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ABSTRACT

This mathematical study of buffering and flow control is
based on a gradual input gqueueing model. The gradual input
model has been used previously tc study data multiplexors.
Here it is extended to an entire message switched communica-
tion network.

A probability of buffer overflow analysis 1is developed
and used o determine buffer requirements. A delay analysis
is also developed. The results obtained using the gradual
input queue are compared to the commonly used :i/M/1 queue
model for message switched networks. The gradual input model
allows one to obkserve several effects due to a finite number
of finite rate traffic sources in such networks that cannot
be observed using the M/M/1 model.

Flow control is studied in tree concentration structures.
The flow control assures that buffer overflows will occur
only at source nodes, not in the interior of the tree. The
problem of finding the buffer allocation that minimizes the
probability of buffer overflow in such a tree is studied.
It is shown that in certain cases it is optimal to place
all buffers at source nodes. This is, however, not always
so and insight into this is given by example.

Determining the performance of a tree structure in which
flow control is being used is a difficult analytic problem.
An approximate analysis based on a first passage time theorem
for Markov chains is therefore developed for an example.

The approximate analysis is verified by simulation.

Thesis Supervisor: John M. Wozencraft
Title: Professor of Electrical Engineering
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CHAPTER I - INTRODUCTION

1.1 Description of the Problem

Message switched communication networks are moving
qguickly into prominence as effective networks for data
communication. Much>of the current interest in message
switched networks has resultéd from the experience of the
Advanced Research Projects Agency Network (ARPANET).

ARPANET demonstrated that a message switched network in
which messages are sent as one or more packets can be an
appropriate design choice for providing communications for
computers [RBRTS 70, KAEN 72]. There are also a number of
other packet switched networks which currently exist or are
under devélopmen£. These include the Cyclade Network

[pPOUZ 74], the Transpac Network [DANET 76], the commercial
network Telenet and the military network Autodin [ROSN 73].

An important characteristic of message- switched networké
for data communication is that they can contain buffers.
Buffers allow the network to accept temporarily traffic from
sources at a rate greater than the rate at which it is being
delivered to the destinations. Since buffers have finite .
capacity, message switched networks require flow control
mechanisms to control the traffic sources in order to
prevent buffer overflow and other congestion problems (such

as lock up problems or unacceptably high delay).




This study deals with the mathematical modeling and
analysis of such buffering and flow control in message
switched networks. The work presented here consists of two
major parts.

1) A gradual input queue model is developed and used
to investigate the theoretical buffer requirements
of a class of message switched networks.

2) The problem of optimal buffer allocation and flow
control is investigated for tree concentration
structures within such networks.

‘The message switched networks considered in this study
are of the general type shown in Figure 1.1. The networks
consist of sources and destinations interconnected by
di;ected communication channels through buffered message
switching nodes. Some of the nodes are connected in con-
centrating tree structures. The tree structures are then
interconnected with each other by a network whose structure
is not restricted. In this general class of network
structures, the trees are the "local distribution" part of
the network while the network interconnecting the trees is
the "long distance™ network. Since tree structures are less
difficult to analyze than general networks; particular
émphasis is placed on them in this study. They are the
only structures in which flow control is studied. This
emphasis 1is also supported by the fact that the "local
distribution" costs are a very significant part of the total

cost of a message switched network.
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FIGURE 1.1 - General class of message switched networks
studied




An enlarged view of a message switching node is shown
in Figure 1l.2a. Traffic arrives at a node over input
channels as an on/off process. The rate of arrival of the
individual bits in a message is determined by the in?ut
channel capacity or source rate and messages arrive in a
gradual, flow like manner. The switch sends messages to the
correct output channel according to a fixed routing policy.
The switch is assumed to operate instantaneously and in a
continuous flow fashion. The continuous flow thrcugh the
switch means that if there is no contention for an output
channel, there will be no delay in passing through a node.
Thus the node does not operate in a store and forward manner,
in which a complete message must be received at a node before
any of it is sent on the output channel.

The model thus can be used to obtain the theoretical
buffer requirements due only to contention for communication
channels of finite capacity (i.e. those buffer requirements
not due to the nature of store and forward operation, finite
switching rates, or the need to store messages until error
detection/retransmission or error correction is complete.).
While this study deals with a‘flow—through network, many of
the insights obtained are applicable to store and forward
networks as well.

The study assumes that buffers in the nodes are associated
with only one output channel. This is not as efficient as one
shared buffer pool for all output lines, but serves to make

9
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the mathematical analysis feasible. The division of buffer
capacity in a node can also be supported by the fact that in
actuél systems, each output channel might have a dedicated
communications processor with its own buffer.

As a result of the assumed buffer division and switch
operation, each buffer is as shown in Figure 1.2b. Each
buffer is fed by several input channels with on/off traffic
and this produces in turn an on/off traffic pattern on the
output channel. The stochastic model of this buffer is

called a gradual input gueue. It has been studied by Cohen,

Rubinovitch and Kaspi [CCHEN 74, RUBIN 73, KASPI 75] and it
is the basic model that is used in this studyv.

Previously, the gradual input gueue model has been
analyzed for networks of converging tree structures with
infinite buffers at each nrode. The first major part of
this study extends this model to general networks using a
fixed routing policy for messages and no blocking or flow
control between nodes. The extension also includes overflow
measures such as a probability of overflow for finite
buffers in such networks.

In a message. switched negwork it is desirable to have
flow control measures that can relieve congestion at a
communication channel by reducing the rate of inflow to
that channel. To analyze even simple flow control policies

for general networks is extremely difficult. Therefore,
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this study considers flow control only in converging tree
structures. The second major part of this study- investigates
the optimal buffer allocation and flow control for such.
structures. The flow control considered involves flow rules
that do not allow buffer overflows in the interior of the
tree structure. Therefore, all overflows occur at source
nodes where it would presumably be straightforward to turn
off sources to avoid lost traffic.

In recent years there has been considerable interest in
the analysis of message switched networks, flow control and
related queﬁeing problems. A survey of previous studies in
these areas, discussed from the viewpoint of their relation

to- this study, is given in the next section.

1.2 Previous Studies of Bufferinag and Flow Control

An early analytic study of the gueueing processes that
occur in the buffers of message switched communication net-
works was donerby Kleinrock [KLEIN 64]. Kleinrock modeled
buffered communication channels as exponential service time
{message transmission time) queues with Poisson input streams
of messages and infinite buffers (i.e. M/M/1 queues). A
gommunication network is then represented by a network of
such queues. On the basis of the result that the output
process of an M/M/1 gueue is Poisson [BURKE 56], Kleinrock
argued that each queue in the network could be analyzed by

merely determining the mean arrival rate into it. Each

12




queue in the network behaves the same as a single M/M/1 queue
not in a network. This has been formalized by Jackson [JACK
57]. Jackson showed that for certain networks of gqueues, the
steady state joint distribution for the number of customers
at each queue haé a product form. Each term in the product
is the same as the distribution for an independent queue with
the appropriate mean arrival rate. Using the network of
gueues model, Kleinr.ck considered a number of network
design problems, including finding the communication channel
capacity allocation which minimizes the expected delay
through the network subject to a total network cost constraint.
While buffer occupancy statistics were not explicitly con-
sidered in thislstudy, it is straight forward to obtain
the steady state results using the network of gueues model.
It is important to examine the assumptions that were
required to make the network of queues model mathematically
tractable. The main assumption is that if a message passes
through more than one communication channel, its length
(service time) is chosen independently at each queue (channel)
through which it passes. This independence assumption is
necessary to remove the statistical dependenceAbétween the
interarrival times and messace lengths of adjacent messaées
in the network. A second assumption is that at the time of
a message arrival, all of the information bits associated
with that message arrive instantaneously at the channel '
buffer. Clearly, if the communication channels have fi-ite

13




capacity, the information bits arrive gradually, not
" instantaneously. The gradual input queueing models to be
used in this study do not use either of these assumptions.
Some assumptions will have to be made, however, for the
gradual input mddel as well and they have some relation to
the independence assumptionvused by Xleinrcck. In éarticular,
the gradual input queue analysis requires that the statistics
of all input channels be independent. If in a general net-
work, traffic with a common destination is routed over two
paths that share some channels, separate and then again share
soﬁe channels, this will require a type of independence
assumption. The independence assumption is, however, not
made er directly adjacent nodes.

A network of gueues model has recently been used by Lam
[LAM 76] to study the buffer requirements in a packet
switched negwork when each node of the network has only a
finite storage.capacity. The nétwork is assumed to operate
on a store and forward basis with link by link acknowledge-
nent of messages. Using basically the same assumptions as
Kleinrock in a more compleé model, Lam:obtains approiimate
results for the probability of nodal blocking. due to buffer
overflow. The study also develops a heuristid algdrithm for
determining a balanced assignment of buffer capacities in

the network.
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Another study of the queueing processes in networks of
finite length queues representing message switched communica-
tion networks has been done by Borgonovo and Fratta [BORG 73].
This study approached the problem by using an exact Markovian
state space model‘to represent the dynamic operation of the
network. Such a model is feasible only for very small net-
works with few buffers because the size of the state space
grows extremely rapidly as the size of the network increases.
To overcome this problem, heuristic upper and lower bounds
were developed for the probability of nodal blocking due to
buffer overflow for symmetric ring networks. Borgonovo and
Fratta overcame the independence assumption by working in
discrete tﬁme with fixed length messages.

In addition to the above studies of complete networks,
there have been numerous studies of the queueing‘processes
associated with just one communication channel or one node of
a message switched network [HSU 73, HSU 74, PACK 74, CHU 70A,
CHU 70B, GORD 70, RUDIN 70, CHU'73, RICH 75, CHU 69, IRLND 75,
~ WYNER 74]. Most of the studies assume that messages arrive as
a Poisson process in an instantaneous manner. A study which
does not make this assumption.has been done by Gordon,

Meltzer and Pilc [GORD 70]. This study investigates the
operation of a statistical multiplexor for message switched
traffic that comes from a finite number of two state Markdv

sources by simulation. The sources are either in the on
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state or in the off state and in the on state they generate

a steady stream of characters at a finite rate. 'This is
much like the source model that will be used in this study of
the gradual input queue. The Gordon study gives the buffer
capacities needed to meet certain probability of buffer
overflow requirements. The average character delay throuch
the buffer was also obtained.

Flow control in a message switched network designed for
computer-communication became a toéic of interest during the
design and subsequent operation of the ARPANET. The flow
control mechanisms used in the ARPANET are discussed by
Kahn and Crowthet [KABN 72]. Two basic mechanisms are used,
one for source to destination flow control and one for node
to node flow control.

The source to destination flow control is achieved by
defining a link to be a unidirectional lcgical connection
between users of the network and then controlling the number
of messages ou£standing on a link at any one time. In
ARPANET, the rule used is that there can be only one message
outstanding on a link at a time. This rule is enforced by
sending a "request for next méssage" (RFNM) from the destina-
tion to the source after each message is received. The
source does not send the next message until it receives the

RFNM.

16




The node to node flow control in ARPANET is based on a
system of acknowledgement messages (ACKS). After a node
sends a message to the next node, it keeps a copy of the
message until it receives an ACK for that message from the
receiving node. Therefore, if the receiving node has no
buffer space available, it can simply discard an incoming
message and not send an ACK for that message. Then, after
waiting a specified length of time and not receiving an ACK,
the sending node will retransmit the message.

Both the source to destination and the node to node flow
control serve to effectively control congestion in many
circumstances. In some situations, however, these mechanisms
can lead to lockup conditions or otherwise reduce network
throughput. The avoidance of such lockup conditions and
reduced throughput has led to modification of the specifi
fiow control rules for ARPANET. The basic concepts still
apply, however.

There is bnly a limited améunt of theoretical literature

on flow control. One scheme that has been proposed and
analyzed to some extent is isarithmic flow control. Isarith-
mic flow control was first described by Davies_ibAV 72}. The
basic idea is to have a fixed number of message carriers that
are used to send messages through the network. An input

message must wait for a carrier to be available at the input
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node before it can progress through the network. When a
carrier is empty, it circulates at random through the network
until it arrives at a node that has traffic for it.

The main parameter associated with isarithmic flow
control is the number of message carriers in the network.
Davies has shown by simulation that throughput is a function
of the number of carriers. If there are too few carriers,
traffic is needlessl rejected at the inputs, while if there
are too many'carriers, congestion occurs. Davies points out
that isarithmic flow control is not designed to completelyv
replace other flow control mechanisms. In addition to the
simulation study, Sencer [SENCER 74] has developed an analytic
gueueing model for isarithmic flow control.

The analytic evaluation of flow contrcl mechanisms is in
general very difficult. Recognizing this, Chou and Gerla
[CHOU 75] have proposed a framework in which to classify and
then develop simulation models for such mechanisms. Their
scheme, called the unified flow control model, recognizes
that messages are allowed to enter a network or proceed
through it only if 1) in some sense the buffers reguired
have been allocated at the point of entry and/Qr if 2) the
number of occupied buffers is below someAthreshold. Various

flow control mechanisms differ in the rules for allocation

and in the thresholds that are defined. Once these rules

have been identified for a given mechanism, it can be
simulated in the framework of the unified flow control -odel.

18




Some reference to a flow control scheme that is similar
to the rate flow control consider in this study has been
made in a survey by Gerla and Chou [GERLA 74]. The survey
mentions a proposed flow control strategy due to Pouzin
that coﬁtrols input rates on the basis of the information in
flow control tables which are circulated in the network. The
fiow control considered in this study also controls flow rates.
Extensive flow control tables are, however, not needed in this
study since it is limited to concentration tree structures.
In such structures flow control can consist of simply reducing
the flow rate of upstream nodes whenever downstream nodes
become congested. The flow control problem for a general
network is much more complicated and Pouzin has apparently

not analyzed his proposed scheme mathematically.

1.3 Summary of Results

A single gradual input queue is first considered in
detail since it is the basis of this study. . Chapter 2
presents the previously known results for this model and a
number of extensions. An important extension required for
this study is a probability of overflow measure for a queue
with a finite buffer. The probability of overflow per busy
period is found and a useful exponential upper bound for it
is also obtained. It is shown how this overflow measure can

be converted to an expected time between overflows. Other
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overflow measures are also discussed. A final extension for
the single queue is the development of upper and'lower bounds
for the expected delay per bit through the buffer.

In previous buffering studies of message switched net-
works the M/M/1 queue model has been extensively used. The
gradual input model is therefore compared to the M/M/1 model.
Such a comparison for single queues is presented at the end
of Chapter 2. It is shown that the gradual input model
enables one to see effects due to a finite number of finite
rate traffic sources that are not apparent with the M/M/1
model. All of these effects reduce the amount of gueueing
from that calculated with the M/M/1 model.

The analysis of a network of gradual input queues is
presented in Chapter 3. It is first shown that all traffic
streams in a general network are not exactly of the type
required for the analysis presented in Chapter 2. Specifically,
all traffic streams will nof be alternating renewal processes
with exponential off times even if the source traffic streams are
-of this type. It is shown, however, that if source streams
have both exponential on and off timés it is a good approxi—
mation to assume that all traffic streams in the network are
of this type. This is verified mathematically for two

limiting cases and by simulation.
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The analysis of a general netwerk of gradual input queues
is then done by first calculating the mean on and off times
associated with all traffic streams. Two sets of linear
equations are developed for this purpose. Once the mean
traffic parameters have been found, the analysis presented
in Chapter 2 can be applied to obtain marginal statistics
for each buffer in the network.

‘ The results for networks of gradual input queues are
also compared with those obtained using a network of M/M/1
gueues. Again the finite source nature of the gradual input
model shows network effects that cannot be seen with the
M/M/1 model.

Flow coﬁtrol is investigated for tree concentration
structures. The flow control is used to eliminate overflows
in the interior of the tree. Therefore all overflows occur
at source nodes where it would éresumably bé easy to turn off
the sources. The first problem considered is finding the
buffer allocation in such a tree that minimizes the probability
of buffer ovérflow. It is shown that in certain casés,
placing all buffers at source nodes is the desired éllocation.
This is not a general result, however. A counterexample‘is
presented that gives insight into why it is not always

desirable to place all buffers at source nodes.
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Even though reasonable flow control rules can sometimes
‘be specified, it is often difficult to analyze the performance
of the resulting system. To help deal with this problem, an
approximate analysis of a small concentration tree using flow
control is presented. The analysis is based on a first
passage time theorem for Markov chains. The theorem states
that the tail behavior of first passage time distributions
is geometric or exponential under fairly general conditions.
This is used to develop a stage by stage analysis of a three
node system by coupling the dynamics of the nodes in an
approximate way. The results obtained in this way for the

system probability of overflow are verified by simulation.
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CHAPTER II - THE ANALYSIS OF A SINGLE GRADUAL INPUT QUEUE
Before considering the analysis of an entire message
switéhed network, it is necessary to analyze a single gradual
input queue. The first section of this chapter presents the
basic definitions and results for the gradual input queueing

model due to Rubinovitch, Céhen and Kaspi. In addition,
results for specific cases of interest in this study are
obtained and a delay analysis for the queue is developed.
The next section considers overflow statistics for a gradual
input queue with a finite buffer. The final section compares
thé_gradpal input gueue with the simpler M/M/1 queue in order

to show the insights obtainable from the more detailed model.

2.1 The Basic Gradual Input Queue Model -

2.1.1 Definitions and previous results

The following description of the gradual iﬁput qgueue
parallels thét of Cohen [COHEN 54]. The model represents N
incoming channels being multiplexed onto a single outgoing
channel as is shown in Figure 2.la. The capacity of each of
the incoming channels is Ehe same as that of the outéoihg
channel, so that when only one iﬂcoming_channel is on, data
passes directly through the multiplexor withodt buffering or
delay. When more than one incoming channel is on, a queue

builds up. The buffer is assumed to have infinite capacity

and is shared by all incoming channels. The outgoing channel
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sends data at a constant rate whenever any incoming channel
is on or there is data in the buffer.

The on and off process associated with each incoming
channel is taken to be an alternating renewal process. As

shown in Figure 2.1b, for the ith channel this process is

., T ., O \ T . .eos OF
1,i’ "1,i* "2,i’' 2,1 °

statistically independent nonnegative random variables. The

described by the segquence ©

random variables Gn i (n=1,2,3...) represent the successive
’

idle periocds on the ith channel and the random variables
Tn i (n = 1,2,3...) represent the lengths of the successive
’

busy periods on that channel. The random variables © i have
14

distribution A("') while the random variables Tn,i have distri-

bution B{('). The restriction that tﬁe processes on all input

channels be identically distributed will be removed later.
Figure 2.2 shows the behavior of the gradual input

buffer for a specific sample function of the input. A

period of continuous inflow into the buffer is called an

inflow period and its length is denoted by Kj' The sum of

the lengths of all messages flowing into the buffer during

the jth inflow period is called the load hj. A busy period

of the buffer is a period of ﬁninterrupted flow on the output
channel. Its length is denoted by b. The length of time
between the start of successive busy periods is called a

busy cycle, whose length is denoted by c. The length of time

between the end of the nth and the beginning of the (n+l)st
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inflow periods is denoted by an A final quantity defined

+1°

by Figure 2.2 is the content of the buffer at the start of

+he nth inflow period, denoted W

In order to facilitate the analysis of the gradual
input queue, it is necessary to restrict the distribution of
off times on the input channels to be exponential, i.e.
At

A(t) = l-e t >0, A >0

-

0 £ <o

-

With this restriction, the gaps between inflow periods, &,

1). From

are also exponentially distributed (with mean (N)\)
Figure 2.2 it can be seen that the relationship between

successive buffer contents W is given by

n=1,2,3...T

+
w = v n~0n+1]

n+l *h -2

n
Since the 5n are exponentially distributed, the random
variables W correspond to the actual waiting times}of aﬁ

' M/G/1 queue Qith service times hn—gn and interarrival times
Gn‘ The actual waiting time in the M/G/1 queue is the time
between the arrival of a customer and the start of his

service. This equivalence is the basis of the analysis of

the gradual input gqueue.

