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ABSTRACT 

The ‘bullwhip effect’ is a classic, yet persisting, problem with reverberating consequences in 

inventory management and refers to how forecast errors and safety stock builds yield increasing 

amplitudes in both orders and on-hand inventory positions the further one moves away from a 

source of order variability. The bullwhip effect is responsible for both excessive strain on real 

world inventory management systems, stock outs, and unnecessary capital reservation though 

safety stock building. In this paper, the author develops algorithmic approaches to mitigating 

bullwhip using simulation modeling, including cost minimization and amplification minimization, 

and then interprets the results in the context of existing models of human heuristics in ordering 

decisions. The algorithmic approaches are optimized as one member within a model of a human 

decision makers operating within a multi-echelon supply chain with imperfect information sharing 

and information delays. Within the optimization, human decision biases such as supply line under-

weighting are compensated for by the developed methods via the control of the flow of information 

and simulated physical goods both up and downstream. In all methods developed, inventory and 

ordering oscillations are minimized in the simulated environment. The overall goal of this project 

is to develop useful, implementable, and (to the degree possible) understandable algorithms 

capable of mitigating bullwhip generated by real humans when placed into an actively evolving 

inventory management crisis in-progress. To this end, the parameters that emerge in the developed 

algorithm are mapped to previously observed modes of behavior that mitigate the effects of 

bullwhip. The resulting algorithms act in a manner analogous to those exhibiting high levels of 

trust within the supply chain, coupled with a cautious approach to information signals outside of 

the supply chain. Desired stock levels of the resulting algorithms approach those found in optimal 

base-stock replenishment policies. Finally, it is observed that the algorithm does not fall prey to 

supply line under-weighting and can act to offset the ordering decisions that typically result in 

bullwhip in a simulated model of a multi-echelon supply chain. 
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1. Background: The Bullwhip Effect 

The field of operations management has increasingly followed its peers in economics, marketing, 

and finance by endeavoring to recognize the influence of human heuristic-based decision rules 

and incorporate these behavioral observations into the models of supply chains and inventory 

management (Gino & Pisano, 2008). Among one of the more studied consequences of behavioral 

heuristics is the emergence of supply chain instability as embodied by the ‘bullwhip effect’  

(Croson et al., 2014). This effect in inventory management is a classic problem with 

reverberating consequences though supply chains, both old and modern. Also occasionally 

referred to as the ‘Forrester Effect’ after Jay Forrester who first formalized the phenomena in his 

seminal introduction of the field of System Dynamics (Forrester, 1961), bullwhip refers to the 

increasing amplitudes in both orders and on-hand inventory positions of members of a multi-

echelon supply chain the further one moves away from a source of order variability.  

The bullwhip effect is responsible for both excessive strain on real world inventory 

management systems, stock outs, and unnecessary capital reservation though safety stock 

building (Ellram, 2010). This phenomena is also not necessarily restricted to any one industry, 

but rather present in varying forms whenever ordering decisions being made in moderately 

complex and interlinking environments (Lee et al., 2004; Sterman, 1989b, 2000).  

Optimal control policies in multi-echelon supply chains are well understood and well-

studied. Work by Clark and Scarf demonstrated that an optimal control policy can be applied via 

a base-stock ordering system when the final customer demand distribution is known (Clark & 

Scarf, 1960). Their algorithm was later generalized and operationalized to both multi-echelon 
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supply chains with imperfect local information and stationary demand patterns (Chen, 1999; 

Chen & Samroengraja, 2009; Lee et al., 2004).  

Behavioral causes of ordering and inventory amplification have also been thoroughly 

explored. A key behavioral bias that leads to bullwhip is commonly identified as ‘supply-chain 

underweighting’ (Croson & Donohue, 2006; Narayanan & Moritz, 2015; Sterman, 1989a) and 

emerges as part of a larger anchoring and adjustment heuristic employed by decision makers in 

an multi-echelon supply chain (Sterman, 1989a; Tversky & Kahneman, 1974). Mitigation of 

bullwhip has focused on adjusting both the structure of the supply chain itself and the 

information availability along the supply chain (Croson et al., 2014; Croson & Donohue, 2006; 

Wu & Katok, 2006), and on the instruction and training strategies of supply chain managers 

(Croson et al., 2014; Martin et al., 2004; Wu & Katok, 2006). While mitigation is possible, the 

underlying ordering heuristics that drive the emergence of bullwhip remain in many of these 

studies. For many of the above referenced studies, the Beer Game (Sterman, 1989a) is the 

modeling framework employed to explore and test the interventions developed. The Methods 

and Modeling section below describes this framework in more detail, but the Beer Game is the 

original modeling tool used to demonstrate much of the above observations on the origin and 

nature of bullwhip.  

Influence of cognitive features of managers who exhibit greater or lesser degrees of 

inventory amplification have also been studied (Narayanan & Moritz, 2015). This more recent 

work operationalizes the concept of supply-chain underweighting in a manner that allows a 

direct connection between the degree of the supply chain underweighting present in decision 

making and the degree of inventory and ordering amplification. Most promisingly, this work 

opens an avenue to create a useful, implementable, and (to the degree possible) understandable 
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algorithm capable of mitigating bullwhip generated by real humans when placed into an actively 

evolving inventory management crisis in-progress. More recently, efforts have been made to 

introduce machine learning and reinforcement methods (Sutton & Barto, 2014) into supply chain 

management typically using some variant of reinforcement or Q learning (Opex Analytics, 2018; 

Thompson & Badizadegan, 2015). While these methods have shown immense potential, the 

research herein implies simpler, more interpretable optimization techniques may be applied to 

existing models of human decision making in multi-echelon supply chains to achieve bullwhip 

mitigation without needing to impose any changes on either the system structure (either goods or 

information flow) or mental models (and corresponding heuristics) in use by managers.  

In this manner this work strives to ‘close the loop’ first begun by those endeavoring to 

define behavioral operations management. In this prior work, the authors define behavioral 

operations management,  in part, by incorporating observations of human decision heuristics into 

operations management optimization strategies (Gino & Pisano, 2008; Größler et al., 2008). In 

this paper, by developing methods to minimize cost along a supply chain and mitigate the 

bullwhip effect, that are also directly interpretable in the context of existing models of human 

decision making, it is possible to map from optimization routines that minimize cost functions 

which incorporate the human environment back to interpretable human-modeled decision rules. 

