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Abstract

With multiple energy sources, diverse energy demands, and heterogeneous socioe-
conomic factors, energy systems are becoming increasingly complex. Multifaceted
components have non-linear dynamics and are interacting with each other as well as
the environment. In this thesis, we model components in terms of their own internal
dynamics and output variables at the interfaces with the neighboring components.

We then propose to use a distributed estimation method for obtaining the pa-
rameters of the the component’s internal model based on the measurements at its
interfaces. We check whether theoretical conditions for distributed estimation ap-
proach are met and validate the results obtained. The estimated parameters of the
system can then be used for advanced control purposes in the HVAC system.

We also use the measurements at the terminals to model and verify the compo-
nents in the energy-space which is a novel approach proposed by our group. The
energy space approach reflects conservation of power and rate of change of reactive
power. Both power and rate of change of generalized reactive power are obtained
from measurements at the input and output ports of the components by measuring
flows and efforts associated with their ports. A pair of flow and efforts is measured
for electrical and gas ports, as well as for fluids. We show that the energy space
model agrees with the conventional state space model with a high accuracy and that
standard measurements available in a commercial HVAC can be used for calculating
the interaction variables in the energy space model.

A novel finding is that unless measurements of both flow and effort variables is
used, the sub-model representing rate of change of reactive power can not be validated.
This implies that commonly used models in engineering which assume constant effort
variables may not be sufficiently accurate to support most efficient control of complex
interconnected systems comprising multiple energy conversion processes.
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Chapter 1

Introduction

1.1 Motivation

With the growing demand of energy worldwide, there is a real urgency for developing

more intelligent energy systems, especially ones that can be implemented today. With

multiple energy sources and diverse energy demands, energy systems are becoming

increasingly complex and multifaceted. For example, in this thesis we consider a

complex heating-ventilation-air conditioning (HVAC) systems which consists of sev-

eral components with non-linear dynamics including water, gas, electricity and air

networks interacting with each other as well as the environment. Therefore, it is

becoming challenging to improve the efficiency of such complex systems without im-

proving upon the existing techniques used for mapping and controlling these systems.

To address these challenges, we propose a novel approach to mapping and monitoring

integrated energy systems.

HVAC’s are extensively used in household as well as commercial building and

account for 30% of the total electricity consumption in buildings in US [19]. The ma-

jority of HVAC controllers still operate on old-age classical methodologies which are

often based on pre-programmed logic [36]. However, more advanced control strate-

gies like model predictive control (MPC) [10] [26] or adaptive control [27] [37], which

are harder to implement, can more efficiently track the heating/cooling load of the

building, thus, reducing the overall energy consumption of a building [11] [12]. These
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advanced strategies require basic knowledge of system model, which is generally com-

plex, interconnected and has unknown parameters. Therefore, we need an estimator

which is responsible for calculating the unknown parameters of the system using prior

knowledge as well as real-time measurements. The output of the estimator is given

to the control and the accuracy of the control is directly dependent on the accuracy

of the estimator. To further improve state-of-the-art system control algorithms we

need to advance state estimation of complex systems.

This thesis also concerns with the difficult problem of managing complex inter-

connected dynamical systems. With the growing energy demand, energy systems in

the future will be more complex comprising heterogeneous sub-components involving

multi-energy conversions. Overcoming the complexity of modelling these systems is

essential for efficient energy-conversion control. Therefore, we utilize a novel modeling

to derive an aggregate, low-order, dynamical model of these components [22] [25].

1.2 State of the Art

Designing efficient control for a complex system requires knowledge about the em-

pirical parameters of the components of the system. Traditionally these empirical

parameters have been estimated by employing expensive sensors such as mass flow

meters. But use of mass flow meters in every case is not possible which may lead to a

badly tuned model. To avoid this problem, modern controllers rely on experimental

mappings between the desired outputs, and the power consumed by the controllers,

much the same way as in frequency regulation one relies on generator droops [29]

[21]. Their performance depends on the internal dynamics of equipment and their

feedback control. The main challenge is how to increase efficiency without requiring

complex fast fail-prone communications while having only limited measurements for

control.

This problem is even more tangible in large interconnected systems. While the

structure of these large interconnected systems is extensively studied, the question

concerning the decomposition of the interconnected system while taking into account
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the availability of measurements and control is rarely studied. In this thesis we take a

general large-scale dynamical systems point of view and recall conditions under which

a complex system can be decomposed into subsystems whose local measurements

are sufficient for distributed parameter estimation. We use real world measurement

data to show that such a decomposition works well for the HVAC system under

consideration and can be key to determining unknown parameters of large dynamical

energy systems. To the best of our knowledge, this question has not been addressed

in the previous literature of large-scale dynamical systems.

From the systems perspective, traditionally power grids have been studied by

utilizing Thevenin and Norton’s equivalent circuits recomputed every timestep, the

accuracy of which depends on the chosen interaction protocols and are generally not

scalable to very large systems. This has been a valid approach in the past when the

disturbances entering the grid such as those from the renewables and did not form

a high fraction of the generation portfolio. Typically, the benchmark problems for

the energy management are non-convex. To apply any decomposition strategy, these

constraints are all simplified by applying convex approximations. These approaches,

however, are not scalable [22] [25]. Here, we verify a novel energy-power modelling

approach which uses effort and flow variables at interfaces to design aggregate models

of complex systems in multi-energy domains. We use this approach to show that it

can be easily applied to a commercial HVAC system and hence be used to account for

the complexity of a commercial HVAC system and can help design controllers which

can respond to fast-response disturbances which are often ignored in conventional

state space controllers.

1.3 Contribution

The main objective of this thesis has been to perform distributed parameter estima-

tion in complex dynamical systems using only available measurements.

Majority of literature regarding parameter estimation for power systems has been

focused on a single component fixed to a test bench. In this thesis, we tackle the issue

17



of distributed parameter estimation for an interconnected system using measurement

data from a real world HVAC system.

The energy-power space was introduced for modeling interactions in multi-energy

systems using aggregate interaction variables. It was shown that real power and

generalized reactive power can be defined for any type of energy system by using

analogies for efforts and flows. They represent interaction variables whose dynamical

models are sufficient to model input-output characteristics of components and their

interactions within the complex system. This modelling was originally derived for

electrical systems and has been proved for several electrical devices [23] [22]. In this

thesis, for the first time, we verify the energy-power space model of an industrial

chiller using sensor measurement. Such an approach has never been used before to

model a component in a commercial HVAC.

This thesis addresses some of the most prominent issues regarding models and

their parameters still challenging the design of efficient controls for HVACs. In this

thesis we use an HVAC system to verify our methodology but its versatility in being

applicable to a huge array of systems opens up a lot of possibilities for future smart

controllers.

1.4 Outline

The remainder of the thesis is outlined as follows:

Chapter 2 provides an overview and component level description of the HVAC

system under consideration. We also provide a brief background on the work that

this paper builds upon.

Chapter 3 discusses previous work done in this field of research and their effec-

tiveness.

Chapter 4 describes the approach used to model the components and estimate

unknown parameters in the HVAC system.

Chapter 5 describes the tools used to implement the approach in Chapter 4.

Chapter 6 states the numerical results obtained using the methodology specified
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in Chapter 4.

Chapter 7 concludes with the contributions of this thesis and future work.

1.5 List of Publications

These publications formulated during the Masters project are the core of this thesis:

1. P. Bharadwaj, J. Agrawal, R. Jaddivada, M. Zhang and M. Ilic. Measurement-
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Submitted to 2020 North American Power Symposium (NAPS).

2. D. Wu, J. Agrawal, P. Bharadwaj, L. Li, J. Zhang and M. Ilic. On The Validity

of Decomposition for Distributed Parameter Estimation in Complex Dynamical

Systems: The Case of Cooling Systems.

Submitted to 2020 North American Power Symposium (NAPS).
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Chapter 2

Background

2.1 Description of HVAC system

For this thesis, we have used data from a real-world HVAC system that offers heating,

cooling and power to a commercial building over the year. The HVAC system consists

of electricity, gas, airflow and waterflow networks as its main components which can

also be seen in Fig. 2-1. A more detailed sketch of the same HVAC system can be

seen in Fig. 2-3. We can see the flow of different forms of energy such as gas and

electricity in these figures and how the various networks interact with each other.

This is a complex HVAC system with a cooling capacity of 500 MW, heating

capacity of 500MW and power generation capacity of 40 MW. Here we provide a

brief description of all the components that are present in this HVAC system and

also analyse the flow of energy from one component to another.

2.1.1 Components of HVAC

Although, the HVAC contains several components, small and big, which are essential

for its functioning, here we focus on a few major components of the HVAC which

consume the most energy and are also studied upon in the rest of the thesis. A detailed

sketch of all the components can be found in Fig. 2-3, whereas, a simplified sketch

of the components showing the measurements and control law of the components can
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Figure 2-1: Decomposition of the full interconnected HVAC system into air flow,water
flow and thermal subsystems

be found in 2-2.

Electric Chiller

An electric chiller, or more commonly known as centrifugal chiller, utilizes the vapor

compression cycle to chill water and reject the heat collected from the chilled water

plus the heat from the compressor to a second water loop cooled by a cooling tower

[32]. We can see the sketch of the electric chiller in Fig. 2-2 (a).

Gas Chiller

A gas chiller also known as an absorption chiller consists of a evaporator, absorber,

generator and heat exchanger. The chilled water is cooled down using a sudden

change of pressure. First, the water is heated up in the generator which releases the

water from the refrigerant and becomes vapor. Then, the vapor is transported to

the evaporator where the low pressure cools down the water. Gas chillers can use

different refrigerants like Li-Br or NH3-water. Since, they can operated using natural
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(a) Electric Chiller (b) Gas Chiller

(c) Water pumps (d) Storage Tank

(e) Gas Boiler
(f) Air Handling Unit (AHU)

Figure 2-2: Multi-Energy flow model of commercial HVAC System [14]

gas or flue gases from other components, they are increasingly becoming common in

commercial HVAC [15]. A diagram can be seen in Fig. 2-2 (b).
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Water pumps

The water pumps used in this HVAC are centrifugal pumps which are placed along

the water pipelines. There are two big arrays of water pumps, one for the water

input of chillers and boilers, and other for the water input to the air-conditioning

coils which can be seen in Fig. 2-3.

Storage Tank

A storage tank takes in the hot or cold water incoming from the chillers or boilers

respectively and stores it until it needs to be transported to the air handling units.

Gas Boiler

The gas boiler burns natural gas and heats up the water supplied to it using the

pumps. The output water is then stored in the storage tank.

Air Handling Unit

A commercial air handling unit or AHU consists of a fan, an electric purifier and a

coil for hot/cool water. They take fresh ambient air from outside, clean it, heat or

cool it and then transport it to a designated area of a building using ducts [9].

2.1.2 Thermal Subsystem

The thermal subsystem mainly consists of the coil (i.e. heat ex-changer), chillers,

boilers, internal combustion generator (ICG) and thermal zones within the building

shell.

