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ABSTRACT

This mathematical study of buffering and flow control is
based on a gradual input queueing model. The gradual input
model has been used previously to study data multiplexors.
Here it is extended to an entire message switched communica-
tion network.

A probability of buffer overflow analysis is developed
and used to determine buffer requirements. A delay analysis
is also developed. The results obtained using the gradual
input queue are compared to the commonly used i/M/l queue
model for message switched networks. The gradual input model
allows one to observe several effects due to a finite number
of finite rate traffic sources in such networks that cannot
be observed using the M/M/1 model.

Flow control is studied in tree concentration structures.
The flow control assures that buffer overflows will occur
only at source nodes, not in the interior of the tree. The
problem of finding the buffer allocation that minimizes the
probability of buffer overflow in such a tree is studied.
It is shown that in certain cases it is optimal to place
all buffers at source nodes. This is, however, not always
so and insight into this is given by example.

Determining the performance of a tree structure in which
flow control is bieing used is a difficult analytic problem.
An approximate analysis based on a first passage time theorem
for Markov chains is therefore developed for an example.
The approximate analysis is verified by simulation.

Thesis Supervisor: John M. Wozencraft
Title: Professor of Electrical Engineering
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CHAPTER I - INTRODUCTION

1.1 Description of the Problem

Message switched communication networks are moving

quickly into prominence as effective networks for data

communication. Much of the current interest in message

switched networks has resulted from the experience of the

Advanced Research Projects Agency Network (ARPANET).

ARPANET demonstrated that a message switched network in

which messages are sent as one or more packets can be an

appropriate design choice for providing communications for

computers [RBRTS 70, KAHN 72]. There are also a number of

other packet switched networks which currently exist or are

under development. These include the Cyclade Network

[POUZ 74], the Transpac Network [DANET 76], the commercial

network Telenet and the military network Autodin [ROSN 73].

An important characteristic of message switched networks

for data communication is that they can contain buffers.

Buffers allow the network to accept temporarily traffic from

sources at a rate greater than the rate at which it is being

delivered to the destinations. Since buffers have finite

capacity, message switched networks require. flow control

mechanisms to control the traffic sources in order to

prevent buffer overflow and other congestion problems (such

as lock up problems or unacceptably high delay).
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This study deals with the mathematical modeling and

analysis of such buffering and flow control in message

switched networks. The work presented here consists of two

major parts.

1) A gradual input queue model is developed and used

to investigate the theoretical buffer requirements

of a class of message switched networks.

2) The problem of optimal buffer allocation and flow

control is investigated for tree concentration

structures within such networks.

The message switched networks considered in this study

are of the general type shown in Figure 1.1. The networks

consist of sources and destinations interconnected by

directed communication channels through buffered message

switching nodes. Some of the nodes are connected in con-

centrating tree structures. The tree structures are then

interconnected with each other by a network whose structure

is not restricted. In this general class of network

structures, the trees are the "local distribution" part of

the network while the network interconnecting the trees is

the "long distance" network. Since tree structures are less

difficult to analyze than general networks, particular

emphasis is placed on them in this study. They are the

only structures in which flow control is studied. This

emphasis is also supported by the fact that the "local

distribution" costs are a very significant part of the total

cost of a message switched network.

7



CT CT

CT

GENERAL INTERCONNECTION
NETWORK

CONCENTRATION TREE
STRUCTURE (CT)

Message Switching Node
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FIGURE 1.1 - General class of message switched networks
studied
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An enlarged view of a message switching node is shown

in Figure 1.2a. Traffic arrives at a node over input

channels as an on/off process. The rate of arrival of the

individual bits in a message is determined by the input

channel capacity or source rate and messages arrive in a

gradual, flow like manner. The switch sends messages to the

correct output channel according to a fixed routing policy.

The switch is assumed to operate instantaneously and in a

continuous flow fashion. The continuous flow through the

switch means that if there is no contention for an output

channel, there will be no delay in passing through a node.

Thus the node does not operate in a store and forward manner,

in which a complete message must be received at a node before

any of it is sent on the output channel.

The model thus can be used to obtain the theoretical

buffer requirements due only to contention for communication

channels of finite capacity (i.e. those buffer requirements

not due to the nature of store and forward operation, finite

switching rates, or the need to store messages until error

detection/retransmission or error correction is complete.)

While this study deals with a flow-through network, many of

the insights obtained are applicable to store and forward

networks as well.

The study assumes that buffers in the nodes are associated

with only one output channel. This is not as efficient as one

shared buffer pool for all output lines, but serves to make

9
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FIGURE 1.2 - Buffering in a message switched node
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the mathematical analysis feasible. The division of buffer

capacity in a node can also be supported by the fact that in

actual systems, each output channel might have a dedicated

communications processor with its own buffer.

As a result of the assumed buffer division and switch

operation, each buffer is as shown in Figure 1.2b. Each

buffer is fed by several input channels with on/off traffic

and this produces in turn an on/off traffic pattern on the

output channel. The stochastic model of this buffer is

called a gradual input aueue. It has been studied by Cohen,

Rubinovitch and Kaspi [COHEN 74, RUBIN 73, KASPI 75] and it

is the basic model that is used in this study.

Previously, the gradual input queue model has been

analyzed for networks of converging tree structures with

infinite buffers at each node. The first major part of

this study extends this model to general networks using a

fixed routing policy for messages and no blocking or flow

control between nodes. The extension also includes overflow

measures such as a probability of overflow for finite

buffers in such networks.

In a message. switched network it is desirable to have

flow control measures that can relieve congestion at a

communication channel by reducing the rate of inflow to

that channel. To analyze even simple flow control policies

for general networks is extremely difficult. Therefore,
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this study considers flow control only in converging tree

structures. The second major part of this study-investigates

the optimal buffer allocation and flow control for such

structures. The flow control considered involves flow rules

that do not allow buffer overflows in the interior of the

tree structure. Therefore, all overflows occur at source

nodes where it would presumably be straightforward to turn

off sources to avoid lost traffic.

In recent years there has been considerable interest in

the analysis of message switched networks, flow control and

related queueing problems. A survey of previous studies in

these areas, discussed from the viewpoint of their relation

to this study, is given in the next section.

1.2 Previous Studies of Bufferina and Flow Control

An early analytic study of the queueing processes that

occur in the buffers of message switched communication net-

works was done by Kleinrock [KLEIN 64]. Kleinrock modeled

buffered communication channels as exponential service time

(message transmission time) queues with Poisson input streams

of messages and infinite buffers (i.e. M/M/1 queues). A

communication network is then represented by a network of

such queues. On the basis of the result that the output

process of an M/M/1 queue is Poisson [BURKE 56], Kleinrock

argued that each queue in the network could be analyzed by

merely determining the mean arrival rate into it. Each

12



queue in the network behaves the same as a single M/M/1 queue

not in a network. This has been formalized by Jackson [JACK

57]. Jackson showed that for certain networks of queues, the

steady state joint distribution for the number of customers

at each queue has a product form. Each term in the product

is the same as the distribution for an independent queue with

the appropriate mean arrival rate. Using the network of

queues model, Kleinrzck considered a number of network

design problems, including finding the communication channel

capacity allocation which minimizes the expected delay

through the network subject to a total network cost constraint.

While buffer occupancy statistics were not explicitly con-

sidered in this study, it is straight forward to obtain

the steady state results using the network of queues model.

It is important to examine the assumptions that were

required to make the network of queues model mathematically

tractable. The main assumption is that if a message passes

through more than one communication channel, its length

(service time) is chosen independently at each queue- (channel)

through which it passes. This independence assumption is

necessary to remove the statistical dependence between the

interarrival times and message lengths of adjacent messages

in the network. A second assumption is that at the time of

a message arrival, all of the information bits associated

with that message arrive instantaneously at the channel

buffer. Clearly, if the communication channels have fi-ite

13



capacity, the information bits arrive gradually, not

instantaneously. The gradual input queueing models to be

used in this study do not use either of these assumptions.

Some assumptions will have to be made, however, for the

gradual input model as well and they have some relation to

the independence assumption used by Kleinrock. In particular,

the gradual input queue analysis requires that the statistics

of all input channels be independent. If in a general net-

work, traffic with a common destination is routed over two

paths that share some channels, separate and then again share

some channels, this will require a type of independence

assumption. The independence assumption is, however, not

made for directly adjacent nodes.

A network of queues model has recently been used by Lam

[LAM 76] to study the buffer requirements in a packet

switched network when each node of the network has only a

finite storage capacity. The network is assumed to operate

on a store and forward basis with link by link acknowledge-

ment of messages. Using basically the same assumptions as

Kleinrock in a more complex model, Lam obtains approximate

results for the probability of nodal blocking due to buffer

overflow. The study also develops a heuristic algorithm for

determining a balanced assignment of buffer capacities in

the network.
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Another study of the queueing processes in networks of

finite length queues representing message switched communica-

tion networks has been done by Borgonovo and Fratta [BORG 73].

This study approached the problem by using an exact Markovian

state space model to represent the dynamic operation of the

network. Such a model is feasible only for very small net-

works with few buffers because the size of the state space

grows extremely rapidly as the size of the network increases.

To overcome this problem, heuristic upper and lower bounds

were developed for the probability of nodal blocking due to

buffer overflow for symmetric ring networks. Borgonovo and

Fratta overcame the independence assumption by working in

discrete time with fixed length messages.

In addition to the above studies of complete networks,

there have been numerous studies of the queueing processes

associated with just one communication channel or one node of

a message switched network [HSU 73, HSU 74, PACK 74, CHU 70A,

CHU 70B, GORD 70, RUDIN 70, CHU 73, RICH 75, CHU 69, IRLND 75,

WYNER 74]. Most of the studies assume that messages arrive as

a Poisson process in an instantaneous manner. A study which

does not make this assumption has been done by Gordon,

Meltzer and Pilc [GORD 70]. This study investigates the

operation of a statistical multiplexor for message switched

traffic that comes from a finite number of two state 'Markov

sources by simulation. The sources are either in the on



state or in the off state and in the on state they generate

a steady stream of characters at a finite rate. This is

much like the source model that will be used in this study of

the gradual input queue. The Gordon study gives the buffer

capacities needed to meet certain probability of buffer

overflow requirements. The average character delay through

the buffer was also obtained.

Flow control in a message switched network designed for

computer-communication became a topic of interest during the

design and subsequent operation of the ARPANET. The flow

control mechanisms used in the ARPANET are discussed by

Kahn and Crowther [KAHN 72]. Two basic mechanisms are used,

one for source to destination flow control and one for node

to node flow control.

The source to destination flow control is achieved by

defining a link to be a unidirectional logical connection

between users of the network and then controlling the number

of messages outstanding on a link at any one time. In

ARPANET, the rule used is that there can be only one message

outstanding on a link at a time. This rule is enforced by

sending a "request for next message" (RFNM) from the destina-

tion to the source after each message is.received. The

source does not send the next message until it receives the

RFNM.
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The node to node flow control in ARPANET is based on a

system of acknowledgement messages (ACKS). After a node

sends a message to the next node, it keeps a copy of the

message until it receives an ACK for that message from the

receiving node. Therefore, if the receiving node has no

buffer space available, it can simply discard an incoming

message and not send an ACK for that message. Then, after

waiting a specified length of time and not receiving an ACK,

the sending node will retransmit the message.

Both the source to destination and the node to node flow

control serve to effectively control congestion in many

circumstances. In some situations, however, these mechanisms

can lead to lockup conditions or otherwise reduce network

throughput. The avoidance of such lockup conditions and

reduced throughput has led to modification of the specific

flow control rules for ARPANET.- The basic concepts still

apply, however.

There is only a limited amount of theoretical literature

on flow control. One scheme that has been proposed and

analyzed to some extent is isarithmic flow control. Isarith-

mic flow control was first described by Davies [DAY 72]. The

basic idea is to have a fixed number of message carriers that

are used to send messages through the network. An input

message must wait for a carrier to be available at the input

17



node before it can progress through the network. When a

carrier is empty, it circulates at random through the network

until it arrives at a node that has traffic for it.

The main parameter associated with isarithmic flow

control is the number of message carriers in the network.

Davies has shown by simulation that throughput is a function

of the number of carriers. If there are too few carriers,

traffic is needlessl rejected at the inputs, while if there

are too many carriers, congestion occurs. Davies points out

that isarithmic flow control is not designed to completely

replace other flow control mechanisms. In addition to the

simulation study, Sencer [SENCER 74] has developed an analytic

queueing model for isarithmic flow control.

The analytic evaluation of flow control mechanisms is in

general very difficult. Recognizing this, Chou and Gerla

[CHOU 75] have proposed a framework in which to classify and

then develop simulation models for such mechanisms. Their

scheme, called the unified flow control model, recognizes

that messages are allowed to enter a network or proceed

through it only if 1) in some sense the buffers required

have been allocated at the point of entry and/or if 2) the

number of occupied buffers is below some threshold. Various

flow control mechanisms differ in the rules for allocation

and in the thresholds that are defined. Once these rules

have been identified for a given mechanism, it can be

simulated in the framework of the unified flow control iodel.

18



Some reference to a flow control scheme that is similar

to the rate flow control consider in this study has been

made in a survey by Gerla and Chou [GERLA 74]. The survey

mentions a proposed flow control strategy due to Pouzin

that controls input rates on the basis of the information in

flow control tables which are circulated in the network. The

flow control considered in this study also controls flow rates.

Extensive flow control tables are, however, not needed in this

study since it is limited to concentration tree structures.

In such structures flow control can consist of simply reducing

the flow rate of upstream nodes whenever downstream nodes

become congested. The flow control problem for a general

network is much more complicated and Pouzin ha., apparently

not analyzed his proposed scheme mathematically.

1.3 Summary of Results

A single gradual input queue is first considered in

detail since it is the basis of this study. Chapter 2

presents the previously known results for this model and a

number of extensions. An important extension required for

this study is a probability of overflow measure for a queue

with a finite buffer. The probability of overflow per busy

period is found and a useful exponential upper bound for it

is also obtained. It is shown how this overflow measure can

be converted to an expected time between overflows. Other

19



overflow measures are also discussed. A final extension for

the single queue is the development of upper and lower bounds

for the expected delay per bit through the buffer.

In previous buffering studies of message switched net-

works the M/M/1 queue model has been extensively used. The

gradual input model is therefore compared to the M/M/1 model.

Such a comparison for single queues is presented at the end

of Chapter 2. It is shown that the gradual input model

enables one to see effects due to a finite number of finite

rate traffic sources that are not apparent with the M/M/!

model. All of these effects reduce the amount of queueing

from that calculated with the /MX/1 model.

The analysis of a network of gradual input queues is

presented in Chapter 3. It is first shown that all traffic

streams in a general. network are not exactly of the type

required for the analysis presented in Chapter 2. Specifically,

all traffic streams will not be alternating renewal processes

with exponential off times even if the source traffic streams are

of this type. It is shown, however, that if source streams

have both exponential on and off times it is a good approxi-

mation to assume that all traffic streams in the network are

of this type. This is verified mathematically for two

limiting cases and by simulation.

20



The analysis of a general network of gradual input queues

is then done by first calculating the mean on and off times

associated with all traffic streams. Two sets of linear

equations are developed for this purpose. Once the mean

traffic parameters have been found, the analysis presented

in Chapter 2 can be applied to obtain marginal statistics

for each buffer in the network.

The results for networks of gradual input queues are

also compared with those obtained using a network of M/M/l

queues. Again the finite source nature of the gradual input

model shows network effects that cannot be seen with the

M/M/1 model.

Flow control is investigated for tree concentration

structures. The flow control is used to eliminate overflows

in the interior of the tree. Therefore all overflows occur

at source nodes where it would presumably be easy to turn off

the sources. The first problem considered is finding the

buffer allocation in such a tree that minimizes the probability

of buffer overflow. It is shown that in certain cases,

placing all buffers at source nodes is the desired allocation.

This is not a general result, however. A counterexample is

presented that gives insight into why it is not always

desirable to place all buffers at source nodes.

21



Even though reasonable flow control rules can sometimes

be specified, it is often difficult to analyze the performance

of the resulting system. To help deal with this problem, an

approximate analysis of a small concentration tree using flow

control is presented. The analysis is based on a first

passage time theorem for Markov chains. The theorem states

that the tail behavior of first passage time distributions

is geometric or exponential under fairly general conditions.

This is used to develop a stage by stage analysis of a three

node system by coupling the dynamics of the nodes in an

approximate way. The results obtained in this way for the

system probability of overflow are verified by simulation.
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CHAPTER II - THE ANALYSIS OF A SINGLE GRADUAL INPUT QUEUE

Before considering the analysis of an entire message

switched network, it is necessary to analyze a single gradual

input queue. The first section of this chapter presents the

basic definitions and results for the gradual input queueing

model due to Rubinovitch, Cohen and Kaspi. In addition,

results for specific cases of interest in this study are

obtained and a delay analysis for the queue is developed.

The next section considers overflow statistics for a gradual

input queue with a finite buffer. The final section compares

the gradual input queue with the simpler M/M/1 queue in order

to show the insights obtainable from the more detailed model.

2.1 The Basic Gradual Input Queue Model

2.1.1 Definitions and previous results

The following description of the gradual input queue

parallels that of Cohen [COHEN 74]. The model represents N

incoming channels being multiplexed onto a single outgoing

channel as is shown in Figure 2.la. The capacity of each of

the incoming channels is the same as that of the outgoing

channel, so that when only one incoming channel is on, data

passes directly through the multiplexor without buffering or

delay. When more than one incoming channel is on, a queue

builds up. The buffer is assumed to have infinite capacity

and is shared by all incoming channels. The outgoing channel

23
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FIGURE 2.1 - The gradual input queue
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pends data at a constant rate whenever any incoming channel

is on or there is data in the buffer.

The on and off process associated with each incoming

channel is taken to be an alternating renewal process. As

shown in Figure 2.lb, for the ith channel this process is

described by the sequence a,i T li a 2,i' 2,i of

statistically independent nonnegative random variables. The

random variables a (n = 1,2,3...) represent the successive
n,i

idle periods on the ith channel and the random variables

Tni (n = 1,2,3...) represent the lengths of the successive

busy periods on that channel. The random variables o have

distribution A(') while the random variables Tn have distri-
n,i

bution BC'). The restriction that the processes on all input

channels be identically distributed will be removed later.

Figure 2.2 shows the behavior of the gradual input

buffer for a specific sample function of the input. A

period of continuous inflow into the buffer is called an

inflow period and its length is denoted by Qj. The sum of

the lengths of all messages flowing into the buffer during

the jth inflow period is called the load h.. A busy period

of the buffer is a period of uninterrupted flow on the output

channel. Its length is denoted by b. The length of time

between the start of successive busy periods is called a

busy cycle, whose length is denoted by c. The length of time

between the end of the nth and the beginning of the (n+l)st

25
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FIGURE 2.2 - The buffering process in a gradual input queue
(After Fig. 3 in [COHEN 74])
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inflow periods is denoted by 6n+l' A final quantity defined

by Figure 2.2 is the content of the buffer at the start of

the nth inflow period, denoted w.

In order to facilitate the analysis of the gradual

input queue, it is necessary to restrict the distribution of

off times on the input channels to be exponential, i.e.

