
Multi-Modal Reinforcement Learning with
Videogame Audio to Learn Sonic Features

by

Faraaz Nadeem

B.S. Computer Science and Engineering
Massachusetts Institute of Technology, 2019

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 18, 2020

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Eran Egozy

Professor of the Practice in Music Technology
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee



2



Multi-Modal Reinforcement Learning with Videogame Audio

to Learn Sonic Features

by

Faraaz Nadeem

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Most videogame reinforcement learning (RL) research only deals with the video com-
ponent of games, even though humans typically play games while experiencing both
audio and video. Additionally, most machine learning audio research deals with music
or speech data, rather than environmental sound. We aim to bridge both of these
gaps by learning from in-game audio in addition to video, and providing an accessible
introduction to videogame audio related topics, in the hopes of further motivating
such multi-modal videogame research.

We present three main contributions. First, we provide an overview of sound de-
sign in video games, supplemented with introductions to diegesis theory and Western
classical music theory. Second, we provide methods for extracting, processing, visu-
alizing, and hearing gameplay audio alongside video, building off of Open AI’s Gym
Retro framework. Third, we train RL agents to play on different levels of Sonic The
Hedgehog for the SEGA Genesis, to understand 1) what kinds of audio features are
useful when playing videogames, 2) how learned audio features transfer to unseen
levels, and 3) if/how audio+video agents outperform video-only agents.

We show that in general, agents provided with both audio and video outperform
agents with access to only video. Specifically, an agent with the current frame of
video and past 1 second of audio outperforms an agent with access to the current and
previous frames of video, no audio, and 55% larger model size, by 6.6% on a joint
training task, and 20.4% on a zero-shot transfer task. We conclude that game audio
informs useful decision making, and that audio features are more easily transferable
to unseen test levels than video features.

Thesis Supervisor: Eran Egozy
Title: Professor of the Practice in Music Technology

3



4



Acknowledgments

First and foremost, I would like to thank my parents and my sister Sanya for giving me

so much love and support throughout my life. I owe so many of my accomplishments

to my parents, and they continue to care for me no matter how many times I forget

to do my chores around the house. Sanya is the best sister in the whole wide world

<3 (wow sir).

I would like to give a huge thank you to my thesis supervisor and friend Eran

Egozy, for being such a helpful, fun, and kind mentor over the past 2 years. Your

experience with music and audio (and life in general) has been invaluable to this

individual with limited formal training. I will miss our weekly hangouts!

Thank you Tom7 for your hilarious and educational YouTube series on Learnfun

& Playfun [75]. It has been my dream to work on a videogame playing AI ever since

I watched those videos in high school several years ago.

Shout out to Mirchi, the MIT dance community, and to all of the amazing friends

I have made during my time here. You are the most inspiring people I have ever met,

and I am so lucky to have had the opportunity to interact with you all on a daily

basis for the past 5 years. Looking forward to see where the next chapter takes us!

5



6



Contents

1 Introduction 21

1.1 Sonic Video Game Franchise . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.1 Core Innovations . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.2 Gameplay Overview . . . . . . . . . . . . . . . . . . . . . . . 25

1.1.3 Changes in Sonic 2 and Sonic 3&K . . . . . . . . . . . . . . . 27

2 Background 29

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 RL for Videogames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Arcade Learning Environment . . . . . . . . . . . . . . . . . . 31

2.2.2 Open AI Gym Retro . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Policy Gradient Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Policy Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.4 Proximal Policy Optimization . . . . . . . . . . . . . . . . . . 36

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Videogame Audio Theory 39

3.1 Videogame Diegesis Theory . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 IEZA Framework . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Sound as a Critical Gameplay Component . . . . . . . . . . . 43

3.2 Brief Introduction to Western Music Theory . . . . . . . . . . . . . . 43

7



3.2.1 Notes and Intervals . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Interval Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Chords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Overtones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5 Western Associations in Music . . . . . . . . . . . . . . . . . . 49

3.2.6 Application to Videogame Sound Effects . . . . . . . . . . . . 49

3.2.7 Application to Videogame Music . . . . . . . . . . . . . . . . 51

4 Working with Audio 53

4.1 Extracting Audio from Gym Retro . . . . . . . . . . . . . . . . . . . 53

4.2 Offline Playback with Audio . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Real Time Playback with Audio . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Buffer Underflow and Overflow Issues . . . . . . . . . . . . . . 55

4.3.2 Smoothing with Dynamic Resampling . . . . . . . . . . . . . . 56

4.3.3 Tradeoffs in Practice . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Visualizing Audio with Spectrograms . . . . . . . . . . . . . . . . . . 58

4.4.1 Short Time Fourier Transform . . . . . . . . . . . . . . . . . . 59

4.4.2 Mel Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Hyperparameter selection . . . . . . . . . . . . . . . . . . . . 61

4.4.4 Visibility of Sound Effects . . . . . . . . . . . . . . . . . . . . 63

5 Experimental Setup 67

5.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Save States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.2 Episode Boundaries . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Stochastic Frame Skip . . . . . . . . . . . . . . . . . . . . . . 68

5.1.4 Memory Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.5 Video Processing . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.6 Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.7 Action Space Reduction . . . . . . . . . . . . . . . . . . . . . 71

5.1.8 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . 72

8



5.1.9 Random Start . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Agent Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Observation Encoder . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Extension to Video Sequences . . . . . . . . . . . . . . . . . . 76

5.2.3 Extension to Audio Spectrograms . . . . . . . . . . . . . . . . 77

5.2.4 Experience Generation . . . . . . . . . . . . . . . . . . . . . . 77

5.2.5 PPO Implementation . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 Mean Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 Augmented Video Playback . . . . . . . . . . . . . . . . . . . 80

5.4 Task Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Agent Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 "Hold Right" Baseline . . . . . . . . . . . . . . . . . . . . . . 82

5.5.2 Human Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.3 Agent Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Results 85

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 "Hold Right" Baseline . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Human Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.3 Gotta Learn Fast . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Video-Only Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Agent 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Agent 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.3 Agent 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Audio+Video Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Relative Receptive Field Comparison . . . . . . . . . . . . . . 94

6.4.2 Learned Audio Features . . . . . . . . . . . . . . . . . . . . . 95

6.4.3 Not Learned Audio Features . . . . . . . . . . . . . . . . . . . 98

9



6.4.4 Learned Video Features . . . . . . . . . . . . . . . . . . . . . 100

6.5 Further Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusion 103

7.0.1 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Tables 107

B Figures 119

10



List of Figures

1-1 Screenshots from Sonic The Hedgehog. From left to right: 1) In Green

Hill Zone, Sonic uses his momentum to run through a vertical loop,

while collecting rings. 2) In Marble Zone, Sonic pushes a block onto a

switch that will lift the spiked chain blocking his path. 3) In Labyrinth

Zone, Sonic defeats a Badnik during an underwater section of the level. 23

1-2 The full map of Green Hill Zone Act 1. Ability to navigate towards

upper elevation in the level is rewarded with fewer obstacles and faster

paced platforming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1-3 Screenshots from Sonic The Hedgehog 2. From left to right: 1) In

Mystic Cave Zone, Sonic is followed by Tails up a small ramp. 2)

In Hill Top Zone, Sonic revs up a Spin Dash in order to gain the

momentum needed to climb the steep slope. 3) In Chemical Plant

Zone, Sonic platforms up a narrow column to escape the rising toxic

liquid. Note: Tails is missing from the last two screenshots because he

was left behind, or lost a life. He returns by default after a short time. 26

1-4 Screenshots from Sonic 3 & Knuckles. From left to right: 1) In Mush-

room Hill Zone Act 1, Sonic rotates around a device that will launch

him into the air, if his release is timed correctly. 2) In Mushroom Hill

Zone Act 2, a nearly identical section as the previous screenshot is tex-

tured differently to reflect fall colors. 3) In Carnival Night Zone, Sonic

and Tails encounter Knuckles in a cutscene. . . . . . . . . . . . . . . 27

2-1 Environment loop of an RL setup. . . . . . . . . . . . . . . . . . . . . 30

11



2-2 A graph showing the dependencies of a Partially Observable Markov

Decision Process (POMDP) unraveled for the first 3 time steps. Arrows

indicate flow from dependencies to values sampled from distributions

conditioned on these dependencies. . . . . . . . . . . . . . . . . . . . 33

3-1 Visual representation of the IEZA Framework. . . . . . . . . . . . . . 40

3-2 Valorant Haven map. Left: minimap showing the three capture sites,

marked in red. The limited field of view created by the narrow and

winding pathways, along with the ability to shoot through some walls,

make sound critical for finding enemy players. As a counter strategy,

if one attacker can draw defender attention via noise to a site (ex. A,

far left), it will take a long time for the defenders to rotate and defend

the intended attacker site (ex. C, far right). Right: In game example

of a U-shaped path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3-3 Door puzzle in Sandopolis Zone 2 with audio feedback. Left: Sonic

pushes a black device to the right, which lifts a door. Over time, the

device shifts back to the left. A steady clicking noise indicates that the

door is slowly closing, even if both the device and door are off-screen.

Right: Sonic makes it past the closing door, just in time. The same

cannot be said for Tails. . . . . . . . . . . . . . . . . . . . . . . . . . 44

3-4 Waveforms of Interval Ratios. Lower integer interval ratios resolve

to consonance in part by repeating more often within the same time

frame (# repeats). Top row, left to right: Unison (21), Major Triad

(5), Minor Second (1.5). Bottom row, left to right: Octave (21), Minor

Triad (2), Augmented Fourth (<1). . . . . . . . . . . . . . . . . . . . 46

3-5 String partials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

12



3-6 Overtones. Left, top to bottom: Flute, Oboe, Violin. Right: Overtones

produced by the acquiring ring sound in Sonic. The root note is 2093

Hz, or C7 on a piano. The top 3 remaining frequency magnitudes from

left to right are 5242 (2.5 · 2093) Hz, 9421 (4.5 · 2093) Hz , and 16745

(8 · 2093) Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3-7 Drowning Theme and Ring Sounds. Top: The drowning theme starts

out slower, and increases in speed, with dissonant jumps between oc-

tave intervals. Bottom left: three consonant notes of the ring acquiring

sound. Bottom right: alternating dissonant notes of the losing rings

sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4-1 We estimate 0.007 seconds per step in the environment loop and there-

fore apply an artificial delay 𝑑 of 0.01 seconds to reach 60 fps. We see

that without smoothing (blue), small error in our estimation adds to

repeated buffer underflow, or full 16k frame write capacity. After ap-

plying smoothing method with dynamic resampling (orange), we avoid

sample truncation and also prevent buffer underflow. . . . . . . . . . 56

4-2 We present two extreme cases: repeated overflow with no artificial de-

lay (blue), and repeated underflow with large artificial delay (orange).

Our smoothing method with dynamic resampling prevents both buffer

overflow and underflow in both cases (green, red). . . . . . . . . . . . 58

4-3 An audio clip of Sonic jumping twice, with the Green Hill Zone theme

playing in the background. On the left, shown as a 1D waveform. On

the right, shown as a 2D spectrogram. It is much easier to see the jump

sounds in the spectrogram (the lines curving upward, approximately

110 to 210 and 425 to 525 on the x-axis). . . . . . . . . . . . . . . . . 59

13



4-4 Three ring-related spectrograms, with widths scaled proportional to

the audio length. From left to right: 1) Isolated audio of Sonic col-

lecting a ring. 2) Sonic collecting a ring to the backdrop of the Hill

Top Zone theme. Note how the ring sound effect (approximately 125

to 350 on the x-axis) is still clearly visible in the higher frequencies. 3)

Isolated audio of Sonic losing his rings. . . . . . . . . . . . . . . . . . 63

4-5 Three sound effects that are low pitched. These are harder to identify

in a spectrogram with the Zone theme playing in the background, since

the lower frequencies (around mel filter 150 to 256 on the y-axis) are

more "polluted" with the rhythmic part of the backing track. From left

to right: 1) Losing a life. 2) Losing a life from drowning. 3) Defeating

an enemy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4-6 Video and audio approaches to conveying that Sonic is drowning. Left:

A small see-through bubble in the shape of a 3 flashes on and off be-

tween timesteps. Once this bubble counts down to 0, Sonic will drown.

This is very hard to notice, even when watching continuous video play-

back. Right: The loud and ominous drowning theme interrupts the

Zone theme and any other sound effect being played at the time. It

very clearly takes up the entire range of of the audio spectrogram. . . 64

5-1 Examples of special stages and a boss level. From left to right: 1)

Special stage in Sonic 2 where Sonic collects rings in a twisting halfpipe

to retrieve a Chaos Emerald. 2) Special stage in Sonic 3&K where Sonic

navigates a sphere with a top-down view to retrieve a Chaos Emerald.

3) Boss fight against Dr. Robotnik at the end of Lava Reef Zone, where

invincible Super Sonic wins the battle with ease. . . . . . . . . . . . . 68

5-2 Visual demonstration of frame skip. . . . . . . . . . . . . . . . . . . . 69

5-3 In Labyrinth Zone Act 2, significant backtracking is required to progress

through the first part of the level. We found that section in red and

orange takes a human around 20-30 seconds to complete. . . . . . . . 73

14



5-4 CNN architecture used to process a grayscale frame of video into a

hidden state of size 256. . . . . . . . . . . . . . . . . . . . . . . . . . 75

5-5 CNN architecture for the observation encoder. The input observation

in this example is a grayscale frame of video. . . . . . . . . . . . . . . 75

5-6 Experience Generation Hyper-parameters. . . . . . . . . . . . . . . . 78

5-7 PPO Hyper-parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5-8 Test Set Levels. These were selected by first randomly choosing Zones

with more than 1 level, and then randomly picking an act from each

selected zone [47]. This ensures that an agent trained jointly is already

familiar with the textures and music in each test level. . . . . . . . . 81

6-1 Progression over train time, evaluated every 5 million steps. Left:

Progression of joint score. Right: Progression of zero-shot transfer score. 87

6-2 Action entropy over train time. . . . . . . . . . . . . . . . . . . . . . 89

6-3 In the joint train task, Agent 1 manages to both underfit and clock

watch. Left: Sonic waits in front of a spike, with an high entropy

action distribution. Right: Sonic jumps over, 60 seconds in, because

the agent has learned to associate "1:00" on the clock with jumping. . 90

6-4 In the solo train task, Agent 1 uses falling bricks to input a frame

perfect spin dash and break the wall blocking its path. Top Left:

Sonic is hunched over and the agent waits for the leftmost brick to

fall. Agent keeps pressing down on the D pad. Top Right: Leftmost

brick falls far enough. Agent presses B to begin charging spin. Bottom

Left: Sonic is in a spinning ball, and the brick second from the left is

falling. Agent presses right on the D pad to start releasing the spin

dash. Bottom right: Sonic begins to spin dash through the wall. . . . 91

15



6-5 Agent 2 detects various objects during training. Top Left: the agent

jumps on a spring to launch Sonic over the pit of spikes. Top Right: the

agent recognizes that Sonic needs to jump over the spikes. Bottom Left:

an example of a sideways spring that hampers progress by pushing

Sonic back to the left. Bottom Right: a powerup TV that gives an

extra life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6-6 Agent 2 performs multi-step actions. Left: Sonic presses a button

which opens the door. Right: Sonic pushes a box out of the way while

avoiding jumping into the spikes above. . . . . . . . . . . . . . . . . . 92

6-7 Agent 3 uses temporal information to judge its progression up the

ramp. The two screenshots on the left are moments when the agent

decides it does not have enough momentum, and backtracks to the left.

The pink and dark blue ScoreCAM weighting in the screenshot on the

right shows the agent correctly understands that the screen shifting

upwards means that Sonic has enough momentum to make it up the

ramp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6-8 Agent 3 learns to memorize parts of Star Light 2, which backfires when

it misses a jump. Top Left: Agent runs to the right. Top Right: CNN

activations indicate it is time to jump. Bottom Left: Sonic does not

reach the top of the platform. Bottom Right: CNN activations indicate

it is time to jump again, but Sonic is already holding down B from the

previous jump. He is stuck. . . . . . . . . . . . . . . . . . . . . . . . 94

6-9 Agent 4 listens to ring sounds and gives increased probability to mov-

ing right. The smaller relative receptive field of Agent 4 makes it so

that the CNN activations are not as coherent. It picks up on subsec-

tions of the losing rings sound, and is therefore more susceptible to

misidentifying a different sound effect with similar components. . . . 95

16



6-10 In Hill Top 2, during a zero-shot run, Agent 5 looks at ring sound

as motivation to move right. Left: The agent acquires rings while

running up a steep cliff. Right: The agent continues to run into the

rock blocking its path until the ring sound is freed from its memory. . 96

6-11 Agent 5 handles two cases of drowning. Top: problem is solved by

simply jumping up and getting air from above the water. The glow

around Sonic shows that the model understands he has broken up to

the surface to breathe the air, and is free to return below. Bottom:

agent navigates Sonic to a bubble stream on the left, and waits for a

bubble to appear. The model highlights Sonic as he breathes in the air

bubble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6-12 Agent 5 gets out of the water after hearing a ping. Left: Sonic is

holding down right on the D pad. Right: Sonic presses B to jump, and

the spectrogram shows that this action is informed by the ping sound,

highlighted in pink near the bottom middle. . . . . . . . . . . . . . . 98

6-13 Agent 5 attends to a specific part of the music when deciding to jump,

instead of the spike directly blocking its path. We see that this is a

kind of periodic activation that loops with the music, as the agent waits

for the music to repeat when it reaches the second spike. It is likely

an artifact of attributing reward gained from jumping over the spike

to the music instead of the spike itself. . . . . . . . . . . . . . . . . . 99

6-14 Agent 5 does not value the defeating Badnik or jump sound effects.

Left: the three white peaks near the bottom of the spectrogram come

from defeating 3 Badniks in a row. The leftmost peak temporally

overlaps with the jump sound effect, which are the upward curving

lines above it. Neither of these are considered to be very important

for the audio CNN. Right: Sonic has just finished attacking the third

Badnik. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

17



6-15 Agent 5 learns to perform visually complicated multi-step procedures.

Top Row: from left to right, the agent 1) identifies the location of a

weight on a seesaw-like pair of mushrooms 2) lands on the mushroom

on the right, sending the weight flying in the air 3) is launched into

the air once the weight returns to the ground. Bottom Row: the agent

1) begins pushing the black device to the right 2) sees that this has

lowered the wall on the right 3) leaves the stone and jumps through

the opening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B-1 Graph of training episode rewards over time. Agent 3 and Agent 4

achieve significantly higher scores on these four levels than the other

agent variants. This appears to be the result of memorizing certain

sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B-2 Agent 1 action distribution entropy over time for the solo train task. . 121

18



List of Tables

5.1 Agent Variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Performance summary of all 5 agent variants and 3 baselines over all

3 tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.1 Sonic Moveset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Game to Zone List. Zone abbreviations noted in parentheses. . . . . . 108

A.3 Hold Right Train Baseline. . . . . . . . . . . . . . . . . . . . . . . . . 109

A.4 Hold Right and Human Test Baselines. . . . . . . . . . . . . . . . . . 109

A.5 Agent 1 (1V 256 n.p.) Joint Scores. . . . . . . . . . . . . . . . . . . . 110

A.6 Agent 1 (1V 256 n.p.) Score Progression. . . . . . . . . . . . . . . . . 110

A.7 Agent 1 (1V 256 n.p.) Test Scores. . . . . . . . . . . . . . . . . . . . 111

A.8 Agent 2 (1V 256) Joint Scores. . . . . . . . . . . . . . . . . . . . . . . 111

A.9 Agent 2 (1V 256) Score Progression. . . . . . . . . . . . . . . . . . . 112

A.10 Agent 2 (1V 256) Test Scores. . . . . . . . . . . . . . . . . . . . . . . 112

A.11 Agent 3 (2V 512) Joint Scores. . . . . . . . . . . . . . . . . . . . . . . 113

A.12 Agent 3 (2V 512) Score Progression. . . . . . . . . . . . . . . . . . . 113

A.13 Agent 3 (2V 512) Test Scores. . . . . . . . . . . . . . . . . . . . . . . 114

A.14 Agent 4 (1VA 2 · 256 128H) Joint Scores. . . . . . . . . . . . . . . . . 114

A.15 Agent 4 (1VA 2 · 256 128H) Score Progression. . . . . . . . . . . . . . 115

A.16 Agent 4 (1VA 2 · 256 128H) Test Scores. . . . . . . . . . . . . . . . . 115

A.17 Agent 5 (1VA 2 · 256 512H) Joint Scores. . . . . . . . . . . . . . . . . 116

A.18 Agent 5 (1VA 2 · 256 512H) Score Progression. . . . . . . . . . . . . . 116

A.19 Agent 5 (1VA 2 · 256 512H) Test Scores. . . . . . . . . . . . . . . . . 117

19



20



Chapter 1

Introduction

The next decade promises to show a rise in automation stemming from current re-

search being done in machine learning (ML). Existing contributions to ML research

allow us to train models that can 1. learn low dimensional representations of high

dimensional data, such as video, text, and audio, and 2. learn how to make classifi-

cations or decisions based on these representations [47].

Some studies forecast that 8 million vehicles will ship with SAE Level 3, 4, and 5

(level 5 being fully autonomous) self driving cars by 2025, due to our ability to extract

and learn from features in LIDAR and camera data [10]. Chat bots are leveraging

chat histories to be able to answer large numbers of simple requests in the customer

service industry, and images of cancerous cells are being used to train models for

cancer diagnosis in the medical industry.

Although classification and decision making are well studied areas of machine

learning, most research and practical application has involved the use of text or video

based data, rather than audio. The audio research that exists can largely be subdi-

vided into use of music or speech. Music data is commonly used for genre classification

and recommendation tasks, and speech data is most often used for captioning, as a

means of transforming the medium into text data. Only a small portion of research

has approached other forms of audio data, such as environmental or feedback-related

sounds [62].

