
MIT Open Access Articles

Dimension reduction for semidefinite programs via Jordan algebras

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Permenter, Frank and Pablo A. Parrilo, "Dimension reduction for semidefinite
programs via Jordan algebras." Mathematical Programming 181, 1 (March 2019): 51–84 doi.
10.1007/s10107-019-01372-5 ©2019 Authors

As Published: https://dx.doi.org/10.1007/s10107-019-01372-5

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/129071

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/129071
http://creativecommons.org/licenses/by-nc-sa/4.0/

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan alge-
bras

Cite this article as: Frank Permenter and Pablo A. Parrilo, Dimension reduc-
tion for semidefinite programs via Jordan algebras, Mathematical Programming
https://doi.org/10.1007/s10107-019-01372-5

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that
has been accepted for publication but has not been copyedited or corrected. The official version
of record that is published in the journal is kept up to date and so may therefore differ from this
version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full
terms. https://www.springer.com/aam-terms-v1

https://doi.org/10.1007/s10107-019-01372-5
https://www.springer.com/aam-terms-v1

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Noname manuscript No.
(will be inserted by the editor)

Dimension reduction for semidefinite programs via Jordan algebras

Frank Permenter · Pablo A. Parrilo

February 7, 2019

Abstract We propose a new method for simplifying semidefinite programs (SDP) inspired by symmetry
reduction. Specifically, we show if an orthogonal projection map satisfies certain invariance conditions,
restricting to its range yields an equivalent primal-dual pair over a lower-dimensional symmetric cone—
namely, the cone-of-squares of a Jordan subalgebra of symmetric matrices. We present a simple algorithm
for minimizing the rank of this projection and hence the dimension of this subalgebra. We also show that
minimizing rank optimizes the direct-sum decomposition of the algebra into simple ideals, yielding an
optimal “block-diagonalization” of the SDP. Finally, we give combinatorial versions of our algorithm that
execute at reduced computational cost and illustrate effectiveness of an implementation on examples.
Through the theory of Jordan algebras, the proposed method easily extends to linear and second-order-
cone programming and, more generally, symmetric cone optimization.

1 Introduction

Many practically relevant optimization problems can be posed as semidefinite programs (SDPs)—convex
optimization problems over the cone of positive semidefinite (psd) matrices. While SDPs are efficiently
solved in theory, specific instances may be intractable in practice unless one exploits special structure.
Existing techniques for structure exploitation include facial reduction [6, 12, 32] and symmetry reduction
[3, 8, 19, 41]. In this paper, we present a method that builds on this latter technique.

To explain, we first recall a key step in symmetry reduction: finding an orthogonal projection map
whose range intersects the solution set. This projection (called a Reynolds or group-average operator)
maps feasible points to feasible points without changing the objective function, which implies that its
range (called the fixed-point subspace) contains solutions. This leads to a simple statement of our method:
minimize rank—or, equivalently, the dimension of the range—over a tractable subset of maps with this
property. As we show, this minimization problem is efficiently solved for arbitrary SDP instances by a
simple algorithm. Further, the subset of projections considered strictly contains those implicit in existing
symmetry reduction procedures (Section 2.1.3); hence, our method is more general.

Symmetry reduction not only reduces the dimension of the feasible set, it also simplifies the semidef-
inite constraint. This simplification process is informally called block-diagonalization, and it amounts
to finding a canonical direct-sum decomposition of the fixed-point subspace. The projection we iden-
tify enables similar simplifications. Precisely, the range is always a subalgebra of the Jordan algebra of
real, symmetric matrices and hence also has a canonical direct-sum decomposition into simple ideals.
Further, its intersection with the psd cone (the cone-of-squares of the subalgebra) has a corresponding
decomposition into irreducible symmetric cones [14, Chapter 3]. As we review (Section 2.3.3), finding
this decomposition generalizes current block-diagonalization techniques based on *-algebras [10, 25]. As
we show, minimizing the rank of the projection optimizes this decomposition in a precise sense.

Finally, our method easily extends to any symmetric cone optimization problem (including linear and
second-order-cone programs). Indeed, via Jordan algebra theory, our algorithm for finding projections
extends “word-by-word”, mirroring similar extensions of interior-point methods [1].

We organize this paper as follows. Section 2 contains preliminaries. Section 3 gives an algorithm
for finding a minimum-rank projection. Section 4 shows that minimizing rank yields an algebra with

Address(es) of author(s) should be given

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

2 Frank Permenter, Pablo A. Parrilo

an optimal direct-sum decomposition. Section 5 gives combinatorial (but less powerful) versions of our
algorithm that can be less costly to execute. Computational results appear in Section 6.

2 Preliminaries

We consider a primal-dual pair of semidefinite programs (SDPs) expressed in conic form ([29, Chapter
4]):

minimize C ·X
subject to X ∈ Y + L

X ∈ Sn
+

maximize −Y · S
subject to S ∈ C + L⊥

S ∈ Sn
+.

(1)

Here, X ∈ Sn and S ∈ Sn are decision variables in the vector space Sn of real symmetric matrices equipped
with trace inner-product X · Y := Tr XY , Sn

+ ⊆ Sn denotes the (self-dual) cone of psd matrices, L ⊆ Sn

is a linear subspace with orthogonal complement L⊥ ⊆ Sn, and Y +L and C +L⊥ are affine sets defined
by fixed C ∈ Sn and Y ∈ Sn. We refer to X and S as the primal and dual decision variables, respectively,
noting that we have identified the dual space (Sn)∗ with Sn. (Note that in this form, the complementary
slackness condition X · S = 0 does not necessarily imply the primal and dual objective values are equal.
Rather, they differ by a constant that depends on the particular choice of C and Y .)

Throughout this paper we also, for a subspace S ⊆ Sn, let PS : Sn → Sn denote the corresponding
orthogonal projection map, i.e., the unique self-adjoint and idempotent map with range equal to S.

2.1 Constraint Set Invariance

Our goal is to find a subspace S ⊆ Sn that contains primal and dual solutions of (1) if they exist. To
do this, we will find a projection that maps feasible points to feasible points without changing the cost
function (which implies the range contains solutions), a key idea from symmetry reduction [3, 8, 19, 41].
Precisely, we will search over the orthogonal projections that satisfy the following set of conditions, which
we’ll show are also implicit in existing symmetry reduction approaches (Section 2.1.3).

Definition 2.1 (Constraint Set Invariance Conditions) We say the orthogonal projection map PS :
Sn → Sn satisfies the Constraint Set Invariance Conditions for the primal-dual pair (1) if

(a) PS(Sn
+) ⊆ Sn

+, i.e., PS is a positive map;
(b) PS(Y + L) ⊆ Y + L;
(c) PS(C + L⊥) ⊆ C + L⊥.

Under these conditions, PS : Sn → Sn maps primal/dual feasible points to primal/dual feasible points
(by definition). For C and all X ∈ Y + L, these conditions also imply that

X − PS(X) ∈ L C − PS(C) ∈ L⊥, (2)

which in turn implies that PS preserves the cost function on the primal feasible set:

C ·X = PS(C) · PS(X) = C · PSPS(X) = C · PS(X).

(Here, the first equality holds given (2), and the second and third given that PS is self-adjoint and
idempotent.) A similar argument shows Y · S = Y · PS(S) for all dual feasible S. In summary, we’ve
proven the following.

Proposition 2.1 (Preservation of optimal values) Suppose PS : Sn → Sn satisfies the Constraint
Set Invariance Conditions for the primal-dual pair (1). Let θp := inf

{
C ·X : X ∈ Sn

+ ∩ (Y + L)
}

and
θd := sup

{
−Y · S : S ∈ Sn

+ ∩ (C + L⊥)
}

. Then,

θp = inf
{

C ·X : X ∈ Sn
+ ∩ (Y + L) ∩ S

}
, θd = sup

{
−Y · S : S ∈ Sn

+ ∩ (C + L⊥) ∩ S
}

.

Further, S contains points that attain θp and θd when such points exist.

In other words, we’ve shown that restricting the primal/dual feasible set to S doesn’t change the pri-
mal/dual optimal value or its attainment.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 3

2.1.1 Infeasibility certificates

A dual improving direction is S ∈ Sn
+∩L⊥ satisfying Y ·S < 0. Analogously, a primal improving direction

is X ∈ Sn
+ ∩ L satisfying C · X < 0. The existence of primal (resp. dual) improving directions implies

infeasibility of the dual (resp. primal). It turns out that if PS : Sn → Sn satisfies the Constraint Set
Invariance Conditions, then the subspace S contains improving directions whenever they exist for the
original problem. To show this, we need the following lemma.
Lemma 2.1 (Invariance of linear subspaces) Suppose PS : Sn → Sn satisfies the Constraint Set
Invariance Conditions. Then L and L⊥ are both invariant subspaces of PS , i.e., PS(L) ⊆ L and PS(L⊥) ⊆
L⊥.

Proof For all Z ∈ L, we have that PS(Z) = PS(Y) − PS(Y − Z) ∈ L, where containment in L follows
given that Y +L contains both PS(Y) and PS(Y −Z) by the Constraint Set Invariance Conditions. This
shows that L is an invariant subspace; the proof for L⊥ is identical.

We can now show the desired result.
Proposition 2.2 (Improving directions) Suppose PS : Sn → Sn satisfies the Constraint Set Invari-
ance Conditions. The following statements hold.
– If S ∈ Sn is a dual improving direction, then so is PS(S).
– If X ∈ Sn is a primal improving direction, then so is PS(X).

Proof Let S be a dual improving direction. Lemma 2.1 and the Constraint Set Invariance Conditions
imply that Sn

+ ∩L⊥ contains PS(S), that L⊥ contains S −PS(S) and that L contains Y −PS(Y). These
latter two facts imply that S · Y = S · PS(Y); hence, PS(S) is a dual improving direction. Proof of the
second statement is identical.