In summers, the water is chilled to the desired temperature using the chillers and

stored in a storage tank until delivered to the air-conditioning coils. The waste heat

is discarded to the environment with the use of cooling towers shown in Fig. 2-3. In

winters, the boiler and waste heat from ICG is used to heat up the water and pumped

to the coil. The chillers and boilers are powered using electricity and gas bought from
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Figure 2-3: Multi-Energy flow model of commercial HVAC System
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the state power grid and third-party company respectively. We provide a detailed

analysis of energy consumption in thermal subsystem in Section 3.

2.1.3 Water Flow Subsystem

The waterflow subsystem is mainly comprised of the chillers, boilers, ICG, water

pipeline network, water pumps, storage tank and the coil inside the air handling

units (AHU).

Fresh and clean water is supplied by a third-party company which is then delivered

to the chillers or boiler using the water pumps. Water is cooled or heated according to

demand and is stored in the storage tank and delivered to AHUs using water pumps

and a pipeline network as per demand.

2.1.4 Air Flow Subsystem

The air flow system consists of the AHUs inside the buildings and the coils.

The AHU takes in ambient air from outside and the temperature-controlled water

inside the coils exchanges heat with the air and then, the cooled/heated air is then

delivered to the respective thermal zone using ducts.

2.2 Gray Box System Identification

This section presents an approach at identifying system parameters of the HVAC using

sensor measurements. For this purpose, many combinations and nuances of theoretical

modeling from first principles and empirical modeling based on measurement data

can be pursued. Basically, the following three different modeling approaches can be

distinguished [28]:

1. White box models are those which can be derived directly from first principles

and all parameters can be determined by theoretical modeling.

2. Black box models requires both model structure and parameters to be deter-

mined from experimental modeling.
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3. Gray box models represent a compromise or combination between white and

black box models. They are characterized by an integration of various kinds of infor-

mation that are easily available.

Rarely we find pure white box or black box approaches in reality. Often the

model structure may be determined by first principles but the model parameters may

be estimated from data [20]. We use a similar approach in our analysis here and thus

make use of gray box system identification techniques.

2.2.1 Non-linear least squares

Since we have no prior knowledge about the distribution of the parameters as well

as the noise in the data, we assume that parameters are uniformly distributed over

a given range and the noise is white with constant variance. Such a system can be

efficiently identified using Non-Linear Least squares and optimized using Newtons

method [28] [20].

For non-linear optimization algorithms, quadratic loss function is by far the most

common in practice. If the parameters are linear, a least squares problem originates

but for non-linear parameters, the loss 𝐸(𝜃) becomes,

𝐸(𝜃) =
𝑁∑︁
𝑖=1

𝑓 2(𝑖, 𝜃) (2.1)

= 𝑓𝑇𝑓

𝑤ℎ𝑒𝑟𝑒, 𝑓 = [𝑓(1, 𝜃) ... 𝑓(𝑁, 𝜃)]𝑇 (2.2)

and is known as non-linear least squares problem.

Let the modified Jacobian be,

𝐽 ′ =

⎡⎢⎢⎢⎣
𝛿𝑓(1, 𝜃)/𝛿𝜃1 ... 𝛿𝑓(1, 𝜃)/𝛿𝜃𝑁

: :

𝛿𝑓(𝑁, 𝜃)/𝛿𝜃1 ... 𝛿𝑓(𝑁, 𝜃)/𝛿𝜃𝑁

⎤⎥⎥⎥⎦ (2.3)

27



The jth component of gradient of this loss function can be written as

𝑔𝑗 =
𝛿𝐸(𝜃)

𝛿𝜃𝑗
= 2

𝑁∑︁
𝑖=1

𝑓(𝑖, 𝜃)
𝛿𝑓(𝑖, 𝜃)

𝛿𝜃𝑗
(2.4)

Therefore, the gradient can be written as,

𝑔 = 2𝐽𝑇𝑓 (2.5)

2.2.2 Gauss-Newton Method

The Gauss-Newton method is the non-linear least squares version of the general New-

tons method [28].

the goal of optimization is that each iteration step should decrease the loss function

value, i.e., 𝐸(𝜃𝑘) < 𝐸(𝜃𝑘−1). For a general gradient-based optimization, the principle

is to change the parameter vector 𝜃 proportional to some step size 𝜂𝑘−1 into a direction

𝑝𝑘−1:

𝜃𝑘 = 𝜃𝑘−1 − 𝜂𝑘−1 * 𝑝𝑘−1 (2.6)

The vector 𝑝𝑘 for Newtons method is given by,

𝑝𝑘 = 𝐻−1
𝑘−1 * 𝑔𝑘−1 (2.7)

which is the gradient of the error rotated by multiplying with the Hessian of the loss

function. Hence, for Newton’s method all second order derivatives of the loss function

have to be known analytically or estimated by finite difference techniques.

Gauss-Newton method assumes a small residual error in the loss function and thus

approximates the Hessian as 𝐽𝑇𝐽 . Therefore, the Gauss-Newton Algorithm becomes,

𝜃𝑘 = 𝜃𝑘−1 − 𝜂𝑘−1 * (𝐽𝑇𝐽)−1 * 𝑔𝑘−1 (2.8)

= 𝜃𝑘−1 − 𝜂𝑘−1 * (𝐽𝑇𝐽)−1 * 𝐽𝑇
𝑘−1𝑓𝑘−1
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It approximately shares the properties of the general Newtons method but does

not require a second order derivative to be calculated.

2.3 Decomposition of Interconnected System

This section provides an introduction to the generalized theory of diagonally dominant

matrices and how diagonally dominant matrices can be used to reduce the complexity

of an interconnected system.

2.3.1 Diagonally Dominant Matrices

Let A be any arbitrary square matrix with complex entries, which is partitioned in

the following manner:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐴1,1 𝐴1,2 ... 𝐴1,𝑁

𝐴2,1 𝐴2,2 ... 𝐴2,𝑁

: :

𝐴𝑁,1 𝐴𝑁,2 ... 𝐴𝑁,𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ (2.9)

where, the diagonal submatrices 𝐴𝑖,𝑖 are square of order 𝑛𝑖.

If the diagonal submatrices 𝐴𝑗,𝑗 are non-singular and if

(||𝐴−1
𝑗,𝑗 ||)−1 ≥

𝑁∑︁
𝑘=1,𝑘 ̸=𝑗

||𝐴𝑗,𝑘|| (2.10)

𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑗 ≤ 𝑁

then A is block diagonally dominant relative to partitioning 2.9. We can define

(||𝐴−1
𝑗,𝑗 ||)−1 to be zero whenever 𝐴𝑗,𝑗 is singular.

In the special case that all the submatrices 𝐴𝑖,𝑗 are 1 × 1 matrices, then equation

2.10 becomes
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|𝐴𝑗,𝑗| ≥
𝑁∑︁

𝑘=1,𝑘 ̸=𝑗

|𝐴𝑗,𝑘| (2.11)

𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑗 ≤ 𝑁

which is the general definition of diagonal dominance of a matrix [17] [13]. If strict

inequality holds, then we say that the matrix is strictly diagonally dominant.

2.3.2 Dynamics of Interconnected Systems

We can write the conventional state space model of a large interconnected dynamical

system as follows [31]:

𝑥̇𝑖 = 𝐴𝑖𝑖𝑥𝑖 +
∑︁
𝑗 ̸=𝑖

𝐴𝑖𝑗𝑥𝑗 + 𝐵̃𝑖𝑢𝑖 (2.12)

where 𝑗 ∈ 𝐶𝑖 is set of connections to the subsystem 𝑖.

For network interconnected system, equation 2.12 can be re-written as

𝑥̇𝑖 = 𝐴𝑖𝑖𝑥𝑖 +
∑︁
𝑗 ̸=𝑖

𝑅𝑖𝑗𝑦𝑗 + 𝐵𝑖𝑢𝑖 (2.13)

where 𝑦𝑗 are output variables measured at the interconnection of subsystem 𝑖 and

𝑗 ∈ 𝐶𝑖.

We need to first derive the conditions for decomposition of the interconnected

system and then implement distributed parameter estimation for the model. Us-

ing the general Metzler conditions, we use the more restrictive but simpler diagonal

dominance as sufficient conditions for decomposition [30] [18].

Using the definition given in equation 2.11, we can say that an uncontrolled in-

terconnected dynamical system is diagonally dominant if the system matrix satisfies
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|𝐴𝑖𝑖,𝑘𝑘| ≥
∑︁
𝑗 ̸=𝑖

∑︁
𝑟 ̸=𝑘

|𝑅𝑖𝑗,𝑘𝑟| +
∑︁
𝑟 ̸=𝑘

|𝐴𝑖𝑖,𝑘𝑟| (2.14)

where 𝐴𝑖𝑖,𝑘𝑘 is the 𝑘-th diagonal element of subsystem-𝑖; 𝑅𝑖𝑗,𝑘𝑟 is the 𝑟-th element

of row-𝑘 of the interface between subsystem-𝑖 and subsystem-𝑗; 𝐴𝑖𝑖,𝑘𝑟 is the 𝑟-th

element of row-𝑘 of subsystem-𝑖.

Gershgorin Circle Theorem states that if a matrix is strictly diagonally dominant

with all diagonal entries being negative, the real parts of its eigenvalues are also

negative which suffices stability at equilibrium [17].

2.4 Energy-Power state space modelling

Conventional modelling of systems and control algorithms such as Automatic Gener-

ation Control (AGC) often suffer from a lack of scalability and cannot respond to fast

persistent disturbances in the system . The system might also contain several smaller

devices whose physical models are not always available. This problem has been a

focus of our group who have been working on a novel aggregate modeling approach

that utilizes energy/power space dynamics. This modelling approach addresses the

fundamental issues of limited sensor measurements and still supports fast control im-

plementation [22] [24]. This model relates the rate of change of work done and rate

of change of work wasted because of the the interactions with the environment.

2.4.1 Pitfalls of Conventional Modelling

There has been extensive work and very detailed models designed for HVAC control,

but upto our knowledge none of these controllers view an HVAC as a complex dy-

namical system whose efficiency can be enhanced by optimizing interactions between

its different components. To do so, it is necessary to model different components to

the degree of detail obtainable using available measurements [25].

The state of the art HVAC model used for ancillary services to the grid considers
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Figure 2-4: Schematic of a HVAC system in open loop (borrowed from [25])

an RC model of the thermal zone to be heated/cooled. We denote the state variables

of the space using a vector 𝑥𝑇 which represents the temperatures of various zones.

These spaces are usually cooled using air blown from an Air Handling Unit or AHU.