This gap in research needs to be addressed since environmental audio is critical

21



to achieving human performance on a number of tasks, especially when visual or

textual clues are not sufficient. Self driving cars cannot achieve full automation

without being able to react and respond to emergency vehicle sirens in the distance,

or nearby car horns. The tone and pitch of a customer’s voice can help identify

the sentiment of a sentence that was spoken [29], and background noise can help

identify their environment [39]. Doctors rely on audio cues from a heartbeat monitor

while navigating the visually dense and procedurally complicated task of performing

surgery. Emergency responders listen for calls for help or natural dangers such as

burning, to locate the emergency when arriving at a scene.

Environmental audio cues can also serve to reinforce existing visual ideas. A car

failing to start can be corroborated by the sound of a sputtering engine, and a sizzle

on the pan verifies that food is cooking. The clicking feedback produced by a mouse,

keyboard, or button, confirms that the hardware or software has received the user

input. Realistic environmental sound design helps to fully submerge an individual

into the world of a movie or TV show [34].

In this work, we use video games as an environment to understand how reinforce-

ment learning (RL) models can incorporate both audio and video observations, to

make decisions with immediate consequence and long term goal.

We present three main contributions. First, we provide an overview of sound

design in video games, accessible to a non-musician audience, supplemented with in-

troductions to diegesis theory and Western classical music theory. Second, we provide

methods for extracting, processing, visualizing, and hearing gameplay audio alongside

video, building off of Open AI’s Gym Retro framework. Third, we train RL models to

play on different levels of Sonic The Hedgehog for the SEGA Genesis to understand

1) what kinds of audio features are useful when playing videogames, 2) how learned

audio features transfer to unseen levels, and 3) if/how audio+video agents outperform

video-only agents.

22



Figure 1-1: Screenshots from Sonic The Hedgehog. From left to right: 1) In Green
Hill Zone, Sonic uses his momentum to run through a vertical loop, while collecting
rings. 2) In Marble Zone, Sonic pushes a block onto a switch that will lift the spiked
chain blocking his path. 3) In Labyrinth Zone, Sonic defeats a Badnik during an
underwater section of the level.

1.1 Sonic Video Game Franchise

In this section, we go over some of the history behind the Sonic videogames, and

provide an overview of gameplay. Both are important for understanding how the

Sonic games on the SEGA Genesis compare to other videogames being used in RL

research, and what challenges we can expect our model to learn from.

SEGA, the Japanese multinational video game developing and publishing com-

pany, commissioned a team in 1990 to create a mascot that could be the face of a

franchise rivaling Nintendo’s iconic characters like Mario and Link [15]. In 1991, this

goal was achieved through the realization of Sonic, the main character of Sonic The

Hedgehog (Sonic 1) for the SEGA Genesis. The game features the adventures of a blue

anthropomorphic hedgehog in his quest to defeat the evil Dr. Robotnik, and retrieve

the stolen chaos emeralds (figure 1-1). Sequels to this game, Sonic The Hedgehog

2 (Sonic 2) and Sonic 3 & Knuckles (Sonic 3&K), were released in 1992 and 1994

respectively. The commercial success of the games cemented Sonic as SEGA’s core

videogame franchise.

1.1.1 Core Innovations

The Sonic games boast a fast-paced style of play designed to leverage the Genesis’

processing speed, which was the console’s main advantage over its competitors, such

23



as the SNES. Programmer Yuji Naka capitalized on the speed running habits of NES

players, who would memorize and speed through the starting levels of Mario and other

games because save files were uncommon at the time [38]. Sonic level designs feature

multiple paths to completing each level, with higher elevation trajectories typically

rewarding players with more opportunities for high speed platforming, in exchange

for increased difficulty (figure 1-2).

The Genesis was the first major 16-bit home console to reach the market, which is

why Sonic was one of the most visually detailed, bright, and colorful games when it

was released. Each level visually has foreground, middle ground, and background lay-

ers, and Zones are themed with vegetation, buildings, machinery, mountains, bodies

of water, caves, sand dunes, and other natural or man-made landscapes.

The SEGA Genesis also features a sound system that was advanced and unique

for its time. The NES (1983) for example, ran on the Ricoh RP2A03 audio chip

which only offered 5 audio channels (2 pulse waves, 1 triangle wave, 1 noise, 1 sample

playback) [16]. Sound design for the NES was limited to manipulating pitch or

frequency of these channels. The SNES (1990) had a more developed sound system

with 8 channels, all centered around sample playback. Due to audio RAM constraints,

large waveforms on the SNES were often put together in creative ways by looping

single cycle waveforms [20]. The SEGA Genesis (1988) sound system, on the other

hand, included the Yamaha YM2612 synthesizer and Texas Instruments SN76489

audio chip for a total of 10 audio channels (6 operator fm synthesis or sample player, 3

square wave, 1 noise) [19]. Having more channels along with the ability to synthesize

audio allowed for a kind of hybrid system, which was more capable of translating

complex musical compositions than the NES, and did so more naturally than the

SNES.

Masato Nakamura of the JPop band "Dreams Come True" was commissioned to

compose the music for Sonic 1 and 2. He took the unorthodox approach of treating

the game as a film, and was challenged to create themes that matched the feel of

gameplay, while only having access to early development sketches and visuals [37].

Nakamura and co. used this advanced sound system to create a number of game

24



Figure 1-2: The full map of Green Hill Zone Act 1. Ability to navigate towards upper
elevation in the level is rewarded with fewer obstacles and faster paced platforming.

scores that remain iconic to this day. The Sonic Zone themes in particular are criti-

cally acclaimed for their quality and diversity, and how they pushed the boundaries

of videogame music.

1.1.2 Gameplay Overview

Sonic The Hedgehog is a 2D side scrolling platforming game. The main idea of the

game is to navigate Sonic through vertical loops, over bottomless pits, off of springs,

while collecting rings and defeating robot enemies. A central game mechanic is that

Sonic can build great speed if his movement is not interrupted by stopping or bumping

into obstacles, which can then be used to launch him into the air off of ramps, or

plow through an array of enemies. The first game consists of 7 zones, and each zone

has 3 acts. Each act can be considered to be a level. The last level of each zone ends

with a boss fight against Dr. Robotnik.

Sonic encounters a number of different types of enemies called "Badniks", who are

animals trapped in Dr. Robotnik’s evil robotic skeletons. Some Badniks can fire at

Sonic, some traverse a set path, and others can fly in the air. When Sonic jumps, he

turns into a ball with his spikes protruding from the center. In this ball state, Sonic

can defeat enemies that he touches.

There are also different hazards that Sonic must avoid, such as pits, spikes, lava,

rotating spiked balls on chains, crushing platforms, and drowning underwater.

Rings are placed in groups of 3 or more along the levels. They give points, and

act like a shield. If Sonic is hit by an enemy or hazard without any rings, he loses a

life. But if Sonic has at least 1 ring, then hitting an enemy or hazard knocks Sonic

backwards and he forfeits up to 20 of his rings, without losing a life. The rings are

25



Figure 1-3: Screenshots from Sonic The Hedgehog 2. From left to right: 1) In Mystic
Cave Zone, Sonic is followed by Tails up a small ramp. 2) In Hill Top Zone, Sonic
revs up a Spin Dash in order to gain the momentum needed to climb the steep slope.
3) In Chemical Plant Zone, Sonic platforms up a narrow column to escape the rising
toxic liquid. Note: Tails is missing from the last two screenshots because he was left
behind, or lost a life. He returns by default after a short time.

available for a short period of time to recollect. If Sonic falls into a bottomless pit,

drowns, gets crushed by a platform, or takes more than 10 minutes to complete a

level, then he loses a life regardless of how many rings he has. For every 100 rings

collected, Sonic gains an extra life.

Sonic starts the game with 3 lives, and upon losing all 3 lives, the player may

"continue" and return to the beginning of the level. Progression is made easier with

checkpoints. Upon passing a checkpoint, which is visually indicated by a lamp post

whose spherical top spins while being passed, Sonic is able to return to this point

rather than the beginning of the level when he loses lives.

Many levels contain sections which are underwater. Sonic can survive approxi-

mately 30 seconds underwater until he needs to find an air bubble or jump out of the

water to avoid drowning.

Video monitors are placed throughout the levels, which provide Sonic with powerups

when destroyed. Sonic can receive an extra 10 rings, an extra life, a shield, a tempo-

rary speed boost, or temporary invincibility from these monitors.

Sonic can also collect chaos emeralds in hidden special stages. Obtaining all 7

chaos emeralds allows Sonic to turn into Super Sonic, which is a mode that consumes

rings in exchange for invincibility and super speed.

26



Figure 1-4: Screenshots from Sonic 3 & Knuckles. From left to right: 1) In Mushroom
Hill Zone Act 1, Sonic rotates around a device that will launch him into the air, if his
release is timed correctly. 2) In Mushroom Hill Zone Act 2, a nearly identical section
as the previous screenshot is textured differently to reflect fall colors. 3) In Carnival
Night Zone, Sonic and Tails encounter Knuckles in a cutscene.

1.1.3 Changes in Sonic 2 and Sonic 3&K

There are a number of key add-ons to Sonic 1 in Sonic 2 (figure 1-3) and Sonic 3&K

(figure 1-4). These add-ons provide additional challenges for our models, and more

tools to complete them.

Sonic 2 introduces Tails, a shy orange fox, as a sidekick to Sonic. In one player

mode, Tails follows along as Sonic progresses through each level, and autonomously

interacts with his nearby environment. Each level is on average longer than Sonic 1,

and there is more visual variety between levels. The Spin Dash Attack is introduced

as a new move, where Sonic can charge up a spin from a stationary position before

releasing and dashing off with a full speed rolling attack.

Sonic 3&K retains the additions from Sonic 2, with a few more changes. Mid-level

cutscenes add a cinematic element to the game, and feature a new character called

Knuckles, a red dreadlocked animal with long quills. Levels are designed to be even

longer and more complicated. Levels within zones now have slight differences in visual

textures and music, according to the plot progression. For example, a cutscene after

Angel Island Zone Act 1 shows Dr. Robotnik burning down the island; the following

visuals in Act 2 are ashy, with embers strewn about, and the backing musical theme

has rougher instrumentation than Act 1.

27



28



Chapter 2

Background

In this section we will cover some background on reinforcement learning (RL), frame-

works for interacting with videogames in an RL setup, and related works.

2.1 Reinforcement Learning

Reinforcement learning [73] [26] is an increasingly popular field of machine learning

research. It is a semi supervised approach for learning complex sequential decision

making with potentially sparsely labeled data or delayed reward.

Many see high potential in RL research to be able to solve complex real life tasks,

which can be modeled as sequential interactions with an environment. Completely

supervised methods commonly suffer from issues where large amounts of labeled data

must be provided in order for the model to be able to generalize.

For example, we can consider the task of playing the game Go, which is a board

game with simple rules but complex strategy. In a supervised setting, we would need

to curate a dataset of millions of board positions, and label which move to take at

each position. Curating such a dataset with optimal moves is impossible since the

full move tree of Go has not yet been enumerated; in fact, Go has a higher branching

factor than Chess, which has not been fully enumerated either [36]. We might resort

to using a database of human Go games, where the labels for board positions are

the moves taken by the winner of the game. Even if we were able to accumulate a

29



Figure 2-1: Environment loop of an RL setup.

sufficient number of board states in this fashion, we would still be training a model

that at best achieves human level performance, rather than super-human.

In the RL setting, we instead learn from interactions between an agent and envi-

ronment (figure 2-1). Interactions are generated as follows. At a given time step, the

agent observes the environment state and decides to take an action on the environ-

ment. The environment responds by updating its state according to its state-action

transition rules, and provides a reward to the agent. The agent’s goal is to maximize

the total reward over one sequence of decisions, called an episode.

The Go board consists of 18 horizontal and vertical lines, and players can place

their pieces at each intersection. Therefore, the environment state can be represented

by 324 values indicating whose piece, if any, is on the corresponding board intersection.

The agent takes actions by placing one of their pieces on an empty intersection, and

the board transitions to a new state according to Go’s piece capturing rules. A

reward of 1 is given to the player who controls more territory at the end of the game,

when all pieces have been placed. Although this is a simple problem setup without

any reliance on heuristics, RL agents have been trained to consistently beat world

champion caliber Go players [69] [68] [71].

2.2 RL for Videogames

Board games remain popular settings for RL research, because the agent and envi-

ronment are readily defined, and it is possible to learn increasingly complex policies

from simple rules or transitions. It becomes much harder, however, to use RL for

30



physical or environmentally more complicated tasks. Real world setups may suffer

from mechanical issues, generate agent-environment interactions very slowly, and rely

on sensors or motors that are too expensive or unreliable for defining clear actions

and rewards.

Videogames provide a natural bridge between simple games and complicated real

world setups. Many videogames are already created with the goal of emulating real

world environments or decision making, so we expect that performance in these vir-

tual environments would transfer to physical ones too. Indeed, the videogame-like

environment called Roboschool [48] has an option to train on a simulation of the

physical Atlas robot [11].

At the same time, videogames necessarily have well defined agents and environ-

ments because they are programmed to run on computers. This comes with the added

benefit of potentially being able to run identical environments in parallel, generating

interactions faster than real time, and having fine grained control over all aspects of

the training setup.

We will now proceed with discussing popular frameworks for videogame RL re-

search, along with some significant results.

2.2.1 Arcade Learning Environment

The Arcade Learning Environment (ALE) [6] is an interface to hundreds of Atari 2600

videogame environments that was introduced as a challenge problem and platform to

facilitate RL research on videogames. It is a rigorous testbed for research on model

learning, transfer learning, intrinsic motivation, and a number of other related topics.

The Deep Q Network (DQN) [45] model baseline in 2015 is considered to be one of

the first major baselines for the ALE. The DQN uses a CNN architecture to process

the videogame screen into a hidden state representation, and then uses Q Learning

as the policy gradient algorithm to optimize for reward.

In 2020, Agent57 [3] became the first model to achieve super-human performance

on all 57 Atari 2600 benchmark games. It builds off of existing improvements to the

original DQN model, along with advancements in short-term memory [28], episodic

31



memory [4], exploration [63], and meta-controlling [81]. Agent57’s performance on the

ALE benchmark is impressive, particularly because different games have completely

different environments or objectives.

The ALE is a useful benchmark, but it is limited to a preset number of game

environments, and does not support game audio. Indeed, the benchmark consists of a

total of 57 games, and lack of sound generation is labeled as a feature for enabling fast

emulation with minimal library dependencies. Even if audio features were accessible,

we do not expect to learn much from the simplistic Atari 2600 sounds. The Atari

2600 only provided 2 channels of 1-bit monaural sound with 4-bit volume control [40],

as compared to the 10 channels of 16 bit audio on the SEGA Genesis.

2.2.2 Open AI Gym Retro

Open AI Gym Retro [18] [49] is a more recently developed platform for reinforcement

learning research on video games. It is built on the Libretro API [59], which gives

it natural cross platform and emulator compatibility, and access to features such as

game audio. Currently, there are thousands of games available to use with Gym

Retro. Anyone can use the integration tool, which helps to locate memory addresses

of game state variables such as score, to incorporate new ROMs into the library.

Gotta Learn Fast [47] is a transfer learning benchmark with Gym Retro on the

Sonic games for the SEGA Genesis, and is one of the primary inspirations for this

work. It shows that pretraining on 47 train levels before fine tuning on 11 test levels

achieves the best test result when compared to several other models. They do not

perform any audio-related experiments, although the Sonic game audio is accessible

through the Gym Retro framework.

2.3 Policy Gradient Algorithm

In this section, we build towards and define the policy gradient algorithm used to

train our RL models.

32



Figure 2-2: A graph showing the dependencies of a Partially Observable Markov
Decision Process (POMDP) unraveled for the first 3 time steps. Arrows indicate
flow from dependencies to values sampled from distributions conditioned on these
dependencies.

2.3.1 POMDPs

Go is a fully observable and deterministic game, which means that the board is

a true representation of the game state, and there is a single transition for each

action-state pair. On the other hand, Sonic and many other videogames are only

partially observable and stochastic. In other words, video and audio are not enough

to understand the true underlying game state, and performing an action in a given

game state does not lead to a guaranteed outcome because of randomness in the

system.

To account for this, we define our agent-environment interactions more concretely

as partially-observable Markov decision processes (POMDPs) [2] [25]. Under this

formulation, we maintain our core spaces of actions 𝐴, states 𝑆, and rewards 𝑅,

and additionally define an environment observation space 𝑂, where observations are

surface-level representations of a true state. We also define our transition and ob-

servation functions 𝒯 ,𝒪 to now follow stochastic distributions, and leave our reward

function ℛ as a deterministic mapping. A visual representation of a POMDP is given

by figure 2-2.

In the Sonic games, we can imagine a scenario where Sonic is being approached by

a Badnik. The true underlying game state tells us the magnitude and direction of the

Badnik’s velocity. An observation of this state might be a single frame of video which

33



tells us the Badnik is close to Sonic, but not its relative velocity. When the agent

takes an action to control Sonic, performing a spin attack may lead to a transition

to a new state where the Badnik is defeated, depending on if the Badnik decided to

move closer to Sonic. This would result in a new visual observation of the defeated

Badnik, and a reward of 100 points.

More concretely, we can say our agent operates under a policy 𝜋 with parameters

𝜃, that produces actions given an observation, 𝜋𝜃 : 𝐷𝑖𝑠𝑡(𝑂) → 𝐴. At time 𝑡, the

agent takes an action 𝑎 ∈ 𝐴 while in state 𝑠 ∈ 𝑆, transitions to state 𝑠′ ∼ 𝒯 (𝑠, 𝑎, 𝑠′),

and receives observation 𝑜 ∼ 𝒪(𝑜, 𝑠′) and reward 𝑟 = ℛ(𝑠, 𝑎) ∈ 𝑅.

2.3.2 Objective Function

We wish to maximize the expected return of our policy 𝜋 with parameters 𝜃 such that

max
𝜃

𝐽(𝜋𝜃) = E𝜏∼𝜋𝜃

[︃
𝐻∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]︃
for episode step 𝑡, horizon 𝐻, and discount factor 𝛾. In other words, we want to

find a policy that maximizes the expected reward over an episode. In practice, we set

𝛾 < 1 to encourage faster reward accumulation.

We can recursively compute the value of taking an action 𝑎𝑡 given the observation

𝑜𝑡, using the Bellman Equation [7]

𝑄(𝑜𝑡, 𝑎𝑡) =
∑︁
𝑠

𝒪(𝑜𝑡|𝑠)

⎛⎜⎜⎜⎝ℛ(𝑠, 𝑎𝑡) + 𝛾
∑︁
𝑜𝑡+1
𝑎𝑡+1
𝑠𝑡+1

𝒪(𝑜𝑡+1|𝑠) 𝒯 (𝑠𝑡+1|𝑠, 𝑎𝑡)𝑄(𝑜𝑡+1, 𝑎𝑡+1)

⎞⎟⎟⎟⎠
The optimal policy 𝜋* is therefore

𝜋*(𝑜) = max
𝑎

𝑄(𝑜, 𝑎)

Unfortunately, defining such a policy is impossible in practice. In many videogames,

34



it is computationally infeasible to enumerate all possible spaces, let alone distributions

𝒯 ,𝒪,ℛ, or table of observation-action values 𝑄(𝑜, 𝑎), which itself has exponential

branching complexity. This motivates us to use a model-free (i.e. without knowledge

of 𝒯 ,𝒪,ℛ) algorithm, which we also expect to generalize better.

We can train a neural network based policy with parameters 𝜃 to learn a value or

reward estimate for observation-action pairs, 𝑄𝜋𝜃(𝑜, 𝑎). Training data is gathered by

generating a set of agent experiences with the environment, and sampled randomly

with a replay buffer. To normalize for observations with large magnitude values

independent of action, we use the advantage function

𝐴𝜋𝜃(𝑜, 𝑎) = 𝑄𝜋𝜃(𝑜, 𝑎) − 𝑉 𝜋𝜃(𝑜)

where 𝑉 𝜋𝜃(𝑜) is a learned estimate for observation value. Overall, this gives us a

new objective

max
𝜃

𝐽(𝜋𝜃) = E𝜏∼𝜋𝜃

[︃
𝐻∑︁
𝑡=0

𝛾𝑡 log 𝜋𝜃(𝑎𝑡|𝑜𝑡)𝐴𝜋𝜃(𝑜𝑡, 𝑎𝑡)

]︃

2.3.3 Policy Gradient

We can optimize [80] the expected reward by taking stochastic gradient descent on

policy parameters 𝜃, giving us the policy gradient

𝑔 = ∆𝜃𝐽(𝜋𝜃) = E𝜏∼𝜋𝜃

[︃
𝐻∑︁
𝑡=0

𝛾𝑡 ∆𝜃 log 𝜋𝜃(𝑎𝑡|𝑜𝑡)𝐴𝜋𝜃(𝑜𝑡, 𝑎𝑡)

]︃
There are a few limitations of policy gradients that are defined in this way. First,

sampling efficiency is poor because data that is generated under an old policy is

not representative of a new policy, and therefore suffers from bias if used for future

training. In order to train with no bias, we would need to throw out our entire batch

of generated data and generate a new set after each gradient update.

Second, distance in parameter space is not the same as distance in policy space.

While optimizing our parameters, it is hard to tune step size in a way that prevents

potentially destructive changes in policy, while also taking an acceptable time to train.

35



2.3.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [65] is a policy gradient algorithm that achieves

state of the art results on a number of RL benchmarks. It builds on former advance-

ments in policy gradient research [32] [44] [70], while also aiming to be fast and easy

to implement.

At a high level, PPO approximately enforces the KL constraint, also known as the

trust region [64]. The trust region is the area within which we can perform a policy

update, such that the new policy 𝜋𝜃 is not too far removed from the old policy 𝜋𝜃𝑘 .

The clipped objective variant of PPO also allows us to de-bias data generated under

an old policy.