2.1.2 Restricted primal-dual pair

We’ve seen that intersecting the primal and dual feasible with S does not change the primal and dual
optimal value if PS satisfies the Constraint Set Invariance Conditions (Proposition 2.1). Further, S
contains solutions or infeasibility certificates for (1) when such objects exists (Propositions 2.1-2.2).
These facts allow us to solve (1) by first restricting the primal and dual to S. The following shows that
these restrictions are a primal-dual pair if we view S as the ambient space.
Proposition 2.3 (Duality and restrictions) Suppose that PS : Sn → Sn satisfies the Constraint Set
Invariance Conditions (Definition 2.1). Then, treating the range S as the ambient space, the pair of
optimization problems

minimize PS(C) ·X
subject to X ∈ PS(Y) + L ∩ S

X ∈ Sn
+ ∩ S

maximize −PS(Y) · S
subject to S ∈ PS(C) + L⊥ ∩ S

S ∈ Sn
+ ∩ S

(3)

is a primal-dual pair, i.e.,

(Sn
+ ∩ S)∗ ∩ S = Sn

+ ∩ S, (L ∩ S)⊥ ∩ S = L⊥ ∩ S. (4)

Moreover,

(Y + L) ∩ S = PS(Y) + L ∩ S, (C + L⊥) ∩ S = PS(C) + L⊥ ∩ S. (5)

Proof For any set T ⊆ Sn, the condition PS(T) ⊆ T implies PS(T) = S ∩ T given that PS is the
orthogonal projection onto S. Using this fact, we have that

(Y + L) ∩ S = PS(Y + L) = PS(Y) + PS(L) = PS(Y) + L ∩ S,

where the last equality uses the additional fact that PS(L) ⊆ L (Lemma 2.1). The other equality in (5)
follows by identical argument. The inclusions ⊇ of (4) are obvious. To see the inclusions ⊆, let T be any
set satisfying PS(T) ⊆ T . Then, for any X ∈ (T ∩ S)∗ ∩ S,

〈X, Y 〉 = 〈PS(X), Y 〉 = 〈X, PS(Y)〉 ≥ 0, ∀Y ∈ T ,

where the first equality holds since X ∈ S, the second equality since PS is self-adjoint and the inequality
since PS(Y) ∈ T ∩ S. Hence, X ∈ T ∗.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

4 Frank Permenter, Pablo A. Parrilo

We illustrate this proposition with the following example.

Example 2.1 Consider the following primal-dual pair of semidefinite programs:

minimize x1 + x2
subject to

x1 1 x3 x4
1 x2 x4 −x3
x3 x4 1 x5
x4 −x3 x5 0

 � 0

maximize −(s5 + 2s1)
subject to

1 s1 s2 s3
s1 1 −s3 s2
s2 −s3 s5 0
s3 s2 0 s6

 � 0.

The projection PS : S4 → S4 satisfies the Constraint Set Invariance Conditions (Definition 2.1) if S
equals the span of {E21 + E12} ∪ {Eii}3i=1. Hence, one obtains primal and dual optimal solutions by
solving the following restrictions to S:

minimize x1 + x2
subject to

x1 1 0 0
1 x2 0 0
0 0 1 0
0 0 0 0

 � 0

maximize −(s5 + 2s1)
subject to

1 s1 0 0
s1 1 0 0
0 0 s5 0
0 0 0 0

 � 0.

2.1.3 Relationship with prior work

A common symmetry reduction technique, described in [19], assumes existence of a subgroup G ⊂ Rn×n

of the group of orthogonal matrices that, for all U ∈ G, satisfies

UCUT = C,
{

UXUT : X ∈ Y + L
}
⊆ Y + L. (6)

Under this condition, one can restrict the primal problem to the fixed-point subspace

FG := {X ∈ Sn : UXUT = X ∀U ∈ G}, (7)

without changing its optimal value [19, Theorem 3.3], in analogy with Proposition 2.1. (One can also
derive analogues of Proposition 2.3 based on these conditions; see, e.g., [11, Proposition 2].) It turns
out that the orthogonal projection onto FG (called the Reynolds operator) satisfies the Constraint Set
Invariance Conditions.

To see this, first observe that PFG is the map X 7→ 1
|G|
∑

U∈G UXUT . As shown in [19],

PFG (Sn
+) ⊆ Sn

+, PFG (Y + L) ⊆ Y + L, PFG (C) = C, (8)

given (6) and the fact that PFG (X) is a convex combination of points in {UXUT : U ∈ G}. The proof
of the next proposition shows that PFG also satisfies PFG (C + L⊥) ⊆ C + L⊥ (and hence the full set of
Constraint Set Invariance Conditions).

Proposition 2.4 (Constraint Set Invariance From Groups) Let G ⊂ Rn×n be a finite group of
orthogonal matrices that satisfies (6). Then, PFG : Sn → Sn satisfies the Constraint Set Invariance
Conditions (Definition 2.1), and, in addition, the equality PFG (C) = C.

Proof Given (8), we only need to show that PFG (C +L⊥) ⊆ L⊥. To begin, PFG (Y +L) ⊆ Y +L implies
that PFG (L) ⊆ L (Lemma 2.1). Since PFG is self-adjoint, PFG (L) ⊆ L holds if and only if PFG (L⊥) ⊆ L⊥.
Since PFG (C) = C, we conclude that PFG (C + L⊥) ⊆ C + L⊥, as desired.

Another technique, surveyed in [8], treats Rn×n as a *-algebra with matrix multiplication as a product
and transposition as a *-involution. It then finds any *-subalgebra, i.e., any subspace closed under matrix
multiplication and transposition, that contains the primal affine set Y + L. If M ⊆ Rn is such a *-
subalgebra, then S :=M∩Sn contains primal and dual solutions [8, Theorem 2]. Further, the projection
PS satisfies

PS(Sn
+) ⊆ Sn

+, PS(Y + L) = Y + L, (9)

where the inclusion PS(Sn
+) ⊆ Sn

+ holds because M is a *-subalgebra. It turns out that PS(C + L⊥) ⊆
C + L⊥ (and hence the full set of Constraint Set Invariance Conditions) also holds.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 5

Proposition 2.5 (Constraint Set Invariance From *-algebras) LetM⊆ Rn×n be any *-subalgebra
containing Y + L ⊆ Sn. Let S = M∩ Sn. Then PS : Sn → Sn satisfies the Constraint Set Invariance
Conditions (Definition 2.1), and, in addition, the equality PS(Y + L) = Y + L.

Proof Given (9), we only need to show that PS(C + L⊥) ⊆ C + L⊥.
To begin, since S contains Y + L, we have that PS(Y + L) = Y + L, which in turn implies that

L = PS(L). (10)

From (10), we conclude that L is an invariant subspace of PS which in turn in implies that L⊥ is an
invariant subspace of the adjoint of PS . But PS is self-adjoint; hence,

PS(L⊥) ⊆ L⊥. (11)

We conclude that
PS(CL + L⊥) = CL + PS(L⊥) ⊆ CL + L⊥,

where the equality follows from (10) and the inclusion from (11). Since CL +L⊥ = C +L⊥, the conclusion
follows.

Note that this proposition puts no condition on objective matrix C of the primal problem. Similarly, [8,
Theorem 2] puts no condition on the dual objective function.

2.2 Reformulations over isomorphic, symmetric cones

The fixed-point subspace of symmetry reduction and *-subalgebras have structured intersections with
Sn

+: each intersection is isomorphic to a direct product of psd cones of Hermitian matrices with real,
complex, or quaternion entries. Such a product is an instance of a symmetric cone, a special type of self-
dual cone that admits efficient optimization algorithms [1, 17]. To maintain this feature, Section 2.3.1
gives an additional condition on the projection PS : Sn → Sn that ensures Sn

+∩S is always isomorphic to a
symmetric cone. This next proposition shows that the primal-dual pair (1) can be explicitly reformulated
over such an isomorphic cone under the Constraint Set Invariance Conditions.

Proposition 2.6 (Reformulations over isomorphic cones) Suppose PS : Sn → Sn satisfies the
Constraint Set Invariance Conditions (Definition 2.1). For an inner-product space V, let Ψ : V → Sn be
an injective linear map with range equal to S and C ⊆ V a self-dual cone that satisfies

Ψ(C) = Sn
+ ∩ S. (12)

If X̂ ∈ V and Ŝ ∈ V solve the primal-dual pair of conic optimization problems

minimize 〈Ψ∗(C), X̂〉
subject to X̂ ∈ (Ψ∗Ψ)−1

Ψ∗(Y + L)
X̂ ∈ C

maximize −〈(Ψ∗Ψ)−1
Ψ∗(Y), Ŝ〉

subject to Ŝ ∈ Ψ∗(C + L⊥)
Ŝ ∈ C,

(13)

then Ψ(X̂) and Ψ(Ψ∗Ψ)−1(Ŝ) solve the primal-dual pair (3)—and hence the primal-dual pair (1).

Proof We will show that Ψ and (Ψ∗Ψ)−1Ψ∗ are mappings between primal feasible points of (13) and (3)
that do not change the objective value. To see that Ψ has this property, let X̂ be a feasible point of (13).
Then,

Ψ(X̂) ∈ PS(Y + L), Ψ(X̂) ∈ Sn
+ ∩ S, 〈C, Ψ(X̂)〉 = 〈Ψ∗(C), X̂〉,

where the first containment follows given that Ψ(Ψ∗Ψ)−1
Ψ∗ equals PS and the second by (12). Since

PS(Y + L) ⊆ Y + L, we conclude that Ψ(X̂) is feasible for (3) with same objective as X̂.
Now suppose X is feasible for (3). Then X = Ψ(X̂) for a unique X̂ ∈ C since Ψ is injective. Indeed,

we must have that X̂ = (Ψ∗Ψ)−1
Ψ∗(X), since

Ψ(Ψ∗Ψ)−1
Ψ∗(X) = PS(X) = X.

Hence, X̂ = (Ψ∗Ψ)−1
Ψ∗(X) is a feasible point of (13) with objective

〈Ψ∗(C), X̂〉 = 〈Ψ∗(C), (Ψ∗Ψ)−1
Ψ∗X〉 = 〈C, Ψ(Ψ∗Ψ)−1

Ψ∗X〉 = 〈C, PSX〉 = 〈C, X〉,

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

6 Frank Permenter, Pablo A. Parrilo

as desired.
For the dual, we similarly prove that Ψ∗ and Ψ(Ψ∗Ψ)−1 are mappings between the feasible sets that

do not change the objective. The proof is almost the same, but exploits the additional fact that

Ψ∗Ψ(C) = C, (14)

which we show in the Appendix (Lemma 7.4). To begin, if Ŝ is dual feasible for (13), then Ψ(Ψ∗Ψ)−1(Ŝ)
satisfies

Ψ(Ψ∗Ψ)−1(Ŝ) ∈ PS(C + L⊥), Ψ(Ψ∗Ψ)−1(Ŝ) ∈ Sn
+ ∩ S, 〈Y, Ψ(Ψ∗Ψ)−1(Ŝ)〉 = 〈(Ψ∗Ψ)−1

Ψ∗(Y), Ŝ〉,

Here, the first containment follows because Ŝ ∈ Ψ∗(C + L⊥) and Ψ(Ψ∗Ψ)−1
Ψ∗ = PS ; the second

by (12) and (14). Since PS(C + L⊥) ⊆ C + L⊥, we conclude that Ψ(Ψ∗Ψ)−1(Ŝ) is feasible for (3)
with same objective as Ŝ.