2. Methods and Modeling 

Modeling Framework: The Beer Game 

To test methods for bullwhip mitigation, an environment is needed. The Beer Game provides an 

ideal, and well-studied environment. The Beer Game is a classical inventory management and 

System Dynamics simulation and learning tool, in which a multi-agent decentralized supply 
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chain is modeled, much like real decentralized inventory management systems). First developed 

by Jay Forrester at MIT, the game has been used since the 1950’s to illustrate system thinking 

concepts and the prevalence of the bullwhip effect. Figure 1 below shows the typical starting 

layout for the game, which is started with 12 units of inventory on hand for each player, and 4 

units of inventory in transit at each stage in the shipping system, and 4 orders moving through 

the order chain. The original purpose of the simulation was to illustrate the difficulty of rational 

thinking in the midst of time-delayed and non-linear information feedback loops, value of 

information sharing, and most classically the bullwhip effect in inventory management (Sterman, 

1989a, 1989b).  

Following the example of numerous previous studies using this modeling framework 

(Croson & Donohue, 2006; Narayanan & Moritz, 2015; Sterman, 1989a), the model developed 

here was also initialized and conceptualized as shown in Figure 1, which also visualizes the 

typical layout of the tool when used as a board game. 

 

Figure 1. Example of Beer Game Board Layout 

Following the same examples from pervious uses of the Beer Game as a model of a multi-

echelon supply chain, after four training rounds (where in the customer demand is a fixed 

quantity of 4 units, and all players are directed to place an order of 4 units downstream), the 
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customer orders experience a step-wise increase (from 4 units to 8 units per round). From this 

point onwards, each round of the game proceeds as follows: 

1. Receiving inventory and advance shipping delays – Each entity receives the units in the 

shipping delay immediately to their right. The contents of the furthest shipping delay to 

the right is moved up 

2. Fill orders – Entity 1 (retailer) views the customer order, all others examine the 

‘incoming orders’ and orders, inclusive of any outstanding backorders, are filled to the 

extended inventory allows  

3. Record inventory or backlog 

4. Advance order slips – the order slips further to the left are moved up 

5. Place orders – Each entity decides what to order and places it the ‘orders placed’ box to 

their right 

The stated goal of the game is to reduce the amount of total cost of the entire team, subject to 

inventory holding costs of $0.50 per units and backorder/stockout costs of $1.00 per unit. 

Backorders do not expire under the traditional interpretation of this game and must be filled from 

existing stock prior to meeting any new demand.  

Typically, real human players are placed into this system to make inventory purchasing and 

management decisions. Within a few rounds of ordering, the bullwhip in inventory and 

backorders appears, amplifying over time along the simulated supply chain as each player acts to 

reserve inventory to satisfy their own myopic forecasts and needs. Exact solutions for optimal 

ordering quantities have been developed, such as the base-sock method (Chen & Samroengraja, 

2009; Clark & Scarf, 1960), but require all agents to be acting rationally and consistently. 

Additionally, while these optimal ordering methods presume stationary customer order patterns, 
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which this simulation satisfies, the human participants themselves have no knowledge a priori of 

the distribution of the customer order pattern. 

A Discrete Time Model of a Multi-Echelon Supply Chain 

A discrete time model of the Beer Game, following the sequence of steps enumerated above, was 

created in the R and Pythons scripting languages. This was designed purposefully to mimic the 

flow of material and information in the same manner as the general description of the Beer Game 

from the playing of the boardgame described above (Sterman, 1989a). This model was made as 

both a self-contained simulation of the system over a given time horizon, and as a callable 

function that takes a given state-action pair and returns an updated state. As this system, and the 

dynamics it generates, specifically depends on the accumulation of stock variables over time 

delays, which are in turn a function of the actions taken in all previous realizations of the system, 

the state variables of the system must contain the current values of all components of the system.  

The functionalized form of the simulation was written such that the input state-action pair 

consists of the current state of all variables and stocks, along with the action of a specific 

player/agent in the system given that state. The function then returns the new state of the system 

given that action. Within this model of a multi-echelon supply chain, a simulation of ‘human-

like’ ordering behavior was created, as described the Modeling Human Behavior section below. 

The functionalized form of the simulation, when applied iteratively, returns the same final state 

as the full simulation run over the same time horizon. This functionalized form of the Beer 

Game, combined with the cost functions described in Choice of Cost Function section below, is 

the testing bed in which subsequent optimizations were conducted for this paper. 
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Modeling Human Behavior 

For the purpose of evaluating a specific machine learning agent or heuristic ruleset within this 

system, data was obtained from (Sterman, 1989a), (Oroojlooyjadid et al., 2017), and (Martin et 

al., 2004) on the performance of real human players on the Beer Game, primarily subject to step-

changes in customer demand instigating the classic bullwhip effect along the supply chain. The 

goal of this project is not necessarily to replicate human responses in multi-echelon supply 

chains per se but rather model the aggregate behavior of the feedback effects of the system when 

a new optimized entity is introduced.  

Therefore, the data collected is used to create a model of how a human would plausibly 

act given the actions of our machine learning-based agent in the supply chain. The data can be 

fitted, with reasonable accuracy as shown in both (Sterman, 1989a) and (Martin et al., 2004), to a 

model of human decision making summarized in expression (1) below: 

𝑂𝑡 = 𝑀𝐴𝑋(0, 𝐿𝑡̂ + 𝛼𝑆(𝑆′ − 𝑆𝑡 − 𝛽 𝑆𝐿𝑡) + 𝜀𝑡) (1) 

𝑤ℎ𝑒𝑟𝑒 𝐿𝑡̂ =  𝜃𝐿𝑡 + (1 − 𝜃)𝐿̂𝑡−1 (2) 

As discussed in the Caveats and Limitations section in more detail below, the choice of 

decision rule could also have been one that does not presuppose a stationary demand pattern, 

which is a subtle but nevertheless present assumption in in expressions (1) and (2). Such decision 

rules have been used in other studies that use the Beer Game as the modeling platform (see for 

example (Sterman & Dogan, 2015)). However, for this specific project, the data used to create a 

simulation of plausible human ordering behavior, in which the machine learning methods were 

trained, was based on a stationary customer demand pattern. Thus, the ordering rule used in 

expressions (1) and (2) is appropriate for this specific application. The Caveats and Limitations 
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section provides some additional commentary on this choice and possible extensions to this 

work. 