+ x]1t = x if x > 0

0 if x < 0
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In order to make use of the known results for the M/G/1
queue in analyzing the gradual input queue, it is necessary
to obtain the distribution of hn-ln. This has been done by

Cohen. The central result is given below. Define

B*(p) = /TPt ap(¢) Re p = 0
0 o
8 = /7t dB(t)
0
A = NA a = AB

Theorem (Theorem 2.3 [COHEN 74])
For Re p ~ 0, Res >0, t >0, Reu > 0

s+A{1-E{exp(—ph-sz)}}'1 =

1 ut

© -3t e du N . .

fe ™ mx Jo, eI Grwp 9 N
[Te”St exp{zﬁi ‘C u2e"t {1-B*(p+u) Jdu} dt; New
! _ ;

V(Eq.2.l)

In this theorem, N=« is the case NA+A as N»w, X+0. The

integral
ie+Reu
fo elt F(u)du = 1lim S Ut F(u) du
u g-+® -ie+Reu
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where €>0 andReu is to the right of all singularities of
‘F(u). Note that 5%; IC eut F{u) du is then the inverse
u

Laplace transform of F (u).
Using the above theorem, it is possible to derive the

first moments of the distributions of h and 2. There are

For N<=

E{2} = (8/a){ (1+a/N)"-1}

E{n} = B (1+a/n) N1 (Eq.2.2)
For N=«

E{L} = (8/a) (e3-1)

E{h} = ge® | |  ,» (Eq.2.3)

9,

For the equivalent M/G/1 qﬁeue it is known that the
queueing process will have a steady state as t»= only if
AE(h-2) < 1. Cohen has shown that for the gradual input

queue, the following equivalence exists.

<1 & (N-1)AB < 1 if N<=

a<1l if N=

AE (h-1)

=1 (N-1)AB
<=

a =

if N<=

I
=

i1f N=o
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Having found the expected value of h-¢ and the conditions
under which the queueing process has a steady state, it is now
possible to apply the following theorem by Cohen to obtain a
useful measure of the buffer build up occurring in a gradual

input queue.

Theorem (Theorem 3.4 [COHEN 74])

The maximum content C__  of the buffer during a busy
cycle has the same distribution as the distribution of the
: maximum virtual waiting time Viax during a busy cycle of an
M/G/1l queue with a service time distribution which is the
same as that of hn-zn and mean interarrival time A-l. The
virtual waiting time, v(t), of the M/G/l1l gueue is the total
reméining service time of the customers in the gqueue at time
ﬁ. This is the time a customer would have to wait before
starting service if he arrived at time t. Note that this is
not the same as the actual_wai£ing time since v(t) is defined
for all t while‘actual waiting times are defined only at the
customer arrival times [COHEN 69]. |

A resﬁit for Vax of an M/G/l gueue with mean éervice
time x and mean interarrival time d which can now be applied
is |
1

E{(v._.} = d log[(l-x/d)

max ] ) (Eq.2.4)

as given in [COHEN 69]. Applying Egquations 2.2 and 2.3, one

obtains the following.
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a-lflog(l—a)-l -a}B N=w»

E{Cmax} =

1, (N-1)1log (1+a/N) "1} gN<e

a l{10g (1-a(N-1)/N) "

It is therefore possible to calculate the expected value of
the maximum buffer content during a busy cycle in closed form.

"Another useful result that has been obtained for the
gradual input queue is the functional form of the distribution
of the busy period on the output channel. Rubinovitch [RUBIN
731 has shown that the output channel of avgradual.input.
gueue has the same busy period distribution as an M/G/1
queue with input rate (N-1)A and service time distribution
B(°).T If D*(") is the Laplace Stieltjes transform of the
distribution of the busy period on the output channel then

-

D*(8) = B*((N-1)A+ 8 - (N-1)AD*(8)) Re 6 > 0

This is the well known busy period result for an‘M/G/l queue
[KLEIN 75]. '

The results so far apply only to a single stage of
buffering. It is, however, straight forwaré to extend tﬁe
results to several stages of channels arfanged in a converging

tree structure. This is done by observing that the output

+Note that this M/G/1 analogy is not the same as the one
used to obtain the previous buffering result.
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channel of one stage behaves as an alternating renewal process
as required for it to be the input process to the next stage.
It is therefore possible to analyze a converging tree
structure in a stage by stage manner.

This section has been restricted to queues for which all
input channels have identical alternating renewal processes.
The results presented here have been generalized to the case
of different renewal processest for each input channel by
Kaspi and Rubinovitch [KASPI 75]. A summary of their work is

given in Appendix A.

2.1.2 Equivalent M/G/l gueue service time analysis

In the previous section it was shown that the gueueing
process in a gradual input gueue can be analyzed by making an
‘analogy with an M/G/1 queue. The equivalent M/G/1 service
time distribution is the same as the distribution of h-2, the
queue buildup during an inflow period of the gradual input
queue. In this section the Laplace transform of the distri-
bution of h-% is obtained for specific cases. The specific

cases considered are ones in which the on times, T as

i, 3’
well as the off times, os 5 on the input channels are

- ’ i
exponentially distributed. These special cases are reguired
for the analysis of the general networks presented in

Chapter 3.

+The off periods on each channel are still required to be
exponentially distributed.
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The results presented here are obtained by using a
Markov chain representation for the behavior of the input
channels to the gueue. This approach is easier to understand
than using the relationship given by Cohen for E{exp(‘oh—sz)}f
It also allows one to analyze queﬁes for which the input

channel capacity is larger than that of the output channel.

+Cohen's result (Theorem 2.3 [COHEN 74]1) is stated in the
previoys section. Note that it gives E{exp(-ph-si)} for
Re p - 0, Re s > 0. Therefore in order to use the result
to obtain E{exp(-p(h-2))} analytic continuation must be
used. Appendix A-4 of [COEEN 74] shows how to do this for
the case of an infinite number of input_channels (N=«),
The result for this case is that for p - 0,

p-A{1-B(p)} -
p=i{1l-Elexp[-p (h=2)]

A

= l-AIwE{eXP[-D(B~t)](th)}exp{-zﬂi /e
0 u

u~zeut{l-8(p+u)}
duldt

1 if B2t
Where B has distribution B(") and (th) = 0 otherwise
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The alternating on/off renewal process associated with
a communication channel on which these times are exponentially
distributed can be represented as a two state continuous
time Markov chain. Let the off times have distribution

‘function

t>0, x>0
0 t<o0

and the on times have distribution function

B(t) = 1-e-'ut t>0, p>0
) <

0 =0

Then the behavior of the channel can be represenﬁed by the
Markov chai? shown in Figure 2.3a. If there are N independent
input channels, their joint behévior can also be represented
by a Markov chain; The chain representing the joint behavier
of three identical input channels is shown in Figure 2{3b.

The states of the chain afe the numbe:jof channels oh and the
number off. The transition times between the states are
exponentially distributed as required for the»systém to be a
continuous time Markov chain. This follows from the memory-

less property of the exponential distribution and the fact
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a. A single gradual input channel.

c. Two different gradual input channels.

FIGURE 2.3 - Rate diagrams for Markov chain representations
of the behavior of gradual input channels
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that the time to a state transition is given by the minimum
of a set of independent exponential distributions (the set

of times until the next transition on each channel). It is
weli known that the minimum of such a set is exponentially

distributed. | ' . : '

It is also straightforward to extend the Markov chain
representation to independent input channels with different
traffic parameters. Figure 2.3c illustrates the Markov
chain for the joint behavior of two input channels with mean
on and off times (ur A7H) and @y Aoh.

Now recall that the quantity h-2 is the queue buildup
during an inflow period of the gradual input queue. This
time period can easily be identified in the Mecrkov chain
representation of the input channels. An inflow period
starts with a transition from all inputs off to one input
on and ends on the first return to the state with all inputs

off. Therefore an inflow period is a first passace event

in this Markov chain.
The excess gueue buildup, h-2, during this first passage
event can now be identified. This can be done for gqueues’ |
with input channel capacities, Ci, which are greater than or
equal to the output channel capacity, Cd‘ For such a queue,

whenever the input channels are in a state with No input

n
channels on, the buffer content of the queue increases at

rate rb, where
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£, =N C; - C, N 2, c; 2 ¢, (Eq.2.5)
Equation 2.5 can now be used to scale the transition time
distributions for the input channel Markov chain so that the
time spent in eéch state represents the excess queue buildup
while in that state. 1In the resulting scaled Markov chair,
the time for the first passage event that starts from the
all.channels off state with one input coming on and ends upon
the first return to the all off state is equal to the quantity
h-2%. '

The use of the scaled Markov chain to determine the
Laplace transform H*(s) of the distribution of h-% is best
illustrated by an example. The unscaled Markov chain
representing three identical gradual input channels was
shown in Figure 2.3b. If these channeis have capacity
Ci = Co =1, then the scaled Markov chain representing the
rate of queue buildup will be as shown in Figufe 2.4. Note
that state 1 (ali channels off) is shown as a trapping state
because it is the end state of the first passage event of .
interest. As such, the time until trapping in staté 1 will
be the same as the first passagé time to that.stéte. Also
note that since there is no queue buildup in state 2 (oné

input on), there are infinite transition rates out of this

state in the scaled chain.
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Let x(t) be the state of the scaled Markov chain. Then,

. as discussed previously, h-2 is equal to the following first

paésage time

h=-2 = £,. = inf{t; x(t)=1|x(0) = 2}

21

If f21(t) is the probability density function of f21, then

. the desired transform is

F§ (s) = B¥(s) = /T e F

£,,(t)dt
£=0 21

This traﬁsform can be found by general methods, such as those
given by Howard [HOWD 71], or by taking advaﬁtage of the
special structure of the chain as diécussed below. In either
case, transition probabilities pij=Pr {next state=j|current
state=i} and waiting time p;obability dénsity fundtions wij(t)
must be identified. For the chain shown in Figﬁre 2.4, the

matrix of transition probabilities is

1 0 0 0
u 2) )
5. TF2% 0 TF2% 0
2u A
0 2u+i 0 2u+A
0 0 1 0
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The density functions»wij(t) are the densities of the time
unti; transition, given that a transition from state i to j
will occur, and zero if a direct transition is not possible
from i to j. For the continuous time Markov chain under
considefation hére, these are all exponential. The mean times
are the mean time spent in each state. Therefore the matrix

of these densities 1is

wll(t) 0 0 0
§(t) 0 8§ (t) 0 5
Wit) = _ _ £20
0 (uen)e” HFME o Ly em (HF2ME
_3p
0 0 %Ee >t 0
. ) 1 t=0
Where S§(t) is the Dirac delta §(t) = {

0 otherwise’

Since state 1 is a trapping state, wll(t) can be any probability
density function such that wll(t) =0 if t < 0.
From the matrix W(t) it is easy to generate the matrix

of Laplace transforms of the waiting time densities.

. .
r;li(s) 0 0 0
_ 1 0 1 0
W*(s) = 0 u+2X 0 u+2)
- S+tu+2A S+u+2)
—3u_
L 0 0 35+30 0 '
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Because of the simple structure of the Markov chain, the
transform Fsl(s) can easily be found by the following method.
Let Y23 and Y34 be the number of state 2 to state 3 and
state 3 to state 4 transitions that are made during the
first passage event starting from state 2 and ending in
state 1. Knowing Yo3 and y34 is equivalent to knowing the
numbér of times states 2, 3, and 4 were entered before the
trapping state 1 was reached. The transform F;l(s) can
therefore be found by summing conditional transforms as

follows

F*. (s) = I _ {F%.(s) |y,-=3: Y,,=k}
21 All possible j,k 21 23 L34

Priyy3=is Y347k}

=w§l(S)p21 T (W§-3(s)wg2(5))J

All possible j,k

' k 3 k

= w3, (s)pyy §=

(wx,(s)w%,(s)(Z (w%,(s)w%,(s)
0 23 32 i=0 34 43

i j A .

Equation 2.6 states that there can be j=0,1,2... transitions
from state 2 to state 3 and for each of these there can be
i=0,1,2,... transitions from state 3 to state 4 before “rapping
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in state 1. For each state 3 to state 4 transition, the

. transform of the time from starting in state 3 until
returning to that state is w§4(s)wz3(s). This transition
occurs with probability P34P43" Similarly, for each state 2
to state 3 transition, the transform of the time from
starting in state 2 until réturning to that state is

i). The last sum

w3 (s)wi,(s) (i_ (w34 (s)wi3(S)P3,Py3)

accounts for t;gnsitions to state 4 once state 3 is reached.
The transition from state 2 to state 3 and back to 2 occurs
with probability P53P35- Finally, each first passage event
considered here involves one transition from state 2 to
state 1 which occurs with probability Poq and has transform
wgl(s).f

An equation similar to Equation 2.6 can be written for
other simple gradual input queues. Table 2.1 gives the
resulting transforms H*(s) for the casé presented above and
other cases‘that are used in this study. ﬁ

As mentiohed previously, tﬁe Markov chain technique

can be applied to gradual input queues with channel

capacities C; > C . One example of this is given in’
Table 2.1. The Markov chain tecﬁnique cannot be applied if
' Ci < Co because then the basic M/G/1 queue anaiogy.no
longer holds. The M/G/l analogy requires that the queue
content be nondecreasing during an inflow period and that is
not the case if Ci < Co‘ Unless otherwise stated, ali cases
considered in this study have Ci = C .

o
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There is another approach to finding Fil(s) that can be
used. Howard [HOWD 71] gives the result that the matrix of
firsﬁ passage time distributions for a continuous time
Markov chain satisfies the following relationship.

F*(s) = C*(s) [(I-C*(s) 11 (z-C*(sH Q1170

(Eq.2.7)
The matrix C*(s) is .alled the core matrix. It is defined

as follows

P W (s)

Q
»
—~
n
~
]

The operator[j in the above equations signifies element by
element multiplication of the two métrices.' For the gradual
input queues considered in this study it is easier to write
an equation like Egquation 2.6 than to perform the ﬁatrix
inversions required in Egquation 2.7. The infinite sums in
Equation 2.6 are all simple geometric sums for which closed

form expressions exist.
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2.1.3 Bounds for the expected delay per bit

A performance measure that is often of interest for

message switched communication networks is delay. In

- previous studies using the M/M/1 queue as a model, the delay
measure usually considered was expected delay per message.
For the gradual input model this measure is difficult to
find because the distributions obtained for buffer content
are not e#pressed in terms of number of messages. Instead
buffer contents are expressed in terms of time units of work
(for the output channel) which represent.bits when normalized
by the communication rate of the output channel. Therefore
an expecﬁed delay per bit measure will be used for the
gradual input gqueue. |

The delay experienced by a speéific bit in a gradﬁal

input queue is a function of the gqueue contents at the time
of its arrival and of the service discipline of the gueue.
The service‘discipline in tﬁe queue may be difficult to
represent mathématically. For example, suppose that messages
are sent on a first-come-first-served (FCFS) basis. Then the
bits are not sent strictly FCFS. Fortunately, as long as the
service discipline is work consering} the mean delay per bit

- remains unchanged.t Therefore the mean delay per bit can be

found assuming FCFS service for all bits.

+This follows from Little's formula [LTTL 61], L=AW, which
says that the expected delay W for a gqueue equals the expected
queue size L divided by the mean arrival rate A. All work
conserving service disciplines give the same expected queue
size in terms of bits for the gradual input gqueue.
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With the FCFS service discipline, it is easy to see that

the delay for a specific bit db is
db = buffer conteﬁt at time of bit arrival

For the gradual inﬁut éueue; this means that only the queue
‘size duriné.ihflow periods is of interest since that is the
6ﬁly time during which bits arrive. Figure 2.5 shows the
buffer’boﬁteﬁt during a typical inflow period. Determining
~the exact delay per bit during this period is very difficult.
However, this delay can easily be bounded. Note that at the
start of the inflow period the delay (buffer content) is v
while at .the end it is hi—2i+wi. The delay is strictly
nohdecreasing during the inflow period. If one considers

M inflow pericds, the average delay per bit is bounded by

M M
Z h.,w, f h.[h.-2.+w.]
j=1 1 o — ¢ i=1 it ti i
™ b M

£ h; I h;
i=1 * i=1 *

Taking the limit as M+« and making an ergodic argument gives

-

Elhw] < < Ef[h(h-2+w)]
E(h] Eldy] E(h]
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" FIGURE 2.5 - A single inflow period of the gradual input

queue. The total inflow during the period = hi
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Since hi and w, are independent, these bounds simplify to

< E[h(h-2)]

ETh] + E[w] | (Eq.2.8)

Elw] = E[d,]

Now recall that w is the actual waiting time of an
equivalent M/G/l queue. Assume that the gradual input gqueue
has N input channels with mean off times X;l (i=1,2,..N).
Then the equivalent M/G/l1 queue has mean interarrival time
N

-1

(2 A;)

i=1 _
tribution of h-%. Therefore E[w] can be found using the well

and a service time distribution equal to the dis-

known Pollaczek-Khintchine formula [KLEIN 75] for the mean

waiting time in an M/G/l queue.

Ap EL(h-2)?]
= T(Tr, BB

E[w] (Egq.2.9)

N
pX A,

where A, = i

T i=1

Equation 2.9, together with Equation 2.8, gives both upper
and lower bounds on E[db] in terms of first and second
moments of the fundamental quantities h and £. Aan eXample

of the bounds is given in Section 2.3.
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2.2 The Gradual Input Queue With A Finite Buffer

2.2.1 Probability of buffer overflow in a busy period

A probability of buffer overflow measure is required
in order to be able to use the gradual input gqueueing model
to study buffering requirements for a communication network.
The key to calculating a probability of buffer overflow for
this queueing model with a finite buffer is to use a pro-
bability that is convenient to work with. The most convenient

is the probability of one or more buffer overflow events

during a busy period, and this is the measure used in this

study. This measure is convenient because the start of each
busy period is a renewal point for the queueing process in
the gradual input model. At this point, all but one of the
inputs are off with an exponentially distributed time
remainin§ until they come on again. In addition, the buffer
is empty so that, stochastically, a queue with an infinite
buffer and one with a finiﬁe buffer behave identically from
the start of a busy period until the finite buffer overflows.
. For any busy period then, the probability of no overflow for
the finite buffer is the same as the probability that the -
buffer content of the infinité buffer never crosses the
level equal to the size of the finite buffer during the busy
period.

The analogy between the contents of a gradual input
queue and the virtual waiting time in an M/G/l1 gueue can now

be applied. For a gradual input queue with buffer size X
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No overflow during

) = Pr(vmax
a busy period

of equivalent M/G/l queue

Pr( X during a busy perlod)

where the egquivalent M/G/l gqueue has an infinite buffer, a
mean interarrival time of At and a service time distribution
that is the same as the distribution of h-%. Let w be the
actual waiting time for the equivalent M/G/l queue and y be

a random variable with the same distribution as the service
time. Then the following result for an M/G/l queue can be

used

<
Pr (Vmax"K) = W V(Eq.2.10)

Ref. [COHEN 69] p. 525
[TAKACS 65] p. 381

~ . < -
i =1- - i 3
By using the fact that Pr(vhax%K) 1l Pr(vmax K), Equation 2.10
provides a way of thecretically calculating the probability
of one or more overflow events during the busy period of the

gradual input queue with buffer size K. Specifically,

Overflow during, _ , _ <
Pr(busy period )= 1= Pr{Vp 4K
_ Pr(wSK) - Pr(w+y<K)
- Pr (wSK)
- Pr (w+y>K) - Pr (w>K) (Eq.2.11)

1-Pr (w>K)
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Becauée the distributions of w and y for the M/G/1

. queue analogy are fairly complicated, it is worthwhile
trying to bound the probability of overflow rather than
calculating it exactly. This can be done by applying the
exponential bounds on the waiting time in G/G/1 queues
developed by Kingman [KING 70]. For a G/G/1 queue, denote
the service time of the nth custcmer by X and the interval
between arrivals of the (n+l)st and nth customer by tn' Now

define the random variable Yn by

The yn's.are_i.i}d. random variables, therefore they have a
common distribution function F(u) = Pr{y<u}. Kingman has

shown  that

—a% —a*
r e ® K 2 priwsk}Se™ K (Eq.2.12)

where the constant r is given by

;oaF (u) /£%e®” (978 gp (u)
t

t

r = 1nft>o
and 6* is the unique greatest positive real root of the

equation

£(0) = P ar(uw) =1 ‘ (Eq.2.13)
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in an interval Ie in which f(g) is bounded. This interval Ie
includes the origin 6=0 since £(0)=1. Furthermore, it can be
shown that £(g) is a convex U functiont and that £'(0) =

E{x~-t}<0 for a gqueue with a utilization <1. It can also be

seen that
£(g) = A*(g)B*(-9) (Eq.2.14)

where A*(9) and B*(g) are the Laplace transforms of the
inﬁerarrival time, tn' and service time, X distributions
respéctively.