-Xt
A(t) = l-e ; t > 0, X > 0

0 ;t - O

With this restriction, the gaps between inflow periods, 6,

are also exponentially distributed (with mean (NA)-). From

Figure 2.2 it can be seen that the relationship between

successive buffer contents wn is given by

+
Wn+l [Wn+hn- n-on+ 1] n = 1,2,3...t

Since the 6n are exponentially distributed, the random

variables wn correspond to the actual waiting times of an

M/G/1 queue with service times hn- n and interarrival times

6n' The actual waiting time in the M/G/l queue is the time

between the arrival of a customer and the start of his

service. This equivalence is the basis of the analysis of

the gradual input queue.

t [x] = x if x > 0

0 if x - 0
27



In order to make use of the known results for the M/G/l

queue in analyzing the gradual input queue, it is necessary

to obtain the distribution of h n- n. This has been done by

Cohen. The central result is given below. Define

B*(p) = fe - Pt dB(t) Re p - 0
0

8 = rft dB(t)
0

A= N a = A

Theorem (Theorem 2.3 [COHEN 74])

For Re p - 0, Re s > 0, t > 0, Re u > 0

s+A{l-E{exp(-ph-sZ) } 1 =-

ut
~e-St 1 e du N

f (e (2- i Ce u+X{l-B*(p+u)}

co -St fA -2 ut
i e-St exp{ A C u 2 e {l-B*(p+u)}du} dt; N=oo
0 2Tri 'C

(Eq.2.1)

In this theorem, N=- is the case NA*A as N-+*, X*0. The

integral

ic+Reu
/C eut F(u)du - lim e eut F(u) du
u C-).Os~ -ie+Reu
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where s>O andRe u is to the right of all singularities of

F(u). Note that 2i eut F(u) du is then the inverse27ri C

Laplace transform of F(u).

Using the above theorem, it is possible to derive the

first moments of the distributions of h and X. There are

For N<-

E{2} = (S/a){(l+a/N) - 11

N-l
E{h} = B(l+a/N) (Eq.2.2)

For N=o

E{Q} = (8/a)(ea-l)

E{h} = Bea (Eq.2.3)

For the equivalent M/G/l queue it is known that the

queueing process will have a steady state as t-+ only if

AE(h-k) < 1. Cohen has shown that for the gradual input

queue, the following equivalence exists.

<1 ~ (N-l)X < 1 if N< 1

a < 1 if N="

AE (h-Z)

=1 (N-1)XB = 1 if N<

a 1 if N=-
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Having found the expected value of h-Z and the conditions

under which the queueing process has a steady state, it is now

possible to apply the following theorem by Cohen to obtain a

useful measure of the buffer build up occurring in a gradual

input queue.

Theorem (Theorem 3.4 [COHEN 74])

The maximum content Cmax of the buffer during a busy

cycle has the same distribution as the distribution of the

maximum virtual waiting time vmax during a busy cycle of an

M/G/1 queue with a service time distribution which is the

same as that of h -n and mean interarrival time A 1. The
n n

virtual waiting time, v(t), of the M/G/1 queue is the total

remaining service time of the customers in the queue at time

t. This is the time a customer would have to wait before

starting service if he arrived at time t. Note that this is

not the same as the actual waiting time since v(t) is defined

for all t while actual waiting times are defined only at the

customer arrival times [COHEN 69].

A result for v of an M/G/1 queue with mean servicemax

time x and mean interarrival time d which can now be applied

is

-1
E{Vmax} = d log[(l-x/d) (Eq.2.4)

as given in [COHEN 69]. Applying Equations 2.2 and 2.3, one

obtains the following.
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( a log(l-a)- 1 -a}3 N=-

E{Cmax}
-1 -l -l
a {log(l-a (N-l)/N) +(N-l)log(l+a/N) 1}BN<-

It is therefore possible to calculate the expected value of

the maximum buffer content during a busy cycle in closed form.

Another useful result that has been obtained for the

gradual input queue is the functional form of the distribution

of the busy period on the output channel. Rubinovitch [RUBIN

73] has shown that the output channel of a gradual input

queue has the same busy period distribution as an M/G/1

queue with input rate (N-1)A and service time distribution

B(').t If D*(') is the Laplace Stieltjes transform of the

distribution of the busy period on the output channel then

D*(e) = B*((N-1)X+ e - (N-1)XD*(6)) Re e > 0

This is the well known busy period result for an M/G/1 queue

[KLEIN 75].

The results so far apply only to a single stage of

buffering. It is, however, straight forward to extend the

results to several stages of channels arranged in a converging

tree structure. This is done by observing that the output

tNote that this M/G/1 analogy is not the same as the one
used to obtain the previous buffering result.
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channel of one stage behaves as an alternating renewal process

as required for it to be the input process to the next stage.

It is therefore possible to analyze a converging tree

structure in a stage by stage manner.

This section has been restricted to queues for which all

input channels have identical alternating renewal processes.

The results presented here have been generalized to the case

of different renewal processest for each input channel by

Kaspi and Rubinovitch [KASPI 75]. A summary of their work is

given in Appendix A.

2.1.2 Equivalent M/G/1 queue service time analysis

In the previous section it was shown that the queueing

process in a gradual input queue can be analyzed by making an

analogy with an M/G/1 queue. The equivalent M/G/l service

time distribution is the same as the distribution of h-Z, the

queue buildup during an inflow period of the gradual input

queue. In this section the Laplace transform of the distri-

bution of h-R is obtained for specific cases. The specific

cases considered are ones in which the on times, Ti j, as

well as the off times, ai ; -on the input channels are

exponentially distributed. These special cases are required

for the analysis of the general networks presented in

Chapter 3.

tThe off periods on each channel are still required to be
exponentially distributed.
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The results presented here are obtained by using a

Markov chain representation for the behavior of the input

channels to the queue. This approach is easier to understand

than using the relationship given by Cohen for E{exp(-ph-s)}.T

It also allows one to analyze queues for which the input

channel capacity is larger than that of the output channel.

Cohen's result (Theorem 2.3 [COHEN 741) is stated in the
previous section. Note that it gives E{exp(-ph-sZ)} for
Re P - 0, Re s > 0. Therefore in order to use the result
to obtain E{exp(-p(h-Z))} analytic continuation must be
used. Appendix A-4 of [COHEN 74] shows how to do this for
the case of an infinite number of input>channels (N=c).
The result for this case is that for p - 0,

p-A{l-B (p) }
p-AT1-Etexp -p (h-.T)] } 

=- -Af E{exp [-p (B-t) (Bpt) }exp[ A u 2e ut{1-(p+u) 
0 u

du]dt

1 if B-t
Where B has distribution B(') and (B-t) = 0 otherwise
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The alternating on/off renewal process associated with

a communication channel on which these times are exponentially

distributed can be represented as a two state continuous

time Markov chain. Let the off times have distribution

function

A(t) = 1-e -t t > O, X > O

o t 0o

and the on times have distribution function

B(t) = 1-e- u t t > 0, j > 0

O t O 0

Then the behavior of the channel can be represented by the

Markov chain shown in Figure 2.3a. If there are N independent

input channels, their joint behavior can also be represented

by a Markov chain. The chain representing the joint behavior

of three identical input channels is shown in Figure 2.3b.

The states of the chain are the number of channels on and the

number off. The transition times between the states are

exponentially distributed as required for the system to be a

continuous time Markov chain. This follows from the memory-

less property of the exponential distribution and the fact

34



a. A single gradual input channel.

3X 2X A

1 on 2 on

2 off 1 off3

11 ' 21 13

b. Three identical gradual input channels.

X1 n,

C2 off

C1 of C1 on

C2 off C2 on

C1 o ,~

C2 on

c. Two different gradual input channels.

FIGURE 2.3 - Rate diagrams for Markov chain representations
of the behavior of gradual input channels
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that the time to a state transition is given by the minimum

of a set of independent exponential distributions (the set

of times until the next transition on each channel). It is

well known that the minimum of such a set is exponentially

distributed.

It is also straightforward to extend the Markov chain

representation to independent input channels with different

traffic parameters. Figure 2.3c illustrates the Markov

chain for the joint behavior of two input channels with mean

on and off times (p1 A ) and (p 2 21)

Now recall that the quantity h-Z is the queue buildup

during an inflow period of the gradual input queue. This

time period can easily be identified in the Markov chain

representation of the input channels. An inflow period

starts with a transition from all inputs off to one input

on and ends on the first return to the state with all inputs

off. Therefore an inflow period is a first passage event

in this Markov chain.

The excess queue buildup, h-Z, during this first passage

event can now be identified. This can be done for queues

with input channel capacities, C i, which are greater than or

equal to the output channel capacity, CO. For such a queue,

whenever the input channels are in a state with N inputon

channels on, the buffer content of the queue increases at

rate rb, where
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rb Non C i - C o Non 1 C C (Eq.2.5)

Equation 2.5 can now be used to scale the transition time

distributions for the input channel Markov chain so that the

time spent in each state represents the excess queue buildup

while in that state. In the resulting scaled Markov chain,

the time for the first passage event that starts from the

all channels off state with one input coming on and ends upon

the first return to the all off state is equal to the quantity

h-1.

The use of the scaled Markov chain to determine the

Laplace transform H*(s) of the distribution of h-Z is best

illustrated by an example. The unscaled Markov chain

representing three identical gradual input channels was

shown in Figure 2.3b. If these channels have capacity

Ci = C o = 1, then the scaled Markov chain representing the

rate of queue buildup will be as shown in Figure 2.4. Note

that state 1 (all channels off) is shown as a trapping state

because it is the end state of the first passage event of 

interest. As such, the time until trapping in state 1 will

be the same as the first passage time to that state. Also

note that since there is no queue buildup in state 2 (one

input on), there are infinite transition rates out of this

state in the scaled chain.
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Let x(t) be the state of the scaled Markov chain. Then,

as discussed previously, h-i is equal to the following first

passage time

h-t = f21 = inf{t; x(t)=lJx(0) = 21

If f21(t) is the probability density function of f 2 1 then

the desired transform is

F*(s)= H*(s) = e f-s t2 )dt
21 2(t)dt

t=o

This transform can be found by general methods, such as those

given by. Howard [HOWD 71], or by taking advantage of the

special structure of the chain as discussed below. In either

case, transition probabilities pij=Pr {next state=jjcurrent

state=il and waiting time probability density functions wi (t)

must be identified. For the chain shown in Figure 2.4, the

matrix of transition probabilities is

1 o 0 O

2Xo O
-p = +2X 0+2X

2U+ 2U+X 2X

0 0 1 0
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The density functions wij(t) are the densities of the time

until transition, given that a transition from state i to j

will occur, and zero if a direct transition is not possible

from i to j. For the continuous time Markov chain under

consideration here, these are all exponential. The mean times

are the mean time spent in each state. Therefore the matrix

of these densities is

wll(t) 0 O O

6(t) 0 6(t) 0

0 +2X) e (,w+2X)e- (+ 2 X)t

3U _ - 30 0 20it 0
2 u z

Where 6(t) is the Dirac delta 6(t) = {1 t=0
0 otherwise

Since state 1 is a trapping state, wl!(t) can be any probability

density function such that wll(t) = 0 if t < 0.

From the matrix W(t) it is easy to generate the matrix

of Laplace transforms of the waiting time densities.

w*l (s)0 0 0

1 0 1 0
W* (s =
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Because of the simple structure of the Markov chain, the

transform Fi (s) can easily be found by the following method.

Let Y 23 and y 34 be the number of state 2 to state 3 and

state 3 to state 4 transitions that are made during the

first passage event starting from state 2 and ending in

state 1. Knowing Y 23 and y 34 is equivalent to knowing the

number of times states 2, 3, and 4 were entered before the

trapping state 1 was reached. The transform Fl1 (s) can

therefore be found by summing conditional transforms as

follows

21( = {Fl(S) IY23=J Y34 k}
1(S) = ~All possible j,k

Pr{Y2 3=j, Y 34=k}

-w21 (S)P21 (23 (s)32(s))
All possible j,k

(w34(s)w43(s)) (P23P32) (P34P43

- zo

= W 1 (s)p2 E (w 3 (s)w 2* (s) (E (w 4* (s)W 3 (S)21 21 j=0 23 3 i= 34 43

. .
P 34P3 2) )P 23P 32)3 (Eq.2.6)

Equation 2.6 states that there can be j=0,1,2... transitions

from state 2 to state 3 and for each of these there can be

i=0,1,2,... transitions from state 3 to state 4 before trapping
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in state 1. For each state 3 to state 4 transition, the

transform of the time from starting in state 3 until

returning to that state is w 4 (s)w 3 (s). This transition

occurs with probability P 34P 43. Similarly, for each state 2

to state 3 transition, the transform of the time from

starting in state 2 until returning to that state is

w 3* (s)w 2* (s)( (w 4* (s)w 3 (s)P34P43 )i). The last sum
i=O

accounts for transitions to state 4 once state 3 is reached.

The transition from state 2 to state 3 and back to 2 occurs

with probability P 23P 32. Finally, each first passage event

considered here involves one transition from state 2 to

state 1 which occurs with probability P21 and has transform

w" (s).21

An equation similar to Equation 2.6 can be written for

other simple gradual input queues. Table 2.1 gives the

resulting transforms H*(s) for the case presented above and

other cases that are used in this study.

As mentioned previously, the Markov chain technique

can be applied to gradual input queues with channel

capacities C i > Co. One example of this is given in

Table 2.1. The Markov chain technique cannot be applied if

C i < Co because then the basic M/G/1 queue analogy no

longer holds. The M/G/l analogy requires that the queue

content be nondecreasing during an inflow period and that is

not the case if C i < C o. Unless otherwise stated, all cases

considered in this study have Ci = CO.
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There is another approach to finding F* (s) that can be

used. Howard [HOWD 71] gives the result that the matrix of

first passage time distributions for a continuous time

Markov chain satisfies the following relationship.

F*(s) = C*(s) [(I-C*(s)) l][(I-(s))- 1D I]-

(Eq.2.7)

The matrix C*(s) is ,alled the core matrix. It is defined

as follows

*(s) = P (W* s)

The operatorD in the above equations signifies element by

element multiplication of the two matrices. For the gradual

input queues considered in this study it is easier to write

an equation like Equation 2.6 than to perform the matrix

inversions required in Equation 2.7. The infinite sums in

Equation 2.6 are all simple geometric sums for which closed

form expressions exist.
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2.1.3 Bounds for the expected delay per bit

A performance measure that is often of interest for

message switched communication networks is delay. In

previous studies using the M/M/1 queue as a model, the delay

measure usually considered was expected delay per message.

For the gradual input model this measure is difficult to

find because tihe distributions obtained for buffer content

are not expressed in terms of number of messages. Instead

buffer contents are expressed in terms of time units of work

(for the output channel) which represent bits when normalized

by the communication rate of the output channel. Therefore

an expected delay per bit measure will be used for the

gradual input queue.

The delay experienced by a specific bit in a gradual

input queue is a function of the queue contents at the time

of its arrival and of the service discipline of the queue.

The service discipline in the queue may be difficult to

represent mathematically. For example, suppose that messages

are sent on a first-come-first-served (FCFS) basis. Then the

bits are not sent strictly FCFS. Fortunately, as long as the

service discipline is work conserving, the mean delay per bit

remains unchanged. Therefore the mean delay per bit can be

found assuming FCFS service for all bits.

tThis follows from Little's formula [LTTL 61], L=XW, which
says that the expected delay W for a aueue equals the expected
queue size L divided by the mean arrival rate X. All work
conserving service disciplines give the same expected queue
size in terms of bits for the gradual input queue.
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With the FCFS service discipline, it is easy to see that

the delay for a specific bit db is

db = buffer content at time of bit arrival

For the gradual input queue, this means that only the queue

size during inflow periods is of interest since that is the

only time during which bits arrive. Figure 2.5 shows the

buffer content during a typical inflow period. Determining

the exact delay per bit during this period is very difficult.

However, this delay can easily be bounded. Note that at the

start of the inflow period the delay (buffer content) is w.

while at -the end it is hi-Zi+wi. The delay is strictly

nondecreasing during the inflow period. If one considers

M inflow periods, the average delay per bit is bounded by

M M
Z h.iwi h i [hi-i+wi ]

i=l 1 2 < - < i=l
M db M
Z h. Z h.
i=l 1 i=l 1

Taking the limit as M-o and making an ergodic argument gives

E[hw] < < E [h(h-2+w) ]
E[h] -E[db] - E[h]
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Buffer content

1 W
hi- i+Wi

W.

inflow period . time

length = Zi

FIGURE 2.5 - A single inflow period of the gradual input
queue. The total inflow during the period = h
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Since h i and w i are independent, these bounds simplify to

E[w] E[db ] E(h] + E[w] (Eq.2.8)E[h]

Now recall that w is the actual waiting time of an

equivalent M/G/1 queue. Assume that the gradual input queue

has N input channels with mean off times i- 1 (i = 1,2,..N)

Then the equivalent M/G/1 queue has mean interarrival time
N -1

( lAi)-i and a service time distribution equal to the dis-
i=l

tribution of h-Z. Therefore E[w] can be found using the well

known Pollaczek-Khintchine formula [KLEIN 75] for the mean

waiting time in an M/G/1 queue.

XT E[(h-2)2 ]
E[w] 2(1-A E[(h-Q-)I) (Eq.2.9)

N
where XT Z i.

Equation 2.9, together with Equation 2.8, gives both upper

and lower bounds on E[db] in terms of first and second

moments of the fundamental quantities h and Z. An example

of the bounds is given in Section 2.3.
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2.2 The Gradual InPut Queue With A Finite Buffer

2.2.1 Probability of buffer overflow in a busy period

A probability of buffer overflow measure is required

in order to be able to use the gradual input queueing model

to study buffering requirements for a communication network.

The key to calculating a probability of buffer overflow for

this queueing model with a finite buffer is to use a pro-

bability that is convenient to work with. The most convenient

is the probability of one or more buffer overflow events

during a busy period, and this is the measure used in this

study. This measure is convenient because the start of each

busy period is a renewal point for the queueing process in

the gradual input model. At this point, all but one of the

inputs are off with an exponentially distributed time

remaining until they come on again. In addition, the buffer

is empty so that, stochastically, a queue with an infinite

buffer and one with a finite buffer behave identically from

the start of a busy period until the finite buffer overflows.

For any busy period then, the probability of no overflow for

the finite buffer is the same as the probability that the

buffer content of the infinite buffer never crosses the

level equal to the size of the finite buffer during the busy

period.

The analogy between the contents of a gradual input

queue and the virtual waiting time in an M/G/1 queue can now

be applied. For a gradual input queue with buffer size K
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No overflow during) v K during a busy period)
Pr(a busy period Pr( ax

of equivalent M/G/1 queue

where the equivalent M/G/1 queue has an infinite buffer, a

mean interarrival time of A-1 and a service time distribution

that is the same as the distribution of h-Z. Let w be the

actual waiting time for the equivalent M/G/1 queue and y be

a random variable with the same distribution as the service

time. Then the following result for an M/G/1 queue can be

used

Pr(v -K) = Pr(w+y-K) (Eq.2.10)

Ref. [COHEN 69] p. 525

[TAKACS 65] p. 381

By using the fact that Pr(v >K)=l-Pr(v -K), Equation 2.10max max

provides a way of theoretically calculating the probability

of one or more overflow events during the busy period of the

gradual input queue with buffer size K. Specifically,

POverflow during) =1 <Pr(v <K)
rbusy period max

Pr(w-K) - Pr(w+v-K)

Pr (wlK)

Pr(w+y>K) - Pr(w>K)
1-Pr(w>K)
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Because the distributions of w and y for the M/G/1

.queue analogy are fairly complicated, it is worthwhile

trying to bound the probability of overflow rather than

calculating it exactly. This can be done by applying the

exponential bounds on the waiting time in G/G/1 queues

developed by Kingman [KING 70]. For a G/G/1 queue, denote

the service time of the nth customer by xn and the interval

between arrivals of the (n+l)st and nth customer by tn. Now

define the random variable yn by

Yn = Xn - tn

The yn'& are i.i.d. random variables, therefore they have a

common distribution function F(u) = Pr{y<u}. Kingman has

shown that

-e'*K < < Pwe* Kr e Pr{w>K-e (Eq.2.12)

where the constant r is given by

r = inf t>0 dF(u)/lfe (u-t) dF(u)
t t

and e* is the unique greatest positive real root of the

equation

f(e) = f eeu dF(u) = 1 (Eq.2.13)
-00



in an interval I in which f(8) is bounded. This interval I

includes the origin 0=0 since f(0)=l. Furthermore, it can be

shown that f(0) is a convex U functiont and that f'(O) =

E{x-t}<O for a queue with a utilization <1. It can also be

seen that

f(e) = A*(e)B*(-e) (Eq.2.14)

where A*(e) and B*(O) are the Laplace transforms of the

interarrival time, tn, and service time, xn, distributions

respectively.