In expressions (1) and (2) above, O is the order placed at time t given the information 

observed in the right-hand side of the above expression. In that expression 𝐿̂ is a smoothed 

interpolation of the expected outflow of inventory, subject to a smoothing parameter θ. SL refers 

to the total inbound supply line of inventory heading towards the player. S is the current on-hand 

inventory (or stock), and S’ is a parameter that can be considered analogous to the desired or goal 

on-hand inventory of the player. Thus, we have an expression with four parameters: θ, α, β, and 

S’. The data provided allows for fitting of these parameters (based on actual observed order 

behavior over time, given the current state of the system), at an individual, team (i.e. full supply 

chain), or even aggregate level. As conceptualized in (Sterman, 1989a), the above parameters are 

bounded as 0 ≤ θ, α, β ≤ 1  and 0 ≤ S′. 

The model of the Beer Game was created here to draw on fitted parameters for any of the 

above combinations and also ‘bootstrap’ behavior by combining fitted individual parameters into 

aggregate artificial and ‘human-like’ teams that did not actually exist. This creates a rich and 

varied environment to test a machine learning algorithm while modeling the feedback effects 

generated by modeled human behavior. 

The value of β specifically maps directly to the degree of supply-chain underweighting, 

and has been shown in prior work to be directly related to both the cognitive state of the decision 

maker and ultimately the performance of the supply chain (Narayanan & Moritz, 2015). 

Specifically, higher values of β → 1 corresponded to lower reliance on the supply-chain 

underweighting, more complete knowledge of the entire supply chain inbound to an entity,  and 

ultimately higher performance in the Beer Game (Narayanan & Moritz, 2015).  
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Thus, this paper hypothesizes that any optimized agent that minimizes the total costs of the 

system, as defined in the section below, must have high, if not unity, values of β, when mapped 

to models of human decision making described above. 

Choice of Cost Function 

For any optimization, there must be a function or value to optimize over. For this multi-echelon 

supply chain model, the literal cost is often used to as a performance metric of overall team 

performance. For example, under the standard configuration of the Beer Game, holding on-hand 

inventory has a cost of $0.50 per unit per round, whereas backorders (unfilled orders from 

previous rounds) have a cost of $1.00 per unit per round. Under this costing scenario, 

backordered demand never dissipates, and costs continue to accumulate until previously unmet 

demand is satisfied. This cost rule is summarized in expression (3). 

𝐶𝑜𝑠𝑡𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦−𝑏𝑎𝑠𝑒𝑑 =  ∑ ∑ (𝐶𝑏𝑜 ∗ 𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑡,𝑛 + 𝐶𝑖𝑛𝑣 ∗  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑡,𝑛)

𝑁

𝑒𝑛𝑡𝑖𝑡𝑦=1

𝑇

𝑡=1

 (3) 

An alternative cost function to consider here is one more closely tied to the original 

purpose of this project, namely mitigating the bullwhip effect. Responses in the supply chain to 

step-increases in customer demand are characterized by two sub-phenomena: amplification and 

phase shift. Under amplification, the maximum order quantity increases further away from the 

source of the increase (the customer). The phase shift refers to the delay in that amplification 

occurring in time versus the origin of the signal. Consider a random time horizon T over which 

the simulation is played, and subject to a step increase in demand of some value. The phase shift 

is a fixed phenomenon based on information transfer speeds and thus outside the control of our 

optimized entity (restricting that entity to only have access to its immediate environment, i.e. 
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non-clairvoyant). Thus, we can consider the amplification seen over the time horizon T by any 

entity in the supply chain as our cost function to minimize. The exact nature of penalizing this 

amplification can vary, but for this project this cost was chosen as cumulative over the entire 

horizon T and entities n (as opposed to just considering the point maximum amplification over 

T). For this paper, this amplification cost function is formulated as seen in expression (4). 

𝐶𝑜𝑠𝑡𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛−𝑏𝑎𝑠𝑒𝑑

= ∑ { ∑ [𝛾 (
𝑂𝑟𝑑𝑒𝑟𝑠𝑡,𝑛 − 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑂𝑟𝑑𝑒𝑟𝑠𝑡

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑂𝑟𝑑𝑒𝑟𝑠𝑡
)

2

+ 𝜓]

𝑁

𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠=1

}

𝑇

𝑡=1

 

(4) 

In the above expression, γ and ψ can be used to scale the penalization with respect to the 

degree of amplification. The above functional form was chosen purposefully to smoothly 

approach its maximum value (to aid in the convex optimization described below), and non-

linearly penalize larger amplitudes.  

Training the ‘Optimized’ Agents 

An important note concerns the definition of ‘optimality’ as used in this paper. Here, this refers 

to the combination of parameters values, bounded by the physically feasible space, that are cost 

reducing when applied to a given entity in this supply chain (with all other entities modeled as 

make simulated ‘human-like’ ordering decisions). 

One of the goals of this paper is to ultimately create an interpretable trained entity whose 

decision-making parameters can be translated towards human learning. It should be noted that 

the term ‘optimal’ here, when used, is referring to an agent that minimizes supply chain costs, as 

defined by either expressions (3) or (4) above, given that the other agents in the supply chain 

exhibit ‘human-like’ ordering behavior. This definition of optimality purposely does not refer to 
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previously identified optimal control polices like those of (Clark & Scarf, 1960), which assume 

fully rational decision making for all entities in the supply chain that furthermore have 

knowledge that the customer order pattern is stationary. 

Originally, an Actor-Critic Policy Gradient method was originally pursued to train the 

optimized entity and explore the resulting behavior. However, considering the goal of 

interpretability, this project instead focuses on the results of optimizing the above costs functions 

with respect to expression (1) directly. To this end, expression (1) was optimized relative to both 

cost functions show in in expressions (3) and (4), and with varying the position of the optimized 

entity between 1 (the ‘retailer’) and 4 (the ‘factory’) as shown in Figure 1. To test robustness, the 

parameters for the other simulated players where drawn from a variety of combinations of 

available values as discussed in the Modeling Human Behavior section above. However, the 

general results are the similar independent of the choice of parameters from the feasible (and 

previously fitted from real data) set. Therefore, the results below are shown relative to the 

‘general’ case set of parameters, i.e. the average parameter values that show typical human 

responses in this environment (again refer to (Sterman, 1989a)). 

