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Abstract 
 
Animals can contain hundreds of cell types, each of which has a distinct morphology 
and function. The transcriptome of a cell dictates this unique cell biology. Recent 
approaches for high throughput single-cell RNA sequencing have made it possible to 
generate transcriptomes easily and affordably for tens of thousands of single cells, 
raising the possibility that transcriptomes could be generated for all cell types and cell 
states in a complete animal. Planarians are freshwater flatworms renowned for their 
capacity for whole-body regeneration. They possess a complex body plan with multiple 
distinct tissues. They also possess a population of dividing cells, called neoblasts, which 
contain pluripotent stem cells and are the source of all new tissue, with all cell types 
being turned over throughout the life of the animal. Planarians also constitutively 
express an arrangement of regionally expressed genes in their muscle that serve as 
patterning information for the animal. As such, at a single time point in the adult, 
pluripotent stem cells, all differentiated cells, and all associated transition states from 
stem cell to differentiated cell can be recovered, including patterning information 
expressed in muscle. This makes planarians ideally suited to generating an atlas of 
transcriptomes for all cell types and cell states in a whole animal. We used the single-
cell RNA sequencing technology Drop-seq to determine the transcriptomes for 66,783 
cells from adult planarians. In doing so, we identified a number of known and novel cell 
populations, including a novel class of phagocytic cells. We also uncovered novel 
neoblast subpopulations and putative transition state populations between neoblasts 
and differentiated cells, as well as a number of genes with regional expression in 
muscle. Through the identification of known rare cell types in the data, we conclude that 
we have obtained near-to-complete cell type saturation for all cell types and cell states 
in the adult planarian. We now have full transcriptomes for each of these cell 
populations, which can be utilized to assay their roles in planarian biology. This 
approach can also be applied widely to diverse animal species, including those with 
limited molecular tools available. 
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Foreword 
 
Multicellular animals can contain trillions of cells and hundreds of distinct cell types. Cell 

type composition changes dramatically during development from a fertilized egg to a 

mature adult organism. Distinct cell types in an animal are typically highly 

interconnected, with heterogenous cell types composing functionally distinct organs and 

organ systems. The actively transcribed set of genes within cells, the transcriptome, 

dictates the unique morphology and function of distinct cell types. Therefore, to 

understand the complex and interconnected biology underlying a multicellular organism, 

the actively transcribed genes for all cell types and cell states within an animal across 

its development must be determined. Recent advances in single-cell RNA sequencing 

technologies have made this daunting task a possibility. My thesis work focused on 

generating such a whole-animal cell type transcriptome atlas for the planarian 

Schmidtea mediterranea, a regenerative flatworm that is especially well suited as a 

case study for determining the transcriptomes of all cell types and cell states in a whole 

animal. The introductory chapter of this thesis will introduce the history of single-cell 

genomic technologies, including a summary of approaches that are currently available 

for the generation and analysis of single-cell genomic data, as well as an overview of 

how these methods are currently being used to transform diverse fields of biology. I will 

then introduce planarians as a model system, including the many features that make it 

especially well-suited for transcriptionally profiling all cells in a whole animal. My work 

aims to both provide insight into the cellular basis for the fascinating biology of this 

regenerative organism, as well as to provide a framework for generating such a whole-

animal single-cell transcriptomic resource for diverse species across the animal 

kingdom. 
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I. Tools for single-cell genomic analysis 
 
Genome sequencing projects 
The complete genome sequence of the first free-living organism was released in 1995 

for the bacterium Haemophilus influenzae (1). Over the next 3 years, completed 

genomes were released for the eukaryotic budding yeast Saccharomyces cerevisiae 

(2), the bacterium Escherichia coli K-12 (3), the archaeon Methanococcus jannaschii 

(4), and the bacterium Mycobacterium tuberculosis (5). In 1998, the complete genome 

sequence of a multicellular organism, the roundworm Caenorhabditis elegans, was 

completed (6), followed by the fruit fly Drosophila melanogaster in 2000 (7). In 2001, the 

first drafts of the human genome were completed (8, 9). Since that time, scores of 

animal genomes have been completed across the animal kingdom and individual 

human genomes can now be sequenced both quickly and affordably.  

 

The complete sequencing of animal genomes has had a profound impact on biological 

research. The identification of genes and regulatory regions important for human health 

has been greatly accelerated, and we have identified many genes important for human 

health that are conserved across many animal species. By comparing genomes across 

the animal kingdom, our ability to phylogenetically group organisms, before largely 

limited to physiological traits, has transformed our understanding of evolutionary 

biology. With the ease and affordability of genome sequencing, we can now sequence 

the entire genomes of understudied animal, plant, microbial, and viral species, with wide 

ranging potential for discovering new biology and improving human health.  

 
The advance of transcriptomic capabilities 

Despite the profound impact of whole genome sequencing on biological research, 

animals can contain hundreds of distinct cell types, each of which contains essentially 

the same DNA content. It is the transcriptome, or the actively transcribed set of genes, 

that dictates the unique morphology and function of a cell. The capability to sequence 

actively transcribed genes from cells was first demonstrated in 1983, with the 
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sequencing of 178 clones from a rabbit muscle cDNA library using Sanger sequencing 

(10). More such cDNA sequences, later termed expressed sequence tags (ESTs), were 

generated by Sanger sequencing and compiled over the next decade (11). In 1995, two 

higher throughput methods for assessment of the sets of active genes from a biological 

sample were developed: serial analysis of gene expression (SAGE) and microarray 

technology (12, 13). SAGE involved the generation and concatenation of short 

sequence tags from a cDNA library (generated using oligo (dT) primers) into long 

constructs that could be cloned and sequenced, allowing for more multiplexed 

sequencing and the identification of thousands of transcripts from the pancreas (12). 

Microarray technology involved the printing of pre-defined complementary DNA 

sequences onto glass chips, allowing for the detection of corresponding gene 

expression using hybridization of fluorescently labeled cDNA libraries, and became the 

dominant method for high-throughput identification of actively transcribed genes for the 

next decade (13). In 2006, a more unbiased approach called RNA sequencing (RNA-

seq) was developed, in which fragmented cDNA was amplified by polymerase chain 

reaction (PCR) using ligated adapter sequences, followed by annealing of sequencing 

primers and sequencing using Roche/454 technology, enabling detection of transcripts 

from 10,000 gene loci from cultured human pancreatic cells (14). A more high-

throughput Illumina-based technology was developed in 2008 (15, 16, 17). RNA-seq 

has since become a standard laboratory tool, enabling full transcriptomes to be 

generated easily and affordably for tissues and populations of cells.  

 

Single-cell RNA sequencing technologies 

As with whole-genome sequencing, the ability to easily and affordably generate 

transcriptomes was transformational for biological research, allowing most genes 

actively expressed by a group of cells or tissues to be elucidated. Previously described 

RNA-sequencing strategies can only be performed on bulk populations of tissues or 

cells, however. As a result, transcriptomes generated by these methods are aggregates 

across multiple cell types and cell states, averaging out any heterogeneity in gene 

expression between transcriptionally distinct cell populations and drowning out rare 
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transcripts expressed by rare cell types in the sample. To overcome these limitations, a 

number of strategies were developed over the last decade that have allowed for the 

generation of transcriptomes from single cells.  

 

Approaches for single-cell microarrays (18, 19) and single-cell RT-qPCR (20), which 

could be combined with microfluidic arrays, allowing for multiplexed measurements of 

hundreds of cells (21), were first developed in the 90’s and were widely used to 

measure gene expression in single cells. However, these methods only enabled 

profiling of a limited set of pre-defined genes, not full transcriptomes. The first method 

for non-biased RNA sequencing of single cells, allowing for full transcriptome 

determination, was described in 2009 and is commonly referred to as the Tang method 

(22) (Figure 1.1A). This method involved isolating single cells into wells, where the cells 

were lysed and mRNA was reverse transcribed using an oligo-DT primer. A poly (A) tail 

was then added and the second DNA strand was generated using a poly (T) primer. 

The cDNA was amplified by polymerase chain reaction (PCR) using adapter sequences 

added during cDNA synthesis. The products were then sheared, sequencing adaptors 

with barcode sequences unique to each sample were ligated onto the fragments, and 

the libraries were pooled and sequenced. Although the method was a major 

breakthrough, allowing transcriptomes for single cells to be generated, the method had 

a fairly low sensitivity and a significant 3’ bias.  

 

In 2012, a method called SMART-seq was developed that improved on many of these 

issues (23) (Figure 1.1B). SMART-seq takes advantage of Moloney Murine Leukemia 

Virus (MMLV) reverse transcriptase, which adds extra C nucleotides to the 3’ end of the 

cDNA product. In a strategy called template switching, a template switch oligo (TSO) 

containing an adapter sequence with added G ribonucleotides is added to the reverse 

transcription (RT) reaction, which also contains an oligo (dT) primer with the same 

adapter sequence. First strand cDNA is generated using the oligo (dT) primer, and the 

added G ribonucleotides of the TSO act as primers for a second round of RT, allowing 

both first and second strand cDNA to be generated in the same reaction (Figure 1.1B). 
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PCR amplification is then performed using a single primer to the adapter sequence. 

Barcoded sequencing libraries are generated using Nextera transposon-based 

tagmentation (Illumina, Inc.), in which transposons simultaneously fragment the DNA 

and add primers to the ends of the fragments. Illumina sequencing adapters are then 

added through PCR, and the libraries are pooled and sequenced. SMART-seq provided 

great performance increases over the Tang method and was further optimized over the 

next couple of years with the development of SMART-seq2, which is still widely used 

today (24, 25). Template switching was also adopted by many future single-cell 

sequencing technologies (Table 1.1). 

 

A number of similar single-cell sequencing methods have been developed over the past 

decade that involve separating single cells into wells and barcoding and pooling 

individual samples just prior to sequencing. Quartz-seq, an approach similar to the Tang 

method, was released just prior to SMART-seq2 (26, 27) (Figure 1.1A). However, it was 

largely inferior in performance to SMART-seq2 and was not widely adopted. SUPeR-

seq is another approach, also similar to the Tang method, that uses random primers for 

RT, allowing for single-cell sequencing of RNA species other than mRNA (28) (Figure 

1.1A). MATQ-seq similarly allows for sequencing of RNA species other than mRNA by 

using both poly (dT) and internal primers for RT, followed by poly (C) tailing and second 

strand DNA synthesis using poly (G) primers (29) (Figure 1.1A). Unlike the previously 

described methods, MATQ-seq adds a unique barcode, called a UMI, to each RNA 

species in a sample during second strand cDNA synthesis, allowing for the identification 

of amplification artifacts. This innovation was originally demonstrated by another single-

cell sequencing approach, MARS-seq, which is described below (30). 

 

For each of the single-cell RNA sequencing technologies described thus far, individual 

samples are indistinguishable until the addition of barcoded sequencing adapters just 

prior to sequencing and cannot be pooled until this time. As such, these methods are 

generally more low throughput, are work intensive, and have a relatively high cost per 

cell, limiting the number of cells that can reasonably be sequenced. A number of 
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approaches were released that overcame this limitation by introducing unique barcodes 

to each sample early in the protocol. The earliest such approach was CEL-seq, in which 

cells are sorted into wells and RT is performed using a primer carrying a T7 promoter, 

an Illumina sequencing adapter, a sample-specific barcode sequence, and a poly (T) 

sequence (31) (Figure 1.1C). Second-strand DNA synthesis is then performed, followed 

by pooling of all samples. in vitro transcription (IVT) is then used for linear amplification, 

and the RNA is fragmented. RT is performed again, adding a second sequencing 

adapter, and the PCR amplified library is sequenced.  

 

A number of similar tag-based strategies were developed in which single cells are 

originally separated into wells. One such approach, MARS-seq, is very similar to CEL-

seq in its use of IVT amplification, but utilizes three separate tags: a molecular tag 

(UMI), a cellular tag, and a plate tag, providing even greater potential for multiplexing 

(30) (Figure 1.1C). As mentioned earlier, MARS-seq was the first approach to utilize a 

UMI strategy, which has been widely adopted and was utilized in all subsequent single-

cell sequencing strategies described here, with the exception of STRT-seq. CEL-seq2 is 

one such strategy, which made a number of improvements to the CEL-seq protocol, 

including the addition of a UMI (32) (Figure 1.1C). Another strategy is STRT-seq, which 

uses a template switching mechanism for cDNA synthesis, similar to SMART-seq, but 

uses a barcoded TSO that is biotinylated at the 5’ end (33, 34). Streptavidin beads are 

then used to capture pooled cDNA, which is fragmented, end-repaired, and A-tailed, all 

on the streptavidin beads. Sequencing adapters are ligated, and the cDNA is PCR 

amplified before being sequenced. Unlike other methods, sequenced transcripts are 

heavily 5’ biased due to the streptavidin bead strategy. A modified STRT-seq protocol, 

STRT-seq/C1, has more recently simplified and adapted STRT-seq to the C1 Single-

Cell Auto Prep system (Fluidigm) (35) (Figure 1.1D). It uses a poly (T) primer and 

template switching strategy for cDNA synthesis, with both the barcoded TSO and poly 

(T) primer biotinylated at the 5’ end, and with the poly (T) primer containing a PvuI 

restriction enzyme site. Library generation occurs through Nextera transposon-based 

tagmentation (Illumina, Inc.), and streptavidin beads are used to isolate both the 5’ and 
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3’ fragments, with a PvuI restriction digest removing all 3’ sequences. Unlike the earlier 

iteration, STRT-seq/C1 does not pool samples until after library generation. Finally, 

Quartz-seq2 is an optimized version of Quartz-seq that added cellular barcoding during 

RT, as well as UMI capability (36) (Figure 1.1A). 

 

Whereas tag-based single-cell RNA sequencing methods allowed for earlier pooling of 

samples, making them generally more affordable and allowing for greater multiplexing 

capabilities, the methods described thus far are fairly low-throughput, labor intensive, 

and still too costly to generate transcriptomes for large numbers of cells. In 2015, two 

new technologies, Drop-seq and inDrop, were developed that utilized novel droplet-

based approaches to allow for high throughput and affordable RNA-sequencing of 

thousands of single cells (37, 38). Drop-seq uses a microfluidics device to encapsulate 

single cells and single barcoded microbeads together within oil droplets (37) (Figure 

1.1E). Barcoded microbeads contain a poly (T) capture sequence, a PCR priming 

sequence, and both a bead-specific barcode sequence that is common to each spot on 

the bead and a UMI barcode that differs across each spot on the bead. Only a small 

fraction of oil droplets contain both a cell and a bead, requiring a large starting material. 

Cells are lysed within the oil droplet and mRNA is captured onto the beads. The 

droplets are then broken, and the remaining downstream steps, from RT to sequencing, 

are largely identical to SMART-seq, but are performed in aggregate, greatly reducing 

per-cell reagent costs. InDrop also utilizes a microfluidics device to encapsulate single 

cells and barcoded primer sequences within oil droplets (38) (Figure 1.1C). However, 

inDrop utilizes deformable hydrogels that ensure almost all droplets contain barcoded 

primer sequences, thus greatly increasing cell capture efficiency and reducing the 

amount of starting material needed. Cell lysis, UV induced primer release from the 

hydrogels, mRNA capture, and RT all occur within the oil droplets. Similar to CEL-seq, 

the barcoded primers used by inDrop contain a T7 promoter. As such, after droplets are 

broken following RT, the remaining downstream steps are very similar to CEL-seq, from 

second strand DNA synthesis and IVT amplification to sequencing.  
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A few additional droplet-based methods have also been developed. 10X Genomics, Inc. 

has optimized and commercialized a droplet-based technology, called Chromium, that 

combines aspects of both inDrop and Drop-seq, including the use of deformable 

hydrogels and the use of cDNA fragmentation and sequencing adapter ligation, similar 

to inDrop, and the use of template switching/PCR amplification used in Drop-seq (39) 

(Figure 1.1E). 10X/Chromium has dramatically increased the accessibility of high-

throughput single-cell RNA sequencing and has greatly improved sensitivity, precision, 

and noise, though with a slightly higher per-cell experimental cost prior to sequencing 

(40). DroNc-seq is another recently developed method that uses a modified Drop-seq 

approach that is compatible with cell nuclei, allowing for isolation of harder to dissociate 

cell types (41) (Figure 1.1E). 

 

Although droplet-based methods have arguably been the most widely adopted single-

cell RNA sequencing approaches, a number of similarly high throughput strategies have 

been developed that isolate cells by gravity into microwells containing barcoded beads 

(42, 43, 44). As a group, gravity-based methods are especially useful for low-input 

samples, requiring significantly less cells as starting material compared to droplet-based 

methods. The first such method, Cyto-seq, was released in 2015, around the same time 

as Drop-seq and inDrop (42). Cyto-seq utilizes a strategy by which cells are loaded by 

gravity into picoliter-sized wells of a Polydimethylsiloxane (PDMS) array generated from 

silicon wafers with an array of evenly spaced micropillars. To these wells are added 

barcoded beads, similar to those used in Drop-seq. A lysis buffer is then added, 

capturing mRNA from each cell onto the barcoded beads, and RT is performed. The 

beads are then pooled, and multiple rounds of PCR, initially using gene specific primers, 

are used to add sequencing adapters.  

 

Additional gravity-based methods were developed over the next couple of years. One 

such method, Seq-well, is very similar to Cyto-seq, but adds a semipermeable 

polycarbonate membrane to the array to prevent cross contamination and cell loss, 

improving data quality (43) (Figure 1.1E). It then uses a largely identical protocol to 
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Drop-seq after pooling the beads for RT, from template switching and PCR amplification 

to sequencing. Another method, Microwell-seq, is very similar to Seq-well, but utilizes a 

simpler and more inexpensive system for generating microwell arrays (44) (Figure 

1.1E). Specifically, it uses reusable silicon wafers with regularly spaced microwells to 

make PDMS micropillar arrays. These are also reusable and are used to make the 

agarose microwell arrays into which cells are loaded. Magnetic barcoded beads are 

also used to better ensure bead collection.  

 

Finally, in addition to droplet-based and gravity-based methods, a number of high-

throughput and affordable single-cell RNA sequencing technologies have been 

developed that rely on distributing cells across 96- or 384-well plates, and then 

performing one or more rounds of pooling and redistribution, barcoding the cells with 

each round (45, 46). Through this process, each cell is combinatorially labeled with a 

unique combination of barcodes. As a group, combinatorial indexing-based methods are 

simple, largely do not require specialized equipment, and allow for significant 

multiplexing, all of which lower the per-cell cost of these approaches and greatly 

increase their reach. The first such strategy to be released, sci-RNA-seq, relies on 

fluorescence activated cell sorting (FACS) sorting to distribute fixed and permeabilized 

cells, or isolated nuclei, into wells of a 96- or 384-well plate (45). Following FACS 

sorting, RT is performed on intact cells or nuclei, during which the first barcode and a 

UMI tag are introduced. Cells/nuclei are then pooled, and FACS is used to redistribute 

the cells/nuclei across the wells of a 96- or 384- well plate, this time at limiting numbers. 

Second strand synthesis, library generation, cell lysis, and PCR amplification of the 

libraries are all performed in these wells, with PCR primers that target the poly (T) 

primer on one end and the sequencing adaptor on the other introducing a second 

barcode specific to each well. Wells are then pooled and sequenced. A related method, 

SPLiT-seq, was released in 2018 and does not rely on FACS sorting of cells (46) 

(Figure 1.1F). Rather distribution of formaldehyde-fixed cells across 96-well plates 

occurs by manual mixing and pipetting. RT is performed on whole cells, adding a well-

specific barcode. Cells are then pooled and redistributed, where an in-cell ligation 
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reaction adds a second barcode. A third round of pooling and splitting is performed, and 

a third barcode and UMI tag are added by ligation. Finally, the cells are pooled, split, 

and lysed. Sequencing adapters, as well as a fourth barcode, are introduced by PCR 

and the wells are pooled and sequenced. Because SPLiT-seq does not require FACS 

sorting, there is less bias in cell isolation, and the four rounds of barcoding allows for 

distinction between biological samples. 

 

As described in this section, a large number of single-cell RNA sequencing technologies 

have been developed over the past couple of decades, each of which have distinct 

strengths and weaknesses (Table 1.1). Although most newer approaches allow for 

quick, high throughput, and affordable RNA sequencing of thousands of single cells, 

more low throughput technologies, such as SMART-seq, still have their advantages. 

Compared to more recent approaches that are strongly 3’ or 5’ biased, SMART-seq, 

SUPeR-seq, and MATQ-seq all have the capability of generating nearly full-length RNA 

sequences, and are thus better suited for certain applications, such as the analysis of 

splice sites. SUPeR-seq and MATQ-seq have the added benefit of allowing sequencing 

of non-mRNA RNA species. Furthermore, because lower-throughput methods generate 

fewer transcriptomes to be sequenced, a finite number of sequencing reads are spread 

across less cells, resulting in higher per-cell coverage and better detection of lowly 

expressed transcripts. More recent high-throughput methods also generally require a 

greater number of cells as starting material, which is not only untenable for many 

tissues, but the generation of thousands of single-cell transcriptomes is largely 

unnecessary for such samples. Newer, more high-throughput techniques do have many 

advantages, however. Biasing sequencing from the 3’ or 5’ end of the transcript 

provides strand specificity. Furthermore, the ability to sequence thousands of cells, 

even at lower coverage, allows for enhanced identification and characterization of 

subpopulations in complex tissue samples, with the sheer number of cells isolated from 

each subpopulation making up for missing transcripts due to low coverage from any one 

single cell of that subpopulation. More recent techniques have also introduced the use 

of molecular tags, or UMIs, that reduce noise generated from PCR amplification 
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artifacts. Although technologies described here vary widely in how single cells are 

isolated, how a unique barcode is introduced to each of those single cells, and how 

cDNA is amplified following RT, among other differences, virtually all approaches are 

capable of producing high quality single-cell RNA sequencing data. As such, the choice 

between technologies must largely be based on the constraints of the specific 

experimental question at hand.  

 

Analysis of single-cell sequencing data 
Each of the single-cell RNA sequencing methods profiled thus far generate large 

sequencing files containing millions of randomly ordered reads from often thousands of 

single cells. As such, computational methods are required to deconvolute this data and 

extract meaningful biological information (47). Most single-cell RNA sequencing 

methods have developed their own computational strategies for processing the raw 

sequencing data produced, taking into account various method-specific differences. 

These include Cell Ranger, which was developed to analyze Chromium 10X data (39), 

and a pipeline developed to process Drop-seq data (37), among many others. Despite 

the large number of approaches available for processing sequencing data generated by 

single-cell RNA sequencing, all approaches share certain computational considerations. 

Raw sequencing reads must be tagged with their various cell-specific barcodes, as well 

as the associated UMI tag, if any. The reads can then be aligned to the transcriptome or 

genome of choice, and those aligned reads, tagged with their cell-specific barcodes, 

can be used to generate a gene expression count matrix, with each unique barcode 

combination a distinct column and each gene or transcript a distinct row. Low-quality 

cells, including those with low transcript counts or low numbers of detected genes, 

those with very high transcript counts, indicating possible cell doublets, or those with a 

high percentage of mitochondrial genes, are removed from the data. The count matrix is 

then normalized to correct for relative gene expression differences between cells, as 

well as for differences in gene length for full-length RNA sequencing approaches. 

Regression models are also commonly used to remove technical and unwanted 

biological variation in the data, and a number of approaches have been developed to 
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correct for batch effects from different datasets, one popular example being canonical 

correlation analysis (CCA) (48). The resulting gene expression matrix is used as input 

for a variety of downstream applications used to uncover meaningful biological 

information.  

 

Because single-cell RNA sequencing experiments generate expression data for 

potentially tens of thousands of genes, the data has a high dimensionality. Multiple 

approaches exist to make analysis of this highly complex data more manageable, better 

enabling real biological variation to be uncovered. A common first approach is feature 

selection, in which only highly informative genes, such as those with high variance 

across cells, are used for downstream analysis of the data (49). Following feature 

selection, algorithms for dimensionality reduction are commonly applied and are useful 

both for identifying inherent dimensionality in the data and for data visualization. 

Common algorithms for identifying inherent dimensionality include principal component 

analysis (PCA) (50), a common pre-processing step prior to clustering and visualization, 

and the generation of diffusion maps (51), which are commonly used for cell lineage 

reconstruction approaches reviewed in the following subsection. For visualization of the 

data, a number of algorithms are commonly used. The two most common are t-SNE 

(52) and UMAP (53), which are useful for plotting high dimensional data in low 

dimensional space, while largely retaining local relationships. 

 

To determine the biological identity of each single cell in the data, cells can be clustered 

based on transcriptional similarities, and genes with enriched expression in each cluster 

can be identified. Some of the most widely used algorithms include k-means clustering, 

which iteratively defines a user-defined k number of centroids and assigns cells to the 

nearest centroid (54); hierarchical clustering, which either assigns each single cell as a 

cluster and iteratively groups clusters into ever more similar larger clusters 

(agglomerative approach) or iteratively splits one single cluster into ever more dissimilar 

smaller clusters (divisive approach); and graph-based clustering, in which cells are 

embedded into a multi-dimensional graph structure, edges are drawn between 
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transcriptionally similar cells, and the graph is divided into communities based on the 

degree of cell interconnectivity. A number of user-friendly packages have been released 

to help with the clustering workflow, from dimensionality reduction to clustering to 

differential expression analysis. Some popular packages include Seurat (55) and Cell 

Ranger (39). As a note, clustering of cells is not always the best approach for identifying 

biological variation. Actively differentiating cells of a single lineage commonly exhibit a 

continuum of gene expression. Therefore, rather than clustering, these cells are 

commonly placed on a one-dimensional manifold, an approach useful for cell lineage 

reconstruction, which is described below. 

 

Trajectory reconstruction and lineage assessment using single-cell sequencing 

data  

Changes in cell fate, be it during development, stem cell differentiation, or 

reprogramming, require dynamic and complex transcriptional changes. By sampling 

cells from tissues undergoing active changes in cell fate, such as in developing embryos 

and in tissues that are undergoing constant differentiated cell turn over in a stem cell-

dependent process, a range of cells at different stages in the maturation process can be 

captured. Leveraging the concept that cells of similar maturation stages will share more 

similar transcriptional profiles, multiple methodologies have been developed that use 

single-cell RNA sequencing data to order cells along transcriptional trajectories, 

allowing for the identification of genes that vary significantly in their expression across 

these trajectories and that may be important for their progression. 

 

Most trajectory reconstruction approaches first utilize dimensionality reduction, followed 

by construction of a minimum spanning tree (MST), definition of the path that connects 

the least differentiated to the most differentiated cells, and projection of the cells onto 

this path (56, 57, 58, 59, 60, 61, 62) (Figure 1.2A). Monocle, one of the first such 

approaches, was released in 2014, and, following user input of the cells that constitute 

the root state, uses independent component analysis (ICA) as its method for 

dimensionality reduction (56) (Figure 1.2A). The original iteration of Monocle could only 
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infer linear differentiation trajectories (Figure 1.2A). However, a later iteration, 

Monocle2, allows for more complex trajectories, including bifurcations, by grouping cells 

in higher dimensional space (57). The most recent iteration of Monocle was used to 

infer very complex trajectories of over one million cells during mouse organogenesis 

(63). Additional approaches include waterfall (58), TSCAN (59), and SLICE (60), each 

of which generate MSTs on predefined cell clusters following dimensionality reduction, 

reducing influence from outlier cells (Figure 1.2A). SLICE has the additional capacity to 

identify the trajectory start point by measuring transcriptome entropy (60). Yet other 

dimensionality reduction-based approaches include Slingshot, which fits smooth curves 

to a MST and projects cells onto the closest smooth curve (61), and SCUBA, which 

directly fits a smooth curve without generation of a MST (62) (Figure 1.2A). 

