearly depicts the sequence of events from Table 4.2 that
occurred during the May 14, 2020 experiment through the energy content at each

frequency bin. At a maximum range of 232 meters between source and receiver the signal
visibly dissipates in the spectrogram.
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Lubell LL-916C sound source at the selected frequency pairing.

Figure 4-5: Sound Pressure Level (dB/𝜇Pa) versus Frequency (kHz) for Lubell
LL-916C [55]

A deep null appears in the sound pressure level plot for the source hardware shown in

Figure 4-5. Lubell Labs website provides the frequency response in the source hardware

documentation [55]. The frequency response could contribute to the large values for trans-

mission loss at short ranges and the wide main lobe. The 6 kHz portion of this plot has a

much steeper slope than the remainder of the curve and could impact the source’s ability to

maintain consistent output levels at this frequency. Chapter 5 provides an updated experi-

mental protocol that factors in this frequency response should a similar source be employed

again.

Given the shallow water environment and narrow operating channel, the continuous

tones likely caused significant multipath within the environment, and particularly near the

sound source location. Multipath effects raise 𝑅𝐿 at close ranges and complicates the data

since the impacts decrease quickly as range increases. Near the source, multipath effects

are almost immediate given the shallow environment, and one meter distance to surface

and bottom boundary layers. The result is increased transmission losses in comparison to

mathematical models. More importantly, these effects vary by frequency and may contribute
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to some differences in the rate of increase for 𝑇𝐿 at each frequency.

Lastly, a lithium polymer battery was the power source for this experiment. Afterward,

troubleshooting potential causes for the data recorded revealed that lead-acid batteries pro-

vided power to the source in previous experiments. This discrepancy occurred due to limited

access to laboratory hardware. Based on feedback from technical experts at Lubell Labs, this

is not ideal, and lead-acid batteries would be the preferred choice. The difference in power

source is another potential cause for the rate of change in received sound level. Fluctuations

at the source appear to be more impactful on the outbound leg, and may be mitigated by

a more consistent power source.

4.2.3 Analyzing Received Signals

Now that the data is in time snapshots and frequency bins, the next step is to analyze the

signal at the bands of interest, which correspond to the dual-tone continuous signal at 6

and 15 kHz. Throughout this analysis, varying snapshot lengths and bin widths show how

averaging in frequency and time impacts the data. Since range estimation is the objective,

the kayak’s transit section in the time series is the focus of subsequent analysis. 𝑅𝐿 at 6

kHz and 15 kHz is denoted as 𝑅𝐿1 and 𝑅𝐿2 respectively.

The initial plan to calculate noise from time series sections when the source was not

in the water did not adequately capture spatial and/or temporal variation of the ambient

noise. The calculation measured ambient noise at the two source frequencies and spliced

them into a single vector. The average of this vector sum gave the mean noise level while

avoiding broadband spikes in the data.

Since the dual-frequency tone is continuous, the noise vector is instead sampled from a

neighboring frequency band with adequate separation in frequency to avoid significant side-

lobe contributions from either of the dual-tone frequencies. Altering this approach provides

a better, if still not ideal, noise estimate. 9 kHz and 18 kHz represent noise estimates (𝑁̃).

The denoised signal is the measured received sound level minus the noise in dB at each

frequency band.

𝑅𝐿− 𝑁̃ = 𝑆𝐿− 𝑇𝐿

The first iteration averaged one-second snapshots in time with 25 Hz frequency bins, but
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450 Hz frequency bins better approximated the extremely wide main lobes at the frequencies

of interest. A moving mean function over the output shown in Figure 4-6 smooths the curves.

This figure shows the measured received power at each frequency band of interest before

and after smoothing. Then, it compares the two smoothed curves against each other.

Figure 4-6: Received sound levels are compared in each frequency band.
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Based on the received sound levels, there is a discrepancy between the two curves, par-

ticularly in the first half of the time series. The primary hypothesis is that the discrepancy

is due to frequency-dependent multipath effects and potentially fluctuations at the source.

Interestingly, the impacts are less apparent on the return route. There are two possible

explanations for this phenomenon. It may be that the multipath in the environment from

the continuous tone is steadily increasing at the beginning of the time series. This cause

is feasible since the source was introduced to the water column and activated following a

period of noise collection with no signal in the environment. However, such an increase

would likely happen very quickly, and not be noticeable over the entire outbound transit. It

is more likely that the pose of the kayak impacted these measurements. On the outward leg,

the kayak backed away from the source before departing in the opposite direction, see Figure

4-7. However, when returning, the kayak was maneuvered in a manner that maintained the

hydrophones facing the source. This change in pose could result in masking or variation of

the multipath effect due to the kayak’s position between the hydrophones and the source.