The bound in Equation 2.12 can be applied to Equation

2.11 yielding

Pr(overflow) < Pr (Eq.2.15)
1 -e

The problem now is to bound the Pr(w+y>K). This can be done

by noting that

K
Pr(w+y>K) = Pr(y>K) + f Pr(w>(K-t)) dH(t)

t=O

where H(t) is the distribution function of h-Z.

tThe function f(8) is convex U if

f(a 1+ (l-a) 82) af(8 1 )+(l-)f( 2 ); 0 a 1.
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Using the fact that Pr(y>K) = f dH(t) and that
t=K

Pr(w>O) = 1, one obtains

Pr(w+y>K) = f Pr (w> (K-t))dH(t) e (Kt) dH(t)
t=o t=o

-OK
= H*(-8)e (Eq.2.16)

This expression for ?r(w+y>K) can be substituted into

Equation 2.15 giving the following exponential bound on the

probability of one or more overflows during a busy period of

a gradual input queue with buffer size K.

-OK
Pr (overflow) (H*- (Eq.2.17)

1 -e

This exponential bound can be applied in a straightforward

manner except for the constant r. The constant r is difficult

to determine exactly in general. Fortunately, however, it is

easy to see from its definition that r-O. Therefore setting

r=O still gives an upper bound, i.e.

-OK
Pr(overflow) < H*(-8)e (Eq.2.18)

1 - e

The effect of letting r=O is to weaken the bound, but the

correct exponential behavior is preserved. The next section

gives an example that illustrates this effect.
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It is desirable to have a lower bound as well as an

.upper bound on the Pr(overflow) as defined in this section.

One can start with Equation 2.10 and apply the Kingman

bounds on waiting time to obtain a lower bound, but in this

case, since the constant r cannot be determined, the bound

is useless. Therefore the alternative that will be used is

to realize that for a gradual input queue

Pr(overflow) = E Pr(Overflow in ith inflow period)
i=l

Pr(Overflow in lst inflow period)

= Pr(h-2>buffer size) (Eq.2.19)

Here only the first inflow period has been used to obtain a

lower bound. If a tighter bound is desired, more inflow

periods can be considered.

The bounds developed here for Pr(overflow) are

illustrated with examples in the next section that indicate

their tightness.

2.2.2 Examples of the bounds on Pr(Overflow)

Two examples of the use of the bounds on Pr(overflow)

are given in this section. The first is a gradual input

queue which is used to illustrate the general procedure.
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The second is an M/M/1 queue which is presented to show how

the upper bound compares with the exact value.

As a first example, consider a gradual input queue

with three identical input channels. The on and off times

on each channel are exponentially distributed with means

- =1 and X =5 respectively. This gives an output channel

utilization of 0.5 if no traffic losses occur.

As described previously, the Pr(overflow) for this

queue with buffer size K can be determined by considering

an equivalent M/G/1 queue. The equivalent M/G/1 queue has

an interarrival time distribution with Laplace transform

3X 0.6
A+3A +0.6

This is the transform for the time between inflow periods.

The transform for the equivalent service time is the same

as the transform of h-k.

B*(8) = H*(e) = 2uO 2 +(2Xu+7U2)0+6'3
(2u+4X)0 +(4X +2Xp+72 )e+63i

282 + 7.40 + 6
22.80 + 8.768 + 6

Now the problem is to find the exponent 8* for the

exponential bound. The exponent is the unique positive

real solution to
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f(e) = A*(e)B*(-8) = 1

which lies in an interval I. in which f(8) is bounded. For

the example considered here, this equation has three solutions,

0, 0.902 and 2.055. Of these, only 0.902 is positive real

and in I8. The root 2.055 lies outside of TI because the

function B*(-e) has a pole at 1.01. The uniqueness of 8* is

therefore as predicted by the Kingman theory. The bound is

completed by finding

H*(-e*) = H*(-0.902) = 2.503

Therefore

-0.902K< 2.503e
Pr(overflow) 2 -0.902Ki-e

where K is the buffer size. This bound is plotted in Figure

2.6. Notice that for small values of K the bound becomes

large because of the denominator. Therefore another bound

has been used in this region.

The bound used for small buffer sizes is the Pr(overflow)

when K=0. For K=0 the following is true.

l-Pr(overflow) = Pr(First input channel goes off before
a second one comes on)
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Pr (overflow)
1.0

Upper Bound = Pr(overflow|K=O)

2.503e
Upper Bound = 1_-' 9 02 K

0.1 1-e 0.902K

1x10 -2

1x10 Lower Bound
Pr(h-Q>K)

0 2 4 6 8 10
Buffer Size K

FIGURE 2.6 - Bounds on Pr(overflow) for a three input gradual
input queue. All three inputs are identical with
-1 -1

j =1 and X =5.
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ontime t off time>t 2
i Prfor channel (Pr for channel )) dt

_ f -Ut -At -At=-oje e e dt
t=0

_ u 1
-+2X = .4 = 0.714

Clearly this exact solution for K=0 is an upper bound for K>0.

The lower bound to Pr(overflow) that was developed in

the previous section is

Pr(overflow) - Pr(h-Z>K)

In order to evaluate this bound, the transfornm H*(8) must

be inverted. For this example

28 + 7.48 + 6
H*"() = 2

2.80 + 8.768 + 6

0.4080 + 0.612
(8+1.013) (6+2.116)

Therefore using standard inversion techniques, one obtains

H(t)=0.7146(t)+(.178) (1.013)e '013t+(.108)(2.116)e t

t-0

where 6 (t) = 1 if t=O

= 0 otherwise
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From this it is easy to find the bound.

Pr(h-L>K) = I H(t)dt = 0.178e101 3 K +.10 8e2.116K
t=K

This bound is also shown in Figure 2.6.

As a second example, an M/M/1 queue will be considered.

The M/M/1 queue is a limiting case of a gradual input queue.

It is the case with infinite capacity input channels which

allow instantaneous message arrival. This is discussed

further in Section 2.3. Here the M/M/1 example is of

interest because it can be used to compare the upper bound

on Pr(overflow) with the exact solution.

Recall that

Pr(w+y>K) - Pr(w>K)Pr(overflow) 1-Pr (w>K)

For an M/M/1 queue with mean arrival rate X and mean service

--1
time ~ , the service time y has distribution

Pr(y-t) = 1 - e- u t t>O,. P>O

0 t<O

The distribution of the actual waiting time w is [KLEIN 75]

59



Pr(w-t) = 0 t<O

1-p t=0

l-pe- (l-p) t t>O

where p= X/U

From this the required Pr(w>K) is easily found to be

Pr(w>K) = 1 - Pr(w-K) = pe- (l-p) K =pe (X-U)K) K>O

The Pr(w+y>K) can be obtained as follows.

Pr(w+y>K) = Pr(y>K) + Pr(y<K and w+y>K)

eK + i -e pt pe~- (l-P) (K-t)dt
t=O

= e(X-)K; K>0 

Therefore

Pr (overflow-) e K>
-pe upper bound for Pr(overflow) 

The upper bound for Pr(overflow) given by Equation 2.18 is

also easily found for the M/M/1 queue. The bounding exponent

is determined using the equation
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f(e) A* (e)B* (-e) = e+ "' - 1

The solutions to this equation are 0 and p-X. Therefore

8* = j-X . The upper bound is then given by

Pr(overflow) < B*(-e*)e
l-e

= (/X) e(X-i)K

l-e ( - p )K

In comparing the upper bound with the exact solution,

it can be seen that the bound has the correct exponential

behavior. Table 2.2 gives values of both the bound and the

exact solution for different utilizations and buffer sizes.

The table shows that the bound is loose for small buffer

sizes. For larger buffer sizes and reasonably small

probabilities of buffer overflow, however, the bound is

fairly good. In this region the difference between the

two is less than one order of magnitude.
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TABLE 2.2

Pr(overflow) for the M/M/1 Queue

-1
Mean message length = = 1

Utilization Buffer Size Pr(overflow)
(In mean message Exact Upper Bound

lengths)

0.2 2 0.1683 1.2648

0.2 4 3.2878x10-2 0.2125
-3 -20.2 6 6.5946x10 4.1490x10

0.2 8 1.3297x103 8.3216x10 3

0.2 10 2.6839x10 4 1.6779x10 3

0.2 12 5.4184x10 5 3.3867x10 4

0.2 14 1.0939x10 5 6.8372x10 5

0.2 16

0.5 -2 0.2254 1.1640

0.5 4 7.2579x10 2 0.3130

0.5 6 2.5529x10 2 0.1048

0.5 8 9.2425x10-3 3.7315x10- 2

0.5 10 3.3804x10 3 1.3567x10 2

0.5 12 1.2409x10 3 4.9698x10 3

0.5 14 4.5615x10 4 1.8254x10 3

0.5 16 1.6776x10 4 6.7115x10 4

0.8 2 0.2891 2.5416

0.8 4 0.1403 1.0200

0.8 6 7.9361x10 2 0.5388

0.8 8 4.8158x10 2 0.3162

0.8 10 3.0353x10 2 0.1956

0.8 12 1.9563x10-2 0.1247

0.8 14 1.2784xl10 2 8.0934x10 2

0.8 16 8.4272x10 5.3118x10 2
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2.2.3 A per unit time overflow measure

A per unit time overflow measure may be more useful

than a probability of overflow per busy period in some

applications. The following discussion shows how the upper

bound on the probability of overflow per busy period developed

in Section 2.2.1 can be converted to two different lower

bounds on expected time to buffer overflow.

For the first bound, let E{T0} be the expected time to

the first buffer overflow of a gradual input queue, starting

from the beginning of a busy period. This expected time can

be expressed as a sum of expected times to overflow that are

conditioned on the busy period in which the overflow occurred,

i.e.,

E{T0}Z E{TbPf1 = E{TPr(bpoverflow i} Pr(bPverfl w )
i=1

(Eq.2.20)

Now each term in this equation will be examined.

First consider the conditional expected times

E{T0 bPoverflow = i}. Figure 2.7a illustrates the sequence

of idle and busy periods that preceed an overflow in the ith

busy period. From the figure it is easy to see that

E(TOIbPoverflow=i}=(i-l) [E{Tbpno +E{Tidle }]+E{Tbpo}

i = 1,2,3.....
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Overflow

T 0

I/f/uV/I/'. . l///
Busy Idle Busy Busy

a. Definition of To

-Overflow Overflow

V///t1- A/ / // * ** .. 1///
Busy Idle Busy Busy

b. Definition of T0C

FIGURE 2.7 - Definitions of times between overflows
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where

E{Tbpno} = Expected length of a busy period in which no

overflow occurs

E{Tidle} - Expected idle time between busy periods

E{Tbp o } = Expected time from the start of a busy period

until the first overflow, given that at

least one overflow occurs in that busy period

As discussed in Section 2.1.1, the off times on all

input channels of a gradual input queue are taken to be

exponentially distributed. Therefore if there are N input

channels with mean off times Xi (i=l,2,..N), then

N
E{Tidle} = [E i]l

Finding E{Tbpo} exactly is a difficult unsolved problem.

It is, however, straightforward to lower bound E{T bpo by

physical reasoning. If the gradual input queue has N inputs

and buffer size K, then the shortest time in which the buffer

can be filled is K/(N-1). Here, as elsewhere in this study,

it is assumed that the communication channels associated

with the queue all operate at a rate = 1.

Determining E{Tbpno} exactly is another difficult

problem. Again, however, a simple lower bound can be found

by physical reasoning. For a gradual input queue with a
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finite buffer, a busy period consists of at least one complete

message (on time on an input channel), whether or not there is

overflow during the busy period. Therefore if the mean length

of an on time on an input channel is 1 then

> -l
E{Tbpno} 

Now consider the terms Pr(bpverflow = i) By noting

that busy periods of a queue are independent, it follows that

Pr(bpoverflow = i) = (1l-P0) ilP i = 1,2,....

where P0 is the probability of buffer overflow in one busy

period. Combining this with the previous analysis of

E{T0lbPoverflow = i} gives

co .i-

E{T} = 7 [(i-l) [E{Tbpno}+E{Tidle}] +E{Tbpo}] (1-PO) P
i=l

- [EfT 1+E{T 1] (-)+E{T[E{ bpno idle P( bpo)+E{Tbp

N l-P
- (1 + ( A Xi) )(p ) + K/(N-1)'

i=l 0

The bound for E{TQ} still involves the probability P 0 which

is difficult to evaluate exactly. This difficulty can be
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overcome by applying the upper bound for P0 derived in

Section 2.1.1. Denote this upper bound by PU, Then PU P

and therefore

1-Pu< 1- P0

and

1 - U < 1- P

PU P 0

and therefore

N 1-P
{T (> +( Xi) ) + K/(N-1) (Eq.2.21). i=i

As an example of the use of this bound, consider a two

input gradual input queue with buffer size K. Let the mean

on and off times on both channels be VUi = 1 and X 3

respectively.

The first step in bounding E{TO} is to bound P0. The

upper bound for P0 developed in Section 2.1.1 is

-8*K< H*(-8 *)eP P0 U = -8*K
1-e

For this example 8* = 1.34 and H*(-8*) = 3. The expected
N

time E{Tidle} ( (.667)1 = 1.5 while the expected
idle > 1

time E{T U = 1. Therefore
bpno
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(1-Pu
E{T } 2.5 U +K

Table 2.3 gives the value of this bound for three different

buffer sizes.

TABLE 2.3

Lower Bound on E{TO} for a Two Input Gradual Input Queue

Input Mean on Time = 1

Input Mean off Time = 3

Buffer size Upper bound on Lower bound on
(1 unit = 1 Pr(overflow) E{TO}
mean input
on time)

5 3.82 x 10-3 6.56 x 102

10 4.85 x 10 6 5.15 x 105

15 6.18 x 10 9 4.05 x 108

A second bound for an expected time to buffer overflow

will now be developed. Let T 0C be the time between the end

of a busy period in which there was an overflow and the end

of the next busy period in which there is another overflow,

i.e. the time for one overflow cycle. Then T0 C represents

the length of a renewal event that contains exactly one busy

period in which there is buffer overflow. This is illustrated

in Figure 2.7b.
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Now consider a sequence of M busy periods of a gradual

input queue with a finite buffer. The expected number of

busy periods in which there is at least one overflow is then

M Pr(overflow) = M PO. Therefore as M-), the expected total

time in which the M busy periods occur is given by

E{Ttotal} = M P0 E{TOC}

or

E{ToC E{total (Eq.2.22)OC M P

Now in order to lower bound E{TOC, an upper bound, Pu,-for

P 0 can be used as before. The remaining problem is to lower

bound E{Ttota} for the finite buffer.

M busy cycles occur in the time E{Ttotal}. Each busy

cycle includes a busy period and an idle period. Therefore

E{Ttota1 } = M[E{Tbp} + E{Tidle}]

The time E{Tidle} is easy to find as discussed previously

and E{Tbp} can be lower bounded by V as was done for

E{Tbpno}. This gives the following lower bound
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-l -1
EOC{TC i=l (Eq.2.23)

P U(Eq.223)

Note that this is very similar to Equation 2.21.

The bound in Equation 2.23 can be improved by obtaining

a better lower bound for E{Ttotal}. This can be done bytotal

first considering the time required for M busy cycles of a

gradual input queue with an infinite buffer. The total time

will be

E{Ttotal infinite= M[E{Tbp infinite+E{Tidle

The time.E{Tidle} is the same as before and E{Tbp}infinite

is a standard result for an M/G/l queue that follows from

the analogy discussed in Section 2.1.1. Therefore

E{Tinfinite can be calculated exactly.total infinite

Now note that a gradual input queue with a finite

buffer has the same busy periods as a queue with an

infinite buffer, except when there are overflows. Therefore,

the expected total time for M busy cycles for the finite

buffer is

E{Ttotal E{Ttotal infinite M P0 E{Tlost}
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where E{Tlost} is the expected length by which busy periods

with overflows are shortened due to the overflows. Using

Equation 2.22 again gives

E{Tbp}infinite+E{Ti dle-P E{Tlost
E{Toc} = i0

> E{Tbp}infinite +E{Tidle - PU E{Tlo Et}

PU

Unfortunately, E{Tlost} cannot be easily upper bounded.

However, as PU-0, this is not important because then

PU E{Tlost} also +0. Setting PU E{Tlost} to zero therefore

gives accurate results if PU is small. Results obtained by

using Equations 2.23 and 2.24 for the two input example

considered previously in this section are given in Table 2.4.

TABLE 2.4

Lower Bounds on E{ToC I for a Two Input Gradual Input Queue

Input Mean on Time = 1

Input Mean off Time = 3

Buffer size Upper bound on Lower bound on Lower bound
(1 unit = 1 Pr(overflow) E{TO} on E{Toc}
mean inputC Oc
men time) (Eq.2.23) (Eq. 2.24)on time) withPE{T

with PuE{Tlost

=0

5 3.82 x 10-3 6.54 x 102 7.85 x 102

10 4.85 x 10-6 5.15 x 105 6.19 x 105

15 6.18 x 10 9 4.05 x 108 4.85 x 108
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2.2.4 Other overflow measures

It is of interest to obtain more detailed overflow

statistics than just the probability of at least one over-

flow event in a busy period. One statistic that is of

interest is the probability of another overflow in a busy

period, given that there has already been at least one in

that busy period. This probability can easily be bounded

if one considers a sample function of buffer content that

shows a buffer overflow. Such a sample function is depicted

in Figure 2.8. As shown, a buffer overflow event always

ends with all sources being off. A simple bound on the

probability of there being another overflow in the same

busy period is therefore given by

Pr(overflow again in overflow has) < l-Pr(no sources come
this busy period Ioccurred on in the first

K time units
-after previous
overflow)

-AK
l-e

N
where A = Z .

i-i

Clearly, if no sources come on in the first K time units

after the previous overflow, the buffer will empty and there

will not be another overflow in this busy period. This is

only an upper bound, however, because even if a source comes
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Buffer content

Overflow event

All inputs off at this time

-t

I ! II2=tl+(t3-t2)
1 2

._ 
.

0 ~ tl , t 2 t 3 Time

FIGURE 2.8 - Sample function of buffer content after an
overflow in a gradual input queue. Capacity
of all input channels and the output channel
is one unit of data/unit time.
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on in the first K time units, that inflow period need not

cause buffer overflow. This is a very simple bound that is

weak if the buffer size, K, is large. Therefore it is worth-

while to improve it.