Let us denote the state variables of the AHU as 𝑥𝑎 with states corresponding to the

fan and motor in the AHU as 𝑥𝑓 and 𝑥𝑚 respectivly. Therefore, we can represent the

dynamic model of the system as

𝑥̇𝑇 = 𝑓𝑇 (𝑥𝑇 , 𝑥𝑎) (2.15)

𝑥̇𝑎 = 𝑓𝑎(𝑥𝑎, 𝑢) (2.16)

An open-loop schematic for the same system is shown in Fig. 2-4. Here, depending

on the choice of granularity required, the number of state variables in the model can

grow extremely large. Also the exact models for the AHU and thermal zone are also

complex [25]. Finally, obtaining the parameters of the model of the zone, 𝑓𝑇 can be

difficult making the model less accurate. We thus propose a simpler approach that

uses aggregate energy variations in the next section.
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2.4.2 Novel Energy-Power Modelling Methodology

The dynamical model of each component of a general system can be expressed in a

standard state-space form as

𝑥̇𝑖 = 𝑓 ′
𝑥,𝑖(𝑥𝑖, 𝑢𝑖,𝑚𝑖, 𝑟𝑖) (2.17)

𝑦𝑖 = 𝑓 ′
𝑦,𝑖(𝑥𝑖, 𝑢𝑖,𝑚𝑖, 𝑟𝑖) (2.18)

𝑥𝑖(0) = 𝑥𝑖,0 (2.19)

where 𝑥𝑖, 𝑢𝑖,𝑚𝑖, 𝑟𝑖 and 𝑦𝑖 denote local states, inputs, local disturbances, port

inputs and local outputs of interest respectively. A subset of the variables appear at

the ports which can classified as either flow-type or effort-type. At the ports, one of

these pairs is local to the component whereas the other is dictated by its connection

to the rest of the system also called a port input.

It has been shown in [23], that using the state variable, and effort and flow variables

at the port we can obtain the instantaneous real 𝑃𝑖 and reactive power 𝑄̇𝑖 appearing

at any of the ports as well as the stored energy 𝐸𝑖 and stored energy in tangent space

𝐸𝑡,𝑖.

We define a simple model that captures the dynamics of energy exchanges of a

component with its neighbours by modelling the dynamics of aggregate variables,

energy 𝐸 and its rate of change as follows:

𝐸̇ = 𝑃 − 𝐸

𝜏
= 𝑝 (2.20)

𝑝̇ = 4𝐸𝑡 − 𝑄̇ (2.21)

Here, the first equation denotes the first law of thermodynamics and states that

the rate of change of stored energy is directly proportional to the power input minus

the dissipative losses. The second equation corresponds to the second law of ther-

modynamics and highlights the inefficiencies in the system. This model was derived

for general electrical circuits and was proven to hold for complex electro-mechanical

systems with multi-energy conversions with the help of effort-flow analogy in different

33



domains [22] [25].

The dynamics of interaction variables [𝐸𝑖, 𝑝𝑖] captures the dynamics of internal

energy conversion processes without the need to specify the type of energy conversion.

Although, the variables [𝐸𝑖, 𝑝𝑖] are specific to a component, they are driven by the

interactions from rest of the system through real and reactive power inputs.

Figure 2-5: Stand-alone component in open-loop in energy space (borrowed from [23])

An example of a stand-alone component in open-loop in energy space can be seen

in Fig. 2-5. The bottom layer with the detailed dynamics in conventional space is

utilized for designing control in energy-power space and the top layer characterizes

the input-output interactions of the component.

The model was originally derived for general electrical circuits and has proven

to work for even complex electro-mechanical systems by extending the definitions of

energy-power space variables using the effort-flow variable analogy in multi-energy

domains.
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2.4.3 HVAC Model in Energy-Power state space

The total stored energy of the HVAC system can be written as a sum of stored energy

of the AHU (𝐸𝑎) and the thermal energy of the zone (U) as follows:

𝐸 =

∫︁ 𝑝𝑎(𝑡)

𝑝𝑎(0)

𝑣𝑇𝑎 𝑑𝑝𝑎 + 𝑈 (2.22)

𝑣𝑎 = [𝑖𝑎, 𝑖𝑓 , 𝜔𝑠]

where, 𝑖𝑎, 𝑖𝑓 and 𝜔𝑠 are the current through armature winding, current through

armature field and angular velocity of shaft respectively [25].

For the total stored energy defined in 2.23, the first equation of the model in 2.21

can be used as

𝐸̇ = −𝐸

𝜏
+ 𝑃𝑚 (2.23)

where, 𝑃𝑚 is the input electrical power of the motor and 𝜏 being the overall time

constant of the system dependant on system damping.

The generalized momentum variables can be expressed as a product of inertia

matrix 𝑀𝑎 and the generalized velocity variable 𝑣𝑎. The simplified expression for

stored energy in tangent space can be written as

𝐸𝑡 =
1

2

𝑑𝑣𝑇𝑎
𝑑𝑡

𝑀𝑎
𝑑𝑣𝑎
𝑑𝑡

+
1

2
𝐶𝑤

𝑑𝑇 2

𝑑𝑡
(2.24)

where, 𝐶𝑤 is the thermal constant of the zone. We can also write the total reactive

power absorption by the AHU unit and the thermal zone as

𝑄̇𝑎 = 𝐹 𝑇
𝑎

𝑑𝑣𝑎
𝑑𝑡

− 𝑑𝐹 𝑇
𝑎

𝑑𝑡
𝑣𝑎 (2.25)

𝑄̇𝑇 = 𝑇 (𝑆̇𝑖𝑛
𝑓 + 𝑆̇𝑜𝑢𝑡

𝑓 ) − 𝑇̇ (𝑆𝑖𝑛
𝑓 + 𝑆𝑜𝑢𝑡

𝑓 ) (2.26)

where, 𝑆̇𝑖𝑛
𝑓 and 𝑆̇𝑜𝑢𝑡

𝑓 are the entropy flow of the fluids at the inlet and outlet

respectively. Similarly, we can define the controlled reactive power going into the
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port of the motor as 𝑄̇𝑚.

Assuming a constant generalized inertia matrix, the second equation of general

interaction model of a stand-alone component can be expressed as

𝑝̇ = 4𝐸𝑡 − (𝑄̇𝑎 − 𝑄̇𝑇 ) (2.27)

= 4𝐸𝑇 + 2𝑄̇𝑇 − 𝑄̇𝑚

The term, 𝑄̇𝑚, essentially represents the inefficiencies in the system that are not

related to damping losses. Thus the problem is translated into one where we want to

maximize the efficiency by minimizing the cumulative instantaneous reactive power

while satisfying the physical constraints of the system [25]. Therefore, the overall

objective of the control can be posed as:

min
𝑢(𝑡)

∫︁ 𝑡

0

𝑄𝑚(𝑠)2𝑑𝑠 (2.28)

Here, even though the underlying models in the conventional state space are un-

known, the performance objective only depends on the unknown model through the

terms 𝐸𝑡 and 𝑄𝑇 which is of significance over much faster timescales [25] [22].

We can therefore utilize a two layered approach where the non-linear control design

is performed locally to feedback linearized control in the energy-space.
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Chapter 3

Approach

3.1 Overview

As mentioned before, designing control for a complex HVAC system such as the one

shown in Fig. 2-3 can be extremely difficult due to several reasons mainly including

the complexity and scalability of the model with the increasing number of components

as well as the uncertainity in the conventional state space models that arise due to

the unknown empirical parameters in the system.

Using measurement data from a real HVAC system, we will first try to obtain

the parameters of some components of the HVAC system such as electric chiller and

pump. Due to limited sensor measurements and the increased complexity due to more

components, instead of estimating the parameters for the whole system at once, we

try to develop a distributed algorithm for parameter estimation based on the diagonal

decomposition property of positive systems.

We also analyze the modelling of these components in the energy-power space and

use sensor data to verify that energy-space model agree with the conventional state

models. In this verification process, we found that measurements from both effort

and flow variables at the ports of a component are import for accurately calculating

the rate of change of reactive power. The estimated parameters for the conventional

models of these components can also be used for designing control in the energy-power

space as mentioned in Section 2.4.2.
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To completely understand the interconnected flow of energy and multi-energy con-

versions inside the HVAC system, we also analyze the energy consumption and its

trends for several components. In the next few sections, we discuss the implementa-

tion and results obtained from the methodologies outlined in this section.

3.2 Energy Consumption inside the HVAC

The HVAC system show in Fig. 2-3 relies mainly on natural gas and electricity to

meet its cooling/heating demands. The main consumers of electricity are the electric

chillers, water pumps and cooling towers. The gas chillers and boilers use natural gas

to produce chilled and heated water respectively. The internal combustion generators

(ICGs) use natural gas to produce heat for warming the water and electricity to be

used in the building or HVAC system.

3.2.1 Electricity consumption in HVAC

The electric chillers consume the most electricity inside the HVAC system. Each

electric chiller is rated for a power consumption of 814 kW and a rated cooling capacity

of 4571 kW. The electric chillers are only operational during the summers i.e. from

May to September and is rarely used rest of the year. Most of the cooling needs

during the rest of the months are met using the gas chillers. We can see the electricity

consumption of both the electric chillers in Fig. 3-1.

The next biggest consumers of electricity in the HVAC system are the water

pumps. We can see that there are currently 17 water pumps in the HVAC in Fig.

2-3. Out of the 17 pumps, only 7-8 pumps are operational at any given moment and

the rest of the pumps are used as a backup. Most of the pumps in the system are

rated for 75 kW of power consumption with a flow rate of 720 𝑚3/h. Some of the

pumps are also rated for 37 kW of power consumption with a flow rate of 385 𝑚3/h

but we rarely see them being operated. We can see the electricity consumption of

two differnet pumps for the same time period in Fig. 3-2 (a) and (b). We can also

see the total consumption of electricity per day for 7 days by all the pumps combined
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(b) Electric Chiller #2

Figure 3-1: Electricity consumption of Electric Chillers
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(c) Electricity consumed by all pumps

Figure 3-2: Electricity consumption of Water Pumps

in 3-2 (c).

We can see the total electricity consumed at the HVAC system in Fig. 3-3 (a).
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Figure 3-3: Total Electricity Consumption of HVAC

This includes the energy consumed by electric chillers, water pumps and any other

components needed to produce heating/cooling. We can also see the total electricity

consumed and the electricity consumed by just electric chiller and water pumps for

a few days in Fig. 3-3 (b). The electric chillers and water pumps make up 85% of

the electricity consumed for production of heating/cooling. Due to lack of data, we

are unable to exactly determine the consumers of the remaining 15% of electricity.

We estimate that most of the remaining electricity is being consumed by the cooling

towers shown in Fig. 2-3.

Thus, we have shown here that the electric chillers and the water pumps combined

account for most of the electricity consumed in the HVAC system. In later sections,

we show that these components use very rudimentary control strategies such as bang-

bang control. Therefore, these two components will be the focus of the rest of the

thesis and the aim will be to model these two components in the energy-power space

so that more advanced control algorithms can be implemented to reduce the total

electricity consumption.