Such an effect is magnified by the extremely shallow environment.

Figure 4-7: Representation of Kayak pose with respect to Sound Source, showing the
hydrophone position relative to the source and the kayak body. The maximum distance

between the source and receiver based on GPS is 232 meters.

After assessing the received sound level, the transmission loss at each frequency is the

difference between the measured source level and the denoised received sound level. The

average received level from the collection period at a one-meter reference distance provides

an estimated 𝑆𝐿. While this approach seemed logical in setup, there are concerns with the

mirrored reflections and disparity in received sound level on the outbound leg of the transit.

These disparities are assessed more closely by comparing the measured received sound level

curves from the data with the mathematical model for geometric spreading and absorption,

as well as Bellhop models run in MATLAB.
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Figure 4-8: A comparison of mathematical models, Bellhop models, and measurement data
for Environment 1 at 6 and 15 kHz. Bellhop accounts for frequency-dependent multipath
effects that cause periods in which the lower frequency displays greater transmission loss.

This factor supports the need for significantly increased frequency separation to avoid
overlap that severely impacts estimation.

In Figure 4-8, there is a large difference in 𝑇𝐿 at frequencies of interest. Based on

the close curves on the return transit, it appears that the 15 kHz tone has a slower rate

of increase in 𝑇𝐿 on the outbound leg. This trend is counter to expectations that the

higher frequency will always have increased transmission loss at increased ranges. Figure

4-9 compares these differences directly by plotting the measured 𝑇𝐿 against GPS derived

ranges at each frequency.

4.2.4 GPS-derived Ranges

A Garmin inReach Explorer Plus provides the positions for a suitable ground truth to check

the effectiveness of range estimation via absorption at differential frequencies. However,

GPS data requires additional processing to match the acoustic data time series accurately.
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Figure 4-9: Transmission Loss vs. GPS Range for 6 kHz and 15 kHz respectively. This
figure shows the disparity in transmission loss during outbound and inbound transits. The
difference in transmission loss at the same ranges for 15 kHz is both greater and notable

over a longer set of ranges. This is likely due to the frequency dependent effect of
boundary loss on the signal at both short range and in very shallow water.
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The device is designed to save battery life and will default to updating fixes at inconsistent

time windows based on movement. GPS data also marks the source location during the

experiment. Garmin maintains a web service that exports data files in various formats as

well as desktop software. However, the desktop software provides more granular detail.

Latitude, longitude, and time-stamps export as .gpx files and read into MATLAB.

Step 1: Latitude and Longitude convert to radians for the source location and the points

along the transit.

(degrees * 𝜋)/180 = radians

Step 2: Next, the Haversine formula to calculates range from one coordinate point to

another.

𝑎 = sin2(∆𝜑/2) + cos𝜑1 · cos𝜑2 · sin2(∆Λ/2)

Where 𝜑 is latitude, Λ is longitude.

𝑐 = 2𝑎 · atan2(
√
𝑎,
√

1 − 𝑎)

and

𝑟 = 𝑅 · 𝑐

where atan2 is the two-argument arctangent representing the angle between the positive

x-axis and a line to a non-zero point (x, y), 𝑅 = 6, 371, 000 m is the mean radius for the

earth, and the range is in meters. Figure 4-10 shows plots for the intermittently sampled

data. The irregular sampling is noticeable in the x-axis with 341 samples over the 1,899

seconds of data. GPS fixes occur as frequently as every second, or as far apart as six minutes

when not in motion.

The trimmed and time-stamped range vector focuses on the section recorded during the

kayak transit. After trimming the excess data, interpolation matches it to the 𝑅𝐿 vectors

in length. Figure 4-11 shows the time-stamped GPS data for comparison.

Based on Figures 4-8,4-9,4-7 and 4-11 the cause of the irregularities in the received sound

level can be assessed further. This data reinforces the earlier assertion that irregularities

in the received sound level could be related to the kayak’s pose. Lower transmission losses
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Figure 4-10: Irregularly sampled GPS-derived ranges

Figure 4-11: After processing GPS-derived ranges are useful for comparison to the
estimate range during collection periods.

occur when the hydrophones have a clear path to the sound source, but the slope of the

transmission loss is significantly increased on the outbound leg once the kayak is between

the source and receiver. The indications on the return leg show this more clearly as the

transmission loss drops drastically after 1200 seconds in the time series, but rebounds from

zero to over 20 dB in transmission loss in less than 100 seconds. During this period, the

kayak is near the source, but its position relative to the source and hydrophones is shifting,

and then returns to the hydrophones directly facing the sound source. However, there is a

slight peak represented by the Bellhop model, which may indicate that the setup is simply

more sensitive due to the combination of surface and bottom losses than the models can
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anticipate. The consistency of the curves with the models is promising, and better results

may be feasible in a deep water environment with better options for frequency selection.