The improvement of the upper bound for the probability

of another overflow also follows from Figure 2.8. Assume

that a source comes on at time tl. Now note that from tl

until t 2, the buffer content stays above K-x1. The behavior

of the buffer content above K-xl during this period is the

same as the behavior of the buffer content during a busy

period for a gradual input queue with buffer size xl. Since

xl = t1, it follows that

Pr(overflow again in overflow has)
this busy period I occurred

< 1 - Pr(no sources come on in the
first K time units after
previous overflow)

K

- Aee -tt Pr(overflow in buffer

t1=O busy period size=t dtl

l-e

- Ae-tl Pr(overflow in buffer)d
tl=0 busy period size=tll

(Eq.2.25)
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Now a lower bound for Pr(overflow), (such as Equation 2.19),

can be used in Equation 2.25 to complete the upper bound.

Equation 2.25 is an upper bound because after t2, there could

be the start of another inflow period during which the buffer

could overflow. The next inflow period after t2 can be

thought of as starting a busy period for a queue with buffer

size x 2. By recognizing this pattern, it is possible to

improve the bound given in Equation 2.25 by considering the

possibility of more than one inflow period occurring in the

remaining busy period. The above bounding idea will be used

in Chapter 4 to study flow control problems.

It is also of interest to obtain the distribution of

the quantity of data that is lost in an overflow event. This

can be done for two input gradual input queues by developing

a continuous time Markov chain that represents the overflow

event. For example, consider the queue shown in Figure 2.9a.

When an overflow even starts, both inputs must be on. The

buffer content then remains at its maximum level K until

both inputs are off for the first time. During the overflow

event, data is lost whenever both inputs are on. The Markov

chain in Figure 2.9b represents this overflow process. The

distribution of the amount of data lost is the distribution

of the time spent in state 1 of the chain before trapping

in state 4, given that the starting state is 1.
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On-times exponentially distributed.
-1

Mean = -1.
Off-times exponentially distributed.

Mean = X
Ch.l1

Output Channel

Ch.2 - ____ ,a

Buffer size K.

a. Two input example.

Once in
State 2,
Pr{go to 41=

State 2o /vl+X
/ Ch.1 on

Ch.2 of

FState 1of State 4Ch.1 on
Ch.1 ofCh.2 on Ch.2 o

ate
Ch.1 of
Ch.2 on

b. Markov chain representation of the overflow
event.

FIGURE 2.9 - Obtaining the distribution of the quantity of
data lost in an overflow event.
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Let W*(s) be the Laplace transform of the time spent in

state 1 during one visit to that state. Similarly, let L*(s)

be the transform of the distribution of the amount of data

lost in an overflow event. For this example W*(s)=2p/(s+2u).

By noting that whenever leaving state 1, state 4 will be

reached without returning to state 1 with probability

I/(lI+X), it can be seen that

L*(s) = W(s)i+l )(1 )
i=O

2u 2u1 ) )i
s+2p (-+X i=O s+2 ) ( +X

s(p+X)+2p2

Therefore the amount of data lost is exponentially distributed

with mean (U+X)/2p .2

Markov chain representations for overflow events of

gradual input queues with more than two inputs can also be

developed. Unfortunately, overflow events in these queues

can start with different numbers of inputs on and determination

of the probability of starting in each different input state

is a difficult unsolved problem. Without these starting

probabilities the Markov chain representations cannot be

used to determine the distribution of the amount of data

lost in an overflow event. Of course one can upper bound
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the loss by assuming the maximum number of inputs on, but

this may not be a very tight bound.

2.3 Comparison of the Gradual Input Queue and the M/M/1 Queue

The gradual input queue accounts for a finite input

rate and a finite number of sources while the M/M/1 queue does

not. This section discusses the single stage queueing effects

that this allows one to observe that cannot be seen using the

M/M/1 queue.

Perhaps the clearest picture of the differences between

the two queueing models can be obtained by examining the

expected maximum buffer content during a busy period, E[Vmax],

for queues with infinite buffers. Figure 2.10 shows E[Vmax]

for the M/M/1 queue and several gradual input queues. In

this figure, three differences between the two types of queues

can be observed. These are denoted by D1, D2, and D 3 on the

graph.

The first difference, D 1, is the difference between an

M/M/1 queue and a gradual input queue with an infinite number

of input channels. The difference D1 is equal to the mean

length of one message. This results from the difference

between instantaneous input (the M/M/1 queue) and gradual

input. This difference, as well as D2 and D3, is independent

of the on time distribution for the gradual input queue.
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1.4
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Gradual Input
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FIGURE 2.10 - E[v max] for several queues. All input channels

have an expected on time = 1.
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The differences D2 represent the changes in queueing

with different numbers of input channels. As the graph shows,

the fewer input channels there are, the less the queueing.

This is because, with a finite number of input channels,

when some of them are on, there is less remaining traffic

intensity. The remaining traffic intensity referred to here

is the rate at which additional inputs can come on and add to

the buffer. When there are a large number of channels,

having a few of them on does not decrease the remaining

traffic intensity much. However, if there are few inputs

to begin with, having some of them on can greatly reduce

this traffic intensity. Another way of thinking about this

phenomenon is that the finite rate channels terd to reduce

the burstiness of the data arrival process and the fewer

input channels there are, the more the burstiness is reduced.

This effect cannot be seen using the M/M/l queue.

Another phenomenon that can be seen with the gradual

input queue is the effect of unequal traffic on the input

channels. The greatest queueing occurs when all channels

carry the same amount of traffic. If they carry different

amounts of traffic, the queueing is reduced as shown by

difference D3. This is easy to understand when one remembers

that if all the traffic were on one input channel, there

would be no queueing at all. Again this effect cannot be

seen using the simpler M/M/1 queue.
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The effects discussed above can also be seen in other

performance measures. Figure 2.11 shows the effect of

different numbers of input channels on the upper bound for

Pr(overflow). The same upper bound is also given for the

M/M/1 queue as a reference. Again, the amount of queueing

increases with the number of input channels.

Figure 2.12 shows a graph of the expected delay per bit

for the M/M/1 queue and bounds on this delay for a two input

gradual input queue. The gradual input queue has less delay

than the M/M/1 queue. Note that at low utilizations the

gradual input queue has essentially no delay. This is because

in this region of operation, nearly all busy periods consist

of one input channel on period which flows through the queue

with no buffer buildup. The M/M/l queue with its instan-

taneous input, however, always has at least 0.5 message

lengths of expected delay per bit.

Finally, Figure 2.13 compares E[V max] for two input

gradual input queues with several different input capacities

with E[Vmax] for an M/M/1l queue. As the input capacity of

the two input queue is increased, the expected buffer

buildup also increases. In the limit of infinite input

capacities, the two input queue behaves the same as the

M/M/1 queue because then the effects due to finite input

rates no longer exist.
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FIGURE 2.11 - Bounds on Pr(overflow). Mean on time for input
channels=l. Queue utilization=0.5.
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FIGURE 2.12 - Expected Delay Per Bit. Both Queues have
-1

mean input on times, P 1.
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In summary, the three effects observable with a single

-gradual input queue are

1. Effect of noninstantaneous input.

2. Effect of a finite number of inputs.

3. Effect of inputs with different traffic loads.

These effects are especially interesting when the queue is

part of a network. The next chapter considers networks of

gradual input queues and it will be shown that in the network

context, even more details can be seen that are not apparent

with the M/M/1 queue.
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CHAPTER III - NETWORKS OF GRADUAL INPUT QUEUES

This chapter deals with the analysis of buffering

requirements in a network of gradual input queues. The

network of queues represents a message switched communication

network in which static routing is being used. The required

analysis cannot be done exactly, so the approximations used

are first presented. Several network examples are then

given. The examples illustrate the special insights into

network operation that can be obtained using the gradual

input model. Finally, the problem of optimizing the static

routing is briefly discussed.

3.1 Approximations for the Analysis of a General Network

3.1.1 Traffic streams in general networks

The gradual input queue representation of a message

switched communication network consists of several basic

elements. These include the network topology, the stochastic

description of the input traffic, the routing policy and any

other mechanisms such as flow control rules. Figure 3.1

illustrates these elements. The network topology consists

of directed communication channels which interconnect a set

of nodes. In this chapter, the communication capacities of

all channels will be assumed to be identical and normalized

to 1. Having identical channel capacities allows one to

apply the analysis for a single stage developed in Chapter 2.
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Node 2

r -- -Channel
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Traffic Buffer I
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a. A simple network of gradual input queues.
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Node 1

~Routing

Input to off off
Node 2
Buffer
(Channel 1)

b. Typical Switched traffic sequence.

FIGURE 3.1 - Traffic streams in a network of queues.
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The input traffic to the network also arrives on channels

of capacity 1. This traffic is in the form of alternating

renewal processes and the mean on time for all inputs will

-1
be taken to be equal to Sin=" . An on time on an input

channel represents one message and this message will be kept

intact as it passes through the network. The path that the

message takes is determined by the routing policy. The

routing policy considered here is a static policy which

routes fixed fractions of the traffic between any source and

destination over specific paths. This is implemented by

random sampling at the switching points with the sampling

probabilities being the fixed fractions in the routing policy.

Such a routing policy is the same as the one introduced by

Kleinrock [KLEIN 64] in his study using a network of M/M/1

queues. The final network element, flow control mechanisms,

will not be used in this chapter. It will be assumed that

the traffic is allowed to flow freely through the network

with no controls to reduce or distribute congestion. The

goal of this chapter is to analyze the buffering requirements

for a network such as described above, subject to a probability

of buffer overflow constraint.

In Chapter 2 it was pointed out that the analysis

currently available for gradual input queues requires that

the traffic on the input channels be independent alternating

renewal processes with exponentially distributed off times.
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This requirement can easily be met by assumption for input

channels which carry traffic directly from sources outside

the network. Inside the network, however, this requirement

cannot be met in general. First, traffic on 2 different

internal buffer input channels may be correlated because it

previously passed over a common channel. For this to happen,

however, the traffic must have passed through at least one

intermediate node since it was on a common channel. There-

fore some of the correlation will be reduced. Here it will

be assumed that all traffic streams are independent.t

The exponential off time requirement also cannot be met

in general. An example that illustrates this is the small

network shown in Figure 3.la. The traffic into the node 2

buffers does not consist of alternating renewal processes

with exponential off times. This is because of the routing

done by the switch. The off times in the traffic streams

after the switch are no longer exponential and independent

of all other on and off periods because some of the off

periods are caused by the removal of messages from the busy

period of the previous stage. This is illustrated in

Figure 3.lb.

The above difficulty relating to internal traffic

streams will be dealt with by using an approximation. All

traffic from external sources will be taken to have both on

tSee Section 1.2 for a discussion of how this relates to
the Kleinrock [KLEIN 64] independence assumption.
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and off times exponentially distributed. Then it will be

assumed that all traffic streams in the network are therefore

alternating renewal processes with exponential on and off

times. The use of this approximation is supported both by

two limiting cases discussed below in which the approximation

becomes exact, and by the simulation results given in

Section 3.1.4.

The first limit ng case in which traffic streams in a

general network approach alternating renewal processes with

exponentially distributed on and off times is when the

utilization of the output channels of all buffer stages is

near zero. This can be shown by first considering a buffer

stage at which none of the input traffic has been switched

(sampled). Since the output channel utilization is near

zero, all busy periods on that channel will, with high

probability, involve only one message. Therefore, with

high probability, the traffic streams on the output channel

will consist of an alternating renewal process of the form

shown in Figure 3.2a. The exponential off times in this

stream follow from the assumption that none of the input

streams to this stage were switched.

Now note that when a stream of the form shown in Figure

3.2a is sampled, the resulting traffic stream again has on

periods that consist of only one message. Therefore, if the

length of a message is exponentially distributed, the
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Busy period consists of one message.

A*(s)=X/(X+s) A*(s)

z 1-z z

a. Unsampled message stream.

A*(s) = zA/(zX+s)
sampled

b. Sampled message stream.

FIGURE 3.2 - Traffic streams in a network with utilization
near zero.
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distribution of the on times of the sampled stream will

.approach an exponential when the utilization of all channels

is near zero. The remaining problem is to determine the

distribution of the off time periods in the sampled stream.

This can be done as follows. Let B*(s)=uMu+s) be the Laplace

transform of the length of a single message and A*(s)=X/(X+s)

be the Laplace transform of the length of an off-time in the

unsampled stream. The traffic stream is sampled at random

with a probability z of keeping a message in the stream of

interest. Therefore the Laplace transform of the off-time

distribution for the sampled stream is given by

A*(s) = Z z(1-z)n -l (A*(s))n (B*(s))nl
sampled n=l

= E z(1-z) n - (X/(X+s)) (u/(u+s))n
n=l

( zP/G(+s)) )=lz(X/-X~ ) - s-min{-X,-u}1- (l-z) (X/(X+s) )(u/(u+s) in

(Eq.3.1)

The condition that the utilization factor on the output

channel be near zero implies that X 1 >> u 1. Therefore

Equation 3.1 can be approximated by

A*(s) (z)(X/(+s))
sampled

_ ZA+s (Eq.3.2)
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This states that the distribution of off-times is approximate-

ly exponential at utilizations near zero. Therefore, pro-

ceeding step by step through a network, starting with stages

whose inputs are not switched, one can show that at each

stage the distribution of off times approaches an exponential

distribution.

The second case that gives exponential off times is

when the utilization factor of all stages in the network is

near one. In this case, the output traffic streams are

dominated by long busy periods consisting of many individual

messages. This is shown in Figure 3.3a. The sampled stream

can therefore be thought of as being derived from one

continuous succession of messages with a length distribution

whose Laplace transform is again B*(s)=u/(u+s). Again assume

that a message is kept in the sampled stream with probability

z. Then the Laplace transform of the off-time distribution

for the sampled stream is

A*(s) = E z(l-z)n -l (B*(s))n
sampled n=l

zu
zu+s

Similarly, the Laplace transform of the on-time distribution

for the sampled stream is
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Single message B*(s) = u/(u+s)

1-z z z 1-z 1-z 1-z z

a. Unsampled message stream

B*(s) (l-z)u/((l-z)u+s)
sampled A(s) zu/(zu+s)

sampled

b. Sampled message stream

FIGURE 3.3 - Traffic streams in a network with utilization
near one.
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w

B*(s) = Z (l-z)zn-l(B*(s))n
n=l

(1-z)u
(l-z) u+s

Therefore, both the on and off times approach an exponential

distribution in this case as well.

In summary, these two limiting cases support the use of

the approximation that all traffic streams in a network are

alternating renewal processes with exponential on and off

times when the source traffic streams are of this type. This

approximation will be used throughout this chapter. Now that

the basic nature of the traffic streams has been specified,

the mean on and off times associated with them must be

calculated. The next section addresses the problem of

determining the mean on time of a switched (sampled) message

stream. The following section then shows how to use this

result to find all mean traffic.parameters in a network of

gradual input queues.

3.1.2 Expected on-time for a switched busy period

The one system element not analyzed in'the previous

chapter is the switch. In order to be able to analyze a

general network, one must be able to determine the expected

on-time of the busy periods at the output of the switch. The

approach taken to this problem is first to calculate the
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expected number of messages in a switched busy period. Let

N s denote the number of messages in such a switched busy

period. Then the expected time duration of the busy period

will be approximated by

E{Ns }
E{Time duration = E{N } S. = (Eq.3.3)
of switched s in
busy period} 

-1
Where Bin = i is the expected length of one message. This

relationship is only approximate because the distributions

for the number of messages and the message lengths in a busy

period are not independent.

First some analysis of an unswitched busy period will be

done. Let E{Nus I be the expected number of messages in an

unswitched busy period. Now consider picking one message at

random from such a stream of messages. The probability that

the message chosen is the last one in a busy period, Pr(last

message)us, is given by

1
Pr(Last message) = Z - Pr(length of busy period

us n=l n from which message is
-chosen = n)

1 n Pr(length of busy period=n)

n=l n E{Nus}

E1C (Eq.3.4)
us
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The expression for Pr(length of busy period from which message

is chosen = n) follows from the fact that the message is

being chosen by random incidence [DRAKE 67].

Equation 3.4 also applies to a switched message stream,

i.e.,

Pr(last message) s = ENs (Eq.3.5)

Where Pr(last message) s is again the probability that a

message chosen by random incidence is the last one in a busy

period. The switched stream is of course derived from an

unswitched one and therefore

Pr(last message)s = Pr(last message)us

+ (1-Pr(last message) )Pr(message
following
chosen one
is not in
switched
stream of
interest)

The above states that the last message in a busy period in

a switched busy period was either the last message in the

unswitched busy period or it became the last message because

the message immediately behind it was switched to another

stream. Let z be the probability that a message is switched

into the stream of interest. Then using Equations 3.4 and

3.5 in the above relation gives
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E{N} = E{Nus} + (l-E{N us} ) (l-z)

= z E{N }-1 + 1 - zus

or

iUzE{N I = z}-E{N 1 + (l-z) (Eq.3.6)s us

Recalling Equation 3.3, it can be seen that there is a linear

relationship between the inverses of the expected time

durations of the busy periods at the input and output of a

switch. This result will be useful in the next section

where the mean traffic parameters in a general network are

determined.

3.1.3 Determining the mean traffic Parameters in a general

network

A general network of queues consists of N nodes

(indexed i=1,2...N). Figure 3.4 gives a detailed view of

one of these nodes. As shown, each node has one or more

directed output communication channels (indexed j=1,2...jmaxi).

A buffer is associated with each output channel and it is fed.

by one or more internal node channels (indexed k=1,2..kmaxij).

The internal channels either carry traffic that has been

switched from network channels or traffic from source channels

outside the network.

98



Node i

r ..
I I

To this node IOutput

iChannel
External (i Buffer
Source I I(i,l)

i,1,2) .

l> Internal 
2, Channels loutput

From - Channel
another I
node Switc (i,2)

To this node
I*~~~~~~~~ ,~~~~~~I

FIGURE 3.4 - Communication channel labeling conventions
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It is possible to uniquely identify each communication

channel in the network by using the labeling convention

given above. Output channels are identified by a number

pair (i,j) while internal channels are identified by three

numbers (i,j,k).- The mean on and off times on each of these

types of channels will be denoted by Si j
S i ,j k' i and

Iij k respectively. Similarly, the utilizations of internal

and output channels will be u i k and u i respectively.

These utilizations are defined as follows.

Ui j ,k k j (Eq.3.7)
i,j,k'

kmax.

u j = kZ= Ui,j,k - 1 (Eq.3.8)

Here, as elsewhere, it is implicitly assumed that the

capacities of an internal and an output channel are the same.

Equation 3.7 states that the utilization of a channel is the

fraction of time that it is on. Equation 3.8 states that the

utilization of an output channel equals the sum of the

utilizations of the associated internal channels..

The problem now is to solve for the mean parameters B

and X everywhere in the network. This can be done by first

solving for the utilizations u and then for the mean on times

B. The mean off times can then be found using equations

like Equation 3.7.
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The utilizations in a general network of gradual input

.queues can be found by solving a set of linear equations. In

this set, the utilizations for source channels are assumed to

be given. The utilizations for output channels are given by

linear equations of the form of Equation 3.8. Finally, the

utilization of a switched internal channel equals the utiliza-

tion of the souLrce output channel times the fraction of

traffic switched to that internal channel. If Zm ij k is

the fraction of traffic.switched from output channel (m,i) to

internal channel (i,j,k), then

Uijk= (u .)(zm,i,j,k) (Eq.3.9)

These individual utilizations can be combined into one matrix

equation.

Uint int

_ . ._ ._. = _ _ _ (Eq.3.10)
11.. .10.. .O

~I 0 Uo U0... of 0 i Uout out
0...0l...l_

In this equation, Z is the routing matrix of the fractions

Zm,i,j,k while Uin t and Uout are vectors of internal and

output channel utilizations respectively.
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Equation 3.10 may or may not have a solution. Even if

there is a solution, the resulting utilizations may be larger

than one. These two points are illustrated in Figure 3.5.