3.2.2 Gas consumption in the HVAC

The consumers of natural gas in the HVAC system are the gas chillers, the internal

combustion generators (ICG) and the water boiler. The ICG use the natural gas to
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produce electricity for the HVAC and building, and the gas chiller and boiler cool/heat

the water respectively.

The ICGs are rated for power production of 1160 kW and gas consumption of 317

N𝑚3/h at the rated conditions. The ICGs are operated year round but they produce

the most electricity during the peaks of winter and summer season when the most

heating and cooling is required. We can see the production of electricity of each ICG

daily in Fig. 3-4 (a) and (b). Fig. 3-4 (c) shows the total consumption of natural gas

of both ICG combined.
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(a) ICG # 1
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Figure 3-4: Gas consumption and electricity production of ICG

The consumption of natural gas by the boiler is shown in Fig. 3-5 (b). The boiler

is rarely turned on because the heating demand of the building is low enough so that

the waste heat from the ICGs can be used to heat up the water needed to meet the

demand.
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(a) Gas consumed by all gas chillers
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(b) Gas consumed by boiler

Figure 3-5: Gas consumption of Chiller and Boiler

The next biggest consumer of gas in the HVAC energy station are the gas chillers.

The total gas consumption of all the gas chillers can be seen in Fig. 3-5 (a). The gas

chillers are mostly operated during the winter season because the cooling demand is

low and most of the cooling needs can be met using the gas chillers which are partially

operated using the flue gases from the ICG thus reducing overall gas consumption.

In contrast, as we see in Fig. 3-6 (b), the cooling demand in summer season is too

high to be met by gas chillers alone and since electric chillers are more efficient, most

cooling demand is met using electric chillers as can be seen in Fig. 3-1. That is why,

the consumption of gas by gas chillers reduce during the months on June-September

in Fig. 3-6 (a) despite the cooling demand being higher.
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Figure 3-6: Gas consumption and cooling demand of HVAC
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3.3 Modelling of HVAC components in Conventional

state space

In this section, without the loss of generality, we consider the conventional state space

models of the water pump and the electric chiller. As we mentioned in the previous

section, these two components are responsible for 85% of the electricity consumption

of the entire HVAC. Thus, optimizing the control of these two components can result

in huge increase in efficiency of HVAC. The gas chillers only supply a small portion

of the cooling needs when the electric chillers are ON in the summer season. Due to

the constraints on the data available, for the time being we ignore the gas chillers in

our modelling efforts.

3.3.1 Electric Chiller Model

The chiller model describes the energy balance between the chiller energy input, the

thermal energy stored in the tank, the heat gain through return water from the coils

and from the environment. We assume the simplification that the internal variables

and control of the chiller work properly and stabilize the subsystem quickly [34] [35].

Therefore, we only consider the slower water temperature dynamics in our model.

The electric chiller is a complex dynamical subsystem but with the above assump-

tion, we can model it using a reduced first-order Coefficient of Performance (COP)

equation as:

𝑑

𝑑𝑡
𝑇𝑤𝑠 =

1

𝜌𝑤𝑐𝑤𝑉𝑡𝑎𝑛𝑘

(−𝑚̇𝑤𝑐𝑤(𝑇𝑤𝑠 − 𝑇𝑤𝑟) − 𝑈𝑐𝐸𝑐𝐶𝑂𝑃 + 𝛼ℎ(𝑇∞,𝑡 − 𝑇𝑤𝑠)) (3.1)

where, 𝑇𝑤𝑠 is the state of the chiller and denotes the temperature of the chilled water

supplied to the coils, 𝑇𝑤𝑟 is the temperature of the water returned from coils and 𝑇∞,𝑡

is the sink temperature or temperature of water used to cool the chiller [38] [34].

We can also represent equation 3.1 using the lumped-parameter equation as follows
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𝑑

𝑑𝑡
𝑇𝑤𝑠 = −𝛼1

(︀
𝑇𝑤𝑠 − 𝑇𝑤𝑟

)︀
− 𝛼2𝑈𝑐 − 𝛼3𝑇𝑤𝑠 + 𝛼4 (3.2)

where, the lumped parameters are given by

𝛼1 =
1

𝜌𝑤𝑉𝑡𝑎𝑛𝑘

𝛼2 =
𝐸𝑐𝐶𝑂𝑃

𝜌𝑤𝑐𝑤𝑉𝑡𝑎𝑛𝑘

𝛼3 = 𝛼ℎ

𝛼4 = 𝑇∞,𝑡 * 𝛼ℎ

𝛼1, 𝛼2, 𝛼3, 𝛼4 > 0

𝛼1 is the coefficient that relates the mass flow of the supply water and the tem-

perature difference between supply and return water to the change in supply water

temperature. 𝛼2 links the input power or control of the chiller to the supply water

temperature. 𝛼3 is the damping coefficient of the supply temperature and 𝛼4 depends

on the environment temperature.

3.3.2 Water Pump Model

The chilled water in the HVAC is pumped from the chiller to the cooling and dehu-

midifying coils through a single loop. Therefore, the state space model of the piping

system connected to the pumps can represented with the following equation:

𝑑𝑚̇𝑤

𝑑𝑡
= ∆𝑃𝑝 − ∆𝑃𝑣 − 𝑓𝑝,1 − 𝑓𝑝,2 − ∆𝑃𝑡,𝑖𝑛 − ∆𝑃𝑡,𝑜𝑢𝑡 (3.3)

where ∆𝑃𝑝 is the pressure increase from the pump, ∆𝑃𝑣 is the pressure drop over

a valve, 𝑓𝑝,𝑖 is the pressure drop due to friction in the pipe, and ∆𝑃𝑡,𝑖𝑛 and ∆𝑃𝑡,𝑜𝑢𝑡

are the pressure drops corresponding to expansion and extraction respectively [38].
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We can also write these terms as follows:

𝑓𝑝,𝑖 =
𝐶𝑓𝐴𝑑𝐿𝑝,𝑖

2𝜌𝑤𝐴3
𝑖

𝑚̇2
𝑤 (3.4)

∆𝑃𝑝 = 𝐶ℎ𝜌𝑤𝐷
2(
𝑛𝑚

𝑛𝑝

)2𝑁2
𝑝 (3.5)

∆𝑃𝑡,𝑖𝑛 =
𝜉𝑖𝑛

2𝜌𝑤𝐴2
𝑖𝑛

𝑚̇2
𝑤 (3.6)

∆𝑃𝑡,𝑜𝑢𝑡 =
𝜉𝑜𝑢𝑡

2𝜌𝑤𝐴2
𝑜𝑢𝑡

𝑚̇2
𝑤 (3.7)

∆𝑃𝑣 =
𝛼1𝑈

𝛼2
𝑣

2𝜌𝑤𝐴2
𝑚̇2

𝑤 (3.8)

The pump-motor model can be written as,

𝑑

𝑑𝑡
𝑁𝑝 =

𝑘𝑖
2𝜋𝐽𝑝

𝐼𝑝 −
𝐵𝑝

𝐽𝑝
𝑁𝑝 − ℎ13𝑚̇𝑤𝑁𝑝 (3.9)

𝑑

𝑑𝑡
𝐼𝑝 = −𝑅𝑎,𝑝

𝐿𝑎,𝑝

𝐼𝑝 −
2𝜋𝑘𝑏,𝑝
𝐿𝑎,𝑝

𝑁𝑝 +
𝑒𝑎,𝑝
𝐿𝑎,𝑝

𝑈𝑝 (3.10)

where, 𝑁𝑝 is the pump rotational frequency; 𝐼𝑝 is the armature current of pump

motor; is the water mass flow rate; 𝑈𝑝 is the voltage applied to the terminals of

armature as a control signal [38].

The lumped-parameter equation of the complete water pump model can be rep-

resented as

𝑑

𝑑𝑡
𝑁𝑝 = ℎ11𝐼𝑝 − ℎ12𝑁𝑝 − ℎ13𝑚̇𝑤𝑁𝑝 (3.11)

𝑑

𝑑𝑡
𝐼𝑝 = −ℎ21𝐼𝑝 − ℎ22𝑁𝑝 + ℎ23𝑈𝑝 (3.12)

𝑑

𝑑𝑡
𝑚̇𝑤 =

1

2
(ℎ31𝑁

2
𝑝 − ℎ32𝑚̇

2
𝑤) (3.13)
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where the lumped parameters are given by

ℎ11 =
𝑘𝑖

2𝜋𝐽𝑝
(3.14)

ℎ12 =
𝐵𝑝

𝐽𝑝
(3.15)

ℎ13 = ℎ13 (3.16)

ℎ21 =
𝑅𝑎,𝑝

𝐿𝑎,𝑝

(3.17)

ℎ22 =
2𝜋𝑘𝑏,𝑝
𝐿𝑎,𝑝

(3.18)

ℎ23 =
𝑒𝑎,𝑝
𝐿𝑎,𝑝

(3.19)

ℎ31 = 𝐶ℎ𝜌𝑤𝐷
2(
𝑛𝑚

𝑛𝑝

)2 (3.20)

ℎ32 =
𝐶𝑓𝐴𝑑

2𝜌𝑤

𝐿𝑝1

𝐴3
1

+
𝐶𝑓𝐴𝑑

2𝜌𝑤

𝐿𝑝2

𝐴3
2

+
𝜉𝑖𝑛

2𝜌𝑤𝐴2
𝑖𝑛

+
𝜉𝑜𝑢𝑡

2𝜌𝑤𝐴2
𝑜𝑢𝑡

+
𝛼1𝑈

𝛼2
𝑣

2𝜌𝑤𝐴2
(3.21)

ℎ11, ℎ12, ℎ13, ℎ21, ℎ22, ℎ23, ℎ31, ℎ32 > 0

ℎ13 relates the torque of the pump to the water mass flow. ℎ31 is the coefficient

that relates the pressure head difference to the current of the water pump and ℎ32

aggregates all the friction and pressure drop terms of the pump.

Combining the equations 3.13, 3.11 and 3.12, we obtain a third order model of

the water pump, given by,

𝑑𝑥𝑤

𝑑𝑡
=

⎡⎢⎢⎢⎣
𝑓1(𝑚̇𝑤, 𝑁𝑝, 𝑈𝑣)

𝑓2(𝑚̇𝑤, 𝑁𝑝, 𝐼𝑝)

𝑓3(𝑁𝑝, 𝐼𝑝, 𝑈𝑝)

⎤⎥⎥⎥⎦ (3.22)

𝑥𝑤 = [𝑚̇𝑤 𝑁𝑝 𝐼𝑝]
𝑇 (3.23)
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Figure 3-7: Interaction of pump and chiller subsystem with the HVAC [33]

3.3.3 Chiller and Pump combined model

There are 8 pumps that supply water for cooling/heating to all the chillers and boiler

as shown in Fig. 2-3. For the time period under consideration, only 3 out of the 8

pumps are operational. All the pumps are identical and use the same control logic

for operating. Therefore, moving forward in our analysis, we will model the three

pumps combined as a single pump and the parameters of the new model will be the

equivalent parameters of the 3 pumps.