The bound in Equation 2.12 can be applied to Equation

2.11 yielding

< Pr(w—!-y>K)—re’eK

1 - 79K

Pr (overflow) (Egq.2.15)

The problem now is to bound the Pr (w+y>K). This can be done

by noting that

K
Pr (w+y>K) = Pr(y>K) + [ Pr (w>(K-t)) dH(t)
t=0

where H(t) is the distribution function of h-2.

+The function £(8) is convex U if

IA
A

£(a8,+(1-0)8,) < af (6,)+(1-a)£(8,); O
52



Using the fact that Pr(y>K) = fé dH(t) and that
t=K
Pr(w>0) = 1, one obtains

Pr(wty>K) = /= Pr(w> (k-t))au(t) S r° e (K78 gh(¢)
=0 t=0

K

H* (<0)e 0 (Eq.2.16)
This expression for 2r (w+y>K) can be substituted into
Equation 2.15 giving the following exponential bound on the
probability of one or more overflows during a busy period of

a gradual input queue with buffer size K.

< (u*(-8)-r)e °K

1 - e-GK

- pr (overflow) (Eq.2.17)
This exponential bound can be applied in a straightforward
manner except for the consﬁant'r. The constant r is difficult
to determine exactly in general. Fortunately, however, it is
easy to see from its definition that rzo. Therefore setting

r=0 still gives an upper bound, i.e.

< H*(-9)e °K

1 - e~6K

Pr (overflow) (Eq.2.18)

The effect o2f letting r=0 is to weaken the bound, but the
correct exponential behavior is preserved. The next section

gives an example that illustrates this effect.

53



It is desirable to have a lower bound as wéll as an
.upper bound on the Pr(overflow) as defined in this section.
One cén start with Equation 2.10 and apply the Kingman
bounds on waiting time to obtain a lower bound, but in this
case, since the constant r cannot be detefmined, the bound
is useless. Therefore the alternative that will be used is

to realize that for a gradual input queue

Pr (overflow) =
i

Pr (Overflow in ith inflow period)
1

o8

v

Pr (Overflow in 1lst inflow period)

Pr (h-2>buffer size) (Eg.2.19)

Here only the first inflow period has been used to obtain a
lower bound. If a tighter bound is desired, more inflow
periods can ge considered. f

The boundé developed here for Pr (overflow) are

illustrated with examples in the next section that indicate

their tightness.

2.2.2 Examples of the bounds on Pr (Overflow)

Two examples of the use of the bounds on Pr (overflow)
are given in this section. The first is a gradual input

queue which is used to illustrate the general procedure.
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The second is an M/M/1 queue which is presented to show how
the upper bound compares with the exact value.

As a first example, consider a gradual input gqueue
with three identical input channels. The on and off times
on each channel are exponentialiy distributed with means
u-1=1 and A-l=5 respectively. This gives an output channel
utilization of 0.5 if no traffic losses occur.

As described previously, the Pr(overflow) for this
queue with buffer size K can be determined by considering

an equivalent M/G/1 queue. The equivalent M/G/l queue has

an interarrival time distribution with Laplace transform

3 _ 0.6

A*(8) = 5537 < 5¥0.¢€

This is the transform for the time between inflow periods.
The transform for the equivalent service time is the same

as the transform of h-2%.

_ 2u0?+ 2aur7u?) a6’

(2u+41) 62+ (412 +2Ap+7u) 8460

B*(8) = H*(6) 3

. 202 + 7.40 + 6

2.80% + 8.760 + 6

Now the problem is to find the exponent 6* for the
exponential bound. The exponent is the unique positive

real solution to
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£(8) = A*(8)B*(-0) = 1

which lies in an interval Iy in which £(8) is bounded. For
the example considered here, this eguation has three solutions,
0, 0.902 and 2.055. Of these, only 0.902 is positive real

and in IG’ The root 2.055 lies outside of Ie because the
function B*(-9) has a pole at 1.0l. The unigqueness of g* is

therefore as predicted by the Kingman theory. The bound is

completed by finding
H*(-9*) = H*(-0.902) = 2.503
Therefore

\ -0.902K - ~
Pr (overflow) - 2'5033 ST5% R
l-e ° :

where K is the buffer size. This bound is plotted in Figure
2.6. Notice that for small values of K the bound becomes
large becausé of the denominator. Therefore anothef bound
has been used in this region.

The bound used for small buffer sizes is the Pr(oveiflow)

when K=0. For K=0 the following is true.

1-Pr (overflow) = Pr(First input channel goes off before
a second one comes on)
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Pr (overflow)

- 1.0 L

lgf/;f Upper Bound = Pr (overflow|K=0)

1x10™2 |

2.503e" 202K
1-o-0-902K

Upper Bound =

Lower Bound
Pr (h-2>K)

[SE o )
—

(o o I ]
—

' 10
Buffer Size K

~ FIGURE 2.6 - Bounds on Pr (overflow) for a three input gradual

input queue. All three inputs are identical with

u-1=l and A "l=5.
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on time = t) (Pr (

o
Pr(for channel

e-ut e—kt e—lt

U dt

w__ 1
e S Y

= 0.714

off time > t,,2
for channel )) dt

Clearly this exact solution for K=0 is an upper bound for K>0.

The lower bound to Pr (overflow) that was developed in

the previous section is

Pr (overflow) = Pr (h-2>K)

In order to evaluate this bound, the transforn H*(®) must

be inverted. For this example

202 + 7.40 + 6

H*(0) = =—
2.80" + 8.760 + 6

0.4086 + 0.612
(6+1.013) (6+2.116)

= 0.714 +

Therefore using standard inversion techniques, one obtains

-

H(t)=0.7146 (£)+(.178) (1.013)e 1-013t

where §(t) 1 if t=0

‘0 otherwise
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From this it is easy to find the bound.

Pr(h-2>K) = S H(t)dt = 0.178e 1- 013K j0ge2-116K

t=K
This bound is aiso shown invFigure 2.6.

. As a second éxample, an M/M/1 queue will be considered.
The M/M/1 queue is a limiting case of a gradual input queue.
It ié the case with infinite capacity input channels which
allow instantaneous message arrival. This is discussed
further in Section 2.3. Here the M/M/1 example is of
interest because it can be used to compare the upper bound
on Pr(overflow) with the exact solution.

'Recall that |

Pr (overflow) = Pr(Yﬁg;?&>;)Pr(w>K)

For an M/M/1 queue with mean arrival rate )\ and mean service

time u-l, the service time y has distribution

ut

”Pr(yst) =1-e t>0, u>0

0 £20

The distribution of the actual waiting time w is [KLEIN 75]
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Pr(wst) = 0 £<0
1-p t=0

-u(l-p)t

l-pe t>0

where p= A/u

From this the required Pr(w>K) is easily found to be

-u(l-p)K _ pe(l-u)K

Pr(w>kK) =1 - Pr(wa) = pe ; K>0

The Pr (w+y>K) can be obtained as follows.

Pr (w+y>K) =,Pf(y>K) + Pr(y<K and w+y>K)
I S -U(l-A)(K-t)
=e "+ 7 ue pe P dt
t=0 -
. = e(l—u)K; K>0
Therefore

(1-p) e AWK

(A-u)K k>0

Pr (overflow) =
l-pe

The upper bound for Pr (overflow) given by Equation 2.18 is
also easily found for the M/M/1 gueue. The bounding exponent

is determined using the equation
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£(8) = A*(8)B*(-8) = ghy —gh- =1

The solutions to this equation are 0 and u-A. Therefore

6* = u-A . The upper bound is then given by

< Br(-0%)e 'K

- %
l-e O*K

Pr (overflow)

(/) e (A-HIK
l1-e (A-U)K

In comparing the upper bound with the exact solution,
it can be seen that the bound has the correct exponential
behavior. - Table~2.2 gives values of both the bound and the
exact solution for different utilizaticns aﬁd buffer sizes.
The table shows that the bound is loose for small buffer
sizes. For larger buffer sizes and reasonably small
probabilities of buffer overflow, however, the bound is
fairly good. 1In this region the difference between the

two is less than one order of magnitude.
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Ugtilization

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

TABLE 2.2

Pr(overflow) for the M/M/1 Queue

Mean message length = y

Buffer Size
(In mean message
lengths)

2
4
6
8
10
12
14

16

0 O b N

10
12
14
16

o N N

10
12
14
16

-1

=1

Pr (overflow)

Exact

0.1683

3.2878x1¢0
6.5946x10
1.3297x10
2.6839x10

- 5.4184x10

1.0939x10

0.2254

7.2579x10
2.5529x10
9.2425x10
3.3804x10
1.2409x10
4.5615x10
1.6776x10

0.2891

0.1403

7.9361x10
4.8158x10
3.0353x10
1.9563x10
1.2784x10
8.4272x10
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-2
-3
-3
-4
-5
-5

-2
-2
-3
-3
-3
-4
-4

-2
-2
-2
-2
-2
-3

- Upper Bound

1.2648

0.2125

4.1490x10"2
8.3216x10 >
1.6779x10>
3.3867x10 %
6.8372x10°°

1.1640
0.3130
0.1048
3,7315x10" 2
1.3567x10° 2
4.9698x10 >

'1.8254x10° 3

6.7115x10
2.5416
1.0200
0.5388

© 0.3162
0.1956
0.1247
8.0934x10
5.3118x10

2.
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2.2.3 A per unit time overflow measure

. A per unit time overflow measure may be more useful
than a probability of overflow per busy period in some
applications. The following discussion shows how the upper
bound on the probability of overflow per busy period developed
in Section 2.2.1 can ke converted to two different lower
bounds on expected time to buffer overflow.

For the first bound, let E{TO} be the expected time to

the first buffer overflow of a gradual input queue, starting

from the beginning of a busy period. This expected time can

be expressed as a sum of expected times to overflow that are
conditioned on the busy period in which the overflow océurred,

i.e.,

overflow i} Pr(bpoverflow = 1)

N o
E{T,} = © E{T,|bp
0 i=1 0

» ’ . (Eq.z.zo)
Now each térm in this equation will be examined.
First consider the conditional expected times

E{Totbpoverflow = i}. Figure 2.7a illgstrates the sequence

of idle and busy periods that preceed an overflow in the ith

busy period. From the figure it is easy to see that

=i}= (i-1) [E{T }+E{Tidle}]+E{T }

E{Tolbpoverflow bpno bpo
i= 1’2’3.0.0-

63



Overflow

}' Ty = ‘ >,

Vi7i7 /7777 - - V/irs 7770
Busy Idle Busy Busy

a. Definition of T

0
-Overflow , overflow
L‘ Toc— _ . >
. - )
VA4 Y7/ - s/

Busy ‘Idle Busy Busy

b. Definition of TOé

FIGURE 2.7 - Definitions of times between overflowé
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where

E{prno} = Expected length of a busy period'in which nq
~overflow occurs |

E{Tidle}‘é Expected idle time between busy periods

E{pro} = Expected time from the start of a busy period

until the first overflow, given that at

least one overflow occurs in that busy period

As discussed in Section 2.1.1, the off times on all
input channels of a gradual input queue are taken to be

exponentially distributed. Therefore if there are N input

1

channels with mean off times A'i' (i=1,2,..N), then

N -1
E{T, } = [Z Al
4 idle j=1 1
Finding E{pro} exactly is a difficult unsolved problem.

It is, however, sFraightforward to lower bound E{pro} by
physical reasoning. If the gradual input queue ﬁas N inputs
‘and buffer size K, then the shortest time in which the buffer
can be filled is K/(N-1). Here, as élsewhere in this study,
it is assumed that the communication channels associated
with the queue all operate at a rate = 1.

Determining E{T } exactly is another difficult

bpno
problem. Again, however, a simple lower bound can be found

by physical reasoning. For a gradual input queue with a
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finite buffer, a busy‘period consists of at least one complete
message (on time on an input channel), whether or not there is

overflow during the busy period. Therefore if the mean length
1

of an on time on an input channel is u — then
. > -1
E{prno} o
Now consider the terms Pr(bpoverflow = i). By noting

that busy periods of a queue are independent, it follows that

Pr (bp i) = (1-p0)1‘1p i=1,2,....

overflow 0

~

where P0 is the probability of buffer overflow in one busy

period. Combining this with the previous analysis of

E{Tolbpoverflow = i} gives
S o o -1
E{To} = §=l [(1 l)[E{prno}+E{Tid1e}]+E{pro}](l PO) Py
. l-PO

= [E{prno}+E{Tidle}] (——r;;-—) +Efpro}
N ., 1-p

2 (u Ly (z L Ai) l)( 5 0) + K/ (N-1)
i= 0

The bound for E{To} still involves the probability P, which-

is difficult to evaluate exactly. This difficulty can be
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overcome by applying the upper bound for PO derived in

Section 2.1.1. Denote this upper bound by Py- Then PU 2 P,

and therefore

1-2;°1-p
and
1% o« I
Py Po

and therefore

' N 1-p
E(T}2 (™l + (2 A0 ™h =0 + r/(v-1) (Eq.2.21)
L i=1 Py -

As an example of the use of this bound, consider a two
input gradual input queue with buffer size K. Let the mean

on and off times on both channels be vl =1 anar"l=3

respectiveiy.

The first step in bounding E{To} is to bound P The

O.
~upper bound for Py developed in Section 2.1.1 is

- %
_ m*(-g*)e K

-g *
1-e 0 *K

For this example 6* = 1.34 and H*(-6*) = 3. The expected

N
time E{T. } = (2 As) i, (.667) 1. 1.5 while the expected
idle is1 1 :
=1

, >
time E{prno} Sy = 1. Therefofe

67



(l-PU)

>
E{To} - 2.5 ——ﬁ-t;—-— + K

Table 2.3 gives the value of this bound for three different
- buffer sizes.
| TABLE 2.3
Lower Bound on E{TO} for a Two Input Gradual Input Queue
Input Mean on Time = 1

Input Mean off Time = 3

Buffer size Upper bound on Lower bound on
(1 unit =1 Pr (overflow) E{TO}
mean input
on time)

: ) -3 2

5 . 3.82 x 10 . 6.56 x 10

10 4.85 x 10°° 5.15 x 10°
9

15 6.18 x 10 4.05 x 10°

A second bound for an expected time to buffer overflow
will now be developed. Let TOC be the time between the end
of a busy period in which there was an overflow and the end
of the next busy period in whiéh there is another overflow,

i.e. the time for one overflow cycle. Then T represents

0ocC
the length of a renewal event that contains exactly one busy
period in which there is buffer overflow. This is illustrated

in Figure 2.7b.
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Now consider a sequence of M busy periods of a gradual
input queue with a finite buffer. The expected number of
busy periods in which there is at least one overflow is then
M Pr (overflow) =‘M PO' Therefore as M+~, the expected total

time in which the M busy periods occur is given by

E{T pa1t = M Py E{Ty.}
or
E{T }= E{total} (Eq.2.22)
ocC M PQ
Now in order to iower bound E{Toéb an upper bound, PU’ for

P0 can be used as before. The remaining problem is to lower
bound E{Ttotal} for the fln;te buffer.

M busy cycles occur in the time E{T Each busy

total}f
cycle includes a busy period and an idle period. Therefore

E{Ttotal

} = MIE{T, } + E{T;4; }]

The time E{Tidle} is easy to find as discussed-previously
and E{pr} can be lower bounded by u-l as was done for

E{prno}' This gives the following lower bound
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B (Eq.2.23)

"Note that this is very similar to Equation 2.21.

The bound in Equation 2.23 can be improved by obtaining

total

first considering the time required for M busy cycles of a

a better lower bound for E{T }. This can be done by

gradual input queue with an infinite buffer. The total time

will be

E{T = M[E{T E{

total}infinite bp}infinite+ Tidle}]

The time.E{T; bplinfinite

is a standard result for an M/G/l1 queue that follows from

dle} is the samg as before and E{T

the analogy discussed in Section 2.1.1. Therefore

E{T can be calculated exaétly.

totallinfinite |
Now not; that a gradual input queue with a finite

buffer has the same busy periods as a queue with an

infinite buffer, except when there are overflows. Therefore,

the expected total time for M busy cycles for the finite

buffer is “

E{T

} = E{T -M Po E{T

total total}infinite lost}
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where E{Tlost} is the expected length by which busy periods
with overflows are shortened due to the overflows; Using

Equation 2.22 again gives

' - E{pr}infinite+E{Tidle}-PO E{Tlost}
E{TOC} = 5
0
E{T,_}. . . +E(T, }- P E{T }
> bp infinite idle U lost
PU (Eg.2.24)

Unfortunately, E{Tlost} cannot be easily upper bounded.
However, as Pﬁ+0, this is not important because then

Py E{T } also +0. Setting Py E{T } to zero therefore

lost
gives accurate results if P

lost
U is small. Results obtained by

using Equations 2.23 and 2.24 for the two input example

considered previously in this section are given in Table 2.4.

TABLE 2.4
Lower Bounds on E{Toc} for a Two Input Gradual Input Queue
Input Mean on Time = 1

Input Mean off Time = 3

Buffer size Upper bound on Lo&er bound on .Lower bound
(1 unit = 1 Pr (overflow) E{TOC} A on E{TOC}
mean input (Eq.2.23) (Eq. 2.24)
on time) . with P_E{T }
’ U lost
=0
5 3.82 x 103 6.54 x 102 7.85 x 10°
10 4.85 x 107° 5.15 x 10° 6.19 x 10°
15 6.18 x 1072 4.05 x 108 4.85 x 10°
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2.2.4 Other overflow measures

It is of interest to obtain more detailed overflow
statistics than just the probability of at least one over-
flow event in a busy period. One statistic that is of
interest is the érobability,of another overflow in a buéy
period, given that there has already been at least one in
that busy period. This probability can easily be bounded
if one considers a sample function of buffer content that
shows a buffei overflow. Such a samplé function is depicted
in Figure 2.8. As shown, a bﬁffer overflow event always
ends with all sources being off. A simple bound on the
probability of there‘being another overflow in the same

busy'period is therefore given by

Pf(overflow again in Ioverflow has) < 1-Pr(no sources come

this busy period
| K time units
- after previous

overflow)
l_e-AK
N
where A = Ai
i-1

Clearly, if no sources come on in the first K time units
after the pravious overflow, the buffer will empty and there
will not be another overflow in this busy period. This is

only an upper bound, however, because even if a source comes
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‘ Buffer content

Overflow event

J"’,,.All inputs off at this time
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x =ty +(t3-t,)
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FIGURE 2.8 - Sample function of buffer content after an
overflow in a gradual input gqueue. Capacity
of all input channels and the output channel
is one unit of data/unit time.
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on in the first K ﬁime'units, that inflow period need not
cause buffer overflow. This is a very simple bouﬁd that is
weak if the buffer éize, K, is large. Therefore it is worth-
while to improve it.

