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Abstract

‘The work presented in this paper deals with the general prob-
fiem:of»matcniﬁg’an‘arbitraryﬁldad impedance to‘a puré5resistance
by means of a reactive network. ~More precisely, it consists of
awsystematienstudynof’theforigin_andwnaturéwof-the'theoretical
limitations on the tolerance and bandwidthi@f match and of thelr
dependence on the characteristics of the given load impedance. |

Following a general discussion of the matching problem in the
firét chapter, the second chapter presents a derivation of the
necessary and sufficient conditions for the physical realizability
of a function of frequency representing the input reflection co;
efficient of a matching network terminated in a given load im~
pedance. These conditions of physical realizability are trans-
formed in the third chapter into a set of integral relationé which’
are particularly suitable for the sﬁudy of the limitations on the
bandwidth and tolerance of match.: Unfortunately, definite ex~
pressions for these guantities céuld be obtained only in very
gpecial cases, because of inherent mathematical difficulﬁies re—
sulting from high-order algebraic eguations.

The fourth chapter deals with the practical problem of approach—
ing the optimmum theoreticallpolerance by means of a nebwork with
a finite number of elements. The gene:él solution of this problem
wés hampered again by méthematical difficulties resulting from the
necessity of solving systems of transcendental equations. Design

curves are provided, however, for a particularly,simple, but wvery
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im@ortant, type of load impedance. In sddition, a very
convenient method is presented for computing the values of
the elements of the resulting meiching neiwork. The whole

design procedure is illustrated by numerical examples.
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1.1

1.

CHAPTER I

The Matching Problem

Origin and nature of the problem - The transfer of power from a

’generétér to a load constiﬁutes one of the fundamental problems in
the design of communication systems. Some generators may be con-
sidered as ideal voltage sources in series with a linear impedance;
maximum power tranéfer is then obtained when the load impedance is
made equai to the conjugate of the source impedance. This simple>
representation fails in the case of other generators, but there is
still for each generator a definite load impedance which yields
maximum transfer of power. Linear amplifiers, for'instance, may
be inclﬁded in the first groﬁp of generators, while certain power
amplifiers and all oscillators belong to the second group. When
the load and the generator are physically” so distant from each other
that an electrically long transmission line has to be employed, it
is usually desirable to avoid the presence of standing waves on the
line, This reQuirement is met by making the load impedance equal
to the characteristic impedance of the line, which is, in general,
a real guantity.

ProblemsAof the types mentioned above involve in every case the
design of a non-dissipative coupling network to transform a given
load impedance into another specified impedance, -One refers to
this operation as "impedance matching"., The impedance to which
the load has to bebmatched is, in most cases, a pure resistance,
or can be made such by means of a separate coupling network.

Therefore, from a practical standpoint, little loss of generality
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results from limiting our discussion to this simpler case, that
is, to the case of matching to a pure resistance.

It will be shown later that it is not possible to match an
-arbitrary impedance to a pure resistance ovef the wﬁole fre-
quency spectrum, or even at all frequencies within a finite fre-
guency band. On the other hand, it is evidently possible to
obtain a match at any desired number of frequencies, provided the
load impedance has a finite resistive cpmponent at these fre- *
quenciés. Such a solution, however, has little practical value
because it is incorrect to assume that one can obtain a reasonable

matech over a frequency band by correctly matching at a suffi-

ciently large number of frequencies within the desired band.

It becomes clear at this point that the statement of any
matéhing problem must include the maximum tolerance on the match
as well as the minimum bandwidth within which the match is to be
obtained, PFurthermore, it is reasonable to expect that, for a

iven load impedance and a given frequency band, there exists a
g I g q

lower limit to the maximum tolerance that can be obtained by means 4
of a physically realizable coupling network, It Tfollows that an

investigation of this lower limit should be the first step in any

systematic study of matching networks. Before this problem can

N be stated in a precise manner, however, one must define an ap-
propriate measure of the match so as to give to the tolerance a

definite quantitative meaning.

1,2 Quantitative definition of matching - In view of the fact that

matching is used to maximize the load power, it appears reasonable
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to use as a measure of the match the ratiobbf the actual load power
Py to the maximum power Py that could be delivered to the load by
the same generator., It is more convenient, however, to use in-
stead the per unit value of the power which is not delivered to

the load, that is, the quantity

2 _ Py - P |
o] = k=2 - 5 R

The meaning of the symbol L‘\Z will become clear shortly. This
Quantity can be readily expreséed in terms of the characteristics
of the generator and of the load when the génerator can be repre-
sented by means of a constant voltage source in series with a linear
impedance., If this is not the case,Lﬂ|2 becomes a complicatéd
function of the characteristics of the generator and very often
cannot be expressed mathématically. For lack of a better method
of attack, it ﬁill be assumed again that the generator can be
represented by a voltage source in series With a linear impedance,
which is now chosen equal to the conjugate of the lead\impedance
which yields optimum operation, As pointed out before, this im-
pedance is assumed to be a pure resistance. The resulting quan-
tity|/o|2 is not simply related to actual load power but is a
definite functipn of the impedance presented to thg generator,

in terms of whieh the output characteristiecs of the generator

can be expressed.

For the purpose of analysis it is convenient to normaligze all
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impedances with respect to the internal impedance of the generator.
Let 7 be the normalized impedance of the load presented to the

generator, as shown in Fig. l.1.0ne obtains readily:

&= ¢

It is clear at this point thatl,olis the magnitude of the reflec-

tion coefficient

N
l_. .

/0:Z+

(3)

=

which would be obtained if the generator weré’connected to the
blOad through a lossless transmission line of unity characteristic
impedance. Since ,is defined as the ratio of the voltage of the
reflected wave to the voltage of the incident wave,l /o|2 is evi-
denﬁly equai to the per unit reflected power, that is, to the
power which is not delivered to the load. It will be remembered
in this connection that the voltage standing-wave ratio on a

transmission line is related to ,© by:
VSWR = l;i:l;fll | ' (1)

It follows thatl/olis the most appropriate measure of the match

when a transmission line is actually present and standing waves

are to be minimized. In conclusion the tolerance on the match
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will be expressed in all cases by the maximum allowable value of

the magnitude of the reflection coefficient‘)olmax.

Preliminary statement and analysis of the problem - The problem

of the broadband matching of an arﬁitrary impédance can now be
sﬁated more precisely in the light of the previous discussion.
With reference to Fig.Ll, Zj is a given linear, passive impedance
normalized with respect to the source resistance. A non-dissipa-
tive coupling network must be designed such that, when terminated
in Zp, the magnitude of the reflection coefficient is smaller
than or equal to a specified valuel/olnwocat all frequencies
within a prescribed band.

The impedance Zp and the coupling network may include, in the
most general case, distributed constant elements such as trans-—
mission lines, Wavegﬁides, cavity resonators, etc. Such a general
case, however, is outside the field of application of the avail-
able techniques of network analysis and synthesis so that the
problem must be limited to the case of impedances realizable by
ﬁeans of a finite number of lumped elements. .This limitation
is not as serious as it may appear at first because, in many
practical cases, the results obtained in the case of lumped ele-
ment networks can be extended in an apﬁroximate fashion to the
case of distributed constant systems. For instance, ;uch a. tech=-
nigue has been successfully employed by the author in the design

(1)

of microwave filters.

(1) See Bibliography.
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An additional remark must be made on the fact that the coup-
ling network is assﬁmed to be lossless. In practice, of course,
a certain amount of incidental dissipation will be present, which
will resui£ in a disﬁortion of the characteristics of the coupling
network, This distortion can be computed without difficulty when
the dis;ipation is uniformly distributed.(z) loreover, in cer-
tain cases, it is possible to predistort the characteristics of
a lossless network to balance the distortion produced by dissi-

(3)

pation, apart, of course, from a constant transmission loss
ovér the pass band which cannot be eliminated, This correction

is éften carried!out experimentally since a smali amount. of dissi-
pation requires only small readjustments of the element ﬁalues.v |
Such procedures for taking into account the effect of incidental
dissipation have been developed in connection with the design of
filters, since the same problem arises there as in the case of
matching networks. It seems appropriate, therefore, to neglect
the presence of lossés in our . study, and to rely on the awvailable
techniques for any correction that becomes necessary in the final

stage of a particular design.

Previous work on matching - The matching problem is now limited
£6Y£Ee design of‘an appropriate two-terminal-pair reactive net-
work consisting of g'finite numpber of lumped.elements. This
design problem has been attacked in the past by following a step-
by-step procedure lezding to the ladder structure of reactances

shown in Fig.l.2. These reactances are designed successively in
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such a way that the resulting impedance (or admittance) measured
toward the load at each node of the strﬁcture approximates better
and better a pure resistance over the preseribed frequency band.
This procedure has two main weaknesses, In the first place, the
designer does not know whether the requiréments on the tolerance
and the bandwidth that he is trying to meet are consistent with
the given load impedance; for the same reason he cannot decide,
at a éertain stage of the design, whether any further possible
improvement is worth the required additional complexity of the
network; Tn the second place, it 1is implicitly assumed that the
step-by—stép procedure converges to the optimum design or at least
to a design reasonably close to the optimum. This is not the case
in general; moreover, it will be shown later that perfect matching
at any frequency is paid for very dearly in terms of maximum pos-
sible bandwidth. A procedure for designing the laddef structure
as a unit was sugzested by Bode (155) in 1930.\ This procedure,
however, has still most of the weaknesses of the step-by-step
method of design, and has not sufficient bearing on the work
presented in this paper to deserve a debailed discussion.

The first step tpward a systematic investigation of matching
networks was made’bvaode(6> some time later, in eohnection with
a very special but iﬁportant type of load impedance. He con~
sidered the case of a load impedance Zr, consisting of a resis-
tance Rvshunted by a capacitance C, and showed that ﬁhe funda-~

mental limitation on the matching network takes the form:
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d < %% ) : (4)

where'F is the input reflection coefficlent corresponding to the
impedance 7 in Fig. 1. If l,o\ié kept constant and equal tOPoLmuc
over a frequency band of width w (in rad. per sec.s andvis made -
equal to unity over ihe rest of the frequency spectrum, eg. 4

yields:

‘w 1n ‘:lmax = E]% (5)

In words, the product of the bandwidth by the maximum value of

1
Vad I

product RC. £qg. L indicates also that approaching a perfect

the "return less", 1n , has a maximm limit fixed by the
match, that is, making ‘/9\very small at any frequéncyyresults

in an unnecessary waste of the area reﬁresented by the integral,
and, therefore, in a reduction of the bandwidth. It is also clear
that the limitation found by Bode applies to any impedance con-
sisting of a.reactive two-terminal-pair network terminated iﬁ a
parallel RC combination. In this case, however, no assurance

is given that the maximum theoretical bandwidth can be approached
even in the limit: wﬁen a very large number of elements is used
in the mateching network. On the contrary, in the case of a
simple RC combination, the matching network can be.designed to

satisfy eqs. 4 and 5 with the equal sign. This point will be
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discussed further in Chapter L.

Precise étatement of the problem — Bode's work discussed in the

preceding section indicates;thé existence of definite limitations

on the bandwidth and on the tolerance of match for any given load
impedance. These limitations must originate ffom some conditions
of physical fealizability of the function representing the input
reflection coefficient @ , conditions which must, in their turn,
depend on the load impedance. It is clear at this poiﬂt that the
first step in a systematic solution of the_matching problem must
be.the determination of these theoretical limitations. The develop-
ment of a design proceduré should then follow, whosé objective
would be to approach the theoretical 1imit with the smallest num-
ber of elements in the matching network. For the pur?ose of dis-
cussion, one can then divide the matching problem in three parts
as follows:

1 - Given an impedance function ZL’ subject only to the condition
of being realizable by means of a finite number of lumped
elements, find the conditions.of physical realizability for
the reflection coeffieient function of a reactive, two-
ﬁermina}-pair network terminated in Zp (See Fig. 1).

II - From the conditions of physical realizabiliﬁy for ~, deter-
mine the minimum tolerance on the magnitude of the reflection
coefficientl/°]c7ver a prescribed freguency band.

IIT - Obtain appfopriate functions for , which satisfy the con-

ditions of physical realizability and, at the same tine,
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minimize the tolerance over a specified frequency band for a
given number of elements in the coupling network.
The work presented in the following chapters will provide a

complete solution to the flrst part of the problem. The solution

to the second part will be carrled out as far as p0551ble in

general terms. Unfortunately, a definite expression for the
minimum tolerance could be obtained only in the simplest cases,
since the desired answer depends on the solution of a system of
high order algebraic equations. However, the conditions of physi-
cal realizability will be expressed in the form of integral rela-
tions similar té the one obtained by Bode, whiech will indicate
¢learly the nature of the limitations imposed by the load impedance
on the frequency behavior oflﬁv‘ﬁ, Very little progress could be
made toward a general solution of the third part of the problem,
because it involves a system of transcendental equations., Yet a
set of design curves will be presented for the simplest case con-
sidered by Bode. These curves will show the behavior of the
tolérance as a funciion of the bandwidth and of the number of

elements in the matching networks
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HAPTER IT

Physical Realizability of the‘Reflection Coefficient

2.1 Analysis of the problem - This chapter is devoted to the solution

of the first part of the matching problem as stated in Sec. 1.5,
For the sake of clarity this part of the problenm is restated be-

. low. With reference to Fig. l.l, ZL is given as a function of the
compiex frequency variable A =g + =F subject only to the
condition of being physically réalizable by means of a finite num-
ber of linear passive lumped elements. 1, is cormected at the
output terminals of an,arbitraéy two-terminal-pair reactive net-
work consisting of a finite numbér of lumped elements; the input
terminals of this network are connécted to a generator consisting
of an ideal voltage source in series with a one ohm resistance.

It is desired to determine the restrictions that must be imposed
on the i’unétion -~ (/\) representing the reflection coefficient at
the terminals of the generator, in order to insure the physical
realizability of the reacti§e network,

Tt will be recalled (Sec. l.4) that, if 2. consists of a two-
terﬁinal—pair reactive network terminated in a parallel RC combina~
tion, the limitabtion found by Bode for this case involves the
product RC. Therefofe, if such an impedance were given mathemat-
ically, one would have to determine its physical structure before
Bodé's relation could be applied. On the other hand, Darlington

has éhown (3) that any physically realizable impedance function
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can be considered as the input impedance of a reactive two-terminal-
pair network terminated in a pure resistance. This résistance can
.be made equal to one ohm in all cases by incorporating an appro-
priate‘ideal transformer in the reactive network. The network
shown in Fig. 1.1 can then be transformed as indicated in Fig. 2.1.

At this point the problem under consideration takes a form par-
ticularly interesting from a general network ﬁheory point of view,
It willbe pointed out in the next section that the over-all char-
acteristics of a two-terminal-pair reactive network are completely
specified by the impedance (or the reflection coefficient) measured
at one pair of terminals when a one ohm resistance is connected to
the other pair of terminals. It follows that the conditions of
physical realizability for ~ (See Fig.»Z.l) are the same as the
conditions that must be satisfied by any other function or set of
fﬁnctions representing the over-all characteristics of the two
reactive networks of Fig. 2.1 in cascade. In conclusion the prob-
lem can be restated as follows:

Civen two reactive two-terminal-pair networks of which one is

fixed, the other arbitrary, determine the conditions of physical

realizability for the over-all characteristics of the two networks

connected in cascade.

Before proceeding to the solution of this problem, it is neces-
sary to review some of the properties of the functions that will
be used to represent the characteristics of a two-terminal-pair

reactive network,
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2,2 Reflection and transmission coefficients - The reflection and
ﬁfénsmissi§n coefficients of a twoéﬁerminal?pair reaétive network
represent the characteristics of thelnetWOrk when one ohm termina-
tions are comnected to both pairs of terminals as shown in Fig.