Figure 3.5a shows a network for which Equation 3.10 has no

solution. The problem is that an infinite amount of traffic

accumulates inside the network. The utilization equation for

the network in Figure 3.5b has a solution, but the utilization

U 2 is larger than one. In this case Equation 3.8 is being

used in a region where ui j > 1. Equation 3.8 is not valid

in this region and furthermore utilizations greater than one

are physically not possible. By physical reasoning, one can

see that in this case there would also be an infinite

accumulation of traffic inside the network. In this study

only networks which have a steady state distribution of

buffer contents are of interest and this occurs only if

Equation 3.10 has a solution with all utilizations < 1.

The remaining problem now is to solve for the mean on

times a everywhere in the network. This is simplified by

solving for the reciprocals ~ = B- 1 because the a's obey a

set of linear equations. As with the utilizations, there is

one type of equation that relates a's on the two sides of a

switch and one that relates the 6's on the two sides of a

buffer.

The relationship between the 5's on both sides of a

switch follows directly from Section 3.1.2. Recall that
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external B. U2+U3=U
source 3

Therefore uu4-u 2

Therefore no solution

4 ~~u2>0
3uffer external

source

a. A case in which Eq. 3.10 has no solution.

switch ,lu2 leaves

external 2 network
source ! Buffer

·9u
2

u+. 9u2=u2

Ul =.lu

if ul=.2 u2=2>1

b. A case in which the utilization Eq. 3.10
has a solution, but not all utilizations
are < 1

FIGURE 3.5 - Networks for which Eq. 3.10 does not give
physically meaningful results.
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Bus "= ~- E{Nus} (Eq.3.11)

and

as V p E{Ns} (Eq.3.12)

where P is the expected length of one message and E{N} is

the expected number of messages in a busy period. The

subscripts us and s refer to unswitched (input to the switch)

and switched (output from the switch) streams respectively.

Taking the inverses of Equations 3.11 and 3.12, one can

substitute directly into Equation 3.6 and obtain the result

that

z B + U(1-z)

Using the indexing convention for communication channels, this

becomes

8i,j,k Sm,+i (lzm,i,j,k) ( m, (Eq.3.13)

Now the linear relationship for the B's on both sides of

a buffer will be found. First recall the relationship for

output channel utilization

Ui, i
1i,j04
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This can be rearranged to give

Bij (1 u.i ,j 1]

or

=ij A1i,( u )(Eq.3.14)
ij

A similar relationship exists for the input channels of the

buffer.

1-u.
X r(-ijk k(u J k) (Eq.3.15)

Equations 3.14 and 3.15 can be tied together by recognizing

that for a gradual input queue

kmax.
Xi~ -zl x.~ k A - (Eq.3.16)

k=l

Equation 3.16 states that the rate at which off periods on

the output channel end, Aijj, is equal to the sum of the

rates at which off periods end on the input channels. This

is true since the off periods on the input channels are

assumed to be exponentially distributed. Combining Equations

3.14, 3.15 and 3.16, one obtains the linear relationship
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1-u. . kmax. U.

k-l , I k ) (Eq.3.17)j u k=l 8ijk l-uijk

Since the utilizations ui j and uij k have previously been

determined, the 6's can now be obtained.

Equations 3.13 and 3.17 can also be written as one

matrix equation as follows.

JZ 1-Zm, ijrk --

|U l 0 -c aout 0 out

(Eq.3.18)

The matrix U is the matrix of coefficients implied by

Equation 3.17. The matrix Z is again the routing matrix

while Sint and Bout are vectors of reciprocal expected on

times for internal and output channels respectively.

The remaining question is how to solve this set of

equations. The author has found that Picard iteration is a

particularly convenient way. This follows from the fact that

Equation 3.18 is of the form

Q(0) = B (Eq.3.19)
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If certain requirements are met, this can be solved by an

iteration scheme (Picard iteration) of the form

Q(Wn ) =n+ 1 n = 1,2,....

From the contraction mapping theorem [DESOER 75] it is known

that this iteration scheme will converge to the unique

solution of Equation 3.19 if

IQ(81) - Q(82) I1 < CI11 - 8211

where c < 1 and B1 and 82 are any two points.

Examining Equation 3.18 it can be seen that this will be true

0 Z
if the largest eigenvalue of the matrix is < 1.

U~ 0

This matrix contains only positive elements. Therefore if

the sum of the elements in each row is < 1, the largest

eigenvalue will also be < l.t This will be the case if

there is switching and combining in buffers at each node of

the network. If there is switching, each row of the matrix

Z will have a sum < 1. If there is combining in each buffer,

.then there will be at least two nonzero pijk for each

buffer. Therefore the row sums of U. will bec

tSee the Appendix on positive matrices in Karlin and
Taylor [KARL 75].
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_-u. kmax U. * - U 
(- i') Z i, - ( ,. ) < 1
Ui F j k=1 1-u ijj~k mini~j k=l i,j,k)

Note that if there is a switch for which z=l or a buffer in

which no combining is occurring, the input and output streams

for that network element will be the same. Therefore

variables can be eliminated so that the largest eigenvalue

of the matrix in Equation 3.18 will be < 1. Picard iteration

can therefore always be used to find the unique solution.

In practice, the Picard iteration works well using an initial

guess of all a's = Bin = 1.

3.1.4 Simulation verification

This section presents simulation results that support

the use of the approximation that all traffic streams in a

general network of gradual input queues are alternating

renewal processes with exponentially distributed on and off

times. Section 3.1.1 showed that this approximation becomes

exact when all channel utilizations are near zero or one.

The purpose of the simulation is to show that the approxima-

tion is also reasonable for other utilizations.

The simulation was done for a queueing system as shown

in Figure 3.6. The system consists of a gradual input queue

followed by a routing switch. The inputs to the system are

alternating renewal processes with exponentially distributed

on and off times. The simulation then obtained the
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Busy periods of M/M/l queue
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off times system

: Gradual I l-z 

Input /
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Switch (Statistics
of this
traffic
.stream are
obtained)

FIGURE 3.6 - Gradual input queueing system studied by
simulation.
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statistics of the on and off times associated with the

'traffic after the switch. The simulation performed was a

Monti Carlo computer simulation written in Fortran. Random

number generators from the International Mathematics and

Statistics Library were used to generate sample input on and

off times as well as the routing decisions (random sampling)

that occurs in the switch.

The results of two simulation cases are summarized in

Figures 3.7 to 3.10. In both cases the mean message length

Bin is one and the fraction of traffic kept in the steam of

interest, z, is 0.5. In Case 1 the utilization of the output

channel of the gradual input queue is 0.5 while in Case 2 it

is 0.8. 'The results in Figures 3.7 and 3.9 show that the

approximations used in this chapter are good for calculating

the mean on and off times for the switched traffic stream.

Figures 3.8 and 3.10 give histograms of the sample lengths of

the switched on and off times. Also shown are the theoretical

histograms for the exponential distributions assumed in the

approximations. These results indicate that the exponential

distribution assumptions are indeed reasonable for calculating

traffic stream parameters in a general network. If the

requirement that buffer input traffic streams are independent

is also reasonably met, then, using these traffic parameters

with the gradual input queue will give good results.
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Expected on time
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Number of busy periods

a. Expected on time for a switched busy period.
Value calculated using approximations=1.33.

Expected off time

2.0

- I I I I - I l
0 250 500 750 1000 1250 1500

Number of busy periods

b. Expected off time for a switched traffic
stream. Value calculated-using
approxinations=4.0.

FIGURE 3.7 - Simulation results Case 1. See text for details.
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FIGURE 3.8 - Simulation results for Case 1. See text fo details
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Expected on time
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a. Expected on time for a switched busy period.
Value calculated using approximations=1.67.

Expected off time

4.0
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Number of busy periods

b. Expected off time for a switched traffic
stream. Value calculated using approxi-
mations=2.50.

FIGURE 3.9 - Simulation Results Case 2. See text for details.
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FIGURE 3.10 - Simulation results for Case 2.. See text for details
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3.2 Examples of General Networks

The examples in this section illustrate the use of the

gradual input queue to study the buffering requirements of a

message switched network. The analysis used is that presented

in Section 3.1. Where Pr(overflow) is calculated, the upper

bound given by Equation 2.18 is used. The results are com-

pared to those obtained when using the network of M/M/1

queues model.

The first three types of examples that will be considered

are one way loop networks, a seven node network with four

Hamiltonian circuits and sections of an ARPA type network.

These three types of examples are illustrated in Figures 3.11

to 3.13. For each of these networks it will be assumed that

all communication channels have a capacity of one. There is

one source (such as a host computer) at each node and this

source can send data into the network gradually at rate one.

The input traffic from these sources has a mean on time S. =1.in

It will be assumed that when traffic reaches its destination

node, it can be delivered outside the network without

requiring further buffering.

The one way loop examples are completely symmetric.

Each input is the same and each node sends an equal amount of

traffic to each of the other nodes. To examine the effects

of loop size, 3,5 and 10 node loops are considered. Table 3.2

presents the important network parameters for the examples.

115



II<~nput 1 1111z Input 2

Input 5
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FIGURE 3.11 - A five node one-way loop network

116



Innput 2

Input 6

Input 5 Input 4

FIGURE 3.12 - A seven node network with four Hamiltonian
circuits
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FIGURE 3.13 - A 26 node ARPA type network. Each arc

represents two directed communication channels.
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Table 3.2

Parameters for the Loop Network Examples

For all cases 6 1 = Bin 1

Number of nodes 3 5 10

Routing parameter z 0.333 0.600 0.800

Case 1

Loop utilization = 0.2

-1
111 6.5 11.5 24.0111

8112 1.038 1.105 1.171~12
=1 -l 14.552 8.105 6.150112

Case 2

Loop utilization = 0.6

11 1.5 3.167 7.333'111

0112 1.159 1.472 1.862

-1 11l2 4.643 2.618 2.017X112

Case 3

Loop utilization = 0.9

-1
11 0.667 1.778 4.556111

Bl 1~361 2.107 3.514

3.184 1.795 1.369
112
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The cases presented give network operation at three different

utilizations, 0.2, 0.6 and 0.9. A graph of the Pr(overflow)

vs. buffer size for the utilization = 0.6 case is given in

Figure 3.14.

Two effects occur in these loops. First, as loop size

increases, the length of busy periods inside the loop, B112'

increase. This tends to increase queueing. Second, as loop

size increases, a larger fraction of the traffic into each

node arrives over one channel (the internal loop channel).

This tends to decrease queueing. Figure 3.14 shows that the

first effect dominates in going from a 3 to 5 node loop while

the second effect dominates in going from a 5 to 10 node loop.

Note that these effects cannot be observed using the

M/M/1 model. The M/M/l model always indicates the same

amount of queueing for a given utilization, no matter what

the size of the loop. The M/M/1 curve in Figure 3.14 there-

fore applies to any size loop operating at a utilization of

0.6.

As a second example, the seven node network in Figure

3.12 will be used to show the dramatic effects of having

gradual inputs for the sources. The traffic in this network

will also be assumed to be symmetrical. The routing for the

traffic is illustrated in Figure 3.15. Note that each channel

in the perimeter Hamiltonian circuits carries traffic from

only one source. Since that source provides a gradual input
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Pr (overflow)
1.0

GIQ N=3

0.1i - M/M/1

1x10-2 QI Q N=5

GIQ N=10

lX10- 3 -

2 4 8 102 4 Buffer Size 8 10

FIGURE 3.14 - Pr(overflow) for loop networks. Case 2 in
Table 3.2.
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FIGURE 3.15 - Routing in the seven node network
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as the communication channel capacity, there is no queueing

on these channels! The only channels which have queueing are

the internal Hamiltonian circuits. Each of these are gradual

input queues with two inputs. Figure 3.16 shows the

Pr(overflow) vs. buffer size for these channels if their

utilization is 0.2. This corresponds to each network having

a utilization of 0.6. Figure 3.16 also shows the curve for

the M/M/1 model. Using the M/M/1 model, this curve would

apply to all channels in the network since they all have a

utilization of 0.2.

In these first two examples, the sources were considered

to be host computers. They could also have been the outputs

of concentrators which have gathered traffic from many

terminals. The concentrator would have to be buffered, but

as shown by the examples, if the concentrator gradually feeds

the network, the network buffering may not need to be too

large. The idea here is to use most of the total buffering

in the system near the sources. This concept will be

explored further in Chapter 4.

A question to be asked now is whether or not the use of

the gradual input model gives widely different results than

the M/M/l model for networks that have actually been imple-

mented. Figure 3.13 shows the a 26 node version of the ARPA

network. A major topological feature of the network is that

it contains long chains of nodes. It is in these chains that

the gradual input model differs most from the M/M/1 model.
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Pr(overflow)
1. -

0.1
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Applies to all channels
(Utilization = 0.2)

GIQ
N=2
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only to
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Hamiltonian
Circuits

lx10

2 4 6 8 10
Buffer Size

FIGURE 3.16 - Pr(overflow) for the seven node network.
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Figure 3.17 shows a situation in which the two models

give different results. The gradual input queue can show

the effect of the traffic on the two input channels to node

2 being unequal while the M/M/1 model cannot. Figure 3.18

gives a graph of Pr(overflow) vs. buffer size that illustrates

this effect. This situation is one in which the independence

assumptiont used in the network of M/M/l queues model can

greatly decrease the accuracy of the model. The independence

assumption negates the effect of having most of the traffic at

a node arrive over one channel.

In the ARPA network chains, one can also observe the

buildup of busy period length as traffic progresses along

the chain. Figure 3.17b shows one such chain where the

utilization of output channels 1, 2 and 3 is the same, but

the expected busy period length is different for each stage.

The length increases as one progresses along the chain.

Figure 3.19 gives the Pr(overflow) vs. buffer size for this

situation.

The chains in the ARPA network are where the greatest

differences can be seen using the gradual input model because

here the buffers have few inputs. As was shown in Chapter 2,

gradual input buffers with many inputs approach the behavior

of an M/M/l queue.

tSee the summary of previous buffering studies in Chapter 1.
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U3

U

a. A two node chain used to study the
effects of ul f u 2.

B=1 UtO.25 5=l 1U=0.25 S=1 U=0.25

Ch. 1 /. Chh.2 Ch.3

Do =1 I_,/ 6=1.5 =1.636 _
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b. A long chain showing the buildup of
busy period length.

FIGURE 3.17 - Queueing in chains of gradual input queues.
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Pr (overflow)

1.0.

0.1

M/M/1 Utilization = 0.5

GIQ N=2
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GIQ N=2
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u2= .
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Buffer Size

FIGURE 3.18 - Pr(overflow) for Figure 3.17a.
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Pr (overflow)
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lxlO -- Node 4
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FIGURE 3.19 - Pr(overflow) for chain in Figure 3.17b.

128



A final effect that can be seen using the gradual input

model is that if there are many inputs to a network, the

traffic tends to get caught up at the input nodes and only

slowly filter through the internal network nodes. Figure

3.20 shows a simple situation that illustrates this. Eight

sources are being concentrated onto a single output channel.

If this is done in one stage, this stage will have more

queueing than the second stage of a two stage network.

Figure 3.21 gives the expected maximum buffer contents that

verify this. Again, this effect cannot be seen using the

M/M/1 model.

3.3 The Static Routing Problem

The determination of the routing policy used in a

message switched communication network is an important

problem. Much work has been done in the area of static

routing policies that seek to minimize mean delay through

a network. This -section briefly discusses some aspects of

such a static routing policy for a network of gradual input

queues. The problem is a complex one and the optimal solution

of it is beyond the scope of this thesis.

Throughout this chapter the gradual input model has

been compared to a network of M/M/1 queues as used by

Kleinrock [KLEIN 64]. This will again be done here. The

optimization problem of static routing (using mean delay/
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8 Identical
Gradual . Node A
Inputs

a. One stage concentration

4 Identical
Inputs

Node B

in Node D 

4 Identical
Inputs Node C

b. Two stage concentration

FIGURE 3.20 - Example showing that traffic is caught up
at the input nodes.
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FIGURE 3.21 - Expected maximum buffer content in a busy
period for the concentration structures in
Figure 3.20
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message as the criterion) has been solved by Cantor and

Gerla [CANT 74]. They have shown that the problem can be

formulated as a multicommodity flow problem. Their problem

formulation is:

Given: A network of N nodes and NA directed

channels with finite capacities and an

N X N matrix R=[rij] whose entries are

the required mean flows between nodes

i and j.

Minimize: The mean delay/message through the network.

Constraints: 1. The requirements r.. are met.

2. The flow through each channel is less

than or equal to its capacity.

This problem is solved by a mathematical programming

algorithm which finds the mean flows through the network

that produce minimal delay. The algorithm relies on the

fact that the region of feasible flows (flows which satisfy

the constraints) -is a convex polyhedron and that the objective

function is a convex function of the flows. From the optimal

mean flows, a routing policy is determined. The mean flow

solution does not uniquely specify a routing policy, however

all policys giving the same mean flow have the same mean

delay in the M/M/1 model. This correspondence between mean

flows and mean delay is central in the Cantor and Gerla

analysis. This relationship does not hold for networks of

gradual input queues as will be shown below.
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A minimum mean delay/bit static routing problem for a

network of gradual input queues has basically the same

statement as that given by Cantor and Gerla. The only

difference in the statement is the objective function. Since

the exact expression for the mean delay/bit for a gradual

input queue has not been determined, either the upper or

lower bound developed in Section 2.1.3 must be used. Let

E[d i] be the chosen Sound on the expected delay per bit for

the ith channel, u i be the throughput through that channel

and ut be-the total throughput for the network. Then the

objective function for expected delay/bit would be

1 NA
E[d] - u u i E[di ]

t i=l1

As an illustration of the routing problem for gradual

input queues, consider the simple network shown in Figure

3.22. In this example there are two inputs with traffic

for the same destination. Since there are no other inputs

in this example, it is easy to see that the minimum delay/

bit routing solution is to send all the traffic from one

source over channels 1 and 2 and send all of the 'traffic

from the other source over channel 3. This solution produces

no waiting lines at any of the channel buffers and therefore

has minimum delay. Any other static routing policy would
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Routing decision to be made.

FIGURE 3.22 - A simple example of the static routing problem.
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produce a waiting line in the buffers for channels 1 and 3.

Some of these other policies would produce the same mean

flows as the optimal policy, but would have a different

delay.

Because the mean delay/bit is not specified by mean

flows alone, the routing optimization must be done by

considering the routing matrix Z directly. The question to

be answered now is whether or not the resulting optimization

problem involves a convex objective function over a convex

region so that mathematical programming techniques can be

applied to find the optimal solution.

It is relatively straightforward to answer the question

about the feasible region. Let Z1 and Z2 be any two routing

matrices that are feasible. Then Z3 = aZ1 + (l-a)Z 2, O-a-l,

is also feasible. This is because Z sends a fraction a of

all traffic according to policy Z1 and a fraction (l-a)

according to'policy Z2. Clearly-this meets both the flow

requirements between node pairs and the capacity constraint.

Therefore, since Z3 is feasible, the feasible region for the

overall problem is convex.

Unfortunately, the objective function E[d] is not convex.

The example in Figure 3.22 points this out. Clearly in this

case there are two solutions which give no queueing and

therefore are optimal. Since the objective function is not

convex, applying mathematical programming techniques to the

problem does not guarantee that thle solution find is globally
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optimum. It should be noted, however, that the two solutions

in the small example are both globally optimum and in some

sense equivalent. If the objective function is such that

there are no locally optimum points that are not globally

optimum, finding one of them using mathematical programming

would be very useful.