 

An additional class of trajectory reconstruction methods are based on k-nearest 

neighbor graphs (k-NNGs), with each cell connected to its transcriptionally similar k 

nearest neighbors (Figure 1.2B). The first such method, Wanderlust, assigns a set of 

shortest walks from a manually assigned root cell, and takes the average to generate 

the most probable differentiation trajectories (64). Whereas Wanderlust is only able to 

predict linear trajectories, a very similar technique, Wishbone, does allow for more 

complex trajectories with bifurcations (65) (Figure 1.2B). Approximate graph abstraction 

(AGA) and population balance analysis (PBA) are yet other NNG-based approaches 

(66, 67), with AGA averaging cells into clusters before trajectory reconstruction (66), 

and PBA predicting differentiation direction by estimating the velocity of cell 

differentiation based on NNG local cell density (67). Additional methods utilizing NNG-

based strategies have been used to generate complex developmental trajectories using 

single-cell RNA sequencing data from developing zebrafish (68, 69) and Xenopus 

tropicalis embryos (70), as well as differentiation trajectories of the adult Hydra polyp 

(71).  

 

Other trajectory reconstruction approaches include StemID (72) and Mpath (73), which 

first cluster cells and connect cluster centers in high dimensional space, followed by 
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projection of single cells onto the edges of the connections and removal of poorly 

populated edges (Figure 1.2C). RNA velocity is an entirely different approach that uses 

unspliced mRNA as a measure of a cell’s future transcriptional profile, with the gene-by-

gene fraction of unspliced transcripts used to infer trajectories without a manually 

defined root-state (74) (Figure 1.2D).  

 

The trajectory reconstruction approaches described thus far require extensive sampling 

of intermediate states and cannot record lineage relationships (cell division histories) of 

single cells. To overcome these limitations, single-cell RNA sequencing or multiplex 

fluorescent in situ hybridization (FISH) can be combined with genetic lineage-tracing 

strategies. A number of such methods have been developed, many of which have taken 

a CRISPR/Cas9-based approach. These approaches utilize the fact that Cas9, in the 

absence of a repair template, will generate deletions or insertions in the targeted DNA. 

Over time, these mutations accumulate, generating heritable marks that can be 

detected and used to infer lineage relationships between cells. One such method, 

MEMOIR, was released in 2017 and targets Cas9 to an array of genomic sequences 

with an associated barcode, generating progressive heritable marks that are then 

assayed using seq-FISH (75). Another such method, scGESTALT, targets inducibly 

expressed Cas9 to a barcode sequence contained within the 3’ UTR of a transgene, 

and uses inDrop to identify the progressive heritable marks (76). Because an inducible 

Cas9 system is used, lineage relationships in the juvenile zebrafish brain could be 

examined. Two additional Cas9-based methods include LINNAEUS and ScarTrace, 

which both target Cas9 to multiple copies of red fluorescent protein (RFP) or green 

fluorescent protein (GFP) integrated into the zebrafish genome (77, 78). LINNAEUS 

targets 16-32 RFP sequences spread throughout the genome (77), whereas ScarTrace 

targets eight in-tandem GFP sequences (78). Both methods then utilize inDrop to 

identify progressive heritable marks. Finally, rather than CRISPR/Cas9, TracerSeq is a 

method that uses a Tol2 transposase system to genomically integrate GFP transcripts, 

each of which contain a unique barcode in their 3’ UTR (69). Insertions occur 

asynchronously over many divisions, generating unique barcode combinations that are 
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identified by inDrop. This approach was used to identify lineage relationships in the 

developing zebrafish embryo.  

 

Certain features of the previously described approaches for combining lineage tracing 

with single-cell RNA sequencing, such as the need to inject constructs early in 

development, limited their translation to a mammalian system. As such, multiple 

additional approaches have been released and used to profile lineage relationships in 

early mouse embryo development and in hematopoiesis, using 10X genomics (79, 80) 

or InDrop (81) to read out the progressive heritable changes. Two approaches utilized a 

CRISPR/Cas9-based approach (79, 80). One such approach uses an array of sixty 

genomically-integrated homing CRISPR guide RNAs (hgRNAs) that target their own 

genomic loci (79), and the other approach uses three genomically integrated guide 

RNAs that target a DNA sequence contained within the 3’ UTR of a fluorescent 

transgene, multiple copies of which are spread throughout the genome (80), both of 

which were used to profile early mouse development. A third approach, termed lineage 

and RNA recovery (LARRY), uses a lentiviral library containing GFP constructs uniquely 

barcoded in their 3’ UTR and under control of an EF1alpha promoter to singly infect 

cells and was used to profile hematopoiesis in hematopoietic stem and progenitor cells 

(HSPCs) cultured in vitro and transplanted in vivo (81). Finally, whereas previously 

described methods actively generate and detect heritable marks within cells, additional 

methods have been developed that retroactively detect endogenous tags arising from 

naturally occurring mutations. Single-cell RNA sequencing and single-cell ATAC-seq 

(Assay for Transposase-Accessible Chromatin with high-throughput sequencing), which 

is described in a later section, are capable of detecting endogenous mutations in 

mitochondrial DNA, in which somatic mutations occur at a much higher rate than 

genomic DNA, and can be used for lineage tracing of human cells (82, 83).  

 

Spatial transcriptomics 
All single-cell RNA sequencing approaches described thus far require dissociation of 

the tissue sample into a single-cell suspension prior to cell isolation. As a result, all 
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spatial information regarding the arrangement of cell types within the overall tissue is 

lost. Given the immense interconnectivity with which cell types function within an 

organism, this spatial information is of great importance. A number of approaches have 

been developed that attempt to infer this spatial information from data generated using 

these previously established dissociative methods. In addition, a number of novel 

methods have been developed that retain spatial information for each cell throughout 

the sequencing process. Finally, methods for highly multiplexed FISH, including in situ 

sequencing, have been developed that allow for the direct imaging and identification of 

thousands of transcripts within intact tissue sections.  

 

Approaches that infer spatial information from single-cell RNA sequencing data 

generated using previously described dissociative methods do so by determining the 

spatial tissue-level expression pattern for a number of genes by in situ hybridization 

(ISH), some of which overlap spatially and some of which do not (Figure 1.3A). These 

expression patterns are digitized, and the unique gene expression profiles for cells in 

the data are used to infer the rough spatial orientation of that cell in the original tissue 

(Figure 1.3A). Four conceptually similar methods have been released that have 

demonstrated the success of this approach. The first of these methods, released in 

2015, were Seurat (55) and an approach by the Marioni lab (84). Seurat was used to 

analyze 851 single cells isolated and sequenced by SMART-seq from the developing 

Xenopus embryo (55). 47 ISH patterns were used to generate a reference spatial map, 

which was used to assign each cell to one of 128 bins distributed along the dorsal-

ventral and animal-vegetal axis. Seurat was largely able to assign cells isolated from 

distinct regions of the embryo to the correct bin and to fairly accurately predict ISH 

patterns for genes and rare cell types not provided to the algorithm. A similar approach 

by the Marioni lab used up to 98 ISH images to infer the spatial positions of around 139 

single cells isolated and sequenced using Fluidigm C1 from the marine annelid 

Platynereis dumerilii. (84). A third approach, Distmap, was released in 2017 and used 

ISH images for 84 genes to infer spatial positions of around 1,300 single cells isolated 

and sequenced using Drop-seq from stage 6 Drosophila melanogaster embryos (85). 
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Finally, novoSparc, released in 2019, is unique in not requiring existing in situ patterns 

for spatial reconstruction, though in situ images can be incorporated (86). Using a range 

of 0-84 ISH images, novoSparc was able to infer spatial patterns for cells isolated from 

effectively 2D tissues, such as the mouse intestinal epithelium and liver lobules, as well 

as cells isolated from more complex tissues, such as the stage 6 Drosophila 

melanogaster and the developing Xenopus embryo. Although reconstruction quality was 

slightly improved over previous methods, and less ISH reference images were required 

for high-quality reconstruction, reconstructions performed using no marker genes were 

fairly poor. 

 

Rather than inferring positional information from single-cell data generated using 

dissociative techniques, three new approaches have been developed that seek to retain 

this positional information throughout the sequencing process. The first such method, 

developed in 2016, utilizes an array of glass slide-anchored oligonucleotides containing 

spot-specific barcodes, UMI tags, and oligo (dT) sequences (87). A tissue slice is 

placed onto the array, where it is permeabilized, RT is performed, and cDNA is captured 

onto the closest oligonucleotide spot. Following RT, the tissue is fully digested, and an 

IVT-based method is used for amplification. Because the location of each barcode 

sequence on the glass slide is known, the spatial location of each read can be 

determined through its associated barcode. Two additional methods, developed in 

2019, are conceptually very similar but utilize glass-immobilized arrays of barcoded 

beads, similar to those used in Drop-seq, with the spot-specific barcode sequences 

determined by in situ indexing (88, 89). One such method, Slide-seq, pools beads 

following RT and tissue digestion, and further downstream steps, including template 

switching and PCR amplification, are performed almost identically to the Drop-seq 

approach (88) (Figure 1.3B). The other such method, HDST, also pools beads following 

RT and tissue digestion, but downstream steps are very similar to those used in the 

glass slide-anchored oligonucleotide-based method described above (87), including IVT 

amplification (89). Although HDST reports a spatial resolution of 2 µm for mRNA 

capture (89), all three methods suffer from potential cross contamination by cells in 
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close proximity, and thus do not provide traditional single-cell resolution. Despite this 

limitation, these methods have successfully characterized roughly transcriptome-wide 

gene expression profiles for tissue sections of the adult mouse olfactory bulb (87, 89), 

the mouse hippocampus and cerebellum (88), and a breast cancer tumor (89). 

 

Finally, a number of a multiplex FISH techniques have been developed that enable 

detection of individual transcripts for thousands of genes directly in intact tissue slices. 

One of the first such methods, sequential FISH (seqFISH), was developed in 2014 and 

allows for multiple rounds of probe hybridization with up to four fluorophores, followed 

by probe stripping (90). A barcoding scheme was utilized wherein individual genes were 

uniquely marked by a combination of the hybridization rounds in which probes to that 

gene were added and the fluorophores used to label the probe in each round, 

theoretically allowing for coverage of the entire transcriptome (Figure 1.3C). While 

initially only compatible with cultured cells, successive optimized versions of this 

approach enabled profiling of tissue sections and were used to profile up to 249 genes 

in 16,958 cells of the mouse hippocampus (91) and 10,000 genes in 2,963 cells from 

brain slices of the mouse subventricular zone and olfactory bulb (92). merFISH is a 

related approach, developed in 2015, that also uses multiple rounds of hybridization to 

barcode cells, but includes an error-correcting barcode system to lower noise in the 

system (93). While also initially only compatible with cultured cells, merFISH has also 

undergone successive rounds of optimization that have enabled profiling of 155 genes 

in one million cells of the hypothalamic preoptic region (94). Finally, osmFISH was 

developed in 2018 and does not rely on barcoding, but rather directly detects a small 

number of genes in each hybridization round, with multiple rounds of hybridization and 

stripping (95).  

 

A number of FISH-based methods have also been developed to directly sequence RNA 

species in intact cells, all of which utilize rolling-circle amplification (RCA) to amplify 

signal (96, 97, 98). Only one such method, STARmap, is compatible with tissue 

sections (98). STARmap was developed in 2018, and utilizes two complementary DNA 



 29 

probe sets, one of which contains a 5-bp barcode, to generate a template for RCA (98). 

During RCA, amine-modified nucleotides are added that enable imbedding into a tissue 

hydrogel, increasing optical transparency and reducing background, among other 

benefits. The barcode is then sequenced using fluorescent readout probe hybridization 

and stripping, using an error-reducing two-base sequencing scheme. STARmap was 

used to profile 160-1,020 genes in sections of mouse primary visual cortex and medial 

prefrontal cortex. 

 

Additional single-cell genomic technologies 
The single-cell sequencing techniques highlighted thus far have largely been single-cell 

RNA sequencing approaches. However, a number of single-cell approaches have been 

developed over the past decade that have enabled profiling of genomic features ranging 

from DNA methylation to chromatin state, as well as methods allowing for the detection 

of combinations of these features. Methods have been developed for single-cell 

detection of genomic copy-number variations (99) and full genome sequencing in 

single-cells (100, 101, 102). Multiple single-cell methods for analyzing the chromatin 

state of a cell have also been developed. These include methods for single-cell ATAC-

seq to identify regions of open chromatin (103), single-cell whole genome bisulfite 

sequencing to measure DNA methylation (104, 105, 106, 107, 108), single-cell Hi-C to 

measure chromosome conformation (109, 110, 111, 112, 113), and single-cell Chip-seq 

to measure histone modifications (114, 115). Furthermore, single-cell methods have 

been developed that enable profiling of multiple genomic features in the same cell. 

These include approaches enabling both transcriptional profiling and profiling of either 

chromatin accessibility (116), DNA methylation (117), or protein epitopes (118, 119), as 

well as an approach enabling profiling of both chromatin accessibility and DNA 

methylation (120). 

 

Applications and outlook for single-cell sequencing technologies 
The explosion of single-cell genomic approaches over the past decade has transformed 

many aspects of biological research. The ability to quickly and affordably generate 
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transcriptomes for thousands of single cells has enabled cellular profiling of entire 

organisms and organ systems, both in the adult and during development, and has 

allowed evolutionary comparisons between a wide range of organisms. Furthermore, 

the ability to profile cellularly heterogeneous diseases, such as cancer, provides an 

invaluable tool in the study and treatment of such diseases, and the ease and 

affordability of current methods enables their use as readouts for genetic and chemical 

screens, with great promise for accelerated discovery in both basic science and 

translational research. 

 

Animal species can contain many hundreds of distinct cell types and cell states, the 

composition of which varies widely over the course of development. Despite this great 

complexity, high throughput single-cell RNA sequencing approaches have enabled the 

generation of transcriptomes for most cell types in a number of animals and tissues - so 

called cell-type transcriptome “atlases”. These atlases have been especially 

transformative for emerging model organisms with limited molecular tools available. A 

whole-animal cell type transcriptome atlas has been generated for the asexual planarian 

Schmidtea mediterranea, as will be described in chapter 2. In addition, transcriptomes 

for most cell types of the adult cnidarian Hydra polyp (71), the ctenophore Mnemiopsis 

leidyi  (121), the placozoan Trichoplax adhaerens (121), the marine annelid Platynereis 

dumerilii (122), and both adult and larval stages of the cnidarian Nematostella vectensis 

(123) and the sponge Amphimedon queenslandica (121) have been generated. 

Transcriptomes have also been generated from most cells of embryonic and larval 

Caenorhabditis elegans (31, 45, 124, 125) and from most cells across the life cycle 

stages of the ascidian Ciona intestinalis (126), as well as for a comprehensive collection 

of different organ systems from the mouse (44, 127). An effort to generate a human cell 

atlas to transcriptionally profile all human cell types and cell states is currently underway 

(128). Transcriptome atlases have also been generated for a number of organs and 

tissues. As an example, transcriptional profiling of cells from the lung airway epithelium 

revealed that the gene CFTR, mutations in which cause cystic fibrosis, was exclusively 

expressed in a previously unidentified cell type called the ionocyte (129, 130).  
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Animal development is a highly complex process, with the diverse array of differentiated 

tissue types of an adult animal all arising from a single fertilized egg. Given this 

daunting complexity, much remains unknown of this fundamental process. With single-

cell RNA sequencing techniques enabling transcriptome generation for tens of 

thousands of single cells, however, the ability to transcriptionally profile this complex 

process has become a reality. As has been previously mentioned, single-cell RNA 

sequencing technologies have been applied to a wide range of animals at various 

stages of development, including zebrafish (68, 69), Xenopus tropicalis (70), mouse (63, 

131), C. elegans (31, 45, 124, 125), and the ascidian Ciona intestinalis (126). Using a 

variety of trajectory reconstruction techniques, as reviewed above, complex 

developmental trajectories were generated for each organism, both confirming existing 

knowledge of certain developmental trajectories and refining understanding of others 

(63, 68, 69, 70, 125, 126, 131). Although all trajectory reconstruction techniques were 

performed on dissociated cells, precluding the direct analysis of lineage relationships, 

one zebrafish study used TracerSeq to combine genetic lineage tracing with single-cell 

RNA sequencing, confirming that most clonally related cells were in close proximity in 

the trajectory plot, but also identifying credible instances of divergent clones (69). This 

same zebrafish study also profiled developmental trajectories for embryos with 

CRISPR/Cas9 induced loss of function chordin mutations, revealing an expected 

expansion of ventral tissues and loss of dorsal tissues compared to control animals, 

among other findings (69). Together, these results demonstrate the potential for 

combining genetic modifications and lineage tracing with single-cell RNA sequencing to 

decipher the developmental logic across diverse animal embryos.  

 

In addition to profiling development of animal embryos, other studies have used single-

cell genomic approaches to profile lineage trajectories and identify stem cell populations 

in adult tissues. As one example, human hematopoietic cell types were recently profiled 

using both single-cell ATAC-seq and single-cell RNA seq, identifying chromatin-level 

lineage bias for various multipotent progenitors and identifying transcription factor 
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expression associated with these observed chromatin-level changes (132). As another 

example, single-cell RNA sequencing of mouse intestine was recently used to identify 

an injury-induced cell type, termed the “revival” stem cell, that is normally rare and 

quiescent in homeostasis, but is able to give rise to all major intestinal cell types 

following injury (133).  

 

Systematic whole genome sequencing across the animal kingdom has revolutionized 

our understanding of organismal evolution. With the capacity to profile cell types at the 

transcriptome and chromatin level, cell type comparisons between animal species has 

the potential to transform our understanding of the evolution of cell types and gene 

regulatory networks. In fact, a number of studies have demonstrated the utility of such 

an approach. To give just two recent examples, comparison of transcriptional profiles 

from glutamatergic and GABAergic neurons isolated from reptilian and mouse brains 

revealed that whereas most mammalian GABAergic classes also exist in reptiles, 

mammals possess many more glutamatergic neuron types (134). As another example, 

comparison of cell-type-specific transcription factor expression and associated promoter 

sequences for sponges, ctenophores, and placozoans revealed that transcription factor 

motifs are highly predictive of cell type in less cellularly complex placozoans and 

sponges, but less so in more cellularly complex ctenophores, among other findings 

(121).  

 

In addition to their growing importance in basic biological research, single-cell genomic 

technologies can also be used to profile disease states, not only enhancing our 

molecular understanding of diseases, but also identifying potential therapeutic targets. 

Tumors are highly heterogeneous in their cell type composition, and have thus been 

poorly characterized using bulk genomics techniques. Single-cell whole genome 

sequencing has been instrumental in measuring clonal evolution during tumor 

development (99, 101), and single-cell RNA sequencing has been used to profile a 

number of tumors types, as well as their microenvironment. As just one example, 

notoriously heterogeneous glioblastomas were recently profiled through single-cell RNA 
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sequencing of patient-derived organoids (135, 136). Our understanding of other human 

diseases can also benefit from these technologies. These include schizophrenia and 

other neurological disorders, for which the genetic bases are poorly understood. As one 

example, a recent study mapped genetic variants and gene sets associated with 

schizophrenia to transcriptional profiles generated by single-cell RNA (137). In doing so, 

it was recognized that gene variants were only associated with four major neuronal cell 

types, each of which can now be targeted for further characterization. 

 
Finally, single-cell genomic approaches are especially effective for profiling highly 

heterogeneous samples and are thus ideal tools for reading out transcriptional and 

chromatin-level changes arising from chemical and genetic screens. Indeed, a number 

of such approaches have been developed. An approach for combining single-cell 

transcriptomics with chemical screening was recently established (138). Similarly, 

multiple methods have been released that combine CRISPR/Cas9-based screening 

with single-cell RNA sequencing. These include Mosaic-seq (139), Perturb-seq (140, 

141), Crisp-seq (142), and CROP-seq (143), as well as a method that combines 

CRISPR/Cas9 based screening with single-cell ATAC-seq (144). These methods have 

been used to probe the genetic circuitry underlying epithelial-to-mesenchymal 

transitions (145), and have identified iPSC-derived neuron-essential genes (146), as 

well as genes involved in immune activation (141), as just a few examples. 
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Table 1.1 
  

Methods 5’ or 3’ 
bias? 

UMI 
capability? 

Strand 
Specificity? 

mRNA 
only? 

Template 
Switching? 

Amplification 
Method 

Non Tag-Based Methods 
Tang Method Nearly full-

length 
No No Yes No PCR 

Smart-seq Full-length No No Yes Yes PCR 
Smart-seq2 Full-length No No Yes Yes PCR 
Quartz-Seq Full-length No No Yes No PCR 
SUPeR-seq Full-length No No No No PCR 
MATQ-seq Full-length Yes Yes No No PCR 

STRT-seq/C1* 5’ biased Yes Yes Yes Yes PCR 
Tag-based Single-cell-per-well Methods 

Quartz-Seq2 3’ biased Yes Yes Yes No PCR 
CEL-seq 3’ biased Yes Yes Yes No IVT 
CEL-seq2 3’ biased Yes Yes Yes No IVT 
MARS-seq 3’ biased Yes Yes Yes No IVT 

Droplet-based Methods 
Drop-seq 3’ biased Yes Yes Yes Yes PCR 
InDrop 3’ biased Yes Yes Yes No IVT 

Chromium 3’ biased Yes Yes Yes Yes PCR 
DroNC-seq 3’ biased Yes Yes Yes Yes PCR 

Gravity-based Methods 
CytoSeq 3’ biased Yes Yes Yes No PCR 
Seq-Well 3’ biased Yes Yes Yes Yes PCR 

Microwell-seq 3’ biased Yes Yes Yes Yes PCR 
Combinatorial Indexing Methods 

SPLiT-seq 3’ biased Yes Yes Yes Yes PCR 
sci-RNA-seq 3’ biased Yes Yes Yes No PCR 
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Table 1.1. Summary of the capabilities of available single-cell sequencing 
methods.  
  
Table adapted from (147). For each method, the presence of a 5’ or 3’ gene bias for 

sequencing reads, the capability for a UMI counting strategy, the presence of strand 

specificity, the capability to sequence additional types of RNA other than mRNA, the 

use of a template switching approach, and the amplification approach utilized are 

indicated. PCR, Polymerase Chain Reaction; IVT, in vitro transcription. * The earliest 

iteration of STRT-seq was tag-based and allowed for earlier pooling of samples. For 

STRT-seq/C1, samples are not pooled until following library generation, and it was thus 

classified as a non-tag-based method. 
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Figure 1.1. Common paradigms for library preparation used in single-cell RNA 
sequencing. 
 

Illustrations adapted from (148). As a note, starred methods vary slightly in the library 

preparation approach. (A) General library preparation method adopted by the Tang 

method, Quartz-seq (and Quartz-seq 2), SUPeR-seq, and MATQ-seq. SUPeR-seq 

utilizes random primers, not poly (T)-based primers, for reverse transcription. MATQ-

seq utilizes random primers in addition to poly (T)-based primers for reverse 

transcription, and utilizes poly (C) tailing, rather than poly (A) tailing, and a poly (G) 

primer for 2nd strand DNA synthesis. Both MATQ-seq and Quartz-seq2 utilize a UMI 

strategy. Quartz-seq2 adds a cell barcoding step during RT, allowing much earlier 

pooling of samples. (B) Library preparation method adopted by SMART-seq and 

SMART-seq2. (C) General library preparation method adopted by CEL-seq (and CEL-

seq2), MARS-seq, and InDrop. CEL-seq2, MARS-seq, and InDrop all utilize a UMI 

strategy. (D)  Library preparation method adopted by STRT-seq/CI. (E) General library 

preparation method adopted by Drop-seq, DroNC-seq, Seq-well, 10X/Chromium, and 

Microwell-seq. 10X/Chromium uses cDNA fragmentation and ligation of sequencing 

adapters to generate libraries from amplified cDNA, and microwell-seq utilizes an 

expanded cell barcode scheme compared to the other methods. (F) Illustration adapted 

from (46). General experimental workflow for generating cell-specific barcode 

combinations using SPLiT-seq. As a general note, all non-tag-based methods (i.e. A, B, 

and D), Illumina sequencing adaptors (in two shades of grey) can possess barcoded 

indices, allowing for sample pooling prior to sequencing  
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Figure 1.2. Common approaches for trajectory reconstruction of single-cell data. 
 
Illustrations adapted from (149). (A) Schematic of common dimensionality reduction-

based approaches for trajectory reconstruction. Although the original Monocle is 

profiled, which did not allow for bifurcations, more recent versions do allow for 

bifurcations. SLICE takes a similar approach to TSCAN and Waterfall, with the added 

capability to infer directionality from transcriptome entropy. (B) Schematic of a typical k-

NNG-based approach. Wanderlust is another such method that does not allow for 

bifurcations. (C)  Schematic of a typical high-dimensional space clustering-based 

approach. StemID takes a very similar approach to Mpath, with the added capability of 

predicting stem cell populations. (D) Schematic of the RNA Velocity approach. 

 

  



 40 

 
 

  



 41 

Figure 1.3. Common spatial transcriptomic approaches. 
 
(A) Illustration adapted from (86). Schematic of the general approach used to infer 

spatial information from single-cell RNA sequencing data using existing ISH images. (B) 
Illustration adapted from (88). Schematic of the approach used by Slide-seq to retain 

positional information throughout the sequencing process. (C) Illustration adapted from 

(93). Schematic of the general approach used by seqFISH-based approaches, including 

merFISH, which also utilizes an error correcting barcode system. While only one 

fluorophore was used in the schematic, multiple fluorophores are compatible with these 

approaches.  
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II. Planarians as a regenerative model system 
 
An introduction to planarians as a model system 
Planarians are freshwater flatworms well known for their capacity for whole-body 

regeneration (150, 151) (Figure 1.4A). They are members of the Spiralian superphylum 

(152) and as bilaterians, possess three body axes: anterior-posterior (AP), dorsal-

ventral (DV), and medial-lateral (ML) (Figure 1.4B). Planarians possess a complex 

anatomy, consisting of multiple organ systems, many of which are found across the 

animal kingdom. These include an excretory system, made up of protonephridia; both a 

central and peripheral nervous system; a digestive system, including an intestine and a 

pharynx used for feeding and defecation; a muscular system consisting of networks of 

muscle fibers that run in different orientations; and an epidermis (Figure 1.4C). There is 

also a diverse collection of mesenchymal cell types that are found in the space between 

the organ systems of the animal, called the parenchyma. A more detailed account of 

planarian anatomy will be provided in a later subsection. A number of molecular tools 

are available for the study of planarians, including RNA interference (RNAi) for inhibiting 

gene expression (153, 154) and in situ hybridization for visualizing gene expression 

(155). Genomic resources are also available, including a number of transcriptome 

assemblies (156), and a recently completed draft of the planarian genome (157). 

Whereas a European species, Schmidtea mediterranea, has been used for most recent 

molecular studies of planarians and will be the focus of this thesis, there are many 

species of planarians all over the world (158). Furthermore, there are two separate 

strains of Schmidtea mediterranea: a sexual cross-fertilizing hermaphroditic strain, and 

an asexual strain that reproduces by fissioning and subsequent regeneration. The 

asexual strain will be the primary focus of this thesis. 

 

Following tissue loss, planarians generate an unpigmented outgrowth of new tissue, 

called the blastema, that forms at the site of injury (Figure 1.4D). Because many injuries 

lead to the loss of the brain or pharynx, both of which preclude eating, regeneration 

must occur with existing nutrients only. Only some structures are regenerated in the 
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blastema, depending on the site of amputation, with other structures regenerated in the 

pre-existing tissue (Figure 1.4D). Within seven days, all differentiated structures will 

have fully formed, though the proportion of these structures is generally not yet resolved 

by this time. Over the next several days, in a process known as morphallaxis, tissues 

will rescale in size and position, largely through new cell production and cell death, to 

generate a correctly proportioned animal (159). Planarians can regenerate from a wide 

range of injuries, including following transverse amputation along the AP axis, sagittal 

and parasagittal amputation along the ML axis, and a variety of irregularly shaped 

injuries (Figure 1.4D).  