2.2. The two reflection coefficients are defined by:

u
|
-

Eq Ep =0 (L)

]|
f
]

/O2=

]
o

Zo + 1 | By £ (2)

where Zl and 22 are the impedances measured at the two pairs of
terminals when the voltaze sources are short circuited. The

transmission coefficient is defined, with reference %o Fig, 2.2,

by
|22 k!
- B . | E -

The physical significance of these coefficients is best understood
by inserting two transmission lines of unity characteristic impe-
dance between the network and the terminations. The reflection

coefficient /ﬂ. is then the ratio of the voltage of the reflected

wave to the voltage of the incident wave measured &t terminalsl

for &, = 0; <2 has the same significance for terminals 2. The

~

transmission coefficient t is the ratio of the voltage of the
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transmitted wave at terminals 2 to the voltage of the incident wave
at terminals 1, for By = Os Because of the reciprocity theorem,
the same value of t is obtained for transmission in the opposite
direction,

/‘i

It is clear from the above definitions that is the per

2
unit power reflected and 't‘” is the per unit power transmitted.

Since the network is non-dissipative, one obtains, for A = jw,
2
/ol + |'t' =1 o (4)

A similar relation can be written for transmission in the opposite

direction,
) .
BRI (5)

It follows that,'for A= joo,

2 2 2
|~ -~ =1 -] (6)
and
l/ol'gl/oz'z_-l; It |e1 (7

Equation 7 is a necessary condition for the physical realiza-
bility of a reflection coefficient. Furthermore, since a reflec-

tion coefficient is a measure of the voltage of a reflected wave,




all the poles of this function must be in the left half of ‘the
complex plane; otherwise the network would oscillate without the
help of any external generator. It can be Shown (3,7) that this
condition on the poles together Wlth eg, 7 are sufficient as well
as necessary condltlons for the physical reallzablllty of a re-
fleetion caefficient. It is, of course, understood that the
refiéétlon coeff ici eﬁt of a 1umped element network must be a
ratio of two real polynomlals in the complex frequency varlable

A =0 4 jw-. In conclus:.on the reflectlon coefflclent /", of a

reactive network must be of the form;

/°1( /\) =K - /\01)(;( - ’io‘?);.‘””‘.‘(\v/\: B Aon) (8)
3 = Aplm ~ Rl R = Rpm)

where K is a real number. All /\p's have a negativé real part and
all complex A p's and A jts must be present in conjugate pairs
(the polynomials have real coefficients). Furthermore /2 ( A)
must satisfy the condition: 7 \
1 = SRS (-A) y G
Ry Az jew
Tt can be shown that the companion reflection coefficient /°2( A)

zﬁusﬁ have the form:

+1, A+ AR+ A)eere(A = Aon) (10)
(A - ’\p‘l‘)()‘ s ,)‘pg)...,..(;\.,__ Apn)

2y = (D)7
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where the ) o's and the /\p’s are the same quantities appearing
in the expreséion for /01.

Consider now the function

PUAY 2 (=N = 2y (A) 2 (= A) (1)

which is equal to /"1\2 = l/"z\z forA= jw. The poles and zeros:

of this function are arranged in guadruplets or pairs as shown in
Fig. 2.3, HNote that‘.’ all the poles and’zeros on the imaginary axis
mist have )even multiplicity. The zeros of (1l) are divided be-
tween /"l and /%, as indicated by egs ,'8 and 10; without any
other restriction but that alj. of them must appear in either /0.1
or /Pye |

The transf;tission coefficient is related to /IolAa.nd /°2 through

)

the equation:

. ,-[,7(,\)/;(-»\)

Aag w

ltl:=Jw= E:(nt(-n]p); - lf' )

Paje (12)
The ';;:oles of t must have a negative real part for the same reason
as the poles of /’l and %, Moreover eg. 12 shows that /’1, 5
and t have the same poles and, therefore, the same denominator
polynomial. It can be -shown;_@’-ﬂ that the numerator of t must be
either an “eveh or an odd polyfxomié,l. This requirement implies
that the gzeros of t must be present :‘Lnb quadruplets or pairs, de-
pending on their location, as indicated in Fig. 2.4; zeros at the

origin and at infinity may have odd multiplicity. It follows that
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all the zeros of the function [t( A) t(- A) ] mist have even mul-
tiplieity, that is, the function must be the square of either an
even or an odd polynomisl, The transmission coefficient can then

be written in the form:

_ 2 (A-Ap)(2 -/12).....(,\_;‘3)
NV v e Wy [ = W EEEr Oy e (13)

where the A 4—. 's are determined by means of eq. 1lZ.

The conditions of physical realizability for /01 do not imply
that the zeros of [t( A) t(-A) ] have necessarily even multiplicity.
This difficulty is circumvented by multiplying and dividing the
function by ‘the root factors of the numerator that have odd mul-
tiplicj.ty. It must be kept in mind, however, tha’t;, these root
factors must be carried back into /°:L and 9 as shown in J;,he fol-
lowing example. Suppése the quadruplet _of zeros at A ) /-i;, ’

- A —Ay has odd multiplicity. Then one must multiply the

—— _ A AR ) (A * )
function [(A) e(-A) | by a-a,,>u-7?:)ca+l,>u+7£;)

and the function t will, therefore, include the factor

AAYO~KLXA+ AN A+Ry)
(A-X)(2~X))

in ~which two of the roots cancel out (/\y has a negative real part),
as indicated. It can be seen by inspeétion that the function

[/al( A) /91(—&) ] must be multiplied by the same quantity as
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.[ £(A) t(-aﬁ)] » It follows that either/"l or ,AE mist contain

the phase-shift factor

A+2,.)(X+2A)
(A -A,)QA-X;)

whose magnitude is unity.on the imaginary axis. No QL-rodt will
appear in the other reflection coefficient because the zeros in the
left half plane at )&,and jg; will cancel the corresponding poles.

It may also happen that t contains a factor of the form

A+ 2, XA+ X, )AXT)A-A)
(A =2,)7 (A=)

with the eliminations shown and /‘3 contains the same factor squared.
In this case it would be impossible to detect the presencé of the
zeros of t at ~ Aand -jijfrom a knowledge of /‘i alone. The physi-
.cal significance of this situation is that an all-pass network of
unity characteristic impedance is comnected in cascade at terminals

2, with the result that a phase shift appears in both ~% and t
without their magnitudes at real frequencies being changed. In view

of this fact, the statement that either reflection coefficient de-

fines completely a two-terminal-pair reactive petwork should be modi-

fied to read "defines completelv the network apart from an arbitrary

all-pass phasé—shifting;petwork comnected in cascade at the opposite

terminals!,
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{ascade connection of two-terminal-pair reaétive networks - The
problem stated in Sec. 2.1 iﬁvolves é cascade connectién of two
reactive networks. It is, therefore, necessary to develop appropri—
ate relations between the characteristics of the two individual net-
works and the over-all characteristics of the two networks in cas-

s
cade,

Consider a reactive_network terminated at both ends in 1o§sless
transmission lines of unity characteristic impedance. Let ;7i and
6ﬁgl be the voltages of the incident and reflected waveé at the in-
put terminals, and ;72 and ﬁﬁ; the corresponding voltages at the
outﬁut terminals as indicated in Fig., 2.5. On the basis of the

definitions of 4, 2, and t given in the preceding sections,

one can write the following equilibrium equations:

R =T+ v (14)
Jo=tJ1+ 3& (15)

Solving for &, and J, yields

J,

/ —
v T 2T, : (16)

i

,

i R~
A I




Figure 2.5 - Reactive network with input and output
transmission lines
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T | (18)

where -
L e
z -
7| - (19)
- .72
=z z

Bgs 18 indicates that the matrix[ f-lhas the property that the
matrix for two networks in cascade is the product of the matrices
of the individual networks. With reference to Fig. 2.6 one obtains

without difficulty by matrix multiplication

: Lign
t = T (20)
o e (&) |
1 :/al- 4-» lv T '/O?_' /‘l" | (21)
(£m)?

/02 = /azl.l + /021 l _/02' /al“

These equations are the desired relations in terms of reflection
énd transmission coefficients. The factor 1 -,Aa'/‘i" results from
the muiltiple reflection at the junction of the two networks. The

other terms appearing in these equations have an obvious physical
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significance from a transmission line point of view,

2.4 Method of attack of the problem - Before proceeding to the mathe-

méficél éolution of the physical realizability problem, it is
desirable to give some thought to the physics of the problem hoping
to get some idea of the kind of results that are to be expected,
and an indication of the proper mathematical approach. Consider

.

then the system represented in Fiz. 2.6, and let K'Y be the reac-

tive network whose characteristics are fixed by the given impedance
22 while N" is the arbitrary matching network (it will be noted that
these defiﬁitions imply a reversal of the original system as repre-

sented in Fig. 2.1). The first question that one is likely to ask

himself is: are therevany characteristics of N! which must belong
also to the whole network N, irrespective of N"é A partial answer
to this question is suggested immediately by'the rhysical structure
of the system. If t' is zero at a real frequency, that is, at any
point of the imaginafy axis of the A -rlane, then a wave of that
frequency traveling from left to right would be completely stopped
by N' so that no part of the wave would come out of N or even
entéf it. It follows that any point of the imaginary axis which is
a zero of the transmission coefficient t! must necessarily be a
zero of transmission for the whole network N, and, therefore, must
be a zero of t, Furthermore, the reflected wave at the input ter-
minals cannot depénd on N" if no part of the incident power reaches
N,  Therefore, ,; must be equal to /‘il for any value of A = jeo

for which t! is zero.
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It is natural at this point to investigate the effect of a zero
of ¢! at real frequencies, whose multiplicity is larger than one.
- It ié hard to make any definite statement in this regard on the
basis of simple physical reasoning, hOWevqr, it is reasonable to

expect that the zero will appear with the same multiplicity in t.
Moreover, it is also to be expected that, at frequencies in the neigh=-
borhood of the zero of t!', the behavior of /‘l will be,to some ex-

tent, independent of N“.‘ This idea indicates the possibility that a
certain number of derivatives of /01, computed at the zero of 1,
might be independent of N" and, fherefore, might be équal to the
corresponding derivatives of Pyt |

Suppose, now, that t! has a zéro somewhere in the right half of
the'complex A -plane.- it is clear ﬁhat the behavior of a network
for values of A having a positive real part o—, is the same as the
behavior, for purely imaginary values of A , of a network obtained
from the previous one by adding & resistance o L in series with
every inductance L and é conductance o C in parallel with every
capacitance C., It follows that if %' has a zero for a value of A
with a positive real part o , one can make a network consisting of

vassive elements such that its behavior for A = je i3 identical

to the behavior of the original network for A =gy + J=. The zero
of transmission of this new network lies on the imaginary axis and
one can apply to it the results obtained above. These results are

thus extended to zeros of t! lying in the right half of the com-

plex A -plane. If g; were negative, that is, if the gero of t!
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were in the left half plane, the above line of thought would be
/;ncorrect because one would be deaiing, in that case, with an equi-
valent network containing negative resistance, that is , power sources.
It Wiil be shown later that zeros of t! lying in the left half plane
ére not necessarily zeros of t. One mﬁst remember, however, that
for a reactive network the presence of a zero of transmission in the
left half plane implies the presence of a symmetrical zero in the
right half plane (but not vice versa). Therefors, since the zeros
of t! in the right half plane must neceséarily be zeros of t, the
elimination of any zéro in the left half plane, which may result
from an appropriate design of N", is, in a certain sense, only ap-
parent,

On the basis of the above discussion, one can conclude that any
zero of transmission of the original network N', that is, any zero
§f L1, which lies in the right half or on the imaginary axis of the

)'-ﬁlane nust also be a zero of transmission of the whole network
N, that is, a zero of t, At any such zero of t, the reflection co-
efficientvfal is igdependent of N énd, therefore, is equal to /al'.
Furthermore, there is a geod indiéatioﬁ that, in the case of a zero
of t' of multiplicity larger than one, the cerresponding zero of t
willﬂhave the same multiplicity, and that a number of successive
derivatives of /‘l computed at the zero of t will be equal to the
correSpohding derivatives of /‘l!. These conclusions suggest a
definite approach to the solution of the problem and promise to be

a useful guide in the mathematical analysis that will follow.
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Zeros of transmission — Physical reasoning indicates, as pointed

out in the pr.eceding séction, that the first step in the mathe-
matbical solution of the problem should be a study of the conditions
under which the zeros of transmission of the given network N' appear
as zeros of transmission of the whole network N. Consider, f’or this
puUrpose; the expression for the transmission coefficient of N given

by eq. 20, which is rewritten below for convenience.

tlt" : ‘
- 2
1 _/21 /élﬂ ( 3)

Suppose, first, that t1 has a zero of multiplicity n at some
point )u in the right half of the complex Aplane, Since t" is
analytic in the right half of the plane, it is clear that t must
have a zero of thg same multiplicity at Ay unless 1 - 2! o " is
gzero at that point. On the other hand, any reflection coefficient

is analytic in the right half plane, that is, for g 2—" 0 and satis-

fies the condition‘/" =1 on the imaginary axis. It follows from
the maximum modulus theorem (8) that.[/‘f‘.:l for o~ >0, and, there-
fore, that the denominator of (23) cannot be zero at any point in
the right half plane (e=#0). In conclusion any zero of ©! in the
right half plane must neceséariiy appear in t with at least the
same multiplicity.

Consider next a zero of t! located on the imaginary axis at a

frequency as,. In this case the denominator of eq. 23 will be

zero for A = Jemy if /01" :;}-T , that is, since
: 2

/‘1"‘= 1, if
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P = —ﬁ;‘ On the other hand, if[f'zl\ =1for A=z jaz,, t"
must have a zero at the same point, so that in the en:‘l the zero of
£ will necessarily appear in t with, at least, the same multipli-
city. One Iﬁignt object to this conclusion on the ground that
(1—J’2' f’l") could have ai zero of higher multiplicity at A = jew.
This situation, however, is not possible for the following reasons.

If 1 -$5' P1" had a double zero at A = j, one would have:

. o
/ “
2 25 =4
P R X (25)
+ ):J edy ﬂ' <A )-J“).V
vy N PV | (26)
o 7~ )'J.Wu - d'd- .
ATJ u)y

~

On the other hand, both,} 2" and l}l"‘ must decrease with a posi-

. . A . .
tive increment of g~ as required by the maximum modulus theorem,

ard, therefore, eq. 26 ca_,nnot be satisfied. In conclusion, if &T
has a zero at a point A with a non-negative real part (o 2 0),
t has a zero at Ay w;i.th, at least, the same multiplicity.

The case of a zero of t! at any point in the left half plane
leads to the opposite result, since the denominator (1 =-ry J’l")
ecan have a zero of higher multiplicity at.any such point, withoub

t" being also zero., However, as pointed out in the preceding
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section, a zero in the left half plane implies the existence of a
'symmetrical zero in the right half plane which cannot be eliminated.
Moreover, since these zeros of transmission must originally appear
in quadruplets so that the numerator of* t can be either an even or
an odd function of A , the e;iminaﬁion.of a pair of zeros in the
left half plane at Ay andjx; requires the presence of a corres—
ponding pair of poles in the reflection coefficients as well as in
the transmission coefficient. The end result will be, according

to the discussion in Sec. 2.2, that a quadruplet of singularities
formed by a palr of conjugate poles in the left half plane at Ay
and 7;, and a pair of conjugate zeros symmetrically located in the
right half plane will be present in either one or the other of thev
reflection coefficients. In the case of multiple zeros of transmis-
sion, the multiplicity of the pair of zerocs eliminated will be equal
to the sum of the‘multiplicities of the corresponding quadruplets

of singularities in the two reflection coefficients.

The above analysis can be extended step by step to the case of
any number of:two;terminal—Pair reactive networks connected in cas-
cade, One begins to suspect at this point that any arbitrary two-
terminal -pair reactive netwprk might be realizable in the form of
a chain‘of elementary networks, each of them representing a zero
of ﬁransmission, a pair of zeros, or a guadruplet of gzeros, depend-
ing on their location. Darlington(B) showed this to be actually
the case, by developing a synthesié procedure which leads to a cas-
cade connection of sections of the four types shown in Fig. 2.7,
and their duals. Type A corresponds to a zero of transmission at

infinity, type B to a zero at the origin, type C to a pair of




1 o

L\Lo= M Lals" M3
D

Figure 2,7 - Elementary sections representing different
‘ types of zeros of transmission
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conjugate zeros on the imaginary axis or a pair of symmetrical

zeros on the real axis, type D to a quadruplet of zeros symmetrically

located with respect to the origin. The order in which the sections
are connected in cascade is immaterial as far as the physical real-
izability is concerned, but, of course, the values of the elememnts

in each section will vary when the order of the sections is changed,
This synthesis proéedure provides a further proof for the fact that
the zeros of transmission of a reactive network cannot be effectiv;ly

eliminated by the addition of another network in cascade.