4.2.5 Thresholding for noise

A conservative signal-to-noise ratio of 5 dB for signal detection addresses concerns with the

quality of the noise estimate. Figure 4-12 shows these sections in the received sound level

plot.

Figure 4-12: Received Sound Levels with cutoff for desired SNR

The conditions and data results from the experiment identify several issues with the

source level detections. Therefore all range estimations are included, but figures highlight

those made within 5 dB of the noise threshold for context. The noise estimate is removed,

and therefore any detections below zero are viewed as detections based solely on noise. A 5

dB buffer zone identifies measurements that are close to noise.

Before making range estimations, an estimate for boundary loss is accounted for using

BELLHOP. Since BELLHOP models transmission loss using geometric spreading loss, at-

tenuation, and boundary loss, an estimate for boundary loss can be obtained by subtracting

geometric spreading loss and Equation 3.19 for attenuation from BELLHOP’s output for
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transmission loss. This estimate is a minor adjustment, and can be improved with a better

model of the environment, bathymetry and bottom layer. The boundary loss estimation for

each frequency is then subtracted from their total transmission loss in order to focus the

comparison on the difference in absorption.

The signals’ lack of adequate separation becomes problematic in the range estimation.

𝛼1 ≈ 0.5 dB/km and 𝛼2 ≈ 2.45 dB/km are calculated based on the Francois-Garrison

Equations and assumptions about the environment. These values give a separation of less

than 2 dB/km, which is not ideal given the short ranges. The proximity of the frequencies is

compounded by the shallow water environment, which heavily impacts the already sensitive

difference in transmission loss. This impact is most evident when the transmission loss at

15 kHz is greater than at 6 kHz despite increasing range.

The range estimation in this environment is highly unreliable, though there is an im-

provement in the transit’s return leg. The small difference in absorption rates between

the two frequencies and the additional losses due to the frequency-dependent multipath in

the shallow water environment led to estimations that consistently overestimate the range

between one and two orders of magnitude from GPS-derived ranges.
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Figure 4-13: Range Estimation compared to GPS Ranges for 14MAY2020. The first plot
shows a direct comparison with the estimate being several orders of magnitude away from

ground truth. The second plot compares the two on a log-scale.
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4.2.6 Adjusting the reference range

As discussed, the multipath effects and assumed source fluctuations are most significant at

very short ranges, and early in the time series. In order to improve range estimate through

SABRE the reference range can be reset to a further distance, thus avoiding the bulk of the

effects. A distance of 23 meters is chosen heuristically based on the measured 𝑇𝐿 in Figure

4-8. The 𝑇𝐿 data at closer ranges is removed, and measurements at 23 meters are rest to

zero making this range the new reference for transmission loss throughout the transit.

Figure 4-14: Transmission losses are compared after resetting the reference range for the
source level. While there are still discrepancies in the outbound transit these curves align

much more closely than when factoring in close range source level measurements.

The resulting curves are more closely aligned with expectations, but still display some

inconsistencies during the outbound transit. Several potential causes for this have been iden-

tified, but the kayak pose seems to be the most consistent and easily confirmed contributor

to the discrepancy.
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Figure 4-15: Updated range estimate based on new reference distance.
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Figure 4-16: Range estimate focused on the return leg only.

Figure 4-15 shows a great improvement over the estimate for the full time series, but

the inconsistencies in the outbound transit drastically increase error for that portion of the

transit. The portion for which an estimate is feasible is further refined to focus on the return

transit. During this period the kayak is not obstructing the path between the source and

receiver which could explain the increased consistency in the measurements. This factor is

much more significant given the extremely shallow conditions in the environment.