The improvement of the upper bound for the probability
of another overflow also follows from Figure 2.8. Assume
that a source comes on at time tl. Now note that from t

1

until tz, the buffer content stays above K-xl. The behavior

of the buffer content above K—xl during this period is the
same as the behavior of the buffer content during a busy
period for a gradual input queue with buffer size Xq. Since

= t it follows that

xl ll

Pr (overflow again in , overflow has)
this busy period | occurred

< 1 - Pr(no sources come on in the
first K time units after
previous overflow)

K .

-7 pre~A%1 pr(overflow in buffer )d£

- busy period size=t 1
tl-O 1
= l-e—AK

K =-At

- f Ae 1 Pr(overflow in buffer)dt
tl=0 busy period size=tl 1

(Eq.2.25)
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Now a lower bound for Pr (overflow), (such as Equation 2.19),
can be used in Equation 2.25 to complete the upper bound.
Equation 2.25 is an upper bound because after t2, there could
be the start of another inflow period during which the buffer
could overflow. The next inflow period after t2 can be
thought of as starting a busy period for a queue with buffer
size X, By recognizing this pattern, it is possible to
improve the bound given in Equation 2.25 by considering the
possibility of more than one inflow period occurring in the
remaining busy period. The above bounding idea will be used
in Chapter 4 to study flow control problems.

It is also of interest to obtain the distribution of
the quantitonf data that is lost in an overflow event. This
can be done for two input gradual input queues by developing
a continuous time Markov chain that represents the'dverflow
event. For example, cqnsider tﬁe queue shown in Figure 2.9a.
When an overflow even starts, both inputs must be on. The
buffer content then remains at its maximum level K until
both inputs ére off for the first time. During the éverflow
event, data is lost whenever both inputs are on. The Markov
chain in Figure 2.9b represents this overflow process. Tﬁe
distribution of the amount of data lost is the distribution
of the time spent in state 1 of the chain before trapping
in state 4, given that the starting state is 1.
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On-times exponentially distributed.

Mean =y .
Off-times exponentially diitributed.
Mean = A .

Yz 4

e .
Output Channel

. o
Ch.2 177 >

Buffer size K.

a. Two input example.

Once in
State 2,

ﬂ/" Pr{go to 4}=

State 2 TYATE 2\

b. Markov chain representation of the overflow
event.

FIGURE 2.9 - Obtaining the distribution of the quantity of
data lost in an overflow event.
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Let Wi(s) be the Laplace transform of tﬁe time spent in
state 1 during one visit to that state. Similarly, let L*(s)
be the transform of the distribution of the amount of data
lost in an overflow event. For this example W{(s)=2u/(s+2u).
By noting that wﬁenever leaving state 1, state 4 will be
reached without returning to state 1 with probability

u/(u+r), it can be seen that

*(s) = PRPRE S 2 N RS T
L*(s) iio Wi (s) (uﬂ) (1 uﬂ)
_ 2y u ® 2u i, 2,1
T s+2u (u+}\) _Z_:_ (s+2u) (u-l-}\)
i=0
= 2u2
s (u+h)+2u2

Therefore the amount of data lost is exponentialljvdistributed )
with mean (u+x)/2u2.

Markov chain representations for overflow évents of
gradual input quéﬁes with more than two inputs can also be
developed. Unfortunately, overflow events in these dqueues
can start with different numbers of inputs on and determination.
of the probability of starting in each different input state
is a difficult unsolved problem. Without. these starting
probabilities the Markov chain representations cannot be
used to determine the distribution of the amount of data
lost in an overflow event. Of course one can upper bound
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the loss by assuming the maximum number of inputs on, but

this may not be a véry tight bound.

2.3 Comparison of the Gradual Input Queue and the M/M/1 Queue

The gradual input queue accounts for a finite input
rate and a finite number of sources while the M/M/1 queue does
not. This section discusses the single stage queueing effects
thaﬁlthis allows one to observe that cannot be seen using the
M/M/1 queue.

Perhéps the clearest picture of the differences between
the two queueing models can be obtained by examining the

1,

for queues with infinite buffers. Figure 2.10 shows E[Vﬁax]'

expected maximuqlbuffer content during a busy pericd, E[Vmax
for the M/M/1 queue and several gradual input queues. In
this figure, three differences between the two types of queues
can be observed. These are denoted by Dl' Dz, and D3 on the
graph. o

The first difference, Di, is the difference between an
"M/M/1 queue and a gradual input queue with an infinite number
of input channels. The difference Dl is equal to the mean
length of onemessage. This resﬁlts from the différence
between instantaneous input (the M/M/1 queue) and gradual
and D

input. This difference, as well as D is independent

2 37
of the on time distribution for the gradual input queue.
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E {vmax}

Gradual Input
N=oo
(Identical)

Gradual
Input

N=4
(Identical)

6 =T ’ 1
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Gradual Input
N=2 (Different

20, = o?»
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0 3 1 1 1
0 2 .4 .6 .8 1.0

Output Channel Utilization '

FIGURE 2.10 - E[Vmax] for several queues. All input channels

have an expected on time = 1.
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The differences D, represent the changes in queueing
with different numbers of input channels. As the graph shows,
the fewer input channels there are, the less the queueing.
This is because, with a finite number of input channels,
when some of them are on, there is less remaining traffic
intensity. The remaining traffic intensity referred to here
is the rate at which additional inputs can come on and add to
the buffer. When there are a large number of channels,
having a few of them on does not decrease the remaining
traffic intensity much. However, if there are few inputs
to begin with, having some of them on can greatly reduce
this traffic intensity. Another way of thinking about this
phenomenon is thét the finite rate channels terd to reduce
the burstiness of the data arrival process and the fewer
input channels there are, the more the burstiness‘is reduced.
This effect cannot be seen using the M/M/1 queue.

Another phenomenon that can. be seen with the gradual
input queue is the effect of unequal traffic on ﬁhe input
"channels. The greatest queueing occurs when all channels
carry the same amount of traffic. If they carry different:
amounts of traffic, the queueing is reduced .as shown by
difference Dj. This is easy to understand when one remembers
that if all the traffic were on one input channel, there
would be no queueing at all. Again this effect cannot be

seen using the simpler M/M/1 queue.
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The effects discussed abo&e can also be seen in other
performance measures. Figure 2.11 shows the effect of
different numbers of input channels on the upper bound for
Pr(overflpw). The same upper bound is also given for the
M/M/1 queue as a‘reference.. Again, the amount of queueing
increases with the number of input channels.

Figure 2.12 shows a graph of the expected delay per bit
for ﬁhe M/M/1 queue and bounds on this delay for a two input
gradual input queue. The gradual input queue has less delay
than the M/M/l queue. Note that at low utilizations the
gradual input queue has essentially no delay. This is because
in this region of operation, nearly all busy periods consist
of one input channel on period which flows through the queue
with no buffer buildup. The M/M/1 queue with its instan-
taneous input, however, always.has at least 0.5 méssage
- lengths of expected delay per bit. |

Finally, Figure 2.13 compares E[Vmaxl for fwo input
gradual input queﬁes with sevéral different input capacities

with E[Vm

ax] for an M/M/1 queue. As the input capacity of

the two input queue is increased, the expected buffer
buildup also increases. 1In the>limit of infinite‘input
capacities, the two input queue behaves the same as the
M/M/1 gqueue because then the effects due to finite input

rates no longer exist.
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~ FIGURE 2.11 - Bounds on Pr (overflow). Mean on time for input

channels=l. Queue utilization=0.5.
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FIGURE 2.12 - Expected Delay Per Bit. Both Queues have

mean input on times, u-l = 1.
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FIGURE 2.13 =~ E[vmax] for different input channel capacities.

-All input on times are scaled so that the
expected length of an input = 1 unit of t'me on
the output channel.
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In summary, the three effects observable with a single
-gradual input queue are

l. Effect of noninstantaneous input.

2. Effect of a finite number of inputs.

3. Effect of inputs with different traffic loads.
These effects are especially interesting when the quéue is
part of a network. The next chapter considers networks of
gradual input queues and it will be shown that in the network
context, even more details can be seen that are not apparent

with the M/M/1 queue.
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CHAPTER III - NETWORKS OF GRADUAL INPUT QUEUES

This chapter deals with the anaiysis of buffering
requirements in a network of gradual input queues. Them
network of queues represents a message switched communication
network in which static routing is being used. The required
analysis cannot be done exactly, so the approximations used
are first presented. Several network examples are then
given. The examples illustrate the special insights into
network operation that can be obtained using the gradual
input modelf Finally, the problem of optimizing the static

routing is briefly discussed.

3.1 Approximations for the Analysis of a General Network

3.1.1 Traffic streams in general networks

The gradual input queue representation of a message
switched communication network consists of'several basic
eléments. These include the network topology,'the stochastic
description of the input traffic, the routing policy and any
other mechanisms such as flow control rules. Figure 3.1
illustrates these elements. The network topology consists
of directed communication channels which interconnect a set
of nodes. In this chapter, the communication capacities of
all channels will be assumed to be identical and normalized
to 1. Having identical channel capacities allows one to
apply the analysis for a single stage developed in Chapter 2.
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FIGURE 3.1 - Traffic streams in a network of queues.
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The input traffic to the network also arrives on chénnels
. of capacity 1. This traffic is in the form of alternating
renewal processes and the mean on time for all inputs will
be taken to be equal to Bin=u—l. An on time on an input
channel represents one message and this message will be kept
intact as it passes through the network. ihe path that the
message takes 1is determined by the routing policy. The
routing policy considered here is a static pélicy which
routes fixed fractions of the traffic between any source and
destination over specific paﬁhs. This is implemented by
random sampling at the switching points with the sampling
probabilities being the fixed fractions in the routing policy.
Such a routing policy is thé same as the oné introduced by
Kleinrock [KLEIN 64] in his‘study uSing a network of M/M/1
queues. The final network element, flow control mechanisms,
will not be used in this chapter. It will be assﬁmed that
the traffic‘is'allowed to fiow freely through the network
with no controls to reduce or distribute congestion. The
. goal of this chapter is to analyze the buffering requirements
for a network such as described above, subject to a_probability
of buffer overflow constraint. ‘ |

In Chapter 2 it was pointed out that the analysis
currently available for gradual input queues requires that
the traffic on the input channels be independent alternééing

renewal processes with exponentially distributed off times.
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This requirement can easily be met by assumption for input
channels which carry traffic directly from sources outside
the nétwork. Inside the network, however, this requirement
cannot be met in general. First, traffic on 2 different
internal buffer input channels may be correlated because it
previously passed over a common channel. For this to hagpen,
however, the traffic must have passed through at least one
intermediate node since it was on a common channel. There-
fore some of the correlation will be reduced. Here it will

be assumed that all traffic streams are independent.+

The eprnential off time requirement also cannot be met
in general. An example that illustrates thié»is the small
network shown in Figure 3.la. The traffic into the node 2
buffers does not consist of alternating renewal processes
with exponential off times. This is because of the routing
done by the switch. The off times in the traffic streams
after the switgh are no longer exponential and independent
of all other on and off periods because some of the off
periods are caused by the removal of messages from the busy
period of the previous stage. This is illustrated in
Figure 3.1b. | |

The above difficulty relating to interﬁal traffic
étreams will be dealt witﬁ by using an aéproximation. All

traffic from external sources will be taken to have both on

+See Section 1.2 for a discussion of how this relates to
the Kleinrock [KLEIN 64] independence assumption.
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and off times exponentially distributed. Then it will be

- assumed that all traffic streams in the network are therefore
alternating renewal processes with exponential on and off
times. The use of this approximation is supported both by
two limiting cases discussed below in which the approximation
becomes exact, and by the simulation results given in

Secﬁion 3.1.4.

- The first limiting case in which traffic streams in a
general network approach alternating renewal processes with
exponentially distribﬁted on and off times is when the
utilization of the output channels of all buffer stages is
near zero. This can be shown by first considering a buffer
stage at which none of the input traffic has been switched
(sampled). Since the output channei utilization is near
zero, all busy periods on that channel will, with high
probability, involve only one message. Therefo:e; with
high probability, the traffic streams on the oufput channel
will consist of an alternating renewal process of the form
shown in Figure 3.2a. The exponential off times in this
stream follow from the assumption that none of the input
streams to this stage were switched.

Now note that when a stream of thé :ofm shown in Figure
3.2a is sampled, the resulting traffic stream again has on
periods that consist of only one message. Therefore, if the

length of a message is exponentially distributed, the
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Busy period consists of one message.

‘ A* (g)=A/(A+s) A*(s) ,
/0777 /7 ~ 7]
z ‘ 1-2 2

a. Unsampled message stream.
: A*(s) = z)A/(zA+s)
. sampled
I Alddin 2o VA PZ74

~

b. Sampled message stream.

FIGURE 3.2 - Traffic streams in a network with utilization

near 2zero.
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distribution of the on times of the sampled stream will
.approach an exponential when the utilization of all channels
is near zero. The remaining problem is to determine the
distribution of the off time periods in the sampled stream.
This can be done as follows. Let B*(s)=ufu+s) be the Laplace
transform of the length of é single message'and A*(s)y=A/(A+s)
be the Laplace transform of the length of an off-time in the
unsampled stream. The traffic stream is sampled at random
with a probability z of keeping a message in the stream of
interest. Therefore the Laplace ﬁransform of the off-time
distribution for the sampled stream is given by

o

A*(s) I z(l-2)
sampled n=1

n-1

(A% (s))D (B*(s))™"L

(-]

: = I z(1-2)®T 0/0+s)® (u/ (uts))?L
n=1 '
rz(A/(A+s)) 5
- 1-(1-2) (A/(X+s)) (u/(u+s)) s=min{-},-u}

- (Eq.3.1)
The condition that the utilization factor on the output
channel be near zero implies that AT s ul. Therefbré

Equation 3.1 can be approximated by

zZ(A/(A+s))

A*(s) = -
sampled 1-(1-2) (A/(A+s))
_ 2ZA ' 5
= s (Eq.3.2)
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This states that the distribution of off times is approximate-
ly exponential at utiiizations near zero. Therefore, pro-
ceeding step by step through a network, starting with stages
whose inputs are not switched, one can show that at each
stage the distribution of off times approaches an exponential
distribution.

The second case that gives exponential off times is
when the utilization factor of all stages in the network is
'near one. In this case, the output traffic streams are
dominated by long busy periods consisting of many individual
messages. This is shown in Figure 3.3a. The sampled stream
can therefore be thought of as being derived from one
continuoqs succession of messages with a length distribution
whose Laplace transform is again B*(s)=u/(u+s). Again assume
that a message is kept in the sampled stream with probability
z. Then the Laplace transform of the off-time distribution -

for the sampled stream is

A*(s) n=l (g (s))"

- sampled n=1

"
™

z(1l-2)

zZu
zu+s

éimilarly, the Laplace transform of the on-~time distribution

for the sampled stream is
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Single message B*(s) = u/(u+s)

a. Unsampled message stream

"

|, B*(s)=(1-z)u/((1-z)u+s)
sampled A*(s) = zu/(zu+s)
> ‘(//;ampled

>

b. Sampled message stream

FIGURE 3.3 - Traffic streams in a network with utilization
near one.
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B*(s) = I (l-z)z" 1(B*(s))®
‘n=1 _

(1-2)u
T (1-z)u+s

Therefore, bothvthe on and off times approach an exponential
distribution in this case as well. |

In summary, these two limiting cases support the use of
the approximation that all traffic streams in a network are
alternating renewal processes with exponential on and off
times when the source traffic streams are of this type. This
apéroximation will be used throughout this chapter. Now that
the basic nature of the traffic streams has been specified,
the mean on and‘off times associated with them must be
calculated. The next section addresses the problem of
>determining the mean on time of a switched (sampléd) message
stream. The following section then shows how té use this
result to find all mean traffic:parameters in é network of

gradual input quéues.

3.1.2 Expected on-time for a sw;tched‘busy period

The one system element not analyzed in'the p;evious
chapter is the switch.‘ In order to be able to analyze a
general network, one must be able to determine the expected
on-time of the busy periods at the output of the switch. The

approach taken to this problem is first to calculate the

95




expected number of messages in a switched busy period. Let
Ns denote the number of messages in such a switched busy
period. Then the expected time duration of the busy period

will be approximated by

E{Ns}
H

E{Time duration = E{Ns} Bin = (Eq.3.3)

of switched

busy period}
Where 8, = u"! is the expected length of one message. This
relationship is only approximate because the distributions
for the number of messages and the message lengths in a busy
period are not independent.

First some analysis of an unswitched busy period will be
dcne.l Let E{Nus} be the expected number of hessages in an
unswitched busy period. Now consider picking one message at,
random from such a stream of messages. The probability that
the message chosen is the last one in a busy period, Pr(last

message)us, is given by

S|

Pr (Last message) s = z Pr (length of busy period
u n=1 from which message is
.chosen = n)

n Pr(length of busy period=n)

8
3=

E{Nus} A

(Eq.3.4)




The expression for Pr (length of busy period from which message
is chosen = n) follows from the fact.that the message is
being chosen by random incidence [DRAKE 67].

Equation 3.4 also applies to a switched message stream,

i.e.,

Pr (last message)S = ETE;T (Eq.3.5)
Where Pr(last message)s is again the probability that a
message chosen by random incidence is the last one in a busy
period. The switched stream is of course derived from an

unswitched one and therefore

Pr (last message)s = Pr(last meSsage)us

-

+ (1-Pr(last message)us)Pr(message
: . following
chosen one
is not in
switched
stream of
interest)
The above states that the last message in a busy period in
a switched busy period was either the last message in the
unswitched busy period or it became the 1a$t message because
the message immediately behind it was switched to another
stream. Let z be the probability that a message is switched
into the stream of interest. Then using Equations 3.4 and
3.5 in the above relation gives
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}"'l

-1 _ _ -1, .-
E{Ns} = E{Nus + (1 E{Nu } ) (1-2)

S

}‘1

+ -
s 1 Zz

=z E{Nu
or

}-1

-1 _ -
uE{Ns} = zuE{Nus

+ u(l-2z) (Eq.3.6)

Recalling Equation 3.3, it can be seen that there is a liﬁear
relationship between the inverses of the expected time

‘durations of the busy periods at the input and output of a
switch. This result will be useful in the next section

whére the mean traffic parameters in a general network are

determined.

3.1.3 Determining the mean traffic parameters in a general

"~ network
A gen?ral ﬁetwork of gueues consists of N nodes
(indexed i=1,2...N). Figﬁre 3.4zgives a detailed view of
one of these nodes. As shown, each node has one or more
directed output communication channels (indexed‘j=l,2..fjmaxiL
A buffer is associated witﬁ each outpuf channel and it ié fed.
by one or more internal node changels (indexed k=1,2..kmaxij).
The internal channels either carry traffic thaf has‘been

switched from network channels or traffic from source channe.is

outside the network.
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FIGURE 3.4 - Communication channel labeling conventions
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It is possible to uniquely identify each communicaticn
channel in the network by using the lébeling convention
-given above. Output channels are identified by a number
pair (i,j) while internal channels are identified by three
numbers (i,j,k). The mean on and off times on each of these

8 ATl

types of channels will be denoted by 8. 1,5,k 2,35 and

i,3’
l .

A; i,k respectively. Similarly, the utilizations of internal
rJr

and output channels will be u, . and u., . respectively.
i,j.k i,3

These utilizations are defined as follows.

B,

- i,j,k
Ui,k T 5. L (Eq.3.7)
i,j.,k "i,3j.,k ’ :
kmax. . . : :
= 1,3 ' ‘<
B, T2 ULk u,5 - 1 (Eq.3.8)

Here, as elsewhere, it is implicitly assumed that the
capacities of an internal and an output channel are the same.
Equation 3.7 sﬁates that the utilization of a channel is the
fraction ofrtime that it is on. Equation 3.8 statesvthat‘the
utilization of an output channel equals the sum of the
utilizations of the associated internal channels..