2.6 Behavior of the reflection coefficient in the vicinity of a zero of

transmissioh - It was suggested in Sec. 2.4, on the basis of physi-

-

cal reasoning, that a certain.number of successive derivatives of
the input reflectien coefficient /"l gf the network N might be in-
: dependent of N" for any value of A at which the t ransmission coef-
ficient t' of N! has a zero. It is reasonable to expect, in addi-
tion, tha£ the ﬁumber of these.derivatives will 'be proporti;ﬁal to
‘ the multiplicity of the zero of t',

The logical starting point for a mathematical investigation of

this question is eq. 21 which is rewritten below for convenience.

2 4
Py = /al[+,{ln l-Elﬂz‘/fl” (27) i

If t! has a zero of multiplicity n at Ayin the right half plane,

the rumerator of the second term in the right hand side of eg. 27

will contain a factor (A~ )&J)zn. The denominator of this term :
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must be different from zero and finite at all points in the right
half of the A-plane, as already pointed out in the preceding secticn,
Tt follows that this term and its first 2n - 1 derivatives must van-

ish for A = My s SO that one obtains:

PP | (28)
-~/ [
L™ I e
A - T;: )fOI‘ e 20 = 1 (29)
A=Ay A=Ay

Consider now the case of a zero of t1 at a point jawof the
imaginary axis., One can follow the samé reasoning as in the pre-
vious case with the only difference that the denominator (1 - ! /"l")
mey have a simple (not a multiple) zero for A = j«w . This situa-
tion leads to what may be called a degenérate case, becaﬁse t1 must
then have a zerc at the same point which effectively corbines with
the zero of t!'. In fact, the resulting multiplicity of the zero of
the over=-all ﬁransmission coefficient t is, in Jthis case, one less
than the sum of the multiplicities of the zeros of t! and t" at the
same point, as indicated by eq. 23. The physical significance of this
degenerate case and the way of handiing it will be discussed later in
Sec. 2.9, It will be assumed, for the moment , that egs. 28 and 29
appiy to the case of a zero of t' on the imaginary axis as well as
to the case of a zero in the right half plane.

In the case of a zero of transmission in the left half plane /0l

and its derivatives will, or will not, be equal to /ol! and the
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corresponding derivatives, depending on the multipliecity of the
zero of the denominator (1 -/%'-%"). It is not necessary, how-
ever, to investigate this situaﬁion in detail, because the be-
haviors of/‘”:L and "'/‘l' at a zero of transmission in the left half
plane depend on the Behaviors of the same functions at the sym-
metrically located zero in the right half plane through eg. 12
and the relation/’(j\.) :/0—(__/\).

It should be noted at this poini, that the fact that /‘& and its
first 2n - 1 derivatives are independent of N" at a zero of t! of
multiplicity n is not a speciality of reflection coefficients, As
éne would expect, the same is true for any driving-point function
‘and, in mrticular, impedance. In fac*t'.,, if zli, zzé, zlé are the
open circuit impedances of the nétwork N', and Zy" is the input im-
pedance of .the network N" (temminated inﬁany arbiﬁrarﬁ impedance),

one has for the input imbedance Zy of the whole network:

_g o (m)? S
P E R T, (30)

This equation has a form very similar to eq. 27 and leads to the same "‘;j
type of results, since it can be shown that all the zeros of t! appear

in Zl;_ with the same multiplicity.,

2,7 HNumber of independent conditions imposed by N! on N — The analysis

‘cafried out in the preceding sections yields a certain number of

necessary conditions that must be satisfied by the function /"l in

order to be physically realizable by means of the two networks N!
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and N", It is desirable at this poimt to consider the actual number
of in&epeﬁdent conditions that can be imposed by the fact that N!
is specified.

Suppose the sum of the multiplicities of the zeros of t' is m;

for this purpose all the zeros in the left half plane are included,

even if some of them are eliminated by corresponding roots of the

denominator of t'. The network N' is completely specified (See. 2.2)

by the zeros of £ and the numerator of either reflection céefficient
(including the cohstant multiplier). On the other hand, the degree

d
of the polynomial at the numerator of a reflection coefficient is

equal to the total number of zeros of transmission, that is, to m.

Tt follows that m + 1 independent parameters (real numbers) are

required to specify completely ', in addition to the knowledge of
the zeros of t'.

The above sﬁatement can be checked by observing that the sections
used in Darlington's synthesis procedure (Fig. 2.7) contain the cor-
rect number of elemerts. In fact, a zero of t! at the origin or at
infinity leads to a sectioh of type A or type B employing a single
element , that is, it requires a single pa;aleter. A section of type
C, which corresponds to a pair of zeros on either axis, contains

three elements, specified by the location of one of the zeros and

by two additional parameters. A section of type D, which corres-

ponds to a quadruplet of z2ros, has six elements specified by the

location of cne zero (two real nurbers) and four additional para-

meters. The one parameter in addition to the m parameters corres-

l_l .

sonds Lo an ideal transformer reguired by the fact that both resis-

i

tive terminations are made equal to one ohm. The ratio of this
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ideal transformer can be changed arbitrarily by simply connecting
in cascade with the network an additional ideal transformer or
otherwise performing an equivalent operation. It follows that the
additional parameter will not impose any limitaﬁion upon the charac-
teristics of the network .

In conclusion the fact that the network ' is fixed will impose
m iﬁdependent conditions upon the characteriétics of N in addition
to thé requirement that t must have all the zeros of t! (the ones
in the left half plane potentially at least) with at léast the
same multiplicities. It appears, therefore, that the requirements
on the derivativés of ﬁhe feflection coéfficient derived in Sec.
2.6 lead to imposing on N a number of conditions which exceeds the
number of parameters by which N! is completely specified. It should
be noted, in this respect,‘thatuthe derivatives of'/°y and/‘i'_are,
in general, complex quantities, amd, therefore, each derivative
yields gg separate.conditions. It follows that thé derivatives
considered must depend on one another and also upon the location
of the zeros of tranémission at which they are computed;

One observes, first of all, in this regard, that any two dariva—
tives computed at conjugate zeros must be conjugates of each other,
Furthermore, the derivatives at zeros in the left half plane are
related to the derivatives at the corresponding zeros in the right
half plane through eq. 12. In‘the second place, one observes that
the magnitude of the reflection coeffiéient becomes unity at any
zero of transmissioﬁ on the imaginary axis and, moreover, a certain

number of its derivatives along the imaginary axis must vanish in
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the case of a multiple zero. This fact indicates that it might be

‘better to consider thevdgrivatives of 1n _;;i, rather than the

1
derivatives of /.

%he behavior of the funetion ln’;}_ - It is observed, first, that

the n®h derivative of 1n L can always be expressed in terms ofz‘i

: 1
and its first n derivatives., OSpecial care must be used, as it will

be shown later, when/% has a zero at the point considered and,

therefore, ln;i%_ is singular at that point. It was shown in Sec.
1

2.6 that, if the nbh derivative of ~1 is flxed by N!', the values

of the trecéding n - 1 derivatives and of /9 {tself are also fixed.

Tt follows that the nth derivative of 1n /_;l__ 'co:rhput.ed 2t the same
: 1 ,
point is also fixed by N' and must, therefore, be equal to the cor-

responding derivative of In _L_ . The derivatives of 1n 1
~3' ~

—_—

‘at any
point A, , differ only by a factorial from the coefficients of the

Taylor series for ln.;%;.aboﬁt the point A, . It follows that the
, ; 1 . :
. ‘ N
first 2n terms of the Taylor series for In 7%_ about a zero of
_ 1 ,
transmission of multiplicity n are equal to the corresponding terms

of the series for 1n

1  about the same point. This statement,
A )
of course, does not apply to zeros in the left half plane; also the

possibility of degenerate zeros on the imaginary axis is still over-
looked for the present. Note, also, that the first term of the series
is the value of the function, so that the 2n terms considered cor-

respond to derivatives of ln“;%;- uvp to and including the (2n - l)th.
24




" To determine the 2m independent conditions imposed on/‘i (cor-
responding to the 2m parameters which, in addition to the zeros of

ion, specify N!) one must study in more detail the proper-

transmi s
ties of .tht@».eo,ﬁf,,fi;cientfé of the Taylor series for ln %I;.about the
five ‘different types of Zeros of transmission;. Convenient relations
w:Lll be derlved at the ‘same time oetween these coeJ. fficients and the
zeros and poles of /4.

Consider first the cass of a zero of transnission at the ori_g,ir}‘,
and let its multlpllclt,/ be eq_ual to n. The real p'art of In ./.i_-_l.,
tha.t is, In L , is an even function of jew on the imaginary

[
a.x:Ls, since ,ol(-ga:) - /Ol(gco) For the same reason, the imaginary

part of In L. ’, that is, the phase of x is an odd function of JI/O
~1 ~1

on the imaginary axis. It follows that both the odd and the even
derivatives of 1n 1 at the origin are real., The phase of L at

~1 | Eah!
the origin may be either zero or =7 depending on whether the nebwork
behaves at zero frequency as a caoacltance or as an inductance; the
magnitude of /°l 'at zero frequency is, of course, equal to one. Fur-
ther 1nfor’rauon about the derivatives of ln/‘:,:L can be cotained

1

from eq. 4, keeping in mind that )tlz has a zero of multiplicity 2Zn

.at the origin. One has then

,_*H l/‘: | i

-0 k<«2n -1 (31)
A(i ) ”eo
It follows that
et e L =0 keZn-1 (32)
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Sinee all:  the even dem.vatlves of the phase of fl are zero at r,he

origin, it can be cencluded that all the even derivatives of ln_];.

, 1
up to and 1nclud1ng the 2(n - l)th van._sh comnletely at the origin.

In other words, the first n - 1 coefficients of the even powers of

‘)| in the Taylor series for 1n 75’-_ about the origin are identieally
1 -

zeros The eoei‘fici_eqts of the odd powers of A are real numbers
since the corresponding derivetives are real, as pointed out above,

The Taylor séries for 1In ..];_ bout the origin can then be written
1 ‘ '

in the form

. o i ° 3 an-3 oy an-1 ) |
:.-.L.J—L‘={ L+ A:’.A+A3h---r"A°A, +A A o ce s e (33)
5 an-2 an-!

The Ao’s must. be ,relat,,ed to the poles A ol and zeros Aoi of fl’

whlch ar\ be written in the form

:‘P:‘_ (’- ——X/— on).”“ (/ A_)
Fi== T a X,_ A )(/- o..)

Afl /\Pl

(34)

The logarithm of each root factor can be written as a Taylor series

about the origin as follows: -

(35)

. " AN, L (2 ).
(- 2)e A e () e F (R
»QQll;e,c:b-i‘ng’ ﬁhe terms Wiﬁh the same power of A in fbhe series for all

root factofs yields

WARY RO I ZA Z/l A+ Z/\;:

s +; .
! g < | (36)




_ (24%+1) —(24+1) |

/\04‘- - Z-A/-J (37)

I

Y S - - (integer kg,n) (38)
Z-)u *’a“_z—/\ﬂi ‘ |

Equation 38 is a conseqguence of the fact that the In.etwork has a

zero of trQnSnlj.ssion at the origin with multiplicity n. Equation

37, “on the other hand, yields a set of n equations that must be satis-
fied by the zeros and poles of A, since Alo, A0, eess -A%n - 1 must
be the same for P ‘and, Pq's Since the ,\.’D’s and the A  's are
present in conjugate pairs',"the A®1s are evi&ently real mﬁhbers, a8
it was 'pointed out before.

-Consider next the case of a zero of transmission at infinity with
multiplicity equal to n. To obtain the Tayloi- series for 1n 73;;
about the po:.n’c. at infinity one must first make a change of variable,
such as 7 = —+- which £rénsf6rms the point at infinity of the
pla.ﬁe into the o;-igin of the Z plane and vice versa. Then one pro-
ceeds exactly a,s-iﬁ the previous case; the inal result.s, can be
wrif.teri by inspectiqn. |

o an-3 pe0 an-!
.-A A

_’Z‘ + ..nn-l}Z LA (39)

2a-

ey o e
""’7/’7’&«}“‘,2”‘32 *

A, o 'Z'Aif*'-fa::“ | (ko)
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s = < el (integer k‘n)' (hl)

The cbefficie'nts of the even powers of 7 are agalin equal to zere’

up to A2(n 1) included, and al‘l the A"—'-'-fé’;are real ;nmﬁbie,rs; Equa~

tlon Al result.s from the presence of a' ‘zero of transmlss:.on of mal-
tlpllclt.y n at the point at infinity of the A plane. Equatlon LO
ylelds, again, a set of n equations that must be satisfied by the
Zeros and peles of f’l, since AJ » AB ""'A n _q are the same for
£ and f’l

Con31der now the case of a pair (;f conjugate zercs of transmission
on the 1mag1nary axis at J @y and -j @y . It is not necessary to
determine the series about both points chause the coef icientsvvhf
one series are the conjugates of the coefilc;ents of the other series.

Ccms:.der then the ca.se of the Zero at_.j @,;, QOne observes, first of

_,all, that eq. i ylelds aga.:m.
0 (42)

o  keon-1 (43)

Therefore, the odd derivatives of 1n L are real while the even

Pl

ae‘rivatives are imaginary up to the order (2n - 1) included. The
v Taylor serieé is then written in the form:

LB AT (Aien) i P (A e) AV (A i) %,
(L)

5B (A w A (A=) S

N -




To determine the eoefuf_zigziept‘,s_'pf”this series in terms of the zeros

and poles of ° ; one writes %»ln‘_j%—.'»,. in the form:
_ -

~, . ‘ - - @y — ey -
L. |lw | - (/— A:J‘J"'J Agz:': (‘I /\p:--"‘:}ul( 5)

[ R N g -—j:;ﬂQ peizv).

By expanding the logarithm of each root factor in a series, then

cbllééting the terms with the same power of ( A - jed) and finally

compa.r:a.ng the serles resultlnb w:Lth eq. l,h, one obtains

~

e
Sl =,B" (46)
A J“"V :
. . J B‘:)‘” for k evenz 2n
T - =
2) - ) (A =) (47)

A ;"“ for k odd < 2n

Eqﬁa’f;ions 46 and 47 yield a set of 2n equations that must be satis-
i:.ed by fl, since t.he A *¥ 13 and the B wv .1s are the same for Pl
and P! up to and wcludlng K=-o2n-1.

In c'onsiﬁlering the case of a pair of zeros of transmission with
multl la.c:.ty n, syxmnetm.ca.l.l,] located on the real axis at teyand
— oy 4, one must remember that the re;lecm on coefficient f, may
have & zero of Qrder n, at ey, in which case 1.1; has also a pole of

‘order nj at - o5, Since the function in _!_53_—__ is then singular ab
1

these two points one considers in its place the function




f]_ A +oy (,48)

from wh:.ch +ht= two 51ngular1t:|_es have been remnoved. By multiplying

. 27 by and following the same line of thought as

in the case of 1n ,7}__ , one can show without difficulty that the

value of t-he new function (48) and its first (211 - ng - 1) der’iira—
tives at the point gy,  are independent of N, Us:.ns:r the Tajlor

series for this function, 1n _L1_ can be wrlt.ben fi naliy in the

L1
Torm;
Y N Y : oz

,e..,_ﬁf/—-n z..;a:u +A +-f¢\:"_"(,}-a—,)+/q‘ (/\“"‘u)a".,...:..

_ P 2R-NMg-2 Snan

+Ar.:n ", .:( y) +ATY (A~ o) "

e B ‘ Jh‘h.'( ‘ ) P+ aese. (49)

A11 the A” !

are rea.l quantltles since f‘l is bj def nition rea

on the real aX:LS' the:;.r exoressn_ons in terms oi‘ the ‘zeros and ooles

. |
iy ,,;} o (50)

’: ke : - & o= (51)

of 'Pl can be written by inspection,

It is understood, of course, that the zero at o and the pole at

- o must be excluded from the summations; Equations 50 and 51




provide a set of 2n = n, equations that must be sa’t'isfi"‘e"d' b}r the

zeros and poles of /’-‘1-. In addition to satlsfy'_]_n5 ‘these equat” ns,
' ID =y Ho

_ Avoy '

The case of a gquadruplet of complex zeros of transmission sym-

Iy

f’ 7 musb | clude the factor

:Lcally loca ie,d m.th respect to the origin can be treated in a

similar manner. Let.” the multiplicity of the zeros at A, and XV

in the right half plane be n, and let ny be the multiplicity of the
pair of zeros of f’l at 2‘, and —/-\:,and of the s;,metric?l pair of

poles at - A

A, and - ) N By operating on the function . .