Under the clipped objective, we compute this difference in old and new policy with

the importance sampling (IS) weight 𝑤𝑡(𝜃) = 𝜋𝜃(𝑎𝑡|𝑜𝑡)/𝜋𝜃𝑘(𝑎𝑡|𝑜𝑡). We can use this IS

weight to de-bias our advantage. This allows us to perform multiple gradient updates

with a single batch of data, without being biased to the old policy under which it

was generated, and therefore increase our data efficiency. However, this de-biasing

step is unstable, and increases our chances of updating to a new policy outside the

trust region. Both of these issues are mitigated by taking the lower bound of this

IS re-weighted advantage with a clipped term clip(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) re-weighted

advantage.

Our objective function now becomes

ℒ𝐶𝐿𝐼𝑃
𝜃𝑘

(𝜃) = E𝜏∼𝜋𝜃

[︃
𝑇∑︁
𝑡=0

[︁
min(𝑤𝑡(𝜃)𝐴𝜋𝑘

𝑡 , clip(𝑤𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝜋𝑘
𝑡 )

]︁]︃

where the IS weight removes bias from data generated under the old policy, and the

clipping term helps to both stabilize the re-weighting and keep the new policy within

the trust region. In other words, both our problems of data efficiency and disconnect

between parameter and policy space are mitigated with this PPO approach. See

algorithm 1 for a structured outline of the algorithm.

36



Algorithm 1: PPO with Clipped Objective
Input: initial policy parameters 𝜃0, clipping threshold 𝜖, ppo epochs 𝑛
for 𝑘 = 0, 1, 2, ... do

Use policy 𝜋𝑘 = 𝜋(𝜃𝑘) to collect a set of partial trajectories 𝒟𝑘

Estimate advantages 𝐴𝜋𝑘
𝑡 with any advantage estimation method

Compute policy update 𝜃𝑘+1 = arg max𝜃 ℒ𝐶𝐿𝐼𝑃
𝜃𝑘

(𝜃)
with K iterations of minibatch SGD

for 0, 1, 2, ..., 𝑛− 1 do
Compute policy update 𝜃𝑘+1 = arg max𝜃 ℒ𝐶𝐿𝐼𝑃

𝜃𝑘+1
(𝜃)

with K iterations of minibatch SGD
end

end

2.4 Related Work

What follows is a compilation of related work on videogame reinforcement learning

[67], multi-modal deep learning, and transfer methods.

Kim et al. [31] modify the ALE to support audio queries, and demonstrate that

an attention mechanism can identify useful latent audio/video features that increase

performance on H.E.R.O and Amidar on the Atari 2600, and transfer knowledge to

accelerate learning in a door puzzle game. This is an encouraging result, and it

is the only work on incorporating audio into videogame RL that we are aware of.

It is important to note however that the environment, controls, and soundscape of

these three games are quite simplistic as compared to the Sonic games on the SEGA

Genesis. All of the sounds are short and sparsely played, and the environments are

lower resolution, more deterministic, and less interactive. Amidar and the door puzzle

in particular have single screen levels, and contain sounds only characterized by a few

short bleeps.

Separate works on multi modal deep learning show that learning from additional

modalities improves performance. Kaplan et al. [27] show that the additional modal-

ity of natural language suggestions can be used to improve performance on the Atari

2600 games. Ngiam et al. [46] present a series of tasks for multimodal learning and

demonstrate cross modality feature learning, where better features for one modality

(e.g., video) can be learned if multiple modalities (e.g., audio and video) are present

37



at feature learning time. Poria et al. [57] show that a multimodal system fusing

audio, visual, and textual clues outperforms previous state of the art systems by 20%

on a YouTube sentiment dataset.

A number of works show positive transfer learning results with video observations

in videogames. Parisotto et al. [54] show that pretraining on some Atari games

leads to increased learning speed on others. Higgins et al. [22] propose a zero-shot

transfer method that works better than base RL algorithms in Deepmind Lab [5] and

MUJOCO [74]. Mittel et al. [43] show that competitive RL can be used to transfer

between Pong and Breakout. Rusu et al. [60] propose a progressive neural network

architecture that transfers between Atari games, and show that it improves training

speed on previously unseen games.

OpenAI Five [9] used massive amounts of parallel training to extend PPO appli-

cation to Dota 2, one of the most popular and complex esports games. It became the

first AI system to defeat the world champions of an esports game.

38



Chapter 3

Videogame Audio Theory

In this section, we we analyze videogame sound design through the frameworks of

diegesis theory and Western classical music theory.

3.1 Videogame Diegesis Theory

Sound design plays a key role in perceived realism and many central gameplay me-

chanics, and there can be several layers or types of sound in a game. To help facilitate

discussion, we will review videogame audio diegesis theory and categorize sounds along

different axes of interactivity.

3.1.1 IEZA Framework

The IEZA Framework [23] is a method of categorizing videogame sound, inspired by

previous research in film audio theory. Its primary axis separates diegetic from non-

diegetic sounds, i.e. sounds that emanate from sources in the game world, and those

that do not. It further categorizes sounds on a secondary axis, where they either

provide information about in game activity, or in game setting.

To get a better understanding of this, we will proceed with placing sounds from

the Sonic games into each of the categories. These are our own subjective placements,

so we give our reasoning for them as well.

39



Figure 3-1: Visual representation of the IEZA Framework.

∙ Effect: Sounds that emanate from sources in the game (diegetic), and provide

information about in game activity. They typically provide immediate feedback

on player actions, or events triggered in the environment, and mimic behavior

of sound in the real world. Example: the sound of footsteps or gunshots in a

first person shooter.

The jump, spin attack, and screech halt sound effects are produced as a direct

result of performing one of the moves in Sonic’s moveset (figure A.1). The

source of all three sounds can be clearly traced to being made by Sonic. Note

that not all of these sounds, in particular the jump sound, are entirely realistic.

But for simplicity, we count all of them in this category.

Collecting rings, losing rings, breaking rocks, collapsing bridges, passing a check-

point, defeating enemies, losing a life, and losing a life by drowning, are all inter-

actions between Sonic and his environment. The source for the corresponding

sounds are either Sonic or the environment object, and the sounds themselves

provide feedback on the specific environment interaction.

In Sonic 2 and Sonic 3&K, Tails follows Sonic around, and can interact with

the environment in all of the same ways to produce the same sounds. Although

Tails cannot be directly controlled, his movements are still influenced by Sonic,

who is controllable.

∙ Zone: Sounds that emanate from sources in the game (diegetic), and provide

40



information about in game setting. The main difference between Effect and Zone

is that this category consists of one layer of sound, rather than separate sound

sources. This layer is often ambient, environmental, or background sound, and

provides little information about in game activity. Examples: wind and rain in

an open world game, or crowd noise in a sports game.

The environmental sounds of Knuckles and Dr. Robotnik pressing buttons,

destroying bridges, etc. during cutscenes in Sonic 3&K fall into this category.

They emanate directly from sources in the cutscene environment, and provide

no information on player actions since the player cannot control the cutscenes.

∙ Interface: Sounds that do not emanate from sources in the game (non-diegetic),

and provide information about in game activity. These typically do not have

an equivalent sound source in real life, and often provide feedback on meta

game information. Examples: menu navigation sounds, and low health warning

beeps.

When Sonic is underwater, an ominous drowning theme begins to play when he

is running out of air. As it picks up in speed, it informs that there is increasingly

limited time left for the player to take action. It takes about 10 seconds for this

theme to play out and for Sonic to actually drown. Note that there is a separate

diegetic sound that plays when Sonic loses a life by drowning.

Before Sonic gets to this drowning stage, there are also 4 pings that play in 5

second second intervals while Sonic is underwater, indicating that the drowning

theme is approaching. Overall, it takes about 30 seconds for Sonic to drown

after he has entered the water.

The level completion jingle provides audio reinforcement indicating that the

player took the correct steps to finish the level. It does not have a direct

source in the game world, and provides feedback on player actions, just like the

drowning theme and underwater pings.

∙ Affect: Sounds that do not emanate from sources in the game (non-diegetic),

41



and provide information about in game setting. These can be a way to include

cultural references or set emotional expectation. Examples: orchestral music in

an adventure game, creepy music in a horror game, or the official World Cup

theme in a soccer game.

The Sonic start screen, boss fight, and Zone themes provide musical background

with no in game source, and provide no information about in game activity.

Note the distinction between Zone themes and the IZEA Zone category. Zone

themes play in the background of each Act, on a loop, and there are no in-game

actions that can change their musical behavior (besides interrupting with the

drowning, Super Sonic, or extra life theme).

Given this framework of categorization, we would expect sounds relaying infor-

mation about in game activity to be the most important for completing levels in

Sonic. Both Effect and Interface provide information about in game activity, and

Effect directly relates sounds to sources on screen. Although the sounds typically do

not provide novel information beyond the visual component, they are still useful for

reinforcing feedback of in game actions.

Setting related sounds in Sonic mostly serve aesthetic purposes, but we assert

that the Zone themes can still convey indirect action-related information, because

the theme reflects the general Zone design. The Sandopolis Zone plays a mysterious,

Middle East inspired tune, the Sky Chase and Wing Fortress Zones play light and airy

music, and the Chemical Plant Zone plays an upbeat industrial vibe. The ominous

and percussive Death Egg Zone theme mirrors the dark and spooky level design.

Although we cannot trace music to a source in each level or direct actionable feedback,

the Zone environment does reflect a connection to the type of music that is played.

Levels, especially within Zones, share similar design characteristics. Both Aquatic

Ruin Acts require extensive traversal underwater, and all three Labyrinth Zone Acts

require significant backtracking to the left in order to make net progress towards the

right. Hearing similar Zone themes might also indicate similar techniques needed to

complete Acts with those themes. Indeed, Green Hill Zone and Emerald Hill Zone

42



share comparable musical instrumentation, and strikingly similar visual aesthetics

and level design.

3.1.2 Sound as a Critical Gameplay Component

Here, we will briefly cover games where diegetic sounds provide gameplay information

beyond the visual component.

Sounds in videogames can be critical to success as non visual cues for proximity. In

Minecraft, a crackling hiss warns that a Creeper is about to explode next to you, and a

bubbling noise heard while caving tells you there is lava behind a stone wall. In Dead

by Daylight, an increasingly loud and fast heart rate as a survivor means the killer

is stalking nearby, and the noise created by a failed mechanical repair exposes which

generator a survivor is working on to escape the killer. In competitive, team-based

tactical first person shooters like Valorant, the sound of footsteps might reveal the

location of an attacking team around the corner, or a ploy devised by one attacking

member to draw defenders away from the point that is meant to be attacked (figure

3-2). In Fruit Ninja, the number of fruit launching sounds informs how many fruit

will appear on screen, and how long you should wait to ensure a bonus of slicing all

of them with one stroke.

Diegetic sounds in the Sonic games are only supplementary to the visual informa-

tion presented on screen, except for a few edge cases (figure 3-3). But we can imagine

that small, easy to miss visuals in Sonic might benefit from sounds at a similar level

as in the games above.

3.2 Brief Introduction to Western Music Theory

3.2.1 Notes and Intervals

In Western music, a note is a symbol denoting a musical sound, typically with a

pitch/frequency and duration. A440, also known as the Stuttgart pitch, serves as the

tuning standard and anchor point for calculating the frequency of other notes. It is

43



Figure 3-2: Valorant Haven map. Left: minimap showing the three capture sites,
marked in red. The limited field of view created by the narrow and winding pathways,
along with the ability to shoot through some walls, make sound critical for finding
enemy players. As a counter strategy, if one attacker can draw defender attention via
noise to a site (ex. A, far left), it will take a long time for the defenders to rotate
and defend the intended attacker site (ex. C, far right). Right: In game example of
a U-shaped path.

Figure 3-3: Door puzzle in Sandopolis Zone 2 with audio feedback. Left: Sonic pushes
a black device to the right, which lifts a door. Over time, the device shifts back to
the left. A steady clicking noise indicates that the door is slowly closing, even if both
the device and door are off-screen. Right: Sonic makes it past the closing door, just
in time. The same cannot be said for Tails.

44



the fifth A (called A4) on the piano, and has a fundamental frequency of 440 Hz [1].

The difference in pitch between two notes is called an interval, and an octave is

the interval that specifies the difference between one musical pitch and another with

double its frequency. Western music defines 12 notes (A, A#, B, C, C#, D, D#, E,

F, F#, G, G#) along an octave, also called a chromatic scale. Therefore, the sixth A

(called A5) is 880 Hz, and in general, frequencies of notes form a geometric sequence

[58].

Since notes follow a geometric sequence, doubling in frequency every 12 notes, the

frequency of each note can be calculated by successively multiplying by 12
√

2. A4 is the

49th key on a piano, so the frequency of the 𝑛th key is given by 440·
(︀

12
√

2
)︀𝑛−49

. Indeed,

using this formula to calculate the frequency of A5 gives us 440·
(︀

12
√

2
)︀12

= 440·2 = 880

Hz.

3.2.2 Interval Ratios

Western musicians and scientists have spent hundreds of years studying the harmonics

of interval frequency ratios [13]. We can look at these ratios to understand how notes

with different frequencies interact when played at the same time. The ratio between

pitch 𝑖 + 𝑛 and 𝑖 is calculated as

440 ·
(︀

12
√

2
)︀𝑖+𝑛−49

440 ·
(︀

12
√

2
)︀𝑖−49 =

(︁
12
√

2
)︁𝑛

Given our 12 note scheme between octaves, there are 13 intervals we can define

within an octave, where 0 ≤ 𝑛 ≤ 12.

Interval ratios that can be approximated by low integer numbers are perceived

as consonant, or more stable and blending well. Those that are approximated by

large integer numbers are perceived as dissonant, or more unstable and clashing. For

example, the most consonant non-unison interval (where unison is two of the same

note played at the same time, with ratio 1
1
) is an octave, which can be written as the

ratio 2
1
. The next most consonant interval is a perfect fifth, which can be written as

3
2
. The most dissonant interval is the augmented fourth, which is best approximated

45



Figure 3-4: Waveforms of Interval Ratios. Lower integer interval ratios resolve to
consonance in part by repeating more often within the same time frame (# repeats).
Top row, left to right: Unison (21), Major Triad (5), Minor Second (1.5). Bottom
row, left to right: Octave (21), Minor Triad (2), Augmented Fourth (<1).

by the ratio 45
32

.

In ascending order of 𝑛, the names and ratios of each interval in an octave are: 0.

perfect unison (1.0 = 1
1
) 1. minor second (1.0595 ≈ 16

15
) 2. major second (1.1225 ≈ 9

8
)

3. minor third (1.1892 ≈ 6
5
) 4. major third (1.2599 ≈ 5

4
) 5. perfect fourth (1.3348 ≈

4
3
) 6. augmented fourth (1.4142 ≈ 45

32
) 7. perfect fifth (1.4983 ≈ 3

2
) 8. minor sixth

(1.5874 ≈ 8
5
) 9. major sixth (1.6818 ≈ 5

3
) 10. minor seventh (1.7818 ≈ 16

9
) 11. major

seventh (1.8877 ≈ 15
8
) 12. perfect octave (2.0 = 2

1
).

Qualitatively, we can understand that low integer interval ratios sound more con-

sonant because they form simple frequency patterns that repeat much more often

in a given time frame than high integer interval ratios. A visual example of this

phenomenon is given by figure 3-4.

Note that there are a number of different tuning systems, and we are using the

Equal Temperament scale when we say that intervals are based on the octave and

geometrically separated in frequency by 12
√

2. Another option, for example, is the

Pythagorean tuning system, where frequency ratios of all intervals are made from

pure perfects fifths and octaves [42].

46



3.2.3 Chords

A chord is a combination of two or more notes. In tonal Western music, the funda-

mental building blocks of chords have three notes, also known as triads.

With chords, we talk about intervals relative to the root note, or lowest pitch note

in the chord. A major triad consists of a root, major third, and perfect fifth, and

a minor triad consists of a root, minor third, and perfect fifth. Visual differences in

waveform can be seen in figure 3-4.

Western music often utilizes chord progressions, which are sequences of chords, as

a rhythmic bass under a higher pitched melody. Progressions introduce the idea of

resolution at a broader level than simple intervals.

Chords are named relative to the key, or group of notes / scale that forms the

basis of a musical composition. The so-called tonic note of this group serves as a kind

of implied root note for the piece. For example, a composition in C major features a

scale C D E F G A B C, with a tonic note C.

We name chords relative to this tonic note, with a Roman numeral indicating

the root note’s distance from the tonic, and capital / lowercase representing major /

minor. For example, a very common progression in Western pop music is a repetition

of the four chords I V vi IV. In a C major key, these numerals represent the triads C

major, G major, A minor, and F major respectively.

Returning to the tonic chord, I, establishes a sense of resolution for the listener.

We can theorize that I V vi IV is a popular progression because the listener is hooked

into a cycle of 1) listening to the end of a 4 measure section, and 2) continuing to

listen for the IV to I resolution to start the next 4 measure sequence.

3.2.4 Overtones

When we play a note on a piano or string based instrument, secondary vibrations on

the string that occur at higher frequencies than the original note (figure 3-5) emit

additional vibration energy called overtones. Wind, brass, and other instruments

vibrate in similar ways to produce overtones. This natural variation in vibration

47



Figure 3-5: String partials.

Figure 3-6: Overtones. Left, top to bottom: Flute, Oboe, Violin. Right: Overtones
produced by the acquiring ring sound in Sonic. The root note is 2093 Hz, or C7
on a piano. The top 3 remaining frequency magnitudes from left to right are 5242
(2.5 · 2093) Hz, 9421 (4.5 · 2093) Hz , and 16745 (8 · 2093) Hz.

gives instruments a fuller sound that reaches more levels of the frequency spectrum,

and part of their unique, identifiable character or timbre.

Interval ratios become all the more important for maintaining consonance when

playing instruments with overtones. There can be 20-30 audible frequencies being

played between just two notes on a violin (figure 3-6). Luckily, overtones operate on

small interval ratios, by nature of how they are produced. Therefore, maintaining

consonant intervals between root notes is generally sufficient for retaining consonance

as a whole.

48



3.2.5 Western Associations in Music

In Western music theory and culture, there are clear associations of consonance,

dissonance, and rhythmic patterns with certain emotions. The major mode is slightly

more consonant, and therefore associated with "happy, merry, graceful, and playful",

while the minor mode is slightly more dissonant, and associated with "sad, dreamy,

and sentimental". Firm rhythms are perceived as "vigorous and dignified", while

flowing rhythms are "happy, graceful, dreamy, and tender". Combining these ideas,

complex dissonant harmonies are "exciting, agitating, vigorous, and inclined towards

sadness", and simple consonant harmonies are "happy, graceful, serene, and lyrical"

[21].

Studies have shown that these associations can largely be attributed to cultural

conditioning, rather than universal human behavior. Residents of a village in the

Amazon rainforest with no exposure to Western music showed no preference between

consonant and dissonant sounds [61]. We can trace back Western preference for

consonance at least to the early 18th century, when the name "diabolus in musica",

or "the Devil in music" was attributed to the augmented fourth, the most dissonant

interval [1].

3.2.6 Application to Videogame Sound Effects

Videogame music and sound effects are designed to leverage our implicit biases as a

means of meeting expectation and lowering the barrier to entry for learning a new

game. We can better understand this by applying it to diegetic analysis of the Sonic

games.

It is good for Sonic to collect rings, since they give some protection before losing

a life, award more points, and collecting enough of them result in an extra life.

Recall from our IEZA framework (section 3.1.1) that the ring sound falls in the Effect

category, i.e. a diegetic sound that conveys information about in game actions. In

line with our understanding of Western preference for simple consonance, the ring

sound is a major triad, implying a sense of positive value for the act of acquiring

49



Figure 3-7: Drowning Theme and Ring Sounds. Top: The drowning theme starts out
slower, and increases in speed, with dissonant jumps between octave intervals. Bottom
left: three consonant notes of the ring acquiring sound. Bottom right: alternating
dissonant notes of the losing rings sound.

a ring. It is comprised of the notes E5, G5, and C6, which form specifically a first

inversion C major triad (figure 3-7).

When Sonic loses rings after being hit by an enemy or hazard, this is bad because

he is prone to losing a life with an additional hit. Recall that the losing rings sound

also falls in the Effect category. In line with our understanding of Western music

theory, the corresponding sound is aggressively dissonant, implying a sense of negative

value for the act of losing rings. This sound is created by rapidly alternating notes

A6 and G6, which form a major second interval (figure 3-7).

When Sonic has spent too much time underwater without air, and is close to

drowning, the drowning theme begins to play. It alternates between octave intervals

on C, and a minor second interval jump to octave intervals on C# (figure 3-7). The

jumps lie on a dissonant interval, and the music gets increasingly loud and fast as

Sonic gets closer to drowning, giving a strong sense of impending doom. This is

an example of an Interface sound, i.e. non-diegetic and relating to in game actions,

relaying negative value for the act of drowning.

In general, consonance bias is an effective tool for conveying positive or negative

value of player actions or setting emotional expectation with audio, without needing

to spoon-feed explicit instructions or visual cues.

50



3.2.7 Application to Videogame Music

Nakamura designed the Zone themes, which fall in the Affect category, to set emo-

tional expectation using a wide array of musical concepts.

The bass section of the Death Egg Zone theme begins with alternating the root

note A with G (minor seventh), F (minor sixth), and C (minor third), which are all

considered to be dissonant intervals. This gives it an ominous and dangerous emotion,

which fits with the level design and setting inside of Dr. Robotnik’s evil Death Egg.

A slow, chromatically rising 5th on a minor chord, which is commonly associated with

the suspenseful James Bond theme, is used to bridge sections of melody.

In comparison, the Green Hill Zone theme begins with a lively repeating C octave

interval on the bass, and iconic alternating E minor and D minor chords in the melody.

This invokes a positive feeling of excitement and adventure, which is fitting for its

placement at the beginning of the game.

The melody that comes after this section follows a IV7 iii7 ii7 I7 progression.

The resolution from ii to I is soft and almost relaxing, especially in comparison to a

stronger and more common V to I resolution. Coloring the progression with diatonic

7ths helps to create a dream-like, floating feeling. Overall, this second section provides

a soothing and nostalgic contrast to the energetic beginning of Green Hill Zone. This

change in tone helps to keep the music feeling fresh, while staying within the overall

intended feel of the Zone.

