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Abstract
The trend of open material data and automation in the past decade offers a unique
opportunity for data-driven design of novel materials for various applications as well as
fundamental scientific understanding, but it also poses a challenge for conventional
machine learning approaches based on structure features. In this thesis, I develop
a class of deep learning methods that solve various types of learning problems for
solid materials, and demonstrate its application to both accelerate material design
and understand scientific knowledge. First, I present a neural network architecture
to learn the representations of an arbitrary solid material, which encodes several
fundamental symmetries for solid materials as inductive biases. Then, I extend the
approach to explore four different learning problems: 1) supervised learning to predict
material properties from structures; 2) visualization to understand structure-property
relations; 3) unsupervised learning to understand atomic scale dynamics from time
series trajectories; 4) active learning to explore an unknown material space. In each
learning problem, I demonstrate the performance of the approach compared with
previous approaches, and apply it to solve several realistic materials design problems
and extract scientific insights from data.

Thesis Supervisor: Jeffrey Grossman
Title: Professor of Materials Science and Engineering

3



4



Acknowledgments

I am grateful to many people around me and the wonderful academic environment at

MIT. It is fortunate to work on an emerging field with many exciting opportunities

to rethink how we do material science. The incredible journey of the last five years

would not be possible without the help and support from them.

First and foremost, I would like to thank my advisor professor Jeffrey C. Gross-

man. Jeff is a great mentor who has guided and supported me throughout my PhD.

He reminds me to think about fundamental breakthroughs rather than incremental

improvements, and guides me to shape projects towards broader impact. I am grateful

that he is always willing to make time for our discussions despite his busy schedule,

and he offers me the freedom to explore new directions. He is also a charismatic leader

for our group and creates a group culture that encourages sharing, collaboration, and

fun. I am also grateful to him for supporting me to explore future career possibilities

and offering advices for career development.

I am grateful to my collaborators who have expanded my knowledge to many

different fields of materials science. In particular I would like to thank professor

Yang Shao-Horn, professor Jeremiah A. Johnson, professor Adam P. Willard, and

professor Rafael Gomez-Bombarelli from the MIT TRI polymer team, as well as

current and former students and postdocs including Graham Leverich, Kaitlyn Duelle,

Livia Giordano, Shuting Feng, Yivan Jang, Arthur France-Lanord, Yanming Wang,

Jeffrey Lopez, Bo Qiao, Michael Stolberg, Megan Hill, Wujie Wang, Sheng Gong. This

interdisciplinary team teaches me how to work with researchers from different fields

and is extremely beneficial to my professional development. I also thank professor

Venkat Viswanathan and Zeeshan Ahmad from Carnegie Mellon University for the

collaboration on lithium metal batteries.

I am thankful to my thesis committee members professor Elsa A. Olivetti, pro-

fessor Ju Li, and professor Rafael Gomez-Bombarelli. They provide many valuable

advices and suggestions for my projects through committee meetings and individual

discussions. I would like add some special thanks to Elsa, who first introduced me to

5



the field that combines materials science and machine learning in the first year of my

PhD. Her passion of using natural language process to extract synthesis route from

literature is an important reason why I chose to work on my current field.

It is also important for me to thank all the current and former members of the

Grossman group. In particular, I am grateful to Huashan Li who taught me everything

about computational material science when I joined the group. I also want to pay

special tribute to Arthur France-Lanord and Yanming Wang, who I work closely in

the polymer electrolyte project. I also thank Cuiying Jian and Zhengmao Lu for being

wonderful officemates, as well as David S Bergsman, Anthony Straub, Brendan Smith,

Xining Zang, Thomas Sannicolo, Beza Getachew, Taishan Zhu, Yun Liu, Eric Richard

Fadel, Owen Morris, Adam Trebach, Xiang Zhang, Asmita Jana, Cédric Viry, David

Chae, Emily Crabb, Ki-Jana Carter, Sheng Gong, Grace Han, and Nicola Ferralis

for the time we spent togehter. Additional thanks should be given to Laura M. von

Bosau for her passionate administrative support. I have the opportunity to advise

several visiting students, William Xu, Pierre-Paul De Breuck, and Doosun Hong, and

I thank them for being such awesome students. My graduate life will be much less

rewarding and fun without the daily interactions with all the group members. The

coffees and football games will always be a special part of my memory at MIT.

Another group of people I would like to thank are the friends who I am fortunate

to meet in the last five years. They are Hongzhou Ye, Jiaming Luo, Xinhao Li, Ge

Liu, Manxi Wu, Ruizhi Liao, Jiayue Wang, Zhiwei Ding, Yu Xia, Hongzi Mao, Hejin

Huang, Yifei Zhang, Danhao Ma, Gufan Yin, Yiqi Ni, Chao Wu, Guo Zong, and

many others. The dinners, movies, hiking and many other activities constitute an

important part of my life outside campus and will forever be part of memory at MIT.

Finally, I would like to thank my parents for their support to my graduate study

and career. I feel indebted as my time spent with them is significantly reduced after

moving the US. They are always supportive of my decisions, and keep reminding me

to relax more and eat healthy. I am grateful for their love and support in the past

five years.

6



Contents

1 Introduction 21

1.1 Motivations for materials science . . . . . . . . . . . . . . . . . . . . 21

1.1.1 Materials discovery paradigms . . . . . . . . . . . . . . . . . . 21

1.1.2 Application of machine learning in materials . . . . . . . . . . 23

1.2 Motivations for deep learning . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Short introduction to deep learning . . . . . . . . . . . . . . . 24

1.2.2 Inductive biases in neural networks . . . . . . . . . . . . . . . 25

1.3 Unified data representation for solid materials . . . . . . . . . . . . . 27

1.3.1 Data representation format . . . . . . . . . . . . . . . . . . . 27

1.3.2 Quantum mechanical implications . . . . . . . . . . . . . . . . 29

1.3.3 Thermodynamical implications . . . . . . . . . . . . . . . . . 31

1.4 Problem statement and thesis overview . . . . . . . . . . . . . . . . . 32

2 Crystal graph convolutional neural networks for the representation

learning of solid materials 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.2 Theoretical and practical motivations . . . . . . . . . . . . . . 36

2.1.3 Related prior research . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Invariances in periodic solid materials . . . . . . . . . . . . . . . . . . 36

2.3 Architecture of CGCNN . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Graph representation of solid materials . . . . . . . . . . . . . 37

2.3.2 Graph neural network architecture . . . . . . . . . . . . . . . 40

7



2.4 Predictive performance . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Application to the screening of solid electrolytes for batteries . . . . . 45

2.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.2 Stability parameter . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.3 Predicting the stability parameter with CGCNN ensembles . . 49

2.5.4 Screening of lithium containing compounds for interface stabi-

lization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Visualization of crystal graph convolutional neural networks 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 Theoretical and practical motivations . . . . . . . . . . . . . . 60

3.1.3 Related prior research . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Visualization for different material spaces . . . . . . . . . . . . . . . . 64

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Perovskite: compositional space . . . . . . . . . . . . . . . . . 65

3.3.3 Elemental boron: structural space . . . . . . . . . . . . . . . . 69

3.3.4 Materials Project: compositional and structural space . . . . . 75

4 Graph dynamical networks for unsupervised learning of atomic scale

dynamics in materials 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Section overview . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.2 Theoretical and practical motivations . . . . . . . . . . . . . . 84

4.1.3 Related prior research . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Architecture of graph dynamical networks . . . . . . . . . . . . . . . 86

4.2.1 Koopman analysis of atomic scale dynamics. . . . . . . . . . . 86

4.2.2 Learning feature map function with graph dynamical networks. 87

4.2.3 Hyperparameter optimization and model validation. . . . . . . 89

4.3 Advantage of learning local dynamics . . . . . . . . . . . . . . . . . . 90

8



4.4 Application to the understanding of complex dynamics . . . . . . . . 93

4.4.1 Silicon dynamics in solid-liquid interface . . . . . . . . . . . . 93

4.4.2 Lithium ion dynamics in polymer electrolytes . . . . . . . . . 95

4.4.3 Implications to lithium ion conduction . . . . . . . . . . . . . 98

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Supplementary notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.1 Computation of global dynamics from local dynamics in the toy

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Autonomous exploration of the space of polymer electrolytes with

Bayesian optimization and coarse-grained molecular dynamics 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Coarse Grained Molecular Dynamics-Bayesian Optimization framework 107

5.3 Exploration of the polymer electrolyte space . . . . . . . . . . . . . . 110

5.3.1 Defining three search spaces . . . . . . . . . . . . . . . . . . . 110

5.3.2 Performance of the exploration . . . . . . . . . . . . . . . . . 111

5.3.3 Understanding the effects of structural modification . . . . . . 112

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusion and outlook 121

6.1 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9



THIS PAGE INTENTIONALLY LEFT BLANK

10



List of Figures

1-1 The four paradigms of science: empirical, theoretical, computational,

and data-driven. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1-2 Weight sharing in convolution neural network (CNN) and its impact.

(a) An illustrative diagram that demonstrates how weights are shared

in CNN. [27] (b) The error rate of the best performing models in the

ImageNet competition [28]. . . . . . . . . . . . . . . . . . . . . . . . . 26

1-3 Representative types of different solid materials. (a) Crystals. Struc-

ture of BaTiO3. (b) Molecules. Structure of caffeine. (c) Low di-

mensional materials. Structure of graphene. (d) Amorphous materi-

als. Structure of silica glass. [44] (e) Complex materials. Structure

of a mixture of polyethylene oxide (PEO) polymer and lithium bis-

(trifluoromethanesulfonyl)-imide (LiTFSI) salts. [45] . . . . . . . . . 30

11



2-1 Illustration of the crystal graph convolutional neural network (CGCNN).

(a) Construction of the crystal graph. Crystals are converted to graphs

with nodes representing atoms in the unit cell and edges representing

atom connections. Nodes and edges are characterized by vectors cor-

responding to the atoms and bonds in the crystal, respectively. (b)

Structure of the convolutional neural network on top of the crystal

graph. 𝑅 convolutional layers and 𝐿1 hidden layers are built on top of

each node, resulting in a new graph with each node representing the

local environment of each atom. After pooling, a vector representing

the entire crystal is connected to 𝐿2 hidden layers, followed by the

output layer to provide the prediction. . . . . . . . . . . . . . . . . . 38

2-2 The performance of CGCNN on the Materials Project database[70].

(a) Histogram representing the distribution of the number of elements

in each crystal. (b) Mean absolute error (MAE) as a function of train-

ing crystals for predicting formation energy per atom using different

convolution functions. The shaded area denotes the MAE of DFT cal-

culation compared with experiments[71]. (c) 2D histogram represent-

ing the predicted formation per atom against DFT calculated value.

(d) Receiver operating characteristic (ROC) curve visualizing the re-

sult of metal-semiconductor classification. It plots the proportion of

correctly identified metals (true positive rate) against the proportion of

wrongly identified semiconductors (false positive rate) under different

thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

12



2-3 Parity plots comparing the elastic properties: (a) shear modulus 𝐺, and

elastic constants (b) 𝐶11, (c) 𝐶12 and (d) 𝐶44 predicted by the machine

learning models to the DFT calculated values. The shear modulus

is predicted using CGCNN and the elastic constants 𝐶11 and 𝐶44 are

predicted using gradient boosting regression while 𝐶12 is predicted us-

ing Kernel ridge regression. The parity plot for shear modulus is on

680 test data points while that for the elastic constants contains all

available data (170 points) where each prediction is a cross-validated

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2-4 Contribution of hydrostatic stress, deviatoric stress and surface tension

to the stability parameter as a function of surface roughness wavenum-

ber. The surface tension term starts dominating at high 𝑘 and ulti-

mately stabilizes the interface after 𝑘 = 𝑘crit. The contributions are

plotted for a material with shear modulus ratio 𝐺/𝐺Li = 1 and Pois-

son’s ratio 𝜈 = 0.33 which is not stable (𝜒 > 0) at 𝑘 = 108 m−1.

The red line shows the fraction of surface tension contribution to the

stability parameter obtained by dividing the absolute value of its con-

tribution by the sum of absolute values of all components. . . . . . . 54

2-5 Visualization of the latent space representations of 500 random training

and 500 random test crystals using t-distributed stochastic neighbor

embedding algorithm for CGCNN. . . . . . . . . . . . . . . . . . . . 55

2-6 Results of isotropic screening for 12,950 Li- containing compounds.

Distribution of ensemble averaged (a) stability parameter for isotropic

Li-solid electrolyte interfaces at 𝑘 = 108 m−1 and (b) critical wave-

length of surface roughness required for stability. None of the materials

in the database can be stabilized without the aid of surface tension.

The required critical surface roughness wavenumber depends on the

contribution of the stress term in the stability parameter. . . . . . . . 56

13



2-7 Isotropic stability diagram showing the position of all solid electrolytes

involved in the screening. 𝐺Li is the shear modulus of Li=3.4 GPa. The

critical 𝐺/𝐺Li line separating the stable and unstable regions depends

weakly on the Poisson’s ratio, so the lines corresponding to 𝜈𝑠 = 0.33

and 0.5 are good indicators for assessment of stability. The darker

regions indicate more number of materials in the region. . . . . . . . 58

3-1 The structure of the crystal graph convolutional neural networks. . . 62

3-2 Learning curves for the three representative material spaces. The

mean absolute errors (MAEs) on test data is shown as a function of

the number of training data for the perovskites [185, 186], elemental

boron [181], and materials project [139] datasets. . . . . . . . . . . . 65

3-3 Visualization of the element representations learned from the perovskite

dataset. (a) The perovskite structure type. (b) Visualization of the

two principal dimensions with principal component analysis. (c) Pre-

diction performance of several atom properties using a linear model on

the element representations. . . . . . . . . . . . . . . . . . . . . . . . 66

3-4 Extraction of site energy of perovskites from total energy above hull.

(a, b) Periodic table with the color of each element representing the

mean of the site energy when the element occupies A site (c) or B site

(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-5 Visualization of the local environment representations learned from the

elemental boron dataset. The original 64D vectors are reduced to 2D

with the t-distributed stochastic neighbor embedding algorithm. The

color of each plot is coded with learned local energy (a), number of

neighbors calculated by Pymatgen package [192] (b), and density (c).

Representative boron local environments are shown with the center

atom colored in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3-6 Example local environments of elemental boron in the four regions: (a-

c) disconnected, (d-f) amorphous, (h-i) layered, and (j-l) icosahedron. 73

14



3-7 The boron fullerene local environments in the boron structural space.

The representation of each distinct local environments in the two B40

structures are plotted in the original boron structural space in Fig. 4. 74

3-8 Visualization of the two principal dimensions of the element repre-

sentations learned from the Materials Project dataset using principal

component analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3-9 Visualization of the local oxygen (a) and sulfur (b) coordination envi-

ronments. The points are labelled according to the type of the center

atoms in the coordination environments. The colors of the upper parts

are coded with learned local energies, and the color of the lower parts

are coded with number of neighbors [192], octahedron order parameter,

and tetrahedron order parameter [195]. . . . . . . . . . . . . . . . . . 77

3-10 The local energy of oxygen (upper) and sulfur (lower) coordination

environments as a function of atomic number. The blue dotted line

denotes the electronegativity of each element. . . . . . . . . . . . . . 79

3-11 The averaged local energy of 734,077 distinct coordination environ-

ments in the Materials Project dataset. The color is coded with the

average of learned local energies while having the corresponding ele-

ments as the center atom and the first neighbor atom. White is used

when no such coordination environment exists in the dataset. . . . . . 81

4-1 Illustration of the graph dynamical networks architecture. The MD

trajectories are represented by a series of graphs dynamically con-

structed at each time step. The red nodes denote the target atoms

whose dynamics we are interested in, and the blue nodes denote the

rest of the atoms. The graphs are input to the same graph convolu-

tional neural network to learn an embedding 𝑣
(𝐾)
𝑖 for each atom that

represents its local configuration. The embeddings of the target atoms

at 𝑡 and 𝑡 + 𝜏 are merged to compute a VAMP loss that minimizes the

errors in Eq. (4.3) [208, 211]. . . . . . . . . . . . . . . . . . . . . . . 88

15



4-2 A two-state dynamic model learned for lithium ion in the face-centered

cubic lattice. (a) Structure of the FCC lattice and the relative energies

of the tetrahedral and octahedral sites. (b-d) Comparison between the

local dynamics (left) learned with GDyNet and the global dynamics

(right) learned with a standard VAMPnet. (b) Relaxation timescales

computed from the Koopman models. (c) Assignment of the two states

in the FCC lattice. The color denotes the probability of being in state 0.

(d) CK test comparing the long-term dynamics predicted by Koopman

models at 𝜏 = 10 ps (blue) and actual dynamics (red). The shaded

areas and error bars in (b, d) report the 95% confidence interval from

five independent trajectories by dividing the test data equally into chunks. 92

4-3 A four-state dynamical model learned for silicon atoms at solid-liquid

interface. (a) Structure of the silicon-gold two-phase system. (b) Cross

section of the system, where only silicon atoms are shown and color-

coded with the probability of being in each state. (c) The distribution

of silicon atoms in each state as a function of z-axis coordinate. (d)

Relaxation timescales computed from the Koopman models. (e) Eigen-

vectors projected to each state for the three relaxations of Koopman

models at 𝜏 = 3 ns. (f) CK test comparing the long-term dynamics

predicted by Koopman models at 𝜏 = 3 ns (blue) and actual dynam-

ics (red). The shaded areas and error bars in (d, f) report the 95%

confidence interval from five sets of Si atoms by randomly dividing the

target atoms in the test data. . . . . . . . . . . . . . . . . . . . . . . 94

4-4 Comparison between the learned states and 𝑞3 order parameters for

silicon atoms at the solid-liquid interface. (a) Cross section of the

system, where the silicon atoms are color-coded with their 𝑞3 order

parameters. (b) Distribution of the 𝑞3 order parameter for the silicon

atoms of each state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

16



4-5 A four-state dynamical model learned for lithium ion in a PEO/LiTFSI

polymer electrolyte. (a) Structure of the PEO/LiTFSI polymer elec-

trolyte. (b) Representative configurations of the four Li-ion states

learned by the dynamical model. (c) Charge integral of each state

around a Li-ion as a function of radius. (d) Relaxation timescales

computed from the Koopman models. (e) Eigenvectors projected to

each state for the three relaxations of Koopman models at 𝜏 = 0.8 ns.

(f) CK test comparing the long-term dynamics predicted by Koopman

models at 𝜏 = 0.8 ns (blue) and actual dynamics (red). The shaded

areas and error bars in (d, f) report the 95% confidence interval from

four independent trajectories in the test data. . . . . . . . . . . . . . 96

4-6 Contribution from each transition to lithium ion conduction. Each

bar denotes the percentage that the transition from state 𝑖 to state

𝑗 contributes to the overall lithium ion conduction. The error bars

report the 95% confidence interval from four independent trajectories

in test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4-7 Global relaxation timescales computed for lithium ion hopping in face-

centered cubic (FCC) lattice with a 8 dimensional feature space. . . 103

5-1 Illustration of the Coarse Grained Molecular Dynamics-Bayesian Op-

timization framework. Schematics of the polymer electrolyte mate-

rials design pathway by Bayesian Optimization (BO) guided coarse

grained molecular dynamics (CGMD) simulation. Materials design

starts with the coarse graining process, to transform the conventional

chemical species space to a continuous space composed of CG parame-

ters (¬→). This space is then explored by BO guided CGMD simu-

lations in iterations, to predict the relationships between the transport

properties and the associated CG parameters (→®). . . . . . . . . 108

17



5-2 Evaluation of the Bayesian Optimization training process. (a) Illustra-

tion of the CGMD parameters, which are divided into three groups for

describing the properties associated with the anions, secondary sites

and backbone chains respectively (from left to right), (b) the inverse

of characteristic length scale for each CGMD parameter in the BO

training process, (c) the design space exploration efficiency of BO in

comparison with random search, and (d) the BO predicted conductiv-

ities in comparison with the CGMD test data. . . . . . . . . . . . . . 110

5-3 Anion effects on lithium conductivity. (a) 3D isosurface plot at the

lithium conductivity value of PEO-LiTFSI, (b) 2D 𝜎Li+ landscape

projected in 𝜀cat-ani-𝜀cha-ani and 𝑟ani-𝜀cha-ani planes, and (c) 1D

cross sectional plots showing the dependence of 𝜎Li+ on 𝜀cat-ani and

𝑟ani respectively, with the uncertainty evaluations and the acquisition

function values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5-4 Effects of secondary sites and polymer backbone chains on lithium

conductivity. A series of 2D 𝜎Li+ landscape plots for the materials

exploration of (a) secondary sites, and (b) polymer backbone chains.