The most significant error on the return transit occurs well outside the 5 dB SNR thresh-

old identified previously, but there is significant oscillation in the estimate. The error in range

throughout the return transit is assessed in Figure 4-17. For the portion of the return transit

that is within the desired SNR the mean error is 273.5 meters with a maximum error of 576

meters.
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Figure 4-17: This figure shows the absolute value of the error between range estimates and
GPS-derived ranges during the return transit. A mean error of 273.5 m and maximum

error of 576 meters is achieved during this period. Given the worst-case scenario presented
by this shallow water environment and limited frequency range of the source these results

indicate a great deal of potential for SABRE as a viable low-cost technique.
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4.2.7 Analysis of Results

Experimental data from May 14, 2020 revealed several limitations for SABRE in this ex-

tremely shallow environment. The pose of the vehicle became extremely impactful on 𝑅𝐿

given the small waveguide between the source and receiver, and the impacts from multipath

made calculations more difficult. However, the environment and equipment utilized present

a near worst-case scenario for range estimation. Even in this worst-case, there are elements

in the data that show promise.

The choice of frequency was driven by the equipment available; however, a more in-depth

analysis revealed many challenges implementing SABRE at such close frequencies. In 3-5,

a log-linear trend shows that the models support such a comparison, but the outcome at

these frequencies shows the low probability of success in Figure 4-18. The key to this plot is

the oscillation of the difference in absorption between positive and negative values at close

ranges. This difference is due to BELLHOP’s inclusion of noise and multipath in the output

and shows that these effects will negate estimation at close ranges. Estimation under these

circumstances requires a more advanced statistical approach that deliberately models the

multipath in a specific environment. To provide consistent estimations in its current form,

SABRE relies on the empirical model’s prediction that the higher of the two frequencies will

have a greater rate of transmission loss that trends toward log-linear curve. In the second

plot for Figure 4-18, this log-linear trend emerges at longer ranges, but it is not consistently

positive until ranges greater than one kilometer. In an environment with depths averaging

two meters or less, such as Bourne Pond, the multipath level likely precludes success, even

at longer ranges.

The bottom composition in Bourne Pond is also of concern, especially given the small

depths. Bourne Pond presents a muck bottom, which, despite its inclusion in modelling,

likely requires more detailed bathymetry to model its impact on transmission loss accurately.

This requirement is due to the bottom material’s density gradually increasing with depth

as opposed to a hard reflective boundary. A muck bottom instead acts as a medium of

suspended scattering particles ending in a lossy bottom. Increased depth would lessen the

impact of these factors by decreasing the number of interactions with the surface and bottom

layers, but in this case, it has a profound effect on transmission loss that is not included in

the models.
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The most significant impact is the lack of depth in the environment, which drastically in-

creases multipath, and magnifies the impacts from masking via the vehicle or other obstacles.

At greater source and receiver depths, the effects from multipath and scattering caused by

obstacles are mitigated due to fewer interactions with surface and bottom boundary layers

and increased ray pathways between the source and receiver. The latter condition implies

that there were be less impact from a change in vehicle pose than in shallow water. Figure

4-19 shows this difference through ray-trace plots in Environment 1 versus Environment 6,

which show the difference in boundary interactions out to the first kilometer. These inter-

actions significantly impact transmission loss and are more easily modelled in deep water

environments.
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Figure 4-18: This figure shows a plot of the difference in transmission loss for 6 and 15 kHz
at 230 meters in the first plot, and out to 10 kilometers in the second plot. The plots are

meant to analyze the difference in transmission loss from BELLHOP models for the
experimental environment on May 14, 2020 with a 2 meter depth. Since the range

estimation is a function of the difference in transmission losses at two frequencies this
difference provides insight into the likelihood that detection is feasible at certain ranges.
This figure shows the extreme difficulty presented with a 6 and 15 kHz pairing at ranges
less than 230 meters and the potential for improvement at longer ranges. However, the
unpredictability, and high impact of multipath effects is also represented in the model

which is a useful, but unreliable estimate.
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Figure 4-19: Ray plots from BELLHOP depict the ray paths for Environment 1 and 6.
The ray paths are to be frequency independent, but the resulting loss from interaction

with the surface and bottom boundary layers is frequency-dependent. Fewer rays are used
in the Environment 1 Model, shown first, but the difference is clear, and the vastly
increased number of interactions with the boundary layers significantly impacts the

resulting transmission loss and the difficulty in modelling it.
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Chapter 5

Conclusions and Future Work

5.1 Discussion

Marine environments present perhaps the most difficult challenges in the areas of communi-

cation and navigation. This environment is changes spatially and temporally with numerous

environmental and equipment factors that impact results. This work has proposed a novel

low-cost method, in SABRE, that estimates the differential transmission loss from a source

broadcasting at multiple known frequencies to provide range estimations that do not require

close time synchronization. Based on the theory and experimental results presented thus far,

this chapter discusses the implications to AUV cost, localization accuracy, and opportunities

for future work.