Note that this style of analysis is meant to be simple enough to get a point across;

composing music is an art form, and not just a set of rules that are easy to apply and

get an intended emotional effect.

There are countless other musical techniques that Nakamura uses to craft a genre

and emotion around each Zone theme, such as background/foreground melody switch-

ing, broken and full chords, harmonies and counter-harmonies, and a diverse set of in-

strumentation. Some other themes we encounter are a funky jazz feel in Spring Yard,

ascending and airy in Star Light, percussive and industrial in Labyrinth, bluegrass

in Hill Top, Middle Eastern in Oil Ocean, electro rock in Metropolis, and medieval

51



march in Wing Fortress. Nakamura’s approach was picked up handily in Sonic 3&K

by a number of artists including Michael Jackson, resulting in a soundtrack taking

influences from calypso, funk, carnival, new wave, prog rock, hip hop, R&B, and

more [35]. Overall, the sheer variety and complexity of music on each of the Sonic

soundtracks set it apart from any other franchise of its time.

52



Chapter 4

Working with Audio

The goal of this chapter is to introduce methods for obtaining, listening to, visualizing,

and processing audio features made available by the Gym Retro interface.

4.1 Extracting Audio from Gym Retro

The Open AI Gym Retro package does not readily expose an API for interacting with

the retro emulator’s audio. Upon further investigation, we find that the Emulator

class does indeed have a function called "get_audio()". We can use this function to

get the audio samples that correspond to the current frame.

env = retro.make("SonicTheHedgehog-Genesis", "GreenHillZone.Act1")

obs = env.reset() # initial video observation

samples = env.em.get_audio() # initial audio observation

The default sample rate and fps are 44100 samples/sec and 60 frames/sec, so we

expect to receive 44100
60

= 735 samples per frame. After running a simple loop for

generating observations, we find that this is not quite the case. Most of the time we

receive 735 samples, but we also sometimes receive 736. We assume there is potentially

some rounding error happening in the emulator, and for simplicity we truncate the

number of received samples to 735. Even if we are missing the occasional sample, the

difference is not very consequential.

53



With this understanding of how to extract audio from the emulator, we can

move forward with incorporating audio into our visualization and feature process-

ing pipelines.

4.2 Offline Playback with Audio

The Gym Retro package offers built in methods for viewing and saving episode videos,

but does not have an option for doing the same with episode audio. To be able to

listen to the audio generated by our retro environment alongside the video, we first

open temporary video and audio files with the opencv-python [50] [51] and wave

packages. At each environment step, we write the corresponding video frame and

audio samples to these files. Once the environment step loop is finished, we make

a subprocess call to FFmpeg [17] with the Python subprocess library. We join the

video and audio with the following FFmpeg command:

ffmpeg -y -i /tmp/temp.webm -i /tmp/temp.wav -c:v copy -c:a aac -strict

experimental vid_with_sound.webm

Note: We use jupyter notebook as a convenient interface for viewing videos on

a remote server in this fashion without needing to download them locally. Saving

videos under the webm file format is required for playback embedded in the Chrome

browser.

4.3 Real Time Playback with Audio

There are a number of ways to implement real time playback, and each come with dif-

ferent tradeoffs. We decided to prioritize a simple playback system without additional

multi-threading or buffering, at the minor expense of performance and accuracy.

We display video and play audio using two separate components. For video, we

send generated frames to Gym Retro’s SimpleImageViewer class, with a call to the

imshow function. This is the same class used under the hood for Gym Retro’s built-in

environment render function.

54



For audio, we send samples to the speaker system’s audio buffer using the PyAudio

[56] Python package. PyAudio provides Python bindings for PortAudio [8], which is a

cross-platform audio I/O library written for C. We use PyAudio to initialize a stream

with a buffer size, and we can simply write samples to this stream to play audio from

our speaker system.

4.3.1 Buffer Underflow and Overflow Issues

If we decide to select a random action at each step instead of doing something more

computationally expensive, the environment loop that generates observation data

typically runs much faster than 60 frames per second. When visualizing frames of

video, this is not a big deal as it simply results in visually "fast forwarded" playback.

If we are generating and playing audio samples, however, this means that we are

putting samples into the buffer at a faster rate than they are being played. Therefore,

we end up overflowing the buffer, and losing the audio frames which were previously

queued in the buffer. Overflowing the buffer is itself computationally expensive, so

we also end up with pockets of silence in the audio during the time that it takes

to perform a buffer reset. These pockets of silence create discontinuities between

samples, resulting in loud and jarring clicking noises when played back. Overall,

these issues make for an unpleasant listening experience.

We can check how much buffer writing capacity is available, so a solution to

prevent buffer overflow would be to truncate our samples to the available capacity

before we send them to the buffer.

Truncation still suffers from the problem of losing audio data, so a secondary

solution for this might be to add an artificial delay to our environment loop, to

make it run closer to 60 frames per second. However, finding the correct delay is

empirically difficult, especially because of variance caused by external factors on the

machine running the code. Figure 4-1 shows how small error in this artificial delay

that prevents us from reaching the exactly desired fps can add up over time into a

buffer underflow.

Buffer underflow occurs when our environment loop runs slower than 60 frames

55



Figure 4-1: We estimate 0.007 seconds per step in the environment loop and therefore
apply an artificial delay 𝑑 of 0.01 seconds to reach 60 fps. We see that without
smoothing (blue), small error in our estimation adds to repeated buffer underflow,
or full 16k frame write capacity. After applying smoothing method with dynamic
resampling (orange), we avoid sample truncation and also prevent buffer underflow.

per second. Since we are now putting in audio samples at a slower rate than they are

being played, the buffer eventually runs out of samples to play. Underflow creates

pockets of silence, and the audio discontinuities that bookend these pockets of silence

produce jarring clicking noises, as mentioned above. Note that clicking noises should

not be confused with the term audio clipping, which is when audio is played too

loudly and becomes distorted, as in the Sanic Hegehog meme [78] [53].

4.3.2 Smoothing with Dynamic Resampling

To handle the issues of buffer underflow and overflow, we introduce dynamic audio

resampling into our system. Each time an observation is generated by the environ-

ment, we calculate the time since the last observation was generated, and resample

the audio under the assumption that this time will be representative of time taken to

generate future observations as well.

The Sonic Retro environment runs at 60 frames per second (fps), and the au-

56



dio sample rate is 44100 samples per second. This means we expect to receive 735

samples of audio per frame, and the expected time difference between each frame is

1/60 = 0.0167 seconds. If the actual time difference 0.015 seconds, this means we

need to account for this change by sending 0.015
1/60

· 735 = 441 frames to the buffer in-

stead. Instead of simply truncating from 735 to 441, we can perform one-dimensional

interpolation to preserve the acoustic features in the samples.

In general, we can say that the number of samples 𝑠 needed to send at environment

step 𝑖 is given by

𝑠 =
𝑡𝑖 − 𝑡𝑖−1

1/60
· 735

where 𝑡𝑖 represents the wall clock time at which environment step 𝑖 was generated.

Using one-dimensional interpolation allows us to scale our 735 samples to 𝑠 for any

𝑠 > 0.

4.3.3 Tradeoffs in Practice

Although this system prevents both overflow and underflow even in extreme cases

(figure 4-2), there are a few tradeoffs.

First of all, simple resampling with interpolation alters the audio pitch. If the

environment loop runs faster than 60 fps, the audio becomes higher pitched, and if

the loop runs slower, the audio is lower pitched. We suggest adding artificial delay to

very fast loops and reverting to offline video playback for very slow loops.

Second of all, even when this system runs on a 60 fps loop, we typically experience

a slight audio lag behind the video. The first few Gym Retro environment observations

usually go through a "warm-up" period where they take longer to generate, which

means those audio samples are sampled longer. This "warm-up" phase is followed by

a relative speed up to normal generation speed, but the previously resampled audio

samples already in the buffer take a disproportionately longer time to play, causing

a delay.

The lag may also be experienced without a "warm-up" phase, because we start

57



Figure 4-2: We present two extreme cases: repeated overflow with no artificial delay
(blue), and repeated underflow with large artificial delay (orange). Our smoothing
method with dynamic resampling prevents both buffer overflow and underflow in both
cases (green, red).

by assuming the environment loop is running at 60 fps. We cannot resample the first

set of audio samples, because there is no 0th set of samples upon which to compute

a time difference. If the environment loop runs faster than 60 fps, then the first set

of samples will take disproportionately longer to play from the buffer.

We could conceivably devise a more complicated audio scheme that accounts for

the warm up phase or 0th sample set issue by introducing an additional buffer, but

we feel this makes the system unnecessarily complicated. A large enough secondary

buffer effectively leads to the offline playback system described in section 4.2, so we

leave offline playback as a means for generating video with audio aligned perfectly.

4.4 Visualizing Audio with Spectrograms

Now that we can hear the gameplay audio, we can look into visualization techniques

to understand how to see it.

58



Figure 4-3: An audio clip of Sonic jumping twice, with the Green Hill Zone theme
playing in the background. On the left, shown as a 1D waveform. On the right, shown
as a 2D spectrogram. It is much easier to see the jump sounds in the spectrogram
(the lines curving upward, approximately 110 to 210 and 425 to 525 on the x-axis).

As a reminder, the audio samples that we are given are one-dimensional: a se-

quence of float values. We can plot these values to see what is called a wave form, as

shown in figure 4-3. Looking at the amplitude, or y-axis, we can get an idea of where

the audio is louder or quieter, but the plot as a whole is unable to tell us about other

important information such as pitch, frequency, or harmonic content. In other words,

we can get an idea of where sounds are being made, but it is difficult to discern what

sounds they are.

4.4.1 Short Time Fourier Transform

We can use the Short Time Fourier Transform (STFT) [12] [66], along with a few

other techniques, to decompose the one-dimensional samples into a two-dimensional

spectrogram. The x-axis of this spectrogram represents time, the y-axis represents

frequency, and values represent magnitude. The high level procedure of this process

is as follows.

A sliding window is used to divide the audio samples into chunks of equal length,

with partial overlap. We compute the Fourier transform on each of these chunks,

revealing the Fourier spectrum at the center of each chunk. Each computed spectrum

is one-dimensional, with complex values. It is common practice to take the magnitude

of this complex array, to obtain a real-valued array where the axis represents the range

of frequencies, and values represent the amplitude of the corresponding frequency (we

59



used this technique to uncover overtones in figure 3-6).

We could similarly recover real-valued phase information from the FFT by taking

the angle of the complex values. However, our ears generally cannot distinguish

phase offsets, and therefore this data is typically thrown out. Phase information is

important for reconstructing an audio signal from a spectrogram, but not often used

for analysis.

By compiling the magnitudes of the Fourier spectrums and arranging them in the

same order as the chunks used to compute them, we can see how the loudness of each

frequency changes over time. This is a spectrogram.

4.4.2 Mel Scaling

Stevens et al. [72] found that human perception of frequency scales logarithmically.

This aligns with our understanding from section 3.2.1 that pitch frequencies follow a

geometric sequence. On a piano, this is demonstrated by the fact that the two lowest

semitones (A0 and A0#) are separated by 1.6 Hz, while the two highest (B7 and C8)

are separated by 234.9 Hz.

To account for this phenomenon in our spectrogram, we apply a non-linear trans-

formation called a Mel Scale. This transforms the y-axis so that distance scales

linearly relative to human perception of frequency. In other words, it is logarith-

mically scaled so lower frequencies take up more space, and higher frequencies are

packed closer together.

To convert from a frequency 𝑓 Hz to 𝑚 mels, we can use the following formula

𝑚 = 2595 log10

(︂
1 +

𝑓

700

)︂
Any time we mention or display a figure of a spectrogram, we will be referring to

a Mel-scaled spectrogram.

60



4.4.3 Hyperparameter selection

There are a few hyperparameters needed to specify the sliding window and frequency

resolution used to produce our spectrogram. These values should be empirically

determined based on the type of audio being transformed. We will go over what we

found worked well for videogame sound, along with general best practices. Examples

of spectrograms constructed with these hyperparameter values can be found in figures

4-3, 4-4, 4-5, and 4-6.

∙ Hop Length 𝐻. This hyperparameter determines how far we move the sliding

window after each Fourier spectrum calculation. Using a larger hop size means

lower time resolution and faster computation, and vice versa for smaller hop

size. The length of our resulting spectrogram relative to our number of samples

𝑆 and hop length 𝐻 is simply given by 𝑆
𝐻

.

When we account for our sample rate 𝑆𝑟, we can calculate the length of each

hop in seconds with the expression 𝑇ℎ𝑜𝑝 = 𝐻
𝑆𝑟

. Typically, this value of 𝑇ℎ𝑜𝑝 is

around 93 ms for music processing and 23 ms for speech processing.

Since we are working with artificially generated videogame audio, we can afford

for this 𝑇ℎ𝑜𝑝 value to be much lower, without adding a lot of noise. We found

that setting 𝐻 = 512, resulting in 𝑇ℎ𝑜𝑝 = 512
44100

= 11.6 ms, gave us good temporal

resolution for our sound effects which are on average around 0.5 to 1 seconds

long. We also experiment with a variant, 𝐻 = 128.

∙ Number of frequency bins 𝑁𝑓𝑓𝑡. This hyperparameter defines the frequency

resolution, or number of frequency bins, of our non-Mel spectrogram. (This

spectrogram will eventually be Mel scaled to a new frequency resolution 𝑁𝑚𝑒𝑙𝑠.)

𝑁𝑓𝑓𝑡 is closely related to our sample rate, because the highest possible frequency

that can be recorded is half of the sample rate. The Sonic games operate on a

sample rate of 44100 Hz, which means we could theoretically set 𝑁𝑓𝑓𝑡 to a value

of 44100
2

= 22050 in order to separate frequencies into bins 1 Hz apart.

61



In practice, this level of frequency resolution is excessive for differentiating be-

tween sounds, and larger values of 𝑁𝑓𝑓𝑡 result in both increased computational

complexity and reduced temporal resolution. For a sample rate of 44100, typical

values of 𝑁𝑓𝑓𝑡 include 2048 and 4096. We decided to set 𝑁𝑓𝑓𝑡 = 2048.

∙ Window Length 𝑊 . This hyperparameter determines the size of our window at

each Fourier spectrum calculation. In the large majority of cases, it is standard

to set 𝑊 = 𝑁𝑓𝑓𝑡. This maximizes the spectrum information available in an

𝑁𝑓𝑓𝑡 size window of audio samples.

However, we experiment with setting 𝑊 < 𝑁𝑓𝑓𝑡 as a method for adding redun-

dancy to our audio observation. As mentioned previously, videogame sounds

are artificially generated, so we expect that it may be easy to overfit a model

to audio that has high resolution and zero natural variation. When we set

𝑊 < 𝑁𝑓𝑓𝑡, we must add 𝑁𝑓𝑓𝑡 −𝑊 data points of either redundancy or noise to

get a total of 𝑁𝑓𝑓𝑡 samples for computing the Fourier spectrum. We set these

additional points to zero so that our artificial inflation of frequency resolution

is achieved with redundancy. We could have introduced similar methods for

inflating frequency resolution with choice of 𝑁𝑓𝑓𝑡 or 𝑁𝑚𝑒𝑙𝑠, but we choose to

localize it to our choice of 𝑊 .

Window length is also closely related to hop length. It is good practice to set

𝑊 = 𝑐𝐻, where 𝑐 > 1, so that the sliding window "revisits" samples 𝑐−1 times.

This idea of overlap with previously visited points usually makes for a smoother

spectrogram. We empirically choose to set 𝑊 = 2𝐻.

∙ Number of Mel frequency bins 𝑁𝑚𝑒𝑙𝑠. This hyperparameter defines the fre-

quency resolution, or number of frequency bins, of our spectrogram after ap-

plying Mel Scaling. This is the length of the y-axis for our final spectrogram.

After creating a non-Mel spectrogram with frequency resolution 𝑁𝑓𝑓𝑡, Mel Scal-

ing applies a logarithmic transformation on the frequency spectrum of this spec-

trogram. It is not possible to reconstruct a higher resolution of the lower fre-

quencies, so instead we bucket together higher frequency fft bins in a way that

62



Figure 4-4: Three ring-related spectrograms, with widths scaled proportional to the
audio length. From left to right: 1) Isolated audio of Sonic collecting a ring. 2) Sonic
collecting a ring to the backdrop of the Hill Top Zone theme. Note how the ring
sound effect (approximately 125 to 350 on the x-axis) is still clearly visible in the
higher frequencies. 3) Isolated audio of Sonic losing his rings.

ends up proportional to the log scale. This operation reduces the overall fre-

quency resolution of our spectrogram, so 𝑁𝑚𝑒𝑙𝑠 is typically set to be 4 to 8 times

smaller than 𝑁𝑓𝑓𝑡.

If we were to set 𝑁𝑚𝑒𝑙𝑠 to be too large, for example 𝑁𝑚𝑒𝑙𝑠 = 𝑁𝑓𝑓𝑡, we would

end up creating redundant and/or disruptive artifacts in the lower mel bins.

Many mel scale implementations use a 1 to 1 mapping from fft to mel bin,

so mel bins without an fft mapping would simply contain zeros. Visually, we

might see this as black horizontal lines interrupting the lower frequencies of our

spectrogram. On the other hand, if 𝑁𝑚𝑒𝑙𝑠 is too small, the spectrogram does

not tell us detailed frequency information. We decided to set 𝑁𝑚𝑒𝑙𝑠 = 256.

4.4.4 Visibility of Sound Effects

Now that we can visualize Sonic game audio, we can predict which sound effects might

be easier for our agent (defined in section 5.2) to see in a given spectrogram.

In figures 4-3 and 4-4, we can see how the backing Zone theme consistently domi-

nates the lower frequencies. This is typical of songs in general: the lower frequencies

consist of repetitive rhythmic or droning elements, while the higher frequencies are

left for more sparsely populated, melodic tunes. Grabbing and losing rings, along

with the upper half of the jump sound, are still recognizable in this musical context.

We will look to see if lower frequency sound effects that relay important information,

63



Figure 4-5: Three sound effects that are low pitched. These are harder to identify
in a spectrogram with the Zone theme playing in the background, since the lower
frequencies (around mel filter 150 to 256 on the y-axis) are more "polluted" with the
rhythmic part of the backing track. From left to right: 1) Losing a life. 2) Losing a
life from drowning. 3) Defeating an enemy.

Figure 4-6: Video and audio approaches to conveying that Sonic is drowning. Left:
A small see-through bubble in the shape of a 3 flashes on and off between timesteps.
Once this bubble counts down to 0, Sonic will drown. This is very hard to notice, even
when watching continuous video playback. Right: The loud and ominous drowning
theme interrupts the Zone theme and any other sound effect being played at the time.
It very clearly takes up the entire range of of the audio spectrogram.

64



such as losing a life, or defeating an enemy, can be recognized by the agent as well

(figure 4-5).

The drowning theme is an exception, because it interrupts the Zone theme. We

can see in figure 4-6 that this theme is much easier to see in a spectrogram than the

corresponding visual effect, especially at a frame by frame level.

65



66



Chapter 5

Experimental Setup

In this chapter, we outline the experimental setup that we use to test the hypothesis

that videogame audio features contain important and transferable decision making

information.

5.1 Environment Setup

5.1.1 Save States

We use 58 save states, each representing the start of a level in one of the 3 Sonic

games. Each one begins with a standard set of 3 lives and no Chaos Emeralds. Save

states allow us to choose the specific level we want to train on, rather than having

to complete all of the levels that precede it. They also allow us to skip the starting

screen, character selection, boss fights, special stages, some cut scenes, and other

parts of the game which are not representative of 2D platforming (figure 5-1).

By adding level end conditions as described in section 5.1.2, we keep each level

self-contained. This denies the possibility of an agent retrieving all Chaos Emeralds

and transforming into Super Sonic, or completing a level and proceeding to a boss

fight.

67



Figure 5-1: Examples of special stages and a boss level. From left to right: 1) Special
stage in Sonic 2 where Sonic collects rings in a twisting halfpipe to retrieve a Chaos
Emerald. 2) Special stage in Sonic 3&K where Sonic navigates a sphere with a top-
down view to retrieve a Chaos Emerald. 3) Boss fight against Dr. Robotnik at the
end of Lava Reef Zone, where invincible Super Sonic wins the battle with ease.

5.1.2 Episode Boundaries

To quickly review, Sonic begins the game with a default of 3 lives, and a time limit

of 10 minutes to complete each act. If Sonic runs out of lives, runs out of time, or

completes a level, this marks the boundary, or end, of an episode.

We make a few modifications to these default boundaries, so that episodes end on

the following conditions:

1. Sonic loses a life. This is different from Sonic having 1 life. Sonic can gain

extra lives with enough rings, but extra lives do not prolong this boundary any

further.

2. Sonic runs out of time, where the time limit is 5 minutes instead of 10.

3. Sonic completes a level, which we define as reaching a pre-defined horizontal

offset for that level. This allows us to avoid dealing with boss fights, which can

be found beyond this horizontal offset in the final levels of some zones.

5.1.3 Stochastic Frame Skip

The retro environment for the Sonic games runs at 60 frames per second (fps). In

other words, there are 60 button press opportunities in one second. We found that

the average human, on the other hand, can make 8 to 10 button presses per second.

To make the model input rate more realistic, we use a frame skip of 4 to bring the

68



Figure 5-2: Visual demonstration of frame skip.

actionable fps down to 15. The idea of a frame skip is to repeat a given input 𝑛

times, where in this case 𝑛 = 4. Using a frame skip of 4 is common practice for ALE

environments, and going forward we will refer to the actionable frames occurring at

15 fps as time steps.

When we construct our observations, we can now choose to either keep all of the

𝑛 frames, for example by concatenating them to form a sequence of images, or throw

out 𝑛 − 1 frames so we are only left with the most recent one. When working with

video with a frame skip of 4, we choose to throw out the 3 unactionable frames and

avoid adding unnecessary complexity. We assume that the screen does not change

much over the course of 3/60 = 0.05 seconds.