Each subfigure shows the dependence of 𝜎Li+ on a pair of CGMD pa-

rameters, with the other parameters fixed at the values of the reference

PEO-LiTFSI system. The red dots on the graphs denote the reference

PEO-LiTFSI system, with the arrows pointing out the directions to

maximize 𝜎Li+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5-5 CGMD-BO predictions on conductivity for several common electrolyte

systems. The trained BO model predicts conductivities for the PEO-

LiTFSI, PEO-LiFSI, PEO-LiPF6 and PEO-LiCl systems, which are

plotted with the uncertainty information (shown as error bars) and

their corresponding CG parameters, in comparison with experimental

measurements (represented by asterisks)[263, 269, 278, 279]. . . . . . 117

18



List of Tables

2.1 Properties used in atom feature vector 𝑣
(0)
𝑖 . . . . . . . . . . . . . . . 39

2.2 Summary of the prediction performance of seven different properties

on test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Comparison of RMSE in log(GPa) for shear and bulk moduli . . . . . 52

2.4 Solid electrolyte screening results for stable electrodeposition with Li

metal anode together with their materials project id ranked by critical

wavelength of surface roughening 𝜆crit required to stabilize electrode-

position. 𝜒 is the stability parameter in kJ/mol·nm which needs to be

negative for stability, and 𝑘 = 2𝜋/𝜆 is the surface roughness wavenum-

ber. Low 𝑘 corresponds to 𝑘 = 108 m−1 while high 𝑘 corresponds to

a wavelength 𝜆 = 2𝜋/𝑘 = 1 nm. Only materials with probability of

stability 𝑃𝑠 > 0.05 at high 𝑘 are shown. Uncertainty in 𝜒 and 𝜆crit

(standard deviation of their distributions) and 𝑃𝑠 are only shown for

materials whose properties were predicted using CGCNN and not for

those whose properties were available in training data. . . . . . . . . 57

3.1 Perovskites with energy above hull lower than 0.2 eV/atom discovered

using combinational search. . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 The charge carried by each state in PEO/LiTFSI. . . . . . . . . . . . 97

19



THIS PAGE INTENTIONALLY LEFT BLANK

20



Chapter 1

Introduction

1.1 Motivations for materials science

1.1.1 Materials discovery paradigms

The development of new materials plays a central role in the advancement of our

civilization. From the stone age to modern society, fundamental innovations in ma-

terials have lead to exponential increases of productivity and prosperity. However,

the creation and development of a novel material with desired properties is a no-

toriously difficult and slow process, mostly due to the lack of understanding of the

structure-property relations. Consequently, a significant part of material innovations

is still driven by trial-and-error, and many milestone materials are discovered by ac-

cident rather than careful design, like copper oxide superconductors in 1986 [1] and

perovskite solar cells in 2013 [2].

The paradigms of materials discovery have been gradually shifting from empirical

driven towards simulation/data driven over history. 1 Early innovations in materials

are usually results from numerous trial-and-errors and empirical knowledge gathered

by material scientists. One famous example of this first paradigm is the discovery of

a carbonized cotton as the filament of the lightbulb by Thomas Edison in 1880, after
1There are multiple different ways to divide the paradigms in materials discovery. Here, we choose

the narrative by Agrawal et al. in 2016 [3] which divides the entire history into four paradigms.
Nevertheless, the overall trend stays the same despite the differences in ways of division.
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Figure 1-1: The four paradigms of science: empirical, theoretical, computational, and
data-driven. [3]

thousands of failed experiments [4]. Since the early 20th century, the development of

quantum mechanics and solid state physics shifted the paradigm to use physical laws

and semi-empirical models to guide the design of new materials, as material scientists

begin to understand that the atomic structure fundamentally determines material

property. Up to today, many material science research are still motivated by exploring

neighboring elements in the periodic table, which arranges elements according to

periodic trends. In the late 20th century, increasingly powerful computers began to

allow the direct computing of material properties by solving the Schrödinger equation,

leading to the third paradigm of materials discovery. These simulation methods,

called ab-initio simulations, are distinct from earlier physical models as they simulate

material properties purely based on first principles like quantum mechanical theory,

instead of relying on physical parameters that are fitted using experimental data. The

success of ab-initio simulations, especially density functional theory [5], motivated the

creation of the Materials Genome Initiative in 2011 [6] to explore the vast space of

materials computationally and provide open materials data for the design of novel

materials.

Many believe that machine learning and data driven approaches lead to the fourth
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paradigm for materials discovery. [3, 7, 8] Since the introduction of Materials Genome

Initiative, an increasing number of open databases have emerged that shares both

simulation and experiment data of various classes of materials. For example, a recent

review paper summarized 10 computational databases and 11 experimental databases

that are publicly accessible [7]. There has also been a trend of increased automation

in both material synthesis and characterization. [9, 10] The open databases and

automation provide an opportunity to develop new data-driven methods that guide

the design of novel materials and accelerate the discovery process, and they can

also potentially lead to new theories about structure-property relations as patterns

emerge from large amounts of data. However, the large size of open material data

also indicates that traditional data analysis approaches are incapable of handling

these large databases, requiring the development of new machine learning tools for

materials. In Chapter 1.1.2, we will overview several classes machine learning tools

for solid materials.

1.1.2 Application of machine learning in materials

In this chapter, we overview several types of goals that we aim to achieve by applying

machine learning methods to materials discovery. We will focus on their impact to

materials design and understanding rather than the methodology, but we list several

review papers where various methods are discussed [7, 11, 12]. In chapter 1.4, we

will discuss our deep learning approach to provide a unified framework that achieves

these different goals.

Property prediction. The goal of property prediction models is to predict

material properties based on their structure or chemical composition. Such models

can usually run orders of magnitude faster than ab-initio simulations and experiment

measurements when they are applied to new materials, thus significantly accelerate

material discovery. They been successfully applied to accelerate the screening of

organic light-emitting diodes [13], lithium ion batteries [14], etc. A special class of

property prediction models are force field models [15], which aim to predict the forces

on each atom given the structure of the material. These machine learning force fields
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can run close to the speed of classical force fields but have the accuracy close to

ab-initio force fields.

Interpretation and visualization. Material scientists are generally not only

interested in discovering new materials, but also understanding how material struc-

tures affect their performances. The goal of interpreting machine learning models

is to understand the key contributing factors to the property of interest, which can

potentially lead to new theory for materials design. Visualization help to understand

complex material spaces as they usually include tens of thousands of structures. For

example, it can help navigate the complex space of ice structures from zeolite net-

works. [16].

Active learning. Active learning aims to explore a complex material space, like

intermetallic alloys [17] and the configuration of atomic structures [18], in an iterative

fashion that minimizes the number of simulations or experiments. In contrast to

property prediction, active learning actively samples the material space and selects

materials to evaluate in each iterative step, aiming to thoroughly explore the space

with minimum amount of evaluations.

Inverse design. Inverse design aims to directly predict the material structure

that has the optimum performance from existing data. Unlike property prediction

models that are used to evaluate an existing material space, inverse design aims to

predict material structures that are not in the dataset. [19]

1.2 Motivations for deep learning

1.2.1 Short introduction to deep learning

Deep learning is a class of machine learning algorithms that uses multiple layers

of neural networks to progressively extract higher level features from the raw input

directly from data [20]. In the past ten years, deep learning methods have dramatically

improved the state-of-the-art in computer vision, speech recognition, and natural

language processing tasks [21], which leads to Hinton, LeCun and Bengio winning
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the Turing Award in 2018. Compared with other machine learning methods, deep

learning do not rely on human designed features but aims to directly learn the task in

an end-to-end fashion. As a result, it usually over-performs other methods when there

are large amounts of data, which is a key factor of its success due to the increasing

data sizes in multiple fields [22].

The simplest form of neural networks, feedforward networks, include multiple

layers of linear transformations plus non-linear activation functions. In each layer,

the input vector 𝑥 ∈ R𝑚 is transformed by,

𝑓(𝑥; 𝑤, 𝑏) = 𝑤ᵀ𝑥 + 𝑏, (1.1)

where both 𝑤 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑛 are learned weights. Often non-linearity is added

via an activation function like ReLU [23] after 𝑓 in each layer. Then, multiple layers of

such transformations are applied in a chain, forming multi-layer feedforward networks

𝑓 (𝑘)(𝑓 (𝑘−1)(...𝑓 (1)(𝑥)...)).

A more general neural network differs from this simple form in several aspects:

1) there might be more than one input vectors, 2) each layer might be more com-

plicated than linear transformations, and 3) layers might be composed in different

ways. However, the general idea is to build complex neural network architecture by

combining simple components based on the type of data.

1.2.2 Inductive biases in neural networks

Inductive biases are the set of assumptions in a learning algorithm that are inde-

pendent of the observed data. [24] In neural networks, one of the most important

inductive biases is the symmetry, or the sharing of weights, within the network ar-

chitecture. In the case of feedforward networks, there is no symmetry because the

weights are not shared in Eq. 1.1. This means that each individual parameter in the

matrix 𝑤 ∈ R𝑚×𝑛 has to been learned independently. For a 640 × 480 pixel sized

image, the input vector size 𝑚 is 640 × 480 = 307, 200, so the number of independent

parameters in the first layer will be 307, 200×10 = 30, 720, 000 if we choose an output
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size 𝑛 of 100, which is almost impossible to learn from data. The lack of sharing of

weights in a feedforward neural network makes it unsuitable for complex tasks.

A key breakthrough in modern deep learning is to encode the symmetry of data

into the neural network architecture in the form of weight sharing as inductive biases.

[25] For example, image data has a translation symmetry for most tasks. To classify

an image of a flower, the result should not change if the location of the flower shifts

from left to right within the image. This symmetry is not encoded in a feedforward

network, which means that a model learned from an image with a flower on the left

does not generalize to an image with a flower on the right. The problem is solved

by the introduction of convolutional neural network (CNN) [26], which shares the

weights across the grid-like structure in images through a convolution operation, as

illustrated in Fig. 1-2(a). The weight sharing significantly reduces the number of

independent parameters in the networks by incorporating known symmetry in the

image data. It has been tremendously successful in many practical applications, and

nearly all best performing models in the ImageNet competition are variants of the

CNN architecture (Fig. 1-2(b)).

(a) (b)

Figure 1-2: Weight sharing in convolution neural network (CNN) and its impact. (a)
An illustrative diagram that demonstrates how weights are shared in CNN. [27] (b)
The error rate of the best performing models in the ImageNet competition [28].

Different network architectures are developed to encode the symmetries of various

data types into the neural networks. We list several examples below to demonstrate

how this concept works in a broader context, and readers can refer to Ref. [25] which

discussed the inductive biases in neural networks in depth.

Recurrent neural networks. Recurrent neural networks (RNNs) aim to capture
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the time invariance in sequential data. [29] RNNs are typically used for language data

where sentences and paragraphs are encoded as a sequence of words. Weights are

shared across the sequence by applying the same weights to each work sequentially,

which enables the generalization to different time in a sequence.

Graph neural networks. Graph neural networks (GNNs) aim to capture the

node and edge invariances in graph structured data. [30] It has been used for learning

social networks and molecular graphs, as well as many other problems. [31] Weights

are shared across both nodes and edges in a graph, which enables the generalization

across different graph sizes.

Point networks. Point networks (PointNets) aim to capture the permutation

invariance of points in 3D point clouds. [32] Point clouds are a set of data points in

3D space, which are usually generated by 3D scanners. Weights are shared across the

points which enable the generalization across 3D space.

1.3 Unified data representation for solid materials

1.3.1 Data representation format

In this section, we seek a general form to represent an arbitrary solid material. We

hope this representation will cover various different types of solid materials in a unified

way, but still capture the invariances shared by these materials.

We represent the structure of a solid materials as a collection of atoms under a

3D periodic boundary condition. Mathematically, a solid material made up with 𝑁

atoms can be represented by a list of three vectors 𝑚 = {𝑥, 𝑧, 𝑙}, in which

∙ 𝑥 ∈ R𝑁×3, denoting the coordinates of 𝑁 atoms in 3D space;

∙ 𝑧 ∈ N𝑁 , denoting the atomic numbers of each atom in the structure;

∙ 𝑙 ∈ R3×3, denoting the periodic boundary condition of the system, which is

represented by 3 lattice vectors.
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This representation, which we call periodic solid representation, is widely used

to represent solid materials in atomic scale simulations, supported by many existing

standard file formats like the Crystallographic Information File (CIF) [33], Protein

Data Bank (pdb) file [34], etc. Below, we list several examples of how different types

of materials can be represented in this format.

Crystals. Crystal materials (Fig. 1-3(a)) can be naturally represented with pe-

riodic solid representation due to their periodicity. The structure of crystals can

measured experimentally using X-ray diffraction (XRD) [35]. Large databases like

the Inorganic Crystal Structure Database (ICSD) [36] collects hundreds of thousands

of crystal structures.

Molecules. Molecular materials (Fig. 1-3(b)) are often represented by their

molecular graphs which describes the connectivity between atoms. However, molec-

ular graphs do not capture the 3D structure of molecules, which can be important

for many molecular properties. Using the periodic solid representation, molecules

can be represented by an isolated molecule with large vacuum space around it un-

der a periodic boundary condition. Many molecules have structural polymorphism

while forming crystals, which has important pharmaceutical significance. [37] These

different structures can be easily capture with periodic solid representation.

Low dimensional materials. Low dimensional materials (Fig. 1-3(c)) are a

large class of materials in which periodicity only exists in less than three dimensions.

Typical 0D, 1D, and 2D materials includes quantum dots [38], carbon nanotube [39],

and graphene [40]. They can be represented with periodic solid representation by

introducing large vacuum spaces in dimensions that are not periodic.

Amorphous materials. Amorphous materials (Fig. 1-3(d)) are atomic systems

that lack long range order in any direction. [41] Typical amorphous materials include

glasses, polymers, gels, etc. Liquids are sometimes considered as amorphous materials

as well. Despite the lack of periodicity, representative structures exist for most amor-

phous materials. Therefore, they can usually be represented by atomic structures in

a very large periodic box where the boundary effects can be ignored.

Complex materials. Complex materials (Fig. 1-3(e)) are composed of more
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than one types of above simpler materials. For example, metal-organic frameworks

are a class of materials consisting of metal ions coordinated to organic compounds.

[42] Solid polymer electrolytes are mixture of polymers and inorganic salts. [43] De-

pending on their periodicity, complex materials can also by represented using similar

techniques as low dimensional materials and amorphous materials.

1.3.2 Quantum mechanical implications

The periodic solid representation of a material uniquely defines a quantum mechanical

system. Given the list 𝑚 = {𝑥, 𝑧, 𝑙}, it defines an atomic system with 𝑁 atoms and 𝑛

electrons under a periodic boundary condition whose full Hamiltonian can be written

as,
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where 𝑀𝐼 , 𝑍𝐼 , 𝑅𝐼 are the mass, atomic number, and position of 𝐼th nucleus, 𝑚, 𝑟𝑖

are the mass, and position of 𝑖th electron, 𝑁 and 𝑛 are the total number of nuclei

and electrons, } and 𝑒 are Planck’s constant and electron charge.

The many body wavefunction Ψ(𝑟, 𝑅) of this system can be solved with the

following eigenvalue problem,

�̂�Ψ(𝑟, 𝑅) = 𝐸Ψ(𝑟, 𝑅), (1.3)

which includes both the nuclei and electrons. But in most cases, we can use the

Born–Oppenheimer approximation to separate the motion of nuclei and electrons.

Assuming that Ψ(𝑟, 𝑅) = Ψ(elec)(𝑟, 𝑅)Ψ(nuc)(𝑅), we could separate the full Hamilto-

nian into a nuclei and an electron part,

[�̂�nuc(𝑅) + �̂�elec(𝑅, 𝑟))]Ψ(elec)(𝑟, 𝑅)Ψ(nuc)(𝑅) = 𝐸Ψ(elec)(𝑟, 𝑅)Ψ(nuc)(𝑅). (1.4)
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(a) (b)

(c) (d)

(e)

Figure 1-3: Representative types of different solid materials. (a) Crystals. Structure
of BaTiO3. (b) Molecules. Structure of caffeine. (c) Low dimensional materials.
Structure of graphene. (d) Amorphous materials. Structure of silica glass. [44] (e)
Complex materials. Structure of a mixture of polyethylene oxide (PEO) polymer and
lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) salts. [45]
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Then, one could obtain an electronic only eigenvalue problem,

�̂�elec(𝑅, 𝑟)Ψ(elec)(𝑟, 𝑅) = 𝐸(𝑅)Ψ(elec)(𝑟, 𝑅). (1.5)

In principle, after obtaining the electronic wavefunction Ψ(elec)(𝑟, 𝑅), any material

property can be computed with its corresponding quantum operators. Note that in

this derivation, the periodicity of the system is ignored for simplicity. The derivation

under periodic boundary condition is very similar.

Consequently, we know that the periodic solid representation uniquely defines a

mapping,

𝑓 : {𝑥, 𝑧, 𝑙} ↦→ 𝑝, (1.6)

where 𝑝 represents an arbitrary material property. This mapping is valid under the

Born–Oppenheimer approximation when the motion of the nuclei and electrons can

be separated.

We need to pay attention to a special property, energy 𝐸(𝑥, 𝑧, 𝑙), because the

system tends to minimize its total energy by changing 𝑥 and 𝑙 and reach a ground

state without an external force. It means that the majority of materials in the space

of {𝑥, 𝑧, 𝑙} ∈ {R𝑁×3,N𝑁 ,R3×3} are not in the ground state and will not form a stable

material. In most cases, we are interested in stable materials which form a manifold

in the space of {R𝑁×3,N𝑁 ,R3×3}.

1.3.3 Thermodynamical implications

In section 1.3.2, our discussion did not include the temperature effect and is only valid

at 0 K. At a finite temperature, the structure of a material will deviate from its ground

state structure, forming an ensemble of structures whose distribution is determined

by the temperature of the system. It means that macroscopic properties, material

properties measured in real life, are determined by this ensemble of structures instead

of a single structure. In statistical physics, the structures follow specific distributions

according the thermodynamic ensembles. For example, in an isolated system at a fixed
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temperature, structures follow a canonical ensemble with a probability distribution,

𝑃 (𝑥, 𝑧, 𝑙) ∝ 𝑒−𝐸(𝑥,𝑧,𝑙)/(𝑘𝐵𝑇 ), (1.7)

where 𝑘𝐵 is the Boltzmann’s constant.

The temperature effect has different implications for different types of materials.

For most solid materials, the atoms will only vibrate around its ground-state position

at room temperature. It indicates that thermodynamical effect can be approximated

with small perturbations to the ground state structure, and Eq. 1.6 still holds if we

add the vibration terms into the properties. For liquids and amorphous materials,

the energy landscape is more flat, making their macroscopic properties more difficult

to define given a single ground state structure.

1.4 Problem statement and thesis overview

In this thesis, we aim to develop a set of unified deep learning methods that solve

various learning problems for solid materials. In each chapter of the thesis, we focus

on one different learning problem. Each chapter will start by introducing the motiva-

tions of the learning problem, then discuss the details of methodology, and end with

applications to solve realistic material science problems. The thesis is roughly guided

by the following four problems.

Problem 1: how to create a neural network architecture that encodes material-

specific inductive biases and whether such architecture outperforms existing methods?

This problem is the foundation of this thesis. In section 1.3, we defined a unified

data representation for the structure of solid materials. This data representation

differs from existing data categories like graphs and point clouds, since it has both

a discrete component and continuous component. This distinction makes it difficult

to use existing neural network architectures for solid materials. In Chapter 2, we

will study this problem by introducing a crystal graph convolutional neural networks

(CGCNN) architecture [46] that encodes fundamental symmetries of solid materials,
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and we will demonstrate the advantages of this architecture over traditional methods

and its applications in the design of battery materials [47].

Problem 2: how to extract intuitions that can be understood by human researchers

from the learned representations?

In materials science, it is often desirable to understand the relationship between

material structures and properties, since it provides insights that may guide the design

of new materials. But improving the interpretability of neural networks has been a

challenge for deep learning. In chapter 3, we explore a variety of methods to extract

insights from the learned representations, and demonstrate its application to several

material systems. [46, 48]

Problem 3: how to learn the representation of atoms in solid materials when no

explicit property labels are available?