The problem now‘is to solve for the mean parameters B
and A everywhere in the network. This cén be done by first
solving for the utilizations u and then for the mean on times
8. The mean off times can then be found using equations
like Equation"3.7.
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The utilizations in a general network of graduél input
.queues can be found by solving a set of linear equatiqns. In
this set, the utilizations for source channels are assumed to
be given. The utilizations for output channels are given by
linear equations of the form of Equation 3.8. Finally, the
utilization of a switched iﬁternal channel gquals_thé utiliza-
tion of the source output channel times the fraction of
traffic switched to that internal channel. If zm,i,j,k is

the fraction of traffic switched from output channel (m,i) to

internal channel (i,j,k), then

u. . = (u_ .)(z

i,3,k m, i) Zm,i,5,% (Eq.3.9)

These individual utilizations can be combined into one matrix

equation.

-0 179
-

o e e mld - - s -

11...10...0t
Yo, 1t 0

0...01...1;

] -l

- = =] (Eg.3.10)

In this equation, Z is the routing matrix of the fractions

z while Uint and Uout are vectors of internal and

output channel utilizations respectively.

m,i,j,k

101




Equation 3.10 may or may not have a solution. Even if
there is a solution, ﬁhe resulting utilizations may be larger
’thah'one. These two points are illustrated in Figure 3.5.
Figure 3.5a shows a network for which Equation 3.10 has no
solution. The problem is that an infinite amount of traffic
accunmulates inside the network. The utilization equation for
the network in Figure 3.5b has a solution, but the utilization
u, is larger than one. 1In this case Equation 3.8 is being
used in a region where ui,j > 1. Equation 3.8 is not valid
in this region and furthermore utilizations greater than one
are physically not possible. By physical reasoning, one can
see that in this case there would also be an infinite
accumulation of tréffic inside the network. In this study
only networks which have a steady state distribution of
buffer contents are of interest and this occurs only if
Equation 3.10 has a solution with all utilizations < 1.

The remaining problem now is to solve for the mean on
times R everywhere in the network. This is simplified by
solving for the reciprocals B = B_l because the 8's obey a
set of linear equations. As with the utilizations, there is
one type of equation that relates B's on the two sides of a
switch and one thét relates the B's on the fwo sides of a
buffer. ‘

The relationship between the 8's on both sides of a

switch follows directly from Section 3.1.2. Recall that
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A. u,+u,=u

u1>0 1 "4 73
external el B. u,t+u.,=u
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Therefore u3=u4—u2
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u
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a. A case in which Egq. 3.10 has no solution.

switch .lu, leaves

u,=.2 a 2
external 2 ' network
source Buffer

.9u2
ul+.9u2=u2
u1=.lu2

b. A case in which the utilization Eq. 3.10
has a solution, but not all utilizations
are < 1.

~ FIGURE 3.5 - Networks for which Eg. 3.10 does not give
physically meaningful results.
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- .=1
- and

_ =1
Bs =y E{Ns} (Egq.3.12)
where u-l is the expected length of one message and E{N} is
the expected number of messages inr a busy period. The
subscripts us and s refer to unswitched (input to the switch)
and switched (output from the switch) streams respectively.
Taking the inverses of Equations 3.11 and 3.12, one can

substitute directly into Equation 3.6 and obtain the result

that
Bg = 2 Byg + u(l-z)

Using the indexing convention for communication channels, this

becomes

+ p(l-z (Eq.3.13)

Bi,j.k = Bm,i Zm,i,j,k mi,3,k

Now the linear relationship for the B's on both sides of:
a buffer will be found. First recall the relationship for
output channel utilization
Bi,j

Us: = = I

A Wi
8113 Ach
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This can be rearranged to give

B,. = (—1

Bty Ty
or

- l-ui.

A similar relationship exists for the input channels of the

buffer.
A l'ui . k v .
Biljlk = Ai)j;]{ ( u. N ) (Eq'3015)
l’]lk

Equations 3.14 and 3.15 can be tied together by recognizing
that for a gradual input queue |

kmax.

Ae .= § L3

9% i,3.k (Eq.3.16)

Equation 3.16 states that the rate at which off periods on

the output channel end, A is equal to the sum of the

i, 3’ :
rates at which off periods end on the input channels. This
is true since the off periods on the input>channels are
assumed to be exponentially distributed. Combining Equations

3.14, 3.15 and 3.16, one obtains the linear relationship
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- l-ui . kmaxi N u s
By o= (= & I B, L (= (Eq.3.17)
v3J i3 k=1 13 i,j,k
Since the utilizations u, . and u, . , have previously been
i,J i,j.x

determined, the B's can now be obtained.

Equations 3.13 and 3.17 can also be written as one

matrix equation as follows.

- = - o oy - o

—_ l1-2z . -

3 2 m,i,j,k 2
0 z Bint 1-2 : Bint
- = -— e m'i’j'k - o=
Uc l 0 Bout 0 Bout
L - b -l = J o J

(Eq.3.18)

The‘matrix ﬁ; is the matrix of coefficients implied by

Equation 3.17. The matrix Z is again the routing matrix

while Bint and Bout are vector§ of reciprocal expected on
times for internal and output channels respectively.

The remaining question is how to solve this set of

equations. The author has found that Picard iteration is a

particularly convenient way. This follows from the-fact that

Equation 3.18 is of the form

Q(B) = 8 (Eq.3.19)
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If certain requirements are met, this can be solved by an

* iteration scheme (Picard iteration) of the form
Q(Bn) = Bn_’_l n= 132,.-..

From the contraction mapping theorem [DESOER 75] it is known
that this iteration scheme will converge to the unique

solution of Equation 3.19 if
o)) - @1l < cl[B; - B,

where ¢ < 1 and §1-and §2 are any two points.

Examining Equation 3.18 it can be seen that this will be true

0 Z

if the largest eigenvalue of the matrix is < 1.

U, O |
This matrix contains only positive elements. Therefore if
the sum of ghg elements in each row is < 1, thellargest
eigenvalue will also be < 1.+ fhis will be the case if
there is switching and combining in buffers at each node of
the network. If there is switching, each row of the matrix
7 will have a sum < 1. If there is cbmbining'in each buffer,
.then there will be at least two nonzero Pi,j,k for each |
buffer. Therefore the row sums of ﬁe will be

+See the Appendix on positive matrices in Karlin and

Taylor [KARL 75].
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l=u. . kmax. . u, . l-u. .
Qe = _ l-u, . min
i,J k=1 i,j,k X (l-ui'j'k)

Note that if there is a switch for which z=1 or a buffer in
which no combining is occurring, the input and output streams
for that network element will be the same. Therefore
variables can be eliminated so that the Iargest eigenvalue

of the matrix in Equation 3.18 will be < 1. Picard iteration
can therefore always be used to find the unique solution.

In practice, the Picard iteration works well using an initial
guess of éll B's = B, = 1.

in

3.1.4 simulation verification

This section presents simulation results that support

the use of the approximation that all traffic streams in a
generél network of gradual input queues are alternating
renewal processes with exponentially distributed on and off
times. Section 3.1.1 showed that this approximation becomes
exaét when all channel utilizations are near zero or one.
The purpose‘of the simulation is to show that the apbroxima-
tionAis also reasonable for other uﬁilizations.

The simulation was done for a queueing system as shown
'ih Figure 3.6. The system consists of a gradual input‘queue
followed by a routing switch. The inputs to the system are
alternating renewal processes with exponentially distributed

on and off times. The simulation then obtained the
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FIGURE 3.6 - Gradual input queueing system studied by
simulation. ‘

109




statistics of the on and off times associated with the
‘traffic after the switch. The simulation performed was a
Monti Carlo computer simulation written in Fortran. Random
numbgr generators from the International Mathematics and
Statistics Libraty were used to generate sample input on and
off times as well as the routing decisions (random sémpling)
that occurs in the switch.

The results of two simulation cases are summarized in
Figures 3.7 to 3.10. In both cases the mean message length
Bin is one and the fraction of traffic kept in the steam of
intérest,,z, is 0.5. 1In Case 1 the utilization of the ocutput
channel of the gradual input queue is 0.5 while in Case 2 it
is 0.8. "The resﬁlts in Figures 3.7 and 3.9 show that the
approximations used in this chapter are gooa for calculating
the mean on and off times for the switched traffiéystream.
Figures 3.8 §nd 3.10 give histograms‘of the sample lengths of
the switched on and off times. Also shown are the theoretical
histograms for the exponential distributions assumed in the
approximations. These results indicate that the exponential
distribution assumptions afe indeed reésonable for célcﬁlating
traffic stream parameters in a gegeral network. If the
requirement that buffer input traffic streams ére ihdependent
is also reasonably met; then, using these traffic parameters

with the gradual input queue will give good results.
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FIGURE 3.7 - Simulation results Case 1. See text for details.
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3.2 Examples of General Networks

The examples in this section illustrate the use ofithe
gradual input queue to study the buffering requirements of a
message switched network. The analyvsis used is that presented
in Section 3.1. Where Pr(overflow) is calculated, the upper
bound given by Equation 2.18 is used. The results are com-
pared to those obtained when using the network of M/M/1
queues model.

The first three types of examples that will be considered
are one way loop networks, a seven node network with four A
Hamiltonian circuits and sections of an ARPA type network.
These three types of examples are illustrated in Figures 3.11
to 3.13. For each,of these networks.it will be assumed that
all cémmunication channels have a capacity of one. There is
one source (such as a host computer) at each node and this
source can send data into the network gradually at rate one.
The input traffic from these sources has a mean on time Bin=1.
It will be assﬁmed that when,tréffic reaches its destination

node, it canrbe delivered outside the network without
requiring fufther buffering.

The one way loop examples are completely symmetric.

Each input is the same and each node sends an équal amount of
vtraffic to each of the other nodes. To éxamine the effects
oflloop size, 3,5 and 10 node loops are considered. Table 3.2

presents the important network parameters for the examples.
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Input 2

Input 3

FIGURE 3.11 - A five node one-way loop network
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Input 2

FIGURE 3.12 - A seven node network with four Hamiltonian
circuits
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FIGURE 3.13 - A 26 node ARPA type network. Each arc
represents two directed communication channels.
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Table 3.2
Parameters for the Loop Network Examples

For gll cases 8111 = Bin =1

Number of nodes : 3 5 10
Routing parameter z -~ 0.233 0.600 0.800
Case 1

Loop utilization = 0.2

11 6.5 11.5 24.0
810 1.038 1.105 1.171
Aiiz 14.552 8.105 6.150
Case 2 ’
Loop utilization = 0.6 ‘
AT1, 1.5 3.167 7.333
By15 1.159 . 1.472  1.862
. Al1, . 4.643 2.618 2.017
Case 3
Loop utilizatioﬁ-= 0.9
AL 0.667  1.778  4.556
B112 1.361 2.107  3.514
AI1, 3.184 © 1.795  1.369
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The cases presented give network operation at three different
utilizations, 0.2, 0.6 and 0.9. A graph of the Pr(overflow)
vs. buffer size for the utilization = 0.6 case is given in

Figure 3.14.

Two effects occur in these loops. First, as loop size
increases, the length of busy periods inside the loop, 8112,
increase. This tends to iﬁcrease queueing. Second, as loop
size increases, a larger fraction of the traffic into each
node arrives over one channel (the internal loop channel).
This tends to decrease queueing. Figure 3.14 shows that the
first effect dominates in going from a 3 to 5 node loop while
the second effect dominates in going from a 5 to 10 node loop.

Note that these effects cannot be observed using the
M/M/1 model; The M/M/1 model always indicates the same
amount of queueing for a given utilization, no matter what
the size of the loop. The M/M/1 curve in Figure 3.14 there-
fore applies to any size loop operating at a utilization of
0.6. ] '

As a second example, the seven node network in Figure
3.12 will be used to show the dramatic effects of having
gradual inputs for the sources. The traffic in this network
will also be assﬁﬁed to be symmetrical. Thé routing for the
éraffic is illustrated in Figure 3.15. ﬁote that each channel
in the perimeter Hamiltonian circuits carries traffic from

only one source. Since that source provides a gradual input
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FIGURE 3.14 - Pr(overflow) for loop networks. Case 2 in
_ Table 3.2. ‘
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Channels over
which queueing
occurs

FIGURE 3.15 - Routing in the seven node network
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as the communication channel capacity, there is no gqueueing
on these channels! The only channels which have gqueueing are
the internal Hamiltonian circuits. Each of these are gradual
input queues with two inputs. Figure 3.16 shows the

Pr (overflow) vs. buffer size for these channels if their
utilization is 0.2. This cﬁrresponds to each network having
a utilization of 0.6. Figuie 3.16 also shows the curve for
the M/M/1 model. Using the M/M/1 model, this curve would
apply to all channels in the network since théy all have a
utilization of 0.2.

In'theée first two examples, the sources were considered
to be host computers. They could also have been the outputs
of concentrators which have gathered traffic.from many
terminals. The concentrator would have to be buffered, but
as shown by the examples, if the concentrator gradually feeds
the network, the network buffering may not need to be too
large. The idea here is to use most of the totél buffering
in the system near the sources. This concept will be
explored further in Chapter 4.

‘A question to be asked now is whether or not the use of
the gradual input model gives widely different results than
the M/M/1 model for networks that have actually been imple-
ﬁented. Figure 3.13 shows the a 26 node version of the ARPA
network. A major topological feature of the network is that
it contains long chains of nodes. It is in these chaihs that
the gradual input model differs most from the M/M/1 model.
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FIGURE 3.16 - Pr(overflow) for the seven node network.
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Figure 3.17 shows a situation in which the two models
give different results. The gradual input gqueue can show
the effect of the traffic on the two input channels to node
2 being unequal while the M/M/1 model cannot. Figure 3.18
gives a graph of Pr(overflow) vs. buffer size that illustrates
this effect. This situation is one in which the independence
assumptiont used in the network of M/M/l1 queues model can
greatly decrease the accuracy of the model. The independence
assumption negates the effect of having most of the traffic at
a node arrive over one channel.

In the:ARPA network chains, one can also observe the
buildup of busy period length as traffic progresses along
the chain. Figﬁre 3.17b shows one such chain where the
utilization of output channels 1, 2 and 3 is the same, but
the expected busy period length is different for each stage.
The length increaées as one progresses along thé chain.

Figure 3.19 gives the Pr(overflow) vs. buffer size for this
situation. -

The chains in the ARPA network are where the greatest
differences can be seen using the gradual input model because
here the buffers have few inputs. As was shown ih}Chapter 2,
gradual input buffers with many inputs‘approach the behavior

of an M/M/1 queue.

TSee the summary of previous buffering studies in Chapter 1.
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a. A two node chain used to study the
effects of Uy # u,.

Ch.3 = 77

B=l.636§\./}

U=0.5 2=0.5

b. A long chain showing the buildup of
busy period length.

FIGURE 3.17 - Queueing in chains of gradual input queues.
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FIGURE 3.18 - Pr(overflow) for Figure 3.17a.
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FIGURE 3.19 - Pr(overflow) for chain in Figure 3.17b.
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A final effect that can be seen usiné the gradual input
model is that if there are many inputs to a network, the
traffic tends to get caught up at the input nodes and only
slowly filter through the internal network nodes. Figure
3.20 shows a simple situation that illustrates this. Eight
sources are being concentraﬁed onto a single output channel.
If this is done in one stage, this stage will have more
queueing than the se~ond stage of a two stage network.
Figure 3.21 gives the expected maximum buffer contents that
verify this. Again, this effect cannot be seen using the

M/M/1 model.

3.3 The Static Routing Problem

The determination of the routing policy used in a
message switched communication network is an important
problem. Much work has been done in the area of siatic
routing policies that seek to minimize mean deléy through
a network. This—section briefly discusses some aspects of
such a static routing policy for a network of gradual input
queues. The problem is a complex one and the optimal solution
of it is beyond the scope of this thesis.,

Throughout this chapter the graduél‘inputvmodel has
been compared to a network of M/M/l1 queues as used by
Kleinrock [KLEIN 64]. This will again be done here. The

optimization problem of static routing (using mean delay/
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.message as the criterion) has been solved by Cantor and
Gerla [CANT 74]. They have shown that the problem can be
formulated as a multicommodity flow problem. Their problem
formulation is:
Given: " A network of N nodes and NA directed
| channels.with finite capacities and an
N X N matrix ﬁi[rij] whose entries are
the required mean flows between nodes
i and j.
Minimize: The mean delay/message through the network.
Constréints: 1. The requirements r,; are met.
2. The flow through each channel is less
N than or equal to its éapacity.

This problem is solved by a mathematical programming

algorithm which finds the mean flows through the network

that produce minimal delay. The algorithm relies on the

fact that tﬁe ;egion of feasible flows (flows which satisfy
the constraints) "is a convex polyhedron and that the objective‘
function is a convex function of the flows. From the optimal
mean flows, a routing policy is determined. The mean flow
solution does not uniquely spécify a routing policy, howevef
gll policys giving the same mean flow haye the same mean

delay in the M/M/1 model. This correspondence between mean
flows and mean delay is central in the Cantor and Gerla
analysis. This relationship does not hold for networks of

graaual input gqueues as will be shown below.
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A minimum mean delay/bit static routing problem for a
network of gradual input queues has basically the same
statement as that given by Cantor and Gerla. The only
difference in the statement is the objective function. Since
the exact expression for the mean delay/bit for a gradual
input queue has not been deiermined, either the upper or
lowéf bound developed in Section 2.1.3 must be used. Le%
E{dil be the chosen *“ound on the expected delay per bit for
the ith channel, ug be the throughput through that channel

and u_ be the total throughput for the network. Then the

t
objective function for expected delay/bit would be

NA

£ |-

u; E[di]

t i=1

As an illustration of the routing problem for gradual
input queues, consider the simple network shown<ih Figure
3.22. In this example there are two inputs witﬁ traffic
for the same destination. Sincé there are no other inputs
~in this example, it is easy to see that the minimum delay/
Eit routing solution is to send all the traffic from one
source over channels 1 and 2 and send all of the ‘traffic
from the other source over channel 3. VThié soiution produces

no waiting lines at any of the channel buffers and therefore

has minimum delay. Any other static routing policy would
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Routing decision to be made,

FIGURE 3.22 - A simple example of the static routing problem.
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produce a waiting line in the buffers for channels 1 and 3.
_Some of these other poliéies would produce the same mean
flows as the optimal policy, but would have a different
delay.

Because the mean delay/bit is not specified by mean
flows alone, the routing optimization must be done by
considering the routing matrix 2z directly. 'The question to
be answered now is whether or not the resulting optimization
problem involves a convex objective function over a convex
region so that mathematical programming techniques can be
applied to find the optimal solution.

It is relatively straightforward to answer the question
about the feasible region. Let Z, and Z, be any two routing

1

matrices that are feasible. 'Then ZB’= az, + (l—a)Zz, Ofafl,

1

is also feasible. This is because Z, sends a fraction a of

3
all traffic according to policy Z; and a fraction (1l-a)
according to ‘policy Zz. Clearly this meets both the flow
requirements between node pairs and the capacity constraint.

Therefore, since 2 is feasible, the feasible region for the

3
overall problem is convex. -
Unfortunately, tﬁe objective function E[d] is not convex.
The example in Figure 3.22 points this out. Clearly in this
case there are two solutions which give né queueing and
therefore are optimal. Since thé objective function is hot
convex, applying mathematical programming techniques to the

problem does not guarantee that the solution find is globally
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optimum. It should be noted, however, that the two solutions
in the small example are both globally optimum and in some
sense equivalent. If the objective function is such that
there are no locally optimum points that are not globally
optimum, finding one of them using mathematical programming
would be very useful.