When working with audio, throwing out intermittent frames creates to disconti-

nuities, which in turn produce loud and disruptive clicking sounds. This can happen

even for small sizes of skipped audio frames. As a result, we decide to keep all 4

frames of audio in our observation when using our frame skip of 4.

To help prevent the model from memorizing deterministic solutions to a level, we

also incorporate some stochasticity to make a "sticky" frame skip. This introduces

randomness into actions taken by the agent by repeating an action 𝑛 + 1 instead of

𝑛 times, with some probability 𝑝. If the action is repeated 𝑛+ 1 times, then the next

action is only repeated 𝑛− 1 or 𝑛 times, depending on if it is also a "sticky" action.

Figure 5-2 visualizes this idea of a sticky frame skip. We choose to set 𝑝 = 0.25,

following previous works [47].

69



5.1.4 Memory Buffer

We create a time step memory buffer of size 𝑚, that optionally augments each ob-

servation with frames from 𝑚 − 1 previous time steps. For 𝑚 > 1, key game state

variables, such as Sonic’s relative velocity to on screen enemies or hazards, can theo-

retically be calculated by an agent.

In our experiments, we set the video memory buffer size 𝑚𝑣𝑖𝑑𝑒𝑜 to 1 or 2. Note

that a value of 1 represents only the current time step. The video data is quite dense,

and we found that larger values of 𝑚𝑣𝑖𝑑𝑒𝑜 made it difficult to interpret or extract

meta-information.

For our audio observations, having a longer memory size is important because

very little audio information can be conveyed in just 1 time step. The sound of Sonic

acquiring a ring takes about 0.6 seconds to play, and the sound of Sonic losing his

rings takes about 1.3 seconds. In comparison, 1 time step of audio is 4/60 = 0.066

seconds. We set 𝑚𝑎𝑢𝑑𝑖𝑜 = 16, which is 1.066 seconds.

If we wish to learn from the game music or sounds longer than simple sound effects,

we might need to consider a time scale on the order of several seconds. However, we

found that most themes and longer sound effects are still recognizable in 1 second

chunks.

5.1.5 Video Processing

In our Sonic Retro environment, video observations are 24-bit RGB images, 320 pixels

wide and 224 pixels tall. These images represent the screen that the game is played

on.

We optionally modify these images by converting from RGB to grayscale. We

perform this conversion from {𝑟, 𝑔, 𝑏} to 𝑦 using the weighted formula [24]:

𝑦 = .2126 * 𝑟 + .7152 * 𝑔 + .0722 * 𝑏

Then we normalize these grayscale values to the range [0,1]. In general, colors

are not vital to the completion of the levels, and so this processing method helps to

70



reduce the complexity of our observations. Our image depth is thus reduced from 3

to 1.

If our memory buffer size 𝑚𝑣𝑖𝑑𝑒𝑜 is 2, we concatenate the additional buffer image

along the depth axis. Now our new image depth 𝑚𝑣𝑖𝑑𝑒𝑜 represents time rather than

values of RGB, where each image along this time axis is in grayscale. Although this

is not a standard processing step, it allows for a more modular experiment setup and

some potential performance benefits described in section 5.2.2.

5.1.6 Audio Processing

The Sonic retro environment produces 735 samples for 1 frame of audio. Since we

keep all audio samples that are generated between skipped frames, this comes out to

735 * 4 = 2940 samples per individual time step. When we add the memory buffer

audio from the previous 15 time steps, we end up with a total of 2940 · 16 = 47, 040

samples per observation. Recall that our sample rate is 44100 Hz, which is why each

audio observation ends up being approximately 1 second long.

We process the 1D sequence of samples into a 2D mel spectrogram with 256 mels,

and either use window size 256 and hop length 128, or window size 1024 and hop

length 512. The former produces a spectrogram similar in size as a frame of video

(367 by 256 pixels), while the latter contains the same information but 4 times smaller

(92 by 256 pixels).

To normalize the spectrogram values, we first convert from the power to decibel

scale, setting the max decibel range to 80, and then divide by 80 to put the range of

values between 0 and 1.

5.1.7 Action Space Reduction

At each time step, the agent can press any combination of buttons that are available.

For SEGA Genesis games, the buttons on the controller are A, B, MODE, START,

UP, DOWN, LEFT, RIGHT, C, Y, X, Z. Since there are 12 buttons, the number of

possible button presses at a single time step are on the order of 12!, or about 480,000.

71



Given the finite amount of Sonic moves, described in figure A.1, and the restricted

setting of 2D platforming, we reduce all possible combinations of button presses to the

following 8 essential ones: {}, {LEFT}, {RIGHT}, {DOWN}, {B}, {LEFT, DOWN},

{RIGHT, DOWN}, {DOWN, B}.

UP is used to make Sonic look up and slightly shift the screen upwards, which

is only useful on certain occasions. The remaining moves in Sonic’s moveset can be

constructed with the button presses above. B is the button used to jump.

5.1.8 Reward Function

For each action that is taken by the agent, a reward is received as a result of that action

on the environment. In general, this can be negative, positive, or zero. We define

our reward function in two parts: a level progression reward, and a level completion

bonus.

As the agent progresses through the level, we keep track of its horizontal offset

relative to the start of the level, and relative to the maximum horizontal offset it

has reached in this episode. Each time the agent achieves a new max horizontal

offset, it receives a positive reward proportional to both the size of improvement, and

horizontal length of the level. The net reward gained for reaching the horizontal offset

required for completing the level is 9000. In other words, the level progression reward

can be written as

𝑟𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 =
max(0, 𝑥𝑐𝑢𝑟 − 𝑥𝑚𝑎𝑥)

𝑑
· 9000

and the update step after each time step can be written as

𝑥𝑚𝑎𝑥 = max(𝑥𝑐𝑢𝑟, 𝑥𝑚𝑎𝑥)

By scaling horizontal offset to a net reward of 9000, we can compare levels of

varying length. Assuming all levels are of similar difficulty, this scaling also controls

for potentially easier progress made in longer levels. We do not penalize the agent

for moving backwards, because many levels require moving to the left for extended

72



Figure 5-3: In Labyrinth Zone Act 2, significant backtracking is required to progress
through the first part of the level. We found that section in red and orange takes a
human around 20-30 seconds to complete.

periods of time to complete the level (figure 5-3).

To incentivize the agent to move quickly, we also include a completion bonus

proportional to the amount of time taken to complete the level. The completion

bonus starts at 1000, and scales linearly to 0 at 4500 time steps. We can write this

bonus as

𝑟𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 =
4500 − 𝑡

4500
· 1000

This reward is never negative because one of our episode boundaries is a time-out

at 𝑡 = 4500 time steps. Additionally, this reward can only be received once because

reaching this horizontal offset represents level completion, triggering another one of

our episode boundaries.

5.1.9 Random Start

To further reduce the chance of learning a deterministic policy for completing a level,

we optionally include a random start to the beginning of each episode. We pick

a number of time steps 𝑡 uniformly distributed between 16 and 45 (about 1 and

3 seconds respectively), and perform 𝑡 random actions to start the episode. Since

the beginning of each level is the most commonly observed part of the level, we

73



hypothesize adding this randomness discourages memorizing an "opening sequence"

of actions by naturally creating new starting points.

5.2 Agent Definition

There are 3 main parts to our agent definition:

1. Encoder to process an environment observation and produce a corresponding

action.

2. A rollout object to keep track of and serve a batches of agent-environment

experiences.

3. PPO implementation to construct loss from a batch of experiences and update

agent parameters.

5.2.1 Observation Encoder

After performing the processing in sections 5.1.5 and 5.1.6, our video observation is

a 320 by 224 pixel grayscale image with depth 𝑚𝑣𝑖𝑑𝑒𝑜, and our audio observation is

either a 368 by 256 or 92 by 256 pixel spectrogram with depth 1.

We use a convolutional neural network (CNN) [30] with layers outlined in figure

5-4 and 5-5 to process both our video and audio observations. If we are observing

both video and audio at the same time, we create separate but structurally identical

CNNs for each observation.

The final output shape of 256 represents the encoded hidden state of the obser-

vation. If we are observing both video and audio, we concatenate both hidden states

to create a final hidden state of size 512. This is a standard CNN architecture used

in other reinforcement learning and ALE tasks that we have referenced previously.

This CNN architecture works particularly well for the Sonic games because the

receptive field for the third layer is a 36 by 36 pixel square, which can handily fit the

30 pixels wide by 35 pixels tall Sonic.

74



Layer Hyper-params Params Out Shape R. Field

1. Conv2d in_cls=1, out_cls=32,
kernel_size=8, stride=4

256 [32, 55, 79] 8x8

2. ReLU none 0 [32, 55, 79]

3. Conv2d in_cls=32, out_cls=64,
kernel_size=4, stride=2

8192 [64, 26, 38] 20x20

4. ReLU none 0 [64, 26, 38]

5. Conv2d in_cls=64, out_cls=64,
kernel_size=3, stride=1

12,288 [64, 24, 36] 36x36

6. ReLU none 0 [64, 24, 36]
7. Flatten none 0 [55296]
8. Linear in_shp=55296, out_shp=256 14,155,776 [256]

Figure 5-4: CNN architecture used to process a grayscale frame of video into a hidden
state of size 256.

Figure 5-5: CNN architecture for the observation encoder. The input observation in
this example is a grayscale frame of video.

75



To output a distribution over the 8 essential action combinations described in

section 5.1.7, we first add a linear layer that takes in the concatenated hidden state

and outputs 8 logits. Then we wrap these logits in a Categorical distribution so we

can sample and update gradients accordingly. To output a value prediction, we add

a second linear layer that takes in the concatenated hidden state and outputs the

predicted value of this state.

5.2.2 Extension to Video Sequences

As mentioned in section 5.1.5, the additional 𝑚𝑣𝑖𝑑𝑒𝑜−1 memory buffer of video data is

simply appended to the depth dimension of the original grayscale image. This means

we do not need to change our CNN architecture to support different values of 𝑚𝑣𝑖𝑑𝑒𝑜

beyond setting in_cls= 𝑚𝑣𝑖𝑑𝑒𝑜 for the first Conv2d layer. However, this method is

unconventional relative to other techniques that use recurrent neural networks [41] to

recognize temporal changes, so there is a tradeoff.

Temporal features that we wish to detect on screen must be contained within the

CNN’s receptive field. To demonstrate this idea, let us use a scenario where Sonic is

jumping in the air, and we want to figure out if he is rising or falling. If the difference

in Sonic’s height between the last frame (time step 𝑡−1) and the current frame (time

step 𝑡) is positive, this indicates an upward trajectory. For our CNN to be able to

capture this idea, it might use the second Conv2d layer recognize Sonic’s head in

channel 1 (time step 𝑡− 1) and his shoes in channel 0 (time step 𝑡). If both items are

found within the third Conv2d layer’s receptive field, a 36 by 36 pixel square, then the

CNN can conclude an upward trajectory. If Sonic’s shoes are 40 pixels above where

his head was in the previous time step, the CNN will not be able to understand the

direction of movement.

But given that the there are only 0.066 seconds between time steps, we find

that most relevant on screen temporal changes do indeed occur within this receptive

field. In fact, we believe that CNNs are better suited for this 𝑚𝑣𝑖𝑑𝑒𝑜 = 2 task than

a CNN and RNN combination, where a CNN encodes frames individually before

feeding them in chronological order to an RNN. It would be very difficult for this

76



combination to detect small changes between two images without encoding literal

positional information with the CNN.

5.2.3 Extension to Audio Spectrograms

Audio data is sequential in nature, and so one may assume that we would use a

recurrent model to process our audio observations. However, we are only using 1

second of audio at a time, and we found that the average Sonic sound effect lasted

about 1 second or less. As a result, we can treat this more similar to an image

detection problem. Indeed, Salamon et al. [62] use a CNN architecture to classify

environmental sounds, and argue that reasonably sized receptive fields would allow

for spectro-temporal patterns to naturally arise from the different sound classes.

To this end, we vary our spectrogram hop length, as described in section 4.3.3, as

a method for testing the same receptive field size against different resolution spectro-

grams. This effectively gives the same result as maintaining hop length, and varying

the receptive field size itself.

5.2.4 Experience Generation

Agents use individual observations to inform which action to take, but we need to

record entire experiences in order to train with the PPO algorithm. An experience

consists of an observation, the predicted value, the selected action with its underlying

action log probabilities, and the reward given after the action was taken.

Since the Gym Retro environment only supports one instance of a game per pro-

cess, we spawn 48 · 3 = 144 processes, each assigned to one of the 48 training levels.

Each of these processes runs for 512 steps to generate 512 experiences. The total

of 48 · 3 · 512 = 73, 728 experiences are aggregated with a batch sampler and subset

random sampler, with a mini-batch size of 72. Therefore, our total batch size for

each update is 73,728, and gradients are accumulated using the PPO algorithm on

our GPU, in 72 mini-batch updates of size 1024 each. The gradient update is only

applied for each PPO epoch after all mini-batch gradients have been accumulated.

77



Experience Gen. Hyper-params Value
Workers Per Level 3
Horizon 512
Batch Size 73,728
Minibatch Size 1024
GPU Tesla V-100
Pytorch Version 1.4.0
Gym Retro Version 0.8.0

Figure 5-6: Experience Generation Hyper-parameters.

To avoid memory overflow on the GPU, we keep all experiences on the CPU except

for the current mini-batch (figure 5-6).

Note that our original implementation did not have processes dedicated to single

levels. After a process’s level reached a boundary condition, we re-initialized the

process with a training level selected uniformly at random, to ensure episodes were

split evenly across levels. However, we found that this created a negative feedback

loop, where good performance on a level meant that the agent would be less likely to

die on the level, spend more time, accumulate more reward, and continue to overfit

its policy to that level. Conversely, poor performance on a level meant that the agent

would be more likely to die on the level, spend less time, accumulate less reward, and

underfit its policy for that level.

By assigning a single process to a single level, we ensure that the number of

experiences are split evenly across all levels, rather than the number of resets or

episodes.

5.2.5 PPO Implementation

As described in section 2.3.4, PPO is a policy gradient algorithm that has performed

well on many reinforcement learning tasks, including the ALE. Since CNNs are con-

structed with gradient information flowing all the way from generated experiences to

predicted actions and values, optimizing the PPO objective necessarily updates our

CNN parameters. We use Pytorch for our PPO implementation [55] [33], and set the

hyper-parameters as described in figure 5-7.

78



PPO Hyper-params Value
Epochs 4
Discount Factor 𝛾 0.99
GAE Parameter 𝜆 0.95
Clipping Parameter 𝜖 0.2
Entropy Coefficient 0.001
Reward Scale 0.005

Figure 5-7: PPO Hyper-parameters.

The reward scale is a small constant factor applied to the reward, and used to

bring advantages into a range better suited for neural networks.

5.3 Evaluation Methods

We use both quantitative and qualitative metrics to evaluate agent performance.

Quantitatively, we use a variant of mean scoring, graph the performance over train-

ing time, and monitor gradients and action entropy. Qualitatively, we watch gen-

erated videos of trained agent play, and augment these videos with a CNN weight

visualization technique called Score CAM [79] [52].

5.3.1 Mean Scoring

We use a variant of a previously established method of mean scoring [47] to evaluate

the performance of our trained agents on the Sonic retro environment. The procedure

for calculating this score is as follows:

1. Train the agent for any number of steps.

2. Run the agent in evaluation mode for each of the test levels, for 15,000 time

steps each.

3. Average the total reward and compute the standard deviation (stdev) over all

episodes for each test level separately, giving a per-level mean score and error

margin.

79



4. Average the per-level mean score and compute the stdev over all test levels,

giving a final performance metric and error margin.

We consider a few other factors to get a wholistic idea of model performance. A

steady decrease in action distribution entropy indicates that the agent is converging.

A steady increase in mean score indicates that the agent is progressively learning

techniques that build on each other.

5.3.2 Augmented Video Playback

The offline playback method described in section 4.2 allows us to view and hear

episode runs generated by the agent, but it lacks other information needed for crit-

ical evaluation. At each frame, we augment the generated video with the following

information: level name, step number, current horizontal offset, max horizontal off-

set, percent of level completed, accumulated reward, predicted value of current state,

selected action, and log scaled action probabilities.

To understand where in the video the agent is attending to inform its current

action decision, we implement Score CAM. At a high level, Score CAM is an algorithm

that takes in the current observation and CNN layer weights, and outputs a heat

map over the observation, showing where the CNN is choosing to "look". More

implementation details of this process can be found in the original Score CAM paper

[79].

5.4 Task Outlines

To test the effect of audio on videogame RL, we set up 3 different tasks.

1. Individual PPO Training. We train a separate agent on each level individually,

for 1 million time steps. Then we calculate a per-level mean score for each

trained agent. In this setting, we expect that it would be easier for an agent to

memorize the correct way to progress through a level.

80



Game Zone Act
Sonic The Hedgehog Green Hill Zone 2
Sonic The Hedgehog Scrap Brain Zone 1
Sonic The Hedgehog Spring Yard Zone 1
Sonic The Hedgehog Star Light Zone 3
Sonic The Hedgehog 2 Casino Night Zone 2
Sonic The Hedgehog 2 Hill Top Zone 2
Sonic The Hedgehog 2 Metropolis Zone 3
Sonic 3 & Knuckles Angel Island Zone 2
Sonic 3 & Knuckles Flying Battery Zone 2
Sonic 3 & Knuckles Hydrocity Zone 1
Sonic 3 & Knuckles Lava Reef Zone 1

Figure 5-8: Test Set Levels. These were selected by first randomly choosing Zones
with more than 1 level, and then randomly picking an act from each selected zone
[47]. This ensures that an agent trained jointly is already familiar with the textures
and music in each test level.

2. Joint PPO Training. We train a single agent on 47 of the 58 levels, which we

call the training levels. The remaining 11 testing levels are listed in figure 5-

8. This agent trains for 30 million time steps, and we self-evaluate the agent

on the training levels every 5 million steps. It is more difficult to memorize

trajectories for all 48 levels, so in this setting we hope that the model learns

general principles for level progression.

3. Zero-shot Transfer. We take the jointly trained agent from the previous exper-

iment and evaluate it on the 11 test set levels, without any fine tuning. If the

agent learned general techniques for level progression in experiment 2, it should

be able to perform better than a random agent, or one following a simple policy.

Ideally, it would perform similar to agents trained in experiment 1.

We train 3 of each agent variant (defined in the next section) on each of these

three tasks and use the mean scoring method above to consolidate performance.

81



5.5 Agent Outlines

We define and train 5 different agents on the tasks above and compare relative perfor-

mance to understand the effect of audio features in playing Sonic. We also compare

performance to simple policy and human baselines.

5.5.1 "Hold Right" Baseline

By definition of the reward function we have defined in section 5.1.8, Sonic accumu-

lates reward as he makes net progress towards the right. We can therefore define

a simple yet effective policy that requires no machine learning: always make Sonic

move right. We evaluate this policy and set it as a lower bound for the performance

we expect our trained agent to achieve.

5.5.2 Human Baseline

There is an existing human baseline for the Sonic Genesis games. In this baseline, 4

test subjects practiced on the 47 Sonic training levels for 2 hours, before playing each

of the 11 test levels over the course of an hour.

5.5.3 Agent Variants

The 5 agent variants are described in figure 5.1. Our reasoning for defining these

specific variants is as follows.

Agent 1 is the same as the one used in the Gotta Learn Fast [47] benchmark,

albeit with fewer trainable parameters and shorter training time due to computational

constraints.

We introduce random start and grayscaling with Agent 2, which we expect will

result in improvements to generalization.

Agent 3 features larger model size and 𝑚𝑣𝑖𝑑𝑒𝑜 = 2, giving it an additional video

frame from the previous time step. We hypothesize that Agent 3 may be able to learn

temporal features, and therefore achieve better results than Agent 2.

82



Agent Video
Frames

Random
Start Grayscale Hidden

Size
Audio
(W, H)

Num
Params

1 1 no no 256 none 14m
2 1 yes yes 256 none 14m
3 2 yes yes 512 none 28m
4 1 yes yes 2 · 256 (256, 128) 31m
5 1 yes yes 2 · 256 (1024, 512) 18m

Table 5.1: Agent Variants.

We train Agent 4 and Agent 5 with audio and compare against Agent 2 and Agent

3, to quantify the effect of learned audio features across varying model size and video

information access.

83



84



Chapter 6

Results

In this chapter, we present the results from our experiments across 3 different tasks,

and 5 different agent variants. We then qualitatively and quantitatively analyze the

effect of using audio to inform sequential decision making in videogames.

6.1 Overview

Figure 6.1 shows us the most important result of this thesis, which is that audio+video

agents outperform video-only agents on the joint training task, and achieve higher

scores on the zero-shot transfer task. Agent 5, which is provided with the current

frame of video and past 1 second of audio, outperforms Agent 3, which is provided

with the current and previous frames of video, no audio, and 55% larger model size,

by 6.6% on the joint task, and 20.4% on the zero-shot task. This result supports our

hypothesis that Sonic game audio informs sequential decision making, and extracted

audio features are more easily transferable to unseen test levels than video features.

Sonic game audio is mostly supplementary to the visual information on screen,

which explains the lesser performance of audio agents on the solo train task. The

goal for agents in this task is to memorize the level as fast as possible, and audio data

hinders agents’ ability to overfit to levels quickly, especially with the added random

start to each level.