On the other hand, if S is dual feasible for (3), then Ŝ := Ψ∗S must be the unique Ŝ ∈ V satisfying
S = Ψ(Ψ∗Ψ)−1

Ŝ since Ψ(Ψ∗Ψ)−1
Ψ∗S = S. Further, Ŝ ∈ C since Ψ∗(Sn

+∩S) = C by (12) and (14). Hence
Ŝ is dual feasible for (13). Further, its objective satisfies

〈(Ψ∗Ψ)−1Ψ∗(Y), Ŝ〉 = 〈(Ψ∗Ψ)−1Ψ∗(Y), Ψ∗S〉 = 〈Y, PSS〉 = 〈Y, S〉,

as desired.

2.3 Euclidean Jordan Algebras

We now develop a condition that guarantees Sn
+ ∩ S is isomorphic to a symmetric cone C and discuss

how to construct a linear map Ψ satisfying Ψ(C) = Sn
+ ∩ S. For this, we first view Sn as a Euclidean

Jordan algebra, i.e., as an inner-product space J equipped with bilinear product (x, y) 7→ x ◦ y that is
commutative, satisfies the Jordan identity

x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x ∀x, y ∈ J

(where x2 := x ◦ x), and, for all fixed x, is a self-adjoint, i.e., 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all y, z ∈
J . To satisfy these axioms, we equip Sn with the trace inner-product X · S := Tr XY and product
X ◦Y := 1

2 (XY + Y X). For any Euclidean Jordan algebra J , the set of squares {x2 : x ∈ J } is always a
symmetric cone [14, Chapter 3], often called the cone-of-squares of J . For the aforementioned product,
the cone-of-squares of Sn is just the psd cone Sn

+.
It turns out that Sn

+ ∩ S is isomorphic to a symmetric cone whenever S is a subalgebra of Sn, i.e.,
whenever S contains X◦Y for all X, Y ∈ S. This follows because S satisfies the Euclidean-Jordan-algebra
axioms (when viewed as the ambient space) and has cone-of-squares Sn

+ ∩ S. As a consequence, we can
write Sn

+ ∩ S as the linear image Ψ(C) of the cone-of-squares C of any isomorphic algebra J using an
injective homomorphism Ψ : J → Sn, i.e., an injective linear map satisfying Ψ(x ◦ y) = Ψ(x) ◦ Ψ(y).
Formally:

Proposition 2.7 Let S be a subalgebra of Sn. Let J be any Euclidean Jordan algebra isomorphic to S
with cone-of-squares C ⊆ J . Let Ψ : J → Sn be an injective homomorphism with range equal to S. Then,

Ψ(C) = Sn
+ ∩ S.

Example 2.2 Let S denote the subalgebra of Sn spanned by

E1 =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , E2 =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , T1 =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , T2 =

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .

Let J denote the spin-factor algebra R × R3 with cone-of-squares Q := {(x0, x) ∈ J : ‖x‖2 ≤ x0} and
product

(x0, x) ◦ (y0, y) := (x0y0 + xT y, x0y + y0x).
Finally, let Ψ : J → Sn denote the injective linear map satisfying

Ψei = Ei, Ψti = Ti i ∈ {1, 2},

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 7

where
e1 =

[1
2

1
2 0 0

]T
, e2 =

[1
2 − 1

2 0 0
]T

, t1 =
[
0 0 1 0

]T
, t2 =

[
0 0 0 1

]T
.

Then, the image of Q under Ψ is Sn
+ ∩S. Further, Ψ is an injective homomorphism from J into Sn with

range equal to S.

Given S, one can find a canonical isomorphic algebra J and an injective homomorphism Ψ numeri-
cally [34, Chapter 6]; see Section 2.3.2 for more details.

2.3.1 Positive projections, unitality, and subalgebras

We can guarantee that S is a subalgebra and hence that Sn ∩ S is isomorphic to a symmetric cone by
revisiting the positivity constraint PS(Sn

+) ⊆ Sn
+ of the Constraint Set Invariance Conditions. Specifically,

we obtain this guarantee by imposing positivity and, in addition, unitality.

Definition 2.2 (Unitality Condition) We say that PS : Sn → Sn is unital if the range S contains a
unit E ∈ S for the Jordan product X ◦Y = 1

2 (XY +Y X), i.e., if there exists E ∈ S for which X ◦E = X
for all X ∈ S.

Theorem 2.1 (Characterization of positive, unital projections) Let S ⊆ Sn be subspace with or-
thogonal projection map PS : Sn → Sn. The following statements are equivalent.

1. The projection PS is positive (Definition 2.1-(a)) and unital (Definition 2.2).
2. The subspace S is subalgebra of Sn.

Proof See appendix.

As we show in the appendix, this theorem follows from basic linear algebra and arguments of Størmer
[38] (who proves an analogous result for complex Jordan algebras). Note also that the unitality condition
holds when S arises from a group or a *-subalgebra via Proposition 2.4 or 2.5.

2.3.2 Structure of subalgebras

We now discuss the structure of subalgebras in more detail. To begin, call an abstract Euclidean Jordan
algebra J simple if its only ideals are {0} and J , where an ideal I ⊆ J is a subspace satisfying x◦ y ∈ I
for all y ∈ J and x ∈ I. Similarly, call an ideal simple if it is simple when viewed as an algebra.
It is well known that any subalgebra S equals an orthogonal direct-sum of its simple ideals (e.g., [14,
Proposition III.4.4]). Further, the isomorphism classes of these ideals are fully understood [14, Chapter
V]. As a consequence, S is always, up-to linear transformation, a direct-sum of “canonical” algebras.
Formally:

Proposition 2.8 (Structure theorem for subalgebras [14]) Let ⊕r
i=1Si be the orthogonal direct-

sum decomposition of a subalgebra S ⊆ Sn into simple ideals. Then, there exists simple Jordan algebras
J1, . . . ,Jr and injective homomorphisms Ψi : Ji → Sn satisfying

Si = Ψi(Ji), (15)

where each Ji is one of the following1

– A spin-factor algebra R× Rm with product (x0, x) ◦ (y0, y) := (x0y0 + xT y, x0y + y0x)
– The set of Hermitian matrices Hd(D) of order d with entries in D and product 1

2 (XY + Y X), where
D denotes the real numbers, the complex numbers, or the quaternions.

Efficient algorithms exist for finding the ideals Si, the algebras Ji and the homomorphisms Ψi given
S [34, Chapter 6].

1 We omit the Albert algebra from this list since it is exceptional, i.e., it is an algebra that is not special. By definition,
all subalgebras of Sn are special [22, 2.3.1]; hence, no subalgebra of Sn is isomorphic to the Albert algebra.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

8 Frank Permenter, Pablo A. Parrilo

2.3.3 Connections with *-subalgebras

In some cases, *-algebra techniques (currently used in the SDP literature) can find the decomposition of
a Jordan subalgebra S into its simple ideals, a crucial step in finding (15). To explain, view Rn×n as a *-
algebra with matrix multiplication as a product and transposition as a *-involution, and letM⊆ Rn×n

denote the *-subalgebra generated by S. The Wedderburn decomposition [42] of M is its direct-sum
decomposition M = ⊕q

i=1Mi into simple ideals Mi. If S = M∩ Sn, then the ideals of M identify the
ideals of S. Formally:
Proposition 2.9 (Ideals from the Wedderburn decomposition) LetM be the *-subalgebra of Rn×n

generated by a Jordan subalgebra S of Sn. Let M have Wedderburn decomposition M = ⊕q
i=1Mi. If

S =M∩ Sn, then ⊕q
i=1(Mi ∩ Sn) is the decomposition of S into simple ideals.

Proof We need to show that S = ⊕q
i=1(Mi ∩ Sn) and that Mi ∩ Sn is a simple ideal.

To begin, write X ∈ S as X =
∑q

i=1 Xi for Xi ∈ Mi. Then, X =
∑q

i=1
1
2 (Xi + XT

i), where
Xi + XT

i ∈ Mi ∩ Sn since Mi is closed under transposition. Hence, S ⊆ ⊕q
i=1(Mi ∩ Sn). The reverse

containment follows because S =M∩ Sn = (⊕q
i=1Mi) ∩ Sn ⊇ ⊕q

i=1(Mi ∩ Sn).
That Si := Mi ∩ Sn is an ideal of S is obvious: if X ∈ S and Y ∈ Si then XY + Y X ∈ Mi

since Mi is an ideal of M, hence 1
2 (XY + Y X) ∈ Si. Further, by the Artin-Wedderburn theorem, each

Mi is isomorphic to the *-algebra of real, complex, or quaternion matrices of some order; hence, Si

is isomorphic to the Hermitian matrices of real, complex, or quaternion entries of some order and is
therefore simple.

Algorithms for finding the Wedderburn decomposition of *-subalgebras of Rn×n include [13, 25]; see
also [10, 20] for decompositions of complex *-algebras.

Remark 1 A subalgebra S that satisfies S =M∩Sn is called reversible. If a subalgebra is not reversible,
one of its simple ideals is isomorphic to a spin-factor algebra. Conversely, if a subalgebra is isomorphic
to a spin-factor of dimension larger than 5, it is not reversible [22, Theorem 6.2.5].

3 Minimum rank projections and admissible subspaces

We now show how to find a projection PS : Sn → Sn satisfying the Constraint Set Invariance and Unitality
Conditions (Definitions 2.1 and 2.2), which, as argued in the previous section, allows one to reformulate
the primal-dual pair (1) over a symmetric cone isomorphic to Sn

+ ∩ S. As we’ll show, among projections
that satisfy these conditions, there exists a unique one of minimum rank. Further, a simple algorithm finds
this projection for any instance of the primal-dual pair (1). This will follow by characterizing subspaces
whose orthogonal projections satisfy these conditions. We define such a subspace as admissible:
Definition 3.1 A subspace S is admissible if its orthogonal projection PS : Sn → Sn satisfies the
Constraint Set Invariance and Unitality Conditions (Definitions 2.1-2.2).

Theorem 2.1 provided a partial characterization of admissibility, showing that the ranges of positive,
unital projections are the Jordan subalgebras of Sn. To complete a characterization, we need the following
result on invariance of the primal-dual affine sets.

Lemma 3.1 For affine sets Y + L and C + L⊥, let YL⊥ ∈ Sn and CL ∈ Sn denote the projections of
Y ∈ Sn and C ∈ Sn onto the subspaces L⊥ and L, respectively. The following are equivalent.

1. C + L and Y + L⊥ are invariant under the orthogonal projection PS : Sn → Sn.
2. The subspace S contains CL and YL⊥ and is an invariant subspace of PL : Sn → Sn, i.e., S contains

YL⊥ , CL and PL(S).

Proof See appendix (Section 7.2).

Remark 2 The invariant subspaces of PL are precisely the invariant subspaces of PL⊥ [15, Proposition
3.8], which explains the asymmetry of statement Lemma 3.1-(2) with respect to L and L⊥.