In problem 1, we focused on the supervised learning setting that learns the

structure-property relations in Eq. 1.6. But it is generally expensive to obtain prop-

erty labels either from simulation or experiment. In chapter 4, we explore a dif-

ferent scenario to learn the representation of atoms from time-series data without

the property labels. The key motivation of this problem is learn a low dimensional

representation for atoms and small molecules to understand their complex dynamics

behavior from molecular dynamics simulation data. We will also demonstrate the ap-

plication of this method to study complex material systems like amorphous polymer

electrolytes and liquid-solid interfaces. [45]

Problem 4: how to search an unknown material space in a way that balances

both exploration and exploitation?

The previous problems focus on learning from existing material data. But no data

is available when we try to explore an unknown material space. What is the most

efficient way to search this space? The major challenge in the problem is the balance

of exploration and exploitation. Exploration means searching unknown regions of

the space, and exploitation means using existing data to find optimum materials.

Designing a strategy to balance these two factors can lead to efficient search of a

material space that does not miss potentially important materials. In chapter 5, we
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use Bayesian optimization to tackle this problem and apply the approach to the search

of polymer electrolytes. [49]
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Chapter 2

Crystal graph convolutional neural

networks for the representation

learning of solid materials

2.1 Introduction

2.1.1 Chapter overview

In this chapter, we present a generalized crystal graph convolutional neural networks

(CGCNN) framework for the representation learning of periodic solid materials that

respects the fundamental invariances. We will first discuss the invariances of periodic

solid materials that should be encoded in a neural network architecture. Then, we

present how CGCNN encode these invariances into its architecture. Further, we

demonstrate the performance of CGCNN in both regression and classification tasks

to predict material properties. Finally, we explore the application of CGCNN to a

real-world problem for materials design – designing solid electrolytes for lithium metal

batteries.
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2.1.2 Theoretical and practical motivations

From a theoretical perspective, we aim to solve the supervised learning problem to

predict material properties from their structures,

𝑦 = 𝑓(𝑥, 𝑧, 𝑙), (2.1)

where 𝑓 is a neural network, {𝑥, 𝑧, 𝑙} is a solid material, and 𝑦 is a material property.

The goal is to encode the known invariances of solid materials directly into the ar-

chitecture of 𝑓 as inductive biases, aiming to achieve better performance than other

ML approaches and keep the methods general to various types of solid materials.

From a practical perspective, achieving good performance in the supervised learn-

ing problem enables the accelerated screening of new materials in many domains. It is

extremely expensive to both measure material properties experimentally or compute

them using simulation approaches. A machine learning model that predicts properties

with good accuracy can usually run 104-106 orders of magnitude faster than quantum

mechanical simulations.

2.1.3 Related prior research

The arbitrary size of crystal systems poses a challenge in representing solid materials,

as they need to be represented as a fixed length vector in order to be compatible with

most ML algorithms. This problem is previously resolved by manually construct-

ing fixed-length feature vectors using simple material properties[50–54] or designing

symmetry-invariant transformations of atom coordinates[55–57]. However, the former

requires case-by-case design for predicting different properties and the latter makes

it hard to interpret the models as a result of the complex transformations.

2.2 Invariances in periodic solid materials

In section 1.3, we proposed an unified representation for solid materials as a three

member list 𝑚 = {𝑥, 𝑧, 𝑙}. For a specific solid material, the quantum mechanical
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description of the system (Eq. 1.2) guarantees the following invariances.

∙ Permutation invariance. Exchanging two identical atoms (e.g. two hydrogen

atoms) will not change the representation of the system. It means that ex-

changing 𝑥𝑖 ∈ R3 and 𝑥𝑗 ∈ R3 should not change the learned representation if

𝑧𝑖 = 𝑧𝑗.

∙ Periodicity. Choosing different unit cells for the periodic system will not change

the representations of the system. It means that 𝑚1 = {𝑥1, 𝑧1, 𝑙1} and 𝑚2 =

{𝑥2, 𝑧2, 𝑙2} should have the same learned representation if they are different

unit cells of the same periodic structure.

2.3 Architecture of CGCNN

2.3.1 Graph representation of solid materials

The main idea in our approach is to represent the crystal structure by a crystal graph

that encodes both atomic information and bonding interactions between atoms, and

then build a convolutional neural network on top of the graph to automatically extract

representations that are optimum for predicting target properties by training with

data. As illustrated in Figure 2-1 (a), a crystal graph 𝒢 is an undirected multigraph

which is defined by nodes representing atoms and edges representing connections

between atoms in a crystal. The crystal graph is unlike normal graphs since it allows

multiple edges between the same pair of end nodes, a characteristic for crystal graphs

due to their periodicity, in contrast to molecular graphs. Each node 𝑖 is represented

by a feature vector 𝑣𝑖, encoding the property of the atom corresponding to node 𝑖.

Similarly, each edge (𝑖, 𝑗)𝑘 is represented by a feature vector 𝑢(𝑖,𝑗)𝑘
corresponding to

the 𝑘-th bond connecting atom 𝑖 and atom 𝑗.

For the same crystal structure 𝑚 = {𝑥, 𝑧, 𝑙}, there can be multiple different graph

representations depending on 1) how connectivity between nodes are determined; 2)

how node feature vectors 𝑣
(0)
𝑖 are initialized; and 3) how edge feature vectors 𝑢(𝑖,𝑗)(0)

𝑘

are initialized.
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Figure 2-1: Illustration of the crystal graph convolutional neural network (CGCNN).
(a) Construction of the crystal graph. Crystals are converted to graphs with nodes
representing atoms in the unit cell and edges representing atom connections. Nodes
and edges are characterized by vectors corresponding to the atoms and bonds in the
crystal, respectively. (b) Structure of the convolutional neural network on top of the
crystal graph. 𝑅 convolutional layers and 𝐿1 hidden layers are built on top of each
node, resulting in a new graph with each node representing the local environment of
each atom. After pooling, a vector representing the entire crystal is connected to 𝐿2
hidden layers, followed by the output layer to provide the prediction.
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In this work, we propose the following methods to construct the graph represen-

tations, but other methods are also possible under the framework and several such

methods [58] have been proposed since the publication of our work.

Connectivity between nodes. We explore two different methods to deter-

mine the connectivity. The first is inspired by Ref. [50] which utilizes the Voronoi

tessellation. Only strong bonding interactions are considered in this crystal graph

construction. The second method is the nearest neighbor algorithm, where we con-

nect 12 nearest neighbors in the initial graph construction. As we will discuss later,

the introduction of a convolution function with gated structure (Eq. 2.5) allows the

neural networks to automatically learn the importance of each edge. Practically, we

find that both methods perform similarly using Eq. 2.5 as the convolution function,

significantly outperforming Eq. 2.4.

Node features. The nodes are initialized by a unique mapping from the atomic

number to a feature vector 𝑓node : 𝑧𝑖 ↦→ 𝑣
(0)
𝑖 . We designed a feature vector that reflects

the similarity between different elements using their element properties summarized

in Table 2.1, which allows the neural networks to generalize to elements that appear

less frequently in the dataset.

Table 2.1: Properties used in atom feature vector 𝑣
(0)
𝑖

Property Unit Range # of categories
Group number – 1,2, ..., 18 18
Period number – 1,2, ..., 91 9

Electronegativity[59, 60] – 0.5–4.0 10
Covalent radius[61] pm 25–250 10
Valence electrons – 1, 2, ..., 12 12

First ionization energy[62](Log) eV 1.3–3.3 10
Electron affinity[63] eV -3–3.7 10

Block – s, p, d, f 4
Atomic volume (Log) cm3/mol 1.5–4.3 10

Edge features. The edges are initialized by a unique mapping from the distance

between the connected atoms 𝑓edge : 𝑑𝑖,𝑗 ↦→ 𝑢(𝑖,𝑗)(0)
𝑘

. In this work, we use the mapping

function,

𝑢
(0)
(𝑖,𝑗)[𝑡] = exp(−(𝑑(𝑖,𝑗) − 𝜇𝑡)2/𝜎2), (2.2)
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where 𝜇𝑡 = 𝑡 · 0.2 Å for 𝑡 = 0, 1, ..., 𝐾, 𝜎 = 0.2 Å.

2.3.2 Graph neural network architecture

The convolutional neural networks built on top of the crystal graph consists of two ma-

jor components: convolutional layers and pooling layers. Similar architectures have

been used for computer vision[64], natural language processing[65], molecular finger-

printing[66], and general graph-structured data[67, 68] but not for crystal property

prediction to the best of our knowledge. The convolutional layers iteratively update

the atom feature vector 𝑣𝑖 by “convolution” with surrounding atoms and bonds with

a non-linear graph convolution function.

𝑣
(𝑡+1)
𝑖 = Conv

(︁
𝑣

(𝑡)
𝑖 , 𝑣

(𝑡)
𝑗 , 𝑢(𝑖,𝑗)𝑘

)︁
, (𝑖, 𝑗)𝑘 ∈ 𝒢 (2.3)

The convolution function Eq. 2.3 needs to respect the permutation invariance of

atoms, which is achieved by sharing weights between both nodes 𝑣
(𝑡)
𝑖 and edges 𝑢(𝑖,𝑗)𝑘

.

In this work, we proposed two types of convolution functions. We start with a simple

convolution function,

𝑣
(𝑡+1)
𝑖 = 𝑔

⎡⎣⎛⎝∑︁
𝑗,𝑘

𝑣
(𝑡)
𝑗 ⊕ 𝑢(𝑖,𝑗)𝑘

⎞⎠ 𝑊 (𝑡)
𝑐 + 𝑣

(𝑡)
𝑖 𝑊 (𝑡)

𝑠 + 𝑏(𝑡)

⎤⎦ (2.4)

where ⊕ denotes concatenation of atom and bond feature vectors, 𝑊 (𝑡)
𝑐 , 𝑊 (𝑡)

𝑠 , 𝑏(𝑡) are

the convolution weight matrix, self weight matrix, and bias of the 𝑡-th layer, respec-

tively, and 𝑔 is the activation function for introducing non-linear coupling between

layers. By optimizing hyperparameters, the lowest mean absolute error (MAE) for

the validation set is 0.108 eV/atom. One limitation of Eq. 2.4 is that it uses a shared

weight matrix 𝑊 (𝑡)
𝑐 for all neighbors of 𝑖, which neglects the differences of interaction

strength between neighbors. To overcome this problem, we design a new convolution

function that first concatenates neighbor vectors 𝑧
(𝑡)
(𝑖,𝑗)𝑘

= 𝑣
(𝑡)
𝑖 ⊕ 𝑣

(𝑡)
𝑗 ⊕ 𝑢(𝑖,𝑗)𝑘

, then
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perform convolution by,

𝑣
(𝑡+1)
𝑖 = 𝑣

(𝑡)
𝑖 +

∑︁
𝑗,𝑘

𝜎(𝑧(𝑡)
(𝑖,𝑗)𝑘

𝑊
(𝑡)
𝑓 + 𝑏

(𝑡)
𝑓 ) ⊙ 𝑔(𝑧(𝑡)

(𝑖,𝑗)𝑘
𝑊 (𝑡)

𝑠 + 𝑏(𝑡)
𝑠 ) (2.5)

where ⊙ denotes element-wise multiplication and 𝜎 denotes a sigmoid function. In

Eq. 2.5, the 𝜎(·) functions as a learned weight matrix to differentiate interactions

between neighbors, and adding 𝑣
(𝑡)
𝑖 makes learning deeper networks easier[69]. We

achieve MAE on the validation set of 0.039 eV/atom using the modified convolution

function, a significant improvement compared to Eq. 2.4.

After 𝑅 convolutions, the network automatically learns the feature vector 𝑣
(𝑅)
𝑖 for

each atom by iteratively including its surrounding environment. The pooling layer

is then used for producing an overall feature vector 𝑣𝑐 for the crystal, which can be

represented by a pooling function,

𝑣𝑐 = Pool
(︁
𝑣

(0)
0 , 𝑣

(0)
1 , ..., 𝑣

(0)
𝑁 , ..., 𝑣

(𝑅)
𝑁

)︁
(2.6)

that satisfies both permutational invariance with respect to atom indexing and pe-

riodicity with respect to unit cell choice. In this work, a normalized summation is

used as the pooling function for simplicity but other functions can also be used. In

addition to the convolutional and pooling layers, two fully-connected hidden layers

with the depth of 𝐿1 and 𝐿2 are added to capture the complex mapping between

crystal structure and property. Finally, an output layer is used to connect the 𝐿2

hidden layer to predict the target property 𝑦.

The training is performed by minimizing the difference between the predicted

property 𝑦 and the DFT calculated property 𝑦, defined by a cost function 𝐽(𝑦, 𝑦).

The whole CGCNN can be considered as a function 𝑓 parameterized by weights

𝑊 that maps a crystal 𝒞 to the target property 𝑦. Using backpropagation and

stochastic gradient descent (SGD), we can solve the following optimization problem

by iteratively updating the weights with DFT calculated data,

min
𝑊

𝐽(𝑦, 𝑓(𝒞; 𝑊 )) (2.7)
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the learned weights can then be used to predict material properties and provide

chemical insights for future materials design.

2.4 Predictive performance

To demonstrate the performance of the CGCNN, we train the model using calculated

properties from the Materials Project[70]. One key advantage of CGCNN over pre-

vious methods is its generality, since our representation cover various types of solid

materials (section 1.3). We focus on two types of generality in this work: (1) The

structure types and chemical compositions for which our model can be applied, and

(2) the number of properties that our model can accurately predict.

The database we used includes a diverse set of inorganic crystals ranging from

simple metals to complex minerals. After removing ill-converged crystals, the full

database has 46744 materials covering 87 elements, 7 lattice systems and 216 space

groups. As shown in Figure 2-2(a), the materials consist of as many as seven different

elements, with 90% of them binary, ternary and quaternary compounds. The number

of atoms in the primitive cell ranges from 1 to 200, and 90% of crystals have less than

60 atoms(Figure S2). Considering most of the crystals originate from the Inorganic

Crystal Structure Database (ICSD)[72], this database is a good representation of

known stoichiometric inorganic crystals.

Figure 2-2(b)(c) shows the performance of the two models on 9350 test crystals for

predicting the formation energy per atom. We find a systematic decrease of the mean

absolute error (MAE) of the predicted values compared with DFT calculated values

for both convolution functions as the number of training data is increased. The best

MAE’s we achieved with Eq. 2.4 and Eq. 2.5 are 0.136 eV/atom and 0.039 eV/atom,

and 90% of the crystals are predicted within 0.3 eV/atom and 0.08 eV/atom errors,

respectively. In comparison, Kirklin et al. reports that the MAE of DFT calculation

with respect to experimental measurements in the Open Quantum Materials Database

(OQMD) is 0.081–0.136 eV/atom depending on whether the energies of the elemental

reference states are fitted, although they also find a large MAE of 0.082 eV/atom
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Figure 2-2: The performance of CGCNN on the Materials Project database[70]. (a)
Histogram representing the distribution of the number of elements in each crystal. (b)
Mean absolute error (MAE) as a function of training crystals for predicting formation
energy per atom using different convolution functions. The shaded area denotes the
MAE of DFT calculation compared with experiments[71]. (c) 2D histogram repre-
senting the predicted formation per atom against DFT calculated value. (d) Receiver
operating characteristic (ROC) curve visualizing the result of metal-semiconductor
classification. It plots the proportion of correctly identified metals (true positive
rate) against the proportion of wrongly identified semiconductors (false positive rate)
under different thresholds.
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Table 2.2: Summary of the prediction performance of seven different properties on
test sets.

Property # of train data Unit MAEmodel MAEDFT
Formation energy 28046 eV/atom 0.039 0.081–0.136[71]
Absolute energy 28046 eV/atom 0.072 –

Band gap 16458 eV 0.388 0.6[75]
Fermi energy 28046 eV 0.363 –
Bulk moduli 2041 log(GPa) 0.054 0.050[76]
Shear moduli 2041 log(GPa) 0.087 0.069[76]
Poisson ratio 2041 – 0.030 –

between different sources of experimental data. Given the comparison, our CGCNN

approach provides a reliable estimation of DFT calculations and can potentially be

applied to predict properties calculated by more accurate methods like GW [73] and

quantum Monte Carlo[74].

After establishing the generality of CGCNN with respect to the diversity of crys-

tals, we next explore its prediction performance for different material properties. We

apply the same framework to predict the absolute energy, band gap, Fermi energy,

bulk moduli, shear moduli, and Poisson ratio of crystals using DFT calculated data

from the Materials Project[70]. The prediction performance of Eq. 2.5 is improved

compared to Eq. 2.4 for all six properties (Table S4). We summarize the performance

in Table 2.2 and the corresponding 2D histograms in Figure S4. As we can see, the

MAE of our model are close to or higher than DFT accuracy relative to experiments

for most properties when ∼104 training data is used. For elastic properties, the errors

are higher since less data is available, and the accuracy of DFT relative to experiments

can be expected if ∼104 training data is available.

In addition to predicting continuous properties, CGCNN can also predict discrete

properties by changing the output layer. By using a softmax activation function for

the output layer and a cross entropy cost function, we can predict the classification

of metal and semiconductor with the same framework. In Figure 2-2(d), we show the

receiver operating characteristic (ROC) curve of the prediction on 9350 test crystals.

Excellent prediction performance is achieved with the area under the curve (AUC)

at 0.95. By choosing a threshold of 0.5, we get metal prediction accuracy at 0.80,
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semiconductor prediction accuracy at 0.95, and overall prediction accuracy at 0.90.

2.5 Application to the screening of solid electrolytes

for batteries

2.5.1 Motivation

In this section, we aim to apply CGCNN to accelerate the discovery of an important

type of materials – solid electrolytes for lithium metal batteries. Increased energy

densities of Li-ion batteries are crucial for progress towards complete electrification

of transportation [77–79]. Among the many possible routes, Li metal anodes have

emerged as one of the most likely near-term commercialization options.[80] Coupled

with a conventional intercalation cathode, batteries utilizing Li metal anodes could

achieve specific energy of > 400 Wh/kg, much higher than the current state of the art

∼250 Wh/kg [81, 82]. Unstable and dendritic electrodeposition on Li metal anode

coupled with capacity fade due to consumption of electrolyte has been one of the

major hurdles in its commercialization [81, 83–88]. For large scale adoption, a stable,

smooth and dendrite-free electrodeposition on Li metal is crucial.

Numerous approaches are being actively pursued for suppressing dendrite growth

through the design of novel additives in liquid electrolytes [89–95], surface nanos-

tructuring [96, 97], modified charging protocols[98, 99], artificial solid electrolyte

interphase or protective coatings [100–102], polymers [103–105] or inorganic solid

electrolytes [106–109]. Among these, dramatic improvements in the ionic conductiv-

ity of solid electrolytes [110, 111] have made them extremely attractive candidates

for enabling Li metal anodes.

A comprehensive and precise criterion for dendrite suppression is still elusive. In-

terfacial effects [112, 113] and spatial inhomogeneities within the solid electrolyte like

voids, grain boundaries and impurities [114] make the problem challenging. Monroe

and Newman performed a dendrite initiation analysis and showed that solid polymer

electrolytes with shear modulus roughly twice that of Li could achieve stable elec-
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trodeposition [115]. In an earlier work, we extended this idea and showed that the

criteria for the suppression of dendrite growth gets reversed for inorganic crystalline

materials due to the difference in molar volume of Li+. A softer solid electrolyte is

required for stability in this case[116]. It is worth highlighting that this requirement

applies only for dendrite initiation regime and other suppression approaches may be

possible for the propagation regime. However, once initiated, dendrite growth is ex-

tremely hard to mitigate as pointed out by several studies[117–119]. Therefore, it is

best to prevent dendrites from initiating to ensure smooth electrodeposition through-

out cycling of the battery.

In recent years, high-throughput computational materials design has emerged as

a major driver of discovery of novel materials for various applications [120, 121]. It

typically involves a combination of first-principles quantum-mechanical approaches

and database construction and mining techniques. Combined with machine learning

methods that bypass the use of expensive quantum mechanical calculations through

the use of structural descriptors [50, 122–125], one can accelerate the high-throughput

screening by several orders of magnitude [126–128]. Previous high-throughput screen-

ing studies of solid electrolytes have used ionic conductivity, stability and electronic

conductivity as screening criteria[126, 127]. However, dendrite suppression capability

of solid electrolytes is an additional requirement that needs to be assessed.