It should also be noted that if dynamic routing were

used in this example, then the objective function would be

convex. This follows from the fact that any convex combina-

tion of the above two mean flow solutions could be used

while achieving no queueing at node 1. Dynamic strategies

can theoretically give superior performance in many network

situations, but there analysis is difficult and is beyond

the scope of this thesis. Dynamic routing strategies remain

an area for future research.
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CHAPTER IV - FLOW CONTROL IN TREE CONCENTRATION STRUCTURES

The analysis of message switched communication networks

presented thus far has not considered the use of flow control

rules. The purpose of this chapter is to study flow control

in tree concentration structures. The flow control studied

is used to prevent buffer overflow in the interior of the

tree structure, i.e. any overflows will be at the nodes to

which sources are directly connected.

The flow control rules that can be used in a system

depend to a certain extent on the buffers available in the

system. Therefore the problem of buffer allocation is

considered in the first section of this chapter. It is shown

that, in certain cases, placing all buffers at source nodes

in the tree allows the system to operate with the smallest

probability of buffer overflow. The flow control policy

that minimizes the probability of buffer overflow for these

cases is then discussed. The section ends with the presenta-

tion of an example which shows that it is not always optimal

to place all buffers at the source nodes.

The second section of this chapter deals with the

approximate analysis of a concentration tree in which flow

control is being used. It is shown that the tree can be

analyzed one stage at a time, the coupling of the dynamics
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between stages being approximately represented. The

approximations made are supported by a theorem for first

passage times in Markov Chains and by simulation.

4.1 Determining the Optimum Buffer Allocation in a Tree

Concentration Structure

4.1.1 The optimality of buffering only at source nodes

The problem of determining the buffer allocation in a

tree concentration structure usina flow control that minimizes

the probability of buffer overflow is best studied by

considering specific examples. As a first example, the two

level tree shown in Figure 4.1 will be studied. The tree

structure considered here is symmetric so that the stage 1

nodes are both assumed to have a buffer size x and stage 2

is assumed to have a buffer size y. The output channel of

stage 2 has capacity C o = 1 and the channels between the two

stages are assumed to have capacities less than or equal to

CO . This restriction on the channel capacities between the

stages is important in determining the optimal buffer alloca-

tion in the tree structure.

The tree structure in Figure 4.1 is to be operated

using a flow control policy that does not allow traffic to

be lost (due to buffer overflow) at stage 2. This can

obviously be done by restricting the flow from the stage 1

nodes whenever the buffer at stage 2 is full. Therefore all
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buffer size x

FIGURE 4.1 - Two level tree example.
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overflows will occur at stage 1. It will be assumed that

there is an instantaneous controller that observes the state

of the entire tree and carries out the flow control policy.

For the class of all such flow control policies, the problem

now is to find the buffer allocation and flow control that

minimizes the probability of buffer overflow for the system,

subject to the constraint that 2x + y - v, i.e. that the total

buffer size is - v. In the discussion that follows it will

be shown that the buffer allocation is x = v/2; y = 0 is the

desired allocation. This allocation can be determined without

first specifing the flow control policy exactly.

Before proceeding with the main result, it is necessary

to make an observation about the service discipline at stage

2. Note that as long as the service discipline at stage 2 is

work conserving (data is sent over the output channel

whenever possible) the choice of the exact service discipline

there cannot effect the probability of buffer overflow at the

input stage to the system. Therefore, for convenience, the

service discipline at stage 2 that will be used is the one

which always keeps the number of bits from streams A and B

(the two input nodes) that are at stage 2 equal. It is

possible to do this in a work conserving manner without

effecting the stage 1 nodes. To see that this is true, note

that the contents of the stage 2 buffer increase only when

traffic from both streams A and B is entering the buffer.
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During times of buffer increase it is therefore possible to

keep the number of bits from streams A and B equal at stage

2 independent of the rule used to determine when or how much

traffic is sent from the source nodes. Clearly, it is also

possible to do this when the buffer contents of stage 2 are

remaining constant or decreasing. This service discipline

at stage 2 therefore places no restrictions on the operation

of the stage 1 nodes that could effect the probability of

buffer overflow there.

The following can now be shown:

Let t = 0 be the start of a busy period for a tree

structure as shown in Figure 4.1. Also let R (t) and R (t),

t O0, be the empty buffer available at nodes A and B

respectively, given that there have been no overflows between

time 0 and t. Then, using a flow control rule that allows

no overflows at stage 2, the buffer allocation that maximizes

both RA(t) and RB(t) for all t > 0 and 2x + y - v is x = v/2;

y= 0.

The proof of this will be done by comparing the two

systems shown in Figure 4.2. System 1 is the proposed optimal

system while System 2 is any other symmetric system. System

2 will be assumed to be operating using an optimal flow

control policy for its particular buffer configuration.

System 1 will be assumed to be operating in a way such that

the total buffer contents in it are the same as in System 2.
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Stram B. ........
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FIGURE 4,2 - Two possible buffer allocations
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This can be done from t = 0 until the first buffer overflow

in either system, which is the time period of interest here.

rFp this time period it will be shown that

2R(t R2 (t) and 2 (t) t t O

where the superscripts refer to System 1 and System 2

respectively,

At t = O it is assumed that both systems are empty.

TherefoQre it is obvious that

(0) : (0) - v/2

while

~ (9) -,Rg(O) - x

But singe 2x + y - V and y > 0, it follows that x < v/2 and

therefore

9. 2 an 2
( O) > i (0) and 4 (0) > R B(O)

tThis will become apparent later in the proof.
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For a time t > 0, let aT(t) and bT(t) be the number of

bits from traffic streams A and B that are in the system.

Similarly, let a 2 (t) and b 2 (t) be the number of bits at the

second stage of System 2. From the use of the service

discipline at stage 2 that keeps the number of bits from

streams A and B equal, it follows that

a 2 (t) b(t) - y/2

Note that this implies that aT(t) and bT(t) for System 2 are

both < v/2. Therefore System 1 can be operated in such a way

that, before the first overflow, it always has the same aT(t)

and bT(t) as System 2.

In order to compare System 1 and System 2 for t > 0, it

is necessary to determine exactly where the stored traffic

bits are located. Assume that there are aT(t) and bT(t) bits

in both systems. Then for System 1 it is easy to see that

this traffic must be stored as shown in Figure 4.3. From

this storage configuration it follows that

RA(t) = v/2 - aT(t) t > 0

Ri (te) = v/2 - bT (t) t > O
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FIGURE 4,3 - Storage of traffic in System 1
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For System 2 the location of the stored bits is not

known exactly, However, it can be shown that even if they

are in the best possible locations, System 2 will not perform

better than System 1. There are two situations that need to

be examined for System 2.

The first case to be considered is when both aT(t) and

bT(t) are - y/2, Then the best possible arrangement of bits

in System 2 is as shown in Figure 4.4a. For this case then

2
RA(t) xX-(a y/2)

- X + y/2 - aT(t)

- Y/ aT(f) when 2x + y = v

Similarly

R(t) - v/2 b 3T(t)

Therefore in this case System 1 and System 2 have the same

RA(t) and RB(t),

The second case to be considered is when either 1)

aT(t) < y/2 and aT (t) < bT(t); or 2) bT(t) < y/2 and bT(t) <

aT(t). Since the system is symetric, these two conditions

are equivalent. The best possible arrangement of bits in
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Stage 1 Stage 2
x-[aT(t)-y/2]
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b 2 (t)=y/2
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,T (t) " y/2 and bT(t) > aT(t)

aT(t)<Y/2

Ab 2(t)=aT (t]

used buffer

XbT (t) -b2 (t)

GyURE 4.4 - Storage of traffic in System 2
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Pystem 2 for the first of these conditions is shown in

Figuie 4,4b. As shown, the fact that a 2(t) = b 2(t) < y/2

94uses some unused buffer space at stage 2. The result is

that

R() x-(a (t)-<x(a (t)-y/2) R(t)

and

2 -( t-
B ~() ~= -(b T(t)-b 2(t))<x-(bT(t)-y/ 2) = (t)

The analysis of the case bT(t) < y/2 and bT(t) < aT(t) is

similar, Therefore

1 1%21(t) > >
R (t) R2 (t) and R (t) (t) t 

Q.E.D.

What has been shown is that from the start of a busy

period until the first overflow in the system, it is better

to have all buffers at source nodes. Maximizing RA(t) and

%B(t) over this time period corresponds to minimizing the

probability of at least one buffer overflow in a busy period

considered in the previous chapters. The proof does not

extend past the first overflow because after that, it is

not possible to assume that the number of bits stored in
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Systems 1 and 2 is the same. However, if the traffic arrival

process at source nodes has a uniform arrival rate for all

time, there is reason to believe that System 1 has a lower

overall probability of buffer overflow and hence a higher

throughput. This will be apparent in the example in

Section 4.1.3.

The above example is a special case in that it is

symetric, has only two source nodes and has an interstage

communication capacity - Co, the tree output capacity. It

is now logical to ask if the result can be extended to other

concentration trees.

The last restriction, the restriction on interstage

channel capacity, is central to the proof just given. If

this is not true, the service discipline at stage 2 that

keeps a2(t) and b2 (t) equal effects the probability of over-

flow at stage 1. To see this consider the arrival of a

message into an empty system. If the internal capacity C > C0,

a queue of only one type of message (A or B) will build up

at stage 2 unless the flow rate out of stage 1 is restricted

to C o. Such a restriction at the source node would effect

the probability of overflow there. Note that when the inter-

stage capacity is > Co, the buffer at stage 2 can be

effectively used when traffic of only one type is in the

system. This is not true otherwise and therefore one would

expect that as the interstage capacity becomes large with

respect to C o, it becomes optimal to place some buffers at stage 2.
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If the condition of symmetry is removed from the problem,

the result that it is best to place all buffers at source

nodes will still hold. This can be seen by comparing two

systems as shown in Figure 4.5. It can be shown that System

1 is better than System 2 by using the same technique that

was used for the symmetric case. Therefore, no matter what

the optimal allocation xA and xB with y > 0, the allocation

XA + y/2 and xB + y/2 at the source nodes will be better,

The same technique of proof cannot be extended to trees

with more than two input nodes. The reason for this is

illustrated in Figure 4.6. With more than two input nodes,

the traffic from any node is still restricted to occupying

less than half of the stage 2 buffer because of the service

discipline assumed there. However, for certain buffer

contents, this allows for an arrangement of bits at stage 2

such that two inputs effectively use the buffer there and there

by relieve congestion at source nodes. For the case

illustrated in Figure 4.6 the result of this is that

1 2 1 2 1 2
RA > RA but RB1 < R and R < RC

Therefore it cannot be argued that System 1 has a lower

Pr(overflow).
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buffer size=0O
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buffer size = y

XB

buffer size = xB

FIGURE 4.5 - Unsyrmetric concentration trees
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v/3=2

AA
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FIGURE 4.6 - A three source node tree
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This does not disprove the optimality of placing all

buffers at source nodes for this example. It only shows that

this method of proof cannot be used to obtain the result.

In Section 4.1.3 a 3 source node discrete time example is

given for which it is optimal to place all buffers at source

nodes.

There are situations in which the buffer allocation

that minimizes the probability of buffer overflow for trees

with more than 2 source nodes can be obtained directly. One

is the case where the arrivals at source nodes occur according

to a Poisson process with rate X-tO and instantaneous (not

gradual) input. Since X-0, there is rarely any congestion

anywhere in the tree. Therefore, independent of the number

of buffers at stage 2, the following occurs.

Pr(Buffer overflow) - Pr(New message fits in source
nodelsystem is empty)

Clearly, this probability is minimized by placing all buffers

at source nodes.

The above case (X-0) depends greatly on the fact that

the arrivals occur instantaneously. In Section 4.1.3 it

will be shown that if the arrivals are more gradual in nature,

it is possible to have a situation in which some buffering

at stage 2 is optimal. Therefore it is not always optimal
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to place all buffers at source nodes. This section has

shown though that it is sometimes optimal and therefore

it is worthwhile examining the flow control problem when

ei1 buffers are at source nodes.

4.1.2 Flow control when all buffers are at source nodes

The previous section showed that in certain cases it

is optimal to place all buffers at source nodes in a concen-

tratign tree. The method used to obtain this result did not

gpegify the specific flow rule that should be used with this

Buffer allocation. Consider again the system in Figure 4.1.

If there is no buffer at stage 2, then clearly the output

rte-s of nodes A and B must be controlled so that their

total output rate is - Co Since the objective is to minimize

¥vygflows, the flow rule should consider the current buffer

@ontents of the source nodes and give priority to the node

most likely to overflow next. If one assumes that the input

rates are known or have been estimated, then the probability

of overflow in the next At time unit can be calculated for

ech node. The node with the largest overflow probability

gin then be allowed to send at rate C o. This node retains

the allocation until there is another node with a higher

prga-bility of overflow in the next At. If one uses Poisson

input model with input rate A, this probability of overflow

in the next At, 0 < At << 1, is
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Pr(overflow next At) = Pr(message arrives in At and
has length h> remaining
buffer size)

-phdh= Ult I le-
h=Xm-x(t)

where xm is the buffer size, x(t) is the current buffer

content and U l is the mean message length (assume

exponentially distributed). For small At, XAt is the pro-

bability of an arrival in a Poisson process [DRAKE 67].

The flow rule described above is a myopic control policy.

This means that it seeks to optimize over the immediate future.

The question now is whether this type of rule produces the

minimum overall probability of overflow. This problem is

being studied by Yee [YEE 76] using discrete time, discrete

state space models and Markovian Decision Theory [HOWD 71].

He has found for some examples that myopic policies are

indeed optimal for maximizing the expected time between

overflows. This is the same as minimizing the probability

of overflow. Yee's results are for specific examples and

therefore an open question is whether his results can be

generalized. If so, flow control for concentration trees

with all buffers at source nodes would be greatly simplified.

The flow control rule used here assumes that there is a

global controller with knowledge of the state of all nodes.

In an actual network, this controller would logically be

located at stage 2 so that it could easily collect the
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state information from the source nodes and send the flow

allocations back to them. The transmission of control

information that is required for this has not been included

in the model presented here. If control information is sent

frequently, it may become a significant part of the total

traffic and would be important to include. There is, however,

a scheme of transmitting state information to stage 2 that

does not introduce extra overhead. The idea, due to

Wozencraftt is to use a round robin service discipline at each

of the source nodes. The round robin discipline sends a

fixed length part of each message at the node each time the

node is allowed to send to stage 2. The stage 2 node can

then determine the queue size at the source noce by counting

the number of blocks of data in one round robin scan of a

source node. In this way the source state information is

not sent as an extra message.

One final point about controlling a tree with all source

buffers is that if the control is not instantaneous, some

buffering may need to be at stage 2 to account for the delay

in turning various source nodes on and off.

Personal communication 1977.
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4.1.3 The effect of gradual inputs

The optimality of placing all buffers at source nodes

was shown in Section 4.1.1 for a certain case with Poisson

traffic sources. If the traffic sources are not Poisson,

but rather more gradual in nature, this result may no longer

hold. The following discrete time example illustrates this

point. The discrete time example is used because it can be

easily analyzed and yet provides the relevant insight into

the problem.

Figure 4.7 shows two concentration trees that will be

compared. Each contains four fixed length buffers and the

question to be answered is which gives the lower probability

of overflow when operated with a flow control rule that does

not allow overflows at stage 2. The systems operate in

discrete time. The basic time unit is the interval T

illustrated in Figure 4.8. At the beginning of an interval,

messages arrive at the source nodes. During the interval

exactly one message can be sent over each communication

channel in the tree. This means that at most one message

can be sent over the tree output channel during an interval T.

Two different arrival processes will be studied for

these systems. In Process 1, for each time interval T, the

number of messages that arrive at each source node is a

Poisson random variable with parameter X. This means that

for each source node
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a. System 1

Stage 1 Stage 2

3 Identical
Traffic Inputs

no buffer

/

b. System 2

FIGURE 4,7 - Two concentration trees to be compared
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.. Arrival
Instants

interval n n+l n+2

n (n+l) (n+l) n+2) (n+2)

One message sent per interval T

PIGURE 4.8 - Time intervals in the discrete time system
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1 (XT)m e- XT
Pron messages arrive) qm = m m=0,1,2,3,...

In arrival Process 2 only 0,1 or 2 messages can arrive in

each interval T at each of the nodes. The probabilities

associated with these arrivals at each node will be denoted

by

Pr(m messages arrive) = qm=0,1,2

The arrivals in each interval are independent so that

the entire system can be modeled as a Markov chain. The

states of the chain are specified by the number of messages

at each node. The states for the two systems are listed in

Tables 4.1 and 4.2. As shown in the tables, one must be

specific about exactly when in time a state is referred to.

Two times are used in the analysis here. The first, indexed

by the interval number n , is just prior to the arrival of

the new messages in the nth interval. The second, indexed

by n , is just after the arrival of the new messages. Let

x(n) be the state number at time n (n= 1,2,3...)(either n

or n ) and let 7i(n) = Pr(x(n)=i) be the state occupancy

probability of state number i. Then the problem to be solved

is the determination of the vector of steady state occupancy

probabilities

=lim (n) +
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an Qider to solve for the vector t , the matrix of one

gtep transition probabilities, P, must be determined. The

elements of P are pij = Pr(x(n+l)+ = jlx(n)+ = i). This

jatrix can be determined by examining the state transitions

due to message arrivals and those due to message departures

Separately. From time n to (n+l) , the only state transi-

ti4ns that can occur are those due to message departures.

Which transition occurs depends only on the starting state

at time n and the flow rule used. The flow rule can be

deterministic when conditioned on the starting state. For

the simple example here, it is easy to choose the flow rule

~hat minimizes the probability of buffer overflow. The flow

rule transitions are given in Tables 4.1 and 4.2. These

deterministic transitions can be represented by a transition

matrix + whose elements are pj = Pr(x(n+l)-=jjx(n)+=i). The

following then holds.