1n

one obtains

,:: (A#) Y)\f /\_)_ Ay
b QAT (0. 32 (45 o)+

+(A B ’Qfﬂ )y)+.....+(A- {,‘Bl" ‘ )(}\_)‘y:“h.h.,f (52)-

2h~- H—! *an-hg- B

AT Y| g
CFNC TSI TSI B A, +i BT 63)
‘ Ay

o y , L )‘ N }
| -4’? Z(ho; Aﬂ)-‘ Z()P*_ )u) | = A/ed+'j B’:" ;5&)

Thg zeros ab )‘y andj\; and the poles at - )ﬁyand - /\.‘,are excluded

p) b\
from the summations. The A&‘J ¥s and B&” s are the same for @,
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and J’lf up to and including k = 2n - ny = 1 so that egs. 53 and 54

vield a set of (2n - n,) equations which must be satisfied by the

zeros and poles of P l-' In addition, fq mist ihclude tﬁe factor
n

O - - 2w)( A = Au)

e

.9 Degenerate zeros of ’oransm:x.ss:.on - I’c was oo:.nted out in Sec. 2.6

s

;t;ha.t a ,jzero .of trang ssion of N' on the unaglnarv axis may effec~

tively combine w:Lth 3 similar zero of N" in such a way that the
multiplicity of the ZeT0. of t becomes one less than the sum of the
multiplicities of the zeros of t' and t" at the same point. This A
situation arises when the denominator (1 ;/‘2' /’l“)_ in eq. 27 has a
simple zero corwldenb with the zero of t'. in other words, the
reflection coeff:\.c:.ent p 4" mst be the rec:mrocal of f’ ' and,
therefore, the impedances in the two directions measured at. the

cormnon tem1nals of l\I' a_nd N" at that freeuencj must be pure reac-

ta.nces with equal mapmtudes and onpos:.te sggns.
Two \surmle e‘,amnles are shown in Flg. 2.8 for the case of a @

ze*o at 1nf1n1ty (a) and a zero at A = jewy(b). It is clea.r from

a physical pomt of v1ew that 1n these exanmples the zeros of trans-

mission of N' ard N" w:.__l comb:.ne in such a way that the (2n - l)t‘h

der:l.vat:.ve of Pl (n is the multiplicity of the zero of t1) will

depend on N¥ as well as on H' and, t,herefore, will not ve equa.l to

the corresponding derivative of Pi's Eq. 27 shows that this is true
:\.n the general case of 'é,'rde‘g'eneratef' zero of transmission. The ex-

ample of Fig. 2.8 indicates, hoWever,- that the change of the deriva-

tive of the input reflection coefficient when N" is comnected to N!




T T

+




must: take place in a “pa;té?c‘ular-' direction. - For instance, in the

capdeitance

case of Fig. 2.8 (a) the fact that the total shunt

Cl+02 is darger than ‘the capacitance in N' alone must somehow

restrict the possible change of the behavior of the input refle

; tion coefficient at infinity.

©This situatien can be investigated by c.oﬁsid‘ering’? the (2n = ]__:)th

derivative of eq. 30, at the fre quency jewwhere t! and, therefore,

z15' ‘have a zero of multiplieity n. One ‘obtains »t»,i%ien, neglecting

the terms that will obviously vanish,

an-/ ' -1 / z
L (jee)”" | %G e L |Geen) G e 2

wrw,

Since (zg5' 4+ Zl") has a simple zero éta.J_-_ e« the last term of

55 ~'v!isz.‘ii'nd¢£érm-inéte and must be computed by taking the ratic of

/2

(72.)" . (3407
(J u: _J. “’:ﬁ)"h

(56)

e my

LGzt [ Lo
<G s T

It can be seen by inspection that, since Zq 5 is ‘imagina“ry on’ the

imaginary axis and has a gero of order n at .. = e,,, the expression

(56) is positive real when n is even, and negative real when n is




has a zero at that point. It follows that, for our purposes, %"

behaves as a reactance function, and, therefore, has a positive real

slope at A = jey. Since z,,' is actually a reactance function

ssion 57 must be positive real. One can then con-

clude that the {2n - l.)th derivative of Zy is always 'i_fncreasedwby

the last term in (55) when n is odd and is always decreased when

n is even. On the other hand

Py A
4Gw).zh~| jo‘

and the only term in (58) that imro}veé the (2n e“l)th derivative

of Zl is

+ L A 4n -21 . : ‘ ) (59)
/[~ Z * d—Gw);n"' - :
’ W = e ‘ e

N
S:ane le is a negative real quantity -foxt;%) = J @, the e#cg;:'ession
58 and, therefore, the value of the real coefficient A;; -1 is
'alwgys inereased by the presence of N when n is odd, 'a.nd is always
decreased when n is even. The physicei}, significance of this restric-
tion and its practical importance will become clear in the next

~

chapter.,
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‘ana;%ﬁffieiéﬁﬁ conditions for the physical realizability

2,10 :N:ecess"a, 1

- The analysis carried out in the preceding sections has led

ﬁo&thehfbﬁmﬁlaticn of a mumber of necessary conditions that:ﬁnéﬁ; 
be satisfied by the functions representing the network N in order

to be physically realizable by means of the given network N! and the

d in cascade. These nécessary condi-

arbitrary network N' connecte
ﬁioﬁs'éfe"SummariZéa below for convenience.
“With reference to Fig. 2.6 all the zeros of t', that is, the
serés of transmission of the given network N', which lie in the right
half of the A plane or on the imaginary axis must appear as zeros of
t, théﬁ‘is,”éé'Zerds of transmission of N, with at least the séﬁé
mﬂiﬁipliéiﬁy aS'in’t*; ‘Moreover, a certain nuiber of coefficients
ofjthe Taylor series for 1n _L_ about each of the zeros.of traniis-
sioﬁ meritioned above must be §QUal'to the corresponding coefficients
for 1n _l;', or, in other words, must be independent of N'. The
réSﬁItinélnumber of real quantities independent of N" is equal to
the multiplicity of the corresponding zero of transmission, in the
case of a gerc. . located at the origin or at.infinify:(éqs. 33
and 39), to twice the multiplicipy in the case of a pairwof Zeros
on either the imaginary or the real gxis‘(eqs.'AL and A9L'to four
times the multiplicity in the case of a quadruplet of complex
zeros (éq. 52), ' _ . ~ |

If & pair of zeros of ! at -Aand = X, in the left half plane
is partially or totally eliminated by a pair of poles of t! of
multiplicity n, located at the same points, a number 2n°,of these

real quantities independent of N" are missing. In this case,




hles

however, an equivalent number of conditions are imposed by the .

fact that g, must have a pair of poles of multiplicity n, at - A,

and - ), and, therefore, a pair of gzeros with the same multiplic
at A,and A, . The case of a degenerate zero on the imaginary axis
does not lead to any special difficulty, as pointed out in Sec. 2.9.
The total nurber of comditions imposed by £)! and P (in addition
to those stated above) is thus equal, in all ..1éases, £é,tl}g sum of -
the multiplicities of all the zeros of transmission of %!, that is,
to m, as’defined in Sec. 2.7. These conditions can be shown to be
independent as follows.

It was pointed out in Sec. 2.5, that any two-terminal-pair reac-
tive network can be const.i'ucted as a chjain of sectigns each repre-
senting a simple zero of .transmiggéon,, ; pair of zeros,. or a guad—
ruplet of zeros; zeros of multiplicity n are represented by n
similar sections. The order in which the sec’c._iéns representing dif-

_ ferent zeros are connected is immaterial as far as the physica'l,.,
realizability of the network is concerned. One can then divide
-th‘e_, network in two separate parts.in cascade, of which the s,e.co;;dﬁ,_,v_‘
one vcon‘t,a.ins.»all and only the sections representing a particular
zero of transmission. These tgm parts could be_‘identiﬁ;g d, for the
purpose of this discussion, with H! and N" of F—ig: 2.6. It follows
that all the coefficilents ,consideféd_}above,_, ;:thﬂ result frpm deriva-—

tives of In '—l- evaluated at the zeros of transmission represented

1 :
by N! are independent of the coefficients resulting from derivatives

-~

of 1n --l— evaluated at the zero represented by L". It can be concluded,
thus, that coefficients related to different zeros of transmission




(not of the .same pai_r or guadruplet) are independent. A §imilar

iamcedure-vca,m be applied to the coefficients resulting from suec-

cessive derivatives at a zero of multiplicity n. In fact, the coef-

ficients resulting from the first 2k — 1 derivatives depend onl

on the first k section. The zeros and poles of the reflection ecoef-

ficlent which result from the elimination of zeros of transmissioch

in the left half plane, can be taken out first in the form of all

pass sections. Finally, the elements of the kt’h section of a par~

ticular zero can be used to vary -independently the coefficients

resulting from:the two corresponding derivatives., In fact a section

of type A or B corresponds to one coefficient ’(Azk - 1), a section

of type C corresponds to two coefficients (App _ 1 and Ay _ 5 or

Boy - 2), a-section of type D corresponds to four coefficients

R(Agk ~ 17 By _ 15 Aoy _ o BQk'—Q)" It was pointed out in Sec.

2.7 t.ha‘ﬁ ;,e,'ac,h‘., of these sectibng has & humber’ of elements just equal

to the number of corresponding coefficients plus the number of real

guantities (one or two) reguired to locaté the zéro of transmission

represented by the section, One can show in each of the four cases

by means of simple examples that the A's and B's can actually be

varied indepen&iéntly by readjusting the values of the elements of

the corresponding section.

It can be concluded, therefore, that the conditions for the -

phyéical realizability of the network N (when MN' is given) which are

stated above are independent of one anbitﬁer».- On the other hand,”

these corditions are equal in number to the elements of the»netWofk

NY and, therefore, specify completély N' apart from the ratio of an




ideal transformer and from the sign of the reflection éoeffficient
fl' wh:.ch s:.mply dlfferentlates N' from the reciprocal network.

To prove that these condlt:.ons of phJs:Lcal reallzablllty are |
suff:.clent as well as necessary one needs only to observe that a‘? :
the netmrk N deflned by fl can be constructed in two parts, the“:

flrst oi‘ wh:.ch conta:.ns all the sectlons representlng the zeros of

t":ﬂ.i If the eorrect sign of ‘ﬁl is used, this first vart, Wlt"l an
é.tpropriate ideal transformer at the output terminals can be identi-
fied with the glven network N!', because all the vsections'contained
in 1t are completely spec:.fled by the condltlons of phvsn.cal real:L-
zab:x.llty 1mposed on fl’ which on the other hand snec:u.fy completely
N'.‘ The second part of the network is certainly physically reali-
z;.ble because it con;‘ists of the sections representing all the zeros
of transmission of N which a.ir‘;e not zeros of N!

In practice, it is not necessary to determine the elements of the
network N' before proceeding to the synthesis of' N", The reflectién
coei‘l’ieiegt P 1" can be determined from 715 pl',m,ﬁzi‘ and tt-

(vhich are known) by means of eg. 27.
" ( ool
VAN B (60)

el {tf 3
R +j f!'

'I‘his'ééuation could be used to prove directly that the above condi;
tlons of physiecal reallzability are SUJ.IlClent as Well as necessary, .
if one could sHow that, when these conditions are satlsfled by "‘l’
/jo ll, is smaller than one on the imaginary axis and all the poles

- .

of £ ! lie in the left half pla.ne. Such a proof, however, could
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not be obtained by the author up to this time.

£

Flna.l remarks - The prvced::.nb sectlons present a complete solutlon

to the phys:.ca.l roallza.blllty proolefn as staued at the end of Sec,
2 l. | ThJ_s problem was shown to be equivalent to the flrst Larf ef
the matchlng proolem as star,ed at the beginning of the samé sectlon.
However, a few remarks should be made in this connection for the
saké of cémﬁlé{,éﬁéss and clarit;y. |

In a practlcal matchlnc Dmblem, tne i‘tmctlons f’l and t! ‘aré -
glven 1nd1rectly, through the reflection coelflclem, /°2' w‘nlcn in

turn is s pec:n_f:n.ed bv the loacl 1mpedance ZI_’ norma.llzed wa.t respect:

to the souree resi stance.

Fa =g a1 | - (61)

o

The netwofk N', and, 'ﬁhe-refore, fl' and t1 are completely spegcified
‘b‘y )2’, aparf; from an arbitrary 'ali—pass fietwork comected to ter-
minals (1) of N', This arbitrary all-pass network, however, can be
neglected;, because it does not produce any reflection by itself nor
does it changel the phase of any other reflection when N! is driv.en
from terminals (2). Therefore, for our purposes, N! is “ completely
specified by'ZI'J. On the other hand, one may observe that the refiec—
tion coefficient which is measured in an actual ﬁlatching problem is,
not £ but P since the source is comected to terminals 2 of N.

This fact, however, is immaterial since only the magnitude of S is




of importance in most casés and ‘fl\ = \/2\ for A= jeo, |

Horeove;kiqupgfwgre inpe;gstgd in the whole function ‘Fé’ it
would be a simple matbter to express the conditioﬁs of physical

realizability in terms of the zeros and poles of Sy since they are

1

siM§iy related to the;corfésponding singularities of /. as
indicated in Sec. 2.2.
" The fundamental criticism that can be made of the results obtained
so far is that the conditions of physical realizability, in the form
presented in this chapter, give no indication of the tolerance of
matﬁh tﬁat‘must be allpwed for a given’bandWidth. It is the purpose
Bf:thé ﬁexf chapﬁerhﬁb express these conditions of bhysical realizabi-
lity in‘téfms‘of theubehavior df‘the réflectioﬁ éoefficientvonﬁthe
imaginaﬁy axis, that is, at réﬁl frequencies. The relations obtained
wilinﬁointléut cléérly‘ﬁheqhature of the iimitaﬁions 55 the toler—

vance‘énd on the bandwidth.:




CHAPTER III

Limitations on the BehaV1or-of the Reflectlon

Coefflclent at Real Freguencies

3@1 iéénéfél'censidéfatiéﬁs - hls chapter is devoted to the solutlon

‘of the se ond part of the mtchlng problem stated in Sec. l 5.

'The approach to be followed is based on the transformatlon of ﬁhe
condltlons of physical reallzablllty;derlved in the precedlng
chanter, 1nto a set of relations su:x.ta.ble for the determlnatlon
of the theoretical limitations on the bandwidth of mateh and on

the minimum tolerance.

The first requirement that these relations must meet in order

to %e useful in a practical problem is that they should involve

the'behavior of the maghitude 6f the reflecticnvcoefficient on
the imaginary,axis of the A plane,‘that is, over the real fre-
quency spectrum. The limitation found by Bode satisfies this

condition, and, furthermore, indicates that, in general, integral

relatlons involving 1ln ~— , l might be quite aﬁoropriate forvthe
v

desired purpose. One observes, on the other hand, that the condi-
tions of th31cal rnallzaollltj derived in the preceding chapter
1nvo;ve the ‘derivatives of 1n T%r at points in the right half

of the A plane or on the imagina;y axis. These two facts indi—
cate that a contour integration of the function 1n f%T' mlght be
the anproprlate way of obtaln:l.nD relanlons of ﬁne tjpé deswred.

The logical contour of lntegratlon for this purpose is that formed

by the 1mac1nary axis and a semlclrcle in the rlgnt half plane




of radius apprédehing infinity. As a matter of fact this is just
the 'procedure followed by Bode in deriving his integral reélation.