Baseline Performance and Optimization Choices 

As stated above, the below are selected results for specific parameter values, however the general 

observations still hold under other choices. For optimization over the cost function shown in 

expression (4), ψ and γ were chosen as +25 and +1 respectively, simply for convenience of 

scaling the typical output of this function to the same order of magnitude as that generated by 

expression (3).  
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For expression (1), simulated ‘human-like’ entities in the supply chain responding to the 

optimized agents had parameter values of θ = 0.36, α = 0.26, β = 0.34, and S’ = 17, which come 

from aggregates of the fitted behavioral data from (Sterman, 1989a), directionally confirmed by 

a similar analysis in (Oroojlooyjadid et al., 2017).   

Additionally, while the game is traditionally run over 36 rounds, the simulations below 

are over 104 rounds to give time for amplification to fully develop and dissipate. Figure 2 below 

shows the ordering behavior of the baseline case, with the default human-like agents responding 

to a step change in customer orders, along with the costs incurred from expressions (3) and (4). 

 
Figure 2. Baseline Performance: Amplification Costs = 2783.47, Inventory Costs = 3589.96 

As summarized in Table 3 and Table 4 in the Appendix, several different numerical 

optimization methods (Bertsimas & Tsitsiklis, 1997) were tested across each entity position in 

this simulated supply chain. As discussed in the Modeling Human Behavior section above, the 

parameter space is four dimensional and bounded as θ ∈ ℝ+, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1  and 0 ≤ S′. 

Previous analyses of optimal decision rules in models of multi-echelon supply chains like 

the Beer Game have either assumed or proved convexity of the underlying cost function (Chen, 

1999; Clark & Scarf, 1960). While such a proof of convexity of the system as modeled here, 
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incorporating the behavioral heuristics of equation (1) into (3) or equation (4), is beyond the 

scope of this paper, it allows us to narrow optimization strategies to a class of bounded and 

convex or pseudo convex optimization methods.  

Fortunately, as seen by inspection of Table 3 and Table 4 in the Appendix, choice of 

convex optimization method ultimately generated qualitatively similar results, as did the choice 

of cost function, shown in expressions (3) and (4). To further build confidence that the 

optimization routine returned a local minimum of the overall system cost, a bounded axial search 

(Nash et al., 2020) along the four parameters was conducted after each minimization and no 

significant reduction in system cost was found. Thus, while the results given below may be 

framed in the context of a single observations, they are generally valid along all observations 

derived for this paper, unless stated otherwise. 

3. Results 

Figure 3 below shows the general trend when optimizing for a minimum cost, i.e. via equation 

(3). Here the example is an optimization along Entity 1, or the Retailer as shown in Figure 1. The 

optimization quickly produces damped system, eliminating oscillations and amplification. But it 

does so at the cost of backorders, essentially driving the on-hand inventory of the optimized 

entity to zero and incurring backorder costs for at least some portion of the simulation. 
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Figure 3. Inventory Cost Minimization via Entity 1: Inventory Costs = 2123.92, Amplification Costs = 129.73 

By visual inspection of the simulation results, and as summarized in Table 3, the 

inventory cost minimization method is generally superior at minimizing both the costs incurred 

to the supply chain as defined in expression (3) and simultaneously reduce the amplification 

costs as defined in (4). While minimizing along equation (4) did consistently reduce 

amplification relative to the baseline shown in Figure 2, it did so sometimes at the cost of 

enduring high levels costly of backlog. As an example, consider the task of optimizing the 

behavior of Entity 4, or the Factory, given that all upstream players are modeled as ‘human-like’. 

As seen in Figure 4 below, optimizing for amplification reduction, i.e. equation (4), does in fact 

reduce the amplitude in orders experienced by the supply chain in net, but does so by incurring 

comparatively massive backlogs in the Factory. 
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Figure 4. Amplification Cost Minimized via Entity 4: Inventory Costs = 7111.23, Amplification Costs = 986.84 

Whereas minimizing along inventory costs, i.e. equation (3), attempts to balance the 

amplification damping benefit of backlogs with the incurred cost of sustaining an ever-increasing 

backlog. As seen in Figure 5, the reduction to amplification is less than discussed above, but still 

present while the runaway costs are avoided. 

 
Figure 5. Inventory Cost Minimized via Entity 4: Inventory Costs = 3342.22, Amplification Costs = 2144.28 

The above minimizations of cost were optimized one entity at a time, under a model that 

assumes that all other entities in this simulated supply chain order in a ‘human-like’ manner. The 

hypothesis and background introduced at the start of this paper presume that a lessening of 

supply-chain underweighting and generally behavior that resembles both high cognitive 
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reasoning individuals, and also teams of such individuals, like that shown in (Narayanan & 

Moritz, 2015) will mitigate bullwhip.  

To explore this and test if the optimized parameters space found by the above cost 

minimizations work not only in isolation, but also in conjunction, consider the behavior shown in 

Figure 6 below. Here is an example of all four trained agents interacting with each other in the 

simulated supply chain. Each entity was trained separately, exposed to simulated ‘human-like’ 

ordering behavior from the rest of the supply chain. While Figure 6 represents a single example 

of combining all four trained agents together, the outcome is similar in all the optimization 

combinations performed, as seen in Table 3 and Table 4. The amplification in orders is rapidly 

damped in this simulation, achieving the goal of bullwhip reduction in a manner that implies 

robustness towards applying each separately trained agent towards and an environment with 

fundamentally different ordering heuristics than that in which it was trained. 

 

Figure 6.  Combination of Separately Trained Inventory Cost Minimized Entities 
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Applications of Trained Optimization to New Order Patterns 

Perhaps more surprising and reassuring about the general application of the results of this 

project, is the application of the optimized agents to a different customer order string. The 

parameters that minimize total team cost, weather actual inventory cost or amplification costs, 

were trained on the step-wise increase of the traditional Beer Game, but then applied to a 

scenario where customer orders are drawn from a normally distributed random variable (Table 4  

in the Appendix for detailed results for each scenario).  

 As seen in Figure 7, again showing only one representative example, the optimization 

function trained on a step-wise increase in customer demand still reduces both cost functions 

relative to the baseline performance of all simulated human-like players.  