Therefore, the we can write the model equation for the chiller and water pump

subsystem by combining equations 3.1 and 3.22 as given:
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𝑑𝑥𝑤

𝑑𝑡
=

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓1(𝑚̇𝑤, 𝑁𝑝, 𝑈𝑣)

𝑓2(𝑚̇𝑤, 𝑁𝑝, 𝐼𝑝)

𝑓3(𝑁𝑝, 𝐼𝑝, 𝑈𝑝)

𝑓4(𝑚̇𝑤, 𝑇𝑤𝑠, 𝑇𝑤𝑟, 𝑈𝑐)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.24)

𝑥𝑤 = [𝑚̇𝑤 𝑁𝑝 𝐼𝑝 𝑇𝑤𝑠]
𝑇 (3.25)

We can also see in Fig. 3-7 , how this subsystem composed the of chiller and water

pumps interact with the rest of the HVAC system. The subsystem also interacts with

the coils and the environment. We assume that the heat exchange between the water

and the air in the coil is very fast and thus can be treated as instantaneous states.

Also since the temperature response of the environment is much slower, we treat its

variables as constants.

3.4 Decoupling of Chiller and Pump subsystem

For the illustration of our approach, we analyse the conditions under which a dis-

tributed parameter estimation approach can yield results that are as accurate as

modelling and estimating the parameters of the chiller-pump combined subsystem.

We use the methodology that when two systems are weakly coupled, each subsystem

can only exert limited influence on the other subsystem through the interface vari-

ables. Therefore, a distributed parameter approach can be used for such subsystems.

3.4.1 Assumptions

Let’s consider the linearized approximation of equation 3.24 [33],
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𝑑

𝑑𝑡

⎡⎢⎢⎢⎢⎢⎢⎣
𝛿𝑁𝑝

𝛿𝐼𝑝

𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎣𝐴11 𝐴12

𝐴21 𝐴22

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝛿𝑁𝑝

𝛿𝐼𝑝

𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎥⎥⎥⎥⎥⎥⎦ (3.26)

where the submatrices are given by

𝐴11 =

⎡⎣−(ℎ12 + ℎ13𝑚̇𝑤) ℎ11

−ℎ22 −ℎ21

⎤⎦ (3.27)

𝐴12 =

⎡⎣−ℎ13𝑁𝑝 0

ℎ23
𝜕𝑈𝑝

𝜕𝑚̇𝑤
ℎ23

𝜕𝑈𝑝

𝜕𝑇𝑤𝑠

⎤⎦ (3.28)

𝐴21 =

⎡⎣ℎ31𝑁𝑝 0

0 0

⎤⎦ (3.29)

𝐴22 =

⎡⎣ −ℎ33𝑚̇𝑤 0

𝛼1(𝑇𝑤𝑟 − 𝑇𝑤𝑠) −𝛼1𝑚̇𝑤 − 𝛼3 − 𝜕(𝛼2𝑈𝑐)
𝜕𝑇𝑤𝑠

⎤⎦ (3.30)

Assumption 1: The chiller subsystem can be modeled using the reduced first-

order equation 3.2

In Section 3.3.1, we take use the reduced order model of the chiller and assume that

the control stabilizes the chiller quickly. At the quasi steady state the supplied water

temperature 𝑇𝑤𝑠 should be close to a reference temperature 𝑇𝑟𝑒𝑓 set by the system

operator. Therefore, based on the first-order model in equation 3.2, the control of the

chiller 𝑈𝑐 should be proportional to the temperature difference 𝑇𝑤𝑟 − 𝑇𝑤𝑠. We can

see the relationship between the measurement data for control 𝑈𝑐 and temperature

difference 𝑇𝑤𝑟 − 𝑇𝑤𝑠 in Fig. 3-8. From that figure, we can verify the assumption 1

that the chiller can be modelled using the reduced dynamical equation.

Assumption 2: The natural responses of the states 𝐼𝑝 and 𝑁𝑝 of the pump are

much faster than the natural response of other internal state, water mass flow 𝑚̇𝑤.

This assumption will be verified later in Section 5, when we find the parameters
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Figure 3-8: Chiller control vs Temperature difference across chiller [33]

for the water pump model.

Using Assumption 2, we can set the differential of 𝑁𝑝 and 𝐼𝑝 to 0 in equation 3.26

[33],

𝑑

𝑑𝑡

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎣𝐴11 𝐴12

𝐴21 𝐴22

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝛿𝑁𝑝

𝛿𝐼𝑝

𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎥⎥⎥⎥⎥⎥⎦ (3.31)

=⇒ 𝐴11

⎡⎣𝛿𝑁𝑝

𝛿𝐼𝑝

⎤⎦ = 𝐴12

⎡⎣𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎦
𝑑

𝑑𝑡

⎡⎣𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎦ = 𝐴21

⎡⎣𝛿𝑁𝑝

𝛿𝐼𝑝

⎤⎦ + 𝐴22

⎡⎣𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎦
Then, equation 3.31 can be simplified to

𝑑

𝑑𝑡

⎡⎣𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎦ =
[︀
𝐴22 − 𝐴21𝐴

−1
11 𝐴12

]︀ ⎡⎣𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎦ (3.32)

Assumption 3: The control signal for the pump, 𝑈𝑝, for the pump is bang-bang

control type which only takes values as ON and OFF.

We use sensor measurements of the pump armature current in Fig. 3-9. From the
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figure, we can infer that the current 𝐼𝑝 is a step response for the given precision and

changes in response to the supply water temperature 𝑇𝑤𝑠. Therefore, it verifies our

third assumption.
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Figure 3-9: Pump control in response to supplied water temperature [33]

Hence, 𝜕𝑈𝑝

𝜕
and 𝜕𝑈𝑝

𝜕𝑇𝑤𝑠
can be set to zero almost everywhere. So, the submatrix

𝐴21𝐴
−1
11 𝐴12 in equation 3.32 becomes [33],

𝐴21𝐴
−1
11 𝐴12 =

⎡⎣ℎ32𝑁𝑝 0

0 0

⎤⎦⎡⎣−(ℎ12 + ℎ13𝑚̇𝑤) ℎ11

−ℎ22 −ℎ21

⎤⎦−1 ⎡⎣−ℎ13𝑁𝑝 0

0 0

⎤⎦ (3.33)

=

⎡⎣𝑑11 0

0 0

⎤⎦
where

𝑑11 =
ℎ13ℎ31

ℎ11ℎ22 − ℎ13𝑚̇𝑤 + ℎ12

𝑁2
𝑝 (3.34)

Therefore, the Jacobian matrix in equation 3.32 can be written as

𝑑

𝑑𝑡

⎡⎣𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎦ =

⎡⎣ −ℎ33 − 𝑑11 0

𝛼1(𝑇𝑤𝑟 − 𝑇𝑤𝑠) −𝛼1𝑚̇𝑤 − 𝛼3 − 𝜕(𝛼2𝑈𝑐)
𝜕𝑇𝑤𝑠

⎤⎦⎡⎣𝛿𝑚̇𝑤

𝛿𝑇𝑤𝑠

⎤⎦ (3.35)
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3.4.2 Coupling between Pump and Chiller

The first row of the Jacobian in 3.35 only has the first entry non-zero, therefore, 𝑑
𝑑𝑡
𝑚̇𝑤

is diagonal dominant.

From parameter estimation in Section 5 and rated values of the chiller we obtain

that 𝛼1 = 0.0660, 𝛼3 - 5.0427, 𝑚̇𝑤 = 170 kg/s, 𝑇𝑤𝑠 = 7 and 𝑇𝑤𝑟 = 13 . Note that
𝜕𝛼2

𝜕𝑇𝑤𝑠
= 𝐶𝑂𝑃𝑚𝑎𝑥−1

Δ𝑇𝑚𝑎𝑥
𝐸𝑐 > 0 [33].

Thus substituting these values in equation 3.35, we get,

⎡⎣−ℎ33 − 𝑑11 0

0.396 −16.24 − 𝜕(𝛼2𝑈𝑐)
𝜕𝑇𝑤𝑠

⎤⎦ (3.36)

Using the conditions for diagonal dominance mentioned in Section 2.3, we can

conclude that 𝑇𝑤𝑠 is also diagonal dominant. Therefore, the coupling between the

states of the chiller and pump i.e. 𝑇𝑤𝑠 and 𝑚̇𝑤 is weak and the distributed parameter

estimation can achieve good performance under the given assumptions. We further

verify our methodology by validating the simulation data obtained from estimated

parameters in Section 5 [33].

Assumption 3 greatly simplifies our approach because if it is not valid and more

sophisticated control strategies are used for the water pump, then 𝜕𝑈𝑝

𝜕𝑚̇𝑤
and 𝜕𝑈𝑝

𝜕𝑇𝑤𝑠
may

not vanish everywhere. For example, lets assume the pump uses proportional gain

control,

𝑈𝑝 =

⎧⎪⎨⎪⎩𝐾𝑝(𝑇𝑤𝑠 − 𝑇𝑟𝑒𝑓 ) if 𝑇𝑤𝑠 > 𝑇𝑟𝑒𝑓

0 else.
(3.37)

where 𝑇𝑟𝑒𝑓 is the reference temperature of the supply water set by a system oper-

ator. Thus,

52



𝜕𝑈𝑝

𝜕𝑚̇𝑤

=
𝜕𝑈𝑝

𝜕𝑇𝑤𝑠

𝜕𝑇𝑤𝑠

𝜕𝑚̇𝑤

=

⎧⎪⎨⎪⎩𝐾𝑝
𝜕𝑇𝑤𝑠

𝜕𝑚̇𝑤
if 𝑇𝑤𝑠 > 𝑇𝑟𝑒𝑓

0 else
(3.38)

𝜕𝑈𝑝

𝜕𝑇𝑤𝑠

=

⎧⎪⎨⎪⎩𝐾𝑝 if 𝑇𝑤𝑠 > 𝑇𝑟𝑒𝑓

0 else
(3.39)

Hence, we get,

𝐴21𝐴
−1
11 𝐴12 =

⎡⎣𝑑11 𝑑12

0 0

⎤⎦ (3.40)

where,

𝑑11 = 𝑑11 −
𝑒𝑎,𝑝ℎ31𝑘𝑖𝑁𝑝𝐾𝑝

2𝜋(𝑘𝑖𝑘𝑏,𝑝 − ℎ13𝑅𝑎,𝑝𝐽𝑝𝑚̇𝑤 + 𝐵𝑝𝑅𝑎,𝑝)

𝜕𝑇𝑤𝑠

𝜕𝑚̇𝑤

(3.41)

𝑑12 = − 𝑒𝑎,𝑝ℎ31𝑘𝑖𝑁𝑝𝐾𝑝

2𝜋(𝑘𝑖𝑘𝑏,𝑝 − ℎ13𝑅𝑎,𝑝𝐽𝑝𝑚̇𝑤 + 𝐵𝑝𝑅𝑎,𝑝)
(3.42)

Therefore, the Jacobian matrix in 3.32 becomes,

⎡⎣ −ℎ33 − 𝑑11 −𝑑12

𝛼1(𝑇𝑤𝑟 − 𝑇𝑤𝑠) −𝛼1 − 𝛼3 − 𝜕(𝛼2𝑈𝑐)
𝜕𝑇𝑤𝑠

⎤⎦ (3.43)

Since, increasing the control gain 𝐾𝑝 decreases the value of 𝑑11 and thus, increases

the value of the first term of firt row of 3.43. Therefore, a large value of control gain

𝐾𝑝 can destabilize the coupled system. In this case, 𝑚̇𝑤 is strongly coupled with 𝑇𝑤𝑠

and the distributed parameter estimation will be less accurate than before [33].
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3.5 Distributed Parameter Estimation

The section represents an approach to identify critical parameters of the chiller and

pump model in a distributed manner assuming a weakly coupled system. We use

the estimation method mentioned in Section 2.2 for chiller and pump individually.