Here, we carry out a large-scale data-driven search for solid electrolytes that might

be promising candidates for suppressing dendrite growth during the initiation phase

with a Li metal anode. We use machine learning techniques to train and predict

the mechanical properties of inorganic solids which play a major role in stabilizing

the interface. These properties are fed into the theoretical framework which uses

the stability parameter [116, 129] to quantify the dendrite initiation with Li metal

anode. At a mechanically isotropic interface, the screening results predict the crucial

role of surface tension in stabilizing the interface since most solid electrolytes are not

intrinsically stabilized by the stresses generated at the interface. Hence, surface nanos-

tructuring may be essential to prevent initiation of dendrites for isotropic interfaces.

We rank the materials based on the amount of nanostructuring (surface roughness
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wavenumber) required for achieving a stable electrodeposition. We then performed

a stability analysis of over 15,000 anisotropic interfaces between the Li metal and

solid electrolyte using the Stroh formalism. This is essential to account for the highly

anisotropic mechanical properties of Li[130] and texturing of electrodeposited Li at

the interface[131]. A full anisotropic treatment of the interface reveals over twenty

candidate interfaces that are predicted to suppress dendrite initiation. The materials

obtained through screening are generally soft and with highly anisotropic mechani-

cal properties. Since softer materials are generally faster ion conductors than stiffer

materials due to availability of more volume per atom [132], the screened candidates

present an opportunity to obtain both desirable mechanical properties and fast ion

conduction.

2.5.2 Stability parameter

In solid electrolytes, the mechanical properties at the interface provide an additional

degree of freedom for tuning the stability of electrodeposition. Previously, we de-

veloped a generalized stability diagram for assessing the stability of electrodeposi-

tion at a metal-solid electrolyte interface for isotropic mechanical response [116]. In

these studies, we used the stability parameter first proposed by Monroe and New-

man [119] to characterize the growth/decay of dendrites with time. The sign of the

stability parameter, denoted hereafter as 𝜒, determines whether the electrodeposi-

tion is stable or unstable. A positive 𝜒 implies higher current density at the peaks

and lower current density at the valley leading to growth of dendrites while a neg-

ative 𝜒 leads to stabilization or suppression of dendrites. The stability parameter

is related to the change in the electrochemical potential of the electron Δ𝜇𝑒− at

a deformed interface 𝑧 = 𝑓(𝑥) between the metal anode and the electrolyte (Fig.

S1). It is convenient to compute properties of the interface in Fourier space with

𝑓(𝑥) =
∫︀

d𝑘[𝑓1(𝑘) cos(𝑘𝑥) + 𝑓2(𝑘) sin(𝑘𝑥)] and then integrate over the surface rough-

ness wavenumber 𝑘 to obtain the overall behavior. The stability parameter can be

calculated in a closed form at a given 𝑘. The change in the electrochemical potential

at a given 𝑘 is given by: Δ𝜇𝑒−(𝑘) = 𝜒(𝑘)[𝑓1(𝑘) cos(𝑘𝑥) + 𝑓2(𝑘) sin(𝑘𝑥)] [129]. This
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serves to define the stability parameter 𝜒(𝑘) at a given 𝑘 as:

𝜒(𝑘) = Δ𝜇𝑒−(𝑘)
𝑓1(𝑘) cos(𝑘𝑥) + 𝑓2(𝑘) sin(𝑘𝑥) ; (2.8)

Δ𝜇𝑒− can be obtained by including the effect of mechanical stresses and surface

tension on the electrochemical potential of the species at a deformed interface as:

[119]

Δ𝜇𝑒− = −𝑉M

2z (1 + 𝑣) (−𝛾𝜅 − en · [(𝜏𝑒 − 𝜏𝑠) · en]) + 𝑉M

2z (1 − 𝑣) (Δ𝑝𝑒 + Δ𝑝𝑠) . (2.9)

From Eq. (2.9), Δ𝜇𝑒− depends on 𝑘 through the surface tension 𝛾, curvature 𝜅,

the hydrostatic stress Δ𝑝, and deviatoric stress 𝜏 generated at the interface. 𝑒 and 𝑠

in the subscripts refer to the metal electrode (anode) and solid electrolyte respectively,

𝑉M is the molar volume of the metal atom in the anode, 𝑣 is the ratio of molar volume

of the metal ion in electrolyte 𝑉Mz+ to the metal atom in the anode 𝑉M, z is the valence

of the metal, and en is the normal to the interface pointing towards the electrolyte.

The stability parameter consists of contributions from the surface tension and the

stresses developed at the metal-electrolyte interface. For an isotropic metal anode

with shear modulus 𝐺𝑒 and Poisson’s ratio 𝜈𝑒 in contact with an isotropic electrolyte

with shear modulus 𝐺𝑠 and Poisson’s ratio 𝜈𝑠, the stability parameter 𝜒(𝑘) can be

computed exactly as[116]:

𝜒 = −𝛾𝑘2𝑉M(1 + 𝑣)
2z⏟  ⏞  

surface tension

+ 2𝐺𝑒𝐺𝑠𝑘𝑉M(1 + 𝑣)(𝜈𝑒(4𝜈𝑠 − 3) − 3𝜈𝑠 + 2)
z(𝐺𝑒(𝜈𝑒 − 1)(4𝜈𝑠 − 3) + 𝐺𝑠(4𝜈𝑒 − 3)(𝜈𝑠 − 1))⏟  ⏞  

deviatoric stress

+ 𝑘𝑉M(1 − 𝑣) (𝐺2
𝑒(4𝜈𝑠 − 3) + 𝐺2

𝑠(3 − 4𝜈𝑒))
2z(𝐺𝑒(𝜈𝑒 − 1)(4𝜈𝑠 − 3) + 𝐺𝑠(4𝜈𝑒 − 3)(𝜈𝑠 − 1))⏟  ⏞  

hydrostatic stress

(2.10)

Using the shear modulus, Poisson’s ratio and molar volume ratio of a solid electrolyte,
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it is possible to calculate the stability parameter for its interface with Li metal anode

and determine stability of electrodeposition. For a complete understanding of the

interface growth and stability, it is necessary to determine the sign of stability pa-

rameter at all the Fourier components 𝑘. Fortunately, as we will see later, a negative

stability parameter at a given 𝑘 guarantees stability at all higher values.

The molar volume ratio 𝑣 = 𝑉Mz+ /𝑉M influences the range of shear moduli over

which the electrodeposition is stable. 𝑉Mz+ was calculated using the coordination

number of Li in the crystal structure and mapping them to ionic radius using the

values tabulated by Shannon [133]. The coordination number was calculated by

generating polyhedra around a species through Voronoi analysis [134, 135] as imple-

mented in pymatgen [136]. A linear interpolation was used for computing ionic radius

corresponding to coordination numbers not in the Shannon’s tabulated values. Pre-

dictions with 𝑉Mz+ > 𝑉M (true for just one candidate in the screening) were ignored

since those correspond to very high Li coordination number where Shannon’s tabu-

lated values cannot be used. The partial molar volume of the metal in the electrolyte

𝑉Mz+ can be measured directly in an experiment on the potential difference between

a stressed and unstressed electrolyte as done by [137] and then using the relationship

𝑉Mz+ = 𝜕𝜇Mz+ /𝜕𝑝 where 𝜇Mz+ is the electrochemical potential of the metal ion.

2.5.3 Predicting the stability parameter with CGCNN en-

sembles

Since bulk and shear modulus are related to second derivatives of energy with re-

spect to lattice constants at equilibrium, their calculation by first-principles requires

fitting of the energy-strain relationship or the stress-strain relationship. Calculations

on several deformed structures are required in order to get an accurate estimate of

the fitting parameters. At each deformed state of the structure, the internal co-

ordinates need to be relaxed to calculate the energy or the stress. The materials

project database employed 24 relax calculations for a single material to compute the

moduli. To perform a large scale screening over all Li-containing compounds (over
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12,000) for use as solid electrolytes, it is necessary to choose a technique that can pre-

dict the properties reasonably accurately and without the high computational cost of

multiple first-principles simulations. Hence, we used the crystal graph convolutional

neural networks (CGCNN) framework [138] to predict the shear and bulk moduli of

the crystalline solid electrolyte materials. At the core of the CGCNN is the multi-

graph representation of the crystal structure which encodes the atomic information

and bonding interactions between atoms. The CGCNN builds a convolutional neural

network directly on top of a multigraph that represents the crystal structure of the

electrolytes, and predicts the elastic properties by extracting local structural features

from the multigraph representation. Note that this method does not depend on any

handcrafted geometric or topological features, and all the features are learned by the

neural network automatically. This results in a model that is more general than the

usual models replying on descriptors but also requires more data to train.

The training data for the mechanical properties required to compute 𝜒 through

Eq. 2.10 was obtained from the materials project database [76, 139]. The calculated

values in the database are typically within 15% of the experimental values which is

sometimes the uncertainty in experimental data[76]. The moduli have been calculated

using density functional theory (DFT) with the Perdew, Becke and Ernzerhof (PBE)

Generalized Gradient Approximation (GGA) for the exchange-correlation functional

[140]. GGA-level predictions for 104 systems were within 15% of the experimen-

tal value for all but 16 systems for the bulk modulus and 15 systems for the shear

modulus [76]. Out of the outliers, many had a discrepancy of less than 10 GPa.

Experimentally, the shear and bulk moduli can be calculated using the elastic ten-

sor obtained through inelastic neutron scattering or pulse-echo measurements. The

experimental measurements typically have a high degree of variability depending on

the experimental technique and conditions. We used 2041 crystal structures with

shear and bulk moduli, 60% of the entire dataset with elastic properties, to train our

CGCNN model. We choose to minimize the mean squared errors between the log val-

ues of predicted and calculated elastic properties since we aim to minimize the relative

prediction errors instead of absolute errors and avoid overweighing stiffer materials.
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This also enabled us to always obtain positive values of the shear and bulk moduli.

We then performed a hyperparameter optimization on 20% validation data via grid

search to select the optimum learning rate, weight decay, and number of convolution

layers. The best performing hyper-parameters are selected and the resulting model is

evaluated on the rest 20% test data. The CGCNN was implemented in PyTorch [141]

and the details of the architecture and optimized hyperparameters can be found in

the Supporting Information and Ref. [138].

Considering the presence of uncertainty in training dataset, we developed a frame-

work for obtaining uncertainty estimates on the results. The uncertainty in the model

predictions was obtained by generating an ensemble of 100 CGCNNs using a random

60% of the training data for each model. Using each model, we obtained predictions

of the shear and bulk modulus. The ensemble of moduli was then used together with

Eq. (2.10) to obtain an ensemble of stability parameters for each material. The spread

in the distribution of the stability parameter was used to quantify the uncertainty.

Using the ensemble of stability parameters, we calculated the probability of stability

𝑃𝑠 as the ratio of number of models that predict a negative stability parameter to the

total number of models:

𝑃𝑠 = 1
𝑁

𝑁∑︁
𝑖=1

1{𝜒𝑖 < 0} (2.11)

Here 𝑁 is the total number of models (100 in our calculations) and the indicator

function 1{𝑋} is equal to 1 if the condition 𝑋 is true and 0 if it is false.

The performance of the CGCNN model was evaluated on 680 test data points.

In Fig. 2-3a, we show the comparison between the shear modulus predicted by our

model and the DFT-calculated value obtained from the materials project database

and in Table 2.3, we show the root mean squared error (RMSE) for the shear and bulk

moduli predicted by our model. The RMSE obtained using our model is comparable

to previous work by [125]. However, it is worth noting that we evaluated our model

on test data while de Jong et al. evaluated on the entire dataset, indicating that our

model does not overfit and has better generalization capability.
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Figure 2-3: Parity plots comparing the elastic properties: (a) shear modulus 𝐺, and
elastic constants (b) 𝐶11, (c) 𝐶12 and (d) 𝐶44 predicted by the machine learning models
to the DFT calculated values. The shear modulus is predicted using CGCNN and the
elastic constants 𝐶11 and 𝐶44 are predicted using gradient boosting regression while
𝐶12 is predicted using Kernel ridge regression. The parity plot for shear modulus is
on 680 test data points while that for the elastic constants contains all available data
(170 points) where each prediction is a cross-validated value.

Table 2.3: Comparison of RMSE in log(GPa) for shear and bulk moduli

Method log(G) RMSE log(K) RMSE
This work 0.1268 0.1013
[125] 0.1378 0.0750
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2.5.4 Screening of lithium containing compounds for inter-

face stabilization

The shear modulus, Poisson’s ratio and molar volume ratio 𝑣 = 𝑉Mz+ /𝑉M are the

parameters determining the stability of electrodeposition at an interface where both

materials are isotropic through Eq. 2.10. The role of surface tension in stabilizing

electrodeposition is well established [96, 119, 142]. Since the contribution of the

surface tension to the stability parameter increases as 𝑘2 while that of stress increases

linearly with 𝑘, the surface tension starts dominating the stability parameter as 𝑘 is

increased. This is elucidated in Fig. 2-4 through the contributions of the different

terms to the total stability parameter for a material with 𝐺 = 3.4 GPa and 𝑣 = 0.1.

The red line shows the fraction of contribution of surface tension to the overall stability

parameter. All interfaces become stabilized as the value of 𝑘 is increased beyond the

critical surface roughness wavenumber. This motivates a distinction between two

types of solid electrolytes – ones that are stabilized by the stress term alone and

those that are stabilized by the surface tension beyond the critical value of 𝑘. For

materials that are stabilized by stresses, the stability parameter remains negative for

all values of surface roughness, and therefore, stability is guaranteed. However, for

materials that have an overall destabilizing contribution due to stresses (hydrostatic

+ deviatoric), the stability parameter changes sign at an intermediate value of 𝑘

since 𝜒 → −∞ as 𝑘 → ∞. For such materials, the electrodeposition become stable at

the critical surface wavenumber 𝑘crit = 2𝜋/𝜆crit (Fig. 2-4). If the surface roughness

wavenumber so obtained is possible to achieve by nanostructuring the interface [96],

the electrodeposition might be stabilized.

We calculated the stability parameter for 12,950 Li-containing compounds out of

which the properties of ∼3400 were in training data and those of the remaining were

predicted using CGCNN. In Fig. 2-5, we visualized the latent space representations

of randomly selected 500 training and 500 predicted crystals in a two-dimensional

plot using t-distributed stochastic neighbor embedding (t-SNE) algorithm. It is clear

that training crystals cover the search space of predicted crystals, indicating the
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Figure 2-4: Contribution of hydrostatic stress, deviatoric stress and surface tension to
the stability parameter as a function of surface roughness wavenumber. The surface
tension term starts dominating at high 𝑘 and ultimately stabilizes the interface after
𝑘 = 𝑘crit. The contributions are plotted for a material with shear modulus ratio
𝐺/𝐺Li = 1 and Poisson’s ratio 𝜈 = 0.33 which is not stable (𝜒 > 0) at 𝑘 = 108

m−1. The red line shows the fraction of surface tension contribution to the stability
parameter obtained by dividing the absolute value of its contribution by the sum of
absolute values of all components.
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reliability of the prediction. The lower part of Fig. 2-5 includes compounds that

do not contain Li atoms, which helps improving prediction even though they are not

directly representative of the search space. The ensemble averaged stability parameter

𝜒 and the critical surface roughness 𝜆crit for all materials are shown as a histogram

in Fig. 2-6. We found that none of the materials have a probability of stability over

5% at surface roughness wavenumber 𝑘 = 108 m−1 [115].

Training
Prediction

Figure 2-5: Visualization of the latent space representations of 500 random train-
ing and 500 random test crystals using t-distributed stochastic neighbor embedding
algorithm for CGCNN.

The absence of any materials that can suppress dendrites without assistance from

surface tension becomes clear from the isotropic stability diagram shown in Fig. 2-7.

All materials have 𝐺/𝐺Li ratio higher than the critical value required to stabilize

electrodeposition [116]. The highest number of materials are found in the region
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where 𝐺/𝐺Li ∼ 15 and 𝑣 ∼ 0.1. The critical wavelength of surface roughening was

used as the criteria for screening materials since a higher surface roughness is easier

to achieve by nanostructuring.

(a) (b)

Figure 2-6: Results of isotropic screening for 12,950 Li- containing compounds. Dis-
tribution of ensemble averaged (a) stability parameter for isotropic Li-solid electrolyte
interfaces at 𝑘 = 108 m−1 and (b) critical wavelength of surface roughness required
for stability. None of the materials in the database can be stabilized without the aid
of surface tension. The required critical surface roughness wavenumber depends on
the contribution of the stress term in the stability parameter.

The candidate materials with highest critical wavelength of roughening 𝜆crit are

shown in Table 2.4 along with their stability parameter at different surface roughness

wavenumbers and the corresponding probability of stability. While performing screen-

ing, we removed all materials which are electronically conducting i.e. those which have

a zero band gap according to materials project database. However, we retained mate-

rials which were thermodynamically metastable (with energy above hull less than 0.1

eV) since many such solid electrolytes like Li10GeP2S12 [110] and Li7P3S11 [143] have

been successfully synthesized. We find several candidate electrolytes with probability

of stability 𝑃𝑠 over 5% at surface roughness wavelength of 1 nm. It is worth noting

that our screening identifies sulfide, borohydride and iodide-based solid electrolytes,

classes to which many of the current solid electrolytes belong. The uncertainty in

stability parameter is much higher at high surface roughness wavenumber.
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Table 2.4: Solid electrolyte screening results for stable electrodeposition with Li
metal anode together with their materials project id ranked by critical wavelength
of surface roughening 𝜆crit required to stabilize electrodeposition. 𝜒 is the stability
parameter in kJ/mol·nm which needs to be negative for stability, and 𝑘 = 2𝜋/𝜆 is
the surface roughness wavenumber. Low 𝑘 corresponds to 𝑘 = 108 m−1 while high
𝑘 corresponds to a wavelength 𝜆 = 2𝜋/𝑘 = 1 nm. Only materials with probability
of stability 𝑃𝑠 > 0.05 at high 𝑘 are shown. Uncertainty in 𝜒 and 𝜆crit (standard
deviation of their distributions) and 𝑃𝑠 are only shown for materials whose properties
were predicted using CGCNN and not for those whose properties were available in
training data.

Formula Space MP id Low k High k 𝜆crit/nm
Group 𝜒 𝑃𝑠 𝜒 𝑃𝑠

Li2WS4 P4̄2m mp-867695 0.62 - -109.26 - 3.64
Li2WS4 I4̄2m mp-753195 1.75 - -38.54 - 1.34
LiBH4 P1̄ mp-675926 1.98 - -40.13 - 1.32
LiAuI4 P21/c mp-29520 2.7 ± 0.9 0 16.1 ± 55.2 0.43 1.02 ± 0.40
LiGaI4 P21/c mp-567967 3.2 ± 1.1 0 48.6 ± 67.0 0.28 0.85 ± 0.29
LiWCl6 R3 mp-570512 3.2 ± 0.9 0 51.3 ± 56.6 0.17 0.82 ± 0.27
Cs3LiI4 P21/m mp-569238 3.1 ± 0.7 0 46.9 ± 43.4 0.15 0.80 ± 0.17
LiInI4 P21/c mp-541001 3.5 ± 1.0 0 68.5 ± 62.8 0.12 0.74 ± 0.20
Cs2Li3I5 C2 mp-608311 3.6 ± 0.9 0 77.2 ± 59.0 0.05 0.71 ± 0.17
Ba19Na29Li35 F4̄3m mp-569025 4.2 ± 1.3 0 101.9 ± 81.3 0.08 0.68 ± 0.19
Ba38Na58Li26N F4̄3m mp-570185 4.2 ± 1.3 0 104.5 ± 82.3 0.08 0.67 ± 0.20
Li2UI6 P3̄1c mp-570813 4.2 ± 1.4 0 111.5 ± 86.8 0.11 0.66 ± 0.29
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Figure 2-7: Isotropic stability diagram showing the position of all solid electrolytes
involved in the screening. 𝐺Li is the shear modulus of Li=3.4 GPa. The critical 𝐺/𝐺Li
line separating the stable and unstable regions depends weakly on the Poisson’s ratio,
so the lines corresponding to 𝜈𝑠 = 0.33 and 0.5 are good indicators for assessment of
stability. The darker regions indicate more number of materials in the region.
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Chapter 3

Visualization of crystal graph

convolutional neural networks

3.1 Introduction

3.1.1 Chapter overview

In this chapter, we hope to understand chemical insights by visualizing the represen-

tations learned by the crystal graph convolutional neural networks (CGCNN) frame-

work [46] we developed in chapter 2. Since the graph representation of solid mate-

rials has a clear correspondence between nodes/edges and atoms/bonds, visualizing

the representations learned by the graph neural networks might help us understand

the solid systems. We will first define a variant of CGCNN that has clear physical

meanings in the first and last layers of its network. Then, we use the network to

visualize three material spaces: perovskites, elemental boron, and general inorganic

crystals, covering material spaces of different compositions, different structures, and

both, respectively. We show that in all three cases pattern emerges automatically

that might aid in the design of new materials, and we discover some empirical rules

for understanding material stability that are consistent with our intuition.
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3.1.2 Theoretical and practical motivations

From a theoretical perspective, we aim to explore the physical means of the repre-

sentations learned by the graph neural networks in the context of solid materials.