 Inspection of Table 3Table 4 does shows similar points of caution as seen in the base 

optimization case discussed above. Namely, that minimizing towards amplification costs often 

does so at the detriment of the overall incurred backlog cost of the system. However, this result 

indicates that the parameters found in the above described minimizations are not only capable of 

reducing the costs incurred in this simulated multi-echelon supply chain subject to the training 

customer order string, but are generally capable of reducing bullwhip. 
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Figure 7. Baseline versus Optimized Entity 1 (Retailer) response to noisy orders  

Baseline: Inventory Costs = 4350.79, Amplification Costs = 11988.70  

Optimized: Inventory Costs 2968.90, Amplification Costs = 6178.59 

Changing Ordering Behavior During Bullwhip in Progress 

To further explore the generality of the above derived optimization to a wider class of order 

stings, consider the an entity in this multi-echelon supply chain acting in a manner consistent 

with the Baseline behavior seen in Figure 2, and parameterized per the first line of Table 3 (with 

θ = 0.36, α = 0.26, β = 0.34, and S' = 17). The above analyses assume that these parameters can 

be replaced with their optimized values prior to the emergence of any inventory or ordering 

amplification. However, it is conceivable that an entity in this supply chain may be able to 
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change their ordering method once they become aware of the emergence of an actively evolving 

inventory management crisis in-progress, as encapsulated by the bullwhip effect. 

By inspection of the ordering history of the baseline scenario shown in Figure 2, there are 

three possible moments an entity in this supply chain could possibly recognize the existence of 

ordering amplification: 

1. At the maximum of one of its own spikes in ordering behavior 

2. When the orders of an upstream entity surpass its own (i.e., for the ‘retailer’ in position 1, 

this would be the ‘warehouse’ in position 2) 

3. When the orders of a downstream entity surpass its own (i.e., for the ‘factory’ in position 

4, this would be the ‘distributor’ in position 3).  

The exact ability of each entity to observe this information may be limited by the structure of 

the supply chain itself, and very possibly could be under the same information delays modeled in 

order transmittal system. However, for ease of analysis and generality of results this specific 

delay is ignored.  

By inspection of the data that underlies Figure 2, the time steps that each of the above three 

scenarios was chosen for further analysis and is summarized in Table 1 below.  

Table 1. Time Step for Change in Ordering Behavior 

Entity 
Time of First 

Maximum in Entity 
Orders 

Time Upstream 
(Entity+1) Orders 

Exceed Own  

Time Downstream 
(Entity-1) Orders 

Exceed Own 

1 (Retailer) 13 7 NA 

2 (Warehouse) 16 9 7 

3 (Distributor) 24 12 9 

4 (Factory) 27 NA 12 
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As an example to help read Table 1, in the first entity (the retailer) would change from 

the default ordering parametrization (θ = 0.36, α = 0.26, β = 0.34, and S' = 17) to a previously 

determined optimized set of parameters (such as the BOBYQA inventory cost minimizing values 

of θ = 0.037, α = 0.126, β = 0.903, and S' = 36) at a time of t = 7 if it was changing its ordering 

behavior once it notices upstream orders exceeding its own. 

Figure 8 below shows a representative example of the ordering and inventory behavior 

across the system when the ordering parameters for the first entity (the retailer) are switched 

from the baseline values to those found in the previous optimization under the box constraint 

method using the inventory based cost function from equation (3). Values for both the resulting 

inventory based and amplification-based costs that are occurred across the system, using all 

permutations of the times shown in Table 1, are given in the Appendix in Table 5. 

 

Figure 8. Switching from Baseline Parameters to Box Constraint Optimized Parameters for Entity 1 at Time = 7 

Inspection of the values in Table 5 yields an interesting observation. Aside from the 

position of the retailer (Entity 1), changing ordering behavior in response to the emergence of 

bullwhip yields higher inventory-based costs in net versus if the entity had simply stayed with 

the default parameterization. However, amplification-based costs are consistently and 



25 

dramatically reduced versus the baseline. This observation is consistent no matter if expression 

(3) or (4) was used to train the agent. Figure 9 below provides some insight on the source of this 

seeming paradoxical observation. Here we see the source of the long-term inventory costs as the 

entity continues to hold larger amounts of inventory that necessary later into the simulation. 

However, overall ordering amplification is tamped down quickly by this action and allows for 

bullwhip as defined at the beginning of this paper, to be halted quickly after it is first observed. 

 

Figure 9. Switching from Baseline to Conjugate Gradient Optimized Parameters for Entity 3 at Time = 9 

An argument could be made that an entity willing to switch ordering behavior at the onset 

of suspecting bullwhip in the supply chain may be willing to do so again once that bullwhip as 

subsided. The same scenario as shown in Figure 9 above (entity 3, the wholesaler, switching 

from the baseline ordering behavior to those determined under the box constraint optimization 

method when the first downstream order exceeded its own, at a time step equal to 9), can be 

compared to one in which this same entity switches back to the baseline ordering behavior after 

the bullwhip has passed. Arbitrarily choosing a time step of t = 60 as a sufficiently far in the 

future gives the results in Figure 10 below. Utilizing this strategy of changing ordering behavior 

in the presence of bullwhip, but then changing back to the default behavior helps mitigate the 
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effects of inventory and ordering amplification during the event, but then allows the entity to 

return to typical stock levels afterwards. 

 
Figure 10. Switching from Baseline to Conjugate Gradient Optimized Parameters for Entity 3 from t = 9 to t = 60 

Unsurprisingly, this switching of ordering behavior yields results that lie in between 

those seen using optimized ordering parameters for the entire time horizon (as seen in Table 3) 

and switching from the baseline during the bullwhip and maintaining this new value for the 

entire time horizon (as seen in Table 5). Rather than do a point-by-point comparison across all 

combinations of optimization methods and possible order strategy switching times, Table 2 below 

provides numerical results from the example explored immediately above, focusing on entity 3 

(the distributor) under a conjugate gradient optimization scheme. 