5.1.1 Cost

This work’s primary objective is not to surpass the accuracy of existing undersea navigation

approaches but to realize a scalable approach that allows vehicles to move in a formation

undersea. To capture the difference in scalability, the Bluefin SandShark and Riptide AUVs

serve as examples for the current standard [28] [29]. In [14], scalability is based on achieving

a vehicle structure that is five percent of the minimum cost of existing low-cost systems,

which translates to approximately $500. This requirement immediately negates the use of

CSACs, large arrays, or low-frequency transducers.

The configuration for a custom analog front-end that meets frequency and amplitude

accuracy requirements is detailed in [14]. Since SABRE requires only a low-cost MEMS
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IMU, depth sensor, and single hydrophone onboard follower vehicles, the resulting platform

size and cost meet the scalability requirements. It is also important to note that there is no

limit placed on the number of vehicles within this communication structure as with acoustic

modems. The comparative scalability assuming a fleet of current low-cost AUVs versus

the approach proposed in this thesis rapidly favors an expensive leader with inexpensive

followers. The leader is estimated to cost on the order of $50k. Initially, the $50k leader

for the low-cost swarm makes it an expensive option, but the cost-per-vehicle lessens with

each added vehicle. $50k is a conservative estimate for a vehicle with reliable navigation

based on a higher-end INS and DVL, and intermittent or consistent access to the surface.

This cost estimate is also valid for some feature-based approaches such as side-scan sonar,

which could be used cooperatively in a multi-leader scenario, based on existing bathymetric

maps, or identifying known landmarks for localization [30]. Based on these assumptions, at

formations higher than six vehicles, methods that mitigate close time synchronization will

become rapidly less expensive than current methods.

While this assessment is simplistic, it has important implications for the necessary accu-

racy and appropriate scenarios in which this swarming concept may be applicable. Assuming

depth is maintainable via low-cost pressure sensors and that SABRE can estimate within a

bounded error of 500 meters in deep water environments, lower cost swarms are achievable

via this method with six or more vehicles covering areas on the order of square kilometers

if all vehicles maintain the same depth. However, it is still feasible to utilize low-cost depth

sensors in deep water to separate vehicles vertically but maintain equal distances from the

lead vehicle. These factors are operationally dependent, but identify some flexibility in

SABRE’s employment for deepwater environments.

5.1.2 Accuracy

This technique does not compete with the accuracy of common techniques such as LBL

and USBL which can estimate range within a meter on most systems. However, there are

suitable low-cost techniques for comparison. The waveguide invariant techniques discussed

in [45] are able to reduce position estimate error of 3 km from an INS down to 1 km. The

potential for these techniques to be combined is discussed in the future work section of this

chapter.

While LBL and USBL systems can reduce errors in range to the order of meters, their
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associated limitations can be prohibitive to scalable swarms. SABRE can act as an aid to

onboard INS by bounding the error associated with INS measurements. Given the envi-

ronment and source limitations it is premature to draw strong conclusions about SABRE’s

accuracy, particularly in the deeper water environments for which it is intended. Additional

experimentation in deep water environments is needed to demonstrate the extent to which

SABRE can bound range errors for localization.

5.2 Conclusions

Given that the testing environment in this thesis was far from benign, it is too early to

draw strong conclusions. This method will have decreased accuracy compared to cutting-

edge navigation techniques but contributes to low-cost and scalability areas. SABRE is

likely best suited as a means to bound error for a low-cost INS onboard follower vehicles in

a swarm with a well-equipped leader or leaders. Such swarms may involve separations of

hundreds of meters between vehicles. While this is the case, there is still an essential need

for such a method when seeking significant spatial separation in the ocean to track changing

measurements across space and time.

5.3 Future Work

5.3.1 Updated Experimental Protocol

Updated Experimental Protocol under Present Conditions

We can divide future work into immediate action items to update the experimental protocol

for increased accuracy in SABRE’s results and other avenues to approach improvement in

the method.

First, even in the environment chosen and with less than ideal equipment, several adjust-

ments can be made to improve the results. The first correction to the experimental protocol

will be to move away from a continuous tone at two frequencies. Instead, a dual-frequency

pulse of approximately 0.1 seconds every second will facilitate several improvements. A pulse

per second signal will allow measurements for the signals of interest and the noise in the

bands of interest at all points in the time series outside the pulses themselves. This minor

change presents significant advantages in noise estimation and assesses the range limitation
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for the source more accurately. This improvement will also require a less conservative SNR

limitation for signal detection. This method can be further improved by using sets of equally

spaced signals pulsed for 0.1 seconds every second. Post-processing, and eventually real-time

estimation will be more flexible with sets of signals to choose from based on ambient noise

levels, and variable ranges to the target as certain frequency pairings will perform better at

short, mid, and long distance ranges.