There are three types of representations learned by the graph neural networks: 1)

node representations 𝑣
(𝑡)
𝑖 , 2) edge representations 𝑢(𝑖,𝑗)𝑘

, 3) global representations

𝑣𝑐. With the graph representation of solid materials, they correspond to 1) atoms, 2)

bonds connecting atoms, 3) the entire material. Therefore, visualizing the similarities

between these learned representations provide a way to understand the similarities

between arbitrary solid materials at multiple scales.

From a practical perspective, we are interested in whether the representations

learned by the model can result in knowledge that can be understood by human and

help scientists to explore the vast space of solid materials. Efficient exploration of the

materials space has been central to material discovery as a result of the limited experi-

mental and computational resources compared with its vast size. Often compositional

or structural patterns are sought from past experiences that might guide the design of

new materials, improving the efficiency of material exploration [144–148]. Emerging

high-throughput computation and machine learning techniques directly screen large

amounts of candidate materials for specific applications [13, 149–155], which enables

fast and direct exploration of the material space. However, the large quantities of

material data generated makes the discovery of patterns challenging with traditional,

human-centered approaches. Instead, an automated, data-centered method to visual-

ize and understand a given materials design phase space is needed in order to improve

the efficiency of exploration.

3.1.3 Related prior research

The key in visualizing material space is to map materials with different composi-

tions and structures into a lower dimensional manifold where the similarity between

materials can be measured by their Euclidean distances. One major challenge in find-

ing such manifolds is to develop a unified representation for different materials. A
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widely-used method is representing materials with feature vectors, where a set of de-

scriptors are selected to represent each material [122, 156, 157]. There are also meth-

ods that automatically select descriptors that are best for predicting a desired target

property [53]. Recent work has also developed atomic-scale representations to map

complex atom configurations into low dimensional manifolds, such as atom centered

symmetry functions [158], social permutation invariant (SPRINT) coordinates [159],

global minimum of root-mean-square distance [160], smooth overlap of atomic posi-

tions (SOAP) [161], and many other methods [55, 162, 163]. These representations

often have physically meaningful parameters that can highlight some structural or

chemical features. Often material descriptors and atomic representations are used

together to combine compositional and structural information [162, 164]. They have

been used to visualize the material and molecular similarities[54, 165, 166], as well as

explore the complex configurational space of biological systems [167–170] and water

structures [16, 171]. In addition to Euclidean distances, similarity kernels are also

used to compare material similarities [165, 166]. Combined with machine learning

algorithms, these representations were also used to predict material properties [50,

51, 53, 55, 122, 154, 156, 157] and construct force fields [161, 172, 173].

In parallel to these efforts, the success of “deep learning” has inspired a group of

representations purely based on neural networks. Instead of designing descriptors or

atomic representations that are fixed or contain several physically meaningful param-

eters, they use relatively general neural network architectures with a large number

of trainable weights to learn a representation directly. This field started with build-

ing neural networks on molecular graphs [66, 174–176], and was recently expanded

to periodic material systems by us [46] and Schutt et al. [177]. The deep neural

networks have shown many advantages over conventional machine learning methods

given large amounts of data in computer vision and speech recognition [178], and

they outperform conventional methods on 11/17 datasets for predicting molecular

properties in a recent study [179]. However, the general neural network architecture

may also limit performance when the data size is small since there is no material spe-

cific information built-in. It is worth noting that many machine learning force fields
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combine atomic representations and neural networks [158, 172, 180], but they usually

deal with different compositions separately and use a significantly smaller number of

weights. It has been shown that the hidden layers of these neural networks can learn

physically meaningful representations by proper design of the network architecture.

For instance, several works have investigated the ideas of learning atom energies [46,

176, 181] and elemental similarities [182, 183]. In addition, recent work showed that

element similarities can also be learned using a specially designed SOAP kernel [184].

3.2 Methods

E0

En

E

Figure 3-1: The structure of the crystal graph convolutional neural networks.

To visualize the crystal space at different scales, we design a variant of CGCNN [46]

that has meaningful interpretation at different layers of the neural network. The

learned CGCNN network provides a vector representation of the local environments

in each crystal that only depends on its composition and structure without any human

designed features, enabling us to explore the materials space hierarchically.

We first represent the crystal structure with a multigraph 𝒢 that encodes the

connectivity of atoms in the crystal. Each atom is represented by a node 𝑖 in 𝒢

which stores a vector 𝑣𝑖 corresponding to the element type of the atom. To avoid

introducing any human bias, we set 𝑣𝑖 to be a random 64 dimensional vector for each

element and allow it to evolve during the training process. Then, we search for the
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12 nearest neighbors for each atom and introduce an edge (𝑖, 𝑗)𝑘 between the center

node 𝑖 and neighbor 𝑗. The subscript 𝑘 indicates that there can be multiple edges

between the same end nodes as a result of the periodicity of the crystal. The edge

(𝑖, 𝑗)𝑘 stores a vector 𝑢(𝑖,𝑗)𝑘
whose 𝑡th element depends on the distance between 𝑖 and

𝑗 by,

𝑢(𝑖,𝑗)𝑘
[𝑡] = exp(−(𝑑(𝑖,𝑗)𝑘

− 𝜇𝑡)2/𝜎2) (3.1)

where 𝜇𝑡 = 𝑡 · 0.2 Å for 𝑡 = 0, 1, ..., 40 and 𝜎 = 0.2 Å.

In graph 𝒢, each atom 𝑖 is initialized by a vector 𝑣𝑖 whose value solely depends

on the element type of atom 𝑖. We call this iteration 0 where

𝑣
(0)
𝑖 = 𝑣𝑖 (3.2)

Then, we perform convolution operations on the multigraph 𝒢 with the con-

volution function designed in Ref. [46] which allows atom 𝑖 to interact with its

neighbors iteratively. In iteration 𝑡, we first concatenate neighbor vectors 𝑧
(𝑡−1)
(𝑖,𝑗)𝑘

=

𝑣
(𝑡−1)
𝑖 ⊙ 𝑣

(𝑡−1)
𝑗 ⊙ 𝑢(𝑖,𝑗)𝑘

, and then perform the convolution by same as in Eq. 2.5,

𝑣
(𝑡)
𝑖 = 𝑣

(𝑡−1)
𝑖 +

∑︁
𝑗,𝑘

𝜎(𝑧(𝑡−1)
(𝑖,𝑗)𝑘

𝑊
(𝑡−1)
𝑓 + 𝑏

(𝑡−1)
𝑓 ) ⊙ 𝑔(𝑧(𝑡−1)

(𝑖,𝑗)𝑘
𝑊 (𝑡−1)

𝑠 + 𝑏(𝑡−1)
𝑠 ) (3.3)

where ⊙ denotes element-wise multiplication, 𝜎 denotes a sigmoid function, and 𝑔

denotes any non-linear activation function, and 𝑊 and 𝑏 denotes weights and biases

in the neural network, respectively. During these convolution operations, 𝑣
(𝑡)
𝑖 forms

a series of representations of the local environments of atom 𝑖 at different scales.

After 𝐾 iterations, we perform a linear transformation to map 𝑣
(𝐾)
𝑖 to a scalar

𝐸𝑖,

𝐸𝑖 = 𝑣
(𝐾)
𝑖 𝑊𝑙 + 𝑏𝑙 (3.4)

and then use a normalized sum pooling to predict the averaged total energy per atom

of the crystal,

𝐸 = 1
𝑛

∑︁
𝑖

𝐸𝑖 (3.5)
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where 𝑛 is the number of atoms in the crystal. This introduces a physically meaningful

term 𝐸𝑖 to represent the energy of the local chemical environment.

The model is trained by minimizing the squared error between predicted proper-

ties relative to the DFT calculated properties using backpropagation and stochastic

gradient descent.

In this CGCNN model, each vector represents the local environment of each atom

at different scales. Here, we focus three vectors that has the most representative

physical interpretations.

1. Element representation 𝑣
(0)
𝑖 that depends completely on the type of element

that atom 𝑖 is composed of, describing the similarities between elements.

2. Local environment representation 𝑣
(𝐾)
𝑖 that depends on atom 𝑖 and its 𝐾th order

neighbors, describing the similarities between local environments that combines

the compositional and structural information.

3. Local energy representation 𝐸𝑖 that describes the energy of atom 𝑖.

3.3 Visualization for different material spaces

3.3.1 Overview

To illustrate how this method can help visualize the compositional the structural

aspects of the crystal space, we apply it to three datasets that representing different

material spaces. 1) a group of perovskite crystals that share the same structure type

but have different compositions; 2) different configurations of elemental boron that

share the same composition but have different structures; and 3) inorganic crystals

from the Materials Project [139] that have both different compositions and different

structures.

For each material space, we train the CGCNN model with 60% of the data to

predict the energy per atom of the materials. 20% of the data are used to select

hyperparameters of the model and the last 20% are reserved for testing. In Fig. 3-

64



2, we show the learning curves for the three representative material spaces where a

subset of training data is used to show how the number of training data affects the

model prediction performance. As we will show below, the representations learned

by predicting the energies automatically gain physical meanings and can be used to

explore the materials spaces.
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Figure 3-2: Learning curves for the three representative material spaces. The mean
absolute errors (MAEs) on test data is shown as a function of the number of training
data for the perovskites [185, 186], elemental boron [181], and materials project [139]
datasets.

3.3.2 Perovskite: compositional space

First, we explore the compositional space of perovskites by visualizing the element

representations. Perovskite is a crystal structure type with the form of ABC3 as

shown in Fig. 3-3(a). The dataset [185, 186] that we used includes 18,928 different

perovskites where the elements A and B can be any nonradioactive metals and the

element C can be one or several from O, N, S, and F. We trained our model to

predict the energy above hull with 15,000 training data, and after hyperparameter

optimization on 1,890 validation data, we achieve a prediction mean absolute error

(MAE) of 0.042 eV/atom on 2,000 test data. The prediction performance is excellent

65



and lower than several recent ML models such as those of Schmidt et al. (0.121

eV/atom) [182] and Xie et al. (0.099 eV/atom) [46]. The learning curve in Fig.

3-2 shows a straight line in log-log scale, indicating a steady increase of prediction

performance as the number of training data increases.

Site A

Site B

Site C

(a)

(c)

(b)

Figure 3-3: Visualization of the element representations learned from the perovskite
dataset. (a) The perovskite structure type. (b) Visualization of the two principal
dimensions with principal component analysis. (c) Prediction performance of several
atom properties using a linear model on the element representations.

In Fig. 3-3(b)(c), the element representation 𝑣
(0)
𝑖 , a 64 dimensional vector, is

visualized for every nonradioactive metal element after training with the perovskite

dataset. Fig. 3-3(b) shows the projection of these element representations on a

2D plane using principal component analysis, where elements are colored according

to their elemental groups. We can clearly see that similar elements are grouped

together based on their stability in perovskite structures. For instance, alkali metals

are grouped on the right of the plot due to their similar properties. The large alkaline

earth metals (Ba, Se, and Ca) are grouped on the bottom, distinct from Mg and Be,

because their larger radius stabilizes them in the perovskite structure. On the left
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side are elements such as W, Mo, and Ta that favor octahedral coordinations due to

their configuration of d electrons, which might be related to their extra stability in

the B site [46]. Interestingly, we can also observe a trend of decreasing atom radius

from the bottom of the plot to the top as shown in the insert of Fig. 3-3(b), except for

the alkali metals as outliers. This indicates that CGCNN learns the atom radius as

an important feature for perovskite stability. Recently, Schutt et al. also discovered

similar grouping of elements with data from the Materials Project [177]. In general,

these visualizations can help discover similarities between elements for designing novel

perovskite structures.

However, these 2D plots only account for part of the 64-dimensional element

representation vectors. To fully understand how element properties are learned by

CGCNN, we use linear logistic regression (LR) models to predict the block type,

group number, radius, and electronegativity of each element from their learned repre-

sentation vectors. In Fig. 3-3(c), we show the 3-fold cross validation accuracy of the

LR models and compare them with LR models learned from random representations,

which helps to rule out the possibility that the predictions are caused by coincidences.

We discover a significantly higher prediction accuracy of the learned representations

for all four properties, demonstrating that the element representations can reflect

multiple aspects of element properties. For instance, the model predicts the block of

the element with over 90% accuracy, and the same representation also predicts the

group number, radius, and electronegativity with over 60% accuracy. This is surpris-

ing considering that there are 16 different elemental groups represented. It is worth

noting that these representations are learned only from the perovskite structures and

the total energy above hull, but they are in agreement with these empirical element

properties reflecting decades of human chemical intuition.

Second, we visualize the local energy representations to understand how each site

in the perovskite structure affects its stability. Figure 3-4(a, b) visualizes the mean of

the predicted site energies when each element occupies the A and B site respectively.

The most stable elements that occupy the A site are those with large radii due to the

space needed for 12 coordinations. In contrast, elements with small radii like Be, B, Si
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Figure 3-4: Extraction of site energy of perovskites from total energy above hull. (a,
b) Periodic table with the color of each element representing the mean of the site
energy when the element occupies A site (c) or B site (d).
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are the most unstable for occupying the A site. For the B site, elements in groups 4,

5, and 6 are the most stable throughout the periodic table. This can be explained by

crystal field theory, since the configuration of d electrons of these elements favors the

octahedral coordination in the B site. Interestingly, the visualization shows that large

atoms from groups 13-15 are stable in the A site, in addition to the well-known region

of groups 1-3 elements. Inspired by this result, we applied a combinational search for

stable perovskites using elements from group 13-15 as the A site and group 4-6 as the

B site. Due to the theoretical inaccuracies of DFT calculations and the possibility

of metastable phases that can be stabilized by temperature, defects, and substrates,

many synthesizable inorganic crystals have positive calculated energies above hull

at 0 K. Some metastable nitrides can even have energies up to 0.2 eV/atom above

hull as a result of the strong bonding interactions[187]. In this work, since some

of the perovskites are also nitrides, we choose to set the cutoff energy for potential

synthesizability at 0.2 eV/atom. We discovered 33 perovskites that fall within this

threshold out of 378 in the entire dataset, among which 8 are within the cutoff out of 58

in the test set (Table 3.1). Many of these compounds like PbTiO3[188], PbZrO3[188],

SnTaO3[189], and PbMoO3[190] have been experimentally synthesized. Note that

PbMoO3 has calculated energy 0.18 eV/atom above hull, indicating that our choice

of cutoff energy is reasonable. In general, chemical insights gained from CGCNN can

significantly reduce the search space for high throughput screening. In comparison,

there are only 228 potentially synthesizable perovskites out of 18928 in our database:

the chemical insight increased the search efficiency by a factor of 7.

3.3.3 Elemental boron: structural space

As a second example, we explore the structural space of elemental boron by visualizing

the local environment representations and the corresponding local energies. Elemen-

tal boron has a number of complex crystal structures due to its unique, electron-

deficient bonding nature [181, 191]. We use a dataset that includes 5038 distinct

elemental boron structures and their total energies calculated using density func-

tional theory [181]. We train our CGCNN model with 3038 structures, and perform

69



Table 3.1: Perovskites with energy above hull lower than 0.2 eV/atom discovered
using combinational search.

Formula A site B site Formation energy per atom (eV/atom)
Training Set (60%)

TlNbO3 Tl Nb 0.0
SnTiO3 Sn Ti 0.1
PbVO3 Pb V 0.04
SnTaO3 Sn Ta 0.0
TlWO3 Tl W 0.12

PbMoO3 Pb Mo 0.18
PbCrO3 Pb Cr 0.14
SnNbO3 Sn Nb 0.14

SnTaO2N Sn Ta 0.14
TlTaOFN Tl Ta 0.18
TlTaO2F Tl Ta 0.04
TlHfO2F Tl Hf 0.18
PbTiO3 Pb Ti 0.06
InNbO3 In Nb 0.06
InWO3 In W 0.18
InTaO3 In Ta -0.16

InNbO2F In Nb 0.18
InTaO2S In Ta 0.18

Validation Set (20%)
TlNbO2F Tl Nb 0.08
TlZrO2F Tl Zr 0.14
SnVO3 Sn V 0.12

TlTiO2F Tl Ti -0.02
PbNbO2N Pb Nb 0.18
PbZrO3 Pb Zr 0.08
PbNbO3 Pb Nb 0.04

Test Set (20%)
BiCrO3 Bi Cr 0.14
PbVO2F Pb V 0.14
SnNbO2N Sn Nb 0.18
PbHfO3 Pb Hf 0.1
TlTaO3 Tl Ta 0.1
PbTaO3 Pb Ta 0.18
InTaO2F In Ta 0.08
InZrO2F In Zr 0.16
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hyperparameter optimization with 1000 validation structures. The MAE of predicted

energy relative to DFT results on the remaining 1000 test structures is 0.085 eV/atom.

The learning curve in Fig. 3-2 shows a much smaller slope compared with the other

material spaces. One explanation is that there exist many highly unstable boron

structures in the dataset, whose energies might be hard to predict given the limited

structures covered by the training data.

In Fig. 3-5, 1000 randomly sampled boron local environment representations are

visualized in 2 dimensions using the t-distributed stochastic neighbor embedding (t-

SNE) algorithm [193]. We observe primarily four different regions of different boron

local environments, and we discover a smooth transition of local energy, number of

neighbor atoms, and the density between different regions. The disconnected region

consists of boron atoms at the edge of boron clusters [Fig. 3-6(a-c)]. These atoms have

very high local energies and lower number of neighbors, as to be expected, and their

density varies depending on the distances between clusters. The amorphous region

includes boron atoms in a relatively disordered local configuration, and their local

energies are lower than the disconnected counterparts but higher than other other

configurations [Fig. 3-6(d-f)]. We can see that the number of neighbors fluctuates

drastically in these two regions due to the relatively disordered local structures. The

layered region is composed of boron atoms in layered boron planes, where neighbors

on one side are closely bonded and the neighbors on the other side are further away

[Fig. 3-6(g-i)]. The B12 icosahedron region includes boron local environments with the

lowest local energy, which have a characteristic icosahedron structure [Fig. 3-6(j-l)].

The local environments in each region share common characteristics but are slightly

different in detail. For instance, most boron atoms in the B12 icosahedron region

are in a slightly distorted icosahedron, and the local environments in Fig. 3-6(l) only

have certain features of an icosahedron. Note that these representations are rather

localized. The global structure of Fig. 3-6(c) is layered, but the representation of

the highlighted atom at the edge is closer to the disconnected region locally. Some

experimentally observed boron structures, like boron fullerenes, are not presented

in the dataset. We calculate the local environment representations of every distinct
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Disconnected

Layered

Amorphous
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# of neighbors Density

eV/atom
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Atom energy

Figure 3-5: Visualization of the local environment representations learned from the
elemental boron dataset. The original 64D vectors are reduced to 2D with the t-
distributed stochastic neighbor embedding algorithm. The color of each plot is coded
with learned local energy (a), number of neighbors calculated by Pymatgen pack-
age [192] (b), and density (c). Representative boron local environments are shown
with the center atom colored in red.
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boron atom of two boron fullerenes [194] using the trained CGCNN, and plot them

into the original 2D visualization in Fig. 3-7. They form a small cluster close to the B12

icosahedron region. This can be explained by the fact that they share many common

characteristics to the B12 icosahedron structure. In addition, the representations of

the less symmetric B40(𝐶𝑠) are more spread out than the more symmetric B40(𝐷2𝑑).