These observations reinforce two key points: 1) That either choice of optimization 

method (inventory costs centric or amplification centric) has similar results in reducing 

amplification-based bullwhip in this multi-echelon supply chain and 2) that when considering 

what is successful mitigation of bullwhip one must consider both the definition of costs and the 

underlying problem itself as separate yet still coupled problems. 
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Table 2. Example Comparison of Strategies for Entity 3 and Conjugate Gradient Optimization 

Scenario Description Time Period  
Total Team Cost  

(Inventory-Based)  

Total Team Cost 
(Amplification-

Based)  

Baseline NA 3589.96 2783.47 

Optimized ordering parameters 
from the beginning 

Full horizon (t>0) 3180.47 (-11.41%) 1029.78 (-63.0%) 

Switch to optimized parameters 
when downstream (Entity-1) 
orders exceed own 

t ≥ 9 3353.59 (-6.58%) 1482.25 (-46.75%) 

Switch to optimized parameters 
when downstream (Entity-1) 
orders exceed own and switch 
back after bullwhip has passed 

9 ≤ t ≤ 60 3090.84 (-13.9%) 1533.65 (-44.9%) 

 

4. Discussion 

The above results emphasize that it is important to remember the context in which any cost 

minimization activity occurs. While the stated purpose of this paper is to investigate algorithmic 

interventions to reduce bullwhip, which is generally defined in terms of signal amplification, the 

costs of those interventions must be considered and weighed. The results presented above 

comparing the results of minimizing on total system inventory cost versus total system 

amplification illustrate the tradeoff. Specifically, the tradeoff between the damping value of 

incurring backlog and the cumulative cost of such a decision is captured best when it is priced, 

and when that price is incorporated into the minimization exercise. 

However, when choosing a cost function that does represent the underlying structure and 

cost tradeoffs of the system, it is possible to construct an algorithmic intervention that acts on 

only one entity, or multiple entities, in the Beer Game that: 
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1. Reduce cost, measured both in terms of inventory and backorder costs and amplification, 

relative to a baseline of an all-human team 

2. Does so without imposing any additional constraints on the behavioral ordering of the 

human partners in the system. 

Stated differently, the above optimization has shown that it is possible to let people be people 

and continue to exhibit the behavioral ordering heuristics observed for more than 60 years, while 

still mitigating bullwhip in supply chains. For more insight on how this algorithmic intervention 

maps to existing models of ordering decision making, we must investigate the parameters that 

minimized the cost functions in the above described optimization exercise. 

Interpreting the Parameters 

The above observations of the ability of our optimized agents to mitigate bullwhip in a multi-

echelon supply chain, while allowing all other human-like decision makers in the supply chain to 

continue to act like humans (i.e., still exhibit supply chain underweighting), can now be 

inspected in more detail. By inspection of expression (1), expression (2) and the detailed results 

in Table 3, the following main observations about parameter space of the optimized entities can 

be made: 

• Low values of θ for the Retailer and high values of θ for everyone else:   

This parameter determines the degree of smoothing in updating each entity’s 

expectation of future orders in the same manner as the classic anchoring and 

adjustment heuristic (Tversky & Kahneman, 1974). For low values of θ, the entity 

is slow to update expectations while for high values of θ, the entity is quick to 

adopt the new order signal being received as their expectation for the future. Here, 



29 

low values of θ for the Retailer, or Entity 1, means that this entity which is most 

downstream in the chain and most influential towards information flow upstream 

to other supply chain partners, is slow to update their expectation of changes in 

customer orders and thus unlikely to rapidly change order signals. Conversely, the 

high (often at or near 1) values of θ for downstream entities can be interpreted as 

a high level of trust in the order signals being sent from upstream partners. As 

discussed in prior research, trust is an essential part of a well-functioning supply 

chain and some degree of trustworthiness must be assumed in a well function 

integrated supply chain (Özer et al., 2011). The values of θ found here imply that 

bullwhip minimization is achieved, in part, by cautious response to changes in 

order signals from customers, but full trust in order signals from partners. 

• Very high values of β at all positions in the supply chain:  

As hypothesized in the Methods section above, all entities optimized to minimize 

the cost of the system in the presence of simulated human-like partners did so in 

part by not falling prey to the supply chain underweighting heuristic observed in 

previous empirically-grounded work (Narayanan & Moritz, 2015; Sterman, 

1989a). As the value of β approaches 1, the decision rule shown in equations (1) 

and (2) begin to consider the entire inbound supply line with no or minimal 

discounting. Differing values of this parameter were used in previous studies to 

show how different levels of cognition in real human players of the Beer Game 

resulted in differing levels of inventory and ordering amplification. 

Correspondingly, the entities developed here, optimized to minimize system costs 

in the presence of human-like supply chain partners, act like the high cognition 
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players seen in those previous studies  (Narayanan & Moritz, 2015) by completely 

considering the inbound supply line when making ordering decisions. 

• Values of S’ resembling a base-sock replenishment method:  

The parameter S’ maps approximately to the level of inventory on hand that the 

decision maker strives to maintain. Of interest, the values of S’ arrived at by the 

optimized entities generally match a policy resembling a base-stock order method 

as expected in a full-information system with full rational entities (Clark & Scarf, 

1960). The above optimization varies S’ and α to create an effective base-stock 

level that minimizes the total cost of the system. For example, in the long-run 

steady state under the traditional customer order string of stepping from 4 to 8 

units, and a balanced information and delivery day of 2 time periods each, we can 

expect a total of 16 units to be on-order in total (8 for each unit of time) and 

correspondingly 16 units in transit. Together, this represents 36 units that can be 

expected to flow into the on-hand inventory of the entity. Assuming incoming 

orders remain stable at 8 and outgoing orders match that number then maintaining 

a base-stock level of 36 is a realistic simplification of the full optimal policy. 

Inspection of Table 3 shows that for the great majority of the optimizations 

performed, the value of S’ that minimized costs along the entire supply chain was 

found to be at or near 36. Significant deviations from this value occurred only in 

Entity 3, the Wholesaler, which maintained a larger base stock level. Given that 

this position is also the one that typically experienced the least minimization in 

costs, increased safety stock to offset higher variability both incoming and orders 

and incoming supply is to be expected. 
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Caveats and Limitations 

A notable caveat exists to the discussion above about the applicability of the parameters to novel 

customer order patterns. As seen by inspecting the randomly drawn customer order string 

illustrated in Figure 7, and explicitly stated in the description of Table 4, this randomly drawn 

order string is still stationary (centered around a demand of 6 units per time period with a 

standard deviation of 2 units per time period).  