The frequency selection itself can also improve. Subsequent experiments using a similar

equipment setup should maximize frequency separation. Given feedback on inconsistencies

above 18 kHz, 1 kHz and 17 kHz stand to improve detection levels’ consistency. Figures

5-1 and 5-2 show the transmission loss curves at these two frequencies for the environment

from May 14, 2020. In this case, it is unclear if the further frequency separation will provide

any benefit. At close ranges, the greater wavelength at 1 kHz increases the impacts from

multipath in shallow water, resulting in a significant initial loss at the lower frequency.

However, the trend toward the 17 kHz signal surpassing the 1 kHz signal in transmission

loss is more rapid than the previously chosen signals, and the absorption difference reaches

a local maximum of 5 dB difference before reaching 1 km. The absorption difference for the

6 and 15 kHz pairing displays continued oscillation between -1 and 4 dB out to 1 km, as

shown in Figure 4-18. These calculations utilize the same level of smoothing on both curves

before comparing.

Estimating 𝑆𝐿 is difficult in almost any environment, but the impacts in very shallow

water increase this challenge significantly. Two adjustments can facilitate an improved cal-

culation for 𝑆𝐿 and separately the range estimate. An additional hydrophone should be set

at a 1-meter reference distance from the source to provide a constant reference measurement

for 𝑆𝐿 at every time step. This addition would not be intended as part of the final SABRE

implementation, but is useful as a means to more accurately validate performance. While

this will improve the confidence that the 𝑆𝐿 included in the measurement is not subject

to fluctuation at the source, it will not overcome the suspected environmental impacts that

lead to large 𝑅𝐿 values at close ranges and the subsequent spike in 𝑇𝐿 at longer ranges.

However, a second step that will help mitigate this effect is establishing several reset ranges

for calculation. Rather than a continuous out and back transit, deliberate stops at set ranges

will allow for multiple samples and potentially better measurements. This technique should

be combined with a higher amplitude signal for increased max range, and a longer overall
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Figure 5-1: BELLHOP Models for 1 and 17 kHz show the greater difference in total
transmission loss, and loss to absorption.Total transmission loss for each frequency is show

as a raw and smoothed output from Bellhop with smoothing performed using a moving
mean. Geometric spreading is then subtracted from the smoothed model to give insights

into the contributions from absorption to the total transmission loss.
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Figure 5-2: Models for prospective improvements in frequency pairing for the May 14, 2020
environment show that reliable range estimation will likely remain problematic at close

ranges due to the initial transmission loss at longer wavelength lower frequencies. However,
despite the drawbacks the increase in transmission loss difference at longer ranges may

make reliable estimations feasible at distances greater than a kilometer with strong enough
𝑆𝐿. These curves show the difference in absorption between the two frequencies at the

range from May 14, 2020 experiment and out to 10 km.
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transit.

Lastly, to more deliberately assess whether masking played a significant role in the large

𝑅𝐿 fluctuations in portions of the May 14, 2020 time series, subsequent experiments should

be deliberate in establishing the position of the hydrophones relative to the sound source.

Experiments should include trials where pose changes and trials where it remains the same

throughout. During runs in which the pose is altered, these changes should be deliberately

noted in the time series for the data to gauge the impact more closely.

Updated Experimental Protocol for Ideal Conditions

Despite methods to improve SABRE in the environment used for the May 14, 2020 experi-

ment, it is apparent that the technique is better suited for deepwater environments at wider

frequency separations. Still, future tests should address realistic use cases for underwater

vehicle swarm formations. Therefore, Environment 4 serves as a vastly superior environ-

ment to the very shallow tidal pond from previous tests. Dual frequencies at 10 kHz and

40 kHz significantly improve frequency separation and, combined with the increased source

and receiver depth, should produce superior results. Figure 5-4 shows the transmission loss

and absorption curves for a 10 and 40 kHz pairing in Environment 4. Comparing 10 kHz

and 40 kHz in this environment shows the improvement at close and longer ranges. The

difference in transmission loss in the model stabilizes after only 50 meters in range. The

variability from multipath becomes problematic after one kilometer, but it will require real-

world data sets to determine the impact at that range. Regardless, according to models for

both previous and prospective experiments, there appears to be vastly decreased sensitivity

at 10 and 40 kHz in an environment that allows for increased depth.