We also use the following well-known characterization of subalgebras, which follows given that XY +
Y X = (X + Y)2 −X2 − Y 2.
Lemma 3.2 A subspace S ⊆ Sn is a Jordan subalgebra of Sn (with product 1

2 (XY + Y X)) if and only
if S ⊇ {X2 : X ∈ S}.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 9

Combining Theorem 2.1 with Lemmas 3.1-3.2 yields our characterization of admissibility.

Theorem 3.1 A subspace S is admissible (Definition 3.1) if and only if it satisfies the following condi-
tions:

S ∋ YL⊥ , CL,

S ⊇ PL(S),
S ⊇ {X2 : X ∈ S},

where YL⊥ and CL are as in Lemma 3.1 and L is the linear subspace of the primal-dual pair (1).

3.1 Optimal subspaces and minimum rank projections

Theorem 3.1 shows that the (arbitrary) intersection of admissible subspaces is admissible. This motivates
the following definition.

Definition 3.2 The optimal admissible subspace Sopt is the intersection of all admissible subspaces:

Sopt =
⋂
{S : S is admissible}.

Admissibility of Sopt yields the following corollary of Theorem 3.1.

Corollary 3.1 The map PSopt : Sn → Sn is the minimum-rank orthogonal projection satisfying the
Constraint Set Invariance and Unitality Conditions (Definitions 2.1-2.2).

3.2 Solution algorithm

Theorem 3.1 also suggests a procedure for finding Sopt. First, initialize S to the subspace spanned by CL
and YL⊥ . Then, add PL(S) and the span of {X2 : X ∈ S} to S in an alternating fashion, terminating
when the resulting ascending chain of subspaces stabilizes. Formally:

Theorem 3.2 The optimal admissible subspace Sopt (Definition 3.2) is the output of the following al-
gorithm:

S ← span{CL, YL⊥}
repeat
S ← S + PL(S)
S ← S + span{X2 : X ∈ S}

until ascending chain stabilizes

where CL, YL⊥ are as in Lemma 3.1 and L is the linear subspace of the primal-dual pair (1).

Proof The algorithm computes an ascending chain of subspaces in finite dimensions which must stabilize
to a subspace Ŝ. Stabilization implies that

Ŝ = Ŝ + PL(Ŝ), Ŝ = Ŝ + span{X2 : X ∈ Ŝ}

which, since Ŝ ∋ CL, YL⊥ , shows that Ŝ is admissible (Theorem 3.1). At every iteration, S is a subset
of Sopt (by induction); hence, Ŝ is a subset. But since Ŝ is admissible, it contains Sopt (Definition 3.2).
We conclude that Ŝ = Sopt.

Note executing this algorithm may be impractical if storing a basis for S is impractical. To deal with
this, we introduce variations in Section 5 that restrict to subspaces spanned by bases with efficient
combinatorial representations.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

10 Frank Permenter, Pablo A. Parrilo

4 Optimal decompositions

Admissible subspaces are necessarily subalgebras of Sn (Theorem 3.1). As a consequence, each admissible
subspace has an orthogonal direct-sum decomposition into simple ideals (Section 2.3.2). We now prove
the direct-sum decomposition of Sopt is optimal in a precise sense.

Our notion of optimality is in terms of the rank vector of an algebra W = ⊕w
i=1Wi

rW := (rankW1, rankW2, . . . , rankWw),

where each Wi is a simple ideal and rankWi is the maximum number of distinct eigenvalues of an
X ∈ Wi; as an example, the rank vectors of Sn1 ⊕ Sn2 and R4

+ are (n1, n2) and (1, 1, 1, 1), respectively.
Specifically, we show that the rank vector of Sopt is weakly majorized by that of any other admissible
subspace. Among other things, this means that Sopt minimizes the rank vector’s largest element and the
sum of its elements.
Definition 4.1 The vector x ∈ Zm weakly majorizes y ∈ Zn if

min {ℓ,m}∑

i=1
[x↓]i ≥

min {ℓ,n}∑

i=1
[y↓]i ∀ℓ ∈ {1, . . . , max {m, n}},

where x↓ and y↓ denote x and y with entries sorted in descending order.

Example 4.1 For the following subalgebras Ui (each parametrized by t ∈ Rm), the rank vector rUi weakly
majorizes rUi+1 :

U1 :=

t1 t2 0 0 0
t2 t3 0 0 0
0 0 t4 t5 t6
0 0 t5 t7 t8
0 0 t6 t8 t9

rU1 = (2, 3)

U2 :=

t1 t2 0 0 0
t2 t3 0 0 0
0 0 t4 t5 0
0 0 t5 t7 0
0 0 0 0 t9

rU2 = (2, 2, 1)

U3 :=

t1 t2 0 0 0
t2 t3 0 0 0
0 0 t1 t2 0
0 0 t2 t3 0
0 0 0 0 t4

rU3 = (2, 1)

U4 :=

t1 0 0 0 0
0 t1 0 0 0
0 0 t1 0 0
0 0 0 t1 0
0 0 0 0 t2

rU4 = (1, 1)

We now state our result.
Theorem 4.1 Let W ⊆ Sn be any admissible subspace (Definition 3.1). Let the optimal admissible
subspace Sopt (Definition 3.2) and W have the following decompositions into simple ideals:

Sopt = ⊕s
i=1Si, W = ⊕w

k=1Wk.

Then, rW := (rankW1, . . . , rankWw) weakly majorizes rSopt := (rankS1, . . . , rankSs).
To prove this theorem, we will only use the fact that Sopt is a subalgebra of all other admissible subspaces,
which is immediate from its definition and Theorem 3.1.

4.1 Proof of Theorem 4.1

We prove the theorem by showing a more general result (Theorem 4.2) about the rank vectors of Euclidean
Jordan algebras and their subalgebras. To our knowledge, these results are new. Towards this, we let
x ◦ y denote the Jordan product of an abstract Euclidean Jordan algebra J and recall some standard
definitions. An idempotent is an x ∈ J satisfying x ◦ x = x. An idempotent is primitive if it is nonzero
and doesn’t equal the sum of two different nonzero idempotents. Finally, as mentioned in Section 2.3.2,
an algebra J is simple if its only ideals are J and {0}. We start with a needed technical lemma.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 11

Lemma 4.1 Let J be a Euclidean Jordan algebra and let V ⊆ J be a subalgebra that is simple (viewed
as an algebra). Let J = ⊕w

k=1Jk denote the orthogonal direct-sum decomposition of J into simple ideals.
Finally, let Φk : J → J denote the orthogonal projection onto Jk. The following statements hold for all
k ∈ [w], where [w] := {1, . . . , w}:

1. If e ∈ J is an idempotent, then Φke is an idempotent.
2. If e, f ∈ J are idempotents and 〈e, f〉 = 0, then 〈Φke, Φkf〉 = 0.
3. Suppose e, f ∈ V are nonzero idempotents. If Φke 6= 0, then Φkf 6= 0.

Proof Since Jk is a simple ideal, the projection map Φk from J onto Jk is a Jordan homomorphism
by [22, Lemma 2.5.6]; hence, Φke ◦ Φke = Φk(e2) = Φke, showing the first statement.

For the second statement, recall J = ⊕w
k=1Jk is an orthogonal direct-sum decomposition of J . We

conclude
e =

w∑

k=1
Φke, f =

w∑

k=1
Φke.

Since 〈Φie, Φjf〉 ≥ 0 (since the cone-of-squares is self-dual) and

〈e, f〉 =
w∑

i=1

w∑

j=1
〈Φie, Φjf〉,

〈Φie, Φjf〉 = 0 if 〈e, f〉 = 0.
For the third statement, view V as a simple algebra and let e =

∑q
i=1 ei and f =

∑r
j=1 fj denote the

decompositions of e and f into primitive idempotents of V. Then, there exists t ∈ V (depending on i and
j) such that ei = 2t ◦ (t ◦ fj)− t2 ◦ fj [14, Corollary IV.2.4]. Since Φk is a homomorphism,

Φkei = Φk(2t ◦ (t ◦ fj)− t2 ◦ fj)
= Φk(2t) ◦ (Φkt ◦ Φkfj)− Φkt2 ◦ Φkfj

showing Φkfj 6= 0 if Φkei 6= 0. Since

Φke =
q∑

i=1
Φkei, Φkf =

r∑

j=1
Φkfj ,

and Φkei and Φkfj are idempotents and hence in the cone-of-squares, it follows Φkf 6= 0 if Φke 6= 0.

The mentioned results on rank vectors and subalgebras follow.

Theorem 4.2 (Subalgebras and rank vectors) Let S = ⊕s
i=1Si and W = ⊕w

k=1Wk be Jordan sub-
algebras of J , where Si and Wk are simple ideals of S and W (viewed as algebras), respectively. Suppose
S ⊆ W. The following statements hold:

1. For each k ∈ [w], let Ik := {i ∈ [s] : Si 6⊆ (Wk)⊥}. Then, for all k ∈ [w],

rankWk ≥
∑

i∈Ik

rankSi.

2. The vector rW weakly majorizes rS , where

rW := (rankW1, . . . , rankWw), rS := (rankS1, . . . , rankSs).

Proof First note Si contains a set Ei := {ei
j}

rank Si

j=1 of pairwise-orthogonal idempotents. Further, if i ∈ Ik,
then Φke 6= 0 for a nonzero idempotent e in Si. We conclude all elements of {Φkf : f ∈ ∪i∈Ik

Ei}
are nonzero (Lemma 4.1-3); moreover, they are idempotent (Lemma 4.1-1) and pairwise orthogonal
(Lemma 4.1-2). It follows Wk contains at least

∑
i∈Ik

rankSi nonzero idempotents that are pairwise
orthogonal. Hence, rankWk ≥

∑
i∈Ik

rankSi.
For the second statement, we note the first implies the following: for each ℓ ∈ max{s, w}, there is a

subset T ⊆ [w] for which

∑

k∈T

rankWk ≥
∑

k∈T

∑

i∈Ik

rankSi ≥
min {ℓ,s}∑

i=1
[r↓

S]i.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

12 Frank Permenter, Pablo A. Parrilo

Specifically, letting π be a permutation of [s] satisfying [r↓
S]i = [rS]π(i), we can choose T to be subset of

[w] that satisfies
∪k∈T Ik ⊇ {π(i)}min{ℓ,s}

i=1 .

Further, we can choose T to have |T | ≤ min {ℓ, w}, which implies that

min {ℓ,w}∑

i=1
[r↓

W]i ≥
∑

k∈T

rankWk.

Hence, the majorization inequality
∑min {ℓ,w}

i=1 [r↓
W]i ≥

∑min {ℓ,s}
i=1 [r↓

S]i holds.

We see that Theorem 4.1 follows immediately from the second statement of Theorem 4.2 since, as
mentioned, Sopt is a subalgebra of all other admissible subspaces (Definition 4.1).