Note that the pattern in Fig. 3-7 is slightly different from that in Fig. 3-5 due to the

random nature of the t-SNE algorithm, but the overall structure of the patterns is

preserved.

Disconnected

Amorphous

Layered

Icosahedron

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3-6: Example local environments of elemental boron in the four regions: (a-c)
disconnected, (d-f) amorphous, (h-i) layered, and (j-l) icosahedron.

73



(a)

(b) (c)

# of neighbors Density

eV/atom
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B40 (Cs)

B40 (D2d)

Figure 3-7: The boron fullerene local environments in the boron structural space.
The representation of each distinct local environments in the two B40 structures are
plotted in the original boron structural space in Fig. 4.
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Taken together, such a visualization approach provides a convenient way to explore

complex boron configurations, enabling the identification of characteristic structures

and systematic exploration of structural space.

3.3.4 Materials Project: compositional and structural space

As a third example of applying this approach, we explore the material space of crystals

in the Materials Project dataset [139], which includes both compositional and struc-

tural differences, by visualizing the element representation, local environment repre-

sentation, and the local energy representation. The dataset includes 46744 materials

that cover the majority of crystals from the Inorganic Crystal Structure Database [72],

providing a good representation of known inorganic materials. After training with

28046 crystals and performing hyperparameter optimization with 9348 crystals, our

model achieves MAE of predicted energy relative to DFT calculations on the 9348

test crystals of 0.042 eV/atom, slightly higher than the MAE of our previous work,

0.039 eV/atom, with a CGCNN structure focusing on prediction performance [46].

The learning curve in Fig. 3-2 is similar to that of the perovskites dataset, which

might indicate a similar prediction performance to the datasets that are composed of

stable inorganic compounds.

In Fig. 3-10, the element representation of 89 elements learned from the dataset

is shown using the same method as that used to generate Fig. 3-3(b). We observe

similar grouping of elements from the same elemental groups, but the overall pattern

differs since it reflect the stability of each element in general inorganic crystals rather

than perovskites. For instance, the non-metal and halogen elements stand out because

their properties deviates from other metallic elements.

To illustrate how the compositional and structural spaces can be explored simul-

taneously, we visualize the oxygen and sulfur coordination environments in the Ma-

terials Project dataset using the local environment representation and local energy.

1000 oxygen and 803 sulfur coordination environments are randomly selected and

visualized using the t-SNE algorithm. As shown in Fig. 3-9(a), the oxygen coordina-

tion environments are clustered into 4 major groups. The upper right group has the
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Figure 3-8: Visualization of the two principal dimensions of the element representa-
tions learned from the Materials Project dataset using principal component analysis.
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(a) (b)

# of neighbors Oct. Tet. # of neighbors Oct. Tet.

O M O S M S

eV/atom eV/atom

Figure 3-9: Visualization of the local oxygen (a) and sulfur (b) coordination envi-
ronments. The points are labelled according to the type of the center atoms in the
coordination environments. The colors of the upper parts are coded with learned local
energies, and the color of the lower parts are coded with number of neighbors [192],
octahedron order parameter, and tetrahedron order parameter [195].
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center atom of non-metal elements like P, Al, Si, forming tetrahedron coordinations.

The center atoms of the upper left environments are mostly transition metals, and

they mostly form octahedron coordinations. The lower left group has center atoms

of alkali metals, and the lower right group has those of alkaline earth metals and

lanthanides which have larger radii and therefore higher coordination numbers. The

sulfur coordination environment visualization [Fig. 3-9(b)] shares similar patterns

due to the similarities between oxygen and sulfur, and a similar four-cluster structure

can be observed. However, instead of non-metal elements, the lower center group has

center atoms of metalloids like Ge, Sn, Sb, since these elements will be more stable

in a sulfur vs. oxygen coordination environment.

The local energy of oxygen and sulfur coordination environments are determined

by their relative stability to the pure elemental states since the model is trained using

the formation energy data, which treats the pure elemental states as the reference

energy states. In Fig. 3-10, we show the change of local energy of oxygen and sulfur

local energies as a function of atomic number. We can clearly see that it follows a

similar trend as the electronegativity of the elements: elements with lower electroneg-

ativity tend to have lower local energy and vice versa. This is because elements with

lower electronegativity tends to give the oxygen and sulfur more electrons and thus

form stronger bonds. The local energies of alkali metals are slightly higher since

they form weaker ionic bonds due to lower charges. Interestingly, the strong covalent

bonds between oxygen and Al, Si, P, S forms a V-shaped curve in the figure, with Si-O

environments having the lowest energy, contrasting the trend of electronegativity and

sulfur coordination environments, whose local energies are dominated by the strength

of ionic bonds. We also observe a larger span of local energies in oxygen coordination

environments than their sulfur counterparts due to the stronger ionic interactions.

Inspired by these results, we visualize the averaged local energy of 734,077 distinct

coordination environments in the Materials Project by combining different center

and neighbor atoms in Fig. 3-11. This figure illustrates the stability of the local

coordination environment while combining the corresponding center and neighbor

elements. The diagonal line represents coordination environments made up with
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Figure 3-10: The local energy of oxygen (upper) and sulfur (lower) coordination
environments as a function of atomic number. The blue dotted line denotes the
electronegativity of each element.
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the same elements with local energy close to zero, which corresponds to elemental

substances with zero formation energy. The coordination environments with lowest

local energy consist of high valence metals and high electronegativity non-metals,

which can be explained by the large cohesive energies due to strong ionic bonds. One

abnormality is the stable Al-O, Si-O, P-O, S-O coordination environments, although

this can be attributed to their strong covalent bonds. We can also see that Tm-H

coordination stands out as a stable hydrogen solid solution [196]. It is worth noting

that each local energy in Fig. 3-11 is the average of many coordination environments

with different shape and outer layer chemistry, and we can obtain more information

by using additional visualizations similar to Fig. 3-9.
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Figure 3-11: The averaged local energy of 734,077 distinct coordination environments
in the Materials Project dataset. The color is coded with the average of learned local
energies while having the corresponding elements as the center atom and the first
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dataset.
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Chapter 4

Graph dynamical networks for

unsupervised learning of atomic

scale dynamics in materials

4.1 Introduction

4.1.1 Section overview

In this chapter, we aim to explore learning representations for solid materials when

there is no property available, i.e. unsupervised learning. Obtaining the property of a

solid material, either by computation or experiment, is expensive and in many cases,

we only have the structure of a material. One of such cases is the time series data

from molecular dynamics (MD) simulations, which describes how the structure of a

material evolves as a function time. In this chapter, we develop a deep learning ar-

chitecture, Graph Dynamical Networks (GDyNets), that combines Koopman analysis

and graph convolutional neural networks to learn the dynamics of individual atoms

in material systems from molecular dynamics trajectory data. We first describe the

architecture of the GDyNets and how it extends the CGCNN to learn the dynamics

of atoms in materials. Then, we will show through a toy system that the invariances

built in graph neural networks allow the sharing of information between similar lo-
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cal environments, which significantly improves the sampling of complex dynamics in

materials. Finally, we apply our method to two realistic material systems – silicon

dynamics at solid-liquid interfaces and lithium ion transport in amorphous polymer

electrolytes – to demonstrate the new dynamical information one can extract for such

complex materials and environments. Given the enormous amount of MD data gen-

erated in materials research, we believe the broad applicability of this method could

help uncover important new physical insights from atomic scale dynamics that may

have otherwise been overlooked.

4.1.2 Theoretical and practical motivations

From a theoretical perspective, we aim to extend the CGCNN framework to unsu-

pervised learning by learning from time series data. The problem can be framed as a

clustering problem, where we hope to assign each atom in a solid material a class by

learning from time series data.

𝑐𝑖 = 𝑓(𝑖, 𝑥(𝑡), 𝑧(𝑡), 𝑙(𝑡)), (4.1)

where 𝑐𝑖 ∈ {𝐶1, ..., 𝐶𝐾} is the class label for atom 𝑖 in the material, {𝑥(𝑡), 𝑧(𝑡), 𝑙(𝑡)}

is the structure of the entire solid material at time step 𝑡. Note that we do not have

the class labels 𝑐𝑖 from the training data, and the model need to discover these classes

by itself. This clustering problem provides a method to understand complex material

systems, in which atoms experience various different local chemical environments that

are hard to study with conventional approaches. The key question is what criteria

we use to determine these class labels 𝑐𝑖, and we will solve this problem using a

variational loss function that optimizes for the slowest transition in the system.

From a practical perspective, understanding the atomic scale dynamics in con-

densed phase is essential for the design of functional materials to tackle the global

energy and environmental challenges. [197–199] The performance of many materials,

like electrolytes and membranes, depend on the dynamics of individual atoms or small

molecules in complex local environments. Despite the rapid advances in experimental
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techniques [200–202], molecular dynamics (MD) simulations remain one of the few

tools for probing these dynamical processes with both atomic scale time and spatial

resolutions. However, due to the large amounts of data generated in each MD simu-

lation, it is often challenging to extract statistically relevant dynamics for each atom

especially in multi-component, amorphous material systems. At present, atomic scale

dynamics are usually learned by designing system-specific description of coordination

environments or computing the average behavior of atoms. [132, 203–205] A gen-

eral approach for understanding the dynamics in different types of condensed phases,

including solid, liquid, and amorphous, is still lacking.

4.1.3 Related prior research

The advances in applying deep learning to scientific research open new opportunities

for utilizing the full trajectory data from MD simulations in an automated fashion.

Ideally, we want to trace every atom or small molecule of interest in the MD tra-

jectories, and summarize their dynamics into a linear, low dimensional model that

describes how their local environments evolve over time. Recent studies show that

combining Koopman analysis and deep neural networks provides a powerful tool to

understand complex biological processes and fluid dynamics from data. [206–208] In

particular, VAMPnets [208] develop a variational approach for Markov processes to

learn an optimal latent space representation that encodes the long-time dynamics,

which enables the end-to-end learning of a linear dynamical model directly from MD

data. However, in order to learn the atomic dynamics in complex, multi-component

material systems, sharing knowledge learned for similar local chemical environments

is essential to reduce the amount of data needed. Recent development of graph

convolutional neural networks (GCN) has led to a series of new representations of

molecules [66, 174–176] and materials [46, 177] that are invariant to permutation

and rotation operations. These representations provide a general approach to encode

the chemical structures in neural networks which shares parameters between different

local environments, and they have been used for predicting properties of molecules

and materials [46, 66, 174–177], generating force fields [177, 209], and visualizing
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structural similarities [48, 183].

4.2 Architecture of graph dynamical networks

4.2.1 Koopman analysis of atomic scale dynamics.

In materials design, the dynamics of target atoms, like the lithium ion in electrolytes

and the water molecule in membranes, provide key information to material perfor-

mance. We describe the dynamics of the target atoms and their surrounding atoms

as a discrete process in MD simulations,

𝑥𝑡+𝜏 = 𝐹 (𝑥𝑡), (4.2)

where 𝑥𝑡 and 𝑥𝑡+𝜏 denote the local configuration of the target atoms and their sur-

rounding atoms at time steps 𝑡 and 𝑡 + 𝜏 , respectively. Note that Eq. (4.2) implies

that the dynamics of 𝑥 is Markovian, i.e. 𝑥𝑡+𝜏 only depends on 𝑥𝑡 not the config-

urations before it. This is exact when 𝑥 includes all atoms in the system, but an

approximation if only neighbor atoms are included. We also assume that each set

of target atoms follow the same dynamics 𝐹 . These are valid assumptions since 1)

most interactions in materials are short-range, 2) most materials are either periodic

or have similar local structures, and we could test them by validating the dynamical

models using new MD data which we will discuss later.

The Koopman theory [210] states that there exists a function 𝜒(𝑥) that maps the

local configuration of target atoms 𝑥 into a lower dimensional feature space, such

that the non-linear dynamics 𝐹 can be approximated by a linear transition matrix

𝐾,

𝜒(𝑥𝑡+𝜏 ) ≈ 𝐾𝑇 𝜒(𝑥𝑡). (4.3)

The approximation becomes exact when the feature space has infinite dimensions.

However, for most dynamics in material systems, it is possible to approximate it with

a low dimensional feature space with a sufficiently large 𝜏 due to the existence of
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characteristic slow processes. The goal is to identify such slow processes by finding

the feature map function 𝜒(𝑥).

4.2.2 Learning feature map function with graph dynamical

networks.

In this work, we use graph convolutional neural networks (GCN) to learn the feature

map function 𝜒(𝑥). GCN provides a general framework to encode the structure of

materials that is invariant to permutation, rotation, and reflection [46, 177]. As shown

in Fig. 4-1, for each time step in the MD trajectory, a graph 𝒢 is constructed based

on its current configuration with each node 𝑣𝑖 representing an atom and each edge

𝑢𝑖,𝑗 representing a bond connecting nearby atoms. We connect 𝑀 nearest neighbors

considering periodic boundary condition while constructing the graph, and a gated

architecture [46] is used in GCN to reweigh the strength of each connection (see

section 2.3 for details). Note that the graphs are constructed separately for each step,

so the topology of each graph may be different. Also, the 3-dimensional information

is preserved in the graphs since the bond length is encoded in 𝑢𝑖,𝑗. Then, each

graph is input to the same GCN to learn an embedding for each atom through graph

convolution (or neural message passing [175]) that incorporates the information of its

surrounding environments.

𝑣′
𝑖 = Conv(𝑣𝑖, 𝑣𝑗, 𝑢(𝑖,𝑗)), (𝑖, 𝑗) ∈ 𝒢. (4.4)

After 𝐾 convolution operations, information from the 𝐾th neighbors will be propa-

gated to each atom, resulting in an embedding 𝑣
(𝐾)
𝑖 that encodes its local environment.

To learn a feature map function for the target atoms whose dynamics we want

to model, we focus on the embeddings learned for these atoms. Assume that there

are 𝑛 sets of target atoms each made up with 𝑘 atoms in the material system. For

instance, in a system of 10 water molecules, 𝑛 = 10 and 𝑘 = 3. We use the label 𝑣[𝑙,𝑚]

to denote the 𝑚th atom in the 𝑙th set of target atoms. With a pooling function [46],

we can get an overall embedding 𝑣[𝑙] for each set of target atoms to represent its local
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Figure 4-1: Illustration of the graph dynamical networks architecture. The MD
trajectories are represented by a series of graphs dynamically constructed at each
time step. The red nodes denote the target atoms whose dynamics we are interested
in, and the blue nodes denote the rest of the atoms. The graphs are input to the
same graph convolutional neural network to learn an embedding 𝑣

(𝐾)
𝑖 for each atom

that represents its local configuration. The embeddings of the target atoms at 𝑡 and
𝑡+ 𝜏 are merged to compute a VAMP loss that minimizes the errors in Eq. (4.3) [208,
211].
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configuration,

𝑣[𝑙] = Pool(𝑣[𝑙,0], 𝑣[𝑙,1], . . . , 𝑣[𝑙,𝑘]). (4.5)

Finally, we build a shared output layer with a Softmax activation function to map the

embeddings 𝑣[𝑙] to a feature space 𝑣[𝑙] with a pre-determined dimension. This is the

feature space described in Eq. (4.3), and we can select an appropriate dimension to

capture the important dynamics in the material system. The Softmax function used

here allows us to interpret the feature space as a probability over several states [208].

Below, we will use the term “number of states” and “dimension of feature space”

interchangeably.

To minimize the errors of the approximation in Eq. (4.3), we compute the loss of

the system using a VAMP-2 score [208, 211] that measures the consistency between

the feature vectors learned at timesteps 𝑡 and 𝑡 + 𝜏 ,

Loss = −VAMP(𝑣[𝑙],𝑡, 𝑣[𝑙],𝑡+𝜏 ), 𝑡 ∈ [0, 𝑇 − 𝜏 ], 𝑙 ∈ [0, 𝑛]. (4.6)

This means that a single VAMP-2 score is computed over the whole trajectory and

all sets of target atoms. The entire network is trained by minimizing the VAMP loss,

i.e. maximizing the VAMP-2 score, with the trajectories from the MD simulations.

4.2.3 Hyperparameter optimization and model validation.

There are several hyperparameters in the GDyNets that need to be optimized, includ-

ing the architecture of GCN, the dimension of the feature space, and lag time 𝜏 . We

divide the MD trajectory into training, validation, and testing sets. The models are

trained with trajectories from the training set, and a VAMP-2 score is computed with

trajectories from the validation set. The GCN architecture is optimized according to

the VAMP-2 score similar to ref. [46].

The accuracy of Eq. (4.3) can be evaluated with a Chapman-Kolmogorov (CK)

equation,

𝐾(𝑛𝜏) = 𝐾𝑛(𝜏), 𝑛 = 1, 2, . . . . (4.7)
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This equation holds if the dynamic model learned is Markovian, and it can predict

the long-term dynamics of the system. In general, increasing the dimension of feature

space makes the dynamic model more accurate, but it may result in overfitting when

the dimension is very large. Since a higher feature space dimension and a larger 𝜏

make the model harder to understand and contain less dynamical details, we select

the smallest feature space dimension and 𝜏 that fulfills the CK equation within sta-

tistical uncertainty. Therefore, the resulting model is interpretable and contains more

dynamical details. More about the effects of feature space dimension and 𝜏 can be

found in refs. [208, 211].

4.3 Advantage of learning local dynamics

The key advantage of GDyNets over the VAMPnet is that graph neural networks allow

for the sharing of knowledge learned for similar local environments across the system,

so it focuses on the modeling of local atomic dynamics instead of global dynamics.

This significantly improves the sampling of the atomic dynamical processes because a

typical material system includes a large number of atoms or small molecules moving

in structurally similar but distinct local environments.

To demonstrate the advantage of learning local dynamics in material systems,

we compare the dynamics learned by the GDyNet with VAMP loss and a standard

VAMPnet with fully connected neural networks that learns global dynamics for a

simple model system using the same input data. As shown in Fig. 4-2(a), we generated

a 200 ns MD trajectory of lithium atom moving in a face-centered cubic (FCC) lattice

of sulfur atoms at a constant temperature, which describes an important lithium ion

transport mechanism in solid-state electrolytes [132]. There are two different sites

for the lithium atom to occupy in a FCC lattice, tetrahedral sites and octahedral

sites, and the hopping between the two sites should be the only dynamics in this

system. As shown in Fig. 4-2(b-d), after training and validation with the first 100 ns

trajectory, the GDyNet correctly identified the transition between the two sites with

a relaxation timescale of 42.3 ps while testing on the second 100 ns trajectory, and it
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performs well in the CK test. In contrast, the standard VAMPnet, which inputs the

same data as the GDyNet, learns a global transition with a much longer relaxation

timescale at 236 ps, and it performs much worse in the CK test. This is because the

model views the four octahedral sites as different sites due to their different spatial

location. As a result, the transition between these identical sites are learned as the

slowest global dynamics.

It is theoretically possible to identify the faster local dynamics from a global

dynamical model when we increase the dimension of feature space (Fig. 4-7). However,

when the size of system increases, the number of slower global transitions will increase

exponentially, making it practically impossible to discover important atomic scale

dynamics within a reasonable simulation time. In addition, it is possible in this simple

system to design a symmetrically invariant coordinate to include the equivalence of

the octahedral and tetrahedral sites. But in a more complicated multi-component

or amorphous material system, it is difficult to design such coordinates that take

into account the complex atomic local environments. Finally, it is also possible to

reconstruct global dynamics from the local dynamics. Since we know how the 4

octahedral and 8 tetrahedral sites are connected in a FCC lattice, we can construct

the 12 dimensional global transition matrix from the 2 dimensional local transition

matrix (see section 4.6.1 for details). We obtain the slowest global relaxation timescale

to be 531 ps, which is close to the observed slowest timescale of 528 ps from the global

dynamical model in Fig. 4-7. Note that the timescale from the two-state global model

in Fig. 4-2 is less accurate since it fails to learn the correct transition. In sum, the

built-in invariances in GCN provides a good tool to reduce the complexity of learning

atomic dynamics in material systems.
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Figure 4-2: A two-state dynamic model learned for lithium ion in the face-centered
cubic lattice. (a) Structure of the FCC lattice and the relative energies of the tetrahe-
dral and octahedral sites. (b-d) Comparison between the local dynamics (left) learned
with GDyNet and the global dynamics (right) learned with a standard VAMPnet. (b)
Relaxation timescales computed from the Koopman models. (c) Assignment of the
two states in the FCC lattice. The color denotes the probability of being in state
0. (d) CK test comparing the long-term dynamics predicted by Koopman models at
𝜏 = 10 ps (blue) and actual dynamics (red). The shaded areas and error bars in (b,
d) report the 95% confidence interval from five independent trajectories by dividing
the test data equally into chunks.
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4.4 Application to the understanding of complex

dynamics

4.4.1 Silicon dynamics in solid-liquid interface

To evaluate performance of the GDyNets with VAMP loss for a more complicated

system, we study the dynamics of silicon atoms at a binary solid-liquid interface.