As discussed in more detail in the Interpreting the Parameters section above, the 

optimized parameter S’ determined under the step function converge to what is effectively a 

base-stock policy value. The random signal used above is centered and stationary in, roughly, the 

same range as the step change signal used to train the agents and thus the value of S’ is expected 

to work in both scenarios. When the demand pattern become stationary, or when the mean of the 

new pattern varies significantly from that used in the training set, then one would expect 

optimized parameters to work less well. As discussed in other related works (perhaps most 

notably (Sterman & Dogan, 2015)), the optimal value of S’ given a foreknowledge of  a 

stationary demand pattern, and full weighting of the supply line (i.e. a value of 𝛽 = 1) reduces to 

the classic base-stock ordering rule (Clark & Scarf, 1960) in similar contexts have been 

described in other works. As discussed in the Interpreting the Parameters section above, the 

optimization used here does approach this rule but does not quite align perfectly with it. Because 

the agent developed here exists in the middle of a larger supply chain (with the exception of the 

role of ‘Retailer’), it is not necessarily exposed to a truly non-stationary demand signal from the 

human-modeled simulation in which it exists. However, the input demand signal from the 

‘customer’ is stationary as implemented here (after the initial step-change). 
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Thus, it could be argued that the exact parameters developed in this work are only truly 

applicable to the format of the simulation used to derive those parameters. Specifically, that the 

stationarity of the input customer string, and the specific design choices of shipping and 

information delay times, drive the optimized values of S’.  

This caveat does imply that direct application of the specific parameters seen in Table 3 

and Table 4 (most notably S’) to an arbitrary supply chain is not appropriate nor robust. This 

observation does not, however, reduce the generality nor the validity of the observations made in 

the Interpreting the Parameters section above. Inspection of the parameter values in Table 3 and 

Table 4, and as discussed above, do show differences by both the definition of cost function and 

by position in the supply chain. That these differences are anchored to the expected optimal 

value seen in base-stock level reordering, but adjusted by the location in the supply chain (and 

thus the degree of uncertainty in the underlying assumptions of stationarity in the base-stock 

reorder policy), lends weight to the more general observations in the Interpreting the Parameters 

section above.  

It does imply that there is room for future work in this space, by determining a more 

general, but still interpretable, algorithmic intervention when the input demand is expected to 

nonstationary. A limitation of this study is that the underlying human-based dataset which was 

used to construct the simulation in which the optimization was conducted is drawn from prior 

studies that use stationary customer demand patterns (specifically (Sterman, 1989a)). Thus, while 

incorporating a more general decision rule seen in expressions (1) and (2), would perhaps allow 

for further cost reduction and wider application of the derived parameters to scenarios beyond 

that used here, the core observations of this study would remain intact. 
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Extensions and Future Work 

While the above analysis and discussion is hopeful towards achieving the stated goal of creating 

an understandable algorithm capable of mitigating bullwhip, it remains to be seen how useful 

and implementable the above methods are until placed in the context of actively evolving 

inventory management crisis in-progress, as encapsulated by the bullwhip effect, generated by 

real humans. Therefore, the next phase of this project will be the incorporation of one of the 

developed cost minimization algorithms into a real session of the Beer Game.  

It is hoped that this future empirical study will not only lend external validity to the 

observations made in this paper but also shed additional light on confounding variables from 

human/machine interactions. Specifically, prior work on human/machine interactions provides 

conflicting conclusions, with some implying that people treat machines like people (Reeves & 

Nass, 1998), while others imply people behave differently when communicating with a machine 

than with another person (Shechtman & Horowitz, 2003). The difference between these two 

conclusions may have material influence on the results of any empirical study of the 

interventions described in this paper. This implies the need for full two-by-two empirically 

grounded test of the optimizations and observations of this paper interacted with the perception 

of the optimization as being a machine or a human player. Figure 11 summarizes some of the 

existing research relevant to testing both the empirical applicability of the work of this paper in 

the context of the Beer Game, and the interacting effect of perception of human versus computer 

players.  
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Figure 11. Summary of Relevant Existing Research in Perceptions of Human vs Machine Interactions 

In Figure 11, the upper left-hand quadrant (Human-Human) encompasses the vast 

majority of existing research in ordering behavior in multi-echelon supply chains, using the Beer 

Game as an empirical testing and observation tool. Much of the material described and cited in 

the Background section at the start of this paper falls into this portion of Figure 11. The opposing 

lower right-hand quadrant (Machine-Machine) is the direct application of the conclusions of this 

paper to a run of the Beer Game with real players corresponds to the. Here a single member of 

the simulated multi-echelon supply chain would be replaced with an ordering rule that utilizes 

one set of the optimized parameters found in this work, with the real human players being made 

fully aware of this substitution. These two quadrants correspond to a proposed ‘phase 1’ 

empirical test and extension of this paper, wherein the performance of the proposed optimization 

is tested in the context of real human ordering.   

While, these observations and conclusions drawn above come from the use of well-

known optimization methods mapped to a model of human ordering behavior, real human 

ordering behavior may be significantly more complex than that simulated above, and could 

require a more robust algorithmic intervention in order to respond appropriately to orders 
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generated from real humans in any future empirical study. Based on the various tests performed 

under differing order strings, both random and step, in the Results section, and the examination 

of the optimized ordering rules in the Discussion section, I hypothesize that this relatively simple 

set of ordering rules will still reduce inventory and ordering amplification when placed in the 

midst of real human ordering. However, this can be tested and is the next step of this research. 

However, to address this concern more fully, more complex optimization methods are under 

development (like a proposed Actor-Critic Policy Gradient optimization), which could be more 

applicable to real-world settings. Furthermore, such a system could perhaps escape some of the 

caveats and limitations presented immediately above, most notably being more robust to 

nonstationary customer order signals. 

However concerns remain about the interpretability of such a solution, and indeed if it 

would be necessary in light of the mapping between the optimizations seen in this paper and 

previous work on high cognitive individuals (Narayanan & Moritz, 2015). The tradeoff between 

robustness of such an algorithmic intervention with its interpretability and comparative utility 

remains the focus of future research.  