5 Combinatorial variations

This section introduces combinatorial restrictions on admissible subspaces (Definition 3.1), aiming to
reduce the cost of storing a basis. We consider three types of subspaces (Figure 1). The first two types
have bases encoded by relations and partitions, respectively. The third type is a common generalization,
whose discussion we defer to the end of this section.

To begin, let [n] = {1, . . . , n}. For a relation R ⊆ [n] × [n], let BR := {Eij + Eji : (i, j) ∈ R},
where Eij is the standard basis matrix of Rn×n nonzero (and equal to 1) only at its (i, j)-th entry.
For a partition P of [n] × [n], let BP denote the corresponding set of characteristic matrices—i.e., let
BP := {∑(i,j)∈C Eij : C ∈ P} where C ⊆ [n]× [n] denotes a subset in P .

Definition 5.1 A coordinate subspace is the span of BR for some relation R ⊆ [n] × [n]. A partition
subspace is the span of BP for some partition P ⊆ [n]× [n].

Example 5.1 The following subspaces S1 and S2 are coordinate and partition subspaces, respectively.

S1 =

a b 0
b c d
0 d e

 : (a, b, c, d) ∈ R4

 S2 =

a a b
a a b
b b c

 : (a, b, c) ∈ R3

 .

Specifically, S1 equals the span of BR for the relation

R = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)} ,

and S2 equals the span of BP for the partition

P =
{
{(1, 1), (1, 2), (2, 1), (2, 2)}, {(1, 3), (2, 3), (3, 1), (3, 2)}, {(3, 3)}

}
.

We seek the following variants of Sopt:

Scoord :=
⋂
{S ⊆ Sn : S is admissible and a coordinate subspace},

Spart :=
⋂
{S ⊆ Sn : S is admissible and a partition subspace}.

The families of admissible, coordinate, and partition subspaces are all closed under intersection. Hence,
Scoord is both admissible and a coordinate subspace. Similar remarks apply for Spart.

Though coordinate subspaces are a highly restricted family, our conference paper [35] illustrates
Scoord can have small dimension for SDPs arising in polynomial optimization. Partition subspaces also
arise naturally in symmetry reduction. Indeed, the fixed-point subspace (Section 2.1.3)

MG = {X ∈ Rn×n : P XP T = X ∀P ∈ G}

is a partition subspace (of Rn×n) andMG∩Sn a partition subspace of Sn when G is a group of permutation
matrices. The partition P of [n]× [n] that induces MG arises from the orbits {P EijP T : P ∈ G} of the
standard basis matrices Eij ∈ Rn×n; precisely, (i, j) and (k, l) are in the same class of P if the orbit
{P EijP T : P ∈ G} contains Ekl. (Such a partition is called a Schurian coherent configuration [23].)

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 13

Sn

Spart Scoord

S0/1

Sopt

subspace operations data type of basis
Sopt dense linear algebra dense matrices
Spart partition refinement partition of [n]× [n]
Scoord set union relation (subset of [n]× [n])
S0/1 partition refinement and set union partition of relation

Fig. 1: Hasse diagram of subspace inclusions, key algorithmic operation needed to find subspace, and
data type (mathematical object) used to represent a basis.

5.1 Modified algorithms

To find Spart or Scoord, we modify the Theorem 3.2 algorithm line-by-line to operate on partitions or rela-
tions instead of subspaces. These modified algorithms first represent the image of a coordinate/partition
subspace S under the maps X 7→ X2 and PL : Sn → Sn with a polynomial matrix, an idea inspired
by [43]; see also [2, Section 5]. They then refine/grow a partition/relation based on the unique/nonzero
entries of this polynomial matrix. These algorithms are explicitly given in Figure 2. They leverage the
following notation (Definitions 5.2-5.3).
Definition 5.2 For a finite set B ⊂ Sn, let fX2(B) and fL(B) denote the polynomial matrices

fX2(B) :=
(∑

B∈B
tBB

)2

fL(B) :=
∑

B∈B
tBPL(B),

where [tB]B∈B is a vector of commuting2 indeterminates indexed by B.
If S is the span of B, then the set of point evaluations of fX2 (B) equals {X2 : X ∈ S}, i.e.,

{X2 : X ∈ S} = {fX2(B)|tB=t∗ : t∗ ∈ R|B|},
and similarly for fL(B). The following example illustrates this notation.
Example 5.2 For B = {U, V, W}, where

U =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , V =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , W =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

we have fX2(B) := (tUU + tV V + tW W)2. Expanding (and using the identities tU tV = tV tU and tU tW =
tW tU) shows that

fX2(B) =

tU
2 + tW

2 0 tU tW tU tV

0 tU
2 + tW

2 tU tV tU tW

tU tW tU tV tU
2 + tV

2 0
tU tV tU tW 0 tU

2 + tV
2

 .

Definition 5.3 For an n × n polynomial matrix X, let Supp(X) denote the subset of (i, j) ∈ [n] × [n]
for which Xij is not the zero polynomial. Similarly, let Part(X) denote the partition of [n]× [n] induced
by the unique polynomial entries of X, i.e., (i, j) and (k, l) are in the same class of Part(X) if and only
if Xij and Xkl are the same polynomial.
Example 5.2 (continued) For the polynomial matrix fX2(B) of the previous example, the relation
Supp (fX2(B)) is the complement of {(1, 2), (2, 1), (3, 4), (4, 3)} ⊆ [n] × [n] (where n = 4.) The partition
Part (fX2(B)) has characteristic matrices

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

tU
2 + tW

2 0 tU tW tU tV tU
2 + tV

2,

(16)

where we’ve labeled each matrix by the associated polynomial entry of fX2(B).
2 Note that the related algorithm [2, Section 5] uses noncommuting indeterminates.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

14 Frank Permenter, Pablo A. Parrilo

R← Supp (CL) ∪ Supp (YL⊥)
repeat
R ← R∪ Supp (fL(BR))
R ← R∪ Supp (fX2 (BR))

until ascending chain of relations R stabilizes.

P ← Part(CL)
∨

Part(YL⊥)
repeat
P ← P

∨
Part (fL(BP))

P ← P
∨

Part (fX2 (BP))
until ascending chain of partitions P stabilizes.

Fig. 2: Algorithms for finding bases BR ⊂ Sn and BP ⊂ Sn of Scoord and Spart, respectively. One
algorithm grows a relation R ⊆ [n]× [n] and the other refines a partition P of [n]× [n]. (Here, P1

∨P2
denotes the coarsest common refinement of partitions P1 and P2.) The inputs are CL, YL⊥ ∈ Sn and the
linear subspace L ⊆ Sn.

5.2 Randomization via sampling

Explicitly constructing symbolic representations of fL(B) and fX2 (B) is not necessary for finding the
partitions and relations they induce. One can instead evaluate the maps X 7→ X2 and PL : Sn → Sn

at a random combination of elements in B. Consider, for instance, a point evaluation of fX2(BP) at
t∗ ∈ R|BP |, i.e., consider

fX2(BP)|t=t∗ :=
(∑

B∈BP

t∗
BB

)2

.

The supports of fX2(BP) and fX2(BP)|t=t∗ are the same for almost all t∗. Similarly, the partitions
induced by fX2(BP) and fX2(BP)|t=t∗ are the same, i.e.,

Part (fX2(BP)) = Part
(

fX2(BP)|t=t∗

)
,

for almost all t∗. The following illustrates this equality for a particular t∗.

Example 5.2 (continued) For B defined previously, the point evaluation fX2(B)|t=t∗
B

at t∗
B = (2, 3, 4)

is

fX2(B)|t=t∗
B

= (2U + 3V + 4W)2 =

20 0 8 6
0 20 6 8
8 6 13 0
6 8 0 13

 .

We see the partition Part
(

fX2(B)|t=t∗
B

)
is the same as the partition Part (fX2(BP)) given by (16).

5.3 Generalization of partition and coordinate subspaces

Coordinate and partition subspaces have a trivial common generalization: subspaces with an orthogonal
basis of 0/1 matrices, or, equivalently, a basis of 0/1 matrices with disjoint support. This motivates the
following definition:

S0/1 :=
⋂
{S ⊆ Sn : S is admissible and has an orthogonal basis of 0/1 matrices}.

A procedure for finding S0/1 combines features of the algorithms presented for finding Spart and Scoord:
specifically, it iteratively grows a relation R and refines a partition P of this relation.

Initialize R to Supp(CL)
⋃

Supp(YL⊥)
Initialize P to PartR(CL)

∨
PartR(YL⊥)

repeat
for f ∈ {fL, fX2} do

Replace R with R∪ Supp (f(BP))
Add class R \ (∪P ∈P P) to P
Replace P with refinement P∨PartR (f(BP))

end
until ascending chain of subspaces span(BP) stabilizes.

Here PartR(T) denotes the partition of R ⊆ [n] × [n] induced by the unique entries of a matrix T with
support contained in R.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 15

6 Examples

We now apply our techniques to SDPs rising in applications. We do all computation on an Intel 3GHz
desktop with 128 gigabytes of RAM. The algorithms of Theorem 3.2 and Figure 2, used to identify an
admissible subspace S, and the algorithm of [34, Chapter 6], used to find the linear map Ψ and cone C
satisfying Ψ(C) = Sn

+ ∩ S, were all implemented in MATLAB. We use the solver SeDuMI [40] to solve
the SDPs.

Format of original SDPs Each primal-dual pair is originally expressed in either SeDuMi [40] or SDPA [18]
format and may have a mix of free and conic variables, where the cones are either nonnegative orthants or
cones of psd matrices.3 From these formats, we eliminate free variables, reformatting the primal problem
as

minimize 〈C, X〉
subject to 〈Ai, X〉 = bi ∀i ∈ [m]

X ∈ Sn1
+ × · · · × Snr

+ ,
(17)

where C, Ai ∈ Sn1 × · · · × Snr are fixed, and 〈·, ·〉 denotes the inner-product obtained by equipping each
Sni with the trace inner-product. (This reformatting amounts to eliminating free variables and relabeling
nonnegative orthants as products of psd cones of order one.) We will in some cases report the number of
non-zero (nnz) entries in a description of (17); this equals the number of non-zero floating-point numbers
needed to store C and {Ai}m

i=1. We also report a tuple of ranks for (17), which is simply the tuple
(n1, . . . , nr).

Format of reformulations We reformulate each SDP by finding an admissible subspace S, simple algebras
Ji, and an injective homomorphism Ψ : ⊕q

i=1Ji → Sn satisfying

Sn
+ ∩ S = Ψ(C1 × · · · × Cq),

where Ci is the cone-of-squares of Ji. The reformulation is as in Proposition 2.6:

minimize 〈Ψ∗(C), X̂〉
subject to 〈Ψ∗(Ai), X̂〉 = bi ∀i ∈ T ⊆ [m]

X̂ ∈ C1 × · · · × Cq,

(18)

where T indexes a maximal linearly-independent subset of equations. We will in some cases report the
number of non-zero (nnz) entries in a description of (18); this equals the number of non-zero floating-
point numbers needed to store Ψ∗(C) and {Ψ∗(Ai)}i∈T . We also report the tuple (r1, . . . , rq), where ri

is the rank of Ji.