It should also be noted that if dynamic routing were
used in this example, then the objective function would be
convex. This follows from the fact that any convex combina-
tion of the above two mean flow solutions could be used
while achie&ing no gqgueueing at node 1. Dynamic strategies
can theoretically give superior performance’in many network
situations, but there analysis is difficult and is beyond
the scope of this thesis. Dynamic routing strategies remain

an area for future research.
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CHAPTER IV - FLOW CONTROL IN TREE CONCENTRATION STRUCTURES

The analysis of message éwitched communication networks
presented thus far has not considered the use of flow control
rules. The purpose of this chapter is to study flow control
in tree concentration strucﬁures. The flow control studied
is uéed to prevent buffer overflow in the interior of the
tree structure, i.e. any overflows will be at the nodes to
which sources are directly connected.

The flow control rules that can be used in a system
depend to a éertain extent on the buffers available in the
system. Therefore the problem of buffer allocation is
considered in the first section of this chapﬁer. It is shown
that, in certain cases, placing all buffers at source nodes
in the tree allows the system to operate with the smallest
probability of buffer overflow. The flow control éolicy
that minimizes_the probability of buffer overflbw for these
cases is then discussed. The section ends with the presenta-
tion of an example which shows that it is not always optimal
to place all buffers at the source nodes.

The second section of this chapter deals with the
approximate analysis of a concentration t;eé in which flow
control is keing used. It is shown that the tree can be

analyzed one stage at a time, the coupling of the dynamics
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between stages being approximately represented. The
approximations made are supported by a theorem for first

passage times in Markov Chains and by simulation.

4.1 Determining the Optimum Buffer Allocation in a Tree

Concentration Structure

4.1.1 The optimality of buffering only at source nodes

The problem of determining the buffer allocation in a
tree concentration structure using flow control that minimizes
the probability of buffer overflow is best studied by
considering specific examples. As a first example, the two
level tree shown in Figure 4.1 will be studied. The tree
structure considered here is symmetric so that the stage 1
nodes are both assumed to have a buffer size x and stage 2
is assumed to have a buffer size y. The output channel of
stage 2 has capacity C0 = 1 and the channels between the two
stages are assﬁmed to have capacities less than or equal to
Co’ This restriction on the channel capacities betwgen the
stages is impértant in determining the optimal buffer alloca-
tion in the tree structure.

The tree structure in Figure 4.1 is to‘be-operated
using a flow control policy that does not‘allow traffic to
be lost (due to buffer overflow) at stage 2. This can
obviously be done by restricting the flow from the stage 1

nodes whenever the buffer at stage 2 is full. Therefore all
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FIGURE 4.1 - Two level tree example.
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overflows will occur at stage 1. It will be assumed that
fhere is an instantaneous controller that observes the state
of the entire tree and carries out the flow control policy.
For the class of gll such flow control policies, the problem
now is to find the buffer allocation and flow control that
minimizes the probability of buffer overflow for the system,
subject to the constraint that 2x + y 2 v, i.e. that the total
buffer size is N v. In the discussion that follows it will

be shown that the buffer allocation is x = v/2; y = 0 is the
desired allocation. This allocation can be determined without
first specifing the flow control policy exactly.

Before proceeding with the main result, it is necessary
to make ah observation about the service discipline at stage
2. Note that as long as the service discipline at stage 2 is
work conserving (data is sent over the output channel
whenever possible) the choice of the exact éervice discipline
thefe cannot effect the probability of buffer‘OQerflow at the
input stage to the system. Therefore, for convenience, the
service discipline at stage 2 that will be used is the one
which always keeps the number of bits fiom streams A and B
(ﬁhe two input nodes) that are at stage 2 equal. It is
possible to do this in a work conserving manner without
effecting the stage 1 nodes. To see that this is true, note
that the contents of the stage 2 buffer increase only when

traffic from both streams A and B is entering the buffer.
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During times of buffer increase it is therefore possible to
keep the number of bits from streams A and B equai at stage
2 independent of the rule used to determine when or how much
traffic is sent from the source nodes. Clearly, it is also
possible to do this when the buffer contents of stage 2 are
remaining constant or decreasing. This service discipline
at stage 2 therefore places no restrictions on the operation
of the stage 1 nodes that could effect the probability of
buffer overflow there.

The following can now be shown:

Let t = 0 be the start of a busy period for a tree
structure as shown in Figure 4.1. Also let RA(t) and RB(t),
t 2 o, be-the empty buffer available at nodes A and B

respectively, given that there have been no overflows between

time 0 and t. Then, using a flow control rule that allows

no overflows at stage 2, the buffer allocation that maximizeé
both RA(t) and RB(t) for all t > 0 and 2x + ¥y Svisx-= v/2;
y = 0.

The proof of this will be done by comparing the'two
systéms shown in Figure 4.2. Systemvl is the proposed optimal
system while System 2 is any other symmetric system. System
2 will be assumed to be operating using an optimal flow
control policy for its particular buffer configuration.

System 1 will be assumed to be operating in a way such that

the total buffer contents in it are the same as in System 2.
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Stage 1 Stage 2

buffer size=v/2

Buffer size=0

Stream B = \————
‘ buffer size=v/2

buffer size x

| Stream A

buffer size y>0

2x+y$v

FIGURE 4,2 = Two possible buffer allocations
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This can be done from t = 0 until the first buffer overflow
in either systemf which is the time period of interest here.

For this time period it will be shown that

v
o

Ry (t) 2 Ri(t) and Rp(t) 2 RE(t) .

where the supersecripts refer to System 1 and System 2

respectively,

At t 0 it is assumed that both systems are empty.

Therefore it is eobvious that

1., _ 51 e
RA(?) = R5(0) = v/2
while
2,0y _ 52 _
gA(O) =\R§(0) = x

But since 2x + y £ v and y > 0, it follows that x < v/2 and

therefore

1 2 1 2
33(0) > BA(Q) and RB(O) > Ry (0)

tThis will become apparent later in the proof.
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For a time t > 0, let aT(t) and bT(t) be the number of
‘bits from traffic streams A and B that are in the system.
Similarly, let az(t) and bz(t) be the number of bits at the
second stage of System 2. From the use of the service
discipline at stage 2 that keeps the number of bits from
streams A and B equal, it follows that

Sy/2

a,(t) = b, (t)
Note thatnthis implies that aT(t) and bT(t) for System 2 are
both < v/2. Therefore System 1 can be operated in such a way
that, before the first overflow, it always has the same aT(t)
and bT(ti as System 2.

In order to compare System 1 and System 2 for t > 0, it
is neéessary to determine exactly where the stored traffic
bits are located. Assume that there are aTkt) gnd bT(t) bits
in both systems. Then for System 1 ii is easy to see that
this traffic must be stored as shown in Figure 4.3. From

this storage configuration it follows that

R%(t) v/2 = ag(t) £>0

v/2 - bT(t) t>0

RE (t)
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Stage 1 Stage 2

C ¥/2=ag (k) ag(t)
i —
V207110

buffer size=0

9/2ebg(e)  bo(e)
M M
1,

FIGURE 4.3 = Storage of traffic in System 1
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For System 2 the location of the stored bits is not
known exactly, However, it can be shown that even if they
are in the best possible locations, System 2 will not perform
better than §ystgm 1. There are two situations that need to
be examined for System 2.

The first case to be considered is when both aT(t) and
bT(t) are 2 y/2. Then the gest possible arrangement of bits

in System 2 is as shown in Figure 4.4a. For this case then

2.
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Similérly

n

R2(t) = v/2 = byl(t)

i 1

Therefore in this case System 1 and System 2 have the same
RA(t) and RB(t): » ~

The second case to be considered is when either 1)
aT(t) < y/2 and §T(t) < bT(t); or 2) bT(t) < y/2 and bT(t) <
aT(t). Since the system is symetric, these two conditions
are equivalent. The best possible arrangement of bits in
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FIGURE 4.4 - Storage of traffic in System 2




gystem 2 for the first of these conditions is shown in

Figure 4,4b, As shown, the fact that a,(t) = b,(t) < y/2

[(v]

auses some unused buffer space at stage 2. The result is

i

a

~N

R (£) = x-(ag(t)-a, (£))<x-(ag (t)-y/2) = R} (t)

and

0

RQ(ﬁ) %= (bp (£) =b, (£)) <x=(by, (£) -y/2) = R%(t)

The analysis of the case bT(t) < y/2 -and bT(t) < aT(t) is

gimilar, Therefore

1 > 2 1l > 2 >
RA(t) - RA(t) and RB(t) = Ry(t) t =0

Q.E.D. -

What has been shown is that from the start éf a busy
‘period until the first overflow in the system, it is better
to have all buffers at source nodes.‘ Maximizing RA(t) and
RB(t) over this time period corresponds to minimizing the
probability of at least one buffer overflow in a busy period
considered in the previous chapters. The proof does not
extend past the first overflow because after that, it is

not possible to assume that the number of bits stored in
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Systems 1 and 2 is the same. However, if the traffic arrival
process at source nodes has a uniform arrival raté for all
time, there is reason to believe that System 1 has a lower
overall probability of buffer overflow and hence a higher
throughput. This will be apparent in the example in

Section 4.1.3.

The above example 1s a special case in that it is
symetric, has only two source nodes and has an interstage
communication capacity < co' the tree output capacity. It
is now logical to ask if the result can be extended to other
concentration trees.

The last restriction, the restriction on interstage
channel cépacity, is central to the proof just given. If
this is not true, the service discipline at stage 2 that
keeps az(t) and bz(t) equal effects the probability of over-.
flow at stége 1. To see this consider the érriyal of a
meésage into an empty system. If the internal capacity C=>Co,»
a queue of only one type of message (A or B) will build up
at stage 2 unless the flow rate out of stage 1 is restricted
to Co' Such a restriction at the soﬁrce node would effect
the probability of overflow there. Note that when the inter-
stage capacity is > Co’ the buffer at stage 2 can be
effectively used when traffic of only one type is in the
system. This is not true otherwise and therefore one would
expect that as the interstage capacity becomes large with

respect to Co’ it becomes optimal to place some buffers at stage 2.
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If the condition of symmetry is removed from the problem,
the result that it is best to place all buffers aﬁ source
nodes will still hold. This can be seen by comparing two
systems as shown in Figure 4.5. It can be shown that System
1 is better than System 2 by using the same technigque that
was used for the symmetric case. Therefore, no matter what
the optimal allocation xA‘and Xp with y > 0, the allogation
Xa + y/2 and X + y/2 at the source nodes will be better,

The same technique of proof cannot be extended to trees
with more than two input nodes. The reason for this is
illustrated in Figure 4.6. With more than two input nedes,
the traffic from any node is still restricted to occupying
less than half of the stage 2 buffer because of the service
discipline assumed there. However, for certain buffer
contents, this éllows for an arrangement of bits at stage 2
such that two inputs effectively use the buffer.there and there
by relieve congestion at source nodes. For the case
illustrated in Figure 4.6 the result of this is that

Ri>R§ but 1%<R}23 and R(l:éag
Therefore it cannot be argued that System 1 has a lower

Pr (overflow).
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buffer size = xB+y/2

b. System 2

buffer size

]

i
»

buffer size = y

v

buffer size = XB

FIGURE 4.5 - Unsymmetric concentration trees
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a. System 1

v/3=2

XA —— \

v/3-b=0 buffer size=0
Ag /[0 \}: >
b=
v/3-c=0
v=6 = total buffer
A —N/111////1/ size
. : c=2
b. System 2
J‘ 1 -
AA —p Node D
x; {b-y/2)=0.5 v/2(b) y/2 (c)
w — W — a7 77—
A -———ﬂ V7 .
c i x=1 y=3
x=-(c-y/2)z 0.5 3x+6 = 6

FIGURE 4.6 - A three source node tree
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This does not disprove the optimality of placing all
.buffers at source nodes for this example. It only shows that
this method of proof cannot be used-to obtain the result.
In Section 4.1.3 a 3 source node discrete time example is
given for which it is optimal to place all buffers at source
nodes.

There are situations in which the buffer allocation
that minimizes the probability of buffer overflow for trees
with more than 2 source nodes can be obtéined directly. One
is the case where the arrivals at source nodes occur according
to a Poisson process with rate A-0 and insfantaneous (not
gradual) input. Since A-+0, there is rarely any congestion
anywhere*in the tree. Therefore, independent of the number

of buffers at stage 2, the following occurs.

Pr (Buffer overflow) + Pr (New message fits in source
nodelsystem is empty)

Clearly, this probability is minimized by placing all buffers
at source nodes, ‘ | o

The above case (A+0) depends"greatly on the fact that
the arrivals occur instantaneously. In Sectioﬁ 4.1;3 it
will be shown that if the arrivals are more gradual in nature,
it is possible to have a situation in which some buffering

at stage 2 is optimal. Therefore it is not always optimal
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to place all buffers at source nodes. This section has
shown though that it is sometimes optimal and therefore
it is worthwhile examining the flow control problem when

all buffers are at source nodes.

4.1.2 Flow control when all buffers are at source nodes

The previous section showed that in certain cases it
is optimal to place all buffers at source nodes in a concen-
tration tree. The method used to obtain this result did not
specify the specific flow rule that should be used with this
pggfgg gl;ecétiqn. Consider again the system in Figure 4.1.
¥f there is no buffer at stage 2, then clearly the output
rates o2f nodes A and B must be controlled so that their
total output rate is 2 Co’ Since the objeciive is to minimize
gverflows, the flow ;ule“should consider the current buffer
eontents of the source nodes and give priority to the node
most likely to everflow next. If one assumes that the input

rates are known or have been estimated, then the probability

each node. The node with the largest overflow probability .
ean then be allowed to send at'rate Co' This node retains
the allocation until there is another node with a higher
probability of overflow in the next At. If one uses Poisson

input model with input rate A, this probability of overflow

in the next At, 0 < At << 1, is
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Pr (overflow next At) = Pr(message arrives in At and
has length h> remaining
buffer size)

= AAt S u
h=xm-x(t)

e—uhdh

where x  is the buffer size, x(t) is the current buffer
content and u-l is the meanvmessage length (assume
exponentially distributed). For small At, AAt is the pro-
bability of an arrival in a Poisson process [DRAKE 67].

The flow rule described above is a myopic control policy.
This means that it seeks to optimize over the immediate future.
The question now is whether this type of rulé produces the
minimum overall probability of overfiow. This problem is
being studied by Yee [YEE 76] using aiscrete time, discrete
state space models and Markovian Decision Theory [HOWD 71].
He has found for some examples that myopic policieé are
indeed optimal for maximizing the expected time between
overflows. This is the same as hinimizing the probability
of overflow. Yee's results are for specific examples and
therefore an open question is whether his reéults can be
generalized. If so, flow control for concentration trees
with all buffers at source nodes would be greatly simplified.
'} The flow control rule used here assumes that there is a
global controller with knowledge of the state of all nodes.
In an actual network, this controller would logically be
located at stage 2 so that it could easily.collect the
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state information from the source nodes and send the flow
allocations back to them. The transmission of control
information that is required for this has not been included
in the model presented here. If control information is sent
frequently, it méy become a significant part of the total
traffic and would be important to include. There is, however,
a scheme of transmitting state information to stage 2 that
does not introduce extra overhead. The idea, due to
szencraftf is to use a round robin service discipline at each
of the source nodes. The round robin discipline sends a
fixed length part of each message at the node each time the
node is allowed to send to stage 2. -The stage 2 node can
then determine the queue size at the source node by counting
the number of blocks of data in one round robin scan of a
source node. In this way the source state information is
not sent as an extra message. |

One final point about controlling a tree with all source
buffers is that if the control is not instantaneéus, some
" pbuffering may need to be at stage 2 to account for the delay

in turning various source nodes on and off.

+Personal communication 1977.
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4.1.3 The effect of gradual inputs

The optimality of plaging all buffers at source nodes
was shown in Section 4.1.1 for a certain case with Poisson
traffic sources. If the traffic sources are not Poisson,
but rathef more gradual in nature, thisvresult-may no longer
hold. The following discrete time example illustrates this
point. The discrete time example is used because it can be
easily analyzed and yet provides the relevant insight into
the problem.

Figure 4.7 shows two concentraﬁion trees that will be
compared. Each contains four fixed length buffers and the
question to be answered is which gives the lower probability
of o§erflow when operated with a flow control rule that does
not allow ovérflows at stage 2. The systems operate in
discreﬁe time. The basic time unit is the interval T
illustrated in Figure 4.8. At fhe beginning pf_an interval,
messages arrive‘at the source nodes. During the interval
exactly one message can be sent over each communication
‘channel in the tree. This means that at most one meésage
can be sent over the tree output channel during an interval T.

Two different arrival processes will be studied for |
these systems. In Process 1, for each time interval T, the
number of messages that arrive at each source node is a
Poisson random variable with parameter A. This means that
for each source node
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a. System 1

gtage 1 Stage 2

3 Identical
Traffic Inputs

no buffer

b, S8ystem 2

€

FIGURE 4,7 = Two concentration trees to be compared
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Arrival
Instants

interval n

n~ \1) (n+1) \4"2) (n+2) \

One message sent per interval T

FIGURE 4.8 ~ Time intervals in the discrete time system
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AT

. m -
Pr (m messages arrive) = ql = m e m=0,1,2,3,...

m m!
In arrival Process 2 only 0,1 or 2 messages can arrive in
each interval T at each of the nodes. The probabilities

associated with these arrivals at each node will be denoted

by

Pr (m messages arrive) = q; m=0,1,2

The grrivals in each interval are independent so that
the entire system can be modeled as a Markov chain. The
states of the chain are specified by the number of messages
at each node. The states for the two systems are listed in
Tables 4.1 and 4.2. As shown in the tables, one must be
specific about exactly when in time a state is referred to.
Two times are used in the analysis here. The first, indexed
by the interval number n , is 5ust prior to the arrival of
the new messages in the nth interval. The second, indexed
by n+ , is just after the arrival of the new messages. Let
'x(n) be the state number at time n (n= l,2,3...)(eitﬁer n*
or n. ) and let ni(n) = Pr(x(n)=1i) be the state occupancy
probability of state number i. Then the problem to be solved
is the determination of the vector of stéady state occupancy
probabilities

= 1m Tm?t
lim

160




in order to solve for the vector T', the matrix of one
'gtep transition probabilities, P, must be determined. The
elements of P are Pij = Pr(x(n+l)+ = j[x(n)+ = i). This
matrix can be determined by examining the state transitions
due to message arrivals and those due to message departures
separately. From time n+ to (n+l) , the only state transi-
tions that can occur are those due to message departures.
Which transition occurs depends only on the starting state
at time n* and the flow rule used. The flow rule can be
deterministic when conditioned on the starting state. For
the simple example here, it is easy to choose the flow rule
that minimizes the probability of buffer overflow. The flow
rule transitions are given in Tables 4.1 and 4.2. These

matrix P’ whose elements are p;j = Pr(x(n+l) =j|x(n)T=i). The

following then holds.
Tn+l)” = T)* 5

Now consider transitions from timé (n+1)~ to (n41)+.
These transitions result only from message arrivals. Let
¥~ be the transition matrix with elements p;j = pr(xm)t =
j1x§n)' = i), The elements p;j can be expressed in terms of
g; for the two systems and the two arrival procesées
considered here., Tables 4.3 and 4.4 give the expressions

. for these elements ij’ The following now holds.
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TABLE 4.1

_State Definitions and Flow Rules for System 1

Sﬁate Description State Number
Number i (Number of Messages at Nodes) ' at_ :
A B o (n+1) +if
x(n) =i
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 0 1 1 2
5 1 0 0 1
6 1 0 1 5
7 1 1 0‘ 5
8 ' 1 1 1 6
9 2 0 0 5
10 2 0 1 9
11 2 1 0 9
12 * 2 1 1 8
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State
Number i

(Ve [+ ] g o w > w N [ d

N R e T
A !N s W N = O

TABLE 4.2

State Definitions and Flow Rules for System 2

(Number of messages at nodes)

A

H M M M 4 4 O O O O O O O O

Description
B C
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1l
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 o1
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State Transitions