 

Neoblasts are the source of all new tissue in the animal 

The remarkable regenerative capacity of planarians is largely derived from a population 

of dividing cells, called neoblasts. Neoblasts reside in the parenchyma and are very 

abundant (160) (Figure 1.5A). By electron microscopy, neoblasts exhibit a distinct 

morphology, with sparse cytoplasm and few mitochondria, no endoplasmic reticulum, 

and many free ribosomes (161). Neoblasts are also characterized by the presence of 

chromatoid bodies (162), similar to RNA granules in germ cells, and exhibit enriched 

expression of genes commonly associated with germ cells, including genes encoding 

PIWI (163), Vasa (164), and Bruno-like proteins (165). In fact, the PIWI protein-

encoding gene smedwi-1 is commonly used as a pan-neoblast maker (163). 

 

Neoblasts are the only dividing somatic cells in the planarian and are the source of all 

new tissue. Neoblasts not only provide the cellular material for regeneration, but they 

are also used to homeostatically turn over all cell types throughout the life of the animal. 

Because of this constant turnover, planarians actively grow and shrink depending on 

nutrient availability, while largely retaining proper body proportions (166). Neoblasts can 

be specifically ablated using gamma irradiation, blocking the generation of all new 

tissue (163, 167). Lethal doses of irradiation not only prohibit regeneration, but also 

prevent homeostatic cell turn over, leading to the death of the animal (163, 167). Some 

non-lethal doses of irradiation, on the other hand, can kill all but a few neoblasts, which 
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will clonally expand to generate both more neoblasts as well as differentiated cells from 

diverse tissue classes (168, 169). At least some individual neoblasts are pluripotent, 

with the injection of a single neoblast enabling the rescue of a lethally irradiated animal 

(169) (Figure 1.5B). In fact, injection of a single neoblast isolated from an asexual 

planarian into an irradiated sexual planarian will not only rescue the recipient animal, 

but will also convert that animal from the sexual genotype to that of the asexual strain 

through tissue turnover (169) (Figure 1.5B).  

 

Neoblasts are strikingly homogenous in terms of their morphology and gene expression. 

However, multiple studies have identified extensive transcriptional heterogeneity within 

the population. As further reviewed in the following subsection, multiple studies have 

found that subsets of smedwi-1+ neoblasts, called specialized neoblasts, express 

transcription factors that are required for the specification of certain tissues, including 

the eye (170, 171) and the protonephridia (172), among others. Because neoblasts are 

the only actively dividing somatic cells, DNA dyes, together with FACS, can be used to 

isolate neoblasts through their >2C DNA content (173). Single-cell multiplexed qPCR 

analysis on 4C cells revealed transcriptionally distinct populations of neoblasts, 

including a population called zeta-neoblasts, which function as epidermal progenitors, 

and gamma-neoblasts, which function as intestinal progenitors (174). Single-cell RNA 

sequencing of wounded animals further characterized these transcriptionally distinct 

zeta- and gamma-neoblast specialized neoblasts (175). It is currently unclear whether 

these specialized neoblasts are irreversibly committed to their cell fate, or if specialized 

neoblasts retain some pluripotent potential. FACS isolation of tetraspanin domain-

containing protein (TSPAN-1) positive neoblasts were recently shown to be pluripotent 

(176). As discussed in chapter 2, this neoblast population is transcriptionally enriched 

for a number of genes associated with neuronal cell types, suggesting these cells may 

constitute neuronal progenitors. If so, it would imply that specialized neoblast classes 

possess pluripotent potential, though more work is necessary to test this hypothesis. 
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As neoblasts exit the cell cycle and undergo differentiation into the diverse tissues of the 

animal, a number of transcriptional changes must occur. A number of tools have been 

developed in the field to identify these transcriptional changes and to mark these post-

mitotic progenitors. Following lethal irradiation, temporal loss in gene expression can be 

used to identify transcriptionally distinct transition state populations, with expression of 

genes transiently expressed early in a differentiation lineage being lost prior to 

expression of genes turned on later in the lineage (177). This approach was used to 

identify post mitotic transition state populations for the epidermis (174, 177, 178, 179) 

and for the pharynx (180). A number of methods are also available for labeling these 

post-mitotic differentiating cells. As neoblasts are the only dividing cells, 

Bromodeoxyuridine (BrdU) is taken up by neoblasts and is then passed on to all 

smedwi-1-negative progeny (177, 181). This approach was utilized to demonstrate that 

the different transient maturation states for the epidermis were in fact from the same 

lineage (177). Finally, recent post-mitotic progenitors can be identified by 

immunostaining for SMEDWI-1 protein. Because this protein perdures longer than 

mRNA after smedwi-1 transcription ceases, recent post-mitotic progenitors that have 

turned off smedwi-1 expression will still be SMEDWI-1+ (165, 182, 183). 

 

Planarians contain diverse tissues that are maintained by distinct progenitors 

Planarians possess a fairly complex anatomy, consisting of multiple distinct tissues 

(Figure 1.4C). For much of the 20th century, knowledge of planarian anatomy was 

derived from histological and electron microscopy (EM) observations. With the advent of 

molecular tools, however, much has been learned regarding the molecular makeup of 

each tissue, as well as how these tissues are both maintained and regenerated by 

neoblasts. This molecular characterization has been greatly accelerated by recent 

single-cell transcriptional profiling of the major tissues (175), and, as described in 

chapter 2, transcriptomes have now been generated for all cell types in the animal.  

 

The planarian excretory system is made up of multiple branched structures, called 

protonephridia, that are spread throughout the animal and function in osmoregulation 
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and waste excretion (172, 184, 185). Protonephridia consist of ciliated flame cells that 

cap a tubule structure heavily enriched in the expression of genes encoding solute 

carrier proteins that terminates in the dorsal epithelium in a transcriptionally distinct 

region called the collecting duct (172, 184, 185). Beating of cilia in the flame cells and 

tubule cells generates negative pressure that induces filtration from the extracellular 

space into membrane fenestrations of the flame cells (186, 187). The substrate 

specificity of solute carriers varies spatially across the tubule and collecting duct, 

matching fairly well the spatial distribution of solute carriers in vertebrate nephron 

tubules (185). A set of transcription factors necessary for generating protonephridia has 

been identified, including Six1/2-2, POU2/3, hunchback, Eya, Sall, and Osr, many of 

which are evolutionarily conserved and are also required for vertebrate kidney 

development (172). POU2/3 and Six1/2-2 expression can be detected by FISH in 

smedwi-1+ neoblasts, and inhibition of their expression by RNAi blocks both 

protonephridia progenitor formation and the formation of tubule cells. This block leads to 

the formation of blisters, bloating, and lysis (172), phenotypes that also arise following 

inhibition of planarian homologs to vertebrate genes essential for nephron function 

(185), suggesting a role for these neoblasts as specialized progenitors for the 

protonephridia.   

 

The planarian nervous system consists of two ventrally localized cephalic ganglia and 

nerve cords, each of which is composed of a cortex of neuronal cell bodies surrounding 

a neurite-filled neuropil (188). Non-neuronal glial cells reside within the neuropils and 

display enriched expression of genes conserved in vertebrate glia that are involved in 

neurotransmitter reuptake and metabolism (189, 190). Cephalic ganglia are connected 

by an anterior commissure, and nerve cords are connected by many transverse 

commissures (188). An extensive peripheral nervous system is present, consisting of 

subepidermal, submuscular, gastrodermal, and pharyngeal nerve plexuses, as well as 

many neuronal projections throughout the parenchyma (191). Planarians contain a wide 

diversity of neuronal populations, including GABAergic (192), cholinergic (193), 

serotonergic (194), dopaminergic (195), and octopaminergic neurons (196), among 
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others. The brain itself displays transcriptional compartmentalization, with distinct 

medial/ventral, outer cortex, and lateral brain branch regions (197, 198). Planarians also 

possess two light-receptive eyes, containing photoreceptor neurons and pigment cup 

cells (170, 171), two lateral anterior regions called auricles that are thought to be 

responsible for chemosensation (199), and a number of additional putative sensory 

neurons, including cintillo+ neurons (200) and pkd1L-2+ neurons (201), among others. 

The planarian nervous system is highly complex, and much diversity likely remains to 

be uncovered. As just one example, a FISH screen of genes encoding planarian peptide 

hormones reveals a remarkably diverse array of unique expression patterns (202). 

Finally, a number of genes encoding transcription factors are specifically enriched in 

many of the known neuronal cell types. These include ovo for photoreceptor neurons of 

the eye (171), pitx and lhx1/5-1 for serotonergic neurons (203, 204), and klf for cintillo+ 

sensory neurons (205), among many others. Each of these transcription factors are also 

expressed in smedwi-1+ neoblasts and their inhibition leads to the ablation of the 

associated differentiated neuron during regeneration or tissue turnover, suggesting a 

role for these neoblasts as specialized progenitors for these neuron populations (171, 

203, 205). It is currently unknown whether all neurons possess their own unique 

specialized neoblast, or whether hierarchies of differentiation are present.  

 

The planarian intestine is responsible for the digestion of ingested food and consists of 

one anterior primary branch that splits into two posterior primary branches, with 

secondary, tertiary, and quaternary branches forming off of the primary branches (206). 

Based on histological data, the intestine was thought to consist of two cell types, 

absorptive phagocytic enterocytes and secretory goblet cells (207, 208). A 

transcriptionally distinct “outer” intestinal cell population also exists, as described in 

chapter 2. Molecular markers exist for both histologically identified cell populations. 

Phagocytic enterocytes were transcriptionally profiled by feeding animals iron beads 

and magnetically isolating cells that had phagocytosed the beads, identifying a number 

of enriched genes (209). Furthermore, lens culinaris agglutinin (LCA) stains an intestinal 

cell population hypothesized to be goblet cells, based on their intestinal localization and 
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their highly vacuolar appearance (210). A number of transcription factors are enriched in 

the intestine, including gata4/5/6-1 (169), hnf-4 (169), and nkx2.2 (209). Single-cell 

multiplexed qPCR analysis on 4C cells revealed a distinct cluster of cells, termed 

gamma-neoblasts, that were enriched for expression of all three transcription factors, as 

well as an additional transcription factor prox-1, suggesting cells of this cluster are 

intestinal progenitors (174). Inhibition of gata4/5/6-1 (211, 212) and nkx2.2 (209), lead 

to breakdown of the intestine, providing further confirmation of this role. Interestingly, 

GATA and HNF factors are required for visceral endoderm differentiation in mice (213). 

 

Planarians contain an extensive network of mononuclear muscle fibers (214). Planarian 

muscle cells express canonical actomyosin contractility genes (214, 215) but also 

express a number of collagens and other extracellular matrix proteins, similar to 

vertebrate fibroblasts (216). Multiple spatially and transcriptionally distinct populations of 

muscle are present in the body, including body-wall muscle (BWM), intestinal muscle, 

pharyngeal muscle, and dorsal-ventral muscle (DVM), which connects the dorsal and 

ventral surfaces of the animal (214, 217, 218). Subepidermal BWM consists of three 

separate layers, each with distinct orientations (214). These include the outermost 

circular layer that runs along the ML axis of the animal, a layer just below that contains 

a network of diagonal fibers and thin longitudinal fibers that run along the AP axis, and 

finally an innermost layer of thick longitudinal fibers (214). Distinct BWM layers are 

enriched for distinct transcription factors that can be used to specifically ablate a layer, 

including myoD for longitudinal fibers and nkx1-1 for circular fibers (217). Interestingly, 

ablation of distinct muscle layers result in distinct phenotypes, with myoD inhibition 

leading to a block in regeneration and nxk1-1 inhibition leading to defects in ML 

patterning (217). Similarly, intestinal muscle can be ablated through inhibition of the 

transcription factor gata456-3, leading to defects in intestine morphology, and DV 

muscle can be ablated through inhibition of the transcription factors gata456-2 and nk4, 

leading to medial-lateral patterning defects (218). Intestinal muscle, DV muscle, and 

pharyngeal muscle can also be ablated through inhibition of the transcription factor 

foxF-1, which will be discussed further in chapters 2 and 3 regarding its additional role 
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in specifying a novel class of phagocytic cells (218). Each of the transcription factors 

discussed above were also expressed in smedwi-1+ neoblasts, representing specialized 

neoblast progenitors for each of these muscle populations (217, 218). 

 

The space between the major organs of the planarian is filled with a mesenchyme 

called the parenchyma (219). Neoblasts reside within the parenchyma, as do many of 

the tissue types described thus far, including muscle, protonephridia, and neurons, as 

well as a variety of gland cells and a poorly characterized cell type termed fixed 

parenchymal cells (219, 220, 221). Based on histochemical studies, gland cells were 

divided into two categories, acidophilic (eosinophilic) and cyanophilic (basophilic) (219, 

220). Although gland cells have generally been poorly characterized at the molecular 

level, multiple markers for a population of marginal adhesive gland cells have been 

identified (210). Fixed parenchymal cells, also known as reticulocytes, were described 

as large cells with long processes that contained lysosomes, numerous glycogen 

granules, and lipid droplets, suggesting a potential phagocytic role for these cells (221). 

This capacity was further confirmed through the demonstration by EM that fixed 

parenchymal cells can phagocytose heat killed bacteria (222, 223). While molecular 

characterization of both gland cells and fixed parenchymal cells has been largely 

lacking, a heterogeneous cluster of cells termed “parapharyngeal” was identified from 

recent single-cell sequencing data, and was heavily enriched for markers with 

parenchymal localization patterns (175). Transcriptomes were also generated for a 

variety of putative gland cells, as well as a population of cells resembling fixed 

parenchymal cells, using a large-scale single-cell RNA sequencing approach, as 

detailed in chapter 2. Finally, planarians contain a population of pigment cells that lie 

between circular and longitudinal BWM and that produce their color through a mixture of 

ommochrome and porphyrin pigments (224, 225). Prolonged light exposure can be 

used to ablate planarian pigment cells through porphyrin-dependent photosensitization 

(224). Furthermore, expression of the transcription factors albino (225), foxF-1, and ets-

1 (226) is enriched in pigment cells and pigment cell ablation occurs upon their inhibition 
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(225, 226). Expression of each transcription factor can be found in smedwi-1+ 

neoblasts, representing specialized progenitors for planarian pigment cells (225, 226). 

 

The pharynx is a cylindrical structure contained within an epithelial-lined cavity, referred 

to as the pharyngeal pouch, that can protrude from a ventral opening in the animal, 

called the mouth, for feeding and defecation (219). The pharynx itself is made up of an 

epithelial layer surrounding muscle, neurons, and gland cells (227). A number of 

transcriptionally distinct domains exist within the pharynx epithelium, including the 

esophagus, which connects the pharynx to the intestine (198, 228), as well as a number 

of novel domains described in chapter 2. Because neoblasts are excluded from the 

pharynx (181), progenitors must be specified outside of the pharynx and migrate, 

differentiate, and incorporate into the pharynx. The foxA transcription factor-encoding 

gene is expressed in both mature and regenerating pharynges (205, 229, 230), as well 

as in smedwi-1+ neoblasts surrounding the pharynx (205, 229). Inhibition of foxA blocks 

pharynx regeneration, suggesting these smedwi-1+/ foxA+ neoblasts are specialized 

neoblast progenitors for the pharynx (205, 229). The transcript dd_554 

(SmedASXL_059179) marks an irradiation sensitive population of cells within the 

pharynx and just anterior to the pharynx, some of which are smedwi-1+ (180). Following 

irradiation, expression of dd_554 is lost following the loss of smedwi-1+ expression but 

prior to the loss of expression of mature pharyngeal cell markers, suggesting this 

transcript marks a transition state during pharynx cell differentiation (180). 

 

The planarian epidermis that surrounds the animal consists of a monostratified layer of 

ciliated, cuboidal cells on the ventral side of the animal, and largely unciliated, more 

columnal cells on the dorsal side (231). A transcriptionally distinct differentiated cell 

population at the DV margin has also been identified (179, 232). From the single-cell 

multiplexed qPCR analysis on 4C cells that revealed gamma-neoblast intestinal 

progenitors, as mentioned above, an additional cluster of cells, called zeta-neoblasts, 

was also identified (174). This cluster was enriched for a number of genes, including the 

transcription factor zfp-1, inhibition of which by RNAi led to the loss of all epidermal 
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progenitors and differentiated epidermal cells, suggesting cells of this cluster are 

epidermal progenitors (174). In addition to zfp-1 expressing specialized neoblasts, a 

number of postmitotic transition states for the epidermis have also been identified (177, 

178, 179). Neoblasts reside in the parenchyma. Therefore, epidermal progenitors must 

migrate from the parenchyma, where they are generated, to the epidermis (177, 178, 

179). In doing so, they progress through a series of roughly three distinct transcriptional 

states in a spatiotemporal fashion before fully differentiating into mature epidermis (177, 

178, 179). Much remains to be learned of this spatiotemporal progression, however, as 

inhibition of multiple transcription factors, including myb-1, soxP-3, and pax2/5/8, lead to 

the abolition of early transcriptional states but do not affect later transcriptional stages or 

epidermal homeostasis in general (233, 234). 

 

Planarians constitutively express patterning information in muscle 

Following major injury, it is essential that planarians correctly replace the appropriate 

cell types that are lost. Planarians constitutively express regional gradients of 

components of known developmental signaling pathways, including Fgf, Wnt, and Bmp 

across the different body axes (Figure 1.6A). Interestingly, these regionally expressed 

genes are largely restricted in expression to muscle (235). Importantly, these regional 

gradients are rescaled following a loss of tissue to match the new size of the fragment 

(175, 198, 217, 228, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245). As 

reviewed below, inhibition of many of these regionally expressed genes by RNAi leads 

to defects in the regeneration and homeostatic maintenance of a proper body plan, 

highlighting their functional patterning role.  

 

The Wnt signaling pathway is essential for the regeneration and maintenance of the AP 

axis, a role that is widely conserved across the animal kingdom (246). In general, Wnt 

pathway components, such as wntP-2 and wnt1, are expressed in the posterior of the 

animal (198), whereas Wnt inhibitors, such as notum and sFRP-1, are expressed in the 

anterior of the animal (198, 238, 247) (Figure 1.6A). Nuclear localization of the Wnt 

effector protein Beta-catenin-1 also displays a posterior bias (248). Inhibition of beta-
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catenin-1 expression by RNAi leads to the formation of two heads following a transverse 

amputation (198, 249, 250), as does inhibition of other Wnt signaling components, such 

as wnt1 (237, 251) and wntless (251) (Figure 1.6B). Even in uninjured animals, RNAi of 

beta-catenin-1 results in the formation of heads all along the periphery of the animal 

(198, 249, 250). Conversely, inhibition of negative regulators of the Wnt signaling 

pathway, including notum (247) and APC (249) by RNAi leads to the formation of two 

tails following a transverse amputation (Figure 1.6B). A role for FGF pathway 

modulators in AP patterning has also been demonstrated, with a number of kinase dead 

FGFR-like genes being expressed in gradients along the AP axis (252) (Figure 1.6A). 

RNAi of the FGFR-like gene nou-darake and the Wnt signaling components fz5/8-4 and 

wntA leads to posterior expansion of the brain and formation of ectopic posterior eyes in 

both regenerating and uninjured animals (252, 253). nou-darake expression is confined 

to the head and is juxtaposed with wntA expression extending from the tail to just below 

the brain (253) (Figure 1.6C). Inhibition of another FGFR-like gene, ndl-3, and the Wnt 

gene wntP-2 leads to posterior expansion of trunk structures, including the ectopic 

formation of mouths and pharynges (244, 252). ndl-3  is expressed in the prepharyngeal 

region just above the trunk and is juxtaposed with wntP-2 expression extending from the 

tail to just below the ndl-3 domain (244, 252) (Figure 1.6C). Together, these results 

implicate these two gene circuits, composed of an anterior FGFRL domain and a 

posterior Wnt domain, in controlling head and trunk patterning along the AP axis (252). 

 

As previously noted, inhibition of the anteriorly expressed Wnt inhibitor notum results in 

the formation of two tails following a transverse amputation. Expression of notum is 

largely restricted to a small cluster of muscle cells localized at the very anterior tip of the 

animal, referred to as the anterior pole (247) (Figure 1.6D), as well as a small 

population of neuronal cells in the brain (254). Multiple transcription factors are enriched 

in the anterior pole, including foxD, zic-1, islet1, and pitx,  and their inhibition by RNAi 

leads to the ablation of the structure and consequent head patterning defects (203, 204, 

205, 239, 241, 255). The posterior pole is a similar, though more diffuse, structure in the 

posterior of the animal that expresses a number of genes, including wnt1 (198). A 
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number of transcription factors are also expressed in the posterior pole, including islet1 

and pitx, with their inhibition by RNAi leading to loss of these structures and consequent 

tail patterning defects (203, 204, 239). Through transplantation of the anterior pole 

region from one animal onto the posterior region of another animal, outgrowths, 

containing eyes and proper expression of anterior patterning genes, are generated, 

suggesting the anterior pole acts as an anterior organizer structure (256). Similarly, 

expansion of the wnt1 signaling center leads to tail expansion and defects in animal 

proportions (257).  

 

Whereas components of the Wnt and Fgf signaling pathways are important for 

regeneration and maintenance of the AP axis of the animal, components of the Bmp 

signaling pathway are important for regeneration and maintenance of the DV axis. 

bmp4, which encodes a Bmp-signaling ligand, is expressed dorsally, and its inhibition 

by RNAi leads to ventralization of the animal, with ventral structures, such as the nerve 

cords, appearing dorsally (228, 236, 258) (Figure 1.6A). Inhibition of genes encoding 

other Bmp pathway components, including smad1, smad4, and tolloid, also results in 

defects in the DV axis (228, 236). admp is expressed ventrally and is important for 

maintaining dorsal-specific bmp expression, with its inhibition leading to bmp4 RNAi 

sensitization (259) (Figure 1.6A).  

 

Planarian ML patterning is largely controlled by the genes slit and wnt5. slit is expressed 

medially in the animal, and its inhibition by RNAi leads to a collapse of tissues along the 

midline, including the brain lobes, eyes, and intestine (238, 260) (Figure 1.6A). 

Conversely, wnt5 is expressed laterally in the animal, and its inhibition by RNAi leads to 

the lateral expansion of some tissues, such as the brain and nerve cords, as well as the 

lateral formation of ectopic eyes and pharynges (238) (Figure 1.6A). In addition to their 

roles in DV patterning, Bmp pathway components also play roles in regeneration along 

the ML axis of the animal. Inhibition of bmp, admp, smad, or tolloid all impair lateral 

regeneration following sagittal amputation and lead to midline indentations (228, 236, 

259). 
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Given that inhibition of regionally expressed patterning molecules by RNAi leads to 

defects in the production of spatially appropriate cell types and tissues, it is likely that 

neoblasts can read out this positional system in some manner. Indeed, there are 

multiple lines of evidence that suggest that regionally expressed genes in muscle do 

affect neoblast fate decisions. Specialized neoblast progenitors associated with 

regionally localized organs are often regionally localized themselves. ovo+ eye 

progenitors are found only in the region anterior to the pharynx (171) and foxA+ pharynx 

progenitors are found only in the trunk region surrounding the pharynx (205, 229). 

Furthermore, inhibition of wnt1 by RNAi leads to the presence of ectopic ovo+/smedwi-

1+ eye progenitors during posterior regeneration (235). It has also been demonstrated 

that zeta-neoblast epidermal progenitors express different genes depending on their 

location along the DV axis, with dorsal zeta-neoblasts expressing PRDM-1 and ventral 

zeta-neoblasts expressing kal-1 (179). This development of a dorsal identity (i.e. 

PRDM-1 expression) by zeta-neoblasts requires the expression of the dorsal-specifying 

factor bmp-4 (179).  

 

Together, these results suggest a model for how properly patterned tissues are both 

maintained and regenerated. During homeostasis, neoblasts read out signals from 

muscle, which are arranged in regional gradients along the body axes of the animal. 

These signals govern neoblast fate choices, ensuring appropriate cell types are made 

for the appropriate body regions to maintain the proper body plan. Following an injury, 

patterning information rescales to match the size of the new fragment, triggering 

neoblasts fate choices to shift and generate cell types appropriate for this new positional 

information. Existing cells in the wrong position are no longer maintained, leading to the 

gradual formation of a correctly proportioned animal. More work is needed to identify the 

signals read out by neoblasts to provide direct evidence for this model. 
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Figure 1.4. An introduction to planarians. 
 
(A) Live image of an adult asexual Schmidtea mediterranea. (B) Diagram illustrating the 

Anterior-Posterior (A-P), Dorsal-Ventral (D-V), and Medial-Lateral (M-L) axes of the 

animal. (C) Figure adapted from (205). Cartoons depicting a sampling of the diverse 

tissues that make up the planarian. (D) Panel adapted from (261). Illustration of the 

regenerative response to two transverse amputations (left) and a parasagittal 

amputation (right). Grey regions indicate the blastema. 
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Figure 1.5. Neoblasts are the source for all new tissue. 
 
(A) FISH image of the pan-neoblast marker smedwi-1. Neoblasts are located in the 

parenchyma and are excluded from the brain, intestine, and pharynx. (B) Illustration of 

the experiment used to determine that individual neoblasts can be pluripotent. An 

animal from one strain is irradiated, killing all neoblasts. A single neoblast isolated from 

another strain is then injected into the irradiated host. The neoblast divides and 

expands, generating both more neoblasts and diverse differentiated cells. Over time, 

the single neoblast will repopulate the neoblast population in the animal, as well as turn 

over all differentiated tissues, essentially converting the host animal to the donor strain. 
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Figure 1.6. Planarians constitutively express patterning information. 
 
(A) Diagrams depicting the expression domains of selected regionally expressed genes 

in muscle (Left image modified from (252) and right image modified from (262)). Left: 

Dorsal view of the planarian is depicted. Right: Transverse section is depicted, with a 

centrally located gut branch and two ventrally biased ventral nerve cords. Genes 

marked in green are Wnt signaling components, genes marked in purple are FGFRL 

signaling components, genes marked in green are Hox genes, genes marked in orange 

are Bmp signaling components, and genes marked in grey represent all other classes of 

genes. (B) Illustration of the regenerative outcomes following beta-catenin (left) and 

notum (right) inhibition by RNAi. beta-catenin RNAi animals will form a head in place of 

a tail, and notum RNAi animals will form a tail in place of a head (C) Diagram depicting 

two FGFRL-Wnt circuits responsible for patterning the head and the trunk. Expression 

domains of the genes involved are shown to the left. Genes marked in green are Wnt 

signaling components and genes marked in purple are FGFRL signaling components. 

Note the juxtaposed domains of the trunk circuit components ndl-3 and wntP-2 and the 

head circuit components ndk and wntA. (D) Cartoon depicting the notum+ anterior pole. 
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III. Content Overview 
 
The advent of high throughput and affordable single-cell RNA sequencing approaches 

has enabled the transcriptional profiling of tens of thousands of single cells, raising the 

possibility that all cell types and cell states of a complete animal could be determined. 

However, this task remains daunting given the vast cellular complexity of most animals, 

including a fluctuating cell type composition across development. Chapter 2 of this 

thesis uses the single-cell RNA sequencing technique Drop-seq to generate such a 

whole-animal cell type transcriptome atlas for the planarian Schmidtea mediterranea. 