This greatly reduces the computational complexity and the amount of data needed

for estimation.

We can rewrite the chiller model in equation 3.2 in the form of equation 2.13 as

follows [33]:

𝑑

𝑑𝑡
𝑇𝑤𝑠 = 𝐴𝑖𝑖𝑇𝑤𝑠 +

∑︁
𝑗 ̸=𝑖

𝑅𝑖𝑗[𝑚̇𝑤 𝑇𝑤𝑟]
𝑇 + 𝐵𝑖𝑢𝑖 + 𝛼4 (3.44)

where,

𝐴𝑖𝑖 = −𝛼1 − 𝛼3∑︁
𝑗 ̸=𝑖

𝑅𝑖𝑗 = 1
2
𝛼1[𝑇𝑤𝑟 𝑚̇𝑤]

𝐵𝑖 = −𝛼2

𝑢𝑖 = 𝑈𝑐

Since, the pump and chiller are weakly coupled, we can treat 𝑚𝑤 as another

interface variable. Therefore, we can group it with other interface variables and use

sensor measurements instead of calculating it dynamically.

Using the estimated parameters, the output of the augmented chiller equation in

(3.2) i.e. 𝑇𝑤𝑠,𝑖 is compared with experimental data i.e. 𝑇𝑤𝑠,𝑖. The error is given by

𝐸𝑟𝑟𝑜𝑟 =
𝑛∑︁

𝑘=0

(𝑇𝑤𝑠,𝑘 − 𝑇𝑤𝑠,𝑘)2 =
𝑛∑︁

𝑖=0

𝑓(𝑘) (3.45)

Similarly, using equation 2.8, we can write the parameter update equation for
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chiller as:

𝛼𝑘 = 𝛼𝑘−1 − 𝜂𝑘−1 * (𝐽𝑇𝐽)−1 * 𝑔𝑘−1 (3.46)

𝛼𝑘 = [𝛼1,𝑘 𝛼2,𝑘 𝛼3,𝑘 𝛼4,𝑘]𝑇

Similarly, we can write the parameter update and error equations for pump and

other components in the HVAC system.

3.6 Energy Space model for chiller

To design the energy space model for the electric chiller, first we need to understand

the interaction of variables 𝑃 and 𝑄̇ for different components of the HVAC. We can

see these interactions for the water flow subsystem and the electric chiller in Fig. 3-10

[14].

Electric
Chiller

Storage
Tank

Coil in
AHU

Pump

Water Flow System

[E,p]

Figure 3-10: Interface varibales for the HVAC system [14]

We also need to understand the interactions of the chiller in the conventional state

space to accurately map the system from conventional state space to energy space.

The interactions of the chiller in conventional state space can be seen in Fig. 3-11 (a)

and the corresponding interactions using the variables 𝑃 and 𝑄̇ can be seen in 3-11

(b).

55



Chiller , Tws

Input Water

, Twrmw mw

Output Water

Electric
Power
Input

Electric
WaterPump

Storage
Tank

Substation
Transformer

Vc, Ic

(a) Conventional state space model of chiller

Pump
Storage
Tank

Substation
Transformer

Electric
Water
Chiller

(b) Energy power space model of chiller

Figure 3-11: Chiller models in conventional and energy state space1[14]

Energy domain Effort variable (𝑒) Flow variable (𝑓) Real power (𝑃 ) Reactive power rate (𝑄̇)
Electric Voltage (𝑣) Current (𝑖) 𝑣𝑖 𝑣𝑖− 𝑖𝑣

Translation Force (𝐹 ) Velocity (𝑢) 𝐹𝑢 𝐹𝑢− 𝑢𝐹
Rotational Torque (𝜏) Angular velocity (𝜔) 𝜏𝜔 𝜏𝜔 − 𝜔𝜏

Fluid Pressure (𝑃𝑟) Volume flow (𝑓) 𝑃𝑟 𝑓 𝑃𝑟𝑓 − 𝑓𝑃𝑟
Thermodynamic Temperature (𝑇 ) Entropy flow (𝑆) 𝑇𝑆 𝑇𝑆 − 𝑆𝑇

Table 3.1: Analogous effort and flow variables across different energy domains [24]

The water entering the chiller has two components i.e. the thermal component

corresponding to the temperature of the water and the fluid component corresponding

to the pressure of the water. The thermal component is characterized by the temper-

ature (terminal effort) and entropy flow rate (flow variable), which are together used

to define the generalized real power and the generalized reactive power rate in thermal

domain. The fluid component is characterized by the pressure (effort variable) and

volume flow rate (flow variable) in fluid domain, as reflected from Table 3.1.

Using the thermal and fluid components of incoming and outgoing water, and using

the input electrical power, the equations for generalized power 𝑃 and generalized rate

of reactive power 𝑄̇ as shown in Section 2.4.2 can be written as [14]

𝑃 𝑖𝑛
𝑝𝑐 = 𝑐𝑤𝑚̇𝑤𝑇𝑤𝑟 + (1/𝜌𝑤)𝑚̇𝑤𝑃𝑟𝑐𝑖 (3.47)

𝑃 𝑜𝑢𝑡
𝑐𝑠 = 𝑐𝑤𝑚̇𝑤𝑇𝑤𝑠 + (1/𝜌𝑤)𝑚̇𝑤𝑃𝑟𝑐𝑜 (3.48)

𝑃 𝑖𝑛
𝑡𝑐 = 𝐼𝑐𝑉𝑐 (3.49)

1In joint collaboration with Marija Ilic and Pallavi Bharadwaj
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𝑄̇𝑖𝑛
𝑝𝑐 = 𝑐𝑤(𝑚̇𝑤𝑇𝑤𝑟 − 𝑚̇𝑤𝑇𝑤𝑟) + (1/𝜌𝑤)(𝑃𝑟𝑐𝑖𝑚̇𝑤 − 𝑚̇𝑤𝑃𝑟𝑐𝑖) (3.50)

𝑄̇𝑜𝑢𝑡
𝑐𝑠 = 𝑐𝑤(𝑚̇𝑤𝑇𝑤𝑠 − 𝑚̇𝑤𝑇𝑤𝑠) + (1/𝜌𝑤)(𝑃𝑟𝑐𝑜𝑚̇𝑤 − 𝑚̇𝑤𝑃𝑟𝑐𝑜) (3.51)

𝑄̇𝑖𝑛
𝑡𝑐 = 𝑉𝑐𝐼𝑐𝑇𝑤𝑟 − 𝐼𝑐𝑉𝑐 (3.52)

where, 𝑃𝑟𝑐𝑖 and 𝑃𝑟𝑐𝑜 are the input and output pressure in the chiller respectively.

Therefore, the total power 𝑃 and total rate of reactive power 𝑄̇ into the chiller

can be written as

𝑃 = 𝑃 𝑖𝑛
𝑝𝑐 + 𝑃 𝑖𝑛

𝑡𝑐 − 𝑃 𝑜𝑢𝑡
𝑐𝑠 (3.53)

𝑄̇ = 𝑄̇𝑖𝑛
𝑝𝑐 + 𝑄̇𝑖𝑛

𝑡𝑐 − 𝑄̇𝑜𝑢𝑡
𝑐𝑠 (3.54)

This methodology can be generalized to other components of the HVAC. Usually,

a commercial HVAC system measures temperature, pressure and mass flow of water

and air at regular intervals which can be used to calculate the power and reactive

power at the interface for different subsystems.
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Chapter 4

Implementation

This section presents the underlying details of the implementation of the approach

for parameter estimation and energy power space modelling mentioned in Section 3.

4.1 Data Description

We obtained data regarding various sensor measurements regarding a commercial

HVAC system shown in Fig. 2-3. The complete list of data obtained can be seen in

Table. 4.1. We have the chiller and pump data for 7 days sampled every 10 min-

utes. We also have the data available regarding the energy consumption of different

components of the HVAC sampled once daily from January to September. The daily

sampled data denotes the cumulative energy consumption for that day.

System Symbol Description Sampling Time
𝑚̇𝑤 Water flow rate 10 minutes

Pump N𝑝 Pump speed/frequency 10 minutes
I𝑝 Pump current 10 minutes

T𝑤𝑟 Return water temperature 10 minutes
Chiller T𝑤𝑠 Supply water temperature 10 minutes

U𝑐 Chiller control input 10 minutes
Gas consumption of HVAC 24 hours

Electricity consumption of HVAC 24 hours
Water consumption of HVAC 24 hours

HVAC Electricity generated by each ICG 24 hours
Gas consumption of gas chillers 24 hours

Gas consumption of boiler 24 hours
Electricity consumption of each ECR 24 hours

Table 4.1: Summary of measurement data from the HVAC
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4.2 System Identification in MATLAB

We use MATLAB’s system identification toolbox to estimate critical parameters in

differential equations. We use several functionalities within the non-linear grey-box

model estimation module to implement the approach mentioned in Section 3 [8] [1].

First, we need to create a model file for the subsystem whose parameters we need

to identify. We can see an example of a model file in Fig. 4-1 for chiller subsystem

represented by equation 3.2.

Figure 4-1: Chiller MATLAB Model file

Once, we have defined the system model using a model file, we can use idnlgrey

function in the system identification toolbox to create a non-linear grey box model

of the given model file [2]. An example for the chiller model file is shown in Fig. 4-2.

We need to specify the model file using filename parameter, the order of inputs and

outputs to the model, the initial guess of the parameter values, an initial value for

the state variable and time units for the model.