Understanding the dynamics at interfaces is notoriously difficult due to the complex

local structures formed during phase transitions. [212, 213] As shown in Fig. 4-3(a),

an equilibrium system made of two crystalline Si {110} surfaces and a liquid Si-Au

solution is constructed at the eutectic point (629 K, 23.4% Si [214]) and simulated

for 25 ns using MD. We train and validate a four-state model using the first 12.5 ns

trajectory, and use it to identify the dynamics of Si atoms in the last 12.5 ns trajectory.

Note that we only use the Si atoms in the liquid phase and the first two layers of {110}

surfaces as the target atoms (Fig. 4-3(b)). This is because the Koopman models are

optimized for finding the slowest transition in the system, and including additional

solid Si atoms will result in a model that learns the slower Si hopping in the solid

phase which is not our focus.

In Fig. 4-3(b, c), the model identified four states that are crucial for the Si dy-

namics at the solid-liquid interface – liquid Si at the interface (state 0), solid Si (state

1), solid Si at the interface (state 2), and liquid Si (state 3). These states provide

a more detailed description of the solid-liquid interface structure than conventional

methods. In Fig. 4-4, we compare our results with the distribution of the 𝑞3 order

parameter of the Si atoms in the system, which measures how much a site deviates

from a diamond-like structure and is often used for studying Si interfaces [215]. We

learn from the comparison that 1) our method successfully identifies the bulk liquid

and solid states, and learns additional interface states that cannot be obtained from

𝑞3; 2) the states learned by our method are more robust due to access to dynamical

information, while 𝑞3 can be affected by the accidental order structures in the liquid

phase; 3) 𝑞3 is system specific and only works for diamond-like structures, but the

93



0 1 2 3
States

í����

í����

í����

í����

����

����

����

����

����

E
ig

en
ve

ct
or

s

0 1 2 3
States

0 1 2 3
States

a

Si

Au

b

State 0 State 1

State 2 State 3

d e

0

1

S
ta

te
 0

0

1

S
ta

te
 1

0

1

S
ta

te
 2

10 20 30 40
z axis (Å)

0

1

S
ta

te
 3

0

1 0->0 0->1 0->2 0->3

0

1 1->0 1->1 1->2 1->3

0

1 2->0 2->1 2->2 2->3

0 6 12
0

1 3->0

0 6 12

3->1

0 6 12

3->2

0 6 12

3->3

(ns)

���

���

���

���

���

���

0 2 4 6 � 10 12
Lag time (ns)

10-1

100

101

102

103

Ti
m

es
ca

le
s 

(n
s)

c

f

Figure 4-3: A four-state dynamical model learned for silicon atoms at solid-liquid
interface. (a) Structure of the silicon-gold two-phase system. (b) Cross section of the
system, where only silicon atoms are shown and color-coded with the probability of
being in each state. (c) The distribution of silicon atoms in each state as a function
of z-axis coordinate. (d) Relaxation timescales computed from the Koopman models.
(e) Eigenvectors projected to each state for the three relaxations of Koopman models
at 𝜏 = 3 ns. (f) CK test comparing the long-term dynamics predicted by Koopman
models at 𝜏 = 3 ns (blue) and actual dynamics (red). The shaded areas and error bars
in (d, f) report the 95% confidence interval from five sets of Si atoms by randomly
dividing the target atoms in the test data.
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GDyNets can potentially be applied to any material given the MD data.
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Figure 4-4: Comparison between the learned states and 𝑞3 order parameters for silicon
atoms at the solid-liquid interface. (a) Cross section of the system, where the silicon
atoms are color-coded with their 𝑞3 order parameters. (b) Distribution of the 𝑞3 order
parameter for the silicon atoms of each state.

In addition, important dynamical processes at the solid-liquid interface can be

learned with the model. Remarkably, the model identified the relaxation process of

the solid-liquid transition with a timescale of 538 ns (Fig. 4-3(d, e)), which is one

order of magnitude longer than the simulation time of 12.5 ns. This is because the

large number of Si atoms in the material system provide an ensemble of independent

trajectories that enable the identification of rare events [216–218]. The other two

relaxation processes corresponds to the transitions of solid Si atoms at the interface

(73.2 ns) and liquid Si atoms at interface (2.26 ns), respectively. These processes are

difficult to obtain with conventional methods due to the complex structures at solid-

liquid interfaces, and the results are consistent with our understanding that the former

solid relaxation is significantly slower than the latter liquid relaxation. Finally, the

model performs excellently in the CK test on predicting the long-term dynamics.

4.4.2 Lithium ion dynamics in polymer electrolytes

Finally, we apply GDyNets with VAMP loss to study the dynamics of lithium ions (Li-

ions) in solid polymer electrolytes (SPEs), an amorphous material system composed of
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multiple chemical species. SPEs are candidates for next generation battery technology

due to their safety, stability, and low manufacturing cost, but they suffer from low

Li-ion conductivity compared with liquid electrolytes. [219, 220] Understanding the

key dynamics that affect the transport of Li-ions is important to the improvement of

Li-ion conductivity in SPEs.
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Figure 4-5: A four-state dynamical model learned for lithium ion in a PEO/LiTFSI
polymer electrolyte. (a) Structure of the PEO/LiTFSI polymer electrolyte. (b) Rep-
resentative configurations of the four Li-ion states learned by the dynamical model.
(c) Charge integral of each state around a Li-ion as a function of radius. (d) Re-
laxation timescales computed from the Koopman models. (e) Eigenvectors projected
to each state for the three relaxations of Koopman models at 𝜏 = 0.8 ns. (f) CK
test comparing the long-term dynamics predicted by Koopman models at 𝜏 = 0.8 ns
(blue) and actual dynamics (red). The shaded areas and error bars in (d, f) report
the 95% confidence interval from four independent trajectories in the test data.

We focus on the state-of-the-art [220] SPE system – a mixture of poly(ethylene ox-

ide) (PEO) and lithium bis-trifluoromethyl sulfonimide (LiTFSI) with Li/EO = 0.05

as shown in Fig. 4-5(a). Five independent 80 ns trajectories are generated to model

the Li-ion transport at 363 K. We train a four-state GDyNet with one of the trajec-

tories, and use the model to identify the dynamics of Li-ions in the remaining four

trajectories. The model identified four different solvation environments, i.e. states,

for the Li-ions in the SPE. In Fig. 4-5(b), the state 0 Li-ion has a population of

50.6 ± 0.8%, and it is coordinated by a PEO chain on one side and a TFSI anion
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on the other side. The state 1 has a similar structure as state 0 with a population

of 27.3 ± 0.4%, but the Li-ion is coordinated by a hydroxyl group on the PEO side

rather than an oxygen. In state 2, the Li-ion is completely coordinated by TFSI anion

ions, which has a population of 15.1 ± 0.4%. And the state 3 Li-ion is coordinated by

PEO chains with a population of 7.0 ± 0.9%. Note that the structures in Fig. 4-5(b)

only show a representative configuration for each state. We compute the element-

wise radial distribution function (RDF) for each state to demonstrate the average

configurations, which is consistent with above description. We also analyze the total

charge carried by the Li-ions in each state considering their solvation environments

in Fig. 4-5(c) (Table 4.1). Interestingly, both state 0 and state 1 carry almost zero

total charge in their first solvation shell due to the one TFSI anion in their solvation

environments.

Table 4.1: The charge carried by each state in PEO/LiTFSI.

State 0 1 2 3
Charge +0.040 +0.262 -0.637 +0.889

We further study the transition between the four Li-ion states. Three relaxation

processes are identified in the dynamical model as shown in Fig. 4-5(d, e). By ana-

lyzing the eigenvectors, we learn that the slowest relaxation is a process involving the

transport of a Li-ion into and out of a PEO coordinated environment. The second

slowest relaxation happens mainly between state 0 and state 1, corresponding to a

movement of the hydroxyl group. The transitions from state 0 to states 2 and 3

constitute the last relaxation process, as state 0 can be thought of an intermediate

state between state 2 and state 3. The model performs well in CK tests (Fig. 4-5(f)).

Relaxation processes in the PEO/LiTFSI systems have been extensively studied ex-

perimentally [221, 222], but it is difficult to pinpoint the exact atomic scale dynamics

related to these relaxations. The dynamical model learned by GDyNet provides ad-

ditional insights into the understanding of Li-ion transport in polymer electrolytes.
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4.4.3 Implications to lithium ion conduction

The state configurations and dynamical model allow us to further quantify the tran-

sitions that are responsible for the Li-ion conduction. In Fig. 4-6, we compute the

contribution from each state transition to the Li-ion conduction using the Koopman

model at 𝜏 = 0.8 ns. First, we learn that the majority of conduction results from

transitions within the same states (𝑖 → 𝑖). This is because the transport of Li-ions in

PEO is strongly coupled with segmental motion of the polymer chains [203, 223], in

contrast to the hopping mechanism in inorganic solid electrolytes [224]. In addition,

due to the low charge carried by state 0 and state 1, the majority of charge conduction

results from the diffusion of states 2 and 3, despite their relatively low populations.

Interestingly, the diffusion of state 2, a negatively charged species, accounts for ∼ 40%

of the Li-ion conduction. This provides an atomic scale explanation to the recently

observed negative transference number at high salt concentration PEO/LiTFSI sys-

tem [225].

4.5 Discussion

We have developed a general approach, Graph Dynamical Networks (GDyNets), to

understand the atomic scale dynamics in material systems. Despite being widely

used in biophysics [218], fluid dynamics [226], and kinetic modeling of chemical re-

actions [227–229], Koopman models, (or Markov state models [218], master equa-

tion methods [230, 231]) have not been used in learning atomic scale dynamics in

materials from MD simulations except for a few examples in understanding solvent

dynamics [232–234]. Our approach also differs from several other unsupervised learn-

ing methods [235–237] by directly learning a linear Koopman model from MD data.

Many crucial processes that affect the performance of materials involve the local

dynamics of atoms or small molecules, like the dynamics of lithium ions in battery

electrolytes [238, 239], the transport of water and salt ions in water desalination mem-

branes [240, 241], the adsorption of gas molecules in metal organic frameworks [242,

243], among many other examples. With the improvement of computational power
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and continued increase in the use of molecular dynamics to study materials, this work

could have broad applicability as a general framework for understanding the atomic

scale dynamics from MD trajectory data.

Compared with the Koopman models previously used in biophysics and fluid dy-

namics, the introduction of graph convolutional neural networks enables parameter

sharing between the atoms and an encoding of local environments that is invariant

to permutation, rotation, and reflection. This symmetry facilitates the identification

of similar local environments throughout the materials, which allows the learning of

local dynamics instead of exponentially more complicated global dynamics. In addi-

tion, it is easy to extend this method to learn global dynamics with a global pooling

function [46]. However, a hierarchical pooling function is potentially needed to di-

rectly learn the global dynamics of large biological systems including thousands of

atoms. It is also possible to represent the local environments using other symmetry

functions like smooth overlap of atomic positions (SOAP) [161], social permutation

invariant (SPRINT) coordinates [159], etc. By adding a few layers of neural networks,

a similar architecture can be designed to learn the local dynamics of atoms. However,

these built-in invariances may also cause the Koopman model to ignore dynamics be-

tween symmetrically equivalent structures which might be important to the material

performance. One simple example is the flip of ammonia molecule – the two states

are mirror symmetric to each other so the GCN will not be able to differentiate them

by design. This can potentially be resolved by partially break the symmetry of GCN

based on the symmetry of the material systems.

The graph dynamical networks can be further improved by incorporating ideas

from both the fields of Koopman models and graph neural networks. For instance,

the auto-encoder architecture [207, 244, 245] and deep generative models [246] start

to enable the direct generation of future structures in the configuration space. Our

method currently lacks a generative component, but this can potentially be achieved

with a proper graph decoder [247, 248]. Furthermore, transfer learning on graph

embeddings may reduce the number of MD trajectories needed for learning the dy-

namics [249, 250].
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In summary, graph dynamical networks present a general approach for under-

standing the atomic scale dynamics in materials. With a toy system of lithium ion

transporting in a face-centered cubic lattice, we demonstrate that learning local dy-

namics of atoms can be exponentially easier than global dynamics in material systems

with representative local structures. The dynamics learned from two more compli-

cated systems, solid-liquid interfaces and solid polymer electrolytes, indicate the po-

tential of applying the method to a wide range of material systems and understanding

atomic dynamics that are crucial to their performances.

4.6 Supplementary notes

4.6.1 Computation of global dynamics from local dynamics

in the toy system

To compute the global dynamics from local dynamics, we first assume that the tran-

sition matrix of the local Koopman model has the form,

𝐾local =

⎡⎢⎣ 𝑝𝑜 1 − 𝑝𝑜

1 − 𝑝𝑡 𝑝𝑡

⎤⎥⎦ , (4.8)

where 𝑝𝑜 and 𝑝𝑡 denotes the probability of the lithium atom staying in the octahedral

and tetrahedral sites, respectively. Since there are 4 octahedral sites and 8 tetrahedral

sites that are connected to each other in the FCC lattice, we can write the transition
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matrix of the global Koopman model as,

𝐾global =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.9)

By computing the eigenvalues of 𝐾global, we could obtain the relaxation timescales and

understand the global dynamics of the toy system. There are two major reasons for

the discrepancy between the computed and observed global Koopman model (Fig. 4-

7): 1) the amount of MD data is not large enough to capture of full global dynamics

of the lithium atom by directly learning a global dynamical model; 2) the probability

of lithium atom transporting to nearby sites of the same type is not strictly zero at

a given 𝜏 , so the 𝑝𝑜 and 𝑝𝑡 in 𝐾local and the zero terms in 𝐾global are approximate.
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Figure 4-7: Global relaxation timescales computed for lithium ion hopping in face-
centered cubic (FCC) lattice with a 8 dimensional feature space.
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Chapter 5

Autonomous exploration of the

space of polymer electrolytes with

Bayesian optimization and

coarse-grained molecular dynamics

5.1 Introduction

5.1.1 Chapter overview

In this chapter, we explore active learning to autonomously explore a material space

combining Bayesian optimization and coarse-grained molecular dynamics simulations.

This is a different learning problem compared with both supervised and unsupervised

learning. We aim not only to predict the property of a given material, but also propose

material to simulate in a next iteration step in a way the minimizes the total number

of simulation needed. We will start by introducing the material design problem – the

discovery of solid polymer electrolyte materials for lithium ion batteries. Then, we

will define the target material space and develop the Bayesian optimization approach

to efficient explore this space. Further, we will demonstrate the performance of our

approach and discuss the material design knowledge learned from the exploration.

105



Finally, we discuss the implications of our models for materials design.

5.1.2 Motivations

Lithium-ion batteries haven been applied in a wide range of applications, from per-

sonal devices to grid scale energy storage [251]. In pursuit of safer and more durable

lithium-ion batteries at lower cost, solid polymer electrolytes (SPEs) are promising

building blocks, due to their unique advantages such as absence of flammable solvents,

compatibility with roll-to-roll processes, and intrinsic flexibility and stretchability

[252, 253]. However, the low ionic conductivity of current SPEs prevents their further

incorporation into real-world applications [254]. This challenge motivates tremendous

research efforts towards the design of highly conductive SPE materials [204, 252, 255,

256], via investigating the ionic transport mechanisms [257, 258] and exploring can-

didate SPE materials [259, 260] (where simulations and modeling have already made

valuable contributions [203, 261]). With the recent rapid development of artificial

intelligence (AI) [7], machine learning (ML) techniques have started to play roles in

improving and reforming the design loop of SPE materials [47, 259, 260]. AI and

ML developments provide immense opportunities to examine molecular moieties in

polymer electrolytes and correlate their dynamics and energetics with ion transport

properties. In order to fully understand what governs the ion mobility and achieve

global optimization of the SPE system, the identification of universally applicable

descriptors is of great importance, but this is very difficult in a typical design space

constructed by chemical species. Besides, in the case of SPEs, the complexity of the

system, which mixes long chain polymers and lithium compounds, places it beyond

the capacity of conventional fully atomistic (FA) simulations as a means to generate

datasets with the sizes suitable for many popular ML algorithms (e.g. a training

dataset containing 104-105 samples is usually preferred [46]).
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5.2 Coarse Grained Molecular Dynamics-Bayesian

Optimization framework

In this work, we propose a new framework for design of SPE materials that combines

coarse grained molecular dynamics (CGMD) with Bayesian Optimization (BO). In

addition to a great reduction in the computational cost, the CG simulation also

preserves molecular level information, converting the discrete chemical species space

to a continuous space constructed by the CGMD parameters. The adoption of the BO

algorithm enables efficient exploration of this high dimensional design space. From

this, we can predict the relationships between the associated molecular level material

properties (e.g. molecule sizes and intermolecular interactions) and the electrolyte

performance, to gain useful mechanistic insights and optimize SPE functions.

To train the CGMD-BO model, we first construct a design space using a set

of CGMD parameters, including the molecule sizes and intermolecular interaction

strengths, that completely define the properties of our designated "improvable com-

ponents" in a SPE system; specifically the anions, backbone chains and possible sec-

ondary sites (e.g. by introducing chemical variations in PEO chains[262]). In this CG

space, we set the starting point of our exploration at the parameters that represent

the lithium bis(trifluoromethanesulfonyl)imide-poly(ethlyene oxide) (PEO-LiTFSI)

system, considering that the PEO-LiTFSI exhibits the highest conductivity among

the SPE candidates that have been extensively studied [256, 263]. Once the CG space

is constructed, we then aim to optimize the lithium ionic conductivity 𝜎Li+ , by an

iterative parallel BO training process. The learned CGMD-BO model provides a de-

tailed description of the relationships between the 𝜎Li+ and the CGMD parameters,

from which we propose the directions and principles for changing TFSI−, introducing

secondary sites and replacing PEO backbone chains.

Figure 5-1 demonstrates the concept of the SPE materials design pathway via

BO guided CGMD simulations. Conventionally, computation guided materials de-

sign starts with the proposal of a set of chemical species. These serve as the inputs

to fully atomistic (FA) simulations to obtain a detailed and accurate description of
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Figure 5-1: Illustration of the Coarse Grained Molecular Dynamics-Bayesian Opti-
mization framework. Schematics of the polymer electrolyte materials design pathway
by Bayesian Optimization (BO) guided coarse grained molecular dynamics (CGMD)
simulation. Materials design starts with the coarse graining process, to transform
the conventional chemical species space to a continuous space composed of CG pa-
rameters (¬→). This space is then explored by BO guided CGMD simulations
in iterations, to predict the relationships between the transport properties and the
associated CG parameters (→®).
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the system. However, considering the time and length scale limitations of the FA

models (for example, a typical 10 ns classical MD run for only one PEO/LiTFSI

system with 20,000 atoms requires 1,500 CPU hours on an Intel Xeon Gold core),

we propose an alternative coarse graining (CG) process that abstracts the polymer

chains and the anion molecules with a bead-spring representation [264]. Compared to

the FA model, the CG configuration maintains most of the capability to capture the

polymer conformation, while using fewer particles in the simulation cell to reduce the

computational cost. Through the CG process, molecular level information, such as

molecular size and intermolecular interaction strength, become CGMD parameters.

Calibration of the CG system by the FA model provides the values of these param-

eters for a desired electrolyte system (e.g. PEO-LiTFSI), and also accomplishes the

transformation from a discrete conventional design space to a continuous CG design

space.

The CGMD simulation defines a function 𝑓 that maps from the continuous CG

design space to the performance of the SPE material. Given a set of input parame-

ters, the CGMD simulation generates the trajectory of the particles, from which the

transport properties such as the ionic conductivity and the transference number can

be extracted to compute performance metrics for the corresponding SPE material.

We can thus reformulate our goal as to find the set of input parameters, i.e. the SPE

material, that maximizes the performance metrics.