Animals were divided into five body sections to enrich for rare, regionally localized cell 

types, with the presence of known rare cell types in the data used to guide the number 

of cells sequenced from each fragment. Through this iterative approach, transcriptomes 

could be determined for most-to-all cell types of the complete animal. Because 

planarians possess pluripotent neoblasts that constantly turn over all differentiated cell 

types, transcriptomes were determined for pluripotent stem cells, a diverse set of 

differentiated cells, and potentially all transition state populations from stem cell to 

differentiated cell for all cell types. A number of novel neoblast subclasses, transition 

states, and differentiated cell types were identified, including a previously undescribed 

class of phagocytic cell types. Transcription factors enriched in many of these cell 

populations were identified and allowed for ablation of those cells. Finally, because 

planarians constitutively express patterning information in their muscle, novel regionally 

expressed genes in muscle were also identified.   
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Abstract 
 

The transcriptome of a cell dictates its unique cell type biology. We used single-cell 

RNA sequencing to determine the transcriptomes for essentially every cell type of a 

complete animal: the regenerative planarian Schmidtea mediterranea. Planarians 

contain a diverse array of cell types, possess lineage progenitors for differentiated cells 

(including pluripotent stem cells), and constitutively express positional information, 

making them ideal for this undertaking. We generated data for 66,783 cells, defining 

transcriptomes for known and many previously unknown planarian cell types and for 

putative transition states between stem and differentiated cells. We also uncovered 

regionally expressed genes in muscle, which harbors positional information. Identifying 

the transcriptomes for potentially all cell types for many organisms should be readily 

attainable and represents a powerful approach to metazoan biology. 
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Introduction 
The complete sequence of animal genomes, such as that of Caenorhabditis 

elegans reported in 1998 and humans in 2001, has had an immeasurable impact on 

research (1, 2, 3). Whereas the genome sequence of an organism contains the 

information for its development and physiology, the transcriptomes (the sets of actively 

transcribed genes) of the cell types in an organism define how the genome is used for 

the unique functions of its cells. Recent advances in RNA sequencing of individual cells 

have greatly enhanced the ability to determine cell type transcriptomes (4, 5), and 

single-cell RNA sequencing (SCS) of thousands of cells has become readily achievable 

(6). For example, the transcriptomes of most cell types of complete C. elegans L2 

larvae and numerous mouse cells were recently reported with this approach (7, 8). We 

reasoned that it might be possible, given these advances, to determine the 

transcriptomes of essentially every cell type of a complete adult organism possessing 

an unknown number of cell types. 

Multicellular organisms can have many millions of cells and hundreds of different cell 

types, and the cellular composition of organisms varies markedly over the course of 

development. This complexity has historically made the identification of all cell types, 

much less their transcriptomes, for most multicellular organisms an extreme challenge. 

The planarian Schmidtea mediterranea is an attractive case study organism for which to 

generate the transcriptomes for all cells in an animal. Planarians are famous for their 

ability to regenerate essentially any missing body part, and they possess a complex 

body plan containing many characterized cell types (9, 10). Despite this complexity, with 

an average planarian possessing ~105 to 106 cells (11), planarians are smaller with 

simpler anatomy than humans and many other model systems such as mice. Planarians 

are also easily dissociated into single-cell suspensions, allowing potential 

characterization of all cells. Because some planarian cell types, such as glia (12, 13), 

have only recently been defined with molecular markers, it is probable that undescribed 

planarian cell types exist. The combination of known and potentially unknown cell types 

is attractive for developing approaches that can apply to diverse organisms with varying 
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amounts of available cell type information. Planarians possess a population of 

proliferative cells called neoblasts that contain pluripotent stem cells, enabling their 

ability to regenerate and replace aged cells in tissue turnover (14). Neoblasts are the 

only cycling somatic cells and the source of all new tissue. Neoblasts contain multiple 

classes of specialized cells, with transcription factors expressed to specify cell fate (15, 

16). Because of the constant turnover of planarian tissues, essentially all stages of all 

cell lineages, from pluripotent stem cell to differentiated cell, are anticipated to be 

present in the adult (9, 17). 

Planarians also constitutively and regionally express dozens of genes that have roles in 

positional information (18). These genes, referred to as positional control genes 

(PCGs), are expressed in a complex spatial map spanning anterior-posterior (AP), 

medial-lateral (ML), and dorsal-ventral (DV) axes (18), and their expression is largely 

restricted to muscle (19). PCGs are hypothesized to constitute instructions for the 

maintenance and regeneration of the body plan. Because of these features, 

comprehensive SCS at a single time point (the adult) could allow transcriptome 

identification for all differentiated cell types, lineage precursors for these cells, and the 

patterning information that guides new cell production and organization. To capture this 

information in most organisms would require sampling the adult and many transient 

stages of embryogenesis. 
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Results & Figures 
 

Single-cell RNA sequencing of 50,562 planarian cells 

Planarians have a complex internal anatomy including a brain, ventral nerve cords, 

peripheral nervous system, epidermis, intestine, muscle, an excretory system (the 

protonephridia), and a centrally located pharynx (10). These major tissues are 

composed of multiple different cell types that, together with other gland and accessory 

cells, constitute the planarian anatomy. 

To detect planarian cell types and states in an unbiased manner, including rare cell 

types, we used the SCS method Drop-seq (6) to determine the transcriptomes for 

50,562 individual cells from adults (Figures 2.1A and 2.2A, and Table 2.1). Planarians 

contain 105 to 106 cells (11), and yet some cell types are extremely rare, such as the 

~100 photoreceptor neurons of eyes (20). Given such rarity, sequencing random cells 

from entire animals might not reach cell type saturation with even 105 cells sequenced. 

Therefore, we divided animals into five sections (head, prepharyngeal region, trunk with 

pharynx removed, tail, and the pharynx itself) and cells from each region were 

dissociated, sorted by flow cytometry, and sequenced (Figures 2.1A and Figure 2.2A, 

and Table 2.1). Sequences were aligned to a previously assembled transcriptome (21). 

We targeted cell type saturation by assessing coverage of known, rare cell types during 

iterative rounds of cell isolation and sequencing in a region-by-region approach. In total, 

25 separate Drop-seq runs were completed, yielding cells with an average of 3020 

unique molecular identifiers (UMIs) and 1404 genes (~13% of the estimated detection 

limit) (Figure 2.2, A to C, Table 2.1, and Supplementary materials). 

Genes with high variance and expression across cells were used to generate 

informative principal components using Seurat (6, 22). Cells were clustered using 

Seurat into 44 distinct major clusters using a graph-based clustering approach and were 

visualized by applying t-distributed stochastic neighbor embedding on transcriptomes (t-

SNE) (Figures 2.1B and 2.2D). Cells from different regions were largely interspersed in 

the t-SNE plots, except for cells from the pharynx, which contains many unique cell 
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types (Figure 2.3A). Cell doublets were scarce within the data and did not affect 

clustering results (Figure 2.3, B to D). To determine the identity of each cluster, we 

identified cluster-specific genes by means of a receiver operating characteristic curve 

analysis and a likelihood ratio test based on zero-inflated data (Table 2.2) (23). 

Expression of established cell type markers within each cluster and fluorescence in situ 

hybridization (FISH) with cluster-specific markers enabled cluster assignment to one of 

eight previously identified planarian tissue classes: protonephridia, neural, epidermis, 

intestine, pharynx, muscle, neoblast, and parenchymal (Figure 2.1C). The parenchymal 

class was previously termed “parapharyngeal” because of localization of some enriched 

markers around the pharynx (24). However, most cell populations within this class 

exhibit broader localization in the planarian parenchyma. We also identified a ninth 

group of clusters marked by CTSL2 (dd175) expression (Figure 2.1D). CTSL2 (dd175) 

FISH revealed cells with long processes distributed broadly. We designated this group 

of clusters the cathepsin+ class. Hierarchical clustering of a subset of 5000 cells by 

Euclidean distance, independently of Seurat, recapitulated assignment of cells into 

these nine tissue classes (Figure 2.4). 

Clusters representing the major planarian tissue classes were generally heterogeneous 

in terms of gene expression. For example, neural clusters contained a large number of 

known neuronal cell types, which suggests that multiple distinct cell types could be 

identified within each major cluster (Figure 2.5). Therefore, we systematically 

subclustered each major cluster group (Figures 2.6, 2.14, 2.19, 2.31, and 2.34), 

identifying >150 subclusters, and determined genes with enriched expression in cells of 

each subcluster (Table 2.2). Subclustering proved a powerful approach to defining the 

collection of cell types that constituted each major cluster and identified candidate 

transition states between stem cells and differentiated cells. 
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Figure 2.1. Drop-seq of 50,562 planarian cells. 

(A) Schematic illustrating the workflow used to isolate and cluster single cells. (B) t-SNE 

representation of 44 clusters generated from the data. (C and D) Upper panels: t-SNE 

plots colored according to gene expression (red, high; blue, low) for highly enriched 

genes from nine planarian tissue classes. Red outlines denote clusters assigned to that 

tissue class. Lower panels: FISH images for tissue-enriched genes. Scale bars: whole-

animal images, 200 μm; insets, 50 μm. 
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Figure 2.2. Summary of the data and primary clustering.  
 

(A) Summary of the Drop-seq runs performed. The expected number of cells for each 

Drop-seq run was estimated from the bead yield (e.g., ~5% of beads are exposed to a 

cell). Different run colors indicate distinct biological replicates. (B) Violin plots indicating 

the average number of UMIs and average number of genes for all cells from each body 

region following quality filtering. (C) Mean number of genes per cell for 197 cells at 

increasing numbers of total sequencing reads. Fitting a one phase exponential 

association equation (y=882.4+(10647-882.4)* (1-e^(-3.29E-9*x)) to the plot identifies a 

plateau at 10,647 genes per cell at saturating read numbers. (D) Heat map of the 

expression of the top 10 genes from each cluster of the overall clustering, grouped by 

cluster number. Cells, columns; Genes, rows. 
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Figure 2.3. Validation of the clustering results.  
 

(A) t-SNE plot colored by the body region from which each cell was isolated. Cells 

isolated from each body region were largely interspersed, demonstrating a general 

absence of batch effects. Pharynx cells did form multiple distinct clusters, consistent 

with the exclusive localization of many cell types to the pharynx. (B) Scatter plot of the 

number of mouse and human transcripts expressed by 268 cells of a Drop-seq run on a 

1:1 mixture of HEK293T and NIH/3T3 cells (Methods). Cells almost exclusively 

expressed transcripts from only one species, indicating an absence of cell doublets. The 

mixed-species Drop-seq run was performed prior to all Drop-seq runs on planarian 

cells, and the same cell concentration (191 cells/μl) was used for all planarian cell runs. 

(C) Table indicating the number of cells shared between each cell type list. Cell types 

were assigned by the expression of at least six out of eight highly enriched genes for 

each cell type (Methods). (D) t-SNE plot colored by the 81 cell doublets identified in (C). 

Positive cells, red; Negative cells, grey.  
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Figure 2.4. Hierarchical clustering of cells independently of Seurat maintains 
tissue class assignment.  
 

Heat map of the pearson correlation coefficient of 5,000 cells from the data following 

hierarchical clustering independently of Seurat. Top panel: cells colored by their tissue 

class assignment by Seurat. Pearson correlations greater than 0.3 were collapsed to 

0.3. 
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Figure 2.5. Many clusters were a heterogeneous mix of distinct cell types.  
 

t-SNE plots colored by expression of 4 neuronal markers: tph (25), opsin (26), th (27), 

and npp-18 (28), which are expressed in distinct cell populations in vivo. Insets identify 

distinct groups of cells positive for each marker in the neural associated clusters. 
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Progenitors in planarian cell lineages 

Neoblasts are abundant and express canonical marker genes such as smedwi-

1 (29), vasa (30), and bruli (31) (Figures 2.1C and 2.7, A and B). Neoblasts are cycling 

cells and consequently show enrichment in expression of S/G2/M cell cycle markers 

(Figure 2.7C). To identify the transcriptomes of potential neoblast subpopulations, we 

selected in silico and subclustered 12,212 cells with smedwi-1 expression of ≥2.5 

[ln(UMI-per-10,000 + 1)] (Figures 2.6A and 2.8A). Resulting clusters on the left of the 

plot were enriched in S/G2/M cell cycle markers (Figure 2.8B). These clusters included 

the previously characterized major specialized neoblast classes, including γ-neoblasts 

(intestine progenitors) and ζ-neoblasts (epidermis progenitors) (32) (Figure 2.6B). A 

number of other subclusters were also identified, including one marked by expression of 

the contig dd_10988 (Figure 2.8, C and D). FISH confirmed that dd_10988 was 

expressed in a neoblast subset as well as in a number of smedwi-1- cells (Figure 2.6C). 

The large number of subclustered neoblasts facilitated transcriptome determination for 

candidate progenitors for many planarian tissues. Clusters to the right of the plot were 

marked by a G1/G0 cell cycle status and displayed expression of various tissue markers 

(Figures 2.6D and 2.8B). These included a population defined by expression of POU2/3, 

a marker for protonephridia-specialized neoblasts (33), and a number of subclusters 

expressing markers also expressed in specific differentiated tissues or their postmitotic 

precursors, such as ChAT for the nervous system, prog-1 for the 

epidermis, ASCL4 (dd1854) for parenchymal cells, and COL4A6A (dd2337) for muscle 

(Figures 2.6D and 2.9A). Expression of these markers in smedwi-1+ cells suggests that 

these cells could be transition states for those lineages. Several markers enriched in the 

dd_10988+ subcluster, including dd_10988, were also expressed in cells of the 

two smedwi-1+ neural subclusters, as well as in neural cells of the initial clustering 

(Figures 2.8C and 2.9, B and C), which suggests that the dd_10988+ subcluster is 

enriched in neural progenitors. Likewise, many markers enriched in 

the PLOD1 (dd3457)+ subcluster were also expressed in the smedwi-1+ muscle 

subcluster, which suggests that the PLOD1 (dd3457)+ subcluster is enriched in muscle 
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progenitors (Figure 2.9D). prox-1, hnf-4, nkx2.2, and gata4/5/6 encode transcription 

factors expressed in intestinal progenitors (32), and in these data all four genes were 

expressed in γ-neoblasts (Figures 2.6, B and E, and 2.9E), with hnf-4, nkx2.2, 

and gata4/5/6 also expressed in intestinal clusters (Figures 2.6E and 2.9F). hnf-4, but 

not prox-1, nkx2.2, and gata4/5/6, was also expressed in a smedwi-1+ cell cluster 

enriched in CTSL2 (dd175) expression (the cathepsin+ cell marker) and in 

differentiated cathepsin+ cells (Figures 2.6E and 2.9G). The additional transcription 

factor–encoding genes ETS1 (dd2092) and FOXF1 (dd6910) were expressed with hnf-

4 in these cells and also displayed expression patterns similar to that of CTSL2 (dd175) 

in the animal (Figures 2.6F and 2.10, A and B) and have recently been shown to 

regulate the planarian pigment cell lineage (34). Pigment cells clustered within 

the cathepsin+ cell class in our data (see below). By FISH, hnf-4 was indeed 

coexpressed with nkx2.2 and gata4/5/6 in the intestine, but was also coexpressed 

with cathepsin+ cell markers (Figure 2.10, C to E), which suggests that hnf-4 is 

expressed in two distinct lineages. These data demonstrate the utility of this approach 

for identifying potentially novel neoblast progenitor populations and the transcription 

factors that define them. 

Some planarian neoblasts display pluripotency in clonal assays and are hypothesized to 

generate all lineage-committed neoblast subpopulations, and are called clonogenic 

neoblasts (14). We selected cells expressing high levels of smedwi-1 but that excluded 

ζ- and γ-neoblasts [including subclusters 2, 9, dd_10988+, dd_6998+, 

dd_17796+, SAMD15 (dd19710)+, dd_11221+, dd_13666+, and PLOD1 (dd3457)+] and 

subclustered this set of neoblasts in isolation (Figure 2.11, A and B). A remnant ζ-

neoblast population (clusters 4 and 6), as well as protonephridia progenitors (cluster 10) 

and the putative neural (clusters 2 and 5) and muscle (clusters 1 and 9) progenitor 

populations described above in the smedwi-1+ cell subclustering, were identified (Figure 

2.11C and Table 2.2). Clusters 0, 3, 7, and 8 were largely devoid of specifically enriched 

markers (Table 2.2). It is therefore possible that clonogenic neoblasts are defined by an 
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absence of any tissue-specific markers, as opposed to the unique expression of specific 

genes. 

When all cells were clustered together, numerous smedwi-1+ cells were present 

regionally within each of the other eight major planarian tissue clusters (Figure 2.1C). 

We reasoned that these smedwi-1+ cells could represent progenitors for the cell types 

within each associated tissue cluster. We therefore examined these smedwi-1+ cells 

after taking each tissue class in isolation and subclustering the data. 

The planarian epidermis contains ciliated and nonciliated cells as well as dorsal-ventral 

boundary epidermis (10, 32, 35), and the lineage from ζ-neoblasts to epidermal cells is 

well characterized (35, 36, 37) (Figure 2.6G). SCS reveals gene expression transitions 

during neoblast epidermal differentiation (35); subclustering 11,021 epidermal lineage 

cells (Figure 2.1C) produced subclusters associated with each epidermal lineage stage 

(Figures 2.6H and 2.12, A and B). Plotting gene expression onto this t-SNE map 

showed a continuous progression from ζ-neoblast to differentiated cells (Figures 

2.6I and 2.12C). 

The gene dd_554 [SmedASXL_059179 in (38)] is expressed in candidate pharynx 

progenitors (38) (smedwi-1+ cells at the pharynx base) and in smedwi-1- cells within the 

pharynx (38) (Figures 2.6J and 2.13). Subclustering the 1083 non-muscle, non-neuronal 

pharynx cluster cells (Figure 2.1C) revealed that smedwi-1+ cells sequenced from 

nonpharynx midbody tissue clustered with pharynx cells, despite not being part of the 

pharynx itself (Figure 2.6, K and L). Because the pharynx lacks neoblasts, pharynx-

specialized neoblasts must be outside of the pharynx. This clustering of neoblasts with 

pharynx cells clearly demonstrates the ability of SCS data clustering to associate 

lineage precursors with differentiated cells. Similarly, many dd_554+ cells sequenced 

from outside of the pharynx clustered with pharynx cells (Figure 2.6, K and L). 

Plotting smedwi-1/dd_554 expression onto pharyngeal subclusters revealed a 

progression from smedwi-1+ cells isolated outside the pharynx to dd_554+ cells isolated 

outside the pharynx to dd_554+ cells isolated inside the pharynx to pharyngeal cells 
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(Figure 2.6, K and L). These epidermis and pharynx examples demonstrate how 

precursor stages within cell lineages can be identified from subclustering cells within a 

major tissue class. Because planarians constantly generate new differentiated cells for 

essentially all tissue types (17, 20), transcriptomes for lineage precursors for essentially 

every cell type in the body could in principle be studied with this approach. 

Cell lineages for many planarian cell types are largely uncharacterized. After tissue type 

subclustering, smedwi-1+ cells were present with locally high expression in resultant t-

SNE plots; smedwi-1 expression level gradually declined in cells across subclusters 

(Figure 2.6, M and N). These smedwi-1+ cells, similar to the epidermis and pharynx 

cases, could represent transition states between pluripotent neoblasts and differentiated 

cells for the various cells of the protonephridia, intestine, muscle, nervous system, 

parenchymal, and cathepsin+ cells (Figure 2.6, M and N). The smedwi-1+ cells found 

within subclusters of the major tissue type classes generally displayed enriched 

expression of at least one transcription factor. For example, smedwi-1 expression was 

high within cells at the center of the parenchymal cell t-SNE plot and displayed a graded 

decrease projecting in all directions into seven major parenchymal subclusters (Figure 

2.6N). Each projection was associated with enriched expression of one or more distinct 

transcription factors, identifying candidate transcription factors associated with the 

specification of different parenchymal cell types (Figure 2.6O). 
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Figure 2.6. Subclustering identifies neoblast subpopulations.  
 
(A) t-SNE representation of 22 clusters generated from subclustering cells with smedwi-

1 expression ≥ 2.5 [ln(UMI-per-10,000 + 1)]. Identity of numbered clusters unknown. PP, 

parenchymal; PN, protonephridia. Intestine cluster is indicated by lower expression 

of smedwi-1 and enriched gata4/5/6 and hnf-4 expression. (B) smedwi-1+ t-SNE plots 

colored by prox-1 and zfp-1 expression. (C) Double FISH image for dd_10988 

and smedwi-1. Yellow arrows highlight coexpression; white arrows denote absence of 

coexpression. (D) smedwi-1+ t-SNE plots colored by expression of differentiated tissue-

enriched genes. Arrows indicate gene expression sites. (E) Left: smedwi-1+ t-SNE plots 

colored by gata4/5/6 and hnf-4 expression. Right: All cluster t-SNE plots colored 

by gata4/5/6 and hnf-4 expression. C, cathepsin+ cells; I, intestine; γ-Nb, γ-neoblasts. 

(F) smedwi-1+ t-SNE plots colored by ETS1 (dd2092) and FOXF1 (dd6910) expression. 

(G) Epidermal cell maturation stages. (H) t-SNE representation of epidermal 

subclusters. FISH images labeled by their associated cluster(s) are shown. (I) 

Epidermal t-SNE plots colored by epidermal lineage marker expression from (G). (J) 

dd_554 FISH. (K) Pharynx t-SNE plots colored by smedwi-1 and dd_554 expression. 

(L) Pharynx t-SNE plot colored by the body region from which each cell was isolated. 

(M and N) t-SNE plots, colored by smedwi-1 expression, generated by subclustering 

cells identified as (M) protonephridia, intestine, muscle, cathepsin+, neural, and (N) 

parenchymal. (O) Parenchymal t-SNE plots colored by expression of eight transcription 

factor–encoding genes enriched in (N). Arrows indicate gene expression sites. Scale 

bars, 50 μm (C), 200 μm [(H) and (J)]. 
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Figure 2.7. Cells expressing additional neoblast markers and exhibiting a S/G2M 
cell cycle status display similar patterns to smedwi-1+ cells in the t-SNE plot.  
 

(A and B) t-SNE plot colored by the expression of two neoblast markers, (A) bruli (31) 

and (B) vasa-1 (30). (C) t-SNE plot colored by the cell cycle status of each cell 

(Methods). 
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Figure 2.8. Additional subclusters were identified from subclustering smedwi-1+ 
cells.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the smedwi-1+ 

cell clustering, grouped by cluster ID. Cells, columns; Genes, rows. PL, PLOD1 

(dd3457)+; ζ-Nb, ζ Neoblasts; N2, Neural 2; M, Muscle; C3, cathepsin+ 3; C1, cathepsin+ 

1; PN, Protonephridia. (B) smedwi-1+ t-SNE plot colored by the cell cycle status of each 

cell. (C and D) smedwi-1+ t-SNE plots colored by expression of (C) dd_10988 and (D) 

cluster-specific genes not included in Figure 2.6.  
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Figure 2.9. Additional data regarding the smedwi-1+ cell subclustering.  
 

(A and B) All clusters t-SNE plots colored by expression of (A) the parenchymal marker 

ASCL4 (dd1854) and the muscle marker COL4A6A (dd2337), and (B) dd_10988. (C) 

smedwi-1+ t-SNE plots colored by expression of genes enriched in the dd_10988+ 

cluster and also expressed in the two neural clusters. (D) smedwi-1+ t-SNE plots 

colored by expression of genes enriched in the PLOD1 (dd3457)+ cluster and also 

expressed in the muscle cluster. (E and F) (E) smedwi-1+ and (F) all clusters t-SNE 

plots colored by expression of nkx2.2. (G) smedwi-1+ t-SNE plot colored by expression 

of the cathepsin+ cell marker CTSL2 (dd175). Arrows indicate sites of gene expression. 
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Figure 2.10. Additional characterization of putative intestine and cathepsin+ cell 
progenitors.  
 

(A and B) FISH images of the cathepsin+ cell-enriched transcription factors (A) ETS1 

(dd2092) and (B) FOXF1 (dd6910). (C and D) Double FISH images of hnf-4 and (C) 

gata4/5/6-1 and (D) nkx2.2. (E) FISH images of hnf-4, smedwi-1, and a pool of the 

cathepsin+ cell markers CTSL2 (dd582), PTPRT (dd10872), TTPA (dd6149), dd_5690, 

pgbd-1, dd_7593, and AQP1 (dd1103). White signal in merged images indicates a 

positional overlap in gene expression. Arrows indicate cells positive for hnf-4 and the 

pool of cathepsin+ cell markers, but negative for smedwi-1. Scale bars: A-D, 200 μm; E, 

10 μm.  
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Figure 2.11. Additional subclustering of smedwi-1+ cell clusters with high levels 
of smedwi-1.  
 

(A) t-SNE representation of smedwi-1+ cell subclustering overlaid with a boundary 

indicating smedwi-1 high clusters further subclustered in (B). (B) t-SNE representation 

of 11 clusters generated from further subclustering of (A). (C) smedwi-1 high t-SNE 

plots colored by cluster-enriched gene expression. Numbers indicate the associated 

smedwi-1 high subcluster(s). 
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Figure 2.12. Additional characterization of the epidermal subclusters.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the epidermal 

clustering, grouped by cluster number. Cells, columns; Genes, rows. (B) Top panels: 

Epidermal t-SNE plots colored by cluster-enriched gene expression. Numbers indicate 

the associated epidermal subcluster(s). Bottom panels: FISH images of two cluster-

enriched genes. White signal in merged images indicates a positional overlap in gene 

expression. Scale bars: 200 μm. (C) Epidermal t-SNE plot colored by the expression of 

zfp-1.  
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Figure 2.13. Additional data regarding cells of the pharynx lineage.  
 

FISH images of two genes expressed in pharynx progenitor cells. White signal in 

merged images indicates a positional overlap in gene expression. Scale bar, 200 μm. 
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Subclustering cells by tissue type uncovers rare cell types 

The protonephridia, the planarian excretory and osmoregulatory system, contains flame 

cells for filtering fluids, proximal and distal tubule cells, and a collecting duct (33, 39, 
40). The protonephridia is a model tissue for studying organ regeneration and the 

evolution of kidney-like excretory systems. Subclustering of 890 protonephridia cells 

(Figure 2.1C) identified each known protonephridia cell type as a separate subcluster, 

revealing the complete transcriptomes of these cells (Figures 2.14A and 2.15, A to C). 

Furthermore, two protonephridia subclusters with smedwi-1+ cells were identified 

(Figure 2.6M). One was enriched in flame cell gene expression (e.g., dd_2920) and the 

other in a proximal tubule marker (dd_10830), which suggests that they might be flame 

and tubule cell precursors, respectively (Figure 2.15, D and E). 

Less is known regarding the full complement of cell types in other planarian tissues. 

Ultrastructural studies suggested that the planarian intestine contains two cell types: 

absorptive enterocytes and secretory goblet cells (41, 42). Subclustering of 3025 

intestinal cells (Figure 2.1C) revealed three distinct cell populations (clusters 4, 5, and 

8) (Figures 2.14B and 2.16, A and B). FISH with subcluster-enriched markers (Table 

2.2) revealed distinct intestine components. Cluster 4 represented an inner intestine cell 

layer (Figure 2.14C) and was enriched for absorptive enterocyte markers (43). Cluster 8 

cells were largely present within the primary intestine branches, resembling the pattern 

of goblet cells (44). A third group (cluster 5) represented an outer intestine cell layer and 

displayed a set of enriched genes different from that of clusters 4 and 8 (Figure 

2.14C and Table 2.2). In addition to these three main intestine components, clusters 

representing putative transition states were also identified. Clusters 1, 3, and 6 included 

many smedwi-1+ cells (Figure 2.6M). Genes with enriched expression in clusters 0 and 

7 displayed expression spanning into the enterocyte cluster (cluster 4), suggesting 

these might be enterocyte transition states (Figure 2.17A). Genes with enriched 

expression in clusters 2 and 3 displayed expression spanning into the outer intestine 

cluster (cluster 5) and might reflect transition or variant states of these cells (Figure 

2.17B). The Monocle toolkit can be used to predict cellular transitions in lineages (45) 
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and was used to build single-cell trajectories for the enterocyte and outer intestine cell 

lineages, closely recapitulating the candidate transition states identified by Seurat 

(Figures 2.14D, 2.18, and Table 2.3). 

Several transcription factors required for the specification of various planarian cell types 

have been identified with RNA interference (RNAi) and gene expression studies. 

Because of constant tissue turnover, RNAi of transcription factor–encoding genes 

expressed in specific classes of specialized neoblasts in adult planarians can lead to 

steady depletion of the cell type generated by that specialized neoblast class (33, 46, 

47). The transcriptomes identified here generate a resource of enriched gene 

expression for different cell types, including transcription factor–encoding genes. 

Accordingly, inhibition of the transcription factor–encoding PTF1A (dd6869) gene, which 

had enriched expression in candidate transition states for the outer intestine cluster, 

strongly reduced this cell population while not affecting absorptive enterocytes of the 

intestine (Figure 2.14E). 