The "Final Avg" table contains the primary scores used to evaluate overall agent

85



Agent #) Desc. Joint
Final Avg

Zero-Shot
Final Avg Solo Avg

1) 1V 256 n.p. 1344.6 ± 206.4 435.6 ± 130.0 2477.5± 2482.6
2) 1V 256 1479.5 ± 911.3 578.5 ± 409.7 1389.6 ± 1040.0
3) 2V 512 1905.0 ± 286.9 678.5 ± 238.3 2020.1 ± 1361.9
4) 1VA 2 · 256 128H 1893.7 ± 225.3 817.3 ± 320.2 1876.5 ± 979.4
5) 1VA 2 · 256 512H 2031.1± 501.9 936.6± 220.8 1617.9 ± 2051.7

Agent #) Desc. Joint
Best Ckpts

Zero-Shot
Best Ckpts Solo Best Ckpts

1) 1V 256 n.p. 1780.2 ± 1708.5 755.1 ± 1028.1 3207.6 ± 2752.4
2) 1V 256 2998.6 ± 2010.63 1526.8 ± 1257.4 2601.8 ± 2302.9
3) 2V 512 3013.0 ± 2186.2 1686.9 ± 1155.1 3304.6± 2443.9
4) 1VA 2 · 256 128H 3041.4± 2227.9 1779.2± 1403.1 2870.5 ± 1805.8
5) 1VA 2 · 256 512H 2901.5 ± 2011.1 1756.9 ± 1298.3 2300.7 ± 2669.9

Baseline Joint
Final Avg

Zero-Shot
Final Avg Solo Avg

Hold Right 1099.1 ± 1092.8 321.9 ± 277.5 321.9 ± 277.5
Human [47] – 7438.2 ± 1126.0 –
Gotta Learn Fast [47] 5083.6 ± 91.8 ∼ 1000 1755.1 ± 65.2

Table 6.1: Performance summary of all 5 agent variants and 3 baselines over all 3
tasks.

86



Figure 6-1: Progression over train time, evaluated every 5 million steps. Left: Pro-
gression of joint score. Right: Progression of zero-shot transfer score.

performance. Final refers to the fact that these scores were computed by evaluating

the final saved checkpoints of each agent, rather than averaging over the entire training

run. A visual progression of joint and transfer scores over train time is given by figure

6-1.

We add a "Best Ckpts" table, which aggregates the top per-level mean scores

across all corresponding agent checkpoints. We trained each agent 3 times for 30

million time steps, saving and evaluating checkpoints every 5 million time steps,

which gives us a total of 18 checkpoints per agent. The goal of adding this table is

to demonstrate each agent’s best possible effort for each level. A smaller difference

between values in the "Best Ckpts" table and "Final Avg" table might indicate greater

robustness and/or less tendency for that agent to overfit.

Scores for each agent are presented as the mean ± the first standard deviation

taken along the individual level averages. See the appendix for the full details of

agent performance on each level.

In the following gameplay figures with Score CAM heat maps, hot pink repre-

sents important areas that inform the agent’s decision making. This is followed in

descending order of importance by blue, green, yellow, orange, and finally red.

We will now proceed to evaluate each baseline and agent variant.

87



6.2 Baselines

6.2.1 "Hold Right" Baseline

Although our test set levels were selected in a random fashion, we find that these

levels are significantly harder than the train levels for our "hold right" policy agent

to progress through. Indeed, this agent is unable to exceed a score of 1000 on any of

the test levels, but achieves an average score of 1084.5 on the training set.

There are 3 levels where our "hold right" policy agent can achieve a score over

3000, or one-third progress through the level, and 6 levels where this agent cannot

muster even a score of 90, or 1% progress through the level (see appendix).

6.2.2 Human Baseline

As expected, humans achieve very high scores on the test set. They were able to

complete at least 50% of each level, with the average performance resting around

80%. It is important to note however that even humans are only able to finish 3 of

the 11 test levels with consistency (see appendix).

6.2.3 Gotta Learn Fast

This baseline is not directly comparable to our results, because they perform joint

training with 4 threads per level instead of 3, horizon size 8192 per thread instead of

512, total train steps 400 million instead of 30 million, and hidden layer size 512 with

RGB and no random start. However, it is still interesting to note the high ceiling

for (likely memorizing) agent joint scores, and the relatively low zero-shot and solo

averages in comparison.

6.3 Video-Only Agents

Although the focus of this work is on analyzing learned audio features, our video-only

agents learn a number of interesting visual features which are important for putting

88



Figure 6-2: Action entropy over train time.

our learned audio features in context.

6.3.1 Agent 1

Agent 1 uses 1 frame of video and hidden layer size 256, without no grayscaling or

random start. It is structurally the same as the agent described in the Gotta Learn

Fast benchmark. Due to computational constraints, however, we use half the hidden

size and train the joint model for 7.5% the number of timesteps, with 4.8% the batch

size.

As a result, Agent 1 heavily underfits during joint training and performs poorly

on the zero-shot evaluation. In figure 6-2, we see that this is quantitatively supported

by the fact that Agent 1 maintains the highest action distribution entropy, and is

only able to outperform the "hold right" policy by a small margin. Qualitatively, we

see in figure 6-3 that Agent 1 is unable to progress beyond simple obstacles.

On the other hand, Agent 1 achieves the highest score on the solo train task, beat-

ing the Gotta Learn Fast PPO baseline by a substantial amount. The 41% increase

in solo train task performance over this baseline suggests that when only training on

1 level, reduced model size allows our agent to memorize and converge faster. The

89



Figure 6-3: In the joint train task, Agent 1 manages to both underfit and clock watch.
Left: Sonic waits in front of a spike, with an high entropy action distribution. Right:
Sonic jumps over, 60 seconds in, because the agent has learned to associate "1:00" on
the clock with jumping.

action distributions for the solo task converge almost an order of magnitude lower

than the joint models, which shows that the agents are memorizing predetermined

paths (figure B-2).

Remember that Agent 1 does not have access to temporal data, so it must be

finding alternate ways of memorizing sequences of moves. We call one such technique

"clock watching". In the top left corner of the screen, a timer indicates how long

the agent has been playing on the current level. An agent can begin to memorize a

sequence by learning to recognize time and assigning a move to each second.

Eventually, the agent will learn other level-specific tricks that supplement clock

watching and lead to both higher efficiency and more quirky behavior. In Angel Island

Zone Act 2, Agent 1 uses a combination of clock watching and the falling bricks of a

bridge to perform a frame perfect execution of the spin dash attack, which requires

3 successive button presses (figure 6-4). In Green Hill Zone Act 2, Agent 1 learns a

technique for jumping through vertical loops, which is faster than running through

them.

6.3.2 Agent 2

Agent 2 uses grayscaling instead of RGB, and adds a random start between 1 and 3

seconds to the Agent 1 setup. Adding the random start makes it much more difficult

for Agent 2 to memorize a high reward path through the each level, so this results in

90



Figure 6-4: In the solo train task, Agent 1 uses falling bricks to input a frame perfect
spin dash and break the wall blocking its path. Top Left: Sonic is hunched over and
the agent waits for the leftmost brick to fall. Agent keeps pressing down on the D
pad. Top Right: Leftmost brick falls far enough. Agent presses B to begin charging
spin. Bottom Left: Sonic is in a spinning ball, and the brick second from the left is
falling. Agent presses right on the D pad to start releasing the spin dash. Bottom
right: Sonic begins to spin dash through the wall.

Figure 6-5: Agent 2 detects various objects during training. Top Left: the agent
jumps on a spring to launch Sonic over the pit of spikes. Top Right: the agent
recognizes that Sonic needs to jump over the spikes. Bottom Left: an example of a
sideways spring that hampers progress by pushing Sonic back to the left. Bottom
Right: a powerup TV that gives an extra life.

91



Figure 6-6: Agent 2 performs multi-step actions. Left: Sonic presses a button which
opens the door. Right: Sonic pushes a box out of the way while avoiding jumping
into the spikes above.

a 44% decrease in solo train score from Agent 1.

At the same time, the random start substantially improves the joint and zero-shot

tasks. This is because increased starting state diversity forces Agent 2 to learn more

general features for level progression. If the agent learns that jumping over spikes

is good in one level, the the lower layers of the CNN that were used to recognize

the spikes will help to transfer that knowledge to other levels. This is in contrast to

clock watching, where different levels will compete for seconds on the clock to result

in actions that achieve greater reward for them.

Some examples of commonly recognized objects are power ups, springs, spikes, and

Badniks (figure 6-5). Fundamental improvements are made in a number of different

levels relative to Agent 1, and qualitatively we can see Agent 2 is able to perform

non-trivial multi-step movements such as pressing buttons to open doors, or pushing

blocks out of the way (figure 6-6).

Agent 2 converges to a lower entropy action distribution than Agent 1 and raises

the joint Best Ckpts score by 68%, and the zero-shot Best Ckpts by 102%. The

relatively large difference between Agent 2’s Final and Best Ckpt scores is explained

by the fact that there was large variance in performance between the three runs. This

might indicate that Agent 2 is not a particularly robust agent for training.

92



Figure 6-7: Agent 3 uses temporal information to judge its progression up the ramp.
The two screenshots on the left are moments when the agent decides it does not have
enough momentum, and backtracks to the left. The pink and dark blue ScoreCAM
weighting in the screenshot on the right shows the agent correctly understands that
the screen shifting upwards means that Sonic has enough momentum to make it up
the ramp.

6.3.3 Agent 3

Agent 3 builds upon Agent 2 by doubling the hidden layer size to 512 and increasing

the number of video frame observations from 1 to 2. Making everything bigger makes

it easier to overfit, which is shown by the 45% increase in solo train score over Agent

2, and record for solo Best Ckpts score.

By including the video frame from the previous time step, Agent 3 now has the

ability to learn temporal meta-variables, such as relative velocity of objects on screen.

Agent 3 learns to use this information to determine, for example, when Sonic does

not have enough momentum to go up a steep ramp, and must backtrack in order to

build the momentum needed to try again (figure 6-7).

Agent 3 improves over the Agent 2 joint train and zero-shot scores by 29% and

17%, and also provides lower variance results. In figure B-1, we see it reaches higher

scores at a faster rate than other video-only agents on the levels Star Light 2, Emerald

Hill 1, Chemical Plant 1, and Mushroom Hill 2.

However, a qualitative look shows that Agent 3 is also learning to overfit to critical

frames of action in these levels. In Star Light 2, Agent 3 is exposed in a run where

a miscalculation of a jump throws the agent off of its memorized path, causing it to

get stuck at a simple obstacle (figure 6-8). Over the training steps, its action entropy

reaches lower levels much faster than other agents, and its zero-shot improvement is

relatively low given the magnitude of joint train improvement.

93



Figure 6-8: Agent 3 learns to memorize parts of Star Light 2, which backfires when
it misses a jump. Top Left: Agent runs to the right. Top Right: CNN activations
indicate it is time to jump. Bottom Left: Sonic does not reach the top of the platform.
Bottom Right: CNN activations indicate it is time to jump again, but Sonic is already
holding down B from the previous jump. He is stuck.

6.4 Audio+Video Agents

Instead of continuing to build off of Agent 3, Agents 4 and 5 replace the second video

frame with a spectrogram representing the last 1 second of in-game audio. Separate

CNNs are used to process the video and audio observations, each with hidden size

256, and concatenated together into a final hidden state size 512.

6.4.1 Relative Receptive Field Comparison

Agent 4 constructs a spectrogram with window size 256 and hop length 128, while

Agent 5 uses window size 1024 and hop length 512. This leads to spectrogram sizes

368 by 256 pixels and 92 by 256 pixels, respectively. Both convey the same amount of

information, but result in audio CNNs with different numbers of trainable parameters

(Agent 4 has about 14 million more than Agent 5) and different relative receptive field

sizes (Agent 4 has a 4 times smaller relative receptive field). In other words, Agent 4

94



Figure 6-9: Agent 4 listens to ring sounds and gives increased probability to moving
right. The smaller relative receptive field of Agent 4 makes it so that the CNN
activations are not as coherent. It picks up on subsections of the losing rings sound,
and is therefore more susceptible to misidentifying a different sound effect with similar
components.

learns a larger number of smaller audio details, and Agent 5 learns a smaller number

of larger ones.

In general, we found that Agent 5 was able to learn higher level audio features

than Agent 4, which was more prone to noise and overfitting. Quantitatively, this is

shown by the fact that Agent 4 reaches a lower action entropy than Agent 5, scores

lower in both the joint and zero-shot final scores, and uses similar tricks as Agent 3

to achieve higher scores on certain levels. Qualitatively, see see that the Score CAM

weights over a spectrogram with ring sounds are patchy and disconnected for Agent

4 (figure 6-9).

6.4.2 Learned Audio Features

In general, we find that audio features learned by these agents fall into three of the

four IEZA framework categories, and that there is a similar agent response to audio

features in the same category.

95



Figure 6-10: In Hill Top 2, during a zero-shot run, Agent 5 looks at ring sound as
motivation to move right. Left: The agent acquires rings while running up a steep
cliff. Right: The agent continues to run into the rock blocking its path until the ring
sound is freed from its memory.

∙ Most learned audio features fall into the Effect category. These are diegetic

sounds that inform in game activity, like the sound effects of acquiring or losing

rings. Rings are small, keep rotating, and turn into even smaller stars when

grabbed by Sonic, so the act of acquiring them is not recognized by the agent’s

visual CNN component. The corresponding sound is easy to see in a spectro-

gram, so it is readily learned by the audio CNN component. The same is true

for when Sonic loses his rings.

An agent will respond to the ring acquiring sound by increasing its likelihood

of taking the "move right" action, since rings are generally located along paths

that lead to forward progress in the level. Figure 6-10 shows an example of

Agent 5 doing this on a zero-shot run of Hill Top 2. Ironically, losing rings

also produces the effect of increased "move right" likelihood, despite having

a dissonant sound, negative connotation for humans, and perceived negative

impact on gameplay. This is because Sonic is granted temporary invincibility

after losing his rings, so the agent uses this as an opportunity to get past the

danger that was originally in the way.

∙ The drowning theme and underwater pings are audio features that fall into the

Interface category. Recall that Interface sounds are non-diegetic sounds that

inform in game activity. As shown in figure 4-6, visual indicators that Sonic is

about to drown are small see through bubbles with numbers that do not appear

96



Figure 6-11: Agent 5 handles two cases of drowning. Top: problem is solved by simply
jumping up and getting air from above the water. The glow around Sonic shows that
the model understands he has broken up to the surface to breathe the air, and is free
to return below. Bottom: agent navigates Sonic to a bubble stream on the left, and
waits for a bubble to appear. The model highlights Sonic as he breathes in the air
bubble.

every frame, and are easily missed by the visual CNN. Upon hearing this theme

via the audio CNN, our agents learn to quickly locate an oxygen-restoring air

bubble or exit the water entirely to avoid losing a life (figure 6-11). This call to

action of the drowning theme is in sharp contrast to the laid back and suggestive

nature of the Effect sounds.

Before Sonic gets to the drowning stage, there are pings that play every 5

seconds Sonic is underwater. In figure 6-12 we see that Agent 5 remembers to

exit the water after hearing the first one of these pings, in a zero-shot run of

Angel Island 2.

∙ Surprisingly, a significant number of sounds highlighted by the Score CAM algo-

rithm come from the backing Zone theme, which falls into the Affect category.

Recall that Affect sounds are non-diegetic sounds that inform in game setting.

It is not immediately clear what use the Zone theme might have for completing

97



Figure 6-12: Agent 5 gets out of the water after hearing a ping. Left: Sonic is holding
down right on the D pad. Right: Sonic presses B to jump, and the spectrogram shows
that this action is informed by the ping sound, highlighted in pink near the bottom
middle.

levels.

We hypothesize that these learned features are mainly an artifact of the audio

CNN incorrectly attributing accumulated reward to the part of the theme that

happened to be playing at the time. Typically these features do not seem to

have a significant effect on agent actions, but sometimes they are coincidentally

reinforced. For example, in figure 6-13, we see that a note in the Emerald

Hill Zone theme sometimes prompts Sonic to jump. At the next obstacle, the

agent chooses to wait for this note to loop back and be played again, rather

than understand that it needs to jump over the spike blocking its path. This

reinforces the positive reward associated with that note, and creates a unique

style of periodic overfitting.

These features are occasionally also useful when Sonic gets stuck in a visually

"quiet" part of the level, with minimal on-screen movement. In this case, the

main variance in agent hidden state comes from the audio, and so a unique note

or instrument can come along to "inspire" the agent to take a new action. This

too can end up becoming a self fulfilling prophecy of periodic overfitting.

6.4.3 Not Learned Audio Features

There are a few sound effects that we expected to be more important for our training

tasks. We thought that the jump sound effect would be an important temporal

98



Figure 6-13: Agent 5 attends to a specific part of the music when deciding to jump,
instead of the spike directly blocking its path. We see that this is a kind of periodic
activation that loops with the music, as the agent waits for the music to repeat when
it reaches the second spike. It is likely an artifact of attributing reward gained from
jumping over the spike to the music instead of the spike itself.

indicator of Sonic’s jump trajectory, i.e. determining if he is rising or falling. We

also expected the sound effect produced by defeating a Badnik to be important for

learning to defeat enemies before getting hit and losing a life. Figure 6-14 shows how

these sounds are often paid no attention by the audio CNN.

We conclude that these features were not learned because in Sonic 2 and Sonic

3&K, Tails follows Sonic around and produces many of the same sound effects while

autonomously interacting with his local environment. This means that the jump

sound or defeating a Badnik sound is often not attributed to Sonic, and therefore

loses its predictive power.

Our agents also did not learn to differentiate between consonant and dissonant

sounds, or along any other axis of Western classical music theory explained in section

3.2. This was expected, since the sounds in the Sonic games are not plentiful or diverse

enough to be able to learn concepts beyond high level sound effect identification.

These theories should play a greater role if/when a large unsupervised audio model is

trained on massive amounts of Western audio data and fine tuned on videogame RL

tasks, similar to how BERT [14] and GPT-3 [76] have transformed the field of NLP.

99



Figure 6-14: Agent 5 does not value the defeating Badnik or jump sound effects.
Left: the three white peaks near the bottom of the spectrogram come from defeating
3 Badniks in a row. The leftmost peak temporally overlaps with the jump sound
effect, which are the upward curving lines above it. Neither of these are considered
to be very important for the audio CNN. Right: Sonic has just finished attacking the
third Badnik.

6.4.4 Learned Video Features

None of this detailed audio analysis is to say that our audio agents have weaker visual

components. In fact, in figure 6-15 we see that Agent 5 is capable of navigating mul-

tiple multi-step visual challenges with what appears to be limited overfitting. This

suggests that the audio component can be purely supplemental to the video compo-

nent, although as mentioned previously, the agent may confuse itself in compounding

ways when it chooses to assign reward responsibility to the wrong component.

6.5 Further Takeaways

Since Sonic sound effects are visually the same in all of the levels, and therefore

pass through the same frequency range on a spectrogram, learned audio features are

naturally transferable. This is supported by the fact that agents with audio features

achieve the best results on the joint and transfer tasks.

Visually learned obstacles or hazards were harder to transfer, often because they

100



Figure 6-15: Agent 5 learns to perform visually complicated multi-step procedures.
Top Row: from left to right, the agent 1) identifies the location of a weight on a
seesaw-like pair of mushrooms 2) lands on the mushroom on the right, sending the
weight flying in the air 3) is launched into the air once the weight returns to the
ground. Bottom Row: the agent 1) begins pushing the black device to the right 2)
sees that this has lowered the wall on the right 3) leaves the stone and jumps through
the opening.

would be learned as objects located at specific positions on screen at certain points

in time, rather than generally relative to Sonic. Results from Gotta Learn Fast [47]

suggest that a few shot learning objective is needed to fully capture the usefulness of

the lower-level visual CNN layers that learn to recognize objects.

101



102



Chapter 7

Conclusion

In this thesis, we provide three main contributions to videogame RL research.

First, we analyze videogame audio from a theoretical lens. We use the IEZA

framework to categorize Sonic sounds as diegetic or non-diegetic, and either relating to

in game activity or in game setting. This helps to facilitate discussion on what sounds

we expect and find to be important for completing levels in Sonic the Hedgehog. We

also provide a brief overview of Western classical music theory, introducing the core

ideas behind consonance, dissonance, chords, instrumentation, genre, and more. This

allows us to understand the reasoning behind various Sonic sound design decisions,

and how sounds are crafted to enhance and ease the videogame playing experience

for humans.

Second, we provide methods for extraction, playback, and processing of videogame

audio, and explain the core concepts behind these methods. We use FFmpeg to

combine video and audio data into a single file for offline playback, and PyAudio for

online playback with smoothing via dynamic resampling. To process the audio, we

use Mel Spectrograms, and explain the procedure of identifying reasonable values for

each corresponding hyper-parameter.

Third, we construct an experimental setup for testing the effect of videogame

audio on sequential decision making, and analyze the results. For our environment

setup, we explain our use of save states, episode boundaries, frame skips, memory

buffers, observation processing, random elements, and reward function. We define

103



agents with a CNN architecture for processing observations, describe the experience

generation process, and specify our policy gradient algorithm hyper-parameters. We

outline our three training tasks, five agent variants, and evaluation methods. Finally,

we analyze the differences in performance between audio+video and video-only agents,

both qualitatively and quantitatively.

7.0.1 Closing Remarks

We show that audio+video agents outperform video-only agents on both the joint

training task, zero-shot transfer tasks. We conclude that Sonic game audio informs

useful decision making, and that audio features are more easily transferable to unseen

test levels than video features.

The diverse nature of our learned audio features supports some of our original

hypotheses, namely that environmental audio can reinforce existing visual ideas (i.e.

hearing the acquiring ring sound and increasing the likelihood of moving right, while

already moving towards the right), and call attention to cues that are simply non

visual (i.e. hearing the drowning theme and searching for air), or missed by the

visual component (i.e. Zone theme artifacts coming to aid when obstacles are not

recognized). We can expect that the supplementary role of our learned audio features,

combined with their natural transfer ability, would extend beyond our work on Sonic

The Hedgehog.

As video games become increasingly realistic, and videogame RL research con-

tinues to improve, we expect that agents with the ability to process both audio and

video will be the ones to achieve state of the art results on these benchmarks. We

also expect that agents with the ability to understand environmental sounds will be

important for other machine learning related fields, such as self driving car research.

For future work, it would be interesting to see 1) how audio features transfer across

different games (say, Sonic and Mario), 2) how state of the art ALE models such as

Agent 57 might perform when given access to audio and games with richer audio/video

components, and 3) how audio might speed up the few-shot transfer learning process,

because we gotta go fast(er) [77].

104



Overall, we hope that this work provides a useful introduction to audio theory,

processing, and application to multi-modal videogame reinforcement learning, and

motivates further such research in this field.