Remark 3 For most examples, C1 × · · · × Cq is a product of psd cones Sr1
+ × · · · × Srq

+ and the tuple
(r1, . . . , rq) indicates their orders. We discuss the only exception in Section 6.1.3. We also note S2 is
isomorphic to a spin-factor algebra—hence, S2

+ is isomorphic to a Lorentz cone.

Reference subspaces and inclusions For convenience, we will let Sfull := Sn1 × · · · × Snr denote the full
ambient space of the original instance (17). As discussed in [8], an SDP can be restricted to the *-algebra
generated by its data matrices; see also Proposition 2.5. To compare with this restriction, we let

Sdata :=Mdata ∩ (Sn1 × · · · × Snr),

whereMdata ⊆ Rn×n is the *-subalgebra of Rn×n generated by the problem data C and {Ai}m
i=1 (using

matrix multiplication as a product and transposition as the *-involution). Recall that

Sopt ⊆ S0/1 ⊆ Scoord ⊆ Sfull.

We’ll see that different inclusions hold strictly for different examples. By definition, we also have that

Sopt ⊆ Sdata ⊆ Sfull.

Examples will show that Sopt can be (much) smaller than Sdata.
3 These formats also allow for Lorentz cones. None of the examples presented, however, use this type of cone.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

16 Frank Permenter, Pablo A. Parrilo

6.1 Libraries of problem instances

The first set of SDPs come from three public sources: the parser SOSTOOLS [31], the DIMACS li-
brary [33] and a set of structured SDP instances from [9]. Table 6.1.1 reports the dimensions of the
subspaces Sopt, S0/1, Scoord, Sdata and Sfull. Note the inclusions Sopt ⊆ S0/1 ⊆ Scoord ⊆ Sfull hold as
expected, and, as Table 6.1.1 indicates, different ones hold strictly for different instances. For a large frac-
tion, Sfull equals Sdata, implying generating a *-subalgebra from the problem data [8] does not simplify
these instances.

Remark 4 We note the libraries [9, 33] have additional instances on which our method was not effective
(Sopt = Sfull); we do not report results for these instances.

Remark 5 The kissing number and copositivity instances of Table 6.1.1 (denoted kissing_x_y_z and
coposxy) can also be simplified using group theoretic techniques [7, 11] (related to Proposition 2.4) that
are tailored to these specific SDP families.

6.1.1 The Lovász number

We give special attention to the Table 6.1.2 instances denoted hamming_m_x and hamming_m_x_y,
taken from [33]. For a specific graph G with vertices {1, . . . , n} and edge set E, each instance has the
following form

maximize Tr 11T X
subject to Tr X = 1, X ∈ Sn

+
Tr(Eij + Eji)X = 0 ∀(i, j) ∈ E,

(19)

where 11T ∈ Sn is the all-ones-matrix and Eij is a standard basis matrix of Rn×n.
The graphs for these instances are closely related to the Hamming graph H(m, d), whose nodes

are the Boolean vectors of length m that are adjacent iff their Hamming distance is at least d. The
graphs of hamming_m_x and hamming_m_x_y are modifications of such graphs: nodes are adjacent iff
their Hamming distance is x or is x or y. When G is a Hamming graph, it is well known that one can
convert SDP (19) into a linear program using the theory of association schemes [36]. Unsurprisingly, we
find similar simplifications for the modified graphs; precisely, Sn

+ ∩ Sopt is isomorphic to a non-negative
orthant of order equal to the dimension of Sopt, i.e.,

Sn
+ ∩ Sopt = Ψ(Rdim Sopt

+)

for an injective map Ψ : Rdim Sopt → Sn.
As reported [27], these instances are challenging for a wide array of solvers due to their size; indeed,

we are only able to solve two of them directly (Table 6.1.3). Constructing the reformulation over Sopt,
however, converts each SDP into a trivial linear program. Further, finding Sopt and constructing the
reformulation takes negligible effort compared to original solver time (Table 6.1.3). Note the other au-
tomated approach—generating a ∗-algebra from the data matrices 11T , I, and {Eij + Eji}(i,j)∈E—fails
for these instances, i.e., Sdata = Sfull (Table 6.1.2).

6.1.2 Decompositions and majorization

In Table 6.1.2 we report the tuple of ranks for the subspaces Sopt, S0/1 and Scoord for select examples
to confirm our main theorem on optimal decompositions (Theorem 4.1). Specifically, we select examples
satisfying the strict inclusions:

Sopt ⊂ S0/1 ⊂ Scoord.

Given these strict inclusions, Theorem 4.1 predicts the ranks of S0/1 and Scoord weakly majorize those
of Sopt in the sense of Definition 4.1. Similarly, it predicts the ranks of Scoord weakly majorize those of
S0/1.

Table 6.1.2 confirms both these predictions. The first row, for instance, reports the following tuples
r1 ∈ Zl1 and r2 ∈ Zl2 for Sopt and S0/1, respectively:

r1 := (3, 2, 2, . . . , 2︸ ︷︷ ︸
12×

, 1, 1, . . . , 1︸ ︷︷ ︸
44×

) r2 := (27, 25, 5, 1, 1, . . . , 1︸ ︷︷ ︸
44×

).

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 17

instance Sopt S0/1 Scoord Sdata Sfull References
sosdemo2 25 25 28 103 103

Instances
from [31]

sosdemo4 11 11 85 630 630
sosdemo5 226 816 816 816 816
sosdemo6 49 49 327 462 462
sosdemo7 40 40 68 68 68
sosdemo9 26 26 26 78 78
sosdemo10 78 78 78 254 254

hamming_7_5_6 5 5 8256 8256 8256

Instances
from [33]

hamming_8_3_4 5 5 32896 32896 32896
hamming_9_5_6 6 6 131328 131328 131328
hamming_9_8 6 6 131328 131328 131328
hamming_10_2 7 7 524800 524800 524800

copo14 73 73 1834 1834 1834
copo23 188 188 8119 8119 8119
copos68 1576 1576 209644 209644 209644

ThetaPrimeER23_red 86 762 777 101 1712

Instances
from [9]

ThetaPrimeER29_red 104 1125 1143 122 2486
ThetaPrimeER31_red 110 1262 1281 129 2776

crossing_K_7n 113 577 3138 113 3138
crossing_K_8n 479 18577 72630 479 72630
kissing_3_5_5 811 811 3796 3796 3796
kissing_4_7_7 3723 3723 19760 19760 19760

Table 6.1.1: Dimensions of admissible subspaces Sopt, S0/1 and Scoord compared with dimensions of the
ambient space Sfull and Sdata—the (symmetric part) of the *-algebra generated by C and {Ai}mi=1.

instance Sopt S0/1 Scoord Sfull

ThetaPrimeER23_red (3, 212×, 144×) (27, 25, 5, 144×) (27, 25, 5, 159×) (57, 159×)
ThetaPrimeER29_red (3, 215×, 153×) (33, 31, 5, 153×) (33, 31, 5, 171×) (69, 171×)
ThetaPrimeER31_red (3, 216×, 156×) (35, 33, 5, 156×) (35, 33, 5, 175×) (73, 175×)

crossing_K_7n (36×, 24×, 165×) (134×, 157×) (79, 157×) (79, 157×)
crossing_K_8n (72×, 52×, 49×, 37×, 24×, 1249×) (105, 97, 92, 86, 1240×) (380, 1240×) (380, 1240×)

Table 6.1.2: Tuple of ranks for select examples after restricting to indicated subspace. Here, st× means
s repeated t times, i.e., 32× := (3, 3).

instance torig Sopt S0/1 Scoord

ThetaPrimeER23_red 0.21 0.16, 0.09 0.12, 0.12 0.02, 0.13
ThetaPrimeER29_red 0.19 0.14, 0.10 0.11, 0.15 0.02, 0.14
ThetaPrimeER31_red 0.25 0.17, 0.15 0.13, 0.19 0.02, 0.19

crossing_K_7n 0.33 0.25, 0.12 0.18, 0.14 0.02, 0.33
crossing_K_8n 56.7 2.48, 0.58 2.34, 10.37 0.02, 56.7

instance torig Sopt

hamming_7_5_6 10.12 0.09, 0.04
hamming_8_3_4 4 hours 0.15, 0.02
hamming_9_5_6 Fail 0.48, 0.02
hamming_9_8 Fail 0.49, 0.02
hamming_10_2 Fail 2.29, 0.03

Table 6.1.3: The original solver time torig (in seconds) and a list tpre, tsolve of preprocessing and solver
times for restrictions to indicated subspaces. Failures were due to insufficient memory.

It easily follows r2 weakly majorizes r1, i.e., for all positive integers q ∈ Z,

min{q,l2}∑

i=1
[r2]i ≥

min{q,l1}∑

i=1
[r1]i.

As also expected, for the instances of Table 6.1.2, reformulating over Sopt reduces solver time the most,
but requires the most preprocessing (Table 6.1.3). In fact, for some instances, solver time reductions do not
offset the extra preprocessing time, justifying the larger (but easier to construct) reformulations over S0/1
and Scoord. (To further reduce preprocessing time, Section 6.4 introduces an alternative reformulation (21)
to (18) that reduces the dimension of the feasible set but doesn’t simplify the cone constraint.)

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

18 Frank Permenter, Pablo A. Parrilo

6.1.3 An algebra with a complex direct-summand

The example sosdemo5 is an SDP that bounds a quantity from robust control theory—the structured
singular value µ(M, ∆) [30]:

µ(M, ∆) := 1
inf{‖∆‖ : ∆ ∈∆, det(I −M∆) = 0} . (20)

Here, M is a complex matrix and ∆ is a set of complex matrices. Though the parameters of µ(M, ∆) are
complex, one can formulate an SDP with real data matrices to bound µ(M, ∆). This is done in sosdemo5
for particular M and ∆. After decomposing Sopt into a direct-sum of minimal ideals, we find one of the
direct-summands is isomorphic to an algebra of complex Hermitian matrices. Precisely, Sopt = ⊕11

i=1Si

for minimal ideals Si. Letting r := (rankS1, . . . , rankS11) and d := (dimS1, . . . , dimS11), we have

r = (1, 1, 1, 1, 4, 4∗, 4, 6, 10, 10, 10)
d = (1, 1, 1, 1, 10, 16∗, 10, 21, 55, 55, 55).

Note with the exception of the entries marked ∗, the relation di =
(

ri+1
2
)

holds, showing Si is isomorphic
to the algebra of real symmetric matrices of order ri. The exception satisfies di = r2

i , showing the
corresponding ideal Si is isomorphic to the algebra of complex Hermitian matrices of order ri. We
remark this is the only example considered where the direct-summands are not all isomorphic to Sn for
some n.