The nervous system displays by far the greatest known cell type composition complexity 

of the major planarian tissues. By subclustering 11,907 neuronal cells (Figure 2.1C), we 

identified 61 distinct subclusters representing a diversity of cell types and states 

(Figures 2.19A and 2.20A). Twelve subclusters had high smedwi-1 expression, which 

suggested that they represent neuronal precursors (Figure 2.20B). Cluster 10 contained 

cells of the brain branches, as determined by expression of gpas (48) and pds (49) 

(Figures 2.19B and 2.20C). Three subclusters (clusters 3, 7, and 8) were defined by 

expression of pc2 (encoding a neuropeptide-processing proprotein convertase) as well 

as an assortment of markers for rare neuron classes in the cephalic ganglia and ventral 

nerve cords (Figures 2.19C and 2.20, D and E). We also sequenced an additional 7766 

cells from the brain region to expand the number of cells in these clusters (Figure 2.20, 

F to H). In addition to these large clusters, there existed a number of smaller, compact, 

and well-separated subclusters. These could be further divided into ciliated and 

nonciliated neurons according to the expression of rootletin (dd6573), which encodes a 

ciliary rootlet component (Figures 2.19D and 2.21A). Because of further heterogeneity 
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within these clusters (e.g., opsin+ presumptive photoreceptors were present together, 

but not as a separate cluster), data from these two cell sets (ciliated, not ciliated) were 

each taken in isolation for further subclustering. This yielded 37 nonciliated neuron 

subclusters (Figures 2.19E and 2.21B, 2.22, A and B, and 2.23 to 2.25) and 25 

putatively ciliated neuron subclusters (Figures 2.19F and 2.21B, 2.26, A and B, and 

2.27B). We assessed the localization of cells associated with 46 of 62 of these 

subclusters by FISH using subcluster-specific markers. The observed cell types had a 

wide range of patterns including rare cell types such as photoreceptor neurons (Figures 

2.19, E and F, and 2.22 to 2.27). Many genes had enriched expression in multiple 

clusters; the distribution of neural cell types they represented was defined by a 

combinatorial set of markers (Figures 2.22 to 2.27). A number of identified cell types 

from different subclusters displayed similar localization patterns. However, FISH 

demonstrated no overlap in subcluster-specific markers, consistent with the SCS data 

(Figure 2.19G). For several neural subtypes, we found smedwi-1+ candidate precursor 

cells. Four nonciliated neuron subclusters (subclusters 1, 2, 4, and 12) and a single 

ciliated neuron subcluster (subcluster 1) were enriched in smedwi-1 expression (Figure 

2.28A). Nonciliated neuron subcluster 4 also expressed gata4/5/6, as did six smedwi-

1- clusters (clusters 14,16/33, 24, 26, and 32) that radiated out from central smedwi-

1+ cells, raising the possibility that these smedwi-1+ cells constitute precursors for these 

populations (Figure 2.28B). 

The pharynx is a muscular tube used for feeding and defecation (10). It is contained 

within an epithelial cavity and connects to the intestine at its anterior end via an 

esophagus. Pharyngeal muscle cells and pharyngeal neurons clustered together with 

the other muscle cells and neurons of the body (Figures 2.29A and 2.30A). Other 

pharynx-associated cells, including cells from isolated pharynges and surrounding 

tissue, constituted the other major pharynx clusters. These non-neural, non-muscle 

pharynx and pharynx-associated cells (Figure 2.1C, n = 1083 cells) were subclustered, 

and FISH was performed on cluster-enriched markers (Figures 2.29, B and C, and 

2.31A). Subclusters included pharyngeal cavity epithelium cells (clusters 7 and 8), the 
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epithelial pharynx lining (clusters 1 and 5), the mouth and esophagus (cluster 9), cells 

near the pharynx opening (cluster 6), and cells that constitute the connection to the 

planarian body (cluster 4). FISH confirmed nonoverlapping expression patterns for 

markers of tested separate cell populations (Figure 2.31B). 

Planarian muscle expresses collagen in addition to canonical muscle genes such 

as troponin and tropomyosin (19). Muscle exists in a subepidermal body wall layer, in 

the pharynx, surrounding the intestine, and in a DV domain (50). Subclustering 5014 

muscle cells (Figure 2.1C) revealed seven smedwi-1+ candidate precursor subclusters 

(clusters 0, 1, 3, 4, 5, 10, and 11) (Figure 2.6M), as well as subclusters containing body 

wall muscle (cluster 7), pharyngeal muscle (cluster 2, 8, 9, and 12) (Figure 2.30A), a 

population of muscle cells enriched around the intestine (cluster 6), and an unidentified 

population (cluster 13) (Figures 2.30, B and C, and 2.31C). Markers for body wall 

muscle (cluster 7) and cluster 13 were expressed in nonoverlapping cells by FISH 

(Figure 2.31D). 

Whereas some molecular characterization existed for the seven broad planarian tissue 

classes previously mentioned, very little is known regarding the cellular composition of 

the two remaining classes. The parenchymal class (Figure 2.1C) (24) was highly 

heterogeneous, with subclustering of 2120 cells identifying many distinct cell 

populations (Figures 2.31E and 2.32, A and B, and 2.33B). In addition to eight smedwi-

1+ putative precursor subclusters (clusters 0, 1, 2, 3, 4, 6, 8, and most of 9) (Figure 

2.6N), parenchymal cell subclustering revealed 13 well-separated differentiated cell 

subclusters. FISH showed that each of these differentiated cell populations were 

present as scattered cells, presumably within a mesenchymal tissue layer called the 

parenchyma that surrounds major planarian organs (10). Previous morphological 

studies determined that the parenchyma is composed of multiple gland cells, neoblasts, 

and “fixed parenchymal cells” characterized through histological and electron 

microscopy studies as a likely phagocytic cell with long cellular processes filling most of 

the parenchymal space (10, 51, 52). Some identified parenchymal subclusters 

appeared to be gland cells, displaying processes extending to the epidermis, defining 
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transcriptomes for these cells. Candidate gland cell types included two that were 

exclusively dorsal (clusters 16 and 17), two exclusively lateral (clusters 10 and 13, 

including marginal adhesive gland cells and an unknown cell population), four present 

both dorsally and ventrally (clusters 7, 11, 14, and 15), and one present ventrally near 

the brain (cluster 19). Three subclusters (clusters 5, 12, and 18) contained cells with 

patterns similar to those of planarian neoblasts, but were not neoblasts. Finally, a single 

subcluster contained large cells surrounding the pharynx (small group of cluster 9 cells) 

and were enriched for expression of previously identified metalloprotease-encoding 

genes (53). Three pairs of parenchymal subclusters (six subclusters total) were 

confirmed to exist in nonoverlapping populations by FISH (Figure 2.31F). 

The transcription factor–encoding gene nkx6-like was expressed in a parenchymal cell 

population marked by dd_515. Inhibition of nkx6-like ablated dd_515 cells, while not 

affecting a distinct, non-enriched parenchymal cell population marked by dd_385 

(Figure 2.31G). These results further highlight the potential to use the data to ablate 

many specific cell types in the animal. 

The final major class of cells, the cathepsin+ group, contained 7034 cells (Figure 2.1D). 

This group of clusters contained recently described glia and pigment cells (12, 13, 54). 

Subclustering of cathepsin+ cells identified four subclusters expressing smedwi-1 that 

represented putative precursor cells (clusters 0, 1, 3, and 6) (Figure 2.6M), a glial 

subcluster (cluster 15), and two pigment cell populations (clusters 11 and 14), 

identifying transcriptomes for these cell types (Figures 2.34A and 2.35, A and B, and 

2.36B). Eight cathepsin+ subclusters represented previously unidentified cell 

populations. FISH revealed striking, elaborate morphologies for most of these cells, 

involving long processes and unique distributions (Figures 2.34A and figs. 2.35B and 

2.36B). Cells from subclusters 5 and 10 were spread throughout the planarian body, 

with long processes filling substantial parenchyma space. Subcluster 8 represented 

cells specific to the pharynx. Subcluster 9 cells were scattered throughout the animal. 

Subclusters 4 and 16 identified cells with dense aggregated foci of elaborate processes 

at scattered locations throughout the animal that lacked definitive positions—an unusual 
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and unanticipated cell type distribution. FISH identified markers labeling cell bodies of 

these cells, revealing that the aggregates comprised many cells (Figure 2.34B). 

Subclusters 12 and 13 also exhibited processes with visible cell bodies. Subcluster 12 

cells were largely subepidermal. The most elaborate of these newly identified cells 

(subclusters 5 and 10) were excluded from the intestine and brain, but had processes 

around the branches of the intestine and protonephridia and interspersed within the 

cephalic ganglia (Figures 2.34, C to E, and 2.37, A and B). FISH confirmed 

nonoverlapping expression patterns for two tested subclusters (Figure 2.37C). 

Subcluster 7 of the cathepsin+ group of cells was enriched in expression of genes with 

expression spanning into clusters 5 and 10 (Figure 2.38A). Similarly, expression of 

cluster 2 marker genes spanned into clusters 4 and 16 (Figure 2.38B). These cells 

might reflect transition or variant states of cells for clusters 5/10 and 4/16, respectively. 

SMEDWI-1 protein perdures in neoblast progeny after loss of smedwi-1 mRNA, allowing 

detection of newly produced neoblast progeny (31). MAP3K5 (dd4849)+ cells, which 

were predicted to be expressed in cells transitioning from the smedwi-1+ state in 

the cathepsin+ cell plot, were SMEDWI-1+/smedwi-1-, supporting the interpretation that 

these cells are progenitors in the cathepsin+ cell lineage (Figure 2.38, C and D). The 

Monocle toolkit was also used to build single-cell trajectories for these clusters, with 

data closely recapitulating the transition states identified by Seurat (Figures 2.34F, 2.39, 

and Table 2.3). 
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Figure 2.14. Subclustering of tissues reveals transcriptomes for known and novel 
cell populations. 

(A) t-SNE representation of the protonephridial subcluster. FISH images are labeled by 

their associated cluster. (B) t-SNE representation of intestinal subclusters. (C) Double 

FISH images of genes enriched in separate intestinal subclusters. Numbers indicate the 

associated subcluster for each marker. (D) Top: Cell trajectory of enterocyte and outer 

intestinal cell lineages produced by Monocle. Cells are colored by identity. Bottom: Heat 

map of branch dependent genes (q value < 10-145) across cells plotted in pseudo-time 

(45). Cells, columns; genes, rows. Beginning of pseudo-time is at center of heat map. 

“Cl.” annotation indicates a log-fold enrichment ≥ 1 of the gene in that intestine Seurat 

cluster. (E) Top left: Intestine t-SNE plot colored by expression of PTF1A (dd6869). Top 

right: Illustration of cutting scheme used to generate fragments. Bottom: dd_115 and 

dd_75 FISH of control and PTF1A (dd6869) RNAi animals. Animals were cut and fixed 

23 days after the start of double-stranded RNA (dsRNA) feedings. Scale bars: whole-

animal/fragment images, 200 μm; insets, 50 μm. 
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Figure 2.15. Additional characterization of the protonephridia subclusters.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the 

protonephridia clustering, grouped by cluster ID. Cells, columns; Genes, rows. CD, 

Collecting Duct; DT, Distal Tubule; FC, Flame Cell; PT, Proximal Tubule; TS1, 

Transition State 1; TS2, Transition State 2. (B) Top panels: Protonephridia subcluster t-

SNE plots colored by cluster-enriched gene expression. Label indicates the associated 

protonephridia subcluster. Bottom panels: FISH images of one or two cluster-enriched 

genes. (C) Double FISH image of two protonephridia markers enriched in separate 

clusters. Colored labels indicate the associated protonephridia subcluster for each 

marker, demonstrating a lack of co-expression. (D and E) Protonephridia t-SNE plots 

colored by expression of (D) dd_10830, which marks the proximal tubule cluster (black 

arrow) and the transition state 1 cluster (black circle), and (E) dd_2920, which marks the 

flame cell cluster (purple arrow) and the transition state 2 cluster (purple circle). White 

signal in merged images indicates a positional overlap in expression. Scale bars: whole-

animal images, 200 μm; inset, 50 μm.  
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Figure 2.16. Additional characterization of the major differentiated intestine 
subclusters.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the intestine 

clustering, grouped by cluster number. Cells, columns; Genes, rows. (B) Top panel: 

Intestine t-SNE plots colored by cluster-enriched gene expression for the major 

differentiated cell clusters. Numbers indicate the associated intestine subcluster. Bottom 

panel: FISH images of two cluster-enriched genes. White signal in merged images 

indicates a positional overlap in expression between the two genes. Scale bars, 200 

μm. 
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Figure 2.17. Additional characterization of the putative transition state intestine 
subclusters.  
 

(A and B) Top panel: Intestine t-SNE plots colored by cluster-enriched gene expression 

for the putative transition state clusters. Numbers indicate the associated intestine 

subcluster. Bottom panel: FISH images of cluster-enriched genes. Scale bars, 200 μm. 
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Figure 2.18. Lineage reconstruction of the enterocyte and outer intestine cell 
lineages.  
 

Heat map of branch dependent genes (q-value < 1E-100) across cells plotted in 

pseudotime. Cells, columns; Genes, rows. Beginning of pseudotime at center of 

heatmap. “Cl.” annotation indicates a log-fold enrichment ≥ 1 of that gene in that 

intestine Seurat cluster.  
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Figure 2.19. Subclustering of neural cells reveals known and novel cell 
populations. 

(A) t-SNE representation of the neural subcluster. (B and C) Top: t-SNE plots colored 

by expression of gpas (B) and pc-2 (C). Bottom: FISH for gpas (B) and pc-2 (C) labeled 

with the associated neural subcluster. (D) t-SNE plot in (A) overlaid with outlines 

indicating the ascribed identity of each subcluster as ciliated or nonciliated. (E and F) t-

SNE representation of subclustered cells identified in (D) as nonciliated (E) or ciliated 

(F). (G) Double FISH images of three sets of nonciliated neuron genes enriched in 

separate subclusters. Numbers indicate the associated nonciliated neuron subcluster(s) 

for each marker. Scale bars: whole-animal images, 200 μm; insets, 50 μm. 
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Figure 2.20. Additional characterization of the neural subclusters.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the neural 

clustering, grouped by cluster number. Cells, columns; Genes, rows. (B) Left: Neural t-

SNE plot colored by smedwi-1 expression. Right: t-SNE representation of neural 

subclustering overlaid with a circle, indicating clusters marked as putative transition 

states. (C) FISH images of gpas (48) from Figure 2.19B and pds (49). White signal in 

the merged image indicates positional overlap in gene expression. (D and E) Left: FISH 

images for (D) tbh (55) and (E) gad (56). Right: Neural t-SNE plots colored by (D) tbh 

and (E) gad expression. Insets identify ~7 tbh+ and ~4 gad+ neurons in neural 

subclusters 3 and 7. (F) Amputation schemes for isolating planarian brain cells. Left, the 

ventral half of the fragment was used. (G) t-SNE representation of 28 clusters 

generated from cells isolated in (F). C = cathepsin+ cells, CE = ciliated epidermis, EEP = 

early epidermal progenitors, I = intestine, LEP = late epidermal progenitors, M = muscle, 

N = neural, Nb = neoblast, PC = pigment cells, PN = protonephridia, PP = parenchymal, 

PRN = photoreceptor neurons. (H) t-SNE representation of 52 clusters generated from 

combining and re-clustering all cells identified as neural from the brain data in (G) and 

from all cells identified as neural in the original data. Inset identifies ~13 tbh+ neurons, 

representing an almost doubling of these cell types in the data. Scale bars, 200 μm. 
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Figure 2.21. Additional data regarding the grouping of neuronal clusters into 
ciliated and non-ciliated neurons.  
 

(A) Neural t-SNE plot colored by rootletin (dd6573) expression. Expression used to 

distinguish ciliated and non-ciliated neuron subclusters in Figure 2.19D. (B) Non-ciliated 

and ciliated neuron t-SNE plots colored by expression of five genes encoding cilia or 

centrosome components (57). Cells of the ciliated neuron subcluster are heavily 

enriched in genes encoding cilia or centrosome components, but at least one non-

ciliated neuron subcluster is also enriched in such genes. Further work would be 

needed to assess cilia presence/absence in these subclusters. 
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Figure 2.22 Additional characterization of the non-ciliated neuron subclusters.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the non-ciliated 

neuron clustering, grouped by cluster number. Cells, columns; Genes, rows. (B) Top 

panel: Non-ciliated neuron t-SNE plots colored by cluster-enriched gene expression. 

Number indicates the associated non-ciliated neuron subcluster. Bottom panel: FISH 

images of one or two cluster-enriched genes. The region in the red box is shown at 

higher magnification to the right. White signal in merged images indicates co-

expression. Yellow arrows: co-expression. White arrows: no co-expression. Scale bars: 

whole-animal images, 200 μm; insets, 50 μm.  
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Figure 2.23. Continuation of Figure 2.22.  
 

(B) Top panel: Non-ciliated neuron t-SNE plots colored by cluster-enriched gene 

expression. Number indicates the associated non-ciliated neuron subcluster. Bottom 

panel: FISH images of one or two cluster-enriched genes. The region in the red box is 

shown at higher magnification to the right. White signal in merged images indicates co-

expression. Yellow arrows: co-expression. White arrows: no co-expression. Scale bars: 

whole-animal images, 200 μm; insets, 50 μm.  
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Figure 2.24. Continuation of Figure 2.22. 
 

(B) Top panel: Non-ciliated neuron t-SNE plots colored by cluster-enriched gene 

expression. Number indicates the associated non-ciliated neuron subcluster. Bottom 

panel: FISH images of one or two cluster-enriched genes. The region in the red box is 

shown at higher magnification to the right. White signal in merged images indicates co-

expression. Yellow arrows: co-expression. White arrows: no co-expression. Scale bars: 

whole-animal images, 200 μm; insets, 50 μm.  
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Figure 2.25. Continuation of Figure 2.22.  
 

(B) Top panel: Non-ciliated neuron t-SNE plots colored by cluster-enriched gene 

expression. Number indicates the associated non-ciliated neuron subcluster. Bottom 

panel: FISH images of one or two cluster-enriched genes. The region in the red box is 

shown at higher magnification to the right. White signal in merged images indicates co-

expression. Yellow arrows: co-expression. White arrows: no co-expression. Scale bars: 

whole-animal images, 200 μm; insets, 50 μm.  
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Figure 2.26. Additional characterization of the ciliated neuron subclusters.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the ciliated 

neuron clustering, grouped by cluster number. Cells, columns; Genes, rows. (B) Top 

panel: Ciliated neuron t-SNE plots colored by cluster-enriched gene expression. 

Number indicates the associated ciliated neuron subcluster. Bottom panel: FISH images 

of one or two cluster-enriched genes. The region in the red box is shown at higher 

magnification to the right. White signal in merged images indicates co-expression. 

Yellow arrows: co-expression. White arrows: no co-expression. Scale bars: whole-

animal images, 200 μm; insets, 50 μm.  
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Figure 2.27. Continuation of Figure 2.26.  
 

(B) Top panel: Ciliated neuron t-SNE plots colored by cluster-enriched gene expression. 

Number indicates the associated ciliated neuron subcluster. Bottom panel: FISH images 

of one or two cluster-enriched genes. The region in the red box is shown at higher 

magnification to the right. White signal in merged images indicates co-expression. 

Yellow arrows: co-expression. White arrows: no co-expression. Scale bars: whole-

animal images, 200 μm; insets, 50 μm.  
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Figure 2.28. Identification of putative transition states in the ciliated and non-
ciliated neuron subclusters.  
 

(A) Ciliated and non-ciliated neuron t-SNE plots colored by smedwi-1 expression. (B) 

Non-ciliated neuron t-SNE plots colored by gata4/5/6-1 expression. Circled subcluster 

indicates one domain of co-expression with smedwi-1. Arrows indicate sites of cluster-

specific gene expression in 5 additional subclusters that radiate out from the circled 

smedwi-1+ subcluster. 
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Figure 2.29. Additional characterization of the pharynx subcluster.  
 

(A) Neural t-SNE plot colored by the body region from which each cell was isolated. 

Many pharynx-derived subclusters were present. (B) Heat map of the expression of the 

top 10 genes from each cluster of the pharynx clustering, grouped by cluster number. 

Cells, columns; Genes, rows. (C) Top panel: Pharynx t-SNE plots colored by cluster-

enriched gene expression. Number indicates the associated pharynx subcluster. Bottom 

panel: FISH images of one or two cluster-enriched genes. White signal in merged 

images indicates co-expression. Scale bar, 200 μm. 
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Figure 2.30. Additional characterization of the muscle subcluster.  
 

(A) Muscle t-SNE plot colored by the body region from which each cell was isolated. 

Many pharynx-derived subclusters were present. (B) Heat map of the expression of the 

top 10 genes from each cluster of the muscle clustering, grouped by cluster number. 

Cells, columns; Genes, rows. (C) Top panel: Muscle t-SNE plots colored by cluster-

enriched gene expression. Number in bottom right corner of plot indicates the 

associated muscle subcluster number. Bottom panel: FISH images of one or two 

cluster-enriched genes. White signal in merged images indicates co-expression. Scale 

bar, 200 μm. 
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Figure 2.31 Tissue subclustering identifies cell populations of poorly 
characterized tissues. 

(A) t-SNE representation of the pharynx subcluster. FISH images are labeled by their 

associated cluster(s). (B) Double FISH images of pharynx markers enriched in separate 

subclusters. Numbers indicate the associated pharynx subcluster(s) for each marker. 

(C) t-SNE representation of the muscle subcluster. (D) Double FISH images of two 

muscle markers enriched in separate subclusters. Numbers indicate the associated 

muscle subcluster for each marker. (E) t-SNE representation of the parenchymal 

subcluster. (F) Double FISH images of three sets of parenchymal markers enriched in 

separate subclusters. Numbers indicate the associated parenchymal subcluster for 

each marker. (G) Top left: Parenchymal t-SNE plot colored by expression of nkx6-

like. Top right: Illustration of cutting scheme used to generate fragments. Bottom: 

dd_515 and dd_385 FISH of control and nkx6-like RNAi animals. Animal sections were 

cut and fixed 23 days after the start of dsRNA feedings. Scale bars: whole-

animal/fragment images, 200 μm; insets, 50 μm. 
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Figure 2.32. Additional characterization of the parenchymal subcluster.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the 

parenchymal clustering, grouped by cluster number. Cells, columns; Genes, rows. (B) 

Top panel: Parenchymal t-SNE plots colored by cluster-enriched gene expression. 

Numbers indicate the associated parenchymal subcluster. Bottom panel: FISH images 

of one or two cluster-enriched genes. White signal in merged images indicates co-

expression. Scale bar, 200 μm. 
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Figure 2.33. Continuation of Figure 2.32.  
 

(B) Top panel: Parenchymal t-SNE plots colored by cluster-enriched gene expression. 

Numbers indicate the associated parenchymal subcluster. Bottom panel: FISH images 

of one or two cluster-enriched genes. White signal in merged images indicates co-

expression. Scale bar, 200 μm. 
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Figure 2.34 Tissue subclustering reveals a previously unidentified class of cells. 

(A) t-SNE representation of the cathepsin+ cell subcluster. FISH images are labeled by 

their associated cluster(s). Images associated with subclusters 5/10 and 8 are single 

slices in the animal. All other images are maximum intensity projections. (B) Double 

FISH for two cathepsin+ cell markers enriched in the same subclusters, 4 and 16. 

(C to E) FISH for dd_9 and mat (C), ChAT (D), and dd_7742 (E). (F) Top: Cell trajectory 

of dd_1831+ and dd_9+ cathepsin+ cell lineages produced by Monocle. Cells are colored 

by identity. Bottom: Heat map of branch dependent genes (q value < 10-175) across cells 

plotted in pseudo-time (45). Cells, columns; genes, rows. Beginning of pseudo-time is at 

center of heat map. “Cl.” annotation indicates a log-fold enrichment ≥ 1 of the gene in 

that cathepsin+ cell Seurat cluster. Scale bars: whole-animal images, 200 μm; insets 

and (B) to (E), 50 μm. 
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Figure 2.35. Additional characterization of the cathepsin+ cell subcluster.  
 

(A) Heat map of the expression of the top 10 genes from each cluster of the cathepsin+ 

cell clustering, grouped by cluster number. Cells, columns; Genes, rows. (B) Top panel: 

cathepsin+ cell t-SNE plots colored by cluster-enriched gene expression. Number 

indicates the associated cathepsin+ cell subcluster. Bottom panel: FISH images of one 

or two cluster-enriched genes. White signal in merged images indicates co-expression. 

Scale bar, 200 μm. 
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Figure 2.36. Continuation of Figure 2.35.  
 

(B) Top panel: cathepsin+ cell t-SNE plots colored by cluster-enriched gene expression. 

Numbers indicate the associated cathepsin+ cell subcluster. Bottom panel: FISH images 

of one or two cluster-enriched genes. White signal in merged images indicates co-

expression. Scale bar, 200 μm. 
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Figure 2.37. Additional images characterizing cathepsin+ cells.  
 

(A and B) Double FISH images of dd_9 and (A) mat (58) or (B) ChAT (14, 59). Red box 

indicates the region magnified in the inset below. Insets also in Figure 2.34C and 2.34D, 

respectively. (C) FISH images of two cathepsin+ cell markers enriched in separate 

clusters, demonstrating an absence of co-expression. Scale bars: whole-animal images, 

200 μm; insets, 50 μm.  
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Figure 2.38. Identification of putative cathepsin+ cell transition states.  
 

(A and B) Top panel: cathepsin+ cell t-SNE plots colored by expression of genes 

enriched in putative transition state clusters associated with (A) subclusters 5/10 and 

(B) subclusters 4/16. Number indicates the associated cathepsin+ cell subcluster. 

Bottom panel: FISH images of cluster-enriched genes. (C) cathepsin+ cell t-SNE plot 

colored by expression of the gene MAP3K5 (dd4849). (D) FISH/antibody stain for 

MAP3K5 (dd4849), smedwi-1 RNA, and SMEDWI-1 protein. Arrows indicate MAP3K5 

(dd4849)+ cells that co-express SMEDWI-1 protein, but do not co-express smedwi-1 

RNA. Scale bars: whole-animal images, 200 μm; D, 10 μm.  
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Figure 2.39. Lineage reconstruction of the dd_1831+ and dd_9+ cathepsin+ cell 
lineages.  
 

Heat map of branch dependent genes (q-value < 1E-75) across cells plotted in 

pseudotime. Cells, columns; Genes, rows. Beginning of pseudotime at center of 

heatmap. “Cl.” annotation indicates a log-fold enrichment ≥ 1 of that gene in that 

cathepsin+ cell Seurat cluster.  
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A near complete discovery of planarian cell type transcriptomes 

The number of cell types identified in this study vastly exceeded prior planarian SCS 

data (24). Within the neuronal subclusters, a 17-cell subcluster represented 

photoreceptor neurons (Figure 2.19E), which are present at ~100 total cells in a 

medium-sized (~2 to 3 mm) animal (20). Therefore, our data should have readily 

included unknown cell types as rare as photoreceptor neurons. Similarly, an average-

sized planarian has ~60 cintillo+ neurons, and our data included 10 cintillo+ neurons 

(Figure 2.40A). These cells were grouped within a larger subcluster (cluster 3) of 

nonciliated neurons (Figure 2.40B), suggesting that even further subclustering of this 

“subcluster 3” could reveal additional distinct cell types. Indeed, cintillo+ cells emerged 

as a unique cluster from such additional (fourth tier) subclustering of original data 

(Figure 2.40C and Table 2.2). Esophagus cells, connecting pharynx to intestine, 

clustered with mouth cells in the pharynx subclustering data (Figure 2.40D). About 50 of 

these cells exist in an average-sized animal, and three such cells were present in the 

data (Figure 2.40, A and D). Several known rare cell types did not separate into 

individual clusters, although most could still be identified in the data, which suggests 

that the data are largely saturated for rare cell types. These include anterior pole cells, 

which function as an anterior organizer (60, 61, 62); notum+ neurons in the brain (63); 

and posterior pole cells (49), each of which are among the rarest known cell types in the 

animal, with only ~10 each present in an average animal (Figure 2.40A). Five anterior 

pole cells, 10 notum+ neurons, and one posterior pole cell were identified in the data 

(Figure 2.40, E to G). Similarly, ~25 ovo+ eye progenitors (46) and ~90 nanos+ germ 

cells (64) are present in an average animal (Figure 2.40A). Two eye progenitors and 19 

germ cells were identified in the data (Figure 2.40, H and I). In addition to the asexual 

strain of S. mediterranea used in this study, a sexual strain of cross-fertilizing 

hermaphrodites exists. We sequenced 8455 cells from this strain, adding sexual strain 

cells to this resource as well, including seven yolk cells and seven testes cells in 

addition to the 19 germ cells described above (Figure 2.41, A to D). Further sequencing 

of sexual cell types could be a target for future studies. Together, our data indicate that 
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we have essentially reached saturation for determining the cell type transcriptomes of 

asexual planarians. 
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Figure 2.40. Identification of rare cell types in the data.  
 