5.3.2 Machine Learning

Machine learning is an algorithmic approach in which a predictive, classification, or other

relevant model is designed to improve through additional data analysis. Models are built on

the sample or training data in or to make predictions or decisions based on a probabilistic

view derived from the training data. In this way, more data generally leads to a higher rate

of success in machine learning.

Increasing use of machine learning for prediction and estimation algorithms presents

significant opportunities for application in SABRE. SABRE presents several elements that
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Figure 5-3: BELLHOP Models showing the total transmission loss and loss from
Absorption at 10 and 40 kHz.
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Figure 5-4: 10 and 40 kHz are analyzed as a prospective frequency pairing for
Environment 4. Broader frequency separation and a deeper environment is significantly
enhancing at shorter ranges as it leads to more rapid rates of increase in the differential
transmission loss. Models indicate that significant multipath impacts to range estimation
may occur at ranges greater than one kilometer, a significant improvement from shallow

water tests. In the short range plot there is some variability in the model out to 200
meters before a stronger log-linear trend takes effect, and while this may make very close

range estimates less accurate it is a vast improvement from closer frequencies whose
separation oscillated from negative to positive out to ranges in the hundreds of meters.

The achievable accuracy from these frequencies must be assessed on data sets from
real-world environments prior to making strong conclusions about their accuracy potential.
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make machine learning a viable route, such as a base model from which measurements

will vary, environmental parameters that can be set or inferred, and its structure as an

optimization problem.

Machine learning is categorized into supervised and unsupervised learning. The critical

difference is whether an initial classification structure is present or, as with unsupervised

learning, the goal is to extract a description for patterns within input data without an initial

class structure.

Similar to its use in speech and voice recognition, machine learning has been used for

acoustic signal processing to support detection and classification, but in this case, the specific

interest is in the acoustic environment and range estimation. The use of machine learning in

conjunction with SABRE could mean a direct approach to range estimation based on pre-

determined environmental parameters, or potentially an effort to extract the environmental

parameters themselves to support range estimates. While other types of machine learning

have been successfully applied in underwater acoustics, supervised learning through regres-

sion seems to be a logical approach for range estimation based on received sound level at

a single hydrophone. Given the nonlinearity and stochasticity in ocean environments, this

would best suit a multi-layered neural network or deep neural network. The multi-parameter

dependencies between frequency and absorption favor this higher-complexity machine learn-

ing model that optimizes parameter weights in each layer of the neural network through

back propagation [43] [42].

Machine learning techniques could work with SABRE to continuously build better pre-

dictive models for range prediction based on available data for a particular environment,

and using GPS data for ground truth during training phases. One limitation may be the

flexibility to multiple environments without retraining based on data specific to a new en-

vironment.

5.3.3 Matched Field Processing

Matched field processing (MFP) is a beamforming method that combines the physics of

propagation with models for the spatial complexity of an acoustic field within an ocean

waveguide. MFP was developed primarily to localize sound sources via range, bearing, and

depth estimates, but can also be used to infer environmental parameters for modelling and

navigation. MFP exploits the full acoustic field of the waveguide, and to do so, traditionally
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utilizes a large aperture vertical array. At its foundation, MFP is a generalization of classical

beamforming, but instead, it utilizes a steering vector derived from the Green’s function of

the medium [40]. MFP models the multipath structure’s coherence to create a spatial

matched filter that accounts for the entirety of the acoustic field.

While traditional methods have used wide-aperture multi-hydrophone arrays, recent

work has explored narrow aperture arrays with reduced numbers of hydrophones [41]. This

approach attempts to address limitations in MFP concerning environmental mismatching

and the need for a significant aperture to sample the acoustic field adequately. Efforts have

sought to work with the acoustic fields to create depth function matrices and normal mode

amplitudes using smaller aperture arrays. Least squares are then applied to obtain estimates

for remaining mode amplitudes, which inform calculations for the acoustic field and addi-

tional environmental parameters. While the least squares approach on a smaller aperture

array has the significant benefit of reducing the necessary aperture, it remains sensitive to

environmental mismatch.

In [39], a single hydrophone method that finds its foundation in MFP applies acoustic ray

modelling, eigenray analysis, and the autocorrelation function to extract information from

the environment for passive source localization. This approach models the transfer function

from the source to the receiver for N eigenrays based on the multipath environment, similar

to the approach with classical MFP. The acoustic ray modelling approach focuses on the

arrival structure of the eigenray composed of its angle and the relative arrival delay of the

eigenray (RADE). However, these aspects can be challenging to estimate, particularly in

shallow water environments where the source signal is unknown. Based on the assumption

that the signal is independent of the noise, [39] proposes an objective function for peak

extraction passive source localization via the autocorrelation function of the received signal,

a combination of autocorrelation functions for the source signal and the noise as well as the

eigenray amplitudes. This approach is advantageous in environments that preclude RADE

estimation and is of particular interest as a single hydrophone source localization technique.