6.2 Coordinate subspaces and sparse decompositions

We next consider SDPs constructed by demonstration scripts packaged with the control system analysis
tools available at

http : //www.aem.umn.edu/˜AerospaceControl/,

which build upon the parser SOSOPT [37]. For these SDPs, the optimal subspace Sopt equals the optimal
coordinate subspace Scoord. As indicated in Table 6.2.1, these SDPs illustrate we can always restrict to
Scoord without increasing the number of non-zero entries in the problem description, since restricting to
Scoord amounts to setting certain off-diagonal entries of the data to zero. Though these examples are of
small size, they illustrate Scoord is a proper subspace of Sfull for many SDPs arising in sums-of-squares
optimization.

Remark 6 Note some of these scripts construct more than one SDP; reported results are for the first
SDP constructed.

6.3 Comparison with LP method of Grohe, Kersting, Mladenov, and Selman

In [21], Grohe et al. describe a reduction method for linear programming (LP) and show it outperforms
a symmetry reduction method of [5] on a collection of LPs; indeed, they show their method theoretically
subsumes [5]. The linear programs used for comparison are relaxations of integer programs studied in [26].
By treating each linear inequality as a semidefinite constraint of order one, we applied our method to the
same LP relaxations. Of the 57 relaxations, we find the same reductions on 56. For the remaining instance
(cov1054sb), we outperform [21]. For space reasons, Table 6.3.1 reports results for just a small subset of
these LP relaxations. To match [21], we give the number of dual variables and inequality constraints. In
terms of SDP (17) and the SDP (18), the number of dual variables and constraints equals the number
of linear equations and the sum of the ranks, respectively.

6.4 Completely-positive rank, the subspace S0/1, and decomposition trade-offs

Our last example illustrates restrictions to S0/1, the optimal subspace with an orthogonal basis of 0/1
matrices. The considered SDP family yields lower-bounds of completely-positive rank, or cp-rank for short.
The cp-rank of W ∈ Sn

+ measures the size of the smallest non-negative factorization of W . Precisely, it is
the smallest r for which V ∈ Rn×r

+ exists satisfying W = V V T . (It is infinite if such a factorization does

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 19

Orig. Scoord

ranks nnz ranks nnz
Chesi[1|4]_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97

Chesi3_GlobalStability (14, 5) 341 (8, 6, 3, 2) 193
Chesi[5|6]_Bootstrap (19, 9) 928 (13, 62×, 3) 520

Chesi[5|6]_IterationWithVlin (19, 9) 928 (13, 62×, 3) 520
Coutinho3_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97

HachichoTibken_Bootstrap (19, 9) 685 (12, 7, 6, 3) 373
HachichoTibken_IterationWithVlin (19, 9) 685 (12, 7, 6, 3) 373

Hahn_IterationWithVlin (9, 5) 156 (6, 32×, 2) 84
KuChen_IterationWithVlin (19, 9) 928 (13, 62×, 3) 520

Parrilo1_GlobalStabilityWithVec (3, 2) 20 (2, 13×) 14
Parrilo2_GlobalStabilityWithMat (3, 2) 16 (2, 13×) 10

Pendubot_IterationWithVlin (14, 4) 372 (10, 42×) 292
VDP_IterationWithVball (5, 4) 82 (32×, 2, 1) 55
VDP_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97

VDP_LinearizedLyap (9, 5) 156 (6, 32×, 2) 84
VDP_MultiplierExample (5, 2) 37 (3, 2, 12×) 23

VannelliVidyasagar2_Bootstrap (19, 9) 928 (13, 62×, 3) 520
VannelliVidyasagar2_IterationWithVlin (19, 9) 928 (13, 62×, 3) 520

VincentGrantham_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97
WTBenchmark_IterationWithVlin (19, 9) 685 (13, 62×, 3) 385

Table 6.2.1: Ranks and number of non-zero (nnz) entries in problem description of original instance and
its restriction (18) to Scoord. The notation rs× indicates r repeated s times.

Constraints Variables
Orig. CR Sopt Orig. CR Sopt

cov1053 252 1 1 679 5 5
cov1054 252 1 1 889 6 6

cov1054sb 252 252 1 898 898 6
cov1075 120 1 1 877 7 7
cov1076 120 1 1 835 7 7
cov1174 330 1 1 1221 6 6
cov954 126 1 1 507 6 6

Table 6.3.1: Dual variables and constraints of original LP, the LP formulated via the color refinement
(CR) method of [21], and the LP formulated via restriction to Sopt. Columns labeled (CR) use numbers
reported in [21].

not exist for any r.) As shown in [16], the cp-rank of W ∈ Sn is lower bounded by the optimal value of
the following SDP:

minimize t
subject to (

t vect W T

vect W X

)
� 0

Xij,ij ≤W 2
ij ∀i, j ∈ {1, . . . , n}

X �W ⊗W
Xij,kl = Xil,jk ∀(1, 1) ≤ (i, j) < (k, l) ≤ (n, n).

Here, W ⊗W denotes the Kronecker product and vect W denotes the n2× 1 vector obtained by stacking
the columns of W . The double subscript ij indexes the n2 rows (or columns) of X and the inequalities
on (i, j) and (k, l) hold iff they hold element-wise. (See [16] for clarification on this notation.)

In this example, we solve three instances of this SDP taking W equal to the matrices Z, Z ⊗Z, and
Z ⊗ Z ⊗ Z, where

Z =

4 0 1
0 4 1
1 1 3

 .

Table 6.4.1 reports computational savings obtained by restricting to S0/1.

Alternative reformulation For these examples, we compare (18) against an alternative reformulation that
reduces the dimension of the dual feasible set, but leaves the cone constraint unchanged. It takes the

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

20 Frank Permenter, Pablo A. Parrilo

SDP ranks num eq nnz tpre tsolve

Orig. (17) (10, 9, 19×) 37 242 — .53
Reform. (18) (5, 4, 24×, 16×) 14 859 0.34 0.13
Reform. (21) (10, 9, 19×) 14 242 0.11 0.11

(a) Instance: Z

SDP ranks num eq nnz tpre tsolve

Orig. (17) (82, 81, 181×) 2026 15752 — 24.34
Reform. (18) (12, 11, 104×, 64×, 48×, 22×, 111×) 167 158199 .98 .90
Reform. (21) (82, 81, 181×) 167 15752 0.11 2.54

(b) Instance: Z ⊗ Z

SDP ranks num eq nnz tpre tsolve

Orig. (17) (730, 729, 1729×) 142885 1182290 Out of memory
Reform. (18) Out of memory Out of memory
Reform. (21) (730, 729, 1729×) 1883 1182290 6.5 1113

(c) Instance: Z ⊗ Z ⊗ Z

Table 6.4.1: The first row corresponds to the original SDP (17) and the other rows to reformulations
over S0/1. Here, tpre is time spent (in seconds) finding S0/1 and constructing the reformulation. Solve
time tsolve is also in seconds.

following form

minimize 〈PS0/1 (C), X〉
subject to 〈PS0/1 (Ai), X〉 = bi ∀i ∈ T ⊆ [m]

X ∈ Sn1
+ × · · · × Snr

+ ,
(21)

where T ⊆ [m] indexes a maximal subset of linearly-independent equations, and has dual

maximize
∑

i∈T yibi

subject to PS0/1(C) −∑i∈T PS0/1(Ai) ∈ Sn1
+ × · · · × Snr

+ .

We can interpret the latter SDP as the dual of (17) restricted to the subspace S0/1, recalling by Propo-
sition 2.1 that S0/1 contains both primal and dual solutions.

Table 6.4.1 shows solving (21) achieves computational savings and, indeed, can be preferred to solv-
ing (18). As indicated, for the largest instance, we cannot even find the homomorphism Ψ needed to
construct (18) due to memory constraints. For this example, the formulation (21) also preserves sparsity.

Acknowledgements

We thank Etienne de Klerk for useful discussions during the beginning stages of this work. We also thank
anonymous referees for comments that improved our presentation.

References

1. F. Alizadeh and S. Schmieta. Symmetric cones, potential reduction methods and word-by-word extensions. In Handbook
of Semidefinite Programming, pages 195–233. Springer, 2000.

2. L. Babel, I. V. Chuvaeva, M. Klin, and D. V. Pasechnik. Algebraic combinatorics in mathematical chemistry. Methods
and algorithms. II. Program implementation of the Weisfeiler-Leman algorithm. arXiv preprint arXiv:1002.1921, 2010.

3. C. Bachoc, D. C. Gijswijt, A. Schrijver, and F. Vallentin. Invariant semidefinite programs. In Handbook on semidefinite,
conic and polynomial optimization, pages 219–269. Springer, 2012.

4. R. Bhatia. Positive definite matrices. Princeton university press, 2009.
5. R. Bödi, T. Grundhöfer, and K. Herr. Symmetries of linear programs. Note di Matematica, 30(1):129–132, 2011.
6. J. Borwein and H. Wolkowicz. Regularizing the abstract convex program. Journal of Mathematical Analysis and

Applications, 83(2):495–530, 1981.
7. F. Caluza Machado and F. M. de Oliveira Filho. Improving the semidefinite programming bound for the kissing number

by exploiting polynomial symmetry. Experimental Mathematics, 27(3):362–369, 2018.
8. E. de Klerk. Exploiting special structure in semidefinite programming: A survey of theory and applications. European

Journal of Operational Research, 201(1):1–10, 2010.
9. E. de Klerk and R. Sotirov. A new library of structured semidefinite programming instances. Optimization Methods

& Software, 24(6):959–971, 2009.
10. E. de Klerk, C. Dobre, and D. V. Pasechnik. Numerical block diagonalization of matrix*-algebras with application to

semidefinite programming. Mathematical programming, 129(1):91–111, 2011.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 21

11. C. Dobre and J. Vera. Exploiting symmetry in copositive programs via semidefinite hierarchies. Mathematical Pro-
gramming, 151(2):659–680, 2015.

12. D. Drusvyatskiy and H. Wolkowicz. The many faces of degeneracy in conic optimization. arXiv preprint
arXiv:1706.03705, 2017.

13. W. Eberly and M. Giesbrecht. Efficient decomposition of associative algebras. In Proceedings of the 1996 international
symposium on Symbolic and algebraic computation, pages 170–178. ACM, 1996.