105



106



Appendix A

Tables

107



Move Description
Walk Push left or right on the D-pad to initiate Sonic’s

movement in either direction. As the player holds
the button down, Sonic gains speed.

Run Begin walking and hold down the button to make
Sonic gain speed. After a few seconds, he’ll break
into a run.

Screech Halt While running, quickly press and hold the opposite
direction on the D-pad to make Sonic screech and
skid a short distance to a halt.

Look up While standing still, press up on the D-pad to
make Sonic gaze to the sky. As the player holds up,
the camera pans upward.

Crouch While standing still, press down on the D-pad to
make Sonic duck down. As the player holds down,
the camera pans downward.

Spin Attack Pressing down on the D-pad while moving will
make Sonic curl into a rolling attack. Sonic remains
in a ball until player jumps or slows down.

Spin Jump Pressing an action button will make Sonic leap into
the air with a rolling attack. Height of the jump is
proportional to the length of the button press.

Push Continue holding the D-pad against a block to
have Sonic push it along the ground. This sprite
will also be shown if the player attempts this with
an object that can’t be pushed.

Table A.1: Sonic Moveset.

Sonic The Hedgehog Sonic The Hedgehog 2 Sonic 3 & Knuckles
Green Hill (GH) Emerald Hill (EH) Angel Island (AI)
Marble (MB) Chemical Plant (CP) Hydrocity (HC)
Spring Yard (SY) Aquatic Ruin (AR) Marble Garden (MG)
Labyrinth (LB) Casino Night (CS) Carnival Night (CR)
Star Light (SL) Hill Top (HT) Icecap (IC)
Scrap Brain (SB) Mystic Cave (MC) Launch Base (LB)

Oil Ocean (OO) Mushroom Hill (MH)
Metropolis (MP) Flying Battery (FB)
Wing Fortress (WF) Sandopolis (SP)

Lava Reef (LR)
Hidden Palace (HP)
Death Egg (DE)

Table A.2: Game to Zone List. Zone abbreviations noted in parentheses.

108



Level Right Avg Level Right Avg
GH1 640.4 ± 15.9 OO2 943.3 ± 120.8
GH2 139.4 ± 19.8 MP1 397.6 ± 81.4
MB1 1168.6 ± 1.5 MP2 583.4 ± 48.1
MB2 891.0 ± 723.6 WF 544.3 ± 347.0
MB3 1274.3 ± 318.5 AI1 1309.2 ± 17.1
SY2 503.6 ± 207.4 HC2 58.9 ± 142.0
SY3 1888.3 ± 314.2 MG1 454.8 ± 165.3
LB1 597.0 ± 45.2 MG2 199.6 ± 2.4
LB2 140.6 ± 2.1 CR1 2083.5 ± 77.1
LB3 304.4 ± 429.2 CR2 2846.9 ± 60.9
SL1 463.5 ± 14.8 IC1 4750.9 ± 6.1
SL2 3957.6 ± 21.5 IC2 47.7 ± 4.4
SB2 403.8 ± 0.6 LB1 1364.6 ± 269.9
EH1 3950.5 ± 87.7 LB2 2201.2 ± 89.9
EH2 868.4 ± 2.5 MH1 580.3 ± 15.6
CP1 2971.6 ± 19.0 MH2 1034.9 ± 0.3
CP2 1544.7 ± 1125.0 FB1 1290.7 ± 6.2
AR1 546.9 ± 29.5 SP1 133.8 ± 133.8
AR2 2013.0 ± 113.4 SP2 39.0 ± 0.2
CS1 1365.2 ± 238.8 LR2 229.8 ± 116.7
HT1 639.0 ± 233.3 HP 1440.0 ± 53.2
MC1 670.1 ± 7.8 DE1 85.7 ± 2.6
MC2 546.6 ± 0.0 DE2 318.2 ± 15.4
OO1 1231.2 ± 58.4 Total 1099.1 ± 1092.8

Table A.3: Hold Right Train Baseline.

Level Right Avg Human Avg
GH2 133.0 ± 0.6 8166.1 ± 614.0
SY1 101.6 ± 22.3 6744.0 ± 1172.0
SL3 355.6 ± 32.1 8597.2 ± 729.5
SB1 714.0 ± 266.1 6413.8 ± 922.2
MP3 313.3 ± 110.5 6004.8 ± 440.4
HT2 395.7 ± 241.4 8600 ± 772.1
CS2 521.4 ± 135.2 8662.3 ± 1402.6
LR1 95.3 ± 79.5 8758.3 ± 477.9
FB2 840.9 ± 18.5 6021.6 ± 1006.7
HC1 48.8 ± 41.2 7146.0 ± 1555.1
AI2 21.3 ± 4.1 6705.6 ± 742.4
Total 321.9 ± 277.5 7438.2 ± 1126.0

Table A.4: Hold Right and Human Test Baselines.

109



Level Joint Avg Best Ckpts Level Joint Avg Best Ckpts
GH1 649.8 ± 0.0 649.8 ± 0.0 OO2 990.6 ± 0.0 990.6 ± 0.0
GH2 214.3 ± 45.4 254.6 ± 0.0 MP1 443.7 ± 0.0 443.7 ± 0.0
MB1 1170.1 ± 0.0 1170.1 ± 0.0 MP2 1077.6 ± 447.0 1335.7 ± 0.0
MB2 1353.2 ± 0.0 1408.1 ± 0.0 WF 1145.3 ± 0.0 1145.3 ± 0.0
MB3 1923.5 ± 889.3 2950.4 ± 0.0 AI1 1326.3 ± 0.0 1761.5 ± 0.0
SY2 821.6 ± 1.3 823.7 ± 1.3 HC2 21.0 ± 0.0 21.0 ± 0.0
SY3 2067.9 ± 210.4 2237.2 ± 0.0 MG1 1460.1 ± 434.5 1989.9 ± 4.4
LB1 635.7 ± 0.0 635.7 ± 0.0 MG2 241.3 ± 66.0 317.6 ± 0.0
LB2 1085.7 ± 1633.3 42971.7 ± 0.0 CR1 2206.3 ± 0.0 3541.8 ± 35.0
LB3 242.2 ± 0.0 242.2 ± 0.0 CR2 2861.4 ± 20.8 2873.4 ± 0.0
SL1 1522.1 ± 906.8 3866.4 ± 2302.6 IC1 4895.8 ± 0.0 4895.8 ± 0.0
SL2 3694.2 ± 354.7 3980.2 ± 0.0 IC2 52.1 ± 0.0 600.0 ± 9.2
SB2 832.4 ± 421.6 1252.2 ± 0.0 LB1 1324.3 ± 536.0 1634.5 ± 0.0
EH1 4038.2 ± 0.0 4038.2 ± 0.0 LB2 2255.6 ± 0.0 2255.6 ± 0.0
EH2 3832.1 ± 5123.1 9747.7 ± 238.9 MH1 725.2 ± 186.5 1399.6 ± 742.7
CP1 3014.0 ± 96.0 3115.4 ± 0.0 MH2 1101.2 ± 179.6 1814.1 ± 778.9
CP2 948.4 ± 0.0 948.4 ± 0.0 FB1 939.5 ± 628.3 1302.3 ± 0.0
AR1 1581.9 ± 1373.2 3248.3 ± 0.0 SP1 0.0 ± 0.0 0.0 ± 0.0
AR2 2080.7 ± 0.0 2080.7 ± 0.0 SP2 220.7 ± 278.0 540.8 ± 14.4
CS1 1711.3 ± 0.0 1711.3 ± 0.0 LR2 160.0 ± 0.0 160.0 ± 0.0
HT1 766.7 ± 0.0 766.7 ± 0.0 HP 1960.0 ± 0.0 1960.0 ± 0.0
MC1 1060.5 ± 403.1 1481.4 ± 649.3 DE1 466.7 ± 207.8 958.7 ± 462.2
MC2 546.6 ± 0.0 546.6 ± 0.0 DE2 333.6 ± 0.0 403.1 ± 0.0
OO1 1195.5 ± 0.0 1195.5 ± 0.0 Total 1344.6 ± 1124.4 1780.2 ± 1708.5

Table A.5: Agent 1 (1V 256 n.p.) Joint Scores.

Timesteps Joint Avg Bot 5 Avg Transfer Avg
5m 1175.7 ± 0.0 84.2 ± 0.0 346.6 ± 0.0
10m 1200.0 ± 42.8 51.3 ± 0.0 373.5 ± 46.6
15m 1222.9 ± 82.6 59.3 ± 13.7 439.2 ± 160.4
20m 1240.5 ± 61.5 53.9 ± 4.5 375.1 ± 25.5
25m 1253.7 ± 71.2 62.3 ± 16.1 393.6 ± 40.9
30m 1344.6 ± 206.4 65.9 ± 18.9 430.3 ± 134.7

Table A.6: Agent 1 (1V 256 n.p.) Score Progression.

110



Solo Solo Transfer Transfer
Level Avg Best Ckpts Avg 30m Best Ckpts
GH2 9627.4 ± 397.0 10064.0 ± 344.2 139.2 ± 0.0 139.2 ± 0.0
SY1 1889.7 ± 31.7 1923.3 ± 0.0 116.9 ± 0.0 116.9 ± 0.0
SL3 2881.4 ± 206.9 3105.4 ± 0.0 404.5 ± 0.0 404.5 ± 0.0
SB1 1893.0 ± 516.4 2461.2 ± 405.5 612.1 ± 3.2 613.9 ± 0.0
MP3 2025.7 ± 517.7 2623.3 ± 484.2 327.7 ± 0.0 327.7 ± 0.0
HT2 783.6 ± 117.0 851.2 ± 0.0 453.5 ± 459.8 984.5 ± 475.1
CS2 2626.5 ± 3452.2 6612.5 ± 0.0 1189.2 ± 894.4 3607.4 ± 818.5
LR1 659.7 ± 965.2 1774.3 ± 1378.7 259.0 ± 123.1 338.8 ± 273.4
FB2 858.7 ± 19.0 869.6 ± 0.0 868.5 ± 64.1 1409.5 ± 14.0
HC1 2311.2 ± 956.6 3006.9 ± 184.3 253.7 ± 0.0 253.7 ± 0.0
AI2 1695.6 ± 267.3 1991.4 ± 584.7 109.6 ± 0.0 109.6 ± 0.0
Total 2477.5 ± 2482.6 3207.6 ± 2752.4 430.3 ± 340.5 755.1 ± 1028.1

Table A.7: Agent 1 (1V 256 n.p.) Test Scores.

Level Joint Avg 30m Best Ckpts Level Joint Avg 30m Best Ckpts
GH1 2114.0 ± 2261.3 5202.9 ± 4.7 OO2 1446.6 ± 948.1 5676.2 ± 2109.7
GH2 663.1 ± 576.8 2679.0 ± 944.9 MP1 668.2 ± 831.5 1683.4 ± 16.2
MB1 3121.4 ± 2007.3 5405.0 ± 391.2 MP2 1320.0 ± 1213.7 3176.3 ± 272.7
MB2 1444.8 ± 767.9 2332.8 ± 0.0 WF 789.9 ± 362.7 1093.5 ± 10.2
MB3 1808.5 ± 964.0 2949.7 ± 98.9 AI1 1487.1 ± 1326.3 3884.2 ± 842.3
SY2 671.3 ± 136.2 1357.5 ± 143.8 HC2 229.2 ± 390.0 679.5 ± 331.2
SY3 1695.9 ± 290.5 2030.6 ± 306.1 MG1 1522.1 ± 433.5 2132.7 ± 368.9
LB1 1612.9 ± 970.6 2729.1 ± 1033.2 MG2 312.6 ± 280.5 601.2 ± 131.1
LB2 2692.2 ± 401.0 2962.8 ± 14.2 CR1 2974.5 ± 2568.7 5513.9 ± 25.7
LB3 1429.3 ± 1174.3 2612.0 ± 1.2 CR2 1644.6 ± 1354.5 2849.6 ± 34.5
SL1 1463.8 ± 1619.7 3528.8 ± 219.4 IC1 4798.2 ± 67.3 5029.4 ± 199.5
SL2 1436.3 ± 769.9 4380.0 ± 718.7 IC2 950.8 ± 650.2 2726.6 ± 8.0
SB2 1192.2 ± 82.1 1252.2 ± 0.0 LB1 1110.5 ± 1452.6 2754.4 ± 20.9
EH1 3479.0 ± 2412.7 6070.4 ± 996.1 LB2 1386.0 ± 536.1 2635.9 ± 78.9
EH2 3207.6 ± 2537.6 8606.8 ± 2704.9 MH1 674.0 ± 637.9 1428.4 ± 5.7
CP1 1646.5 ± 1485.9 4320.1 ± 1421.2 MH2 560.0 ± 461.6 1648.7 ± 652.8
CP2 1340.6 ± 1364.1 3516.3 ± 133.7 FB1 621.4 ± 612.8 1302.3 ± 0.0
AR1 2658.7 ± 2018.0 4557.0 ± 258.2 SP1 142.2 ± 122.1 893.3 ± 604.8
AR2 2166.2 ± 1971.9 3881.7 ± 939.4 SP2 212.8 ± 335.0 600.8 ± 5.5
CS1 1300.5 ± 918.1 2307.0 ± 421.9 LR2 145.8 ± 19.8 1296.6 ± 4.1
HT1 425.3 ± 497.1 975.5 ± 375.9 HP 5435.2 ± 3834.2 9811.6 ± 354.2
MC1 857.3 ± 800.7 1589.7 ± 775.8 DE1 403.2 ± 311.1 2942.8 ± 549.2
MC2 340.3 ± 296.4 546.6 ± 0.0 DE2 604.7 ± 792.6 2433.1 ± 464.2
OO1 1329.7 ± 1037.5 2345.5 ± 226.6 Total 1479.5 ± 1148.3 2998.6 ± 2010.6

Table A.8: Agent 2 (1V 256) Joint Scores.

111



Timesteps Joint Avg Bot 5 Avg Transfer Avg
5m 1255.9 ± 220.1 137.8 ± 114.1 484.6 ± 192.9
10m 1501.4 ± 347.9 202.1 ± 40.3 721.9 ± 305.7
15m 1591.1 ± 399.6 164.8 ± 22.2 720.0 ± 265.9
20m 1584.9 ± 628.8 189.7 ± 106.6 742.0 ± 254.2
25m 1585.3 ± 803.4 172.5 ± 159.9 803.5 ± 482.7
30m 1479.5 ± 911.3 174.1 ± 198.4 578.5 ± 409.7

Table A.9: Agent 2 (1V 256) Score Progression.

Solo Solo Transfer Transfer
Level Avg Best Ckpts Avg 30m Best Ckpts
GH2 3674.0 ± 4710.3 9021.3 ± 2105.0 1629.6 ± 1956.9 3843.9 ± 1662.9
SY1 1105.0 ± 1021.0 1297.2 ± 715.2 377.5 ± 77.3 636.6 ± 116.7
SL3 2790.5 ± 333.9 3095.2 ± 10.2 352.8 ± 140.0 1302.5 ± 776.0
SB1 1912.1 ± 535.4 2526.6 ± 409.0 661.1 ± 249.3 1293.1 ± 1216.7
MP3 993.5 ± 532.1 1701.3 ± 14.5 221.1 ± 179.4 358.7 ± 288.1
HT2 869.7 ± 1102.9 1649.6 ± 498.8 530.5 ± 588.3 2441.2 ± 5.3
CS2 396.0 ± 343.3 3617.4 ± 2131.5 809.8 ± 701.6 3666.2 ± 2132.9
LR1 1038.9 ± 529.8 752.7 ± 848.8 204.8 ± 313.2 566.0 ± 155.7
FB2 134.0 ± 232.1 836.7 ± 32.9 852.1 ± 291.1 1399.5 ± 120.9
HC1 979.8 ± 954.4 2024.3 ± 1444.1 148.8 ± 123.5 279.4 ± 520.3
AI2 1391.8 ± 1166.3 2097.3 ± 476.7 575.1 ± 387.5 1007.4 ± 607.2
Total 1389.6 ± 1040.0 2601.8 ± 2302.9 578.5 ± 422.6 1526.8 ± 1257.4

Table A.10: Agent 2 (1V 256) Test Scores.

112



Level Joint Avg 30m Best Ckpts Level Joint Avg 30m Best Ckpts
GH1 3044.0 ± 1471.6 4437.6 ± 313.8 OO2 2282.9 ± 1152.5 2982.6 ± 603.9
GH2 475.8 ± 410.0 949.2 ± 782.3 MP1 917.5 ± 460.0 1644.9 ± 98.3
MB1 1831.9 ± 645.0 3179.1 ± 1275.6 MP2 1230.2 ± 113.4 2380.2 ± 738.6
MB2 2076.8 ± 345.5 2332.8 ± 0.0 WF 1020.1 ± 500.8 1448.6 ± 1115.3
MB3 2254.4 ± 840.1 2947.4 ± 95.0 AI1 2048.8 ± 771.7 4091.7 ± 1.6
SY2 805.8 ± 168.7 1158.3 ± 342.3 HC2 461.4 ± 323.8 752.5 ± 126.6
SY3 1993.8 ± 22.2 2210.6 ± 342.7 MG1 1643.8 ± 744.6 2348.9 ± 185.7
LB1 1627.9 ± 795.2 2301.8 ± 1129.6 MG2 514.7 ± 196.2 719.1 ± 43.5
LB2 2919.9 ± 25.7 2964.0 ± 11.8 CR1 2439.5 ± 1471.3 5540.0 ± 2.5
LB3 1099.8 ± 821.9 2587.9 ± 26.6 CR2 2473.0 ± 357.8 2854.3 ± 30.6
SL1 1690.4 ± 278.3 4858.0 ± 1362.7 IC1 4876.0 ± 204.5 5393.8 ± 154.6
SL2 3044.7 ± 1108.1 7166.1 ± 996.1 IC2 1091.8 ± 1436.2 3678.0 ± 112.2
SB2 1178.5 ± 91.4 1251.6 ± 0.6 LB1 1063.4 ± 550.5 2413.6 ± 333.9
EH1 6025.4 ± 3386.6 9798.2 ± 1471.1 LB2 2295.4 ± 357.7 2699.8 ± 21.9
EH2 8589.6 ± 2267.9 10210.7 ± 487.5 MH1 857.5 ± 497.8 1432.2 ± 9.4
CP1 2129.2 ± 1645.7 4857.1 ± 114.6 MH2 1193.4 ± 626.0 2168.9 ± 619.4
CP2 2069.7 ± 984.2 3639.3 ± 10.7 FB1 1248.6 ± 48.2 1302.3 ± 0.0
AR1 3875.7 ± 583.6 4748.1 ± 1338.5 SP1 275.9 ± 103.0 964.4 ± 431.2
AR2 2998.5 ± 1027.5 4030.3 ± 1187.5 SP2 341.3 ± 235.9 552.2 ± 33.756
CS1 1039.6 ± 925.2 2494.2 ± 110.2 LR2 542.4 ± 230.3 689.0 ± 580.1
HT1 750.3 ± 3.3 754.3 ± 55.6 HP 4158.7 ± 875.6 6430.8 ± 2069.7
MC1 998.2 ± 109.0 1286.0 ± 384.3 DE1 411.8 ± 376.7 1676.0 ± 80.6
MC2 1444.0 ± 1013.8 2122.6 ± 1899.5 DE2 642.6 ± 697.9 2908.7 ± 5.4
OO1 1538.6 ± 312.9 2253.2 ± 124.5 Total 1905.0 ± 1572.3 3013.0 ± 2186.2

Table A.11: Agent 3 (2V 512) Joint Scores.

Timesteps Joint Avg Bot 5 Avg Transfer Avg
5m 1146.5 ± 185.0 108.8 ± 64.4 406.8 ± 108.9
10m 1383.5 ± 253.1 140.7 ± 65.3 531.6 ± 234.2
15m 1622.7 ± 455.5 175.0 ± 122.3 602.3 ± 315.2
20m 1827.2 ± 618.9 226.4 ± 161.0 791.6 ± 389.9
25m 1824.0 ± 611.4 207.4 ± 94.4 718.6 ± 304.5
30m 1905.0 ± 286.9 217.7 ± 68.4 678.5 ± 238.3

Table A.12: Agent 3 (2V 512) Score Progression.

113



Solo Solo Transfer Transfer
Level Avg Best Ckpts Avg 30m Best Ckpts
GH2 5379.8 ± 3127.6 8750.4 ± 2238.0 1532.1 ± 1631.6 3383.3 ± 1566.8
SY1 1413.5 ± 383.5 1814.9 ± 54.5 219.0 ± 205.1 1006.9 ± 763.2
SL3 2746.5 ± 320.0 3014.0 ± 44.4 607.7 ± 367.4 1736.0 ± 21.5
SB1 1621.8 ± 135.7 1725.4 ± 899.3 810.7 ± 53.7 1279.5 ± 561.7
MP3 1298.5 ± 459.3 1677.4 ± 20.4 792.4 ± 820.8 1740.0 ± 893.5
HT2 811.5 ± 1395.0 2422.3 ± 6.9 1141.9 ± 762.8 2096.4 ± 1132.0
CS2 3124.2 ± 3509.3 7144.7 ± 610.9 800.2 ± 97.3 4139.8 ± 1348.9
LR1 2248.5 ± 1080.9 3413.5 ± 199.6 321.8 ± 274.0 652.5 ± 63.0
FB2 423.4 ± 383.4 793.6 ± 8.2 740.2 ± 43.6 1331.0 ± 101.8
HC1 1650.0 ± 1356.0 3165.3 ± 19.7 129.4 ± 82.0 410.5 ± 762.3
AI2 1503.0 ± 1243.9 2429.7 ± 509.2 368.2 ± 252.6 780.7 ± 372.0
Total 2020.1 ± 1361.9 3304.6 ± 2443.9 678.5 ± 416.4 1686.9 ± 1155.1

Table A.13: Agent 3 (2V 512) Test Scores.