As illustrated in Figure 5-1, to efficiently explore the continuous CG design space

and maximize the performance of SPE materials, we design a Bayesian Optimization

(BO) approach that utilizes the information from past simulations iteratively. In each

iteration, we compute the a posterior estimation of the target function 𝑝(𝑓 |𝒟𝑖) using

the current simulation data 𝒟𝑖, and propose the next points in the CG design space

as inputs to CGMD by balancing exploration and exploitation. By the end of this

process, the model outputs a posterior estimation of the objective function 𝑝(𝑓 |𝒟)

from which the optimal lithium conductivity and its dependences on all the input

CGMD parameters can be extracted. Compared with existing works that use BO in

materials design [51, 265, 266], our approach uses several key characteristics of the

109



system to improve the efficiency further: 1) adopting the local penalization algorithm

[267], multiple points are proposed in each iteration to better utilize the parallel

computation of modern super computers; 2) the continuity of 𝑓 and the intrinsic

noise of CGMD simulations are built into the BO model to provide a more reliable

estimation of 𝑓 .

5.3 Exploration of the polymer electrolyte space

5.3.1 Defining three search spaces
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Figure 5-2: Evaluation of the Bayesian Optimization training process. (a) Illustra-
tion of the CGMD parameters, which are divided into three groups for describing the
properties associated with the anions, secondary sites and backbone chains respec-
tively (from left to right), (b) the inverse of characteristic length scale for each CGMD
parameter in the BO training process, (c) the design space exploration efficiency of
BO in comparison with random search, and (d) the BO predicted conductivities in
comparison with the CGMD test data.

110



In the practice of the above design method, as demonstrated in Figure 5-2a,

we divide all the designated independent CGMD parameters into three categories:

five related to the properties of the anions (anion size, salt concentration and anion

involved vdW interaction strengths), five related to the properties of the secondary

sites introduced in the polymer chain (molecule size and secondary site involved non-

bonding interaction strengths), and four to determine the properties of the polymer

chain itself (monomer size and polymer involved non-bonding interaction strengths).

This division naturally sets up three exploration directions in the CG design space,

corresponding to modifications to the anions, the secondary sites, and the polymer

backbone chains respectively. The search range of these parameters is determined

based on their values of the reference PEO-LiTFSI system, with the lower and upper

bounds capped by their physical interpretations, e.g. typically the vdW interaction

strength 𝜖𝑖𝑗 ∈ (0.4, 6) Kcal/mol and the particle radius 𝑟𝑖 ∈ (1.5, 5) Å. Specifically,

we set the target property of the materials optimization to the lithium conductivity

𝜎Li+ , which is defined as the product of the overall conductivity 𝜎 and the lithium

transference number 𝑡Li+ . This setup enables our exploration to not only maximize

𝜎, but also put emphasis on 𝑡Li+ , considering that increasing 𝑡Li+ could effectively

reduce the polarization and improve the stability of the electrolyte system in the

charge-discharge cycles [225, 258, 268].

5.3.2 Performance of the exploration

Figure 5-2b shows the inverse of characteristic length scale ℓ−1 (a hyper-parameter

in the BO model) of each CG parameter, which can be considered as a measure of

the parameter importance in the BO training process. A larger ℓ−1 indicates that

the change of this parameter will be likely to make more impact on 𝜎Li+ . (ℓ−1 only

reflects the average effect of each CG parameter on 𝜎Li+ for the entire design space

we explore. Thus, it is possible that the parameter with the highest ℓ−1 may not be

the most influential factor for search in some subspaces.) In all three explorations, the

size of the particle was found to be the most influential factor, while the interaction

strength associated with the cation ranked 2nd. In contrast, the role of the inter-
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chain interaction was not crucial, possibly because its strength was small compared

to other interactions involving charged particles.

To compare the searching efficiency of the BO method with a random search

(RS), Figure 5-2c plots the normalized best-so-far (BSF) conductivity as a function

of the iteration number, where for RS the BSF value plateaus after around 50 random

explorations. In contrast, given a RS-generated initial data set with the size of 50,

the BO improves the BSF values more efficiently, and converges to a much higher

conductivity within only around 60 iterations, i.e. to reach the same BSF value, the

RS method will take a much longer time. This result indicates that the CGMD-

BO method is an efficient approach for SPE materials optimization. To validate the

model, a test data set was built, containing the conductivities calculated from a series

of CGMD simulations performed at different anion sizes (with the other parameters

kept the same as the reference PEO-LiTFSI system). As shown in Figure 5-2d, both

the values and the trend presented by these test data were well reproduced by the

trained BO model. It should be noted that the agreement was achieved under the

condition that the BO model used only around 100 sampling points to search this

high dimensional CG space, and none of these training data were close to the test

data in the design space.

5.3.3 Understanding the effects of structural modification

The CGMD-BO model was adopt to investigate the consequences of possible modifi-

cations to the anions on the lithium conductivity 𝜎Li+ . The obtained relation between

𝜎Li+ and the most influential three anion-related parameters (𝜀cat-ani, 𝜀cha-ani and

𝑟ani, referring to Figure 5-2b) is described in Figure 5-3a, in the form of an isosurface

plot at the 𝜎Li+ value of the reference PEO-LiTFSI system (∼ 10−3 S/cm [269]). In

Figure 5-3b, at a fixed anion radius, a 2D landscape is drawn, to describe 𝜎Li+ as

a function of 𝜀cat-ani and 𝜀cha-ani. In general, while a moderate value of 𝜀cha-ani
was necessary for dissolving the anions, if the 𝜀cha-ani was too large, it would lead

to the reduction of 𝜎Li+ , which could result from the increased population of poly-

mer cross linking through the anions. Also, the optimal value of 𝜀cha-ani was found
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Figure 5-3: Anion effects on lithium conductivity. (a) 3D isosurface plot at the lithium
conductivity value of PEO-LiTFSI, (b) 2D 𝜎Li+ landscape projected in 𝜀cat-ani-
𝜀cha-ani and 𝑟ani-𝜀cha-ani planes, and (c) 1D cross sectional plots showing the de-
pendence of 𝜎Li+ on 𝜀cat-ani and 𝑟ani respectively, with the uncertainty evaluations
and the acquisition function values.
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to be positively correlated with 𝜀cat-ani, namely, decreasing 𝜀cha-ani and 𝜀cat-ani
together would be beneficial to the lithium conductivity, where an optimum value of

𝜀cat-ani was needed to maximize 𝜎Li+ . At this 𝜀cat-ani, the repulsive contribution

between the cation and the anion may be balanced with their attractive Coulombic

interaction, effectively lowering the ion dissociation energy in polymer (Figure S1).

When we project 𝜎Li+ in the 𝑟ani-𝜀cha-ani plane, a significant increase of 𝜎Li+ can

be observed by increasing 𝑟ani in most of the BO searching area, mainly due to the

decaying Coulombic interaction at larger charge separation distance. This is consis-

tent with the fact that in many cases a larger anion could enhance the delocalization

of the negative charge [270, 271]. (In our current CG model, the size increase of the

anion inherently implies an effective higher degree of charge delocalization, however,

it should be noted that this may not always be true in reality.) In opposition to the

above positive relation between 𝜎Li+ and 𝑟ani, larger anion volume also introduces

a more severe obstacle that suppresses the system diffusion. Therefore, on the 𝜎Li+

landscape there exists an optimal value of 𝑟ani, which slightly decreases with stronger

𝜀cha-ani.

We also examined the 𝜎Li+ dependence on a single factor by cross sectioning

the 2D landscape. For example as shown in Figure 5-3c, we provide the curves

representing the 𝜎Li+-𝜀cat-ani and 𝜎Li+-𝑟ani relations respectively, which further

supports the above analysis. Figure 5-3c also gives the estimates of uncertainty (in

the form of standard deviation), in conjunction with the BO acquisition function,

whose value is proportional to the probability of the region that will be evaluated

in the next iteration. Overall, the uncertainty fluctuates within a small range, thus,

the minimum of the acquisition function (𝐴𝐹min) occurs near the CGMD parameter

value that tends to yield high 𝜎Li+ , leading to further exploitation of this region. On

the other hand, at the beginning of the BO training, the 𝐴𝐹min may appear at the

position where the uncertainty is relatively high, to enforce the exploration of the

entire parameter space.

The CGMD-BO method was also adopted to investigate the effects of introducing

secondary sites (SS) to PEO chains on the lithium conductivity. For simplicity, setting
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Figure 5-4: Effects of secondary sites and polymer backbone chains on lithium con-
ductivity. A series of 2D 𝜎Li+ landscape plots for the materials exploration of (a)
secondary sites, and (b) polymer backbone chains. Each subfigure shows the depen-
dence of 𝜎Li+ on a pair of CGMD parameters, with the other parameters fixed at
the values of the reference PEO-LiTFSI system. The red dots on the graphs denote
the reference PEO-LiTFSI system, with the arrows pointing out the directions to
maximize 𝜎Li+ .
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the reference system to PEO-LiTFSI, we tuned the properties of SS, with keeping the

SS to EO ratio at 1/5. The model predictions were collected, as a set of 2D 𝜎Li+

landscapes in Figure 5-4a. In each of the landscape plot, the lithium conductivities

were contoured on a plane determined by a pair of CGMD parameters, with the red

dot marking the position of the unmodified PEO-LiTFSI system. From Figure 5-4a,

one can conclude that a promising SS is expected to have a size smaller but close to

the EO monomer, and a selective and modestly strong interaction with the anion.

These properties enhance the cation diffusion and immobilize the anions. This is in

opposition to the properties of PEO, but in accordance with the rationale for the

proposal of single lithium-ion conducting polymers in the literature. [270, 271]

We noted that the improvement of 𝜎Li+ due to the introduction of SS, in com-

parison with unmodified PEO-LiTFSI, was rather limited. This inspired us to probe

the possibility of designing non-PEO based SPE materials, that is actually an active

research direction where several novel non-PEO based polymer architectures have

been proposed and investigated experimentally. [272–276] Figure 5-4b presents the

change of 𝜎Li+ induced by varying any two CGMD parameters away from the PEO

reference. Based on Figure 5-4b, favorable polymer candidates tend to shrink their

sizes and weaken their inter-chain interaction (e.g. Figure 5-4b(4)), presumably to

achieve high diffusivity and flexibility. In addition, as here we aim to maximize the

conductivity contributed by the lithium-ion, our CGMD-BO model consistently sug-

gests the design direction of increasing 𝜀ani-cha together with decreasing 𝜀cat-cha, to

create more free Li+ in the SPE system [277]. Even so, one may consider the negative

effects of increasing 𝜀ani-cha on chain diffusivity, that explains why there exists an

optimal 𝜀ani-cha (as shown in Figure 5-4b(1) and (2)).

5.4 Discussion

The trained CGMD-BO model can be utilized as a rich SPE materials database. To

obtain the transport properties of one specific SPE system, the model only requires a

CG parameterization of the molecule species, through a set of straightforward energy
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evaluations by either all-atom force fields or DFT. In comparison with classical fully

atomistic approaches that require days or even months to obtain conductivity values,

the CGMD-BO model reduces the time of the process down to minutes. For instance,

without performing any additional simulations, as shown in Figure 5-5, the trained BO

model predicts and compares the conductivities of four common electrolyte systems

(the input parameters to the CGMD-BO model are shown on the plot and listed

in Table S1) to reasonable agreement with the experimental measurements[263, 269,

278, 279]. This suggests the potential of the CGMD-BO model as a convenient tool

for rapid screening of the candidate materials prior to synthesis. Besides, Figure 5-5

shows that rather than being determined by a single factor, the change of conductivity

is more likely to be a joint effect of all the molecular properties on this plot (e.g.

anion size and the anion associated intermolecular interactions). This again implies

the complexity of the SPE materials design space, which is almost impossible to be

explored without the CGMD-BO approach.

In this work, using the molecular-level material properties as descriptors, the

CGMD-BO framework has shown its unique advantages of efficiency and flexibil-

ity, in the optimization of 𝜎Li+ . Actually, with minor modifications, the model can

be extended to adopt additional descriptors from microstructural features (e.g. the

Li-ion solvation-site connectivity [275]) to macroscopic material properties (e.g. poly-

mer stiffness and glass transition temperature), to discover the correlations among

the descriptors at different scales and their joint effects on the lithium conductivity.

Broadly speaking, we expect the CGMD-BO framework to be a promising approach

to understanding the collective effects of the molecular descriptors on a wide range

of properties of a given system (not limited to polymer-salt mixture), for design of

complex multi-component material systems. So far, all the CG parameters are inde-

pendently adjustable, enabling us to reach every corner of the design space. In reality,

correlations usually exist among the parameters, confining the exploration to one or

several subspaces of our current CG design space. In principle, these constraints could

be better understood with data from the CG parameterization of more SPE materials.

Besides, the process of the CG parameterization and the CG model itself could be
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more refined, to further improve the prediction accuracy of the current CGMD-BO

model. (For example, the accuracy of the CG model could be improved by calibrat-

ing its parameters to FA simulations with a polarizable force field [280]. Taking the

information of cation solvation-site structures and distribution from FA trajectories,

a dynamic bond percolation model could be adopted, to further accelerate the CG

simulations [281].) Last, we anticipate that the CGMD-BO model can go beyond its

current capability to make further contributions to new materials design. By tak-

ing advantage of machine learning to understand the structure-property relationships

[46], it progressively becomes achievable to recognize and decode the similarities be-

tween the micro-structural features of coarse grained and fully atomistic models[124].

We believe that the joint efforts from more advanced ML algorithms, more accurate

CG models and sufficient training data should ultimately achieve the recovery of the

atomistic details from molecular level information, that will grant the CGMD-BO

method the ability to suggest chemical species directly.
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Chapter 6

Conclusion and outlook

6.1 Summary of the thesis

In summary, the main methodological contribution of this thesis is the development

of a unified neural network framework to solve multiple material design and un-

derstanding problems for solid materials. The key distinction of this approach and

previous approaches is its generality: the same framework can be easily adapted to

learn different types of materials, like inorganic materials in section 2.5 and polymers

in section 4.4.2, as well as solve different types of problems, like property prediction

in section 2.3 and learning dynamical processes in section 4.2. This generality is

also a feature in many other types of deep learning models used for computer vision

and natural language processing, which has led to large models like BERT [282] that

achieves state-of-the-art performances in a wide range of tasks. As the size of open

material data continue to increase, we hope this thesis would open the possibility of

utilizing material data from multiple sources and create general models to help us

design and understand materials better in various fields.

Another key feature of this framework is the inductive biases, or symmetries, that

are built into the neural network. The clear correspondences between nodes/edges

and atoms/bonds combined with the symmetries built into network through param-

eter sharing improves both the performance of model in various tasks and its in-

terpretability. In chapter 2, the performance of CGCNN for supervised learning is
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significantly improved by including the permutation invariance and periodicity in the

models. In chapter 3, the visualization of the similarities between solid materials at

different scales is achieved because each layer of the neural network has clear physical

meanings, a result of the inductive biases in the model. In chapter 4, the learning

of atomic scale dynamics is not possible without the sharing the knowledge between

similar local environments in the materials, which is achieved through the parame-

ter sharing in the neural networks. There are clearly other types of inductive biases

that can potentially be included in the neural networks, like the long-range Coulomb

interactions and electronic structures. We believe including the correct amount of

inductive biases in the model while making the rest of the network flexible is a key

towards machine learning models with both performance and interpretability.

From an application perspective, we demonstrate several examples on how this

framework can be used to accelerate material design. In section 2.5, we applied

CGCNN to predict the interface stability of solid electrolytes for lithium metal bat-

tery. In this example, we train our model on 3,400 open materials data and then

apply it to screen 12,950 solid materials. This greatly accelerates the screening of

new materials since we save the time to compute the properties of these materials

with ab-initio simulations. Considering the wide applicability of CGCNN, it has the

potential to be used to discover new materials in other types of materials and prop-

erties. In chapter 5, we applied Bayesian optimization to accelerate discovery of solid

polymer electrolytes for lithium ion batteries. This is an example of active learning in

which no initial training data is available. The framework automatically explores the

material space and we achieved the optimum material with around 100 simulations.

This is useful when the computation is more expensive and less data is available from

open databases. The major limitation is the lack of decoding methods to generate

the structure of solid materials. Therefore, we can only decode to predict the op-

timum interaction strengths between different components of the system instead of

their chemical structures.

We also show that this framework can help us to understand complex material sys-

tems that are difficult to study with conventional methods. In section 3.3, we visualize
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the similarities between materials for several large material spaces with 103-104 mate-

rials. Useful knowledge is obtained like identifying contribution to material stability

by putting different elements into local chemical environments and the clustering of

characteristic material structures. In section 4.4, we applied GDyNets to understand

the key dynamical processes in solid-liquid interfaces and complex amorphous poly-

mer systems. Scientific insights are learned that provides atomic scale explanations to

some of recent experimental discoveries. In these examples, our framework provides

a unified method to extract a simple, low dimensional representation for complex

material system. This is especially valuable for amorphous, multi-component mate-

rials, which are difficult to study with conventional methods due to their intrinsic

complexity.

6.2 Future directions

Despite the progresses made in this thesis, there are still many open questions that

require further development of deep learning methods for materials. We come back

to the four question proposed in section 1.4 and discuss the remaining challenges.

Problem 1: how to create a neural network architecture that encodes material-

specific inductive biases and whether such architecture outperforms existing methods?

In chapter 2, we have largely solved this problem by developing a generalized

neural network architecture (CGCNN) that encodes several material-specific induc-

tive biases like periodicity, permutation, and rotation invariances. The method has

shown to outperform other methods when more than 103-104 data points are available

across various materials and properties. [46, 283] Since its publication, CGCNN has

been broadly applied to solve many materials design problems in multiple fields. [47,

284, 285] One key challenge is to improve the performance of the method when less

data are available. In other deep learning fields, techniques like transfer learning and

pre-training have shown promising results to improve performance when less data is

available, e.g. medical images [286]. Another direction is to develop neural networks

that incorporate different types of inductive biases based on the applications. For ex-
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ample, rotational invariance is incorporated in CGCNN so the model can generalize

to materials after rotation. However, it also prevents the model from differentiating

left-handed and right-handed structures. Developing a series of neural networks in-

cluding different types of inductive biases would be beneficial to solve problems with

different constrains.

Problem 2: how to extract intuitions that can be understood by human researchers

from the learned representations?

In chapter 3, we have explored one aspect of the problem by extracting material

insights from different layers of the neural networks, leveraging the built-in invari-

ances. We only showcase the application of this approach to understand structural

and compositional contributions to formation energy, but it can potentially be applied

to other types of properties as well. In chapter 4, we explore another aspect with

GDyNets by providing a way to understand complex dynamical systems by learning

a low dimensional representation of local structures. These methods have enabled the

rediscovery of some empirical rules for materials design, like the stability rule for per-

ovskites (section 3.3.2), as well as the discovery new insights for complex materials,

like the solvation structures and dynamics of lithium ion in polymer electrolytes (sec-

tion 4.4.2). The challenge for the future will be to discover quantitative rules, instead

of qualitative rules, for complex material systems, which requires the development of

symbolic learning methods.

Problem 3: how to learn the representation of atoms in solid materials when no

explicit property labels are available?

In chapter 4, we have achieved the goal of unsupervised learning of material repre-

sentation by leveraging the dynamical information in time-series molecular dynamics

data, which is applied to understanding the atomic dynamics in complex material

systems like the solid-liquid interface (section 4.4.1) and the polymer electrolytes

(section 4.4.2). This approach focuses on the dynamical aspect of material struc-

tures, but other unsupervised learning methods can be developed that focuses on

different aspects, like the structural similarity with regularized entropy match [165].

Unsupervised learning approaches that focus on different aspects will provide pow-
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erful tools to navigate the complex space of materials and extract useful knowledge

from unstructured material data.

Problem 4: how to search an unknown material space in a way that balances

both exploration and exploitation?

In chapter 5, we have moved forward a small step towards the autonomous ex-

ploration of material spaces. We focus on the coarse-grained space of interactions

between various components of polymer electrolytes, and develop a Bayesian opti-

mization framework to explore the space autonomously. In this coarse-grained space,

we have achieved the optimum electrolyte with just over 100 simulations and ex-

tracted insights for the importance of each interaction parameter. The key challenge

ahead is the autonomous exploration of the unconstrained, discrete material space

space directly, bypassing the simplified coarse-grained space. The unconstrained, dis-

crete nature of material space makes the autonomous exploration difficult since it is

hard to construct a new material from its continuous representation. Solving this

challenge could potentially enable unbiased exploration of material spaces and lead

to the discovery of materials completely different from the ones we know.
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