A& maﬁhematical~difficul£y arises as soon as one considers the
details of the procedure suggested above, namely that the func-
tion 1n f%t?'hasﬂlogarifhmic sing&larities ﬁithin the region en-—
élésed by the contour of integration whenever 5 has zercs in the
right half of the )‘;ﬂane; One could, of course, modify the con-
tour of integration so as to exclude the singular points and to
prevent itif;pm.chSSing any branch line. A4 much simpler pro-
cédufe=iS'again sugzestéd by Bode's work. Since it is expected
that the final integral will involve the magnitude of /% over the
imaginary axis; and not its phase (the phase is an odd function
of w ) one can substitute for P a function £, .which has the same
magnituﬁe~asijﬁ cver"thé“imaginary axis but whose zeros are all
in'the éigét half plane. This new function is obtained from 5
by simply moving all the zeros that lie in the'right half plane
to symmetrical locations in the left half plane. This process
does not change the magnitude of the function over the imaginary
axis since it is equivalent to multiplying 8 by factors of “the
type iLJLEEg vhose magnitude on the imaginary;aXis is equal to
one, ‘

The zeros of 5 on the imaginary axis are not elimirated by the
above procedure. They will be considered, however, as limiting
cases of zeros located in the left half plane; very close to the

imaginary axis. The use of such an artifice can be justified,




or oetter a.vo:l.aed, ’}f'vfé‘llowma a correct mathematical procedure.

On the other hand, the final results themselves will provide a

good justification for this artifice, and, in any case, it will

b seen 11'ha.t the zeros of _P, must never be placed on the maa‘lnary

axis in an Aopt-:um:.m design. In view of these facis it seems reason=-

able to use such an artlf::.ce in order to prevent matnematlcal de-

talls from obscurlng the ‘main i »sﬁue. | |
Another difficulty may arise from the fact that the imaginary

part of 1ln _’1-_. jumps from +rto - ¥ when the real axis is crossed,

if /% 1s negative at the origin. To avoid this trouble it is suf-

ficient to make the function £ poéitive at the origin by changing

it$ sign when so required. The function In _L. is then analytic
i [}
over the whole right half plane and on the imaginary axis and can

~be used in the‘_k:-desirgd contour integrations without further dif-
ficulties.

Using the function 1ln _j%— in the contour integrations instead
of ln % w:j_'l{;lfresl‘ll:t ix-'ilbr:lations involving the derivatives oit
lni instéé,d of the derivatives of 1n _j-‘_ in terms of which

the cznditions of physical realizability arﬁla expressed. However,

the two sets offderiv’atives and, therefore, the corresponding '
coefficients Ak's and Bk's are very s:.mle related through their

expressions in ’c.erms of uhe zeros and poles of »» and Let

4
Fk and Gy be the coefficients for v corresponding, respectively,
to the ccefflclents Ay and Bk for £, and let A be a zero of .P
in the right half plane., One obtains from eqs«d,37s LO, 46, 47,

50, 51, 53 and 54, noting that the zeros oceur in conjugate pairs,




Z R-(Zk—*l)

Foke1 = A2k — ZoT @

o oo 2k+1
F A -2
Rkl T Rkl 2kl % i

£ the sign of A’

G? '_—‘_‘-B:“" - Z In ‘)rl L “"" -rihas been changed./ - (3)
J 1 Arl - j“’.u A . '

e it -2l Y (A 3e) ™ (coad) ()

e O - 2O gm ) ke (5)

Fo’\d " jG;V - Aé.) - ngd . Z 1in It —iar
i A~ Ay /
. if sign of A,
. has been changed

Y, i = A]ZH_'_ jBkV_E', > (A -2 - Zi(— =) ] (9)




The following four sections will be devoted to the derivation
1
(7]

of appropriaste equations relating the behavior of 1n on

the imaginary axis to the new Fi and Gy cosfficients.

Multiple zero of transmission at infinity - The coefficients

resulting from a multiple zero‘of transmission at infinity will

be considered first. Thé first equation, involving Fl is ob-

tained by integréting~the function 1n -1 over the»éontour indi-

(] . .
cated in Fig. 3.1, with the radius r of ‘the semicircle approaching
infinity.” Sinece the real'ﬁart of 1n :%;- ié,gn‘éven funetion of

o

@ on the imaginatry axis, ﬁhile the imaginary bart is an odd

funetion, one obtains for ﬁhe integral 5ver_the‘imaginary axis:

J oo

. l .
n —dije) =2
) (J=)

-J‘

To integrate over the semicircle one observes first that ln,j%_
’ °

behaves at infinity as F3 _L_ . Let then \
. - TA

A:rel‘v

from which one obtains over the semicircle

dA = jrei®ay - (12)

ES

When r approaches infinity, the integral over the semicircle be-

COMmes ; .




Figure 3.1 - Contour of integration in the A-plane .




The 1n»f egral over the whole contour must be zero because ln L
: (-3
is a.nalyblc at all oo:mts of tbe right half plane. Therefore, one

obtai

-from egs. 10 and 13

s.equablon is identical to that obtained by Bode. A simple -

computation will show that, when the first element of NV is a
shunt. capacitance, one-has
A

1= (15) .

oo

where .C is the value of the capa;citance normalized with respect
to the terminating resisﬁa.nce.

To obtain a similar eq}igtion involving 1-\.’; one must select an.
integrand which behaves at infinity as A‘;l » The proper integrand

A

is then

.'!_nm-Fl 16
2° 3 | - @8)

Integrating over the imaginary axis yields

Joe ' L
2 1 oo .
=eo” |In —— + f; =] d(je
..J'a.

(17)




Note tlkla.i:,F;° is eliminated from the rgasrilt beecause the Tunectioh

'

JwF"I ~is odds The function (16) behaves at infinity as®

Rl B | B

The integration over the semieircle vields then

,‘fa

<
Since the integrand has no singularities in the right -half plane

,\2 ln_l_.-F-l.%}d/\ -3 F; dy = - J7F4 (19)

one obbairs:

The equation for the (2k + ].)th coefficient is derived in a

ilar manney by integrating the function

(21)

One obtains, therefore, in the general case:

.. 1 ) kvr A 2k
o™ It dwm (1) FZkl_(l) Dty 2k+lZ.A 1 (22)

ST "2
0 . . ‘),‘\4“‘

‘

3.3 ‘«Iultlple zero of transmls sion at the origin -~ The equations per-

talm_ng to a multlple Zero of transm:.ss:.on at the origin will be




56.

derived next. To obtain these equations a function must be used

which has an apbropriate singularity at the origin, and whose even

part on the imaginary axis is proportiomal t,b In -7];—,- » Because
[-]

of the singularity at the origin the contour of integration must

be modified as shown in Fig. 3.2, Consider then the function

1 4.
=z o

; (23)

L
2

When M approaches infinity, this functionh approaches zero as a
ﬁegat_.ive power of A equal, at leést, to two, Ifa_follows that the

integral over the semicircle or radius approaching infinity ig

!

s

Therefore, the integral over the” Semicircle around the origin

zero, When A approaches zero the function (23) beha_ﬁes as

yields, when the radius r approa.chés ZEero,

L 1 o F
jé,\z ,,%“-3 _/

T

LJE

- O

dy = jsr*Fi L " (24)

——

2 .
For the integral over the imaginary axis one obtains

-Ja>o Jao o .
1 1 : 1 1 ; B 1

-1 1nld(iw)+ | = Int d(jw) = =-Rj [ L. In—=—dw(25)
w? 5 w? % w? ,)’,I :

Since the whole contour integral must be equal to zero, one ob-
tains from egs. 2/ and 25
haet | -

1 1 g _9 | ,° Ty =1
— 1n de =L F = Ay -2 A . : (26)
o 2 /}7’ 2 lv 4 'l 21: ‘ri







The.integral over the large semicircle will still vanish and the
integral over the imaginary axis will yield

a0

Q
PER

Integrating over the semicircle about the origin yields




58,

1 :
: %

yields the general equation

l ’Inl —_'kro ——k‘r
SReTy Py 0= Y E e = 2

o 5 ’ -(2k+1)
[A2k+1 : R o

3.4 Pair of conjugate zeros of transmission on the imaginary axis -

Consider now a pair of zeros of tranSmission with arbitfé.ry mil-
tiplicity, located at # je, . One must use as integrand, in this

case, a function which has poles at + jw,, and whose even part

is proportional to 1n on the imaginary axis. The sirqples’c:

151
function of this type is:

[’ 1 1 1 JR e, 1 »
- - - - 1n = — In P
A- Jay A + J@y ./;, )2 4’%2 PO (32)

e

The contour of integration must ::vbe modified ac,_cof&ing}.y to avoid
ﬁhe singular points as shown 1n Fig. 3.3, .‘

The integral of 32 over the lé.rge semicircle vanishes when
theb'ra@;}. 1s approaches infinity, just as in the case treated in
the preceding section. In the vicinity of the point jw,, the

integrand behaves as jG:” (- jwy)-l. Letting

X =jwy = re*¥ (33)




wdog )

in the A-plane

Pigure 3.3 - Contour of integration




L

one has over the semicircle of radius r

d) = ety (34)

The integral over the semicircle about the point -j «w yields
the same result since the function behaves in the vicinity Qf
t.hat T;pomt as -( 3G, “WIA+ J«.:_W "l..f "‘he 1ntecrral over the
mglnary axis mll 1nvolve only the even part of the 1n'eegrand,

as in the previous cases, yielding thus the value

by [ 1 Ll ge - (36)
%2_“,2 If”/ .

Since the vhole contour integral muist be equal to zero, one ob-

tains from 35 and 36

P
1 - (__)2 In '_‘d(av:y =- % CQ (37)

/P:

‘To derive the eguation :.nvolv:\.ng fl ¥ one integrates over the

same contour the funetion




-integral

r the large semicircle vanishes again, and the

integral over the imaginary axis yields:

In the vieinity of the béint; Jw_u, the integrand behaves as
JG?( A - Jwy)"z_,_ F{o"(,} - 3, y=L. The integral over the

semicircle becomes then:

y
E X
F, 7 [ dips
LA
-2

One obtains in a similar manner for the integral over the semi-~

»Ev;:;;@rcle._,abaut the cénjugate point =~ jJwiy

(41)

It will be noted that the terms in egs. 40 and 41 which are pro- .
pox*bional r~1 have opposite signs, so that the contribution of

both semicircles together remains finite when r approaches zerc.




’é‘ing on functions with higher order poles.

-l

e derived in a similar manner by opera-

One obtains successively

L a2 ggazg;" (h3>




and

(48)

(49)

-

" The Jf‘irst‘ six M"weighing fanctions" g;;;) and f;{{‘/ 1 are plotted in

. 3.4

“ ‘resulting from a zero of transmission atoy, on the real axis, one

" can use directly Cauchy's integral formula, in conjunction with

the contour of integration shown in Fig. 3.1. Th

takes the form

1 1 1 20 1
- In = = , 1n —=
A=y Atoy P QR =-,2 A | (50)

The integral over the semicircle vanishes when the radius approaches

infinity, and the integral over the imaginary "a.xis yields

hey [—L _1n_1 de& B (51)
,.pz, + w2 [ A I :
o . )
N ’ T .
The residue of the pole at the point Ly is F, « It follows that.
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Figure 3.4 — Weighing functions for a zero of transmission at ju,
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1+@? )4l

o (52)

o]

k3

The next equation is derived by operating on the function:

S S | In L -2’\ +a_u27‘ In —& .
(A -3 ) (’;\‘,a;,)‘? 2 (A __%2)2 ’f,, SBB)

\

“One obtains by means of Cauchy's integral formula for the first
iaegivétive than anaijtic function |
oo

w AR .
l—( 1 d’a’"‘ z- Ff‘/
2

[1+< ] i Bl s

The other equations can be derived in a similar manner using
functions with higher order poles atéﬁ,. The general form of

these equations is:

o7 1 o (kT _ kg ‘ ‘
lﬁk#m%n 7TF;T dx = ( 1? S ?k (55)

where

x = =2 (56)




Figure s.5 - Weighing functions for a zero of transmission at 0y




(L + jx)k‘ £ J_)

'ghlng functlons fk -are plotted in Fig. 3.5.

/ :Lr of conjugate zeros of transmission in the rivht half Dlane -

The case of a pa:.r of congugane Zeros of transmlssn.on in tne
ra.ght balf plane at A a.nd ) 1s trea.‘c.ed Just as the case of a
ZETO On the real a.x:.s, with the only difference that there are
two. conJugate poles within the contour of integration. The first

equa.’clon ",.s obtalned by :Lntegratlncr ths= furiction

/1 - 1 1.1 1.
[(?f’:)u ’\*./‘,u-t(i"zﬂ ,,,f/‘.'.')y) ln»f" )

2\ 220 \in 2 M2+ 2, - A5

)‘2 )2 )23 E= AL 2() ,/\ )*’)Jh £,

—

The residues of the integrand at )# and ) \, are, respect tively,

Fo + ijQma‘.nd Fo - JGO. Qne ‘has then:

Kl

J[l-l- x2J 1n —L  ax = Y’F}")
) Re)
1212885, |l 2

(o)

where

x-_-_c-.?




g the function

D2 MED) - ,\v() ) L
~ | A‘*:"-a u 2,73, )*/hul“ s

(61)

In this case; the residues of the :‘integr-‘aﬁd at A \, and )\‘, are

F_+ ,,;]Gg and ~Fg + ?-Gai-'

re;pectlvely > One obtains then:

(62)

The neﬁ*.;ﬁ’wb ,_quations are derived by means vof the functions-

/ 1 - 1 4.( 1 + L -1n —&- (63)
(u -0 i n\;)’?“) (A f'&)z 0\*7)2) | {.’ |

o1, 1 1 .1 wmi (e
)_( @ -'A')z_ (/\-w\y)z) (()---):)2 (h+Ty)2) 5o

e

By proceeding in the same manner one obtains

(1_ 242 - (l+8J2 sm = (-2 A

: “%[A,,?f” (65)




(1 _é(i_o‘ )X + xl!-)z

ln__];._ = ( l)k 7"/)!21{

2k /f,’}

el

g

B} (_1)1{ g./)‘)/ 21(4—1

IO e R A SO )

(1)

)
e
=
1
/i‘\
’—J
M

i,

B [ [ + 3G/ o o g0 s /1257 -

e

(-1)" Effj('x+ﬁ:é'—")] e [-6+3 <x-m] _d(m)
| ")

(+ o : s .y
} { J-!‘j(x-)ll-ef’ﬂ (es) [—J+j(x+ﬁ—_ﬁa 2(k 1)

The first three weighing functions of t;hé»f and g type are plotted

in Figs- 3.6 to 3,11 for J - 6.5 and e - 0.05.




- . | "
| | | T
4 6 8 1.0 1.2 1.4 .6 1.8 20 22 24 26

Pigure 3.6 - Weighing functions for a zero of transmission at ?sy
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Pigure 3.7 - Welghing functions for a zero of trensmission at Ay,




Pigure 3.8 - Welghing functions for a zero of transmission at N,
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Figure 3.10 - Weighing functions for a zero of tra.némission at Ay,
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rpretation of the results when all the geros of transmission

of N! are at infinity - The conditions of physical realizability
“havé'&hbeen ﬁranéfenm-d, ) 1n the preceding_seéf’c{.'ions, into equations
involving the integral over the frequency spectrum of the return

1 -

loss (1In ) miltiplied by some weighing functlon, the A and

B cce:if}iifieiém,s‘_and the zeros of Jthat lie in the right half

The following sections will be devoted to the physiecal

on of these et;luations amd for the purpose of de,,ter-'-

mining the ﬁfheor_etical limitations on the bandwidth and on the
toleran'qg of match. |

Owing to the complexity of the general problem, the special
case of a network N!' having all the zeros of transmission at
infinity will be C‘oﬁsidered first, It will be remembered that
a notrork of this type cm aliays be realized as a Lovwepass
ladder structure of the type shown in Fig. 3.12, or a‘é its dual

(starting with a shunt capacitance). The coefficient AT depends

én 1, alene, A; depends on Ll and CZ’ A;-o depends on L1, 02 and
I..3 ,- and so forth:: The equai:iofns«;de-rivvec;imin Secs 3:2 are rewrit-

ten below for convenience.
o0

1 ] deo =°§[Al 2 é/\m (73)

(

(74)




Figure 3.13 - Optimum frequency response




(75)

The )\ 's are the Z°ros of .Pthat. lie 1n the mght nali' plane.

The left hand s:Lde oi‘ the first equatlon renresen‘os the area

under the curve 1n ,)]5‘ versus frequency. T‘ne coefnclent
O i . , . .