14. J. Faraut and A. Korányi. Analysis on symmetric cones. Oxford university press, 1994.
15. D. Farenick. Algebras of Linear Transformations. Universitext. Springer New York, 2012. ISBN 9781461300977.
16. H. Fawzi and P. A. Parrilo. Self-scaled bounds for atomic cone ranks: applications to nonnegative rank and cp-rank.

arXiv preprint arXiv:1404.3240, 2014.
17. L. Faybusovich. Linear systems in Jordan algebras and primal-dual interior-point algorithms. Journal of computational

and applied mathematics, 86(1):149–175, 1997.
18. K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita. Sdpa (semidefinite programming algorithm) user’s man-

ual—version 6.2. 0. Department of Mathematical and Com-puting Sciences, Tokyo Institute of Technology. Research
Reports on Mathematical and Computing Sciences Series B: Operations Research, 2002.

19. K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. Journal
of Pure and Applied Algebra, 192(1–3):95–128, 2004. ISSN 0022-4049. doi: 10.1016/j.jpaa.2003.12.011. URL
http://www.sciencedirect.com/science/article/pii/S0022404904000131 .

20. D. Gijswijt. Matrix algebras and semidefinite programming techniques for codes. arXiv preprint arXiv:1007.0906,
2010.

21. M. Grohe, K. Kersting, M. Mladenov, and E. Selman. Dimension reduction via colour refinement. In Algorithms-ESA
2014, pages 505–516. Springer, 2014.

22. H. Hanche-Olsen and E. Størmer. Jordan operator algebras, volume 21. Pitman Advanced Publishing Program, 1984.
23. D. Higman. Coherent algebras. Linear Algebra and its Applications, 93:209–239, 1987.
24. M. Idel. On the structure of positive maps. Technical University of Munich, 2013.
25. T. Maehara and K. Murota. A numerical algorithm for block-diagonal decomposition of matrix*-algebras with general

irreducible components. Japan journal of industrial and applied mathematics, 27(2):263–293, 2010.
26. F. Margot. Exploiting orbits in symmetric ilp. Mathematical Programming, 98(1-3):3–21, 2003.
27. H. D. Mittelmann. An independent benchmarking of sdp and socp solvers. Mathematical Programming, 95(2):407–430,

2003.
28. A. Németh and S. Németh. Lattice-like subsets of Euclidean Jordan algebras. arXiv preprint arXiv:1401.3581, 2014.
29. Y. Nesterov, A. Nemirovskii, and Y. Ye. Interior-point polynomial algorithms in convex programming, volume 13.

SIAM, 1994.
30. A. Packard and J. Doyle. The complex structured singular value. Automatica, 29(1):71–109, 1993.
31. A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. Parrilo. SOSTOOLS version 3.00 sum

of squares optimization toolbox for MATLAB. arXiv preprint arXiv:1310.4716, 2013.
32. G. Pataki. Strong duality in conic linear programming: facial reduction and extended duals. Computational and

Analytical Mathematics, pages 613–634, 2013.
33. G. Pataki and S. Schmieta. The DIMACS library of semidefinite-quadratic-linear programs. Available at

http://dimacs.rutgers.edu/Challenges/Seventh/Instances, 1999.
34. F. Permenter. Reduction methods in semidefinite and conic optimization. PhD thesis, MIT, 2018. URL

http://hdl.handle.net/1721.1/114005 .
35. F. Permenter and P. A. Parrilo. Finding sparse, equivalent SDPs via minimal-coordinate-projections. In IEEE 54th

Annual Conference on Decision and Control (CDC). IEEE, 2015.
36. A. Schrijver. A comparison of the Delsarte and Lovász bounds. Information Theory, IEEE Transactions on, 25(4):

425–429, 1979.
37. P. Seiler. SOSOPT: A toolbox for polynomial optimization. arXiv preprint arXiv:1308.1889, 2013.
38. E. Størmer. Positive linear maps of operator algebras. Springer Science & Business Media, 2013.
39. E. Størmer and E. G. Effros. Positive projections and Jordan structure in operator algebras. Mathematica Scandinavica,

45:127–138, 1979.
40. J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization methods

and software, 11(1-4):625–653, 1999.
41. F. Vallentin. Symmetry in semidefinite programs. Linear Algebra and Its Applications, 430(1):360–369, 2009.
42. J. M. Wedderburn. On hypercomplex numbers. Proceedings of the London Mathematical Society, 2(1):77–118, 1908.
43. B. Weisfeiler. On construction and identification of graphs. Springer, 1977.

7 Appendix

7.1 Proof of Theorem 2.1

We now prove Theorem 2.1, which stated that a subspace S ⊆ Sn is a Jordan subalgebra if and only
if its orthogonal projection PS is unital and positive. Analogues for complex Jordan algebras are well
known; see [38] [39] and also the thesis [24]. One direction is also shown in [28]. The converse direction
is shown in part by translating an argument of [38] from the complex to real case. Since they are short
and self-contained, we give full proofs of both directions.

To begin, we need the following lemma relating invariance under squaring to eigenvalue decomposi-
tions.

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

22 Frank Permenter, Pablo A. Parrilo

Lemma 7.1 For a non-zero X ∈ Sn, let EX ⊂ Sn be the set of pairwise orthogonal idempotent matrices
for which

X =
∑

E∈EX

λEE,

where the range of E ∈ EX is an eigenspace of X and {λE}E∈EX
is the set of non-zero (distinct)

eigenvalues of X. For a subspace S ⊆ Sn, the following are equivalent.

1. S contains the set EX for all non-zero X ∈ S.
2. S is invariant under squaring, i.e., S ⊇ {X2 : X ∈ S}.

Proof That statement one implies two is immediate given that X2 =
∑

E∈EX
λ2

EE. Conversely, suppose
X has non-zero eigenvalue λ of maximum magnitude. Then, if statement two holds, the idempotent
Ê = limn→∞ (|λ|−1X)2n is contained in S and has range equal to an eigenspace or, if ±|λ| are both
eigenvalues, the sum of two eigenspaces. Replacing X with X−λÊ and iterating yields a set of idempotents
whose span contains EX ; moreover, this set is contained in S.

We now use this lemma and the mentioned argument of [38] to prove Theorem 2.1
To prove (2 ⇒ 1), consider X � 0 and suppose PS(X) is non-zero. For a non-zero eigenvalue λE of

PS(X), let E ∈ Sn denote the idempotent with range equal to the associated eigenspace. If (2) holds,
then Lemma 7.1 implies PS(E) = E. Hence,

0 ≤ E ·X = PS(E) ·X = E · PS(X) = λE‖E‖2.

We conclude the eigenvalues of PS(X) are non-negative, i.e., that PS(X) � 0. To show the unitality
condition, let Z be a matrix in S of maximum rank and let

Ê =
∑

E∈EZ

E.

For all X ∈ S, it holds that tÊ � X2 for some t > 0. This shows the range of Ê contains the range of
X2 and hence the range of X . It follows ÊX = X .

To prove (1 ⇒ 2), suppose the unit element E has rank r. Then we can find an orthogonal matrix
Q = (Q1, Q2) ∈ Rn×n for which E = Q1QT

1 and

S =
{

Q

(
X 0
0 0

)
QT : X ∈ Ŝ ⊆ Sr

}
,

where Ŝ := QT
1 SQ1. Further, the projection PS satisfies

PS(X) = Q1QT
1 PŜ(X)Q1QT

1

where PŜ : Sr → Sr is the orthogonal projection onto Ŝ. It follows that if Ŝ is invariant under squaring,
so is S, and if PS is positive, so is PŜ . Hence, Statement 2 follows by showing Ŝ is invariant under
squaring.

We show this applying the argument from [38, Theorem 2.2.2] and using the fact Ŝ contains the
identity matrix of order r. Dropping the subscript Ŝ from PŜ , we first note since P is positive and
P (I) = I, it satisfies the Kadison inequality, which states P (X2)− P (X)P (X) � 0 for all X ∈ Sr (e.g.,
Theorem 2.3.4 of [4]). Hence, for X in the range of P

P (X2)−X2 � 0.

Letting Z = P (X2)−X2 and taking the trace shows

Tr Z = I · Z = P (I) · Z = I · P (Z) = Tr
(
P 2(X2)− P (X2)

)
= Tr

(
P (X2)− P (X2)

)
= 0.

Since Z � 0, we conclude Z = 0, i.e., that P (X2) = X2. Therefore X2 is in the range of P .

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Dimension reduction for semidefinite programs via Jordan algebras 23

7.2 Invariant affine sets of projections

Recall Condition 2.1-(b) and Condition 2.1-(c) require invariance of the affine sets Y + L and C + L⊥

under the projection PS . We now prove the characterization of these conditions provided by Lemma 3.1.

Lemma 7.2 For an affine set Y +L, let YL⊥ ∈ Sn denote the projection of Y ∈ Sn onto the subspace L⊥.
Let PS : Sn → Sn denote the orthogonal projection onto a subspace S of Sn. The following statements
are equivalent.

1. PS(Y + L) ⊆ Y + L
2. PS(YL⊥) = YL⊥ and PS(L) ⊆ L

Proof To begin, first note PS—being an orthogonal projection—is a contraction with respect to the Frobe-
nius norm ‖X‖F (recalling our use of the trace inner-product); further, YL⊥ is the unique minimizer
of this norm over Y + L. Hence, if PS(Y + L) ⊆ Y + L, then PS(YL⊥) = YL⊥ ; in addition, since
Y + L = YL⊥ + L,

YL⊥ + PS(L) = PS(YL⊥ + L) ⊆ YL⊥ + L,

which implies PS(L) ⊆ L. The converse direction is obvious given that Y + L = YL⊥ + L.

If we apply the previous lemma to both the primal and dual affine sets we obtain the conditions PS(L) ⊆ L
and PS(L⊥) ⊆ L⊥. However, Lemma 3.1 only contains one of these conditions, since they turn out to be
equivalent. Consider the following.

Lemma 7.3 [15, Proposition 3.8] Let PL : Sn → Sn and PS : Sn → Sn denote the orthogonal
projections onto subspaces L and S of Sn. The following four statements are equivalent.

– L is an invariant subspace of PS
– L⊥ is an invariant subspace of PS

– S is an invariant subspace of PL
– S⊥ is an invariant subspace of PL

Combining these two lemmas proves Lemma 3.1.

7.3 Linear images of self-dual cones

The following was used to prove Proposition 2.6.

Lemma 7.4 Let W and V be inner-product spaces and C ⊆ V and K ⊆ W self-dual convex cones. Let
T : V → W be a injective linear map with adjoint T ∗ :W → V. If K = T (C), then T ∗T (C) = C.

Proof For all x, y ∈ C,
〈T ∗T (x), y〉 = 〈T (x), T (y)〉 ≥ 0

by self-duality of K. By self-duality of C, we conclude T ∗T (x) ∈ C. On the other hand, since T ∗ is
surjective, we have for any x ∈ C existence of w ∈ V for which x = T ∗w. Further, for all y ∈ C,

0 ≤ 〈T ∗w, y〉 = 〈w, T y〉

which, since K = T (C), shows w ∈ K. Hence, w = T z for z ∈ C, showing x = T ∗T z.