WstBr-+J)~ --- Ini~}n)+ +4

NOw COnsider transitions from time (n+l)- to (n+l)+

Th:reg transitions result only from message arrivals. Let

~ k> the transition matrix with elements Pij Pr(x(n) + =

jjx!n)' - i), The elements pij can be expressed in terms of

E fopr the two systems and the two arrival processes

,nOsidered here, Tables 4.3 and 4.4 give the expressions

for these elements pj'. The following now holds.
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TABLE 4.1

State Definitions and Flow Rules for System 1

State Description State Number
Number i (Number of Messages at Nodes) at

A B C (n+l) +if
x(n) =i

1 0 '0 0 1

2 0 0 l 1

3 0 1 0 1

4 0 1 1 2

5 ,1 0 0 1

-6 1 0 1 5

7 1. 1 0 5

8 1 1 1 6

9 2 0 0 5

10 2 0 1 9

11 2 1 0 9

12 2 1 1 . 8
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TABLE 4.2

State Definitions and Flow Rules for System 2

State Description State Number, at
Number i (Number of messages at nodes) (n+l)' ifx(n) =i

A B C D

1 0 0. 0 0 1

2 0 0 0 1 

3 0 0 1 0 X

4 0 0 1 1 2

5 0 1 0 0 X

6 0 1 0 1 2

7 0 1 1 0 2

8 -0 1. 1 - 4

9 1 0 0 0 X

10 1 0 0 1 2

11 1 0 1 0 2

12 1 0 1 1 4

13 1 1 0 0 2

14 1 1 0 1 6

15 1 1 1 0 4

16 1 1 1 1 8
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TABLE 4.3

State Transitions Due to Arrivals for System 1

Process 1 Process 2

._ 2
P =q QP q

2

Q2 PP -- P2 = q2

B(ijrj) - Pi,j

PD(1,l) = Q*Q*Q
FD(1,2) = QQ* (1.0-Q)
PB(1, 3) = Q*Q*(1.0-Q)
PB(1,4) = Q* (10-Q) * (1. 0-Q)
PB(1,5) = Q*Q*P
PB(!,6) = Q*P*(1.0-Q)
PB(1,7) = Q*P*(1.O0-Q)
PB(1,8) = P*(1. 0-Q)*(1. 0-Q)
PB(!,9) = P2*Q*Q
PB(1,10) = P2*Q*(l.0-Q)
PB(l,ll) = P2*£Q*(1.0-Q)
PB(1,12) = P2*(1.0-Q)*(1.0-Q)
FB(2,2) = Q*Q
PD(2,4) - Q*(!.o-Q)
PB(2,6) = P*Q
PB(2,8) = P*(1.0-Q)
_PB(2,10) = P2*Q

PB(2,12) = P2*(1.0-Q)
PB(5,5) = Q*Q*Q
PB(5,6) = Q*Q*(1.0-Q)

(5!,7) = Q*Q*(1.0-Q)
3P(5,8) = Q*(1.0-Q)*(1.-O-Q)
PB(5,9) = (1.0-Q)-*Q*Q
PB(5,10) = (1.0-Q)*Q*(1.0-Q)
PB(5,l11) = (1.0-Q)*Q*(1.0-Q)
PB (5,12) - * 0-Q) * (1. 0-Q)
FDB(6,6) = Q*Q
B(6,8) = Q*(1.0-Q)
_B(6,10) = (1.0-Q)*Q

(6,12) = (1.0-Q)*(1.0-Q)
P(8,8) = Q
PB(8,12) = 1.0-Q
PB(9,9) = Q*Q
PB(9,10) = Q*(1.0-Q)
P*B(9,11 ) = Q*(1.0-Q)
PB(9,12) = (1.0-Q)*(1.0-Q)
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TABLE 4.4

State Transitions due to Arrivals for System 2

Process 1 Process 2

13.~~~~~~~~~~~~ 2Q= q0

P- _- 1_ PP= l- Q

PB(!,l) = Q*Q*Q
~l!! 3) = Q*Q*P
PB(1,5) = Q*Q*P
.PB(1,7) = Q*P*P
IB(1,9) = Q*Q*P

pB(1,11) = Q*P*P
_B(!,13) = Q*P*P
B (1,15) = P*P*p

PB(i,2) = Q*Q*Q
fPB(2,4) = Q*Q*P
pB(2,6) = Q*Q*P
PB(2,8) = Q*P*P
B(2,10) = Q*Q*P
_B(2,12) = Q*P*P
'B (2,14) = Q*P*P
B(2, 16) - P*P*P

?_B(4,4) = Q*Q
PB(4,8) - Q*P
PB(4,12) = Q*P
BB(.4,16) = P*P
PB(6,6) = Q*Q
_PB(6,8) = Q*P
P.B(6,14) = Q*P
FB3(6,16) = P*P
jpB(8,8) = Q
P'B(8,16) - P
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E(n+l)+ = W(n+l)- -

+ -- 5

= ~(n) P

The desired transition matrix is then the product of P+ and p-.

The well known result that if the chain is ergodic

lim I (n)+ = (+ + [PRAZ 62]
no

can then be applied to find the desired steady state occupancy

probabilities. Once T+ is known, it is easy to determine

which system has the lower probability of buffer overflow.

Note that for both systems, !r is the probability that the

system is empty just after the time for new arrivals. In

all other states there is a throughput of one message in the

interval T. Therefore the expected throughput per interval

T is 1 -n 1. Since the same traffic is being applied to both

systems, it follows directly that the system with the higher

throughput has the lower probability of buffer overflow.

Tables 4.5, 4.6 and 4.7 give the system throughputs for

different input processes. Table 4.5 gives the results for

Process 1, the Poisson input. The results show that it is

best to place all buffers at source nodes for all values

of the traffic arrival rate X. Table 4.6 gives the results
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2 2
fir Process 2 when only q0 and ql are nonzero. This means

that at most one message can arrive at each source node

rging an interval T. This is a very gradual input. In

t§i qgase, placing all buffers at source nodes is not optimal

fGr any arrival rate. What has happened is that enough

g~siness has been removed from the arrival process so that

As more important to place some buffering at stage 2 where

it is more useful in preventing overflows due to multiple

#ryvals in one interval T.

It is possible to explore how much burstiness is needed

iD the traffic to make it optimal to place all buffers at

source nodes by using the Process 2 model. The results in

Fla? 4.7 give an indication that not very much burstiness

2 2
i§ eeded., The case examined there has q = 0.2 while q is

2
gfir d over a wide range. As q2, the probability of 2

rtivals, is increased, the burstiness of the input traffic

increases. For q 2 very small (0 and 0.001) it is not

optimal to place all buffers at source nodes. However,

W#.n q2 becomes larger (0.01, 0.05 and 0.1) it is optimal.

In conclusion, it is not always optimal to use all source

bupffering.?
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TABLE 4.5

Expected Throughput Using Input Process 1

T = 1.0

X1 .System 1 System 2

.01 .029899 .029850

.1 .288896 .285283

.5 .9549905 .9524518

1.0 .999728889 .999719148

2.0 1-(.343404 x 10-7) 1-(.345133 x 10-7)
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TABLE 4.6

Expected Throughout Using Input Process 2 with q2=(

2 System 1 System 2

0.1 .298816 .29974

0.2 .586201 .59136

0.3 .824173 .830993

0.4 .9545326 .9572018

0.5 .9929578 .993333



Table 4.7

Expected Throughput Using Input Process 2

:2 System 1 System 2

iQOp , 5862 .591361

.00?1 .589626 .594133

MiQ0 1,19821 .618851

OO~Q t ,t 7?8958 .722383

@,4Q0 ,850615 .8309R3
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4.2 The Queueing Analysis of a Concentration Tree

4.2.1 An approximate analysis of a two level tree

The queueing analysis of buffer stages coupled by

flow control rules is a difficult problem if the system is

pot operating in discrete time with fixed length messages as

in Section 4.1.3. It is often possible to specify reasonable

flow rules, but usually not possible to analytically determine

the performance of the network when the rules are used. This

§@etion develops an approximate analysis for a simple example

~tat shows some techniques for overcoming this problem.

Th~ tree to be analyzed is shown in Figure 4.9. The

input nodes A and B in this example are receiving Poisson

ifput streams of messages with exponentially distributed

message lengths. These traffic streams are then fed into

stage 2 over finite capacity channels. The capacity of

these channels is equal to the capacity of the output channel

~ s~tage 2 when no flow control is in effect. When buffer C

fills and both nodes A and B are in busy periods, the rate of

*ach of the channels between the first level of the tree and

stage g is reduced to one half the normal rate. This keeps

buffer C from overflowing. If buffer C is full and only one

stage at the first level has traffic, the rate on the channel

between that node and buffer C is kept at the normal rate.

This flow rule is essentially what happens if link by link

flow control is being achieved by rejecting messages at

stage 2 whenever the buffer there is full.
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Stage 1

Poisson Stage 2
Input
Rate A

Node A

Buffer size X messages 

Node B Node C

Poisson
Input
Rate X _ _ , Buffer size K bits

FIGURE 4.9 - Two level tree flow control problem. The
buffers at each level are finite. All channels
have the same capacity in the absence of
flow control.
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Even for this simple symmetric example, it has not been

feasible to solve for the exact steady state statistics of

buffer occupancy and buffer overflow. Therefore the

following approximate analysis will be used. When buffer is

not full, nodes A and B are essentially M/M/1/X queues if

one assumes that the buffers at these stages can hold X

messages. As long as buffer C stays below its maximum

411Qwed level, the traffic streams into buffer C are

alternating renewal processes as required for that stage to

be analyzed as a gradual input queue (see Figure 4.10).

Therefore it is possible to use the results for probability

of buffer overflow developed in Chapter 2 to partially

characterize the behavior of stage 2. Both the probability

of at least one buffer overflow in a busy period and the

probability of another overflow in a busy period, given that

at least one-has already occurred will be bounded for stage 2.

Now the behavior of node A will be represented by an

approximating continuous time Markov chain. Since nodes A

and B are identical, this will also characterize node B..

The approximating Markov chain is shown in Figure 4.11. The

chain is best understood by considering a typical sequence

of buffer operation. Suppose that buffer A is empty and that

buffers B and C are in some unknown state, but buffer C is

not full. In this condition, the approximating chain is in

state {I,0}. As a busy period starts for buffer A, the
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Buffer content of stage 2

First overflow in a busy period

Second overflow in a busy
period

In these sections, the inputs to stage 2 are
alternating renewal processes with exponential
off times and on times distributed as the busy
periods of an M/M/1/X queue

FIGURE 4,10 - Queueing process at stage 2
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ROW

Buffer
C Not
Full

| ~ ~ II

Buffe u/2 2 u/2 u/2
C full
and
buffer
B in
busy

period transition rates are explained

Buffer
C full U u u
and
buffer
B empty

Figure 4.11 - Transition rate diagram for Node A in
Figure 4.9. The state numbers represent
the number of messages at Node A. The
various transition rates are explained
in the text.
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state changes along row I. At this time, buffer C is not

full, so no flow control restrictions are in effect. If

buffer C fills during this busy period, the state will change

to row II of the approximating chain. In order for buffer C

to have filled up, buffer B must be in a busy period and

therefore the flow control that reduces the rate of flow

from buffers A and B to C to half the normal rate goes into

As long as both buffers A and B are in busy periods,

the state of the system will remain in row II. If buffer

A gees off before buffer B, the state can change back to

{To}, If buffer B goes off before buffer A, the state will

ang9e to row III. In row III, the channel between buffer

A gnd buffer C is kept at the normal rate, so that as long

as buffer A is in a busy period, buffer C remains full.

go@m row III, transitions can occur back to row II or from

state {Iii,0} they can occur back to state f{I,0}.

Given this overall description, the remaining problem

is determining the appropriate transition rates. Briefly,

these are as follows. Along row I the rates are X, the rate

for the Poisson arrival process, and i, the rate of service

@empletions for exponentially distributed length messages.

The rate of transition from row I to row II, %, is chosen

so that the upper bound on the probability of at least one
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overflow in a busy period calculated for state 2 is met. The

specifics of this calculation and others are given later in

this section.

In row II (excluding state {II,O}) both buffers A and B

are in busy periods. The state of buffer A is accounted for

explicitly, while that of buffer B is not precisely known.

Knowing that buffer B is in a busy period is, however,

sufficient to make use of a result on the tail behavior of

the busy period distribution of a queue such as buffer B is

exponential with a well defined mean. In this case the queue

of interest is an M/M/1/X queue with arrival rate X and mean

service time 2/u. Let i 1 be the mean of the exponential

tail of the busy period distribution of such a queue. Then

i will be the transition rate used for transitions caused by

the busy period of buffer B ending. For a transition from

state {II,O} due to the ending of a buffer B busy period,

the transition rate is i' the parameter associated with the

busy period tail for an M/M/1/X queue with arrival rate X

and mean service time u 1.

From row III, transitions occur back to row II if buffer

B starts a new busy period. If the system reaches state

{III,O}, a transition can be made to state {I,O}. A transition

to state {I,O} is taken to approximately represent the end

of a busy period of stage 2 without another overflow.

Therefore the-quantity n/(n+X) will be equated with a lower

177



bound on the probability of not having another overflow in a

busy period of buffer C, given that there has already been

at least one in this busy period. The specification of the

Qtpe n completes the approximating Markov chain.

Specific details are now given for calculating the

various rates in the approximating chain. The case in which

each stage 1 node has 2 buffers (X=2) is used as an illustra-

tion. After the transition rates are determined, the chain

is analyzed for its steady state occupancy probabilities.

The probability of being in states with all node A buffers

full is the probability of overflow measure that is of

interest here.

A. IDetermining the transition rate t

The transition rate Q is chosen so that in the

approximating chain

Pjr (Co to row II Start in - Pr(Overflow at least
before going state (I,1) once in stage 2
tO (1,0)) busy period)

nThis s done because, as illustrated in Figure 4.10, starting

flow control (going to row II) corresponds to the stage 2

btuffer becoming full. Determining the rate 4 requires three

basic steps.

1, Determine the mean length of the stage 1 M/M/1/X

queue busy periods. This can be done using a first passage

time analysis for Markov chains as in Section 2.1.2.
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For the case X=2, the mean busy period length is given by

2. Determine1 upper bound on Pr(overflow) for stage/

2. Determine the upper bound on Pr(overflow) for stage

2 when the two inputs have mean on time 6 and mean off

time -!r. This can be done by using Equation 2.18. Denote

this bound by Pr(overflow).

. PDetermine O so that

Pr (Go to row II Start in = Pr (overflow)
before going state (I,1)
to (I,0)

in order to do this, one must solve a trapping problem as

illustrated in Figure 4.12 for the case X=2. As shown in

the Markovian transition rate diagram given in the figure.

Pr (Ge to row II Start in = Pr (Trap in Start in
before going state (I,1) row II) state
t (1,O) (I,1)

This trapping probability can be determined-by system

Analysis techniques given by Howard [HOWD 71]. For the X=2

@ase the desired trapping probability is given by

{*pe2 + 9x)/!(~+ )(*++-~k)]. The rate $ can then be

determined from
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a. Original Chain

u - u

u/2 u/2

b. Equivalent Trapping Problem

u u

FIGURE 4.12 - Markov chain for determining Pr(go to row II
before (I,O)fstart in (I,1)). The case x=2
is illustrated.
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= Pr(overflow)

b, Determining the rates 5 and i'

The parameters i-1 and i'-1 are the mean parameters

associated with the exponential busy period distribution tails

of an M/M/1/X queue with arrival rate X and mean service

times 2p' and V-! respectively. These parameters are used

to describe the remaining busy period of the buffer at node

B when the exact stage of the buffer is not known. The use

of this parameter comes from a theorem for first passage

times that is given in Appendix B. The theorem states that

for queues such as the M/M/1/X queues considered here

lim f (t+T I> t) -e a T T>O

f ik .. . T>0

a>O

Where f.k ($t+Tl>t) Pr{first passage from state i to k
occurs in time 't+Tlfirst passage
time >t}

The first passage times being considered here are.busy

periods, ioe,, the first passage time from having one

customer in the queue to the all empty state. The above

result states if that all that is known is that the busy

period has been in progress for a long time, then the

conditional distribution of the time remaining in the busy
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period is exponential with parameter a. It is natural to

use the mean of this distribution as the mean time remaining

in a busy period of node B, given that all that is known is

that a busy period is in progress. Appendix B outlines the

derivation of the parameter a. For the X=2 examples, a was

determined by actually finding the Laplace transform of the

busy period distribution for an M/M/1/X queue using the

techniques in Section 2.1.2. The parameter a is then the

pole of the transform that is closest to the origin. For

an M/M/l/X queue with X=2 and parameters X and v.

-- . 2
_(2i+x) + /(2u+X) -4u

-2

C, Determining the parameter n

The parameter n is used to approximate the effect of

multiple overflows in a busy period. Once the system is in

state {(11,0}, it has already had at least one overflow in

the current busy period and may have another. To account for

this, the probability of going directly from state {III,0}

to state 1{,01 is equated with a lower bound on the probab-

ility of having another overflow in the busy period of buffer

C, given that there has already been at least one in this

busy period. The probability of going from state {III,0} to

{I,01 is n/(n+X) and the lower bound that is used is

1-Pr(overflow againlat least one overflow) where the later

is given by Equation 2.25.
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All transition rates for the Markov chain in Figure 4.10

have now been specified. The remaining problem is to find

the steady state occupancy probabilities for the chain. Let

X(t) be the state of the system at time tO0. Then the

desired occupancy probabilities are

f R lim rj(t) = lim Pr{x(t)=j}
t' 3 to

These can be found by first solving for the occupancy

probabilities in the imbedded discrete time Markov chain.

The imbedded chain has one step transition probabilities

that are equal to those in the original chain. The

difference is that all one step transitions occur in one

discrete time unit, Let T' be the one step transition

probability matrix for the imbedded chain with elements

p! = Pr(x'(n+l)=jIx' (n)=i) n=0,1,2... where x' (n) is

the state of the imbedded chain. Then the relationship

between the imbedded chain and the original is that

p. = Pr(next state is j starting state is i in the
1P£ Pne sa i original chain)

These probabilities are given in the illustration of the

imbedded chain in Figure 4.13. Let iT!(n) = Pr(x'(n)=i)

and nI=lim n (n). Then the result that W' = COP' can be

used to find the vector of ! 's.
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AQW
1 k/a X/a

$ . , _ { 1 2 L 13 )

AP/a _/a _Ib

\/2d u/2d ' u/2e

n/ /g E/d X/gg /d X/h i/e

X/f X/g X/g

a -+%+4 d = X+p/2+E g = P+2X

B - p+¢ e w U/2+E h.= p+

@- g '*A 5f n +x

fIGURE 4.13 - Imbedded Markov chain for the chain shown in
'Figure 4.11. Transition probabilities are
shown on the diagram.
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Now the occupancy probabilities for the original chain

can be found from I', Each state i in the original chain

has a mean holding time Ti = [ r. s where the ri's

are the transition rates from state i to j given in Figure

4,10. The holding time is the time from entering a state

until the first transition out of the state [HOWD 64].

Finally the following relationship can be used

IT T i

Tr! T.
all Z T

CHOWD 64], The above states that the occupancy probabilities

in the original chain are equal to those in the imbedded

chain weighted by the mean holding times of the states.

This completes the analysis of the approximating chain.

The question now is how well this chain predicts the pro-

bability of overflow at the stage 1 nodes. The approximations

used in this section have all been made in such a way that the

chain should give a probability of overflow that is greater

than the actual probability. The next section presents an

example and simulation results that confirm this.
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4.2.2 An example and simulation verification

The example to be considered has 2 buffers at each

stage 1 node (X=2). The mean length of messages is -1=1

and the maximum rate for all communication channels is 1.

The buffer at stage 2 can hold exactly three messages each

9f length 1.

The probability of overflow at stage 1 predicted by the

approximating chain is shown in Figure 4.14 for different

Arrival rates X . Also given are the results of a Monti

Carlo computer simulation for each of the cases. The

simulation techniques were similar to those in Section 3.1.4.

The simulation results indicate that the approximating chain

indeed consistantly gives a larger probability of overflow.

An indication of how settled the simulation results are

is given in Figure 4.15. Here the probability of overflow is

plotted as a function of the length of the simulation run.

The conclusion is that the approximate analysis presented

here is indeed useful for obtaining conservative estimates

for the probability of overflow when there is coupling

between stages of the concentration tree due to flow control.
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X Approximating chain
calculation

O Simulation result
Probability of

Buffer Overflow
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/ o /
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Arrival rate X

FIGURE 4.14 - Probability of overflow for the concentration
-1tree. x=2, i =1, buffer size at stage 2 is 3

and C=1.
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21GIURE -4.15 - Simulation data for result shown in Figure 4.14.
Arrival rate X = 0.25.
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CHAPTER V - CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Conclusion

This study has developed and used the gradual input queue

model due to Rubinovitch, Cohen and Kaspi to investigate

buffering and flow control in message switched communication

networks. The model as presented here has two major applica-

tions. The first is to show the behavior of a flow-through

type of network operation. In the gradual input model,

messages are not stored before being forwarded to the next

node if there is no waiting line when the message arrives.