(A) Left: FISH images for the anterior pole (red box) and notum+ neurons (blue box), 

esophagus (red box), cintillo+ sensory neurons, eye progenitors, posterior pole, and 

germ cells as marked by notum (62), NB.22.1e (32), cintillo (65), ovo (46), wnt1 (49), 

and nanos (64), respectively. Right: Number of anterior pole cells, notum+ neurons, 

esophageal cells, cintillo+ neurons, eye progenitors, posterior pole cells, and germ cells 

in adult animals. Red text indicates the number of each cell in the data. (B) Non-ciliated 

neuron t-SNE plot colored by cintillo expression. Arrow indicates cintillo+ cells. Box 

surrounds subcluster 3. (C) Left: t-SNE representation of cells boxed in (B) following 

additional subclustering. Right: Same t-SNE plot colored by cintillo expression. Arrow 

indicates cintillo+ cells. (D) Pharynx t-SNE plot colored by esophageal cells positive for 

expression (>0.5, ln(UMI-per-10,000+1)) of NB.22.1e (66), wntP-3 (49), and bmp4 (67). 

t-SNE plot of cells in boxed region (pharynx subcluster 9) in isolation without further 

subclustering is shown in inset. Arrows indicate the 3 positive cells. (E) Combined 

neural t-SNE plot from Figure 2.20H colored by notum+ neurons positive for expression 

of chat (>2.5, ln(UMI-per-10,000+1)) and notum ((>2, ln(UMI-per-10,000+1)) (63). 

Arrows indicate the ten positive cells. (F) Muscle t-SNE plot colored by anterior pole 

cells positive for expression (>0.5, ln(UMI-per-10,000+1)) of notum (62), zic-1 (61, 68), 

and foxD (60, 61). Arrows indicate the five positive cells. (G) Muscle t-SNE plot colored 

by posterior pole cells positive for expression (>0.5, ln(UMI-per-10,000+1)) of wnt1 and 

wnt11-1 (49), pitx (69), and fz4-1 (70). Arrow indicates one positive cell. (H) smedwi-1+ 

t-SNE plot colored by eye progenitor cells positive for expression (>0.5, ln(UMI-per-

10,000+1)) of ovo, eya, six-1/2, and smedwi-1 (46, 47). Arrows indicate the two positive 

cells. (I) Top: smedwi-1+ t-SNE plot colored by germ cells positive for expression (>0.5, 

ln(UMI-per-10,000+1)) of nanos and gH4 (64), dd_17134, and smedwi-1. Arrows 

indicate the 19 positive cells. Bottom: FISH image for dd_17134, demonstrating 

expression in germ cells. Positive cells, red; negative cells, blue. Scale bars, 200 μm. 
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Figure 2.41. Targeted sequencing of sexual planarian anatomy.  
 

(A) Diagram depicting 3 regions isolated from mature hermaphrodites. (B) t-SNE 

representation of 31 clusters generated from the sexual planarian sequencing data. C = 

cathepsin+ cells, CE = ciliated epidermis, EEP = early epidermal progenitors, I = 

intestine, LEP = late epidermal progenitors, M = muscle, N = neural, Nb = neoblast, PC 

= pigment cell, PN = protonephridia, PP = parenchymal. Identity of numbered clusters 

unknown. (C) Sexual t-SNE plot colored by testis cells positive for expression (>0.5, 

ln(UMI-per-10,000+1)) of Y box protein 4-like protein, Contig50287, and PLS3 

(Contig40669). Arrows indicate the seven positive cells. (D) Sexual t-SNE plot colored 

by yolk cells positive for expression (>0.5, ln(UMI-per-10,000+1)) of Contig10743, 

Contig5529, C-type lectin-like protein, Contig45120, FTMT (Contig47570), Contig50285, 

Contig27235, and putative surfactant B-associated protein. Arrows indicate the seven 

positive cells. 
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Discovery of novel patterning genes 

Planarians constitutively express dozens of genes associated with patterning (PCGs) in 

complex spatial patterns across body axes (18). PCGs are almost exclusively 

expressed in muscle (19). AP-axis PCGs are well established, including with muscle 

SCS (71). Muscle cells did not subcluster according to their anatomical positions 

(Figures 2.42A and 2.43, A to C). However, we reasoned that expression of known 

PCGs could ascribe locations to muscle cells in the data. Because of variability in the 

expression of any one PCG, muscle cell regional identity was determined on the basis 

of expression of at least two PCGs. For example, posterior muscle cells were identified 

by coexpression of at least two of the four posterior PCGs wnt11-1, wnt11-2, fz4-1, 

and wntP-2, yielding 163 cells (Figures 2.42A and 2.43D). Differential expression 

analysis using the algorithm SCDE (72) was performed on these 163 cells against the 

4851 other muscle cells (Figure 2.42A and Table 2.4). Strikingly, nine of the 

differentially expressed genes were identified by Scimone et al. (71) as posterior-

enriched; eight of these were within the top 26 genes identified by differential 

expression analysis (Figure 2.42B, hypergeometric P = 2.75 × 10-9). A similar analysis 

on 837 anterior muscle cells was also performed (Figure 2.43, A and D, and Table 2.4). 

Nine of the differentially expressed genes were identified by Scimone et al. (71); four of 

the genes were within the top 25 genes identified by SCDE (Figure 2.42B, 

hypergeometric P = 5.80 × 10-5). We also applied this approach to the less well studied 

ML axis. We identified 62 lateral muscle cells, and FISH with 15 of the top genes 

identified seven with lateral muscle expression (Figures 2.42C and 2.43, B and D to G) 

(73, 74). We isolated 90 medial muscle cells, and the top-ranked gene displayed a 

striking thin stripe of expression down the dorsal midline (Figures 2.42C and 2.43, C, D, 

and H). Together, these results demonstrate the power of deep SCS for identifying 

regional gene expression, such as that involved in patterning, in adult animal tissues. 
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Figure 2.42. Identification of new regionally expressed genes in muscle. 

(A) Top: t-SNE plot colored by muscle cells positive for expression ≥ 0.5 [ln(UMI-per-

10,000 + 1)] of two of the four posterior PCGs wnt11-1, wnt11-2, fz-4, and wntP-2. Pink, 

positive cells; gray, negative cells. Bottom: Transcriptomes for posterior muscle cells 

were compared to all other muscle cells by SCDE. (B) List of differentially expressed 

genes in posterior and anterior muscle cells that were identified in Scimone et al. (71). 

Rank indicates the rank of the gene in our analysis. (C) FISH images of one lateral and 

one medial expressed gene ranked highly in this analysis (73). Number indicates gene 

rank in the list generated by SCDE. Scale bars: whole-mount images, 200 μm; insets, 

50 μm. (D) Illustration highlighting the capacity of the data set to identify almost all cell 

types in the planarian, as well as specialized neoblast progenitors and novel patterning 

information from the adult animal. 
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Figure 2.43. Additional data regarding the identification of regionally expressed 
muscle genes.  
 

(A) t-SNE plot colored by muscle cells positive for expression (>0.5, ln(UMI-per-

10,000+1)) of 2 of the 5 anterior PCGs (19) sfrp-1 (49), ndl-4 (75), prep (76), wnt2 (49), 

and ndl-5 (71). Positive cells, red; negative cells, grey. (B) Same as (A) for muscle cells 

positive for expression of 2/3 lateral PCGs (19) admp (77, 78), wnt5 (79), and nlg-7 

(80). Positive cells, green; negative cells, grey. (C) Same as (A) for muscle cells positive 

for expression of 2/4 medial PCGs (19) slit (81), bmp4 (67, 82, 83), netrin-2 (84), and 

admp (77, 78). Positive cells, blue; negative cells, grey. (D) Diagrams depicting the 

expression domains of the PCGs used in this study (modified from (18)). Left: Dorsal 

view of the planarian is depicted. Right: Transverse section is depicted, with a centrally 

located gut branch and two ventrally biased ventral nerve cords. (E) FISH image of the 

laterally expressed gene egf-6 (73). (F) FISH images of five genes that display lateral 

expression in muscle cells, but that also express other domains of expression. MIP, 

maximum intensity projection; Slice, single optical slice through the animal at the DV 

median plane. (G) Double FISH images of collagen (19) and the seven laterally 

expressed genes from (E) and (F). White signal indicates co-expression. Yellow arrows: 

co-expression. White arrows: no co-expression. (H) Same as (G) for the medially 

expressed gene dd_23400. Scale bars: whole-animal images, 200 μm; G and H, 50 μm.  
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Discussion 
RNA sequencing of >50,000 cells (in total, 66,783 cells were sequenced) of the 

planarian S. mediterranea allowed the identification of transcriptomes for most to all cell 

types of an adult animal. This includes transcriptomes for cell types present as rarely as 

10 cells in an animal with 105 to 106 cells, which strongly suggests that we have 

reached near-saturation. Sequencing of different body regions and assessment of rare 

cell type coverage in an iterative process enabled us to reach this saturation level. 

Some cell types might escape detection by this technique if they are exceptionally rare 

or hard to dissociate from the animal. Our data did indicate that some cell types were 

preferentially recovered according to the abundance of that cell type by FISH, whereas 

others were less represented (Figure 2.44, A and B). In particular, prog-1+ epidermal 

progenitor cells were highly overrepresented in the data relative to their prevalence in 

the animal, perhaps because their small size made their isolation easier (Figure 2.44A). 

Absent prog-1+ cells, most other cell types analyzed were represented similarly to their 

relative abundance in the animal (Figure 2.44B). Regardless of differences in ease of 

dissociation between cell types, we recovered data from all known cell types assessed. 

Not every known rare cell type emerged as a separable cluster; that is, these cells were 

sometimes embedded within a larger cluster. In some instances, further rounds of 

subclustering based on such knowledge resulted in splitting of subclusters into 

additional subclusters. Therefore, further subclustering analyses and even deeper 

sequencing will likely continue to enhance the capacity to computationally isolate rare 

cell types from other clusters. Nonetheless, the transcriptomes for such rare cell types 

are present in our data and can be studied by searching for the desired cells. Another 

challenge inherent in assessing saturation of cell type sequencing is ambiguity with the 

term cell type. Gene expression heterogeneity exists within well-defined clusters and 

could reflect differences attributable to technical sampling error, cell type state 

differences, or robust differences in biological function. Further in vivo morphological 

and functional studies with identified cell clusters, further computational analyses, and 
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even more sequencing data can continue to refine the knowledge of biologically 

important cell type differences. 

Cell types have been previously identified largely through morphological descriptions 

and perhaps a few marker genes. Determining cell type transcriptomes with large-scale 

SCS is a powerful new approach to defining the cell type constitution of a tissue, an 

organ, or even a complete animal. In our study, we identified a large number of 

previously uncharacterized planarian cell populations across multiple tissues. This 

included multiple cell populations (in the cathepsin+ group) previously undescribed at 

the molecular level. One cell population, defined by dd_9 expression, had long 

processes filling parenchymal space and surrounding, but excluded from, other 

planarian tissues. This pattern is reminiscent of “fixed parenchymal cells,” a largely 

uncharacterized cell population described by histology and electron microscopy (EM) 

(52). Previous EM work suggested that fixed parenchymal cells are likely phagocytic, 

with clearly observed lysosomes; dd_9+ cells highly expressed genes encoding a variety 

of digestive enzymes and endocytosis proteins, providing further support for this 

hypothesis (Table 2.2). The biology of these cathepsin+ cells and all the other diverse 

cell types identified in this work can now be studied in depth using identified 

transcriptomes and the tools of planarian biology research. For instance, we show for 

two case studies above that RNAi of a gene encoding a transcription factor with 

enriched expression in a candidate cell lineage leads to ablation of the predicted 

differentiated cell. 

Generating transcriptomes for most to all cell types in an animal will be invaluable for 

studying gene function and the biology and evolution of a large range of important cell 

types. Because of their phylogenetic position within the Spiralian superphylum (85), 

major cell types found across diverse bilaterians (e.g., shared between humans 

and Drosophila, C. elegans, molluscs, annelids, and/or other bilaterians) should have 

been present in the last common ancestor of planarians and humans. As such, studying 

the transcriptomes and associated genes with cell type–enriched expression in this data 

set can allow characterization of the gene function underlying the biology of these cells. 
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Planarian biology presents many features that made this organism attractive for 

comprehensive SCS. Planarians are a model for studying numerous important problems 

in regeneration, stem cell biology, patterning, and evolution. At a single time point—the 

adult—there exist progenitors for essentially all cell types and the patterning information 

for guiding new cell type production. We identified the transcriptomes of numerous 

candidate transition states in lineages from pluripotent stem cell to diverse differentiated 

cell types. Furthermore, we used the data to identify novel regionally expressed genes 

in planarian muscle (the site of patterning gene expression). Together, these results 

illustrate the capacity of our data set to define cell type transcriptomes, identify lineage 

transition states, and ascertain novel patterning information, all from a single time point 

(Figure 2.42D). We propose that this atlas-like data set of cell type transcriptomes, 

much like the genome sequence of an animal, can serve as a resource fueling an 

immense amount of research, not only in planarians but in other bilaterians with similar 

cell types. To facilitate such study, we developed an online resource that generates 

cluster expression data, for any gene, across all clusters and subclusters 

(digiworm.wi.mit.edu). Case study model organisms have proved to be valuable testing 

grounds for developing approaches to complete genome sequencing; these planarian 

SCS data demonstrate an approach to near-to-complete cell type transcriptome 

identification that could be applied broadly to diverse organisms with varying degrees of 

information about cell type composition. The remarkable ability of single-cell RNA 

sequencing to reach nearly complete saturation of transcriptome identification for all the 

cell types of an animal represents a powerful approach for describing the anatomy of 

complete organisms at the molecular level. 
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Figure 2.44. Comparison of relative cell type proportions in the animal and in the 
data.  
 

(A) Left: Plot of the relative proportions of 7 distinct cell types in the planarian head, as 

determined by FISH across 4-5 animals. Right: Plot of the relative proportion of these 

cell types in the data. prog-2+ epidermal progenitors are significantly over-enriched in 

the animal compared to in the data. (B) Plot of the relative proportions of the cell types 

in (A), excluding prog-2+ epidermal progenitors.  
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Materials and Methods 
 

Animal care 

Asexual Schmidtea mediterranea strain (CIW4) and sexual strain (S2F1L3F2L3) 

animals were used. Animals were starved for at least 7 days prior to experiments. 

 

Cell culture HEK293T and NIH/3T3 cell lines (ATCC) were cultured in DMEM 

(Invitrogen) supplemented with 10% FBS (Life Technologies) and 1% penicillin-

streptomycin (ThermoFisher, Inc.). 

 

Prior to Drop-seq run, cells were grown to confluence. Cells were washed once with 1X 

PBS. NIH/3T3 cells were then treated with TrypLE (Invitrogen) for five minutes and 

quenched with an equal volume of growth medium. HEK293T cells were resuspended 

in 1X PBS by manual dissociation. Cells were spun down at 300xg for five minutes and 

resuspended in 1X PBS + 0.01% BSA. Cells were spun down again at 300xg for three 

minutes and resuspended in 1 mL 1X PBS. Cells were passed through a 40µm filter and 

counted. 1X PBS + 0.01% BSA was used to generate a 1:1 mixture of 

NIH/3T3:HEK293T cells at a final concentration of 191 cells/µl. 

 

Gene annotation and nomenclature  

Genes were labeled as previously described (35) with one modification. Briefly, 

planarian genes that were previously reported and submitted to the Nucleotide 

database in the NCBI website (https://www.ncbi.nlm.nih.gov/nucleotide/) appear in 

italics. Sequences that are not found in the planarian nucleotide database, but have a 

human best-blast hit (blastx; E-value < 10-5; (86)), are labeled in uppercase with their 

human gene name, followed by the contig ID of the appropriate transcriptome assembly 

(21, 87) in parentheses. dd_Smed_v4 (21) contigs are prefixed by dd. Contigs that have 

no planarian identifier or human Blast hit are labeled according to the contig ID. 

dd_Smed_v4 (21) contigs are prefixed by dd_.Table 2.5 includes mapping of gene 

labels to contig IDs. 
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Delineation of planarian body sections  
Animals were divided into five body sections for the principal sequencing (Figure 2.1A): 

(1) head – extending from head tip to below the auricles; (2) prepharyngeal – below the 

head region and above the pharynx; (3) trunk – starting above the pharynx and reaching 

below the pharynx. Pharynx was removed from trunk; (4) tail – starting below pharynx 

and extending to tail tip; (5) pharynx – the pharynx was isolated by making two shallow 

incisions perpendicular to one another at the base of the pharynx and along the length 

of the pharynx (20). For the targeted sequencing of brain cells, animals were divided 

into two body sections (Figure 2.20F): (1) a square directly below the eyes, enriched for 

the ventral half of the section and (2) a square surrounding the eyes and extending 

three eye-lengths below the eyes. For the sequencing from sexual animals, two 

prepharyngeal and one postpharyngeal region were used (Figure 2.41A).  

 

Generation of planarian single cell suspensions  

Cell suspensions were generated as recently described (24), by using 25 to 90 whole 

animals or body sections in each experiment. Briefly, samples were cut into small 

fragments (<1mm) and transferred to a 50 mL tube with CMFB (400mg/L NaH2PO4, 

800mg/L NaCl, 1200 mg/L KCl, 800 mg/L NaHCO3, 240 mg/L glucose, 1% BSA, 15mM 

HEPES, pH 7.3). Volume was brought to 45 mL with CMFB, to which 5 mL collagenase 

(1 mg/ml; Sigma-aldrich, C0130) was added. Suspension was generated through 

agitation of the mixture for 5-10 minutes using pipettes. Cell suspension was passed 

through a 40µm filter and centrifuged at 1250 rpm for 5 minutes. The supernatant was 

removed and cells were resuspended in 1 mL of CMFB. Cells were incubated in 

Hoechst 33342 (40 µl/ml, Invitrogen) for 45 minutes. Propidium iodide (3 µl/ml, Sigma-

aldrich) was added immediately prior to fluorescence-activated cell sorting (FACS). 

Planarian cell fractions (88) were defined, and sorted into CMFB (0.01% BSA). In seven 

samples, constituting Drop-seq runs 11-14, 17-21, 23-25, and brain schemes 1 and 2 

(Figures 2.2A and 2.20F), cells with 4C DNA content as determined by high Hoechst 

signal were gated out. 
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Methods for Drop-seq, library preparation, and sequencing  
 

Planarian Drop-seq runs were performed as described previously (6), using the 

optimized ‘Drop-seq Laboratory Protocol’, v 3.1 (http://mccarrolllab.com/download/905/) 

with minor modifications. Briefly, cells were diluted to a concentration of 191 cells/µl in 

0.01% CMFB, and beads were diluted to a concentration of 148 beads/µl in lysis buffer. 

Droplet generation oil (Bio Rad, #1864006), cells, and “Barcoded Bead SeqB” beads 

(ChemGenes Corporation, Wilmington MA) were concurrently pumped through a PDMS 

co-flow microfluidic droplet generation device (Nanoshift LLC, Emeryville CA), 

encompassing cells and beads within oil droplets. Cells were lysed within the droplets 

and cellular mRNA was captured by the barcoded bead. Depending on the cell yield for 

each biological sample, approximately 1 mL of cells and 1 mL of beads were collected 

in droplets, which were broken by 1H,1H,2H,2H-Perfluoro-1-octanol (Sigma-aldrich). 

Beads were isolated and reverse transcription was performed, adding a unique cellular 

barcode, as well as a molecular barcode, to each cDNA. Following an exonuclease 

treatment, PCR amplification was performed on aliquots of 2,000 beads using 4 + 12 

cycles. Pairs of PCR reactions were purified using 0.6X AMPure XP beads (Agencourt). 

Concentration of amplified DNA was measured by Qubit (ThermoFisher, Inc.), and 

equal amounts of DNA from each pair of PCR reactions were combined to 600 pg total 

in 5 µl H2O for each Drop-seq run. Pooled samples were tagmented using the Nextera 

XT v2 DNA sample preparation kit (Illumina, Inc.) by incubating the sample for 5 

minutes at 55°C. Libraries were purified by two rounds of AMPure XP purification (0.6X, 

1X) and sequenced on Illumina NextSeq 500 (Illumina, Inc.). Read 1 was 20 bp; Read 1 

index was 8 bp; Read 2 (paired end) was 63 bp.  

 

The Drop-seq run on cultured cells was performed as above, with a few modifications. 

Cell mixture was diluted to a concentration of 191 cells/µl in 1X PBS + 0.01% BSA. PCR 

amplification was performed on aliquots of 2,000 beads using 4 + 9 cycles. Single PCR 

reactions were purified using 0.6X AMPure XP beads. Separate libraries were 
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generated for each PCR reaction and were purified by one round of AMPure XP 

purification (0.6X). Pooled libraries were sequenced on Illumina Miseq (Illumina, Inc.). 

Read1 was 20 bp; Read 1 index was 8 bp; Read 2 (paired end) was 80 bp. 

 

Description of Drop-seq runs  
As summarized in Figure 2.2A, 25 Drop-seq runs were performed on 15 distinct 

biological samples for the principal sequencing. Indexed Drop-seq libraries were 

combined to ~6,000-8,000 cells per sequencing run. Combined libraries were 

sequenced across 8 different sequencing runs, yielding ~375-550 million reads per run. 

Drop-seq run 19 (sequencing run 6) was downsampled to 300 million reads prior to data 

processing and alignment. 

 

The choice of body section for each Drop-seq run was determined by the presence of 

rare cell types from each body section in the data. Initially, Drop-seq runs 1-10 were 

performed on approximately equal numbers of cells from each body section, excluding 

the pharynx, to assess the number of rare cell types present in the data from each 

section. For example, it was found upon analyzing these preliminary results that rare 

neuronal cell types, such as the photoreceptors of the eye (20), were present at very 

low numbers in the data. As such, 4 additional Drop-seq runs were performed on cells 

from the head. This logic was used to guide the decision regarding choice of body 

section for all other principal Drop-seq runs. 

 

For the targeted sequencing of brain cells, two Drop-seq runs were performed on two 

distinct biological samples, as described above. Indexed Drop-seq libraries were 

combined to ~8,000 cells and sequenced on one sequencing run, yielding ~550 million 

reads. For the sequencing from sexual animals, three Drop-seq runs were performed on 

one biological sample, as described above. Indexed libraries were combined to ~8,500 

cells and sequenced on one sequencing run, yielding ~450 million reads. For the 

sequencing of cultured cells, one Drop-seq run was performed. Indexed Drop-seq 
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libraries were combined to ~300 cells and sequenced on one sequencing run, yielding 

~18.5 million reads. 

 

Data processing and alignment of Drop-seq data  
The ‘Drop-seq core computational protocol’, v1.2, as developed by Jim Nemesh in the 

McCaroll lab (http://mccarrolllab.com/wp-

content/uploads/2016/03/DropseqAlignmentCookbookv1.2Jan2016.pdf), was used to 

process and align the sequencing data with one modification. Briefly, sequencing reads 

were tagged with their associated cell and molecular barcodes, followed by the trimming 

of 5’ primer and 3’ polyA sequences. Sequences generated from asexual animals were 

mapped using bowtie to the dd_Smed_v4 assembly (21) with the following parameters 

[--best -S]. The following four sequences were added to the transcriptome for mapping. 