Once we have completed specifying the initial conditions for the model, we can

use an optimizer to learn the model using measurement data. To build and run an

optimizer we need two functions from the MATLAB toolbox i.e. nlgreyest for estimat-

ing non-linear grey box models and nlgreyestOptions for specifying the optimization

parameters and conditions [3] [4]. An example of how this can be used for the chiller
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Figure 4-2: Chiller grey box model in MATLAB

subsystem is shown in Fig. 4-3

Figure 4-3: Chiller grey box model optimization in MATLAB

Using the nlgreyestOptions functionality, we can try different optimizers, ODE

solvers, function tolerances etc. to tune our optimizer to our needs. We have found

that for a single ODE system such as chiller, the default parameters of the optimizer

work well and run in sufficient time. But for more complex systems such as the water

pump with multiple ODE’s changing the parameters of the optimizer can help reduce

the computational time by a lot.

Once we execute this code, the grey box model outputs the parameters which

result in the least error given by 3.45.
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4.3 Energy space model verification in Python

We use Python to prepare the data regarding the input and output interface variables

of the chiller and to verify the chiller energy-space model. We use Python packages

such as Numpy, Pandas and Statistics to manage the data and then use it to verify

the fundamental equations given by equation 2.21 [5] [6] [7].

We use the Pandas module to import and cleanse the data. An example can be

seen in Fig. 4-4. In the figure, the Pandas module is abbreviated as pd.

Figure 4-4: Importing data using Python

We then use the Numpy module to do basic arithmetic operations on the imported

data so that we can then further use that data for advanced mathematical operations

such as integration and differentiation. We can see us using Numpy module for

changing units of imported data in Fig. 4-5.

Figure 4-5: Using Numpy to convert units of data

We can also see another example of Numpy being used to calculate the rate of

reactive power flow across the chiller in Fig. 4-6. Here, we use Numpy module’s

ability to do arithmetic operations on arrays.
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Figure 4-6: Using Numpy calculate rate of reactive power flow in Chiller

(a) Differentiation using splines in Python

(b) Integration using odeint in Python

Figure 4-7: Differentiation and Integration in Python

We then use the data generated using Numpy to calculate the differentiated and

integrated values of the different interface variables. We use the spline functionality

of Statistics module to first calculate a smooth spline of the data and use the spline to

generate the derivatives at the given time instant. This approach introduces less error
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in the calculated derivatives than using difference methods to calculate derivatives.

We also use the ODE integration functionality of Statistics package to integrate the

data with respect to time. An example of these functionality can be seen in Fig. 4-7.

Once, we have calculate all the desired interface variables and values of stored

energy and energy in tangent space using the above mentioned methods, we can

easily compare these values to verify the chiller model in energy-space.
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Chapter 5

Results

5.1 Distributed Parameter Estimation

In this section, we show the numerical results of our distributed parameter estima-

tion approach using measurements from a real industrial HVAC system under the

assumption of weak coupling between each subsystem. As mentioned in the previous

section, We use MATLAB’s system identification toolbox to estimate the parameters

over the measurement data to see how closely we can map the dynamics of the chiller.

We train the model on the first 5 days of data and validate the model on the next 2

days of data.

5.1.1 Chiller Subsystem Identification

Based on the approach mentioned in Section 3.5, we estimate the critical parameters

of the chiller model equation 3.2. The estimated parameters of the chiller subsystem

can be seen in Table 5.1.

Parameter Value (SI units)
𝛼1 6.60 × 10−5

𝛼2 2.3568 × 10−10

𝛼3 4.27 × 10−3

𝛼4 1.2344

Table 5.1: Estimated Chiller Subsystem Parameters [33]
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Based on the estimated parameters, we found the time constant of the chiller to

be on the order of 20 minutes. This also agrees with experimental data.

The untrained model has a mean-squared (MSE) error as shown in equation 3.45

is 56. After 500 iterations of the estimation algorithm, we get a decent fit of the actual

dynamics of the chiller with an MSE of 0.3 [33]. The comparison of the estimated

parameters with actual data before and after the estimation algorithm can be seen

Fig. 5-1 (a) and (b) respectively.

(a) Untrained Chiller model simulation
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(b) Trained chiller model simulation
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(c) Chiller model simulation vs validation
data

Figure 5-1: Chiller Model Parameter Estimation [33]

We use the parameters shown in Table 5.1 and original control input to simulate

the chiller model for the next two days. We can see a comparison of the simulated

and actual measurement data for the supply temperature 𝑇𝑤𝑠 in Fig. 5-1 (c). The

correlation between the simulated temperature 𝑇𝑤𝑠 and measured temperature 𝑇𝑤𝑠
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was 95.2% and the CV(RMSD) was 3.8% [33]. This further validates our parameter

estimation for the chiller subsystem.

5.1.2 Pump Subsystem Identification

As shown in equation 3.11, 3.13 and 3.12, the state variables of the pump subsystem

are the rotational frequency 𝑁𝑝, armature current 𝐼𝑝 and water mass flow rate 𝑚̇𝑤.

The time constants for all the state variables are smaller than 10 minutes and the

sampling rate for the measurement data is 10 minutes. The pump control is also

bang-bang control as mentioned in Section 3.4.1. Therefore, we do not observe any

transients in our measurement data. This decreases the accuracy of our parameter

estimation results.

Therefore, we focus on the slower changes in the pump state variables at the

quasi-steady state to estimate the pump model parameters. We only consider the

data when the pump is ON and ignore the rest of the data. We also have some

missing data samples between hours 50 and 100 as can be seen in Fig 5-2 (b).

The results of the parameter estimation for the pump model can be seen in Table

5.2. The comparison of the simulated mass flow rate ˆ̇𝑚𝑤 with actual data 𝑚̇𝑤 before

and after the estimation algorithm can be seen Fig. 5-2 (a) and (b) respectively.

Parameter Expression Value (SI units)
𝛽1

𝑘𝑖
2𝜋𝐽𝑝

0.0028
𝛽2

𝐵𝑝

𝐽𝑝
0.0105

𝛽3 ℎ13 2.3566 × 10−9

𝛽4
𝑅𝑎,𝑝

𝐿𝑎,𝑝
0.0560

𝛽5
2𝜋𝑘𝑏,𝑝
𝐿𝑎,𝑝

0.0737
𝛽6

𝑒𝑎,𝑝
𝐿𝑎,𝑝

0.0762
𝛽7

1
2
ℎ31 4.835 × 10−6

𝛽8
1
2
ℎ33 7.5211 × 10−8

Table 5.2: Estimated Pump Subsystem Parameters [33]

he model was then simulated for the next 2 days using the learned parameters in

Table 5.2. The comparison of the simulated and actual mass flow rate data can be seen

in Fig. 5-2 (c). The simulated data achieved a correlation of 80% and CV(RMSD)
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(a) Untrained water pump model
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(b) Trained water pump model
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(c) Pump model simulation vs validation
data

Figure 5-2: Pump model Parameter Estimation [33]

of 4.6% with the actual data [33]. We consider this an acceptable validation perfor-

mance because we suspect the decrease in accuracy occurs due to the noise in the

measurement data which can be seen in Fig. 5-2 and the low sampling rate of the

measurement data relative to the time constant of the system.

Finally, in Section 3.4.1, our Assumption 2 stated that the natural responses of

the states 𝐼𝑝 and 𝑁𝑝 of the pump are much faster than the natural response of other

internal state, water mass flow 𝑚̇𝑤. From the estimated parameters in Table 5.2, we

can calculate the natural time constants of all the state variables of pump model.

The time constant reciprocal for 𝑁𝑝 is 𝛽2 +𝛽3 ≈ 0.0105. The time constant reciprocal

for 𝐼𝑝 is 𝛽4 = 0.056. The time constant reciprocal for is 2𝛽8 ≈ 2.55 × 10−5 [33].

Therefore, the natural response of 𝑚̇𝑤 is much slower than 𝑁𝑝 and 𝐼𝑝, which confirms
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Assumption-2.

5.2 Energy Space Model Verification

In this section, we verify the energy-space model of the chiller subsystem proposed

in Section 3.6 using actual measurement data. For the chiller subsystem, mass flow

rate 𝑚̇𝑤, temperature at the output of chiller 𝑇𝑤𝑠, the return water temperature 𝑇𝑤𝑟,

which enters chiller, and the water pressure at the input 𝑃𝑟𝑐𝑖 and output of the chiller

𝑃𝑟𝑐𝑜, are measured over seven days duration at the sampling rate of 10 minutes each

as can also be seen in Fig. 5-3. This data set is divided into ON and OFF duration

of system operation. In a 24 hour day, typically the chiller is seen to be ON for 80 %

time duration. It must be noted that stored energy in the chiller is zero when the

system is turned OFF, as the mass flow rate in the system is zero.
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Figure 5-3: Available Chiller Measurements [14]

As a proof of concept, we will be validation the two fundamental equations of the

energy-power space given by,

𝐸̇ = 𝑃 − 𝐸

𝜏
= 𝑝 (5.1)

𝑝̇ = 4𝐸𝑡 − 𝑄̇ (5.2)

We explain the significance of these equations in detail in Section 2.4.2. We will
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use the chiller measurement data to verify both these equation for the chiller energy-

space model.

5.2.1 First Fundamental equation verification

To validate equation 5.1 using measurement data, we first calculate the total power

input to the chiller subsytem 𝑃 using the following equations [14]:

𝑃 𝑖𝑛
𝑝𝑐 = 𝑐𝑤𝑚̇𝑤𝑇𝑤𝑟 + (1/𝜌𝑤)𝑚̇𝑤𝑃𝑟𝑐𝑖 (5.3)

𝑃 𝑜𝑢𝑡
𝑐𝑠 = 𝑐𝑤𝑚̇𝑤𝑇𝑤𝑠 + (1/𝜌𝑤)𝑚̇𝑤𝑃𝑟𝑐𝑜 (5.4)

𝑃 𝑖𝑛
𝑡𝑐 = 𝐼𝑐𝑉𝑐 (5.5)

𝑃 = 𝑃 𝑖𝑛
𝑝𝑐 + 𝑃 𝑖𝑛

𝑡𝑐 − 𝑃 𝑜𝑢𝑡
𝑐𝑠 (5.6)

Then the stored energy 𝐸 in the chiller is calculated using equation 5.1 as follows:

𝐸̇ = 𝑃 − 𝐸
𝜏

= 𝑝 (5.7)

The value of stored energy 𝐸 are then verified by the value of 𝐸 obtained from

the thermodynamic equations for stored energy in the chiller given by [14]

𝐸 = 𝐶𝑤 × (𝑇𝑤𝑟 − 𝑇𝑤𝑠) (5.8)

where, 𝐶𝑤 is the thermal capacitance of the chiller.