Since the M/M/1 model represents store and forward operation,

the comparisons between the gradual input model and the M/M/1

model provide a comparison between flow-through operation

and store and forward operation. The results throughout the

thesis show that the flow-through operation gives less

queueing and therefore also a lower delay in the network.

The differences can be significant if the network contains

long chains of nodes with little cross traffic at each node.

In this situation, the flow-through model allows the path

@eve many individual links to become essentially one link

when there are no waiting lines at intermediate nodes. The

expected delay over this path therefore approaches the time

to transmit over one link. In store and forward operation

the delay is always at least as large as the sum of the

individual transmission times over each link in the path.
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Since flow-through operation appears to have theoretical

Advantages over store and forward operation, a logical

question is why it is currently not being used. One major

reason is that it does not allow the use of standard link by

link protocols. The link by link protocols permit error

detection and retransmission on each link. Only end to end

error protection can be used in a flow-through network. End

to end error protection allows errors to be passed from one

link to another in the network. This makes it difficult to

guarantee correct network operation since control information

as well as user data is sent through the network. For example,

if an error occurs in the address of a message, it may not

reach the correct destination node.

A second major reason that store and forward operation is

being used is that it allows for a straightforward node

architecture. The tasks associated with receiving a message

over one link are all completed and the message is stored in

memory before a request for further transmission is acted on

by the node processor. In order to achieve flow-through

operation, reception and transmission of a message must be

occurring at the same time. Though no such system has been

built, this could conceptually be done with only a slight

delay for switching. A delay for switching is necessary

because the node must have time to determine routings and

to recognize the ends of messages. The delay needed could be
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provided by a shift register as illustrated in Figure 5.1.

Here it is assumed that the nodes send a continuous string

of O's over channels unless a message is to be sent. A

message always starts with a 1 followed by the destination

address. The end of the message is marked by a unique

sequence of bits. As shown in Figure 5.1, the first positions

of the shift register are used to read destination addresses

and detect the ends of messages. The last portion of the shift

register is used to introduce enough delay to allow the switch

time to operate.

The second major application of the gradual input model

is the identification of the effects of having a finite

number-of input channels to a network node. In Chapters 2

and 3 it was shown that there are several such effects.

These effects will occur even if the network is operating in

a store and forward fashion. Therefore, in designing a

network, the gradual input model can be used to determine

if there are any nodes at which there are significant effects

due to a finite number of inputs.

The chapter on flow control in concentration tree

structures addressed the problem of buffer allocation to

achieve minimum probability of buffer overflow while using

flow control. It was shown that in certain cases it is

optimal to place all buffers at source nodes. However,
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FIGURE 5.1 - Shift register used in a flow-through node
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there are also cases where this is not so and an example

was presented that gave insight into the reason for this.

5,2 Suggestions for Further Research

It has been shown that the effects of a finite number

Of input sources to a node can be important. Therefore, for

engineering purposes, it would be useful to develop a model

of store and forward operation with a finite number of inputs.

It would be particularly useful if the model included details

of node operation as done by Lam [LAM 76].

The routing problem for a network of gradual input

queues has been only briefly discussed. It remains an area

for future work.

Only one type of flow control has been studied in this

work. Flow control in a concentration tree with a global

controller is the only type considered. There is still much

ork -to be done in the area of flow control for general

ne-tworks .

Final ly, it was shown that for certain concentration

trees it is optimal to place all buffers at source nodes. An

open question is whether there are any more general networks

for which such a result is also true. Clearly, one such net-

*rk i.s a star -network in which the central node is used only

far switching. This is a straightforward extension of a tree.
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There may be others as well. Such networks would have no

internal network buffers and therefore it may be possible

to find myopic flow rules for the network that are optimal.

This would be a step forward in the understanding of the

optimal dynamic operation of a communication network.
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APPENDIX A - RESULTS FOR THE GRADUAL INPUT QUEUE WITH NON-

IDENTICAL INPUT CHANNELS

Kaspi and Rubinovitch [KASPI 75] have derived results

that allow one to analyze a gradual input queue with non-

identical input channels. Each input channel is still des-

cribed by an alternating renewal process as depicted in

Figure 2l1b. The idle periods on the jth channel, Tij, are

restricted to being exponentially distributed, i.e.

Pr(Tij X) = l-eXx x>O; >0

The active periods on the jth channel, ,ij, are allowed to

have a general distribution, i.e.

Pr(cij < x) = Bj(x) x>O

Previously, in the Cohen analysis, it was required that each

Bj(x) = B(x) and that all Aj=X. As before, the behavior of

the buffer is analyzed by making an analogy with an M/G/1

queue. In order to make the desired analogy, one must again

be able to obtain the distribution of the quantity h-Z for an

inflow period and the distribution of the busy period on the

output channel.
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.. 2Distribution of h-Z for an Inflow Period

For the jth input channel let

t- dB (t)

t=o JB**(p1 ) f e pt dB. (t)

Then the following relationship holds (Equation 3.3 in [KASPI

75]),

{+ XT - XTE{exp(-ph- sQ)}}- 1 =

N

where XT xi' Re s>O, Re p>O, Re uj>O.

From Equation A.,, the first moments of h and E can be

obtained. These are

N
LEWI (r £ i~ i Izl 1+X, 3 }T W(Eq.A.2)

N
E3{} -- { (1+X ii) - 1}/nT (Eq.A.3)

i=1

Thee theorem due to Cohen which states that the maximum buffer

content, Cmax, during a busy cycle for the gradual input

queue is the same as the maximum virtual waiting time vmax

of an !M/G/1 queue with a service time distribution identical
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to that of h-2 and mean interarrival time AT1 can now be

applied. By using Equation 2.4, this yields the relationship

E{Cmax} = -T 1 log(l-A E{h-Z}) X E(h-Z}<lmax T T T

Together with Equations A.2 and A.3, this provides a closed

form expression for E{C }.max

B. Distribution of the Busy Period on the Output Channel

For a gradual input queue with identical inputs, the

distribution of the busy period on the output channel is the

same as the busy period of an equivalent M/G/1 queue.

Specifically, Rubinovitch [RUBIN 73] showed that when

Bj(x) =B(x) and Xj=A for all input channels j, the Laplace

Stieltjes Transform (LST), D*(p), of the distribution of the

length of the busy period, b, is given by the functional

equation

D*(p) =B*((N-1)X + p -(N-l)XD*(p)) Re p>O

For the case of non-identical inputs, let D* (p) be the LST

of the distribution of the length of a busy period started

by the jth input channel coming on. Then the- following

theorem gives the desired result for this case.

Theorem [KASPI 75]

(i) The LST's D*.(p), l<j-N, are the unique solution to

the system of functional equations

J i~j z ifj i i(P))D*(p)= B* (P + X. X197D p)) Re p>O
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ii.) D*(p) is given by

·a·*tB* (p + 7 Xj - D*j (P
-i=t iB1i '

N
(ii) Let .i = Ai8i and r = ai/(l+ai)

I i i11l

then if r < 1

Etb} r/{XT (1 -r)}

and if 1
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APPENDIX B -- A LIMIT THEOREM FOR FIRST PASSAGE TIME

DISTRIBUTIONSt

First passage time distributions for queues which can be

represented by a Markov chain are investigated in this appen-

gix. It is shown that the tail behavior of such distributions

is either geometric or exponential (depending on whether a

discrete or continuous time example is being considered).

This result provides insight into the dynamics of queue

operation and can be used to approximate first passage time

distributions.

A. A Preliminary Lemm.a

The proof of the main theorem in this appendix depends

en the lemma that follows. The lemma applies to Markov

ghains with either a finite or countably infinite number of

gtates. The state of the system at time t will be denoted by

et~) " i ( 1,2,3....). State occupancy probabilities will

be denoted by

Xi(t) - Pr(x(t) = i) t - 0

fThis -appendix is part of the paper: "A Note on the Chernoff
Bound and a Limit Theorem for First Passage Time Distributions
of Queues", by E.F. Wunderlich and P.A. Humblet, M.I.T.
Electronic Systems Laboratory, ESL-P-728, March 1977.

199



Only homogeneous Markov chains are considered and state

transition probabilities are given by

Pij(t) = Pr(x(t) = j I x(Q) = i) t >0

For such a chain, the first passage time Tf(i,j) is by

definition

inf{Tf; x(Tf) = j I x(0) = i}

The first passage time quantities that will be of interest

are

fij( t) = Pr(Tf(i,j) < t)

fj (-t2 > t) = Pr(Tf(i,j)-t2Tf(i,j)>t)

0 tl<t 2

Lemma: Consider an irreducible Markov chain. Modify the

chain by making state k a trapping state, i.e. pkk(t) = 1 for

1ll @tQ, If for the modified chain

Pij(t) < <
lim ij = c 0-c -1 for all jfk
I-P ik-) = j

then for both the original and the modified chain
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iTrn fik(<tl + T X > tl) = 1 - b T = 1,2,3...

1-e -aT T >0

1> b > ; a > 0

depending on whether the time index of the chain is discrete

or continuous. The variables b and a may depend on the

states i and k.

Proof: Consider the following two probabilities

fk (I+T>t 1) and fik(-t +T+dl>tl+d) where T>O; d>O.

The first passage time from state i to k in the original

Markov chain is the same as the time until trapping in state

k, starting from i, in the modified Markov chain. Therefore,

the above can be written as

fi (t+T[>tl) :i f. t1+x(t1)j)
all states j ik
except j = k

Pr(x(t1 )=jlfirst passage

time >tl)

l i f (Tjk ) Pr(x(tl)=jlfirst passage
a11 states j jk 
except i = k time >tl)
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fj (aT) 3
all states j 1-Pik (tl)
except j = k

where Pij (t) and Pik (tl) refer to the modified chain.

pimilarly

<Pij (t1+d)
fik( (tl+d)+T->tl+d) =fjk 1T ~ (t +d)f td- =all states j fik (t l +d)

except j = k

Nw recall that lim 1Pij(t c. and note also that
co L -Pik(tl)

Pij (t 1l+d)
m !_ik (tl+d) = C.. Therefore as t1 + X it follows that
t Iik 1 

Pi (tl) Pij(tl+d)
p -i k(t!) + ! -i (tl+d) since both terms converge to cj. This
IP.k (ti) lPik(tl+d)

leads to the result that as tl + a

fik(t -+1> - ) -fik ('(tl+d)+T[>tl+ d ) (Eq.B.1)

Therefore, in the limit as tl + A, Equation B.1 can be

written in the form

Pr(O < TX - ) Pr(T - T + d > d) (Eq.B.2)

where Tr = remaining time (after time tl) until first

passage from state i to state k conditioned on the fact
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that the first passage time frame state i to state k is

greater than tl. It is well known that Equation B.2 implies

that the distribution of Tr is either geometric or

exponential. [PARS 62].

An intuitive interpretation of this lemma is that if

the distribution of state occupancy probabilities in the

modified chain, conditioned on the fact that the trapping

state has not been entered, has a steady state, then the

remaining time until trapping (remaining first passage time)

is either geometric or exponential. The following theorem

proves that this conditional steady state distribution

exists and shows how it can be found for a discrete time,

finite state Markov chain.

B. Main Result

Theorem: Consider a discrete time, finite state Markov

chain. Modify the chain by making state k-a trapping state,

i.e., Pkk(t) = 1 for all t(t=0,1,2,3...). If in the modified

system, all states (except k) that are accessible from state

i communicate with i and are not periodic and if state k is

accessible from state i, then for the modified system

p W(t)
lim Pij )=c c. c 1 for all j3k

t~o 1-Pik(t)

and lim fik( -t+TI>t) =-bT
t-+

T 1,2,3,4... ; 1 > b > 0
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Proof: The evolution of state occupancy probabilities for

the original Markov chain is given by

r(t+l) = rr(t)P t = 0,1,2,3.....

where r is a row vector of state occupancy probabilities and

P is the matrix of one step transition probabilities. [PRAZ

62] Similarly, the state occupancy probabilities for the

modified Markov chain are given by

i.(t+l) = w(t) P t = 0,1,2,3.... (Eq.B.3)

sr s

where P is nearly identical to P. P and P differ only in the

kth row. In the kth row of P, Pkk is 1 and all other entries

are 0. The initial condition for the modified chain is

~i(0) = 1 and ij(0) = 0 for all j ; i. Since the first

passage time from state i to k in the original Markov chain

is the same as the time until trapping in the modified chain,

only the latter will be considered. From Equation B.3, one

can express ij (t+l) as

iif(t+l) = £ =(t) p = z(t) izj (j.k)
all states 3 all states

except Z=k

(Eq.B.4)

ik(t+l) = Sk(t) + z ifz.t) at k (Eq.B.5)all states
except Z=k

204



Note that Trj (t+l) (jyk) satisfies a recursion equation that

does not contain ifk(t). Also note that rj(t)(j/k) will be 0

for all t for any state that does not communicate with state

i when one removes the trapping state k from the modified

chain. Therefore one can write

if(t+l) = i(t) P (EqoB.6)

where X is a row vector of state occupancy probabilities

that does not include the trapping state or any state which

does not comnmunicate with state i after the trapping state

is deleted and P is the matrix P having the rows and columns

associated with the deleted states removed. The elements of

P are all non-negative; i.e. P9j - 0. Therefore P>O.

Furthermore, since all states considered in P communicate

with state i and are not periodic, Pm >> 0 for some integer

m > 0, where >> signifies that all elements of .m are > 0.

The following Frobenius Theorems for positive matrices

[KARL 75] can therefore be applied.

Tl: If matrix A > 0 and A >> 0, for some integer m > 0,

then (a) there exists a vector x >> 0 such that x 0A=aOx0;

(b) if ca c 0 is any other eigenvalue of A, then jal <ao.;

(c) the left eigenvectors of A with eigenvalue a0 form a one

dimensional subspace.
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2T2: If A > .0 and Am > 0 for some integer m > 0, then

An B as n +

00
.where B >> 0 is a matrix of rank 1 with elements b. .=f.x

0. 0
where x0 is the row vector given above and f0 is a column

.vector satisfying Af =a f which is normalized by a

multiplicative factor so that Z x.f. f 1.

,3: :If A > 0, then the eigenvalue of largest magnitude

a. - (A), is real and non-negative and if there exists

0 0< 0
a vector x: ->> 0 such that x A < ux , then u is an upper

.o.und for a (A),

T1 states that there is a largest eigenvalue of P and that

the left eigenvector associated with it is unique (to within

a constant).

Let r be the largest eigenvalue of P. Then, because

t(t) ~ t()tt

~ (·t) `P
tlim (t i O) i ) (0) B (Eq.B.7)
t-~o r- t _- r-

by applying T2. This implies that

al:it)i WY ( tY = c O- 0c 1 for all j3k

al. states j 
(Eq.B.8)
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from which it follows that the previous lemma holds. Equation

B.8 is equivalent to

.. (t)< <
n C.Pi(t) O-c.-1 for all j=k

t; 1J-ik (t) 3

By noting that the vector c of components {cj} is a

00
scaled version of ~(O)B = i,(O)f x it can be shown that c is

the left eigenvector (scaled to have Z c. = 1) of P that is
j 3

associated with the eigenvalue r. T3 can be used to show

that r is real and nonnegative. Since all states in X are

transient, the sum of elements in at least one row of P is

less than 1 and therefore it can be shown that r < 1.

It will now be shown that the constant b in the state-

ment of the theorem equals r. Recall that fik(-t+T>t) =

wk(t+T) if ik(t) = O. If ik(t) = 0, then lim .j(t) = cj,

j4k. Since the states jW(jfk) are the same as those in the

?j system, one can apply the equation

7(t + 1) = (t) 

Noting again that the vector c is the left eigenvector of D

associated with the eigenvalue r, it follows that if

wj(t) = Cj
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then ij(t+T) = rT c = 1,2,3,...

j k

Since k (t+T) = 1 - (t+T
k jfk

if lTk(t) = 0 and as t - X

rk(t+))= 1 - r = fik(t+T >t)

X = 1,2,3....

Therefore r = b.

C. Extension to Continuous Time Markov Chains

The previous theorem applies only to discrete time

Markov chains. A similar theorem can be proven for continuous

time Markov chains by applying the Kolmogorov differential

equations for such chains. The Kolmogrov equations for

homogeneous chains are

d ddt P(t) = P(t)A and AP(t) = A 2(t)

where the states associated with P(t) are defined as in the

previous theorem and A is a matrix of transition intensities.

[PARZ 62] The initial condition is P(0) = I and the solution

to the equations is P(t) = eAt. In order to prove the desired

theorem, one proceeds basically as follows. Let a be the
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Xargest eigenvalue of A. It can be shown that a <0 and that

a is an eigenvalue of multiplicity 1. Now A can be expressed

in Jordan normal form as follows.

1 a
Let = Q -Q A = J2 =

2 2

where each J3 is a ZJrdan block [NEF 67]. Then

eat

e~t eJQ Q et Q-1 2t Q- 1

Since a is the largest eigenvalue and a <0, as t - 0, the
j t J3t

terms e ,e ,, etc, go to zero faster than eat

Therefore as

e 0

t - - et Q o 0 Q-1
at

0

From this it follows that

I -j _ d_ _ 0-dj 1 for all j
t-o C P..(t) T rj(t) ]
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Therefore

lim fik (t+T|>t) = 1 - er

a < 0; T > 0

by the lermma given at the beginning of this section.

D. Approximation Techniques for Markov Chains

First passage time distributions in Markov chains are

often quite complicated. The previous theorem, however,

shows that their tail behavior can be described by a simple

one parameter geometric or exponential distribution. This

result can be used to approximate the behavior of a queue

that has a Markov chain representation consisting of many

states by a chain which has only a few states. For example,

consider the discrete time Markov chain representation of a

single server queue shown in Figure B.1. The states of the

chain are the number of customers in the system. Suppose

that one is interested only in whether or not the server

is idle, i.e. whether or not the system is in state 0.

Since detailed information is desired only about state 0,

an approximation of the original N stage chain by a smaller

chain (like the three state chain shown in Fibure B.2) might

be useful. The approximating chain shown in Figure B.2 is

an attempt to use only two stages to produce a first passage

time distribution similar to the distribution due to N-l1
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Section to be approximated

r- 
00 IP2 PNPPNN2

01 I

Plo P21 

I | I

FIGURE B.1 - Markov chain representation of a single server
queue. For this chain

lim f 10(<t+T >t)=l-rT T = 1,2,3...

O< r< 1

r- -. -- _ _ _ _..._
I I

PO' PAA r

I

1-r 1Poll , (- pAB tI
I I

L - _- _ _ - - -

FIGURE B.2 - Approximating chain for chain in Figure B.1.

If PAA < r, then state B gives the proper tail

behavior for the first passage time distribution

from state 1 to state 0. Parameters PAA' PAB

and PAO are then free to be adjusted (for example

to try to equate the mean time to go from state A

to 0 to the mean time to go from state 1 to 0).
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states in the original chain. The approximation is done by

equating the tail behavior of the two distributions. The

parameters PAA' PAB and PAO might then be chosen to try to

match another characteristic of the approximating distribu-

tion (such as the mean) to that of the actual distribution.

Approximations such as this are particularly useful when

considering networks of queues whose total state space is

too large to handle by exact analytic techniques, but whose

component queues can each be approximated and then be

analyzed as one system. The development of a theory for

such approximations is an area open for further

investigation.

A final observation is that while the theorem in this

appendix has been formulated for a single first passage

time, it can be generalized to consider several first

passage problems simultaneously. For example, in a queueing

system, one may be interested in first passage times

conditioned on events such as a busy period ending before

a buffer overflow occurs. The tail distributions of such

first passage times can also be shown to be geometric or

exponential.
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