 

> SMED_11901_V2 - 

ATGAATGAAATTTTGGAAAAGGATATGAAAGCGATTGAATCCATTAAAGTAAAAGAA

AAAAAGGCTGTTGATGGTTTTATGGGTACCTCATCGTTTCATGGAGTGATTCAAGC

ATATCATAAACGAAATAAAATTGATAAAGGGAGCTGGTTCATCAGTTTAGTTATTTG

TATGTTTGGCTTAATTGGGCATCTCTACCTAATAATCAGTAGATATATAAGTTTGCC

CACAACTATTGACATGGTCTCTTCAGTGAATTTTGATCCTTTTCCTGCTGTCGCAAT

ATGTCCGGTTACCTTTATTAGCAGGGATAAATTCACCAAGTATTACAATACAACTCA

AGTTTCCCTTAATAAAAAGCTAGTTGGGGATATTTTCTACGTCGATGTAAGTGCCTT

GAATTTCTGGAGGTCCCTAAGTAAACAACAAGGCAAAGACATAAACAGTAGTTCAG

TTCTTGGAAAGTATTGGGATGAAGCTGAAACCACTTTCTATAGATTCCAGAAAATGA

TGAATGTTTCAATAGGTCATCGAAATTATGAAATGATTTTCTTTTGTGAAATTAACAA

TAAACCTTGCTCATGGGAACATTTCCTTGAATTCGATCATCCGATTTATAAGCGATG

TTTTAAATTCTCCTATCCGGTAACTGATGAAGATGAAATTCCAGATAAATTGATATTG

GGGCTTTATGTTGATGATGACTATCAAAGAGACACTGATGATATTAAAACGATAATA

ACCTCTCATGGAGGAAAGGTTACTATAAATGAAGCAAGTATTTACCCTGGAACTGA

AAGTTCATTTGAACATTTTCCGTCAGGATTCCAAACGATGTTTCGATTGAAACAAGA

AGGTAGCAGTCAAATCAATAAACCAAGGTCTCCATGCCAAGTTAATACTGATTCAG
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TGATCAACGTTTTCAACGATTATGAATATGATGGCTCAACAAATATCACAATACCAT

ATAAATACAATGTGATACTTTGCAGACAATACCATCAACAAATAGAATGCGTTAAAA

GATGCAAGTGTTTAAATCCGAACATTCCAGTATTTGTTGATGCTATTAAGAATTCTG

AAAATAAATCATTCTTTTGCGATGAGATTCAGCTTAATTCTTCCTTTTCAAGCATTAT

TAATCAGCTTGATTGTCTTTATAATTTAGATTATGATCAGTATTTTAATGAGAATGTT

ATATCATTATGTTCGGGATTGTGTAATCAGGTAGAATATTCAATGTATTCTTATACTA

TGCCTTGGTTCGGTAAAACAATGATCAAAGAAATGGAGTTTGTCNAATGAGAAATT

CATGGCCCATTACAACAGTCTAATTAATTCCATCCAATTGTGAAGGATTATGGAACC

ATTGAATAGAGCACGCAATTGCGTAATCAAATCCATGAAAGATAATGATCAAGCCA

GCTTGTGTTTCGCAATGATTAATATTCAATTTGAATCTCCCAGAAAAGAAATTATTC

GAGAATATGAGGCATATTTATTGGGGAATTTACTCAGTGATTTCGGCGGGATTTTA

GGACTGTGGATTGGAATGTCTCTGATAACAATTATTGAAATCATATACTTAGCATGC

TCGTTGAGTAAACACAAAACTGAACGCGCTGCTTCAGTTTTCAAAAAGTCAATCCA

CAAGAGAAGTCTGAAAAGGAATTCCGATAAAAACAAAATTATCAGAATCGGAATAG

AAAATGAGGCGTATGAAAATTAG 

 

>dd_Smed_v4_0_0_1 - 

TTTTTTTTTTTTTTTTCTAAGCAGTGGTATCAACGCAGAGTACGGGGGGTATTGCAC

TGTTTAGTTGTGATATTTTCCTTTTTGTATTACGGTTTGTAGGTATTTTTATGTTTTTA

TTCTCTCGAATGGAATATGATATATCTTTTGTGTGTTTTGTTTTATTTTCTTTGGTTAA

CATTAGAATTACATTAATTGATAGTAGTGATATGTTTTCGGATTTCTTTATCTAGTTTT

TAATTGTCTTTAGGATAAGCTTTTGTTTTACTTGTTTTTTTTTCTTATTTGTTTAGTTAT

TCTTAATAGTATTTCTTTAGATTGTTAAAGATTTGTTAGTCGTTTGTTTGCTTATATG

GTTTTAGTAATTCTTTTTAGCAATTACGTAATTAATATGAATTATGCTATTTATAACTC

AATGCGTCTACAACTGTTTTTTAAAAACATTTCATTTTTTGTAAAATGTAGTCCCTGC

TCACTGATAAGTTAAATAGCTGCAGTACTTTGACTGTACGAAGGTAGCATAATTACT

TGTCTACTAATTCTAGAATTGTTTGAATGGGTTTATTGATAGATAGCAAGTTTTTATT

TAGCCTTGTTTTTTAATTTATACTTTCTGTAAAGATACAGTTTGTTATTTCAAGGACG

AAAAGACCCTAGAGAGTTTTTAACTTAGTGGTGTTTCTTACTTTAGTTATTTGTTGG

GGTAACGGTATTTATTTTGAATACTTATTTATTACATTATGAACTTCCTTAGGGATAA
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CAGGGATATAGAATCTTGGAGGACATATCGAAGATTTTGTTTTCTACCTCGATGTTG

AATTGTAGTTAAAGATAGGTGTAGAGGCCTTTACTTTTAGTCTGTTCGACTAATAAT

ATTATTCGTGATTTGAGTTTAGACCGATGTGAATCAGGTTGGTTTTTATCCTGAATTT

CTGTCCATTGTACGAAAGGAATTGGATTGGTATTAAAAAAAAAAAAAAAAAAAAAAA 

 

>mtRNA_2 - 

TCTAAGCAGTGGTATCAACGCAGAGTACGGGGGGTATTGCACTGTTTAGTTGTGAT

ATTTTCCTTTTTGTATTACGGTTTGTAGGTATTTTTATGTTTTTATTCTCTCGAATGGA

ATATGATATATCTTTTGTGTGTTTTGTTTTATTTTCTTTGGTTAACATTAGAATTACAT

TAATTGATAGTAGTGATATGTTTTCGGATTTCTTTATCTAGTTTTTAATTGTCTTTAG

GATAAGCTTTTGTTTTACTTGTTTTTTTTTCTTATTTGTTTAGTTATTCTTAATAGTATT

TCTTTAGATTGTTAAAGATTTGTTAGTCGTTTGTTTGCTTATATGGTTTTAGTAATTCT

TTTTAGCAATTACGTAATTAATATGAATTATGCTATTTATAACTCAATGCGTCTACAA

CTGTTTTTTAAAAACATTTCATTTTTTGTAAAATGTAGTCCCTGCTCACTGATAAGTT

AAATAGCTGCAGTACTTTGACTGTACGAAGGTAGCATAATTACTTGTCTACTAATTC

TAGAATTGTTTGAATGGGTTTATTGATAGATAGCAAGTTTTTATTTAGCCTTGTTTTT

TAATTTATACTTTCTGTAAAGATACAGTTTGTTATTTCAAGGACGAAAAGACCCTAG

AGAGTTTTTAACTTAGTGGTGTTTCTTACTTTAGTTATTTGTTGGGGTAACGGTATTT

ATTTTGAATACTTATTTATTACATTATGAACTTCCTTAGGGATAACAGGGATATAGAA

TCTTGGAGGACATATCGAAGATTTTGTTTTCTACCTCGATGTTGAATTGTAGTTAAA

GATAGGTGTAGAGGCCTTTACTTTTAGTCTGTTCGACTAATAATATTATTCGTGATTT

GAGTTTAGACCGATGTGAATCAGGTTGGTTTTTATCCTGAATTTCTGTCCATTGTAC

GAAAGGAATTGGATTGGTATTAAA 

 

>mtRNA_1 - 

AGTTGGTGTTGTTGTTTTGTGCAGGTAAGTTAATTAAAACTAGCAGATTCATGTTCT

GTCTATGAGTCCTTTCTCTGTATATGTGGTTAAGATAGTTTATTCAGAATGTTAATTT

GTGGAGTTAATGGTAAAAGACTTGTTTTTCTTAATATTTGTTTTAATAGCTTAATTTA

AAGTGGAGTTTTGAAGAAGCTCAGTTGTTGGTTTCCTTCTTGAAACAATATAGTTTT

GTCTTGGCTTTTTAAACTGGCATGCTGTTAAACGCTATAGTTTATTGGTGGTTGTTT
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ACTATTAATTTTGTTTAATGGTTTTATTAGGCGTGTATATTTTAAAATTTAATGTAAAT

TGATTGCTTGAGTCGGTATATGCTATTAGGAGATCAAATGAGTGCCAGCTTCTGCG

GTTACACTTTGTATTACTATGTTAGTTTATTATTTGGTTTAAATTGGTTAAGTTTCAAT

AAGAGACTTTATGTATGACTAGTGGTAGATTTTAATACTTTTATTAGTTTTACTTCCT

TTTTAGACATGAATCTGGCTTTATTTATAAGGGTTGTTTATTTTATTTCCTCATCAAA

ATGAAAAGACTTGGCAGTTGTTCTAATTATTTGGGGAGTGTGGGTTTAGAAAAGAG

TATCCGCTCAATATCTCGCTAAGATTATGGTTAGTGTACGGTTGTACATATGTGAAT

GGCCTTATAGTTATGCTTTCTTTAATGCAAATCATTGTGCTGCTTATCTTAGATTATG

CTTTCACTACATTGGTTAGATACCTTTTGAAATAATTGGTGTTGATCAGGACTAAATA

GTAAATTTAGATGAATTGGCTTTTTTGAATCTTTTCTAGGACTTAGTACACACCGCC

CGTCAATCTCCGTTCTTTAAGAGGAGTTAAGTCGTAACATGGCG 

 

Sequences generated from sexual animals were mapped using bowtie to a separate 

transcriptome assembly generated from S. mediterranea hermaphrodites (87) with the 

following parameters [--best -S]. The above four sequences were not added to the 

transcriptome for mapping. Sequences generated from cultured cells were mapped 

using STAR to a mixed human + mouse genome (http://mccarrolllab.com/dropseq/).  

 

Using the DetectBeadSynthesisErrors module [NUM_BARCODES=2X expected cell 

number, PRIMER_SEQUENCE=AAGCAGTGGTATCAACGCAGAGTAC], errors in 

barcode sequence associated with bead synthesis were detected and were either 

corrected, if possible, or the associated reads were removed. The number of cells in a 

run was estimated by plotting the cumulative distribution of number of reads per cell. 

The number of cells at the inflection point was used as the estimated cell number in the 

data. A gene expression matrix was generated for the expected number of cells using 

the module DigitalExpression [NUM_CORE_BARCODES= # cells at inflection point]. 

Contig isoforms for sequences generated from asexual animals were then merged by 

summing the mapped reads to each isoform. Finally, cell IDs were tagged with their 

body section of origin, and the resulting expression matrices were combined for all 
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sequencing runs. Generation of the mixed species plot for cultured cell data was 

performed as described in the ‘Drop-seq core computational protocol.’ 

 

Quality filtering of single cell data  
For the principal sequencing, cells with more than 18,000 unique molecular identifiers 

(UMIs) and cells expressing less than 500 genes were removed from the data to ensure 

that low quality cells and potential cell doublets were not present. Five transcripts 

identified as ribosomal or mitochondrial by BLAST (dd_Smed_v4_0_0_1, 

dd_Smed_v4_7_0_1, dd_Smed_v4_4_1_1, mtRNA_1, and mtRNA_2) were also 

removed as previously described (24). The average numbers of genes and UMIs for 

cells from each body section following quality filtering are included in the table below 

(Figure 2.2B). 

 

Body Section Mean nUMIs / Cell Mean nGenes / Cell 

Whole 3680 1604 

Head 2921 1369 

Prepharyngeal 2601 1258 

Trunk 3535 1571 

Tail 3334 1449 

Pharynx 2446 1295 

All Cells 3020 1404 

 

 

Using the Seurat package, v2.0 (22), cells were normalized using the function Setup 

[is.expr=0.1, names.field = 2, names.delim = "_", total.expr=1e4, do.logNormalize = T], 

which divides cell UMIs in the expression matrix by the total number of UMIs per cell, 

then multiplies by 10,000 before transforming to log-scale (ln(UMIs – per – 10,000 +1)) 

(6). The RegressOut function from Seurat was then used to eliminate variation resulting 

from the number of UMIs in each cell with parameters [latent.vars = "nUMI"]. 
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For the targeted sequencing of brain cells, cells with more than 15,400 unique 

molecular identifiers (UMIs) and cells expressing less than 500 genes were removed 

from the data. Five transcripts identified as ribosomal or mitochondrial by BLAST 

(dd_Smed_v4_0_0_1, dd_Smed_v4_7_0_1, dd_Smed_v4_4_1_1, mtRNA_1, and 

mtRNA_2) were also removed as previously described (24). The remaining cells had an 

average of 1,372 genes and 2,925 UMIs following quality filtering. For the sequencing 

from sexual animals, cells with more than 12,000 unique molecular identifiers (UMIs) 

and cells expressing less than 500 genes were removed from the data. The remaining 

cells had an average of 1,586 genes and 3,108 UMIs following quality filtering. 

 

Gene saturation analysis  

To determine the number of total sequencing reads required to comprehensively detect 

the landscape of gene expression in a single cell by Drop-seq, a sequencing library was 

generated from 197 cells isolated from a whole animal, as listed below. These cells 

were not included in the clustering analysis. 

 

AGGAGGAATTAT, GCTATGCTTGAC, ATGAGCGATTCN, CTGTGTTCACGA, 

GAAATCAATGGC, CTTAAGGTATGT, ATCCAATAAGGT, CCTAACAGAATG, 

CTGAGCTTTTAT, TGTGACACCCCA, GGTAAACGATTA, TATGATCACCAN, 

AAGCTCCACCAA, ATGTGGAAGTCC, CATGTCAAAATN, AATGGATCCGAA, 

CTCTATCAGTGN, CCTGATTTCAGA, ATCATACCAGAA, CCCGCTTTCTAC, 

ACGTCTATAATT, TTCAATTGCTCG, CTAGTGCTGGGC, TGGTTTGCCCCC, 

AGACCTGGTGTA, CAATGAGAGGCA, TAATGTCGACGC, TAACAGAGAATT, 

CTATAGTGTTCG, GATAAGTAATAC, AACAGATATGCG, GAAGTAGCCATT, 

GTTCTGAGTAAG, TCTTTGAGGAAC, GGCAGCTGCGCG, CAAGGTCGACGA, 

GTTTTAGCTGCT, TGCCACCCATGC, GCGCCAAAGCGC, GAGATGCAATCG, 

CCCTCGCTCAGG, GGACTAGTGGAC, GTACCGGCGCGC, ACCAGCCCGGCG, 

AGCGAAAACAGT, CTAACGGACACG, TACAGTGTATGC, CAAGAATCGTGG, 

TCGACGCTGACC, CAATAAAAGTGC, GCCTAGCGATCT, TCCCACGTTCAG, 
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CGGGGGCGCCTN, CTCTAGTGGGAG, GCCGTCTTTGAC, TTCAACTCAATT, 

ATCGTCATTTCA, CCAATATGAAGA, TATTCCCTGGTC, GGAGAAATTGTT, 

ATGTAGATCCTA, GCGTTCTTGCCN, ACATACCGGTTG, GCTGCGGTGGGC, 

TCGTTTGCATCT, GTCGTCACACTT, TAGCAGAGACTT, GTTCATGACAAA, 

GTTTCTACGGAN, CGGTTGCCAAGG, AGGTGTTCGGGC, TCCCTATGGGAT, 

TACACATCGCCG, CCGTGCCTCCGA, ACAAGTAGCAAG, CCTCCATCGGAG, 

TATACAGGAGAT, ACATGTTCGGAT, AGAGCTATGCCC, TTGCGGCAGTGT, 

CAAGCCGGCGAC, CACGACGGTTTG, CGATGAAAACGC, TTAATTCCCCAG, 

AGCCCACCTGAC, ACAAGAATAGAC, TTTGATATGGCN, CTACTTCCTTCG, 

TCGGATTAGGCG, CCAGATGTGGCA, CTCAACACAGGA, TTAACATTCACT, 

CGATGTTTCTTT, TAAGGACCCAGA, CCTCGTATGCTG, CTACATTCGTGN, 

CGGGTTACTCAA, CCTCCTTACGTC, ACCCCTCACCTA, TTGAAATATCCA, 

AAATTACCTTCA, GAGTTGCTTGTA, TTGATACAATTG, CTCGTGTCAATN, 

CCTGTTATCCCT, TGGCTTCGAACT, TCTTAGTGGTTC, AACTGGTCCAAA, 

TCTTTTACACTT, GAGGCGGACTAG, GGCTTGGGCCCC, AAAGCCATCACT, 

AAGATGCCAAAC, GTACAGCTCTGA, GTTTTGCATGTG, ACCAAAACCTCG, 

GGGGTAATTAGA, TTTAGTAGAGCG, CCCCCCGGCGCT, AGAACCCAGACG, 

CCGGTTTGTGTT, GCGTGGGTGTCA, TACCGTGTTGCA, CCGTAATTTTAC, 

CGATGCCTTAGA, GTACAACAGAAT, TAGGGCTACACA, TACTCCAGAGGG, 

AGGCGAGTTTTA, TCCAATCCCTAC, AGCACGATTCAG, TCTTAATTTCCT, 

GAGTGGCTTTGC, TTATGTACGGGG, TCTTAACTCCCG, CTCCTTACGTCN, 

TAACTTCGCGCA, TGCAACCGGGCC, CGTCAGCGTTGC, CGAACTACCAAC, 

AATACGTTCCGC, CGCAAGCAATTT, TGATCGTTGACT, AAGACGTTTCGG, 

CTTTCGACTACT, CCAGGGCACCGT, GCCCCTATTCAC, TCCGCTTCAGTN, 

TTTTGGACGGGT, TAAGTCTTAATG, GAGCACTCTGAG, GGCTTGCCCCCT, 

CATTTTTAAGAG, GAAGGGTTGGTN, TCTCTGGAGAGC, GTCCTCTCCTTG, 

AATGTTGACAGC, AGTACGGGGTGC, ATAACCCCACGC, ACTAATTTTCCA, 

TTATCGGGGCAC, CCCGACATAACA, CACTGAGCCTCC, AGTCCATCACGG, 

CCACAAATCCTG, TCCCACAAGCGT, AAACGGTACCAC, TGTAAACGGGCA, 

CATTGTCAAAAT, AACCCCAACGTC, GCCTGTATCCCG, GTATTCGCGGCC, 
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CCTGGTACGTGC, AGCACCCATCAC, GATGCCTTAGAN, TCTCTGCTTTTA, 

TTTAGGTCTGTG, GTAGTATAGCAA, AAATTATATAGT, GGGGTTCGTTTA, 

CACCCCTCTGTA, TACCCATTCGTA, TGGGCAATTTAG, AAAATGTCCACT, 

CGCGGCTATTCC, CCAGCGGTAGTC, TTTGAAACATTT, TGGGCAGCTCGG, 

AGTACAGTGTAG, TAATTGCTATGA, CTCCCAACACCG, TAGGCCCGATAC, 

CGACAAGGAAAN, CCCATTTAATTC, ATCATCAGCTAC, CACCAAAATCCG, 

CTCATTCCGCTG, TTCCCGGCCACT 

 

Cells were sequenced on the Illumina NextSeq 500, generating over 550 million reads, 

and the data was aligned and processed as described above. Following the detection of 

bead synthesis errors, the data was downsampled to 2.5% of the total read count (14M 

total reads). Cells with > 9,000 UMIs and cells expressing < 500 genes were removed 

from the data, yielding 197 cells expressing an average of 1,500 genes per cell, similar 

to the average 1,404 genes per cell from the main data. The full data was then 

progressively downsampled 23 additional times to a range of 530 million to 870,000 

reads prior to the generation of expression matrices. Expression matrices for each of 

these downsampled datasets were then generated for the 197 cells identified above and 

the average number of genes expressed per cell was calculated and plotted as a 

function of total read count (Figure 2.2C). Fitting a one-phase exponential association 

function to the data (𝑦 = 882.4 + (10647 − 882.4) ∗ 	(1 − 𝑒!".$%&!%∗()) reveals a 

theoretical plateau of 10,647 genes. 

 

Initial clustering of all cells  

The Seurat package, v2.0 (22), was used for all steps of clustering, following the Seurat 

package documentation (http://satijalab.org/seurat/). Briefly, the Seurat function 

MeanVarPlot was used to identify genes with high variance and high expression using 

the parameters [y.cutoff = -.5, x.low.cutoff=.2, x.high.cutoff=15, fxn.x = expMean, 

fxn.y=logVarDivMean, set.var.genes = TRUE]. These genes were then used as input for 

principal component analysis using the function PCA [pcs.store = 150]. Cells were 

clustered using the function FindClusters [pc.use = c(1:150), resolution = 2], which 
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utilizes a graph-based clustering approach, and plotted in 2 dimensions by t-distributed 

stochastic neighbor embedding (t-SNE). The number of principal components used as 

input for FindClusters was determined empirically for each set of clusters. Namely, 150 

principal components (PCs) were initially used as input for all clustering performed in 

this work, before decreasing the number of PCs used as input until optimal clustering 

occurred. This approach was superior to the identification of significant PCs using 

automated methods, such as bootstrapping (24). 63 clusters were generated from the 

initial clustering of all cells using 150 PCs and a resolution of 2. Cluster 10 contained no 

exclusively enriched genes. Rather, enriched genes were also highly expressed in cells 

from regions of most other clusters, suggesting cluster 10 in fact represented an artifact. 

Cells from cluster 10 were removed from the data, and the remaining cells were 

reclustered as above, again generating 63 clusters with similar identities. Eight of these 

clusters (8, 28, 29, 38, 42, 53, 56, and 57) possessed a number of genes with 

exclusively enriched expression. These cluster-enriched genes were not associated 

with any known planarian cell types or tissues, however, and were largely undetectable 

by fluorescence in-situ hybridization (FISH) despite being very highly expressed in the 

data. As such, these cells were removed from further analysis. Finally, three sets of 

clusters: 10, 55, 59, and 60; 9, 45, 50, 52, and 58; and 13, 31, 44, 46, and 54 were 

largely interspersed with one another in the t-SNE plot. These three sets of clusters 

were merged into three clusters. Following these changes, all clusters were re-

numbered to reflect the new total cluster number. 

 

For the targeted sequencing of brain cells, cells were clustered as above using 100 PCs 

and a resolution of 2. Cluster-enriched genes for cluster 7 of the clustering results were 

not associated with any known planarian cell types or tissues and were largely 

undetectable by fluorescence in-situ hybridization (FISH) despite being very highly 

expressed in the data. As such, these cells were removed from further analysis. For the 

sequencing from sexual animals, cells were clustered as above using 75 PCs and a 

resolution of 2. Clusters 6, 7, 18, 20, 21, 27, 30, and 32 were not associated with any 

known planarian cell types or tissues and were largely undetectable by fluorescence in-
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situ hybridization (FISH) despite being very highly expressed in the data. As such, these 

cells were removed from further analysis. Cells were re-clustered using the same 

number of PCs, and a resolution of 3. 

 

Subclustering subsets of cells  
Clusters were assigned a tissue identity based on expression of tissue-specific markers 

(24) or expression of highly enriched transcripts (Table 2.2). Cells assigned to clusters 

that express genes from the same tissue class (24) were isolated to new Seurat objects 

using the SubsetData function. These cells were then re-clustered as described above. 

Resulting subclusters with similar cluster-enriched genes were combined for each of the 

tissue subclusters (see table below). All subclusters were then re-numbered to reflect 

the new total subcluster number. For the parenchymal subcluster, cluster 15 was 

manually split into two clearly distinct cell populations (14 and 19 in the final 

numbering). For the pharynx subcluster, clusters 8 and 9 were manually split into three 

clearly distinct cell populations (7,8, and 9 in the final numbering). These changes, 

along with the PCs and resolution parameters used as input for subclustering each 

tissue, are summarized in the table below. 

 

Subcluster Combined 

Clusters 

Split 

Clusters 

PCs 

used 

Resolution 

Parenchymal 2,5 15 25 2 

Protonephridia 0,4; 2,3 None 10 1.5 

Epidermal 0,1,2,3,5,7; 6,9,15; 

8,11 

None 15 2 

All neural 3,4; 7,8,12,13,14; 

15,16 

None 50 5 

Non-ciliated neurons 3,14; 0,38 None 75 5 

Ciliated neurons 2,4,16; 6,10,15 None 35 4 

smedwi-1+ None None 35 2 
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Muscle None None 10 1.5 

Intestine 0,1; 2,3 None 35 1.5 

cathepsin+ cells None None 25 1 

Pharynx None 8,9 20 1.5 

 
 

Cells from the all neural subclustering above and cells assigned a neural identity in the 

targeted brain sequencing (Figure 2.20G) were combined and re-clustered using 75 

PCs and a resolution of 2. 

 

Identification of cluster-enriched genes  

Cluster-enriched genes were identified using the FindAllMarkers function from Seurat 

using the following parameters [thresh.use = 0.25, test.use = "bimod" or “roc”, only.pos 

= T]. Specifically, enriched genes were identified using both a receiver operating 

characteristic curve (ROCC) analysis and a likelihood ratio test (LRT) test based on 

zero-inflated data (23), thresholding for genes that show at least a 0.25 fold average 

difference (log-scale) between all other clusters. Resulting p-values were adjusted for 

multiple hypothesis correction using the p.adjust R function with default parameters and 

transcripts with corrected p-values greater than 1E-4 were discarded (Table 2.2). 

Transcripts with corrected p-values greater than 1E-2 were discarded for subclustering 

of non-ciliated neuron cluster 3. A threshold for genes that show at least a 0.5 fold 

average difference (log-scale) between all other clusters was used for clustering of cells 

from the targeted brain sequencing and for the sequencing from sexual animals. 

 

Cell type assignment for cell doublet analysis  
Cell types used for the cell doublet analysis were identified as expressing six of eight 

cluster-enriched contigs (Table 2.2) using the Seurat function WhichCells 

[subset.name=, accept.low=0.5]. The cluster-enriched contigs used for the analysis are 

listed below. 
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Flame cells 

dd_Smed_v4_5256_0_1 

dd_Smed_v4_4268_0_1 

dd_Smed_v4_2920_0_1 

dd_Smed_v4_7255_0_1 

dd_Smed_v4_6287_0_1 

dd_Smed_v4_11608_0_1 

dd_Smed_v4_16519_0_1 

dd_Smed_v4_5409_0_1 

 

Enterocytes 

dd_Smed_v4_1_0_1 

dd_Smed_v4_48_0_1 

dd_Smed_v4_44_0_1 

dd_Smed_v4_75_0_1 

dd_Smed_v4_194_0_1 

dd_Smed_v4_215_0_1 

dd_Smed_v4_20_0_1 

dd_Smed_v4_267_0_1 

 

mag-1+ cells 

dd_Smed_v4_451_0_1 

dd_Smed_v4_769_0_1 

dd_Smed_v4_14_0_1 

dd_Smed_v4_557_0_1 

dd_Smed_v4_1041_0_1 

dd_Smed_v4_2759_0_1 

dd_Smed_v4_8929_0_1 

dd_Smed_v4_6728_0_1 
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dd_10872+ cells 

dd_Smed_v4_10872_0_1 

dd_Smed_v4_1831_0_1 

dd_Smed_v4_551_0_1 

dd_Smed_v4_10044_0_1 

dd_Smed_v4_266_0_1 

dd_Smed_v4_9638_0_1 

dd_Smed_v4_8942_0_1 

dd_Smed_v4_663_0_1 

 

Ciliated Epidermis 

dd_Smed_v4_357_0_1 

dd_Smed_v4_298_0_1 

dd_Smed_v4_181_0_1 

dd_Smed_v4_877_0_1 

dd_Smed_v4_817_1_1 

dd_Smed_v4_351_0_1 

dd_Smed_v4_155_2_1 

dd_Smed_v4_709_0_1 

 

Serotonergic neurons 

dd_Smed_v4_585_0_1 

dd_Smed_v4_8392_0_1 

dd_Smed_v4_12700_0_1 

dd_Smed_v4_5999_0_1 

dd_Smed_v4_15253_0_1 

dd_Smed_v4_11320_0_1 

dd_Smed_v4_12323_0_1 

dd_Smed_v4_20712_0_1 
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prog-2+ epidermal progenitors 

dd_Smed_v4_478_0_1 

dd_Smed_v4_332_0_1 

dd_Smed_v4_213_0_1 

dd_Smed_v4_6912_0_1 

dd_Smed_v4_363_0_1 

dd_Smed_v4_61_0_1 

dd_Smed_v4_3549_0_1 

dd_Smed_v4_69_0_1 

 

Generic muscle cell 

dd_Smed_v4_323_0_1 

dd_Smed_v4_2337_0_1 

dd_Smed_v4_2197_0_1 

dd_Smed_v4_223_0_1 

dd_Smed_v4_1579_0_1 

dd_Smed_v4_579_0_1 

dd_Smed_v4_436_0_1 

dd_Smed_v4_402_0_1 

 

Cell lineage reconstruction  

The Monocle package, v2.6 (45), was used for all steps of cell lineage reconstruction for 

the intestine and cathepsin+ cell lineages, following the Monocle package 

documentation (http://cole-trapnell-lab.github.io/monocle-release). Briefly, expression 

matrices for cells from all clusters of the intestine lineage or clusters 0,1,2,3,4,5,7, and 

16 of the cathepsin+ cell lineage were used to create CellDataSet objects using the 

function newCellDataSet [expressionFamily=negbinomial.size()]. After estimating size 

factors and dispersions using the estimateSizeFactors and estimateDispersions 

functions, respectively, a dispersion table was generated using the dispersionTable 

function. A subset of genes to be used for cell clustering was then chosen using the 
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following parameters [mean_expression >= 0.5 & dispersion_empirical >= 2 * 

dispersion_fit]. Dimensionality of the data was reduced using the function 

reduceDimension [max_components=2,reduction_method ="DDRTree"] and cells were 

ordered using the function orderCells [reverse=FALSE]. Expression of the neoblast 

marker smedwi-1 was used to set the root state, using the function orderCells 

[root_state=x]. Finally, branch dependent genes were identified using the BEAM 

function [branch_point=1, cores=10,branch_labels=c (1,2)] and filtered for q-values < 

1E-2 (Table 2.3). 

 

Cell cycle state assignment  

The CellCycleScoring function in Seurat was used to assign a S or G2M cell cycle score 

to cells of the data using established cell cycle state markers from (89). A subset of S 

and G2M markers with clear planarian homologs were used in the analysis, as follows. 