A”f;is fixed by the'first element Ll of the given network I‘I’-.

The ) ’s are arbitrary quanta.t:l.es subgect 01f113;r to two restr:.c—

tions, name;l,y, that their real parts must be positive and that.
they must be present in conjugate pairs. It fQ:L'Lows that the
summat.lon :Ln eq. 73 is always real and positive 80 t.hat A?f sets

an upper l:.mlt to the area represented by the 1nte°ra.l. Bode -

argued, in thls regard, that the best poss:.ble utlllzatlon of. the

area»ava.;ilable is obtained 1rzmen in is kept const.ant over

,l

the frequency spectrum. Thls s:Ltuat:Lon :|.s 1llustraued for the
low-pass case in Fig. 33.1,3. If wis the desired bandwidth

(w =<3 in Fig. 3.13) the best possible tolerance is given by:

£

}p‘:{‘ mex  Rw. < :

-3
o~
e

“This optiimim tolerance can be-approached indefinitely when Ll
is the only element of the given network W', that is, when eq. 73"
is the only equation to be satisfied. However, if more elements

are present in MY, all the corresponding equations will have to~

be satisfied sjﬂﬁiltaneously. It is evident that the funection




vljﬁvLﬁhisha3ield5.?he,bestxtdierange~ﬁill.npt;»@n~gﬁneral,
mest these requirements. Suppose, for instance,-that N has .
two elements; L, and Gy, that-iS; has a zero of transmission of
multiplicity eéual to two. In this case egs. 73 and 74 mﬁst

be satisfied-Simnltaneouslyp‘ Ifz§20tangular,functibnsmhichﬁi

yields the optimum tolerance is used for 1n;f_i;'ﬂin,eq@<7hi?'
the value of the integral may be larger or smaller than

in generatl
- Z 45 (45 is,negative). If it is smaller, it is-a simple mat-

ter to ;‘_A_x_"edu_qe, the _m&gﬁiﬁ&dé of A';. In fact it was found in Sec.
2.10 that .j_n'the case of a degene'raté zero of tra.nsmj.ssion_the'.
va]iue of ‘A? can be 1nc reased_; that is, its m.agﬁitude can be de~ : :
creased. Physically, this operation amounts to starting the
matehing network ¥ w:Lth a shunt capaéitance which has the ei‘fegt
of increasing the value of the capacitance G, in N'. In other
words, when the integral in eq. 74 is smaller thanv“- 72_’:21? s the
capacitance Cp is smaller than the capacitance that would have to
be pla,-égd@c'oss,,the terminals of N" to obtain the optimum match

- T

if :.Igl,,ya;nge,.th.;e,«aonly,»eleznent of N'.

.'Qf the value of the -integral 3.n eq. 74 is larger than -%"A; »

, is too large, the optimum tolerance determined .-

that is, if C

2

by A; carmot, be ‘fx:ea,chédv,’, even theoretically. One observes, then,

“that the value of the swmation in eq. 7k can be either positive

or negabive. It follows that the magnitude of Ag can be increased
by int_;mdﬁcing appropriate zeros of P,in the right half plane.

These zeros, however, reduce necessarily the value of A‘?f, so that




70

eg represented by :_‘;é integral in eq. T4 is increased at .

the ar

the expense of the area represented by the : ;,f,v,tefgra;i\’_ in ¢ G 734

The optimum behavior for 1n ,sl= i is, in any case, of the rec-

Using the case of Fig. 3.13 as an example, let the maximum

value of 1n ,; - be squal toZ K. It will be ehown later that .

such an ideal ﬂlow—pass behavior can be approached in thé limit
when the number of elements in the matching network approaches . -

infinity. One obtains from egs. 73 and 7L .

w2 S )

' The A ri"-s mist be selected in such a way as to maximize the value

of K for given w, iy and A5+ Tt will be observed, first of
: . A—A
all, that .P’ can be rmltiplied by any factor of the type ’;‘ , Tr
+
r.

on the imaginary axis.

1

| | [

The behavior of 1ln- ’ g': ’ and the values of the f)lri"s can thus
0 :

be controlled independently.

without changing the value of 1ln

One observes next that, since the summation in eq. 77 must be
made positive, both equations can be gatisfied by using a single
zero located at some point )r =o of the positive real axis.,

Cn the other hand, maximizing K means making Z.Ail as large as
_ i




L.

3

possible while keeping Z- Api @S small as possible. lNoreover,
i : . N ,
if @e)B > 0, @.e) 3i , and Z{ﬂ,e-')\?,i < (Zv;.i_)g’, It

follows that the maximum value of K is obtalned by us:.ng a smgle

zero located at o~.. Egs. 76 and 77 become then:

Elmna.tlng o-,. and solving the resultlng tuhtc ylelds the maxi-

mm theoretlca.l value of I<’ as a f.‘unctlon of the cut-oi’f frequency
“Jﬁ?“ -The mam.rmm pass-band value of ln 1"
3:1L as a fmet_;i‘gr}_ of :’-i; for dlffexentv values of the Da.rameter

T}:e" curve K - ::1 for*ns the boundary of the region in

tehe the ontlmum des:.ﬂn iy obtained bJ s:.mply increasing the

is plct.ted lﬂ’flg-

. " ffeiue of the second element. X
~When the 'ﬁet;wor;'ie W' consists of three or more elements the

problem of deteminihé the a.cfc_,ua.l i}alue of the optimum tolerance

- of mateh becomes much more dlfl“ cult and no general selutlon could

be o,,bta:'ﬁne‘"d,. However , a few general considerations ca.n be made

in this regard. In the first place, the rectangular fong of fre~

quency behavio:f for 1n -

A

all cases, since it provides the best utilization of the ‘areas

yields the optimm tolerance in

represented by the successive integrals. In the case of a pass~

~ band extending from zero frequency to @, ‘the equations to be
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‘satisfied take the general form: |

S okl N pu 82kl
T K 2 (A1) [(2k+l)A2k+l 2 g Rri ]

~

The pavameter k in the last equation of the set is equal to the
 nuitber ‘of elemerts in the network N', It seems reasomable to
expect that the number of A_;'s for which K is & maximm will =
be equal, in general, to the minimm nuzber of ) .'s required
for ‘the ‘solution of the set of equations, The reasoning followed
in ‘the case of two -eletients, however, c"ould>_n'ci>t» be extended
rigorously to the case of n elements. - Moreover the solution of
a given et of 1 equations; similar to eq. 80, with a mumber of
Xﬁ_ls equal to (n=1), may yield values of the )ri's with a
negéti»ve»- real parts, Such a solution would not be 'acé'ept‘é’blé?’ be-
cause the A 44's must represent zeros Ain right half plane. In

.15 would have to be used, and their values

this ease more ‘Ar:.

would have to be deﬁermine‘d‘ by maximizing the value of K.

The,'fz;l‘_l" in the last equation of any given set can be changed,

-but"only in one direction, by corbining one zero of transmission
of 'ﬁ" with ‘a similar zero of transmission of N". It will be ob=
served, on the basis of the results obtained in Sec. 2.9, that
the direction in which A.2.n+l can be changed is in all cases the

one which r'es@lts 4n a decrease of the area of the corresponding
integral., It follows that one must determine first the optimum

tolerance that can be obtained neglecting the last element of

the network, as it was done in the case of two elemernts, to




check whether ﬁhe same tolerance could be obtained by simply
ereasing the value of this last element.

It is .advisable, in general, fbefore;grg'cﬂeegiing: to any numerical
}.c,emémtafqim of the optimum tolerance, to determine the maximum .
value of K from the first equation alone, and substitute: it in the
lefs .:hand. side.of the other eguations. This procedure will in-
d:.cate whether each partlcular AZk Kl is t large or too.small and
how much the "mght 'hend side of the corresponding eq;atlon must h
be chanzred by means of the )| s. It w:.ll be no’ced, in thlS res-
pect, that the magnltudes of some of the A's may be too 1arge, '
and that 1t is necessary then to "spend" 'oart of the area repre—

sented by A in order to decrease ‘the value of the rlght hand

1
s::.de of the cor“eslaondlng equations.,

When the numer:.cal oomputatlon of the optmum tolerance be-
comes so laborlous as to be impractical, ore can determine without
d:l.fflculty an upper l:.m:n.t to the value of K (wh:.c h, however, can—
rot be approached) by computing the ma.x:.mum values of K wh:l.chw
satlsfy the i‘lrst eq,latlon and each.one of the other equaulons,
separately. The smallest of the va'lues of X thus obtalned sets
an upner llrm.t to the va.lue of K that satisfies all the equatlons
similtaneously. The proper _use of this and other similar artifices,
may lead to reasonable estimate of the optimm tolerance without

req_uiring very laborious computations. It is hardljf necessary to

point out that, when the network N! conteins three or more ele-

ments, the actual determination of ‘the opt:\.}mm tolerance requires

the solution of a system of algebre.icv equation of degree equal or




largetr than the fifth, ~This difficulty carmot be avoided as long

as the mathematical formilation of the,problem remains the same,

!

Tt is quite‘possible, however; that a differert

physical: approach,

‘asy for instance, one based on the time response of the net-

work rather than on the frequercy resporise, might avoid this dif=

ficulty and be more succéssful from a practical point of view,

Application of the resilts of Sec. 3.7 to other cases.- The results

Qf‘Sec.,3;7 caﬁ\bg'appgied<dirég§iy @o a number of networks ob-

tainable from.the low pass ladder structure of Fig. 3.12, by means
(9,10).

of approprlate transformatlons oi the ¢reqpency varlable

The S¢mplest type of transLormatlon is the low;pass to hlﬂh-pass
transformatlon, whlch 1nter"nanges the orlgln of the ) plane with
the poin@ gtzinfini v, and correspond to thevchange pfaya?iable
a e EREA . A S

ture with series condensers and shuni inductarnces, that is, a net-

%)

L, The corresponding network is a h*gr pass ladder struc-

Work th a multlple zero of transrL5o10n at tne orl gin. It fol-
low§ that 2 detailed study of such a network is unnecessary
because it would be a mere repebtition of Sec. 3.,7. This fact can
be readily checked by comparing the result s of Sec. 3.3 with the
corresponding results présentéd in Sec.f3.2.

T e 10WhpaSS to baﬁd—pass transformatlon leads to anotner type
of network to whlcq the resilts of Sec. 3.7 can be apblled,
namely the Band—pass ladder structure. This structure consists

of resonant branches tunad to a given frequanqyﬂqb, and can be

thqinedifrom the structure of Fig. 3.12 by simply tuning to this




_nductance ‘with'a series capseitance; and every .
ca.pa ance with a shunt inductance.  If this procedure is-applied
W-pass structure w1‘c.h a low.—pas{é band extending from zero
frequena 50 ces ¢ “the - resultlng band-pass structure.will have a:

W '—'“’2 and & mean frequency edss It will be noted that
the band=pass structure -is a special case o:f a network: with two
zeﬂr@s‘:aﬁ transmission of the same multiplicity located: one at the
origin and one at inf initye .Thigs application .of the'resultsiof
Sees 347 will be dllustrated with a numeriecal -example in the fol-
lowing chapter: . |

An a.ddltlanal ‘remarkis in-order with regard to networks with
zeros of transnission at both the origin and infinity. If the.
multiplicity'of' the -zero :ét.'the' origin is nj-and the mtﬂ.ﬁiplicizby
of the zero at -infinity is n g, the conditions of physical
realizability for:the matcﬁing network will yield ny+ n_ equa—v
tlons of the types derlved in Sees. 3.2 and 3 3. By using ah'

1 these equat.ions take

rectancular shaped functlon fer 1n ' . ' :

he forms

.(w2k+1 ) K _ (_1)k+1 E‘?k l)AZk 5 _ 5 ZA2k+1J o (51)

(w;(2k41)_w;(2k+l)) _ (DF [EZk-'-l)A - ___ZZiA;i(zkfl) (82?

where e>; and a.>2 are, respectively, the low frequency and high

frequency ends of the bpass band and K is the pass-band value of




3.9

In —% - divided by %" . To determine the maximum value of K one

[al

must..solve. smltaneously the vhole set of. equat:.ans. : I;ch_;:,ygevér,_

if @, > ey the two.sets of equations relating t0 the two zeros

.observe in this

of transmission can be solved separately. One:
regard that even if 3 appears only in one set of equations and
co 2 on.'.Ly in the other set, the 2 ,;'s appear in both sets. . 1f,

however, the oroblem is considered from a phys:n_cal point of ,view,

it is clear that the condition s, >> c.al‘ implies that the high
freguency response of the network is independent of the low fre~

guency respon - Therefore, the A, ‘s wh:.ch are sufficiently.

large to affect thé.high frequency response will be too large to

affect the low frequency response, and vice versa., The two sets

of eguations will yield different values of K for given_wl and
co> 5, and the smaller of the two will represent the optimum

tolerance of matche

General d_scuss:l.on of the results - A11 the 1ntegra.l rela.tlons

derlved in th:Ls chabter ha.ve the same genera.l form, :eresnectlve
of the loca’sion of the zero of tra rismn.ss:Lon to Whlbh they rei‘er.‘
The 3.ntegrand in the left hand s:.de cons:.sts, in all cases, of
the function ln _-3;_7. muiltiplied by a welighing function w’m_ch
deoends on the ljca"clc;n of the zero of transnu.ss:.on. The right
hand side of each equation consists of the diffe*‘ence between

a coefficient specified by the netw;rk m ahd a summation in-

volving the zeros of § in the right half ‘plane and the location

of the zero of transmission.




~.-In the two simple cases concerning zeros of transmission at

infinity and at the origin, the weighing functions are the even

powers; positive and negative respectively; of the frequencyew:s

These functions have the effect of preventing the arbitrary -

disbribntioneﬁver the frequency spectrum of the area under the

in ‘j;l - yversus ~-frequency curve. In particular they prevent
[
the - value of 1n . j]; from remaining large when the freguency:
. { {
approaches infinity, in one case, and zero; in the other case.

The W‘eai-ghing-»funetions have .similar properties in the case eof
a zeros of ~b»ra;nsmié.sion on the” mag:_na.ry axis., In the first
place_;-‘v'eahe area represented by the integral in '-‘ehév equation in-
volving A;_"V can be equal, at most - to “g.' A;w because the summa-
tion in the right hand side of the equation‘is always positive
(See eqs. 4 and 42).  The corresponding weighing function f{u J;
ﬁl@.‘a.’_&ed in-Fig. 2.4, has a sort of even symmetry with reépect
to the pointew = wj,s This would in&icate,rthat ‘thé area repre-
sented by .-AI’ can be érbitrarily diﬁded between the two sides
of the frequencyw,, Such an arbitrary division, however, is not
possible, because the weighing functiecn g;” in the first eguation
of the set has a sert of odd symmetry with vreYSpect, to the ‘point
«w zeys The division of the area is thus limited by the value
of By and bj,’che\ faet that the use of any zero of S5 in the rlght
_ half plane to modify B results in a decrease of the original
area represented by .A;_Jd . The weighing functions of higher’ -
order are, alternatively, of the even fsymmetry and odd symmetry

types and rise faster and faster when e approaches<,. Weighing




funetions with odd 'syzmnetry»afe ‘Tiot present in the case of zeros:

of transmission at the origin and ‘at infinity, because dn

i

is by definition an -even funcfion of freguency. ‘Apart from this: -

d ference, the 'wéighing vfunctioﬁfs, have the saue type Sf‘.}effectsezf"
in the two cases.

- Consider next the equations resulting from a zero of t1 ansm::.s—
sion on the real }'a'xi.s.‘ "In this case the value of the integral

in the first equat;ion'(SZ) ¢an ‘never be 1'ar~gervtha;n‘lgrﬂg' Y and
in~additidhg‘thé vaiﬁe of the integral in the second equatien (54)
can never be smaller than (-«-»2 o Al Y+ In fact the Summations.
in equatiensé and 7 (for k:g 1) are always positive. Tt will be
noted, in this -rega}d', that the weighing function £, is positive
for all values of e ; while the function f72 is positive for

‘e < oy and negative for w e (See Fig. 2.5). It follows that,
L1 is limited at low fre-

‘ :
quencies by the first equation, and at high frequencies by the

roughly speaking, ‘the value of in

second equation. If the miltiplicity of the zero of trarsm551on
is larger than one, , the areas represented by the integrals in
‘these first two equations are preventéd ‘from being distributed
arbitrarily over the frequency spectrum by equations of hlgher
order, The first six welghlno' functions; corres*oond:.ng to a
zero of transm:.ss:.on of mulbtiplicity equal: to three, are plot.ted
in Pig. 2.5.