There is potential to combine this method with range estimation via absorption, partic-

ularly in shallow water environments, to produce more accurate and more flexible results.
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5.3.4 Waveguide Invariant

The waveguide invariant is discussed in Chapter 2 based on similar efforts to employ a single

hydrophone and the waveguide invariant to estimate range and bearing to sources of op-

portunity [17]. While this work places emphasis on requirements for sources of opportunity,

more recent work present in [45] by the same group indicates that such information could

be gathered via alternate means, or the techniques could be applied in post-processing for

source localization.

In Chapter 2, the waveguide invariant is described as the striations in the acoustic

intensity pattern for broadband signals in a waveguide. Recent work such as [45] and [36]

also focus on the usefulness of the 𝛽 parameter as a means to derive other attributes from

the environment, such as time-domain Green’s functions or reference ranges between source

and receiver.

While alone these techniques are an abundant field of research that shows promise for

localization and characterization for the environment, there is potential for the mutually

supporting information produced by SABRE and waveguide invariant techniques to create

a mutually supporting algorithm that provides range estimate to support enhanced 𝛽 pre-

diction as well as a means to bound error in the absence of sources of opportunity through

SABRE. SABRE and Doppler shift techniques for bearing could also substitute for the

desired automatic identification system (AIS) data required for some waveguide invariant

algorithms. This adjustment would limit the need for additional equipment on the AUV,

such as acoustic modems, that would put limitations on swarms.

5.4 Summary

This thesis has proposed a novel method for range estimation using a single hydrophone

that does not rely on close-time synchronization. The main contribution of this approach is

to provide options for scalable low-cost swarms in an undersea environment.

Due to the extreme shallow water environment, several factors must be addressed in

order to reliably validate, reproduce and improve upon the accuracy displayed for the return

transit on the May 14, 2020 experiment. Experiments in deeper environments with wider

frequency ranges must be tested. A key component to future tests should be to determine

if the impact of vehicle pose is adequately mitigated in deeper water. To that end, this
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chapter proposed two updated protocols to further assess the overall feasibility for SABRE

in conjunction with scalable swarms. These protocols address improvements for estimation

within a similar environment, which we identify as one of the most difficult. However, we

also identify an improved environment for testing and assessment of SABRE’s achievable

accuracy.

This work successfully identified the theory, modelling techniques, and collection meth-

ods that will be used in future testing along with the previously stated lessons learned.

While the results are not conducive to strong statements about SABRE’s accuracy, the

combination of BELLHOP modelling with existing theory and signal processing techniques

provides the framework for further evaluation of technique in deepwater environments.

Lastly, each technique presented in the future work section of this chapter has its advan-

tages and limitations, but advancements in localization will likely include combinations of

range estimation algorithms that create flexibility to specific environments, and robustness

to missing information. Machine learning in acoustic localization has had some success in

using acoustics-based modelling to inform machine learning algorithms. This hybrid com-

putational approach will lead to more robust and accurate solutions while preserving the

approach’s low-cost scalability. With further testing in deepwater environments, SABRE

will continue to be evaluated as a tool in a continuum of solutions for underwater local-

ization as part of the effort to support large scale underwater swarms at achievable costs

thresholds.
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Appendix A

List of Acronyms

AIS automatic identification system

AUV autonomous underwater vehicle

CSAC chip-scale atomic clock

DAQ digital acquisition

DVL Doppler velocity log

EKF extended Kalman filter

GPS global positioning satellite

IMU inertial mapping unit

INS inertial navigation system

iUSBL inverted ultra-short baseline

LBL long baseline

MEMS micro-electro-mechanical systems

MFP matched field processing

MgSO4 magnesium sulfate
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MIT Massachussetts Institute of Technology

OWTT one-way travel time

pH potential of hydrogen

PSD power spectral density

RADE relative arrival delay of the eigenray

SABRE signal absorption-based range estimator

SBL short baseline

SLAM simultaneous localization and mapping

SNR signal-to-noise ratio

SOO source of opportunity

SPHERES Synchronized Position Hold Engage and Reorient Experimental Satellite

TDMA time-division multiple access

TOF time of flight

TWTT two-way travel time

USBL ultra-short baseline

WHOI Woods Hole Oceanographic Institution
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