 

S phase contigs Contig ID G2M phase contigs Contig ID 

dd_Smed_v4_5764_0_1 MCM5 dd_Smed_v4_14261_0_1 BIRC5 

dd_Smed_v4_5688_0_1 PCNA dd_Smed_v4_6668_0_1 CKS2 

dd_Smed_v4_1260_0_1 TYMS dd_Smed_v4_970_0_1 MKI67 

dd_Smed_v4_8206_0_1 FEN1 dd_Smed_v4_5865_0_1 SMC4 

dd_Smed_v4_5956_0_1 MCM4 dd_Smed_v4_15869_0_1 AURKB 

dd_Smed_v4_1651_0_1 RRM1 dd_Smed_v4_13972_0_1 KIF20B 

dd_Smed_v4_1568_0_1 UNG dd_Smed_v4_17887_0_1 TTK 

dd_Smed_v4_15389_0_1 GINS2 dd_Smed_v4_88923_0_1 CDC25C 

dd_Smed_v4_15465_0_1 DTL dd_Smed_v4_7553_0_1 RANGAP1 

dd_Smed_v4_11558_0_1 PRIM1 dd_Smed_v4_14243_0_1 ECT2 

dd_Smed_v4_4341_0_1 RPA2 dd_Smed_v4_9585_0_1 KIF23 

dd_Smed_v4_5663_0_1 NASP dd_Smed_v4_2016_0_1 LBR 

dd_Smed_v4_9628_0_1 SLBP dd_Smed_v4_12391_0_1 NEK2 

dd_Smed_v4_4379_0_1 UBR7   



 209 

dd_Smed_v4_11434_0_1 MSH2   

dd_Smed_v4_8626_0_1 RAD51   

dd_Smed_v4_20567_0_1 RRM2   

dd_Smed_v4_16942_0_1 CDC45   

dd_Smed_v4_18778_0_1 CDC6   

dd_Smed_v4_14547_0_1 EXO1   

dd_Smed_v4_12580_0_1 TIPIN   

dd_Smed_v4_17862_0_1 DSCC1   

dd_Smed_v4_10119_0_1 BLM   

dd_Smed_v4_7575_0_1 CLSPN   

dd_Smed_v4_9168_0_1 POLA1   

dd_Smed_v4_5543_0_1 CHAF1B   

 

Gene cloning  

All genes presented in this study were cloned prior to their use for FISH or RNAi, as 

previously described (35). Briefly, gene-specific primers were used to amplify specific 

gene sequences from planarian cDNA. Sequences were then inserted into a pGEM 

vector according to the manufacturer’s protocol (Promega). Plasmids were transformed 

into DH10B competent bacteria, which were plated onto LB + 2% agar plates containing 

0.1 mg/ml carbenicillin, 0.5 mM IPTG, and 0.08 mg/ml X-gal. Clones were screened for 

the presence of a DNA fragment of the predicted insert size by colony PCR. Positive 

colonies were cultured overnight and plasmid DNA was extracted using a Qiagen 

QIAprep Miniprep kit (Quiagen, 27106). Plasmid sequence was validated by Sanger 

sequencing (Genewiz, Inc.). 

 

Fluorescence in situ hybridizations and immunofluorescence  
Fluoresence in situ hybridizations were performed as previously described (90). Briefly, 

5% N-acetylcysteine was used to remove mucus prior to fixation. Animals were also 

incubated in proteinase k (2 µg/ml) following bleaching. Following an overnight 
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hybridization at 56°C, animals were incubated in pre-hybridization buffer, 1:1 

prehybridization buffer:2X-SSC, 2X-SSC, 0.2X-SSC, and PBST (twice each). Prior to 

overnight incubation in primary antibody, animals were incubated for 1.5 hours in block 

consisting of 0.5% Roche western blocking reagent (RWBR) (Roche, 11921673001) 

and 5% inactivated horse serum in PBST for anti-DIG antibody, 0.5% RWBR and 5% 

casein in PBST for anti-DNP antibody, and 1% RWBR in PBST for anti-FITC antibody. 

Peroxidase inactivation with 1% sodium azide was performed at room temperature for 

1.5 hours. SMEDWI-1 immunofluorescence was performed following all FISH steps. 

Samples were incubated in block consisting of 0.5% RWBR and 5% HIHS in PBST for 

1.5 hours and incubated overnight with 1:1000 rabbit anti-SMEDWI-1 primary antibody. 

Antibody was washed out and samples were incubated overnight with 1:300 goat 

antirabbit IgG-HRP secondary antibody (Invitrogen, T20924). Antibody was washed out 

and samples were incubated in tyramide solution (1:200 Alexa fluor 488 tyramide 

[Invitrogen, T20912], 1:20,000 30% H2O2, amplification buffer) for 1 hour. Fluorescent 

images were taken with a Zeiss LSM 700 confocal microscope and Fiji/ImageJ was 

used to process images. The color of inverted images was set to grey in Fiji before 

inversion. Unless otherwise indicated, all images shown were maximum intensity 

projections of representative results observed in 3 - 6 animals.  

 

We cloned and made probes for FISH for genes with enriched expression in identified 

clusters. In a number of cases, markers for a cluster were also expressed in other 

clusters. In 71/72 probe pairs tested where FISH signal was detected for both probes, 

expression within the same cells was detected. In 72/72 of these cases signal was also 

consistent with the predicted tissue of origin of that cluster. In 24/24 cases in which only 

one probe yielded detectable FISH signal, signal was also consistent with the predicted 

tissue of origin of that cluster. 

 

RNAi  
Template PCR reactions with flanking T7 promoters were generated from plasmids and 

used to generate dsRNA by in vitro transcription (Promega). Transcription was 
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performed overnight, followed by the addition of DNAse (Promega) for 45 minutes and 

precipitation with 3M sodium acetate (pH 5.2) and 100% ethanol (-20°C). Following a 

wash with 80% ethanol (-20°C), dsRNA was resuspended in water and annealed at 

95°C for five minutes, followed by a 30 minute incubation at room temperature. 6 µl of 

dsRNA was mixed with 13 µl of liver and used for feedings (91). Animals were kept on 

gentamycin reagent solution (1:1000, Gibco) and fed seven times over 21 days. Two 

days following the seventh feeding, animals were cut into 2-3 pieces. Head and trunk 

pieces were fixed, as above. Control animals were fed dsRNA generated from the C. 

elegans gene unc-22. 

 

Single cell differential expression analysis of muscle cells  

Regionally expressed muscle cells did not cluster based on their positional identity. As 

such, they were identified in the data by their expression of genes known to be 

expressed in those regions (71). Because of inherent variability in expression of any 

single gene, muscle cells were required to express at least two genes specific to a 

region to be identified as from that region (71). Posterior muscle cells were defined by 

their expression of at least two of the four genes wnt11-1, wnt11-2, wntP-2, and fz4-1 

(49, 70, 92, 93,). To identify these cells within the data, the Seurat function WhichCells 

[subset.name=, accept.low=0.5] was used on the muscle subcluster for each of the 

regionally expressed genes. Cells determined to express at least two of the genes were 

then selected for further analysis. An expression matrix for all muscle cells was 

generated after tagging the name of each muscle cell as positive or negative for the two 

posterior markers. This expression matrix was then used as input for the R package 

SCDE (72). SCDE analysis revealed a list of genes enriched in the posterior muscle 

cells. Genes were sorted by the SCDE output parameter “conservative estimate” of fold 

enrichment, resulting in wnt11-1, fz4-1, wnt11-2, and wntP-2 (the genes used to identify 

cells as posterior) at ranks 1, 2, 3, and 6 of the data, respectively. These genes were 

highlighted in grey and were excluded from the ranking determination of additional 

genes (Table 2.3). Genes identified as posterior in Scimone et al. (71) were highlighted 
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in green (Table 2.3). All genes with a conservative estimate < 1 were removed from the 

data. 

A similar analysis was performed for anterior, lateral, and medial muscle cells. In short, 

anterior muscle cells were defined by their expression of at least two of the five genes 

(19) sfrp-1 (49), ndl-4 (75), prep (76), wnt2 (49), and ndl-5 (71). Lateral muscle cells 

were defined by their expression of at least two of the three genes (19) admp (77, 78), 

wnt5 (79), and nlg-7 (80). Medial muscle cells were defined by their expression of at 

least two of the four genes (19) slit (81), bmp4 (82, 83, 67), netrin-2 (84), and admp (77, 

78). Genes identified as anterior in Scimone et al. (71) were similarly highlighted in 

green in the list of enriched genes generated by SCDE. 

 

Cell counting and volume measurement  

Counting of rare cells (Figure 2.40) was performed on whole-animal FISH images 

manually in FIJI/ImageJ. Counting of cells for the comparison of cell type proportions in 

the animal and in the data (Figure 2.44) was performed using the spots functionality of 

the 3D image processing software Imaris. 20X images of the head were cropped below 

the posterior end of the cephalic ganglia before cell counting. The following parameters 

were used for each cell population, as determined by visual inspection.  

 

Marker Gene Quality Diameter (in μm) 

prog-2 5.07 12.5 

dd_72 5.55 6.25 

PTPRT (dd10872) 4.76 9 

dd_2920 4.32 6.25 

sert 3.94 6.25 

COL21A1 (dd9585) 5.22 4.5 

dd_238 2.26 7 
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Total head volume was measured using the surface functionality of Imaris, using a 

diameter of 5 µm for all images. Quality scores were determined for each individual 

image by visual inspection. Cell counts from each animal were normalized to the total 

volume of the head fragment. The average normalized count for each cell type across 

4- 5 animals was then used to determine the proportion of each cell type, compared to 

the other cell types analyzed, in the animal. 
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Table Captions  
 
Table 2.1. Description of single cells sequenced in this report. 

Table 2.2. Cluster- and subcluster-enriched genes. 

Table 2.3. Branch-dependent genes from Monocle analysis. 

Table 2.4. Genes enriched in regionally localized muscle cells. 

Table 2.5. Contig annotation of all genes mentioned in this study. 

 

*All tables can be accessed at https://hdl.handle.net/1721.1/126304. 
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I. Successful strategy for characterizing the transcriptomes  
of all cell types of an animal 

 
Even with the advent of affordable, high throughput single-cell RNA sequencing 

approaches, determining the transcriptomes for all cell types in a whole animal has 

remained a daunting prospect. Many animals contain trillions of cells and hundreds of 

cell types, many of which are quite rare, and cell type composition can change 

dramatically over the course of development. Our success in generating such a whole-

animal cell-type transcriptome atlas for the planarian flatworm was grounded in two 

factors. First, planarians contain a population of pluripotent stem cells that they use to 

constantly turnover all cell types throughout the life of the animal, and they constitutively 

express patterning information to guide the placement of these cells. As such, at a 

single time point in the adult, we were able to isolate all stem cell populations, including 

pluripotent stem cells; all differentiated cells; the transition state populations associated 

with each cell lineage; and patterning information. For most organisms, obtaining all of 

this information would require sampling across many stages of development. Second, 

our strategy for capturing rare, regionally localized cells types was crucial to obtaining 

complete cell type saturation. Rather than dissociate whole animals, iterative Drop-seq 

runs were performed on body fragments to differing depths, allowing saturation of cell-

type coverage in regions with rare cell types. Were we to dissociate whole animals, 

prevalent cell types present throughout the body would largely crowd out rare, regionally 

localized cell types, requiring many more cells to be sequenced for saturation. Following 

each Drop-seq run, the data was processed and used to assess the presence of known 

rare cell types, allowing active determination of which fragments needed additional 

sequencing. Sequencing runs were performed for each fragment until full cell type 

saturation had been reached. 

 

Single-cell sequencing approaches can be applied to most organisms, raising the 

prospect of generating whole-animal atlases for diverse animal species. Our strategy for 

achieving cell type saturation can be employed towards this goal, even in animals with 

little previous molecular characterization. By identifying genes that were enriched for 
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expression in each population of cells in the planarian data, we were able to design 

FISH probes to determine the anatomical localization pattern of most cell populations, 

including for previously uncharacterized cell types. As such, for animals with little 

molecular characterization, FISH can be performed following each round of single-cell 

sequencing using markers for each population to assay localization and rarity in vivo. 

Some cells that are rare in the sequencing data might be rare in the animal or difficult to 

capture at their endogenous frequency following dissociation. FISH experiments allow 

assessment of cell-type-frequency in vivo and aid in assessment of saturation for rare 

cell types. Furthermore, combinatorial indexing-based single-cell RNA sequencing 

methods have enabled very high throughput single-cell RNA sequencing in the absence 

of any specialized equipment, lowering the costs and increasing the reach of such 

technologies to enable single cell transcriptional profiling of diverse, understudied 

animals (1, 2). Indeed, as described in chapter 1, whole animal cell type atlases with 

varying degrees of cell type saturation have now been generated for a wide range of 

other adult animals using a variety of single-cell RNA sequencing approaches (3, 4, 5, 

6). The ability to generate transcriptomes for all cell types in a complete animal has 

meaningful implications for evolutionary biology. With many cell types, tissues, and the 

transcriptional machinery used to generate those cells and tissues present across 

diverse animal species, cross-species comparisons of single-cell RNA sequencing data 

could provide insights into cell-type evolution and the evolution of gene regulatory 

networks that control tissue development.  

 

II. Identification of novel specialized neoblasts and transition states 

 

The regenerative capacity of planarians is largely derived from neoblasts, at least some 

of which are pluripotent (7). Neoblasts are heterogeneous as a population (8). Multiple 

subpopulations, called specialized neoblasts, have been identified that express 

transcription factors essential for the specification of various differentiated cell lineages 

(8). Thousands of neoblasts were identified in our single-cell sequencing data by their 

expression of smedwi-1. To facilitate the identification of specialized neoblasts, cells 
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with clear smedwi-1 expression were subclustered in isolation. Many of the resultant 

subclusters were enriched for known tissue-specific markers, generally exhibited lower 

expression of smedwi-1, and were assigned a predicted G1/G0 cell cycle state, 

indicating these are likely post-mitotic progenitors that haven’t yet fully turned off 

smedwi-1 expression. However, a number of subclusters exhibited high smedwi-1 

expression and were assigned a predicted S or G2/M cell cycle state. Two of these 

subclusters included previously identified specialized neoblast classes: zeta-neoblast 

epidermal progenitors and gamma-neoblast intestinal progenitors. A group of 

specialized neoblasts for the protonephridia were also identified. Interestingly, a 

subcluster marked by the previously undescribed transcript dd_10988 was enriched for 

a number of genes also expressed in neurons, suggesting this subcluster could 

represent a transcriptionally unified subpopulation of neuronal specialized neoblasts. 

Another subcluster marked by the gene PLOD1 (dd3457) was similarly enriched for a 

number of genes also expressed in muscle, suggesting this subcluster could represent 

a transcriptionally unified subpopulation of muscle specialized neoblasts. More work will 

be necessary to assess the biological role of these novel neoblast subpopulations, 

however.  

 

While it has been clearly demonstrated that individual neoblasts exhibit pluripotent 

potential, it is unclear whether all neoblasts have this potential or only a subset. Is there 

a single transcriptionally distinct pluripotent neoblast class? Do specialized neoblasts 

retain pluripotent potential? Although a number of neoblast subclusters with high 

smedwi-1 expression were identified that were not associated with any differentiated 

lineages, these subclusters generally lacked specifically enriched genes. Furthermore, 

when these subclusters with high smedwi-1 expression, excluding zeta- and gamma- 

neoblast clusters, were subclustered again in isolation, clusters of remnant zeta-

neoblasts, protonephridia progenitors, dd_10988+ putative neuronal progenitors, and 

PLOD1 (3457)+ putative muscle progenitors were identified, but the remaining neoblasts 

subclusters largely lacked specifically enriched markers. Interestingly, these 

transcriptionally non-distinct clusters were also the highest in smedwi-1 expression, 
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suggesting more naïve neoblasts may be defined by the absence of tissue specific 

markers, rather than the unique expression of specific genes. If there is no 

transcriptionally distinct pluripotent neoblast class, do all neoblasts, specialized 

neoblasts included, retain pluripotent potential? Some evidence does exist to support 

this idea. An antibody was recently developed to the protein product of the gene tgs-1, 

which is specifically enriched in the dd_10988+ subcluster of neoblasts (9). Cells from 

this neoblast subclass were isolated by FACS and were shown to individually possess 

pluripotent potential (9). Because the dd_10988+ cluster likely represents neuronal 

specialized neoblasts, this result would suggest that specialized neoblasts do retain 

their pluripotent potential, though more work will need to be done to test this hypothesis. 

 

Two planarian tissues, the epidermis and the pharynx, have been shown to exhibit 

transcriptionally distinct post-mitotic states as they differentiate (10, 11, 12, 13). The 

differentiation process is much less well characterized for other planarian tissues, 

however. smedwi-1+ cells were present locally within each of the broad tissue class 

clusters, suggesting transition state populations for these tissues may be present. 

Indeed, following subclustering of intestine and cathepsin+ cells in isolation, 

transcriptionally distinct subclusters were found to separate local areas with smedwi-1 

expression from areas enriched for differentiated marker expression. Trajectory 

reconstruction of the intestine and cathepsin+ cell lineages using Monocle2 identified a 

number of genes with variable expression across the predicted trajectories. There is 

even some molecular evidence validating these predicted trajectories in vivo. MAP3K5 

(dd4849), which is predicted to be expressed early in the differentiation trajectory for 

one of the cathepsin+ cell lineages, was commonly expressed in cells positive for 

SMEDWI-1 protein and negative for smedwi-1 mRNA, a combination that marks recent 

post-mitotic progenitors (14, 15, 16). smedwi-1/SMEDWI-1 assays are only capable of 

marking very recent post-mitotic progenitors, however, and are thus incapable of 

validating much of the predicted trajectories. Other approaches include temporally 

tracking gene expression loss following lethal irradiation, which has been utilized to 

identify genes expressed temporally along differentiation trajectories for the epidermis 
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and the pharynx (10, 13). Irradiated animals begin dying within two weeks following 

irradiation, however, so this approach is only appropriate for lineages with rapid 

turnover. A related approach would be to mark planarian neoblasts and their progeny 

with BrdU (10, 17) and temporally track the incidence of BrdU co-expression with 

putative transition state markers.  

 

Trajectory reconstruction of the intestine and cathepsin+ cell lineages predicted a 

number of genes that vary temporally across these differentiation trajectories. With 

smedwi-1+ cells clustering locally in each of the differentiated tissue clusters, trajectory 

reconstruction tools could be applied to characterize differentiation in other tissue 

lineages as well. Furthermore, multiple trajectory reconstruction algorithms have been 

developed, including the most recent iteration of Monocle (Monocle3), that enable 

complex, multi-branching trajectory reconstructions that have been used to analyze 

early vertebrate embryogenesis (18, 19, 20, 21). Application of such approaches could 

provide insights into a number of questions surrounding planarian cell type 

differentiation. Whereas it is known that neoblasts are the source of all new tissue in the 

animal, and specialized neoblasts have been identified for many known differentiated 

cell types, it is currently unclear whether hierarchies exist for cell-fate decisions within 

lineages. For example, does a neoblast first commit to making a neuron before 

committing to make a serotonergic neuron specifically? Furthermore, the molecular 

relatedness of distinct planarian tissues is currently unknown. Clustering of 

approximately 600 cells isolated by SMART-seq clustered intestine together with 

cathepsin+ cells, with a number of genes, including the transcription factor hnf4, 

enriched in both intestinal and cathepsin+ cells (22). What developmental relation do 

these distinct tissues share, if any? Although trajectory reconstruction could provide 

initial hints to questions such as these, any results would require further validation.  

 

Finally, transcription factors were identified with enriched expression in putative 

transition state populations for most differentiated cell types in the data. It has been 

previously shown that inhibition by RNAi of transcription factors necessary for the 
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specification of a cell type can be used to ablate that cell through tissue turnover (23, 

24, 25, 26, 27, 28, 29, 30). In my work, RNAi of two such transcription factor-encoding 

genes identified for the newly described outer intestinal cell lineage and a cell 

population from the parenchymal cell lineage led to the loss of differentiated cell 

markers for these cells in the animal. While suggestive of cell ablation, loss of a few cell 

markers could also indicate disruption of a limited transcriptional network. Further EM 

evidence or FISH using a panel of enriched markers for each cell is needed to confirm 

the cells were truly ablated. Because transcription factors were associated with most 

differentiated cell populations in the data, many of which were previously undescribed, a 

wide range of cell types in the animal could be ablated using this approach, allowing 

their biological function in the animal to be determined. This is especially important for 

planarians as a model system, in that transgenic approaches for targeted cell-type 

ablation are currently unavailable.  
 

III. Identification of novel differentiated cell types 

 

Planarians possess a complex anatomy made up of a number of functionally distinct 

tissues containing a diverse array of differentiated cell types. A number of novel 

differentiated cell populations were identified in the Drop-seq data, spanning across 

almost all planarian tissues. Even for some molecularly well-characterized tissues, new 

constituent cell populations were identified. For example, a previously undescribed 

“outer” layer of cells was identified for the intestine. Many tissue classes in the planarian 

have had limited characterization at the molecular level, and a significant number of 

novel cell populations were identified for these tissues. A novel major tissue class 

termed cathepsin+ cells was also discovered, encompassing eight transcriptionally 

distinct cell populations. 

 

The cathepsin+ cell class consists of transcriptionally distinct cell populations, including 

previously described pigment and glial populations. In general, cathepsin+ clusters 

exhibited enriched expression of genes encoding digestive enzymes and endocytic 
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machinery components, suggesting these cells may collectively function in 

phagocytosis. One cathepsin+ cell population, marked by the transcript dd_9, exhibited 

an interesting morphology by FISH, with long processes spread throughout the 

parenchyma of the animal. This morphology and anatomical localization was highly 

reminiscent of fixed parenchymal cells, as described in chapter 1, which had been 

demonstrated by EM to phagocytose bacteria (31, 32, 33). Indeed, each cathepsin+ cell 

population was recently shown to be not only capable of phagocytosing fluorescently 

labeled heat-killed bacteria, but were the primary cells that did so (34).The transcription 

factors ets-1 and foxF-1 are enriched in all cathepsin+ cell populations and are 

necessary for their specification, with RNAi of foxF-1 leading to a loss of all cathepsin+ 

cells and RNAi of ets-1 leading to a loss of pigment cells (the effect on other cathepsin+ 

cells was not assessed) (34, 35). Both ets-1 and foxF-1 animals lyse not long after 

depigmentation, suggesting an essential biological role for cathepsin+ cells in the animal 

(34, 35). The cause of this lethality is currently unclear, however, as is what biological 

role these cells plays in the animal. Are they responsible for phagocytosing cellular 

debris and/or apoptotic cells? Given the lack of a circulatory system in planarians, could 

they serve such a role through their long, parenchyma-filling processes? Given their 

ability to phagocytose bacteria, could they serve as an innate immune system? More 

work is needed to begin to understand the biological role of this fascinating new class of 

cells. 

 

As described in chapter 1, planarians contain a number of gland cell populations 

identified largely through EM and histological studies (31, 36, 37), with a number of 

gene markers identified for a marginal adhesive gland population (38). Single-cell RNA 

sequencing of approximately 600 wounded planarians by SMART-seq identified a 

heterogenous cluster of cells, termed “parapharyngeal”, that were enriched for a 

number of parenchymal-localized genes, as well as the markers for the marginal 

adhesive gland population (22), suggesting this cluster may represent multiple distinct 

gland cell populations. From the Drop-seq data, the parenchymal subcluster contained 

a number of distinct cell populations, many markers for which were also enriched in the 
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previously described “parapharyngeal” cluster. FISH for these marker genes revealed 

multiple cell populations with long processes that terminated at the epidermis or the 

pharynx, suggesting a potential glandular role. Though more work will need to be done 

to conclusively confirm the identity and function of these putative gland cells, at least 

one transcription factor was found to be enriched in each parenchymal cell population, 

potentially allowing the targeted ablation of each cell population in the animal. 

 

The nervous system is by far the most cellularly complex of the planarian tissues. 

Subclustering of cells marked as neuronal identified a large number of distinct clusters, 

many of which had not been previously described. Some clusters lacked specifically 

enriched marker genes and were instead defined by a combination of markers shared 

between multiple cell populations, further highlighting neuronal complexity. Future work 

will be needed to determine the function of these novel cell populations. The clusters 

that were identified were largely peripheral neurons, as determined by FISH localization 

patterns. Known cell types in the brain, such as octopaminergic neurons (39), were 

largely present in low numbers and were found within just four very heterogenous 

clusters. This suggests that even more single-cell sequencing could be beneficial for 

identification of neurons that constitute the brain. Although targeted sequencing of the 

region surrounding the brain did help in enriching for known brain-localized neurons, the 

enrichment was limited, suggesting even more targeted isolation of cells from the brain 

is necessary. Irradiation-based depletion of neoblasts and early epidermal progenitors 

(10, 11), which were shown to be massively overrepresented in the data compared to 

their relative abundance in the animal, would increase the capture rate of neurons and 

other differentiated cells. Furthermore, two recently developed methods allow for 

specific isolation of transcriptionally distinct cells. One approach uses single-cell RNA 

sequencing to identify FACS gates that specifically isolate transcriptionally distinct cell 

populations (40). Another approach, termed Probe-seq, uses fluorescently labeled in 

situ probes to isolate certain cell populations by FACS (41). 
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Finally, there are two distinct strains of Schmidtea mediterranea: an asexual strain, for 

which we generated this cell type transcriptome atlas, and a sexual strain of cross-

fertilizing hermaphrodites. An initial sequencing run of sexual planarians in the work of 

this thesis yielded only a fraction of the sexual anatomy, with transcriptomes for only a 

couple of testis and yolk cells recovered. More targeted isolation of the sexual anatomy 

could be performed to further enrich for these cells in the data. Additionally, only 

homeostatic animals were profiled for the cell type transcriptome atlas. It would be 

interesting to profile animals at various stages of regeneration to determine cell type-

specific changes in gene expression and changes in the relative abundance of 

differentiated cell types throughout the regenerative process.  

 
IV. Identification of novel regionally expressed genes 
 

Planarians constitutively express patterning molecules regionally across the different 

body axes of the animal that are essential for proper regeneration and maintenance of 

the body plan (42). These patterning molecules are largely expressed in muscle (43). 

Regionally expressed genes along the anterior-posterior (AP) axis have been profiled 

through single-cell RNA sequencing of muscle cells isolated from specific regions along 

the AP axis (44). Although a number of genes have been identified with regional 

expression in muscle along the dorsal-ventral (DV) and medial-lateral (ML) axes, the full 

complement of genes regionally expressed across these axes has not been as well 

profiled. Although muscle cells in the Drop-seq data did not cluster by position, but 

rather by broad muscle class, we reasoned that expression of known regionally 

expressed genes could be used to assign a positional identity to muscle cells in the 

data, enabling other genes with similar regional expression to be identified. This 

approach proved quite effective. When transcriptomes from muscle cells assigned an 

anterior or posterior identity were compared to transcriptomes from all other muscle 

cells, most previously identified genes with regional expression along the AP axis were 

recovered. This approach was further used to identify regionally expressed genes along 

the ML axis, identifying a number of novel genes with lateral domains of expression, as 
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well as one gene, dd_23400, that was expressed medially in a line of cells straight down 

the center of the animal. Functional patterning roles for these genes can now be 

assessed using RNAi. Interestingly, it has recently been shown that inhibition of genes 

encoding components of the STRIPAK complex results in expansion of wnt1 expression 

up the midline in dd_23400+ muscle cells, leading to a dramatic expansion in tail length, 

and suggesting this dd_23400+ medial muscle cell population may have a distinct 

patterning role in the animal (45). Finally, the approach undertaken here is conceptually 

similar to the more sophisticated spatial transcriptomic approaches reviewed in Chapter 

1. Given the numerous FISH images available for regionally expressed muscle genes in 

planarians, approaches such as novoSparc (46) could be used with the muscle cells 

from the Drop-seq data to infer gene expression localization patterns for all planarian 

genes, potentially identifying others with regional expression across the various body 

axes, including the DV axis, which was not profiled here.  

 
V. Conclusion 
 

As described in this thesis, high throughput single-cell RNA sequencing was used to 

transcriptionally profile the regenerative planarian Schmidtea mediterranea. Through 

iterative sequencing of body fragments, transcriptomes for most-to-all cell types of the 

complete animal were determined. Using this approach, a number of novel neoblast 

subclasses, transition state populations, and differentiated cell types were identified, as 

were a number of novel genes with regional expression in muscle, which provides 

patterning information for the animal. We now have full transcriptomes for each of these 

cell populations, enabling their biological function in the animal to be assessed. 

Furthermore, our approach for reaching full cell type saturation can be applied broadly 

to diverse animal species, including emerging model organisms with little previous 

molecular characterization.  
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