We compare the value of stored energy calculated using 5.7 and 5.8 and see, if

they are within our range of error. To quantify the model accuracy, the coefficient of

variance of the root mean square deviation in the measured output is compared with

the modelled output.
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𝑅𝑀𝑆𝐷 =
√︁∑︀𝑛=𝑁

𝑛=1 (𝑦𝑝[𝑛] − 𝑦𝑚[𝑛])2/𝑁 (5.9)

𝐶𝑉 (𝑅𝑀𝑆𝐷) = 𝑅𝑀𝑆𝐷/𝑦𝑝 (5.10)

where, 𝑦𝑝[𝑛] refers to the modelled value of the stored energy inside the chiller as

computed from the data insertion in Eq. 5.7 and 𝑦𝑚[𝑛] shows the value of the stored

energy evaluated by the measurement insertion in Eq. 5.8 [14].
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(a) Data for one ON duration
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E=CW * (Twr− Tws)
δE/δt= P− E/τ

(b) Data for complete 7 days

Figure 5-4: Calculation of stored energy in chiller [14]

The comparison of the values of stored energy obtained from 5.7 and 5.8 can be

seen in Fig. 5-4. Fig. 5-4 (a) shows the values of stored energy for one ON duration

of the chiller which lasts about 18 hours and Fig. 5-4 (b) shows the comparison for

all 7 days. The value of CV(RMSD) computed using 5.10 and correlation between

the two values of stored energy calculated is [14]

𝐶𝑉 (𝑅𝑀𝑆𝐷)(𝐸) = 0.0108

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐸) = 95.4

The calculated values of stored energy of the chiller using 5.7 and 5.8 show great

agreement. Therefore, we have validated equation 5.1 for the chiller subsystem.
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5.2.2 Second Fundamental Equation Verification

We verify the second fundamental equation in a way similar to the first fundamental

equation shown in previous section. First we calculate the total rate of reactive power

input to the chiller subsytem 𝑄̇ using the following equations [14]:

𝑄̇𝑖𝑛
𝑝𝑐 = 𝑐𝑤(𝑚̇𝑤𝑇𝑤𝑟 − 𝑚̇𝑤𝑇𝑤𝑟) + (1/𝜌𝑤)(𝑃𝑟𝑐𝑖𝑚̇𝑤 − 𝑚̇𝑤𝑃𝑟𝑐𝑖) (5.11)

𝑄̇𝑜𝑢𝑡
𝑐𝑠 = 𝑐𝑤(𝑚̇𝑤𝑇𝑤𝑠 − 𝑚̇𝑤𝑇𝑤𝑠) + (1/𝜌𝑤)(𝑃𝑟𝑐𝑜𝑚̇𝑤 − 𝑚̇𝑤𝑃𝑟𝑐𝑜) (5.12)

𝑄̇𝑖𝑛
𝑡𝑐 = 𝑉𝑐𝐼𝑐𝑇𝑤𝑟 − 𝐼𝑐𝑉𝑐 (5.13)

𝑄̇ = 𝑄̇𝑖𝑛
𝑝𝑐 + 𝑄̇𝑖𝑛

𝑡𝑐 − 𝑄̇𝑜𝑢𝑡
𝑐𝑠 (5.14)

We also calculate the rate of change of stored energy 𝑝 using the following equa-

tions:

𝑝 = 𝐸̇ (5.15)

𝐸 = 𝐶𝑤 × (𝑇𝑤𝑟 − 𝑇𝑤𝑠)

Then, the energy in tangent space 𝐸𝑡 is calculated for the chiller using the energy-

power space equation 5.2 as follows

𝐸𝑡 = (𝑝̇ + 𝑄̇)/4 (5.16)

The value of 𝐸𝑡 is also obtained from the fundamental thermodynamics equations

for the chiller given by

𝐸𝑡 = (𝐶𝑤/𝜏) × (𝑇̇𝑤𝑟 − 𝑇̇𝑤𝑠) (5.17)

The comparison of the values of stored energy obtained from 5.16 and 5.17 can be

seen in Fig. 5-5. Fig. 5-5 (a) shows the values of stored energy for one ON duration

of the chiller which lasts about 18 hours and Fig. 5-5 (b) shows the comparison for
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(a) Data for one ON duration
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(b) Data for complete 7 days

Figure 5-5: Calculation of energy in tangent space for chiller [14]

all 7 days. The value of CV(RMSD) computed using 5.10 and correlation between

the two values of energy in tangent space calculated is [14]

𝐶𝑉 (𝑅𝑀𝑆𝐷)(𝐸𝑡) = 0.0706

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐸𝑡) = 92.1%

We, thus, validate the second fundamental equation using chiller energy space

model. Therefore, we have verified the energy-space modelling using measured data

with high-accuracy.

5.2.3 Effects of Pressure

The reduced order dynamic equation for the chiller subsystem is given by equation 3.1.

This equation guides the internal states of the chiller and since we see no dependence

on the pressure, the dynamical model either neglects or assumes a constant effect of

pressure on the internal states. Here, we show that the pressure change across the

chiller is essential for verifying the the second fundamental equation 5.2 in energy

space and is important accurately model the chiller subsystem.

We can see the pressure change measurement data across the chiller for 2 days in

Fig. . The separate data for water pressure into and out of the chiller for entire 7
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days can be seen in Fig. 5-3.
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Figure 5-6: Pressure difference across chiller [14]

We first calculated the rate of reactive energy into the chiller 𝑄̇ without using the

contributions from pressure of water or the effort variable as follows [14]

𝑄̇𝑖𝑛
𝑝𝑐 = 𝑐𝑤(𝑚̇𝑤𝑇𝑤𝑟 − 𝑚̇𝑤𝑇𝑤𝑟) (5.18)

𝑄̇𝑜𝑢𝑡
𝑐𝑠 = 𝑐𝑤(𝑚̇𝑤𝑇𝑤𝑠 − 𝑚̇𝑤𝑇𝑤𝑠) (5.19)

𝑄̇𝑖𝑛
𝑡𝑐 = 𝑉𝑐𝐼𝑐𝑇𝑤𝑟 − 𝐼𝑐𝑉𝑐 (5.20)

𝑄̇ = 𝑄̇𝑖𝑛
𝑝𝑐 + 𝑄̇𝑖𝑛

𝑡𝑐 − 𝑄̇𝑜𝑢𝑡
𝑐𝑠 (5.21)

Using the values of 𝑄̇ obtained from equation 5.21 and the values of 𝑝 obtained

from equation 5.15 and substitute these values in equation 5.16.

The values of energy in tangent space then obtained using the above mentioned

5.16 and 5.17 can be seen in Fig. 5-7. Fig. 5-4 (a) shows the values of stored energy

for one ON duration of the chiller which lasts about 18 hours and Fig. 5-4 (b) shows

the comparison for all 7 days. The value of CV(RMSD) computed using 5.10 and

correlation between the two values of stored energy calculated is

𝐶𝑉 (𝑅𝑀𝑆𝐷)(𝐸) = 1.16

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐸) = −42%
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(a) Data for one ON duration

� �� �� 	� ��� ��� ��� �	�
���������

�����

�����

�

����

����

����

�

��

��
��


��
��

��
��

���

Et= (CW/τ) * ( ̇Twr− ̇Tws)
Et=0.25 * (ṗ̇ Q̇)

(b) Data for complete 7 days

Figure 5-7: Calculation of energy in tangent space for chiller without contribution of
pressure [14]
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Figure 5-8: Correlation between 𝑄̇ and rate of change of pressure across chiller [14]

Thus, we can accurately calculate the value of 𝐸𝑡 without taking into account

the contribution of pressure change across the chiller or the contribution of effort

variable in calculation of 𝑄̇. We can also see in Fig. , the comparison of 𝑄̇ calculated

using 5.14 by taking into account pressure change and the rate of change of pressure

difference across the chiller. We can conclude from Fig. that the contribution of effort

variable in calculating the rate of reactive power is indeed essential.

We can see in Fig. 5-6, that the pressure change across the chiller is almost

constant and close to zero (with some measurement noise) when the chiller is oper-

ational. Therefore, neglecting its contribution in the conventional state space model
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of the chiller given by 3.1 does not introduce a lot error into the model. But using

measurement data from a commercial chiller, we have verified that the contribution

of pressure change across chiller is necessary for calculating the total reactive power

into the chiller and thus, necessary for evaluating the inefficiencies in the system using

energy-space model.
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we focused on problems that are important in designing efficient controls

for a complex dynamical system in multi-energy domain. We use a commercial HVAC

system since its complexity and multi-energy interactions provide a suitable exampel

for analysing these problems first hand as well as testing our methodology.

Designing efficient control as well as more sophisticated models of the system re-

quire knowledge of the model parameters of the components. Researchers have often

circumvented this problem by either using statistical relationships between control

and state variables or by using simpler or static models. We have shown a distributed

parameter estimation approach with low computational cost and using limited sen-

sor measurements to work well for various components in the HVAC system. We

decompose a weakly-coupled HVAC subsystem using diagonally dominant matrices.

We also comment on the limits on the type of control that can be used to decompose

such a system. For this result, we didnot install new sensors or generate data in a

experimentally controlled setting. We verified our methodology using data which is

available in most HVACs and during normal operating conditions. Therefore, we can

use this approach to calculate parameters of models in real time without any extra

overhead cost from new sensors or calibration time.

Advanced control algorithms require accurate representation of the system which
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requires accurate models of the system. But due to the increasing complexity of

these systems, the implementation often resorts to reduced order or static models

of the system. It has been shown that these models are often not accurate enough

and can not deal with fast-prone disturbances which are common in today’s energy

systems. Therefore, we modeled the HVAC system using a novel approach using effort

and flow variables at the ports in energy-power space. Energy-power space model is

a form of aggregate model which takes into account the power and reactive power

inputs from the neighbours and thus reduces the complexity of the interconnected

system. Here, we show how we can use sensor available in most HVACs in a real

world setting to calculate the power and rate of reactive power flow in the system.

We use the same data to verify the energy-power space model of an electric chiller at

nearly 99% accuracy. A novel finding using the energy-space model is that unless we

use both effort and flow variables at the interface, the rate of reactive power into a

component cannot be accurately calculated. Conventional state space models often

assume constant effort variables but effort variable in reality is not constant and is

necessary in energy-power space to deal with fast responding disturbances.

While these results have primarily been posed and verified within the context of

HVAC systems, they are valuable for designing control of any complex interconnected

system comprising of multiple energy conversion processes.

6.2 Future Work

The work done in this thesis was intended to be used in next-generation Dynamic

Monitoring and Decision Systems (DyMonDS) framework. DyMonDS leverages op-

timal minimal exchange wherein the agents exchange minimal information with their

coordinators. This work can greatly aid the design of better control algorithms for

HVAC systems using DyMonDS [16].

We only provide a proof-of-concept for the distributed parameter estimation ap-

proach mentioned in this thesis. The approach needs to be extended for other subsys-

tems in the HVAC as well as needs to be scaled for bigger subsystems. Additionally,
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we also need to compare the performance of the distributed parameter estimation

with standard parameter estimation on a controller.

Finally, we were only able to design and verify the energy-space model for a single

component of the HVAC system. DyMonDS and control in energy-power space for

the HVAC will require multiple interconnected components to be modelled in the

energy-power space. This is essential for proving higher energy efficiency gains using

DyMonDS over the current control algorithms used in industrial HVACs.
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