TABLE 4.3

Process 1

Process 2

Q= Q% Q= qg
P= g% P = qi
P2=1-0Q-P pz=q§

PB(1,1) = Q*Q*Q

PB(1,2) = 0*Q*(1.0-Q)

- PB(1,3) = Q*Q*(1.0-Q)

PB(1,4) = Q*(1.0-Q)*(1.0-Q)

PB(1,5) = Q*Q*P

PB(1,6) = Q*P*(1.0-Q)

PB(1,7) = Q*P*(1.0-Q)

PB(1,8) = P*(1.0-Q)*(1.0-Q)

PB(1,9) = P2*Q*Q

PB(1,10) = P2*Q*(1.0-Q)

PB(1,11) = P2*Q*(1.0-Q)

PB(1,12) = P2*(1.0-Q)*(1.0-Q)

PB(2,2) = Q*Q

PB(2,4) = 0*(1.0-Q)

PB(2,6) = P*Q

PB(2,8) = P*(1.0-Q)

PB(2,10) = P2*Q :

PB(2,12) = P2*(1.0-Q)

PB(5,5) = Q*Q*Q

PB(5,6) = Q*Q*(1.0-Q)

PB(5,7) = 0*Q*(1.0-Q)

PB(5,8) = 9*(1.0-0)*(1.0-Q)

PB(5,9) = (1.0-Q)*Q*Q

PB(5,10) = (1.0-Q)*Q*(1.0-Q)

PB(5,11) = (1.0-Q)*Q*(1.0-Q)

PB(5,12) = (1.0-Q)*(1.0-Q)*(1.0-Q)

PB(6,6) = Q*Q

PB(6,8) = Q*(1.0-Q)

PB(6,10) = (1.0-Q)*Q

PB(6,12) = (1.0-Q)*(1.0-Q)

PB(sls) = Q

PB(8,12) = 1.0-Q

PB(9,9) = Q*Q

PB(9,10) = 0*(1.0-Q)

PB(9,11) = 0*(1.0-Q)

PB(9,12) = (1.0-Q)*(1.0-Q)
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TABLE 4.4

State Transitions due to Arrivals for System 2

Process 1 Process 2
e=gqq Q= q
P=1-29Q : - P=1-2Q

?g(}r;) pi,j

PB(1,1) = Q*Q*Q

PL(1,3) = Q*Q*P

PB(1,5) = Q*Q*pP

PB(1,7) = Q*P*P

PB(1,9) = Q*Q*P

PB(1,11) = Q*p*P

PB(1,13) = Q*P*P

PB(1,15) = pP*p*p

PB(2,2) = Q*Q*Q

PB(2,4) = Q*Q*P

PB(2,6) = Q*Q*P

PB(2,8) = Q*p*pP

PB(2,10) = Q*Q*P

PB(2,12) = Q*p*P

PB(2,14) = Q*p*P

PB(2,16) = P*pP*Pp

PB(4,4) = 0*Q
?3(418) = Q%P

PB(4,12) = Q*P
PB(4,16) = P*P
PB(6,6) = 0*Q

=Q
PB(6,8) = O*P
PB(6,14) = Q*P
PB(6,16) = P*P
PB(8,8) Q
PB(8,16) = P

Il
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ﬁ(n+l)+ = M(n+l)” P~
= N(n)* 5+ 5
= l'[(n)+ P

The desired transition matrix is then the product of Pt and P-.
The well known result that if the chain is ergodic
lim T T =T =175 [PRAZ 62]
n->o
can then he applied to find the desired steady state occupancy
probabilities. Once Tt is known, it is easy to determine
which sysﬁem has the lower probability of buffer overflow.
Note that for both systems, WI is the probability that the
system is empty just after the time for new arrivals. In
all other states there is a throughput of one message in the
interval T. Therefore the expected.throughput éer interval
Tis 1 - nI. Since the same traffic is being applied to both
systems, it follows directly that the system with the higher
throughput has the lower probability'of buffer overfloﬁ.
Tables 4.5, 4.6 and 4.7 give the system throughputs for
different input processes. Table 4.5 gives the results for
Process 1, the Poisson input. The results show that it is
best to place all bufférs at source nodes for all values
of the traffic arrival rate A. Table 4.6 gives the results
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for Process 2 when only qg and qi are nonzero. This means

that at most one message can arrive at each source node
during an interval T. This is a very gradual input. In

this case, placing all buffers at source nodes is not optimal
for any arrival rate. What has happened is that enough
burstiness has been removed from the arrival process so that
is more jmpg;tant to place éome buffering at stage 2 where

it is more useful in preventing overflows due to multiple
arrivals in one interval T.

It is possible to explore how muéh burstiness is needed
in the traffic to maké it optimal to place all buffers at
source nodes by usiég the ggggess 2 model. The results in
gable 4.7 give an indication that not very much burstiness
is needed. The case examined there has qi = 0.2 while qg is
varied over a wide range. As qg, the probability of 2
arrivals, is increased, the burstiness of the input traffic
increases. For gg very small (0 and 0.001) it is not

eptimal to place all buffers at source nodes. However,




TABLE 4.5

Expected Throughput Using Input Process 1

T=1.0
A System 1 System 2
.01 .029899 .029850
.1 .288896 .285283
5 .9549905 .9524518
1.0 .999728889 .999719148
2.0 '1-(.343404 x 1077) 1-(.345133 x 1077)
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TABLE 4.6 _
2

.Expected Throughpout Using Input Process 2 with qzig
T=1.0

System 1 System 2
.298816 .29974
.586201 .59136
.824173 .830993

© .9545326 «9572018
9929578 «993333
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Pable 4.7

Expected Throughput Using Input Process 2

g% ‘ System 1 System 2
0.000 . 5862 .591361
9.001 .589626 .594133
8.010 .619821 .618851
8,050 .738958 .722383
6.100 .850615 .8309493




4.2 The Queueing Analvsis of a Concentration Tree

4.2.1 An approximate analvsis of a two level tree

e am w

The gueueing analysis of buffer stages coupled by
flow control rules is a difficult problem if the system is
pot operating in discrete time with fixed length messages as

n Section 4.1.3. It is often possible to specify reasonable

i e

flew rules, but usually not possible to analytically determine
the performance of the network when the rules are used. This

section develops an approximate analysis for a simple example

wt

hat shows some technigues for overcoming this problem.

{

fhe tree to be analyzed is shown in Figure 4.9. The
input nodes A and B in this example are receiving Poisson
input sg;éams of messages with exponentially distributed
message lengths. These traffic streams are then fed into
stage 2 over finite capacity channels. The capacity of
these channels is equal to the capacity of the output channel
of stage 2 when no flow control is in effect. ﬁhen buffer C
£ills and both nodes A and B are in busy periods, the rate of
each of the channels between the first level of the tree and
stage 2 is reduced to one half the normal rate. This keeps
buffer € from overflowing. If buffer C is full and only one
stage at the first level has traffic, the‘rate‘on the channel
between that node and buffer C is kept at the normal rate.
This flow rule is essentially what happens if link by link

flow control is being achieved by rejecting messages at

stage 2 whenever the buffer there is full.
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Stage 1

Poisson Y )
Input Stage 2
Rate A

Node A

Buffer size X messages ————

, ”Node B Node C
Poisson
Input  e——
Rate A , Buffer size K bits
The

FIGURE 4.9 - Two level tree flow control problem.
buffers at each level are finite. All channels

have the same capacity in the absence of
flow control.
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Even for this simple symmetric example, it has not been
~feasible to solve for the exact steady state statistics of
buffer occupancy and buffer overflow. Therefore the
following approximate analysis will be used. When buffer is
pot full, nodes A and B are essentially M/M/1/X queues if
one assumes that the buffers at these stages can hold X
messages. As long as buffer C stays below its maximum
allowed level, the traffic streams into buffer C are
alternating renewal processes as required for that stage to
be analyzed as a gradual input queue (see Figure 4.10).
Therefore it is possible to use the resulté for probability
of buffer overflow developed'in Chapter 2 to partially
chagacteéize the behavior of stage 2. Both the probability
éf at least one buffer overflow in a busy period and the
probability of another overflow in a busy period, given that
at least one-has already occurred will be bounded for stage 2.

Now the behavior of node A will be represented by an
approximating continuous time Markov chain. Since nodes A
and B are identical, this will also characterize nodé_B.

The approximating Markov chain is.shown in Figure 4.11. The
chain is best understood by considering a typical sequence

of buffer operation. Suppose that buffer A is empty and that
buffers B and C are in some unknown state, but buffer C is
not full. In this condition, the approximating chéin is in
state {I,0}. As a busy period starts for buffer A, the
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Buffer content of stage 2

First overflow in a busy period

Second overflow in a busy

In these sections, the inputs to stage 2 are
alternating renewal processes with exponential
off times and on times distributed as the busy

periods of an M/M/l/X queue

FIGURE 4.10 - Queueing process at stage 2
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ROW

Buffer
C Not
Full

Buffe
C full
and
buffer
B in
busy
period

Buffer
C full
and
buffer
B empty

Figure 4.11 - Transition rate diagram for Node A in
Figure 4.9. The state numbers represent
the number of messages at Node A. The
various transition rates are explained
in the text.

175




state changes along row I. At this time, buffer C is not
full, so no flow control restrictions are in effect. If
buffer C fills during this busy period, the state will change
to row II of the approximating chain. In order for buffer C
to have £filled gé, buffer B must be in a busy period and

therefore the flow control that reduces the rate of flow

from bgffg;s A and B to C to half the normal rate goes into

pralpragiig

Hrh
thh

effect.

the state Qf the system will remain in row II. If buffer

A gees off before buffer B, the state éan change back to
f{f,0}, If buffer B goes off before buffer A, the state will
ghgggg to row II¥. In row III, the channel between buffer
A and buffer C is kept at the normal rate, so that as long
as buffer A is in a busy pe;iod, buffer C remains full.

From row III, tramnsitions can occur back to row II or from
state {III,0} they can occur back to state {1,01.

@iven this overall description, the remaining problem
is ggge;mining the appropriate transition rates. Briefly,
these are as follows. Along row I the rates are A,»the rate
for the Poisson arrival process,.and 4, the rate af service
g»mp;ggions for exponentially distributed: length messages;
fhe rate of tramsition from row I to row II, ¢, is chosen

so that the upper bound on the probability of at least one
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overflow in a busy period calculated for state 2 is met. The
specifics of this calculation and others are given later in
this section.

In row II (excluding State {I1,0}) both buffers A and B
are in busy periods. The state of buffer A is accounted for
explicitly, while that of buffer B is not precisely known.
Rnowing that buffer B is in a busy period is, however,
sufficient to make use of a result on the tail behavior of
the busy period distribution of a queue such as buffer B is
exponentiél with a well defined mean. In this case the gqueue
of interest is an M/M/1/X queue with arrival rate A and mean
service time 2/u. Let g-l be the mean of the exponential
tail of the busy period distribution of such a queue. Then
£ will be the transition rate used for transitions caused by
the busy period of buffer B ending. For a transition from
state {II,0} due to the ending 6f a buffer B busy period,
the transition rate is £' the parameter associated with the
busy period tail for an M/M/1/X queue with arrival rate A
and mean service time u L.

From row III, transitions occur back to row ;I»if buffer
Bbstarts a new busy period. - If the system reaches state‘.
{I11,0}, a transition can be made to state {I,0}. A transition
to state {I,0} is taken to approximately represent the end
of a busy period of stage 2 without another overflow.

Therefore the-quantity n/(n+)) will be equated with a lower
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bound on the probability of not having another overflow in a
‘busy period of buffer C, given that there has already been
at least one in this busy period. The specification of the
rate n completes the approximating Markov chain.

Specific deﬁails are now given for calculating the
various rates in the approximating chain. The case in which
each stage 1 node has 2 buffers (X=2) is used as an illustra-
tion, After the transition rates are determined, the chain
is analyzed for its steady state occupancy probabilities.
The probability of being in states with all node A buffers
full is the probability of overflow measure that is of
interest here.

‘A, Determining the transition rate ¢

The transition rate ¢ is chosen so that in the

approximating chain

..

Pr (Go to row II|Start in 2 Pr (Overflow at least
before going [state (I,l) once in stage 2
to (I,0)) busy period)

This is done because, as illustrated in‘Figure 4.10,'§tarting<
£low control (going to row II) corresponds to the stage 2
buffer becoming full. Determining the rate ¢ requires three
basic steps.

1, Determine the mean length of the stage 1 M/M/1/X
gueue busy periods. This can be done using a first passage
" time analysis for Markov chains as in Section 2.1.2.
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For the case X=2, the mean busy period length is given by
=1.. :
8= u Il +/u]

2. Determine the upper bound on Pr(overflow) for stage

2 when the two inputs have mean on time B and mean off

1:1, This ean be done by using Equation 2.18. Denote

time
this bound by Pr (overflow).

e~

3. Determine ¢ so that

Pr (@é to row II|Start in = ﬁr(overflow)
before going|state (I,1)
te (1,0) |

In order to do this, one must solve a trapping problem as

iliustrated in Figure 4.12 for the case X=2. As shown in

t

he Markovian transition rate diagram given in the figure.

Pr (6o to row II|Start in Pr (Trap in|Start in
before going|state (I,1l) row II) |[state

his trapping probability can be determined by system

]

n
i)

nalysis techniques given by Howard [HOWD 71]. For the X=2

ase the desired trapping probability is given by

Q)]

(y¢+¢2 + ¢A) /[ (u+¢) (u+A+$p-ur)]l. The rate ¢ can fhen be

determined from
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a. Original Chain

b. Equivalent Trapping Problem

oWl
: | u

FIGURE 4.12 - Markov chain for determining Pr(go to row II
before (I,0)|start in (I,1l)). The case x=2
is illustrated. _

180




(uo+o2+42) )

(148) (L Ars=ih) Pr (overflow)

B. Determining the rates £ and &'
1

The parameters £ - and E'-l are the mean parameters
associated with the exponential busy beriod distribution tails
of aﬁ M/M/1/X queue with arrival rate A and mean service

times Zu’l and u”l respectively. These parameters are used
to describe the remaining busy period of the buffer at node

B when the exact stage of the buffer is not known. The use

of this parameter comes from a theorem for first passage

times that is given in Appendix B. The theorem states that

for queues such as the M/M/1/X queues considered here

lim £, (Ct+7)>t) = 1-e72T T>0
oo +5 ' o
Where f,, (S¢+T|>t) = Pr{first passage from state i to k

occurs in time <t+T|first passage
time >t}

The first passage times being considered here are .busy
periods, i.e., the first passage time from having one
customer in the queue to the all empty state. The above
result states if that all that is known is that the busy
period has been in progress for a long time, then the
conditional distribution of the time remaining in the busy
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period is exponential with parameter a. It is natural to
.use the mean of this distribution as the mean time remaining
in a busy period of node B, given that all that is known is
that a busy period is in progress. Appendix B outlines the
derivation of the parameter a. For the X=2 examples, a was

determined by actually finding the Laplace transform of the

technigues in Section 2.1.2. The parameter a is then the
pole of the transform that is closest to the origin. For

an M/M/1/X queue with X=2 and parameters A and u.

1y 2 2
8= -['S?Pf}?w+,g(zu+k) N

C. Determining the parameter n

The parameter n is used to approximate the effect of
multiple overflows in a busy period. Once the system is in
state {III,0}, it has already had at least one overflow in
the current busy period and may have another. To account for
this, the probability of going directly from state {iII,O}
to state {I,0} is equated with a lower bound on éhe érobab—
ility of having another overflow in the busy ﬁeriod-of buffer
C, given that there has already been at least one in this
busy period. The probability of going from state {III,0} to
{1,0} is n/(n+X) and the lower bound that is used is
1-Pr (overflow again|at least one overflow) where the later
is given by Equation 2.25.
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All transition rates for the Markov chain in Figure 4.10
have now been specified. The remaining problem ié to find
the steady state occupancy probabilities for the chain. Let
¥(t) be the state of the system at time t20. Then the

desired occupancy probabilities are

L lim wj(t) = lim Pr{x(t)=j}
tro tore
These can be found by first solving for the occupancy
probabilities in the imbedded discrete time Markov chain.
The imbedded chain has one step transition probabilities
that are equal to those in the original chain. The
difference is that all one step transitions occur in one
discrete time unit. Let P' be the one step transition
probability matrix for the imbedded chain with elements
pij = Pr(x'(n+l)=j|x'(n)=i) n=0,1,2... whe;e»x'(n) is
the state of the imbedded chain. Then the relationship

between the imbedded chain and the original is that

= Pr(next state is j|starting state is i in the
original chain)

Pij
These probabilities are given in the illust;ation of the
imbedded chain in Figure 4.13. Let vi(n) = Pr(x'(n)=1i)
and Hi=1im Hi(n). Then the result that ' = TP cankbe

n-ro

used to find the vector of Wi 's,
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VE X aeg My /g
u/g C u/g u/h
= A+¢+u d = \tu/2+g g = ut2a
b = p+p e = pu/2+g = put+i
e = £'+\ £ = ntaA

FIGURE 4.13 - Imbedded Markov chain for the chain shown in
"Figure 4.11. Transition probabilities are
shown on the diagram.
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Now the occupancy probabilities for the original chain
‘can be found from T'. Each state i in the original chain

has a mean holding time T; = [Z r..]"l where the rij's

. ij
all j

are the transition rates from state i to j given in Figure

4,10, The holding time is the time from erntering a state

until the first transition out of the state [HOWD 64].

Finally the following relationship can be used

noT,
'rri:s

z m T,

all j 7

[HOWD 64]. The above states that the occupancy probabilities
in the original chain are eqﬁal to those in ﬁhe imbedded
chain weighted by the mean hélding times of the states.

This completes the analysis of the approximating chain.
The question now is how well this chain predicts the pro-
bability of AVerflow at the stage 1 nodes. The'épproximations
used in this séction have all been made in such a way that the
chain should give a probability of overflow that is greater
than the actual probability. The next section presents an

example and simulation results that confirm this.
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4.2.2 An example and simulation verification

The example to be considered has 2 buffers‘at each

tage 1 ncde (X=2). The mean length of messages is u-1=l

n

and the maximum rate for all communication channels is 1.
The buffer at stage 2 can hold exactly three messages each
ef length 1,

The probability of overflow at stage 1 predicted by the
approximating chain is shown in Figure 4.14 for different

arrival rates A, Also given are the results of a Monti

()]

arlo computer simulation for eacb of the cases. The
simulation techniques were similar to those in Section 3.1.4.
FThe simulation results indicate that the approximating chain
indeed gqﬁsistantly gives a larger probability of overflow.

An indication of how settled the simulation results are

is given in Figure 4.15. Here the probability of overflow is

o]

lotted as a function of the length of the simulation run.
The conclusion is that the approximate analysis presented
here is indeed useful for obtaining conservative estimates
for the probability of overflow when there is coupliﬁg

between stages of the concentration iree due to flow control.

-
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FIGURE 4.14 = Probability of overflow for the concentration
. tree. x=2, u-l=l, buffer size at stage 2 is 3
and C=1.
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FIGURE 4.15 - Simulation data for result shown in Figure 4.14.
Arrival rate A = 0.25.
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CHAPTER V = CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Conclusion

This study has developed and used the gradual input queue
model due to Rubinovitch, Cohen and Kaspi to investigate
Qgifg;ing and flow control in message switched communication
networks. The model as presented here has two major applica-
tions, The first is to show the behavior of a flow-through
type of network operation. In the gradual input model,

messages are not stored before being forwarded to the next

ode if there is no waiting line when the message arrives.

¥

Since the M/M/1 model represents store and forward operation,
the comparisons between the gradual input model and the M/M/1
model provide a comparison between flow-through operation
and store and forward operation. The results throughout the
thesis show that the flow-through operation'gives less
queheing and therefore also a lower delay in thé network.