Level Joint Avg 30m Best Ckpts Level Joint Avg 30m Best Ckpts
GH1 1884.6 ± 1369.6 3948.2 ± 268.5 OO2 1845.8 ± 850.4 2619.4 ± 953.1
GH2 576.4 ± 568.4 1233.2 ± 705.3 MP1 872.0 ± 176.5 1703.7 ± 7.1
MB1 1992.5 ± 329.5 3191.5 ± 1008.1 MP2 1158.3 ± 201.7 2422.2 ± 903.5
MB2 1708.1 ± 502.0 2332.8 ± 0.0 WF 1147.8 ± 572.8 1750.9 ± 1315.3
MB3 2380.3 ± 927.1 3043.2 ± 5.4 AI1 2545.8 ± 1116.5 5305.0 ± 155.0
SY2 878.3 ± 389.8 2351.8 ± 1036.9 HC2 270.4 ± 415.1 748.4 ± 139.3
SY3 1831.7 ± 298.9 2043.7 ± 322.8 MG1 1529.7 ± 61.0 1875.6 ± 451.9
LB1 1598.1 ± 395.2 2147.8 ± 256.4 MG2 265.1 ± 44.2 317.3 ± 0.3
LB2 2114.1 ± 1399.2 2970.7 ± 7.2 CR1 3175.6 ± 2490.2 5569.6 ± 7.9
LB3 1442.5 ± 1132.4 2568.8 ± 45.7 CR2 2534.7 ± 280.4 2859.0 ± 35.8
SL1 1475.6 ± 1145.0 4726.9 ± 81.0 IC1 4771.5 ± 48.8 4824.5 ± 2.0
SL2 2240.0 ± 1705.8 6429.9 ± 1291.9 IC2 1945.9 ± 1276.1 4037.0 ± 67.5
SB2 1196.0 ± 61.8 1251.6 ± 0.6 LB1 1274.4 ± 1304.6 2769.5 ± 5.8
EH1 7782.6 ± 2803.2 9834.3 ± 256.6 LB2 2286.0 ± 380.7 2710.0 ± 3.4
EH2 6239.6 ± 2489.0 9837.3 ± 320.9 MH1 1766.0 ± 1386.6 3331.5 ± 20.5
CP1 2918.3 ± 31.0 4982.3 ± 0.9 MH2 1353.5 ± 390.3 2417.6 ± 2.3
CP2 2107.4 ± 675.3 2945.8 ± 210.7 FB1 1195.9 ± 104.9 1302.3 ± 0.0
AR1 2531.4 ± 502.9 4127.9 ± 1397.5 SP1 415.7 ± 493.0 1269.0 ± 940.1
AR2 2382.1 ± 741.1 4458.2 ± 562.9 SP2 372.9 ± 312.3 625.7 ± 118.2
CS1 1619.7 ± 518.1 2116.6 ± 434.5 LR2 185.0 ± 40.1 778.0 ± 522.7
HT1 742.6 ± 12.8 755.0 ± 76.9 HP 6208.8 ± 2501.5 8654.3 ± 1229.3
MC1 905.2 ± 234.0 1087.1 ± 247.3 DE1 108.4 ± 105.0 1286.4 ± 20.0
MC2 552.1 ± 228.7 1587.1 ± 1086.9 DE2 970.3 ± 950.0 1905.8 ± 14.1
OO1 1704.2 ± 145.1 1892.4 ± 374.3 Total 1893.7 ± 1570.3 3041.4 ± 2227.9

Table A.14: Agent 4 (1VA 2 · 256 128H) Joint Scores.

114



Timesteps Joint Avg Bot 5 Avg Transfer Avg
5m 1311.1 ± 214.8 121.3 ± 60.1 563.4 ± 215.2
10m 1297.4 ± 146.5 94.0 ± 25.7 478.0 ± 171.3
15m 1534.5 ± 306.9 134.7 ± 64.9 676.0 ± 271.6
20m 1924.9 ± 170.4 189.1 ± 44.0 868.5 ± 243.5
25m 2154.6 ± 275.4 204.1 ± 25.3 1042.8 ± 318.2
30m 1893.7 ± 225.3 128.7 ± 76.6 817.3 ± 320.2

Table A.15: Agent 4 (1VA 2 · 256 128H) Score Progression.

Solo Solo Transfer Transfer
Level Avg Best Ckpts Avg 30m Best Ckpts
GH2 3716.4 ± 3646.0 7781.7 ± 2605.4 661.6 ± 531.5 2550.8 ± 1460.7
SY1 1199.9 ± 630.6 1917.3 ± 6.0 387.3 ± 236.0 765.9 ± 772.3
SL3 1694.0 ± 1153.4 2636.0 ± 657.4 1548.9 ± 1039.3 2599.3 ± 728.6
SB1 1857.1 ± 381.3 2286.0 ± 1746.0 657.8 ± 383.0 1360.7 ± 728.7
MP3 1275.8 ± 446.2 1730.6 ± 544.1 369.9 ± 46.6 444.4 ± 411.8
HT2 3244.8 ± 345.9 3644.2 ± 1053.9 1689.4 ± 675.2 2671.8 ± 715.0
CS2 2668.5 ± 1002.0 3630.9 ± 23.5 1754.4 ± 1152.4 5181.6 ± 1420.5
LR1 1780.0 ± 1511.9 2694.5 ± 1367.3 389.7 ± 553.4 1165.3 ± 972.6
FB2 366.9 ± 605.8 1066.2 ± 225.1 957.2 ± 289.9 1401.2 ± 20.8
HC1 1146.2 ± 601.0 1765.9 ± 969.3 191.0 ± 136.3 341.7 ± 350.7
AI2 1692.1 ± 1030.8 2422.7 ± 803.2 382.8 ± 248.8 1088.4 ± 583.3
Total 1876.5 ± 979.4 2870.5 ± 1805.8 817.3 ± 582.4 1779.2 ± 1403.1

Table A.16: Agent 4 (1VA 2 · 256 128H) Test Scores.

115



Level Joint Avg 30m Best Ckpts Level Joint Avg 30m Best Ckpts
GH1 1792.5 ± 1173.7 3961.8 ± 265.3 OO2 1030.5 ± 97.9 1414.8 ± 755.5
GH2 968.4 ± 805.2 1934.6 ± 2119.8 MP1 904.6 ± 638.5 1630.6 ± 80.2
MB1 3054.8 ± 118.1 3464.7 ± 1153.5 MP2 1629.6 ± 430.9 2125.3 ± 811.3
MB2 1415.8 ± 524.2 2332.8 ± 0.0 WF 939.9 ± 555.3 1576.9 ± 1343.7
MB3 1639.8 ± 495.6 2211.0 ± 970.26 AI1 2725.5 ± 1450.6 4376.1 ± 356.6
SY2 949.0 ± 358.8 2093.4 ± 1270.5 HC2 397.9 ± 342.3 744.9 ± 241.2
SY3 1873.2 ± 168.3 2224.2 ± 9.7 MG1 1721.5 ± 420.9 2207.1 ± 386.0
LB1 2270.2 ± 223.4 2575.8 ± 876.1 MG2 328.8 ± 234.7 676.8 ± 9.5
LB2 2233.7 ± 662.5 2954.0 ± 40.6 CR1 4946.9 ± 799.3 5555.7 ± 16.8
LB3 1160.3 ± 1253.2 2596.6 ± 19.2 CR2 2425.1 ± 491.6 2838.8 ± 79.9
SL1 2821.1 ± 1180.8 3848.9 ± 541.7 IC1 4954.2 ± 316.4 5319.3 ± 3.0
SL2 2585.1 ± 1778.4 4635.7 ± 831.7 IC2 2065.8 ± 1040.7 3114.1 ± 448.2
SB2 1221.5 ± 10.9 1248.7 ± 3.4 LB1 1106.1 ± 375.1 2774.1 ± 0.6
EH1 5294.5 ± 1939.0 7333.1 ± 25.6 LB2 2301.0 ± 704.7 2710.7 ± 4.1
EH2 6874.2 ± 5206.4 10006.3 ± 346.0 MH1 1116.8 ± 359.1 3148.9 ± 172.9
CP1 4102.7 ± 340.7 4493.4 ± 44.5 MH2 1724.1 ± 1033.9 2591.5 ± 205.6
CP2 2006.7 ± 630.4 3486.2 ± 8.6 FB1 1142.2 ± 204.3 1291.1 ± 5.0
AR1 3092.6 ± 728.0 3933.1 ± 686.1 SP1 676.4 ± 647.9 1423.6 ± 261.1
AR2 3102.9 ± 333.0 3397.9 ± 1110.0 SP2 350.5 ± 271.9 754.0 ± 268.8
CS1 1760.6 ± 101.4 2224.9 ± 15.4 LR2 286.1 ± 305.1 1238.0 ± 75.5
HT1 727.7 ± 7.1 777.0 ± 297.6 HP 6659.9 ± 2316.8 9122.7 ± 166.5
MC1 1089.9 ± 174.2 1290.6 ± 336.5 DE1 738.4 ± 532.7 1755.5 ± 487.7
MC2 507.3 ± 16.8 789.3 ± 267.0 DE2 962.5 ± 794.2 2008.2 ± 1644.8
OO1 1782.8 ± 324.9 2155.3 ± 239.6 Total 2031.1 ± 1572.0 2901.5 ± 2011.1

Table A.17: Agent 5 (1VA 2 · 256 512H) Joint Scores.

Timesteps Joint Avg Bot 5 Avg Transfer Avg
5m 1143.0 ± 42.3 84.2 ± 17.7 360.2 ± 34.1
10m 1394.7 ± 170.5 153.3 ± 74.8 721.8 ± 193.0
15m 1390.5 ± 300.6 187.5 ± 124.4 587.0 ± 140.6
20m 1754.4 ± 81.9 217.5 ± 25.5 1078.4 ± 30.9
25m 1874.8 ± 373.0 261.7 ± 100.7 1041.0 ± 114.6
30m 2031.1 ± 501.9 257.9 ± 121.9 936.6 ± 220.8

Table A.18: Agent 5 (1VA 2 · 256 512H) Score Progression.

116



Solo Solo Transfer Transfer
Level Avg Best Ckpts Avg 30m Best Ckpts
GH2 6687.1 ± 4554.9 9464.5 ± 2557.6 1285.0 ± 711.6 2616.3 ± 21.3
SY1 316.7 ± 256.4 599.5 ± 130.6 237.8 ± 51.8 753.7 ± 519.3
SL3 2348.2 ± 322.9 2720.2 ± 252.6 1729.6 ± 1282.0 2939.9 ± 114.6
SB1 1291.5 ± 396.2 1747.2 ± 25.5 855.4 ± 86.6 1539.4 ± 559.1
MP3 1018.0 ± 234.0 1288.2 ± 287.5 327.6 ± 6.3 439.7 ± 403.5
HT2 619.3 ± 902.0 1660.2 ± 1180.2 1800.9 ± 765.1 2915.8 ± 904.42
CS2 4033.7 ± 220.5 4169.9 ± 12.7 1973.1 ± 946.2 4446.0 ± 465.3
LR1 122.8 ± 160.9 307.0 ± 306.1 201.5 ± 139.3 447.5 ± 247.5
FB2 54.0 ± 35.5 78.8 ± 70.8 908.6 ± 216.5 1401.4 ± 11.2
HC1 246.8 ± 366.8 670.2 ± 336.4 305.7 ± 51.3 699.7 ± 1047.0
AI2 1058.7 ± 1351.3 2601.5 ± 375.1 677.1 ± 203.2 1126.9 ± 636.8
Total 1617.9 ± 2051.7 2300.7 ± 2669.9 936.6 ± 666.6 1756.9 ± 1298.3

Table A.19: Agent 5 (1VA 2 · 256 512H) Test Scores.

117



118



Appendix B

Figures

119



Figure B-1: Graph of training episode rewards over time. Agent 3 and Agent 4
achieve significantly higher scores on these four levels than the other agent variants.
This appears to be the result of memorizing certain sections.

120



Figure B-2: Agent 1 action distribution entropy over time for the solo train task.

121



122



Bibliography

[1] Willi Apel. The Harvard dictionary of music. Harvard University Press, 2003.

[2] Karl J Astrom. Optimal control of markov processes with incomplete state
information. Journal of mathematical analysis and applications, 10(1):174–205,
1965.

[3] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Daniel Guo, and Charles Blundell. Agent57: Outperforming the
atari human benchmark. arXiv preprint arXiv:2003.13350, 2020.

[4] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo,
Bilal Piot, Steven Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander
Pritzel, Andew Bolt, et al. Never give up: Learning directed exploration strate-
gies. arXiv preprint arXiv:2002.06038, 2020.

[5] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright,
Heinrich Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik,
et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

[6] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[7] Richard Bellman. On the theory of dynamic programming. Proceedings of the
National Academy of Sciences of the United States of America, 38(8):716, 1952.

[8] Ross Bencina and Phil Burk. Portaudio-an open source cross platform audio api.
In ICMC, 2001.

[9] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[10] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-
akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

123



[11] Boston Dynamics. Atlas. "https://www.bostondynamics.com/atlas", 2020.
[Online; accessed 14-August-2020].

[12] Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and
its applications, volume 31999. McGraw-Hill New York, 1986.

[13] J Peter Burkholder, Donald Jay Grout, and Claude V Palisca. A History of
Western Music: Tenth International Student Edition. WW Norton & Company,
2019.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

[15] D.S. Cohen. History of sonic the hedgehog by sega genesis. "https://www.
lifewire.com/history-of-sonic-the-hedgehog-729671", 2019. [Online; ac-
cessed 14-August-2020].

[16] explod2A03. Nes audio: Brief explanation of sound channels. "https://www.
youtube.com/watch?v=la3coK5pq5w", 2012. [Online; accessed 14-August-2020].

[17] FFmpeg. Ffmpeg. "https://ffmpeg.org/", 2020. [Online; accessed 14-August-
2020].

[18] L. Pettersson J. Schneider J. Schulman J. Tang G. Brockman, V. Cheung and
W. Zaremba. Open ai gym. arXiv preprint arXiv:1606.01540, 2016.

[19] GST Channel. The sound capabilities of the sega genesis. "https://www.
youtube.com/watch?v=IGy7HBG3I1c", 2017. [Online; accessed 14-August-2020].

[20] GST Channel. The sound capabilities of the snes. "https://www.youtube.com/
watch?v=dtK0t8k6akg", 2019. [Online; accessed 14-August-2020].

[21] Kate Hevner. Experimental studies of the elements of expression in music. The
American Journal of Psychology, 48(2):246–268, 1936.

[22] Irina Higgins, Arka Pal, Andrei A Rusu, Loic Matthey, Christopher P Burgess,
Alexander Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Ler-
chner. Darla: Improving zero-shot transfer in reinforcement learning. arXiv
preprint arXiv:1707.08475, 2017.

[23] Sander Huiberts and Richard Van Tol. Ieza: A framework for
game audio. En ligne. Gamasutra,< http://www. gamasutra.
com/view/feature/3509/ieza_a_framework_for_game_audio. php, 2008.

[24] ITURBT ITU. Parameter values for the hdtv standards for production and
international programme exchange. Recommendation ITU-R BT, pages 709–5,
2002.

124



[25] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning
and acting in partially observable stochastic domains. Artificial intelligence,
101(1-2):99–134, 1998.

[26] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[27] Russell Kaplan, Christopher Sauer, and Alexander Sosa. Beating atari with nat-
ural language guided reinforcement learning. arXiv preprint arXiv:1704.05539,
2017.

[28] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dab-
ney. Recurrent experience replay in distributed reinforcement learning. In Inter-
national conference on learning representations, 2018.

[29] Lakshmish Kaushik, Abhijeet Sangwan, and John HL Hansen. Sentiment ex-
traction from natural audio streams. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 8485–8489. IEEE, 2013.

[30] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A
survey of the recent architectures of deep convolutional neural networks. Artificial
Intelligence Review, pages 1–62, 2020.

[31] Dong-Ki Kim, Shayegan Omidshafiei, Jason Pazis, and Jonathan P How. Cross-
modal attentive skill learner: learning in atari and beyond with audio–video
inputs. Autonomous Agents and Multi-Agent Systems, 34(1):16, 2020.

[32] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in
neural information processing systems, pages 1008–1014, 2000.

[33] Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms.
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

[34] Birger Langkjær. Making fictions sound real-on film sound, perceptual real-
ism and genre. MedieKultur: Journal of media and communication research,
26(48):13–p, 2009.

[35] Megan Lavengood. Timbre, genre, and polystylism in sonic the hedgehog 3. In
On Popular Music and Its Unruly Entanglements, pages 209–234. Springer, 2019.

[36] Alan Levinovitz. The mystery of go, the ancient game that computers still can’t
win. Wired Magazine, 2014.

[37] Liam Triforce. Understanding the music of sonic the hedgehog. "https://www.
youtube.com/watch?v=XDooMjw9uhU", 2020. [Online; accessed 14-August-2020].

[38] Logan Plant. Sonic designer yuji naka provides insight on early days
of sonic the hedgehog. "https://nintendowire.com/news/2018/05/15/
sonic-designer-yuji-naka-provides-insight-early-days-sonic-hedgehog/
", 2018. [Online; accessed 14-August-2020].

125



[39] Ling Ma, Dan J Smith, and Ben P Milner. Context awareness using environmen-
tal noise classification. In Eighth European Conference on Speech Communication
and Technology, 2003.

[40] Martin Korth. Atari 2600 specifications. "https://problemkaputt.de/
2k6specs.htm#audio", 2004. [Online; accessed 14-August-2020].

[41] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and San-
jeev Khudanpur. Extensions of recurrent neural network language model. In
2011 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pages 5528–5531. IEEE, 2011.

[42] Andrew Milne, William Sethares, and James Plamondon. Isomorphic controllers
and dynamic tuning: Invariant fingering over a tuning continuum. Computer
Music Journal, 31(4):15–32, 2007.

[43] Akshita Mittel and Purna Sowmya Munukutla. Visual transfer between atari
games using competitive reinforcement learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0,
2019.

[44] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International conference on machine
learning, pages 1928–1937, 2016.

[45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[46] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and
Andrew Y Ng. Multimodal deep learning. In ICML, 2011.

[47] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman.
Gotta learn fast: A new benchmark for generalization in rl. arXiv preprint
arXiv:1804.03720, 2018.

[48] Open AI. Roboschool. "https://github.com/openai/roboschool", 2017. [On-
line; accessed 14-August-2020].

[49] Open AI. Gym retro. "https://github.com/openai/retro", 2020. [Online;
accessed 14-August-2020].

[50] OpenCV. Opencv. "https://github.com/opencv/opencv", 2020. [Online;
accessed 14-August-2020].

[51] OpenCV. Opencv. "https://opencv.org/", 2020. [Online; accessed 14-August-
2020].

126



[52] Utku Ozbulak. Pytorch cnn visualizations. https://github.com/utkuozbulak/
pytorch-cnn-visualizations, 2019.

[53] Pangina Pangina. theme of sanic hegehog. "https://www.youtube.com/watch?
v=PX7zPlQjAr8", 2012. [Online; accessed 14-August-2020].

[54] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342,
2015.

[55] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems, pages 8026–8037, 2019.

[56] Hubert Pham. Pyaudio: Portaudio v19 python bindings. URL: https://people.
csail. mit. edu/hubert/pyaudio, 2006.

[57] Soujanya Poria, Erik Cambria, Newton Howard, Guang-Bin Huang, and Amir
Hussain. Fusing audio, visual and textual clues for sentiment analysis from
multimodal content. Neurocomputing, 174:50–59, 2016.

[58] Ebenezer Prout. Harmony: its theory and practice. Cambridge University Press,
2011.

[59] RetroArch. Atlas. "https://docs.libretro.com/", 2010. [Online; accessed
14-August-2020].

[60] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
neural networks. arXiv preprint arXiv:1606.04671, 2016.

[61] Sabbi Lall. Universal musical harmony. "http://news.mit.edu/2020/
universal-musical-harmony-0701", 2020. [Online; accessed 14-August-2020].

[62] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and
data augmentation for environmental sound classification. IEEE Signal Process-
ing Letters, 24(3):279–283, 2017.

[63] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc
Pollefeys, Timothy Lillicrap, and Sylvain Gelly. Episodic curiosity through reach-
ability. arXiv preprint arXiv:1810.02274, 2018.

[64] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on machine
learning, pages 1889–1897, 2015.

[65] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

127



[66] Ervin Sejdić, Igor Djurović, and Jin Jiang. Time–frequency feature representa-
tion using energy concentration: An overview of recent advances. Digital signal
processing, 19(1):153–183, 2009.

[67] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao.
A survey of deep reinforcement learning in video games. arXiv preprint
arXiv:1912.10944, 2019.

[68] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[69] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[70] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. 2014.

[71] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[72] Stanley Smith Stevens, John Volkmann, and Edwin B Newman. A scale for the
measurement of the psychological magnitude pitch. The Journal of the Acoustical
Society of America, 8(3):185–190, 1937.

[73] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[74] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012.

[75] Murphy Vii Tom. The first level of super mario bros. is easy with lexicographic
orderings and time travel... after that it gets a little tricky. 2013.

[76] Nick Ryder Melanie Subbiah Jared Kaplan Prafulla Dhariwal Arvind Nee-
lakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal Ariel
Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh
Daniel M. Ziegler Jeffrey Wu Clemens Winter Christopher Hesse Mark Chen
Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark Christo-
pher Berner Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
Tom B. Brown, Benjamin Mann. Language models are few-shot learners.
https://arxiv.org/abs/2005.14165, 2020.

128



[77] Trick Lobo. Gotta go fast. "https://knowyourmeme.com/memes/
gotta-go-fast", 2011. [Online; accessed 14-August-2020].

[78] VHS Tape. Sanic hegehog. "https://knowyourmeme.com/memes/
sanic-hegehog", 2012. [Online; accessed 14-August-2020].

[79] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding,
Piotr Mardziel, and Xia Hu. Score-cam: Score-weighted visual explanations for
convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages 24–25, 2020.

[80] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[81] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforce-
ment learning. In Advances in neural information processing systems, pages
2396–2407, 2018.

129