The last set of eguations to be discussed results from zeros
of tranam:.ss:.on at complex freguencies. The weighing functions

of the fk" type (See eqs 59, 65, 71 and 72) lead to l:_m:.tatn.ons




similar to the ones just discussed in the case of zeros of trans=
mission on the real axis; they become actually egual to the cor-
responding funetiens of the f? type when the parameter o approaches
untty A

ze#d, On the other hand, the 'f.’21‘<)41ls“ reduce to the fg?c’*lwhen d

appi-pac;he 8 zZeros .-This fact is indiéated graphically by the curve

of Figs: 2,10, which i8 computed for § = -2_%. The coefficient A;“

sgt,.é an upper limit to the corresponding int-egral because the -

real part of the summation in eq. 8 is always positive. Similarly,
eq. 9 shows thauFi\“ cannot be larger than ux’l'” , and therefore

- A;" sets a.]_.,c?)wez; limit to the value of the corresponding integral,’
| The curves of Figs. 3.6 to 3.1L show that, while the weighing
f-métions of the f,}: ¥ type have a sort of even symmebry with res-
pect Lo some fregueney in the neighborhood ‘of[ X‘,l, the functions

of the gé? type (See egs. 52, 66, 71 and 72) have a sort of an

to that performed by the g s in the case of zeros of trans-

“y
2k+l _
mission on the imaginary axis. In other words, they prevent the
ooas A A s . . .
areas limited by Ao" and Al"fmm being shifted arbitrarily from
low frequencies to high frequem;j_es or vice versa. These func-
tions do not appear in the case of zeros of transmidsion on the

-real axis because 1ln is by nature an even function of fre-

i
[ 71 .
quency. It will be noted, in additieon, that the ggﬁ’s reduce to
the ng('s when ¢ approaches zero, This fact is agaih indicated

graphicélly by the curves in Figs. 3.9 and 3.]1.

3.10 Conecluding remarks - The results presernted in this chanbter are
L




obviously insuffieient to provide a general solution to the second

part of the matching problem as stated in Sec. 1.5, Only in a
nartlcularly 51mple case a numér*cal answer Por the octimnm toler—

ance could be obtalned, or a practlcal method for computlng 1t

;could be indi cated., It seems racher doub+ful thab a practlcal
metbod of determlnlﬁg tme opbtimum tolerance can be developed for
the most general case, because of the inh t dllflculty pre-
sented by the»required solution of high order algebraic equatlén.
On the other hand, the work presented in thls cqamter forms a

‘ »general theoretlcal ba31s for further 1nvestlvatlon of séec1al
cases arising 1n practlce. lMoreover, the results obtalned 1nd1-
éate clearly the nature of the llmltatlons on the matchwnu of
arbitrary 1mpedances, and, therefodre, may be useful as a gulde

in practical desi gn problems, even when a cut-and-try orocedure

must be followed,




 The Design of Slmpleﬂat chinggt@et@pgks -

Chel G-enera.l consa.deratl ons - The :LntegraT relatlons derlved in Ch. III

indleate that the :Ldea.l t: 7pe of behav:Lor for the return loss af
the 1nput term:l.nals of a matchlng netmrk is reoresented by the
rectangular shéped function used in the deuermlnat.:.on of the op—
tlmum telera.nce. .Stich a behav1or cannot be obta:!_ned in pract:.ce
because it would requlre an mf:.n:l.te nu.mber of element.s in the
ma.tchlng ne’cwork, bub can be amroz:x_mated sufficiently Well fer
pract:l.cal Durooses by means of a reasonably snull number of ele-m
mert s. In other words, the functlon represenblng ] ‘must be
selected in such a Way as to a.pprom.mate a small constant ~over
the ;:ass band and umty over the rest of the Irequency snecbrum,
~ Just as in the case of convertlonal filters. It mus_t be’ pointed
out, however, tha.t f 1lters are des gned in mos;e cases to provide
a perfect, match at a flm.te number of frequenc:.es in the Dass
ba,nd, _while this situation has to be avoided in the case of

matching networks, In fact, making In very large at any

U
| &
point of the pa.ss band leads to an inefficient use of the area

represented by"the integrals discussed in the preceding chapter,
and results, t.herefox-e, in a reduction of the bandwidth of match.
~Inspite of tn:.s essential difference betﬂeen tne characteris=:
tlcs of filters and of matching networks, the same technlques can
be used in both ca.{,_‘ses for the solution of the approximation prob-
lem. ’fhis point w:.ll be made clearer by the illustrative exa.mﬁies

discussed in the following sections.




b+ Bapehiug.of 2ion H. ool shut g ;..mef_lé‘r_wae.%,;— & s

by the dual case of a resistance shunted by a condenser. Prac-

tical problems of this type arise, for instance, in conne {

'm.th t.he broadbanding of the high frocpency response of matchlng

transformers, or when the load resistance is shunted by a stray

capacitance. A method of designing appropriate matching networks

for a series RL impedance is developed below. The same method

will be directly applicable to the dual .case of a shunt RC impedance.

The pass band desired in most of the cases mentioned above ex-

tends from zero frequency to a frequency < ; the ideal behavior

for 1n . ;  is therefore that illustrated in Fig. 3.13. Let Ll
K3
be the value of the JAnductance nomal:.zed w:Lth resnect to th

series resistance, that ‘,is_ ; divided by it. The coefficiemt Al P
which represemt s the only ‘condition'o‘,f physical realizabi}.ﬁj_tyv to

be satisfied by the matching network, is, by definition:

The maximu theoretical pass band value of 1n lj', l is, therefore,
] .

accor




The problem consists then of approaching this theoretical limit
by means of a matching network involving a finite number of ele-

mermts. It is self evident that the larger is the number of ele-

ments used, the closer the theoretical l:.m:l_t ¢éan be apmroached

Therefore, the pracblcal problem is actua]_'l.y tha.t of obtaining

the ‘best tolerance of mauch with a given number of element S

‘The general remarks made in the preceding seétian“inaicaﬁéQﬁhé

the inductance Ly, vwhich forms the network ' of Fig. 2.5,’éey be
considered as the first element of & low-pass filter, the network
N, whose input reflection coefficient is £ - This reflection co-
ei’ficiefrt cannot be measured in practice, beeaﬁs-e ti'le inductance
Iy is assumed to be inseparable from the one ohm 'v’%,erminatien;

its magnitude, hcwever,' is equal to the magnitude of the reflee-

tion coefficient £, at the obher terminals of the filter to which

the generator will be comected in actual operation.
Two types of functions are used for the solutlon oi’ the approx::.-
mation problem in the case of low-pass filtere(s’ll) The first

type of function is the Techebysheff polynomial Tn (%), which
. i (4

leads to a fuzﬁ.e‘bi:on ‘lﬁ, [ vhich oscillates b‘etﬁeeﬁ t{sfo g:.ven vaiuesﬁ
in the pass band and apnroacbes asyntnotlcally unity in the a.t— ‘
tenuatlon oand, as J.llustrar,ed in' F 4 1. The n;amxmzm pa.ss— o

band value,ﬂ’m represent s the tolerance of match which must be

larger than the theoretical limit gi{ren by egs 2. The second type

of funection is the Jacobian elliptic function which; leads to an

of
oscillatory behavior/\l),’in both the pass band and the attenua-

tion band, In the first case all the zeros of transmission are




Figure 4,1 - Frequeney behavior of lS’ll for the matéhing network'-
of Pigure 4.5 .
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st infinity so that the network will comsist of a simple ladder
structure with series irductances and shunt capacitances. 1In the
second case- z,efos_ of transmission are present ati‘ :.m’c,e fre-
quencies as well as at infinity, and, therefore, the network will
involve sections: 01"; typeVCf('Si'ep; Fig. 2.7). The filtering charac~
teristics in this second case afe somewhat better than in the first
case for the same number of elerents, because a sharper cut-off
can be obﬂainéfd.' In matching problems, on the other hand, the
aes:Lgn ‘iz:ivélving él’].iptic funections mey lead to a slightly better

tolerance, but the d:LfLerence does not seem to be worth the re-

sulting theoretlcal and 3ra.ct1cal conpllcat ,_Qns.

Determination of ..P, —~ The Tchebysheff polynomial of the first

kind and order n is defined by

Tn(x) = cosﬂ(n' cos—t x) B ' (3)

N

In polynomizl form one obtains
7.(x) = x (4)

‘;Tn*i(VXD = 2x0(x) - T, (=) - (5)
2, . .

It is clear that T,(x) oscillates between zero and one for x<l

and approaches 1"1f1n11:,f as (2 ) for x>l. in order to cobtain

the functj.on fl_)’,l one constructs first a functlon }t' whlch has




be written in the form

I =

(1K

whe re K2’ and Ez‘are"é;rﬁitfary constants. The corresponding magni-

tude of the reflection coefficient is

2

K"+ € 2Tn2(x) '

2 2 '
"ﬁ, 31'“” = o2 20 2 7
(1#€<) + € T, (x) «
The degree of both the"ﬁnmeré.tor and:the denominator polynomials
is equal to 2n, and, thersefore, the correspording nebtwork will
have n elements, With reference to Fig, i...'l, the pass-band

tolerance is given by

- (8)

' 2
For a given value of n, the constants K2 and £ must be adjusted
to minimize | A | oy, 804 to satisty, at the same time, the condi-

tion gf. physical re_rai"'ivzé.b‘ilit'y.




n the design procedure must be, therefore, the

'det.'ermination of the zeros, ) 0i? and p:ol‘es‘ )'pi’ of J'-;. " For this

purpose the funetion ’f: ’2 is rewritten in the form

sn.nh (nb)+ cosh (n smh Z)
sinh (na)+cosh (n sinh’ 12‘

Minh(nb)-sinh?(n_sinh™Z)
f_sinhz(né)-sinhz(n sinh—1z)

Further transformation of this equation yields

coshrn(s:mh 12-9)7 costh(s:th 1y +bﬂ

M cosh [n( sinh 1Z-a)] cosh E'l( 51nh lZ + a.)]
EE Y 4 s:.nh[n(smh Z-b)] s:th Ez(smh A +JJ ‘
"sinh El( s1nh z;—a)] s:th E1(smh lZ + aﬂ

(n even)

(n odd)




The zeros of this‘f}?}:function are ﬁevidently given by:
sinh|2Db J (g-omﬂ (n even)
sinh[-tb + fm] (n odd)

where m is an integer or zero. The poles are given by a similar

expression,

It will be noted that the po les l:Le on an ellipse centered at
%he origin with semiaxes equal to cosh a and sinh a, as indicated

in Fig. 4.2 for the two cases of n = 3 and n - 4. The zeros lie,

imilarly, on an ellipse with semia.xes egual to cosh b and sinh b,
'The poles @f"_ﬂ are necessarily those poles QfJ;" (i\))‘;’(-)) ‘which lie

in the right half plane, that is, a in eg. 5 mst be taken with the .

negative sign. The zeros of J‘; can be located anmsrhere in the complex

A plane. It waé shown in the preceding chapter, however, that

# A method has been developed by the author for deriving the ap-
proximation function (10) directly from the location of its zeros
and poles without any reference to the Tchebysheff polynomials.
This method of solving the approximation problem, which finds ap-
_ plication in many other cases, will be discussed in a forthcom ng
" réport of the Research Laboratory ‘of Electronics. s :




—=Sinh @ f=—
|

Figure 4,2 - Location of the poles of L?ll‘ for networks with 3 and 4
elements
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-«
the area represented by | 1n Jl’ — deois a maximum for a given
o “1r

A; when all the zeros of J;are in the left half plane. There- -
fore, the ~»»-apprepfie.t.e, Ayi's are given by eq. 14 in which b is
taken w1th the negative mgn |
».The‘..evalua;tion‘ef» the summation in eq. 9 is carried out as
'foliowsv. For n even one has
0=

1 Z SR ’ ,
= - —2sinh & lm) -
o 5 APi = -2sinh & ;;'O cos L (2+m? =

o-1 o
= - € + € Z =
>m50
-y .
<N -}" L5 I -
l_e 2 —.J l_e 2
= — sinh a e% - + e 2n = -
l—ea'n-' l-e 0
o sinh a
T sinZ (16)
2n ,
Z_()oi'h‘)"‘-’ sinh a = sinh b
- i’ =% : -
T pi° ’Sil’l‘_-QE (17)

Exactly the s}gmé result is obtained for n odd. Substituting eq.

17 for the summation in eq. 9 yields




ﬁ + . sinh2 nb cesh nb: -
)/ 2 = cosh na

l + s:_n.h na,

These two desz.gn parameters are then determned in such a way as
?to makel.r( ) a mlnlmum and sat:.sfy, at tbe same tlme,‘ eq. 18.
{KUsan«r for th::.s purbose the mthod of 1ndeterr:11naue multlplle; S,
and dlff‘erentla.tlnb eqs. 18 and 19 mth resnect to a and b, one

obtalns

cosh a -e< cosh b = O

sinh n.a cos‘l b - o sinh nb _ g
e cosh na

cos"l na

Eliminating the multiplier o< from these two equations yields

tanh na _ tanh nb
cosh'a ~ cosh b

The parametersa and b which yield the minimum value of /f/max ar




=
] "“'n‘—m is thc tra.lght line of sleme equéi
g Whlch represents the l:t.nn.tm ‘« value' of the ret
by eqs. 2. It will be noted tha.t th:.s l:Lm:Ltlno' value 1s
rnasonably Well W:Lth & relatlvely sma.ll number (n
in the m’c.chlng ne:twork. In the l:um.t 5 when n approaches 1nf1m."

» and both a and b approacn zero a.s i-_, one obta:l.vls »f~ "'m ecs. 18,[

~ which is the equation derived in Sec.3.7 for the optim

cal tolerance.

7 These curves are obtained from computa.tlons made oy Dr. Cer 116
of the Research’ Laboratory of b,lectromcs, :
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_Computation of the element values - The next step in the design.

_procedure, after having de.t..emixied the function £, is the actual

. eomputation of element values for the matching network.. For this

purpose one can follow any one of the available;.ﬁm&hesi§'.pro-,,-..

(3,12),

cedures

a discussion of which is beyond the scope of this

presentation. It seems appropriate, on the other hand, to mention

a method of \,ﬁgomgutj_;ng the_ element values developed by the author

in cormmection with the matching problem. This method has the ad-

vantage of permitting the direct and independent com'putatien of

the individual elements from the values of a and b obtained in

preceding section.