The differences can be significant if the network contains
long chains of nodes with little cross traffic at each node.
In this situation, the flow-through model allows the path
ever many individual links to bkecome essentially one link
when there are no waiting lines at intermediate nodes. The
expected delay over this path therefore approaches the time
to transmit over one link. In store and forward operation
the delay is always at least as large as the sum of the
individual transmission times over each link-in the path.
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Since flow~through operation appears to have theoretical
advantages over store and forward operation, a logical
guestion is why it is currently not being used. One major
reason is that it does not allow the use of standard link by
link protocols. The link by link protocols permit error
detection and retransmission on each link. Only end to end
error protection can be used in a flow-through network. End
to end error protection allows errors to be passed from one
link to another in the network. This makes it difficult to
guarantee correct network operation since control information
as well as user data is sent through the network. For example,
if an error occurs in the address of a message, it may not
reach the correct destination node.

A second major reason that store and forward operation is
being used is that it allows for a straightforward node
architecture. The tasks associated with receiving a message
over one link are all completed and the message.is stored in
memory before a réquest for further transmission is acted on
by the node processor. In order to achieve flow-through
operation, reception and transmission of a message mﬁst be
occurring at the same time. Though no such system has been
built, this could conceptually be done with only a slight
delay for switching. A delay for switching is necessary
because the node must have time to determine routings and

to recognize the ends of messages. The delay needed could be
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provided by a shift register as illustrated in Figure 5.1.

Here it is assumed that the nodes send a continuous string

of 0's over channels unless a message is to be sent. A
'méssage always starts with a 1 followed by the destination
address. The end of the message is mafked by a unique

sequence of bits, As shown in Figure 5.1, ihe first positions
of the shift register are used to read destination addresses
and detect the ends of messages. The last portion of the shift
register is used to introduce enough delay to allow the switch
time to operate.

The second major application of the gradual input model

"' is the identification of the effects of having a finite

number ‘of input channels to a network node. In Chapters 2
and 3 it was shown that there are several such effects.

These effects will occur even if the network is operating in
a store and forward fashion. Therefore, in designing a
network, the gradual input model can be used to determine

if there are any nodes at which there are significant effécts
‘due to a finite number of inputs.

The chapter on flow control in concentration trée
structures addressed the problem of buffer aliocation to
achieve minimum probability of buffer overflow while using
flow control. It was shown that in certain cases‘it is

optimal to place all buffers at source nodes. However,
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FIGURE 5.1 = Shift register used in a flow-through node
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there are also cases where this is not so and an example

was presented that gave insight into the reason for this.

5,2 Suggestions for Further Research

It has been shown that the effects of a finite number

of input sources to a node can be important. Therefore, for

engineering purposes, it would be useful to develop a model

of store and forward operation with a finite number of inputs.

It would be particularly useful if the model included detaills

of node operation as done by Lam [LAM 76].

The routing problem for a network of gradual input

gueues has been only briefly discussed. It remains an area

for future work.

Only one type of flow control has been studied

in this

work. Flow control in a concentration tree with a global

controller is the only type considered. There is still much

work to be done in the area of flow control for general

networks.

Finally, it was shown that for certain concentration

trees it is optimal to place all buffers at source nodes. An

open guestion is whether there are any more general
for which such a result is also true. Clearly, one
work is a star network in which the central node is

for switching. This is a straightforward extension
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There may be others as well. Such networks would have no
internal network buffers and therefore it may be bossible
to find myopic flow rules for the network that are optimal.
This would be a step forward in the understanding of the

optimal dynamic operation of a communication network.
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APPENDIX A -~ RESULTS FOR THE GRADUAL INPUT QUEUE WITH NON-

IDENTICAL INPUT CHANNELS

Kaspi and Rubinovitch [KASPI 75] have derived results
that allow one to analyze a gradual input queue with non-
identical inputrchannels. Each input channel is still des-
cribed by an alternating renewal process as depicted in
Figure 2.1lb. The idle periods on the jth channel, 71,., are

1]
restricted to being exponentially distributed, i.e.

'P;(rij S x) = l-e-)‘jx x>0; Xj>0
The active periods on the jth channel, Oij’ are allowed to

have a general distribution, i.e.

Pr(oij < xX) = Bj(x) x>0
Previously, in the Cohen analysis, it was required that each
Bj(x) = B(x) and that all Aj=X. As before, the behavior of
the buffer is analyzed by making an analogy with an M/G/1
qgueue. In order to make the desired analogy, one must again
be able to obtain the distribution of the guantity h-2 for an
inflow period and the distribution of the busy period on the

output channel.
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A, Distribution of h-? for an Inflow Period

Por the jth input channel let

t dBj(t)

3

B, = £
£=0

B*.(p) = /~ e P% 4B, (t)
Then the following relationship holds (Equation 3.3 in [KASPI
751) .

{§-j~ Af - ATE{GXP("ph - 52)}}-1=

N exp (u.t)du,
=st 1 ] ] .
o 31 PTGy ByTAyTARTsleTuy)
N >
where AT = 7 A;¢ Re s>0, Re p=0, Re u.>0.
.\-‘ i l J
i=1
From Eggation A.l, the first moments of h and g can be
obtained. These are
N )
Efh} = -3 1+) . R ' Eg.A.2
E{h} {g;l AiBji §¢i ( Ajsj)}/xT (Eq )
N -
Efg} = {g?l (1+Aisi) - 1}/ Aq B (Eq.A.3)

The theorem due to Cohen which states that the maximum bﬁffer

content, € . during a busy cycle for the gradual input

max

gueue is the same as the maximum virtual waiting time Vnax

of an M/G/1l queue with a service time distribution identical
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to that of h-f and mean interarrival time A;I can now be

applied. By using Equation 2.4, this yields the relationship

E(C__ .} = -a_t

nax T log(l-ATE{hfl}} ATE{h—2}<l

Together with Equations A.2 and A.3, this provides a closed

form expressior for E{cmax}'

B, Distribution of the Busy Period on the Output Channel

For a gradual input queue with identical inputs, the
distribution of the busy period on the output channel is the
saﬁe és the busy period of an equivalent M/G/l1 gqueue.
Specifically, Rubinovitch [RUBIN 73] showed that when
Bj(x) =B (x) and Aj=A for all input channels j, the Laplace
Stieltjes Transform (LST), D*(p), of the distribution of the
length of the busy period, b, is given by the functional
equation

3,

D*(p) =B*((N-1)A + p =(N-1)AD*(p))  Re p>0

For the case of non-identical inputs, let D*j(p) be-the‘LST
of the distribution of thé length of afbusy period séarted
by the jth input channel coming §n. Then the. following
theorem gives the desired result for this casé. |
Theorem [KASPI 75]
(i) The LST's D*j(p), lfij, are the unique solution to
the system of functional equations

D*.(p) = B*.(p + I A, = Z A.D*. (p)) Re p>0
3 J i#g toifg bt |
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(ii) p*{p) is given by

N .
=1 :
P*(p) =X~ Z A;B*,. (p + A. -2 A.D*. (p))
Fasl PR g gm0
s o A N
(iii) Let a; = Aiﬁi and T = §=l ai/(l+ai)

then if T < 1

B{b} = I/Dhg(1 -T))

n
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APPENDIX B - A LIMIT THEOREM FOR FIRST PASSAGE TIME

DEISTRIBUTIONST

FPirst passage time distributions for queues which can be
represented by a Markov chain are investigated in this appen-
dix, It is shown that the tail behavior of such distributions
is g;ghe: geometric or exponential (depending on whether a
discrete or continuous time example is being considered).
fhis result provides insight into the dynamics of queue

ggggggign,qnd can be used to approximate first passage time

distributions.

A, A Preliminary Lemma

The proof of the main theorem in this appendix depends
en the lemma that follows. The lemma applies to Markov
ghéigs with either a finite or countably infinite number of
states, The state of the system at time t will be denoted by

®(t) =1 (i =1,2,3....). State occupancy probabilities will

v

ﬁi(tl = Pr(x(t) = i) ot

FThis appendix is part of the paper: "A Note on the Chernoff
Bound and a Limit Theorem for First Passage Time Distributions
ef Queues", by E.F. Wunderlich and P.A. Humblet, M.I.T.
Electronic Systems Laboratory, ESL-P-728, March 1977.
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Only homogeneous Markov chains are considered and state

transition probabilities are given by

i) t >0

P . (t) = Pr(x(t) = j | x(0)

For such a chain, the first passage time Tf(i,j) is by
definition

iafng

~e

X(Tf) =3 ] x(0) = i}

The first passage time gquantities that will be of interest

are

i
A

13C B = PrT (3 Sy

£, | > £)) = Pr(r () e, [T (1,9)>¢))

i3

<
0-t,<t,

Lemma: Conside; an irreducible Markov chain. Modify the

chain by making state k a trapping state, i.e. pkk(t) = 1 for

all t20, If for the modified chain

P, . (t)

. *ij _ < <. ' .
lim T (E) = c. 0-c.-1 for all j#k

then for both the original and the modified chain
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i
ot
1
o

~
-
[}
[
-
N
-
w
L]
.

<
%;Tm Eipl-ty + 1 | > t;)

1>b>0i2a>0

depending on whether the time index of the chain is discrete
or continuous. The variables b and a may depend on the
states i and k.

Proof: Consider the following two probabilities
< < ‘
fik(stl+r!§tl) and fik(-tl+r+dl>tl+d) where 1>0; d>0.

The first passage time from state i to k in the original
Markov chain is the same as the time until trapping in state
k, starting‘from i, in the modified Markov chain. Therefore,

the above can be written as

£.. (=t +1|>t,) = z £.. (St +1|x(t,)=7)
& 1 a11 states 3 ik 1 1
except j = k _ ' .

- Pr(x(tl)=j]first passage

time->tl)
= p f.k(sr) Pr(x(t,)=j|first passage
all states j
except j = k time >tl)
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p. . (t;)
all states j J
except j = k

“Pix (ty)

where pij(tl) and pik(tl) refer to the modified chain.

Similarly

< )
£., (=(t,+d)+1|>£,+d) = h) £f.. (-1)
ik 1 all states j jk

except j = k
-(t )

1

Now recall that lim - = ¢, and note also that
£, +o l (tl) J
1
4 (B4 . _
lim ~_j (t Tay = S4- Therefore as L, > it follows that
ti_-)oa 1 P;k 1 J

Pis(t) Byt +a)

since both terms converge to cj. This

leads to the result that as tl > ©

>,

< A ' <
fik(”t;*T!>t;) > fix("t1+d)+T'>t1+d) (Eq.B.1)

Therefore, in the limit as‘tl -+ », Equation B.1 can be

written in the form

[N

Pr(0 < 7T

. :
T, =T =Pr(T - t1+4d | >@a) (Eq.B.2)

where Tr = remaining time (after time tl) until first
passage from state i to state k conditioned on the fact .
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that the firstrpassage time frame state i to state k is
greater than tl. It is well known that Equation B.2 implies
thét the distribution of Tr is either geometric or
exponential. [PARZI €2].

An intuitive interpretation of this lemma is that if
the distribution of state occupancy probabilities in the
modified chain, conditioned on the fact that the trapping
state has not been entered, has a steady state, then the
remaining time until trapping (remaining first passage time)
is either geometric or exponential. The following theorem
proves that this conditional steady state distribution
exists and shows how it can be found for a discrete time,

finite state Markov chain.

B. Main Result

Theorem: Consider a discrete time, finite state Markov
chain. Modify the chain by making state k 'a trapping state,
i.e., Py (t) = 1 for all t(t=0,1,2,3...). If in the modified
system, all states (except k) that are accessible from state
i communicate with i and are not periodic.and if state k 1is

accessible from state i, then for the modified system

~

B.. (t) ‘ -
1im 2Ll — = ¢, 0 2c, 21 for all j#k
tso  1-B,, (t) J J 4

and lim £, (St+t|>t) = 1-bT
oo .

£=1,2,3,4... : 15b >0
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Proof: The evolution of state occupancy probabilities for

the original Markov chain is given by
m(t+l) = w(t)P t=20,1,2,3.....

where m is a row vector of state occupancy probabilities and
P is:the matrix of one step transition probabilities. [PRAZ
62] Similarly, the state occupancy probabilities for the
modified Markov chain are given by

-~

CF(t+1) = F(e) P £t =0,1,2,3.... (Eq.B.3)

where P is neariy identical to P. B and P differ only in the
kth row. In the kth row of 5, ékk is 1 and all other entries
are 0. The initial condition for the modified chain is

%1(0) = 1 and ﬁj(O) =0 for all‘j # i. Since the first
passage time from state i to k in the original Markov chain
is the same as the time until trapping in the modified chain,
only the»latter will be considered. From Equation B.3, one
can express §j(t+l) as

I owe(t) B, = T A (t) B (3#K)

F.(t+l) =
J all states 2] all states %3
except 2=k
(Egq.B.4)
FoE+1) = F () + 1 F,(t) B (Eq.B.5)
k - k all st%tes 2k
except 2=k
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Note that wj(t+1)(j#k) satisfies a recursion equation that
does not contain %k(t). Also note that ﬁj(t)(j#k) will be 0
for all t for any state that does not communicate with state
i when one removes the trapping state k from the modified

chain. Therefore one can write
T (t+l) = T(t) B (Eg.B.6)

where T is a row vector of state occupancy probabilities
that does not include the trappiné state or any state which
does not communicate with state i after the trapping state
is deleted and P is the matrix P having the rows and columns
associated with the deleted states removed. The elements of
B are all non-negative; i.e. ?2. 2 0. Therefore B>0.

J
Furthermore, since all states considered in P communicate

with state i and are not periodic, B™

>> 0 for some integer
m > 0, where >> signifies that all elements of B" are > 0.
The following Frobenius Theorems for positive matrices

[KARL 75] can therefore be applied.

T1: If matrix A > 0 and A" >> 0, for some integer m'> 0,
then (a) there exists a vector xo >> 0 such that x0A=a0x0;
(b) if o # ay is any other eigenvalue of A, then |af <aqi
(c) the left eigenvectors of A with eigeﬁvalue ag form a one

dimensional subspace.
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T2: If A > 0 and A" >> 0 for some integer m > 0, then

?;::An»Ba.sn-»m

where B >> 0 is a matrix of rank 1 with elements bij=fgxg
0

. . 0 . -
where x° is the row vector given above and £  is a column

vector satisfying Afo = aofo which is normalized by a

muitiplicative factor so that 2 ngg = 1.
i

3: If A > 0, then the eigenvalue of largest magnitude
Qg = gO(A), is real and non-negative and if there exists
a vector xo >> 0 such that xOA pS uxo, then u is an upper

bound for a,(a).

T1 states that there is a largest eigenvalue of P and that
the left eigenvector associated with it is unique (to within
a constant).

iet r be the largest eigen&élue of P. Then, because

F(e) = #(0)B°

t

1m T = ain w0 o= F0) B (EQ.B.7)
tro X g r - :

by applying T2. This implies that

. 5j(t) ' < < .
iim 4 €3 cj O-cj~l for allbj#k
all states j

(Eq.B.8)
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from which it follows that the previous lemma holds. Equation

.B.8 is equivalent to

lim —32————— = C, Ofc.fl for all j=k

tre 1-P, (t) J J

By noting that the vector ¢ of components {cj} is a
scaled version of T(0)B = %(O)fox0 it can be shown that c is
the left eigenvector (scaled to have I cj = 1) of P that is
associated with the eigenvalue r. T3 can be used to show
that r is real and nonnegative. Since all states in T are
transient, the sum of elements in at least one row of P is
less thaﬁ 1 and therefore it can be shown that r < 1.

It will now be shown that the constant b in the state-
ment of the theorem equals r; Recali that fik(ft+11>t) =
F (t+1) if T _(£) = 0. If % _(t) = 0, then tl;.l»i %j (£) = ey

j#k. Since the states %j(j#k) are the same as those in the

.,

ﬁj'system, one can apply the equation
F(t + 1) = T(t) B

Noting again that the vector c is”the'left eigenvector of B

associated with the eigenvalue r, it follows that if

. (t) = ¢

=
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then %j(t+r) =T e, 1 =1,2,3,...
j#k
Since %k(t+r) =1- z %j(t+T).
j#k

if %k(t) = 0 and as t + «

=AM
~
~~
58
+
~
A
1

1 -1t = £, (t+r]>t)

t=1,2,3....
Therefore r = b.

C. Extension to Continuous Time Markov Chains

The previous theorem applies oniy to discrete time
Markov chains. A similar theorem can be proven for continuous
time Markov chains by applying the Kolmogorov differential
equations for such chains. The Kolmogrov equations for

hcemogeneous chains are

d _ ~ -~ _ox
3 P(8) = B(0)& and ac P(t) = X B(t)

where the states associated with B(t) are defined as in the
previous theorem and A is a matrix of transition intensities.
[PARZ 62] The initial condition is B(0) = I and the solution
to the equations is B(t) = egt. In order to prove thé desired

theorem, one proceeds basically as follows. Let o be the
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largest eigenvalue of A. It can be shown that a <0 and that
a is an eigenvalue of multiplicity 1. Now A can be expressed

in Jordan normal form as follows.

P 1 - -
1 ! @
et J=Q0 " AQ=| J, = Jy
L,l Lo hosy ount
where each J, is a Jordan block [NEF 67]. Then
>t
Since @ is the largest eigenvalue and @ <0, as t + ©, the
JZt I3t » | at
terms e ;€ ++» €te, go to zero faster than e ~.
Therefore as - -
At 1
L=+ 2&; + Q 00 o7t
e 0

From this it follows that

B..(t) . (t) '
im 43— -3 -4, ofdjsl for all j

>0 . T, J
t § Plj(t) § T, (t)
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Therefore

e < r
lim £, (St+7[>t) = 1 - &°

t+o

by the lemma given at the beginning of this secticn.

D. Approximation Techniques for Markov Chains

First passage time distributions in Markov chains are
often quite complicated. The previous theorem, however,
shows that their tail behavior can be described by a simple
one parameter geometric or exponential distribution. This
result can be used to approximate the behavior of a gqueue
that has a Markov chain representation consisting of many
states by a chain which has only a few states. For example,
consider the discrete time Markov chain representation of a
single server queue shown in Figure B.l. The states of the
chain are the number of customers in the system. Suppose
that one is interested only in whether or not the server
is idle, i.e. whether or not the system is in state 0.

Since detailed information is desired only about state 0,

an approximation of the original N stage chain by a smaller
chain (like the three state chain shown in Fibure B.2) might
be useful. The approximating chain shown in Figure B.2 is
an attempt to use only two stages to produce a first passage
time distribution similar to the distribution due to N-1l
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FIGURE B.l - Markov chain representation of a single server
queue. For this chain '

lim £ 0 (Str|>t)=1-r" T =1,2,3...
toro ;
0O<rcil

FIGURE B.2 - Approximating chain for chain in Figure B.1l.
If Paa < I then state B giVes thé proper tail
behavior for the first passage time distribution
from state 1 to state 0. Parameters Pan’ Pap
and Ppo are then free to be adjusted (for example
to try to equate the mean time to go from state A
to 0 to the mean time to go from state 1 to 0).
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states in the original chain. The approximation is done by
. equating the tail behavior of the two distributions. The
parameters P

P and PA might then be chosen to try to

AA’ "AB O
match another characteristic of the approximating distribu-
tion (such as the mean) to that of the actual distribution.
Approximations such as thisrare particularly useful when
considering networks of gqueues whose total state space is‘
too large to handle by exact analytic techniques, but whose
component queues can each be approximated and then be
analyzed as one system. The development of a theory for
such app:oximations is an area open for further
investigation.

A final observation is that while the ﬁheorem in this
appendix has been formulated for a single first passage
time, it can be generalized to consider several first
passage problems simultaneously. For ekample, in>a gueueing
system, one‘ﬁay be interested in first passage ﬁimes
conditioned on events such as a'busy period ending before
a buffer overflow occurs. The tail distributions of such

first passage times can also be shown to be geometric or

exponential.
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