Consider then a ladder structure consisting of series induc-—

tances and shunt capacitances. The values of the A;k'f-l coefficients

can be computed from the poles and zeros of J by means of the equa-

tion

n 2kl 2k+1
= i = _1_ Lol - 22
A2k+1 T 2k+l z ( AC)i Api ) (22) .
. .=O . *

derived in Chapter II. It was pointed out, at that time, that the

coefficient Aé‘l’{‘l depends only on the first k elements of the lad-

. v )
der structure. It follows that the value of the k h element must

depend only on the A coefficients with a subscript éq,ual to or .

smaller than 2k + 1, and, therefore, it should be possible to com-

pube it directly from them. Appropriate equations have been de-

rived for k <= L, by computing successively the A coefficients for




a ladder structure with 1, 2, 3 s and 4 elements, a-nd then solving
the resulting set of equafgiéns fo; the elbemga_ntw values. The pro=

cedurle is straight forﬁ;érd but very la’o“ari‘ous;.éa'mi, theréfore, |
or‘ﬂ;y‘the final results are given here. Let the successive elements

of the ladder be Lys Cps LB’ ete., and let also:

One has for the elements




It was hoped t,l;’at:,these eguations would indicste a recurrence
formyla for the follo wing element, bub ,...t dld nob turn out to be

the case., In _uhe oartlc ular case of the functional form fer J;

dlscussed n t,ne nrecndmm sectlan, the A coel fficients can be
expressed very simply in terms of the parameters a, o and n.
Using eq. 22, and proceeding in the same manner as in the case

of A7 , one obtains without difficulty o

o =2 51nh a - s:th b sinh a2 - sinh b
A"B = =2 CJQB 3 l 3 + —————|  (30)
| in 39 in X
3 sin sin 55
£ _ ooh,, 5 [sioh 5a - sinh 5 simh 32 - sinh ?5313_‘_
5 = ¢
5 sin 2F sin 27
2n . 2n
.2 sin? a — sinh b (_,31)
. .
. sin TQE
Py 6 = | sinh 7a - sinh f?b. sinh 5a - sinh Sb .
A, = =2 uac‘ - .
- 7 sin L2 sin 5—“-'
2n
gt 33 - sinh 3ﬂb*5sinh a - sinh b (32)
in 39 in X
sin 22 sin =




Broadbanding of a matching transformer - A convenient example

iﬁor ;L;Lj_u;szt,rating;,phe.m'ethc;x'l Qf dé_éign dis,éussed above is the high
frequency broadbanding of a matching transformer. Suppose a
transformer is to be used to mateh a low impedance resistive
loadte , agenerator, a power amplifier, for instance. ‘The trans-
formeg:; behavgs at hlgh f}‘equencies as an inauctangts}L in__.;erj,_e

with the load resistance Ry. Let

L

o

be th(; ;ha.lf’power angular frequency of the transformer when the
load is matched to the generator at low frequencies. It is de-
sired to broadband this transformer so that the loss will be
simaller or equal to 1 db up to a frequercy “% = % “%+ Inciden-
tal dissipation is rieglected in this— prelimimr;} design, ‘and can
be taken into aceount later, if necessary, as indicated in Sec.
1.3.

It is comvenient to normalize the network to 1 ohm impedance

level, in which case the normalized inductance becomes

L

Ly ==
lRll

(34)

One has then from egs. 9 and 33




A transxm.ss:.on loss of l db corresnonds o a return loss equa.l

‘t.o .'79 Fig, h . shows that the optimum theoretical value of
i v L : Ac-o
.l . for L = O 66 is l 0L and that a value of 0.86
[Silmx ¢

can be obtained with n = 4, that is with & ma.tchlr\g network con~.

1in

sisting of two capacitances and one inductance. The corresponding
value of , f\ ... is 0.424 and the resulting transmission loss is’

0.86 db, One has then, for design data

=B 3[Ry = O-h2 o 6)

' The first step in the desigﬁ’is“ﬁhé'aeterﬁ&haﬁibﬁ of the para-

meters a andbforthe i:un:c;tion l_f,‘. One obtaing fr rom Fig. 4.3
sinh a = 0.615 ; a = Q.‘582‘ | (37)
and from eg. 18
sinh b = 04363 ; b = 0.356 (38)

The corresponding function 'f,’ls plotted in Fig. L.l ,vv,evrsuv_s" the

normalized frequency variable x = :;-". Using the above values in

.




egs. 23, 24 and 25 yields

) °<3 = '4'11-93 3 %5 = 3405 5 "<7 = = 435.1- (39)

The values éf the eie‘ménbséof' the matching network a.rejthég! com—

vuted by meens of egs. 27,. 28 and 29.

ransformer is specified by the zero

The turns ratio of the ideal" "i

freque;_nc;y value of ’ [ |s that : is, in this cavse',; by ’ £ » One

has theﬁ‘v

[T_0.42L _

turns fat16 : =
1 =-0.424

T = 15T (43)

The resulting network, for a 1 ohm iﬁped_ance level, is shown in

Figs 4o5(2).

The ideal -.traﬁéfo-mer is combined, in practice, with the matching
traﬁsformer by performing a suitable change of impedance level,

Suppose, for instance, that the actual load resistance is equal to
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10 ohms, the source resistance to 1000 ohms; -and ?t{ha;‘t@‘-‘t'he*“‘h'a‘:lf

power:frequency is e, = 50,000 rad/sec. The turns ratio of =

the matching transformer is then equal to ‘"'1127

value of leakage dnductance referred to the primary side fb’écoms

= 6,36, and the

16+2 mh. The resulting network is shown in Fig. 4.5(b).

. The valﬁes of the eleménts can be checked by designing the

netﬁ@;’pk from the opposite end, that is, from the reflection co-

efficient _Pz.» The poles-of - 92 are the saneé as the poles of _P

and the zeros of P, can be obtained from the zeros of F by
2 >

changing the sign of the real part, that is, the sign of b. One

mist keenp in mind, howeve

L that t"ae presence of the ideal tm.ns-»

former modifies the values of the elements when the network is

cons_tered from the other end. The same procedure can be f‘ol-

lowed in des:l.gm.ng networks vnth more than A4 and less tha.n 9 ele- v

merrbs. In th:.s case, one determlnes 4 of t_rze elenerrts by opera-

ting on 9' and the rest of them by operatlnc on _P 2°

Le6 Matching of a resonant.ant. enna - The method of design developed

in See, 4.4 can be applied also to the case of a load consisting

of a series (or parallel) tuned circuit, as ctlscussed in Sec.,

3.8, if the frequenc.y band over which the load is tb be mateched

is centered at the

esonance frequency =w,of the tuned circuit.

A practical example of”:this type is of fered by the broadba.ndi'ng

of a half-wave antenna, which behaves, to a first approximation,

as a series tuned circuit,

Consider then, a quarter-wave grounded antenna (whose impedance

Q@




is just half of the impedance of the corresponding half wave
antenna in free space) with a resonance frequency of 10 lc; a
radistion ffesistance of 300hms and a Q of 10. Tt is desired
to match thls antenna \‘to a4 50 ohm coaxial line ovér a 3 Me,
band Witin a wltage standing-wave ratio on the line smaller than
2+5. |

One beginqthéi;vdesign by trans;forﬁﬁ.ng the resonant circuit

into the cqrpg-sp’éiiaing low pass impedance ; that is, into a series

_ 300 _ .77 1076 n
2 %0

A matching network is then ,,",QeSigned for this impedance following
the pmcedwre;dei‘rélbped 1n Secs, }+.3 and Lk ‘The required cut-off

frequency for this equivalent low-pass network is

6

e = R7Tx 3 lO : 1.88 x 1036; -.\ra.d/sec. - (45)

Therefore, the basic d,esj.gn data on a 1 ohm iﬁlpedanée level are

g s
Ly = LT %10 - 1,59 x 1077 ©(46)
. 30 - o

(Lm
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- The ‘masdinum tolerable va:._'l.'ﬁe of the reflection goefficient is

2:5:5:: = 0.429. It if‘c;;i'lews that the basic, low-iaavss ,desigri ob—)
ta:.ned:z_n ﬁhie- ,pre:é:eding ‘gsection (See Fig. A.5-2) can "b:e used
alse in'this case; provided the ratiio, of the ideal transformer. -
is properly changed to tske into account the ratio of the :_radia.—
tion resistance to the characteristic impedance of the line. -The
impedance level of this network is then increased by a factor ef :
30; and finally the band-pass equivalent is obtained by tuming to

the mean: £ requency < all the capacitances by means of shunt

’ inductances and all the inductances by means of series capacitances.

The resulting network is shown in Fig. L.6s This network may be
transformed further into a more convenient structure involving
tuned coupled coils by means of which it will be possible to

nate the ideal transformer. The details of such tré.ns';ﬁ;‘;orma—

tion are well known ard do not require any further discussion,
The design procedure discussed in this section can be ex~

tended to the case of microwave networks, as pointed cut in Sec.

1.3 by means of an approximate ’_oechr;;_ique suceessfully employed

by the auth or in connection'with microwave filters (1).

Niaﬁchihg of an R,;,C-L impedance - Consider now the matching of a
load imﬁ.edéi%e ,g:@gfisisting of an inductance L in series with a
parallel RC combination. A problem of this type may arise in
connection with the high frequency response of step-up matching
transfermers, In this ecase R is: t,he load resistance, C repre-

sents the stray c‘é_;.vpacitanc»e of the secondary coil and L is the
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total leakage induictance, all of them referred to ‘the prlma.z-y
“side of the transformer. A

e theoreti calllmtatlons For this matching prbblemv"ha.fre
‘béen discussed in Sec. 3.7 and curves for the opbimum tolerance
‘are ‘plotted in Fig. 3.1k, Tt was shown there that the optimm
tolerance is obtalned by”iﬁ’éréducing'a zero of‘J'-."at apo:.nt "r
‘of the positive
negative real ath'S'. ‘The sane t’.ec‘:hriique 11 be us ed in ootaa_nlng
the approprz.aue functlon for .P when the ma.tchln,g network contalns
a flnlte "numbe:‘r' of ""élements. The saie "approximation fun‘cti on
‘can be used for’.)’ las in the case ch.scussed in the Dr-ecedlnc
section, because the addition of a zero and a pole symmetrically
Joeat dmth respect to the :imaginax;jfxazds léa§4e,s the value of |
,J”,l unchanzed for 1mg1nary values of A . Using eqs. 17 anvd"
30 the conditions of ths:.cu re lizaﬁbility can then be written

in the form

sinh a - sinh b
PO

= . . 40
soimhec s bl 27s? % G

sin T <

2n

The maximum pass-band value of ’ f’,’ is still given by

_ €osh. nb
" «cosh na
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The parameters a, b and o, appearing in the above equation

must be determined in such a way as to minimize the value di'
f.f u, max ard sat;i.sfy, at the same time, eqs. 48 and 49. This
minimization process involves the sclution of a system of trans-
cendental equations, as in the simpler case of a series RL 1m—
pedance., A convenlent graphiéal procedure could not be déveloped
in this case, so that one must resort to some kind of laborious
: ,cut-and—t.rv pr'ocedure. If, wfe\rer, an optlmum aes on is not re-
H reasonably ood results can be obtamed b"r using tne same\
b that was debeﬂhined for the matchiglg D’f‘,:?‘
a simple Ellmpedanc . A considerable amount of numerical work o
is el:umnated by follow:.ng this procedure. OCnce a, b and a"r
- are-known, . the computatlon of the element values for the. matchlncr
network becomes. a .
The ecﬁ.lations developed in Sec. A.L,. carl still be used; buté, in
this ca.se, 2 sectlon of type C wﬂ'l also be present. In fact,
the zero ‘of f at o- tobet.her W:Lth the pole at -0, require the
presence of an 1dentlcal pa..:.r of s:Lno'ularltles in both #=e P 5
and t'. A convenlent 'arocedure for computlng the values of all
the elemernts, including those representing the zero of transmission
at o is illustrated below by means of a numerical example. |
With reference é?‘-" 1 A.7 5 sunmose the normal:.zed values of -

the elements form:.ng ‘c.he glvep load 1mnedance are given by
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stray capacitance loading

=




102.

s the upper limit of ‘the frequency band over which

the "impedanice is.to be matcheds For the sake of ‘simplicity

these figures have been selected to yield the same values of a

and ‘b as in-the problem discussed in Sec. 4.5. One obtains from

If the -aj.p‘pro:"cjgnaﬁion“'fiinction-With- n = 4 is used and the same
relation between a and b is assumed which yields the optimum

tolerance in the case of an R-L impedance, one obtains

0 86 .To see how close -to
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the .t;';:eoretical limit is this value of the tolerance, one enters

the plot of Fzg 3.14 with (52) and (53). The maximm theorstical

value of In is i‘ound to be emal to 1.32, and the corres-—

;f{max"
ponding value of [E48 ax 15 04275.

‘The next step in the design is the computation of the quan- .

tities o, <55 and % by means of eqs. 24, 25, 31, 32 and 53.
In this case the quantltles —(__,.) an ( ) must be added to

the r:.crhb -hand 31des of eqs. 31 and 32 to taére 1nto account the

zero of f: at fa ar;id’vthle polé at -;?r-r. ' One obtains
K3 ==0.523 5 = 0.156 5 %% = - 0.666 (56)

'l‘he values of 03 and Lh are then computed by means of egs. 28

and 29, mth due regard to the fact that € and L must be inter-—

changed, because the first elemert of the ladder is, in this case,

a capacitance instead of an inductance,

The ratio of th 1deal t.;‘ansfoi?mer is still 1.57 as in the case
‘considere’cii in 8ec. 4.5, “But is fevérsed in direction Eecause the
dual network is being designed, that is, inductances and capac:.—
tances have been 1ntercknnged. |

To dete‘rmine ’che value of L 5? Lé and 07, forming‘ the .section
of ﬁype C (See Fig. 4.7), it 1s génvenient to operate on the re—

flection coefficient $,, that is, from the opposite end of the




network. :

The seetion o_jf type C can be represented as shown in Fig. L+8,

It can be seen 'by inspection that, if M is a positive quantity,

(58)

At the same time, the reflection coefficient of fz must have a
zero at ¢ :

and, therefore, the impedance from the L, terminals

= 0;2'

mist be cqual to 1 for A

It follows that

(59)

(60)

The + sign must be used when

ML 4
£

A+ oz
72 3
):a‘r}a*

+ is positive for
The third equation required for the determination of the

element s 1s obtajned by considering the quantity

(A+o3) (61)

wnich, accox;*{di‘ng; to the analysis of Ch. II is completely deter-
mined by Lg» M and 0_7, One obtains from Flg L8

-1 (- He) (62)
‘ 5.‘7 :

e eTor———— e e e et




Figure 4.8 - Section of type C for a zero of transmission on
the real axis

N
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The numerical value of Ag" is found to be eqal to =2. One has

then, from {5’8,‘.60 and 62

(63)
5 0.7 = Lo 63

f’ormer can be moved to the erd of the struc—
ture and ccmb:.ned w:.th the actual transfermer, s that the load

res:.}st'» ce measured from the primary side and normallzed mth

.resoec:‘ to t.he sourece resistance w:Lll be equal to 22.,:1;7 ohms.

Flna.lly, the coupllng coezflclent oi’ the transformr in the seec-~

tion of type C is made smaller than umtj by combln ng the trans-

former with the adjacent i_nductance ’Lh’ The final network is shown

in Fig. 4.9, in which the values of all the elements are normalized

~with respect to the source resistance.

4+8 Concluding remarks - The design of matching network for impedances

51’ é. more “comple:’{'natur_e than those considered above, is hampered
in mést cases by mathematieal difficulties which lead to laboricus
nunerical and graphical computations. It must be said, however,
that most of the matching problems of practical interest are of
the types discussed in the pr,ec“edir;g sections, or can be reduced
to those tjpe; by siiple changes of the frequency variable. vIn

addition, a rigorous method of design may be effectively combined ,




-
o |
s
|
|
_

%,,e

— e e e ————— e — — -

v

I
n
H
~

. H
@
~

| LOAD MPEDANCE
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_at times with a cut-and-try procedure. For instance, the fre-
quency behavior of a given load impe@ancé might be m@dii’ied first

emplrically, in such a way as to apprommte, over the desu'ed

he behavmr"of a s:.mpler 1mpeda.nce functlen for

’whlch a rlaorous des:.gn pro edure 1s avallable. In such cases

,fcomes of nr__maxy 1mnox*tance,

the des:Lgner.

551nce the techm ;

ue o he used may var con'”:.dera from one

type of problem to another.

gard to further research on the theorv of matchlng net— ¢

works, taere seems to be ]_1’0 1e hope of develom.ng a general as

_we]_'L as pract:l.ﬂal des:.gn procedure bﬁcause of t.ne 1nheren’r, mathe-

;matlca;l difficulties. On the other hand, ar dlfferent nhys:.ca.l

appro&ch to the matchlnt, problem I'u.ght""be more successful. In

partlcular, it m:a.ght be: werth 'v\hllei'to :anest:x.gate the m'oblem
from the tmns:Lent po:mt o ’ v:u.ew, that 1s, “in the tlme dcmaln, »
ra’cher than 1n the, frequency doma:.n. 5 Such an 1nvest1gat10n would
.be of great pract:.cal value 1n anv cése 3 ”s:.nce 1n many problems

the trans:.evt response, rat.her than tne sueady—sta'ce amplltude

response, :LS of Dnmary 1 Dorfbance. It must be sa.ld 3 however,

that 1ttle nrosress ha.s been made up to th:l.s time in the syn=~
thesis of nebeQrks'with a prescribed transient respense, so that
the latter problem would have to be solved first before the match-

ing problem could be atbacked with a reasonable chance of success.
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