The remaining two spaces in the off-diagonal of Figure 11 propose exploring the effect of 

perception of the introduction of a machine ordering algorithm in an otherwise human controlled 

multi-echelon supply chain. As discussed above and illustrated in Figure 11, this is a largely 

unexplored space with the limited existing literature providing somewhat conflicting 

conclusions. Exploring this area of the space would correspond to a ‘phase 2’ empirical test and 

extension of this paper, and by necessity would be analyzed in the context of the conclusions and 

observations drawn during the above described ‘phase 1’ test. The key question here is if 
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knowledge of the existence of the machine-based ordering rule in the simulated supply chain 

would modify the ordering behavior of the human actors in the space.  

Such empirical research is the next extension of this work and will ultimately help 

illuminate if the algorithmic interventions developed above can be applied in real world setting 

and finally tame the bullwhip.
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6. Appendix 

Model and Code Availability 

While R was used for the optimizations described in the text of the paper, the underlying 

simulation in discrete time was constructed using both R and Python. For the latest version of 

this code and to monitor the ongoing progress of the project, please contact the author or refer to 

the following repository: 

https://github.mit.edu/jpaine/Taming-the-Bull 

 

Optimization Methods References 

Details on the optimization methods referenced in the below tables can be found in the following 

references: 

• Box Constraints (Byrd et al., 2005) – (note: corresponds to the method “L-BFGS-B” in 

optimx() in R) 

• Conjugate Gradients (Dai & Yuan, 2001; Nash, 1979) – (note: corresponds to the method 

“Rcgmin” in optimx() in R) 

• BOBYQA (Powell, 2009) – (note: corresponds to the method “bobyqa” of optim() in R) 

 

https://github.mit.edu/jpaine/Taming-the-Bull
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Detailed Results 

Table 3. Results for Stepwise Increase in Demand 

For the results below, the customer order flow was increased from 4 units per round to 8 units per round starting at round 5. 

Cost Function to 
Optimize 

Optimization 
Method 

Entity Optimized 
Optimized Parameters Total Cost  

(Inventory-Based) 
Total Cost  

(Amplification Based) θ α β S' 

BASELINE N/A N/A 0.360 0.260 0.340 17.000 3589.96 2783.47 

Net Inventory-
Based Cost 

Box Constraints 

1 (Retailer) 0.025 0.205 1.000 31.127 2123.92 (-40.84%) 129.73 (-95.34%) 

2 (Warehouse) 1.000 0.406 1.000 36.317 2801.05 (-21.98%) 407.12 (-85.37%) 

3 (Distributor) 1.000 0.074 1.000 51.721 3530.14 (-1.67%) 944.55 (-66.07%) 

4 (Factory) 1.000 0.135 1.000 35.219 3316.38 (-7.62%) 2145.1 (-22.93%) 

Conjugate Gradient 

1 (Retailer) 0.035 0.138 0.997 35.993 2294.09 (-36.1%) 152.95 (-94.5%) 

2 (Warehouse) 1.000 0.431 1.000 36.041 2792.05 (-22.23%) 398.85 (-85.67%) 

3 (Distributor) 1.000 0.124 1.000 40.565 3180.47 (-11.41%) 1029.78 (-63.0%) 

4 (Factory) 1.000 0.123 1.000 35.954 3342.22 (-6.9%) 2144.28 (-22.96%) 

BOBYQA 

1 (Retailer) 0.037 0.126 0.903 36.039 2344.26 (-34.7%) 161.77 (-94.19%) 

2 (Warehouse) 1.000 0.430 1.000 36.045 2792.2 (-22.22%) 398.9 (-85.67%) 

3 (Distributor) 1.000 0.147 1.000 38.112 3109.69 (-13.38%) 1070.45 (-61.54%) 

4 (Factory) 1.000 0.124 1.000 35.870 3339.28 (-6.98%) 2144.34 (-22.96%) 

Amplification-
Based Cost 

Box Constraints 

1 (Retailer) 0.066 0.098 0.963 34.792 2390.94 (-33.4%) 174.35 (-93.74%) 

2 (Warehouse) 0.534 0.058 1.000 53.933 3373.47 (-6.03%) 493.08 (-82.29%) 

3 (Distributor) 0.009 0.065 0.716 68.554 4531.9 (26.24%) 561.67 (-79.82%) 

4 (Factory) 0.001 0.307 0.979 36.206 6446.66 (79.57%) 1534.65 (-44.87%) 

Conjugate Gradient 

1 (Retailer) 0.070 0.091 0.997 35.992 2409.76 (-32.87%) 177.56 (-93.62%) 

2 (Warehouse) 0.020 0.078 0.592 36.086 6689.24 (86.33%) 973.03 (-65.04%) 

3 (Distributor) 0.005 0.197 0.789 36.010 4978.45 (38.68%) 899.91 (-67.67%) 

4 (Factory) 0.001 0.063 0.000 71.312 7111.23 (98.09%) 986.84 (-64.55%) 

BOBYQA 

1 (Retailer) 0.067 0.096 0.997 35.991 2404.48 (-33.02%) 178.68 (-93.58%) 

2 (Warehouse) 0.951 0.084 0.567 35.975 3095.21 (-13.78%) 595.24 (-78.62%) 

3 (Distributor) 0.005 0.199 0.801 36.044 4982.68 (38.79%) 901.36 (-67.62%) 

4 (Factory) 0.000 0.341 0.990 35.915 5686.65 (58.4%) 1487.29 (-46.57%) 
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Table 4. Results for Normally Sampled Customer Demand 

For the results below, the customer order flow began at the mean value of 𝜇=4 units and was then sampled from a normal distribution 

with 𝜇 = 6 units and σ = 2 units. 

Cost Function to 
Optimize 

Optimization 
Method 

Entity Optimized 
Optimized Parameters Total Cost  

(Inventory-Based) 
Total Cost  

(Amplification Based) θ α β S' 

BASELINE N/A N/A 0.360 0.260 0.340 17.000 4350.7929 11988.7013 

Net Inventory-
Based Cost 

Box Constraints 

1 (Retailer) 0.025 0.205 1.000 31.127 2968.9 (-31.76%) 6178.59 (-48.46%) 

2 (Warehouse) 1.000 0.406 1.000 36.317 4946.4 (13.69%) 11927.16 (-0.51%) 

3 (Distributor) 1.000 0.073 1.000 51.721 4147.33 (-4.68%) 7778.78 (-35.12%) 

4 (Factory) 1.000 0.135 1.000 35.219 3852.7 (-11.45%) 10113.3 (-15.64%) 

Conjugate Gradient 

1 (Retailer) 0.035 0.138 0.997 35.993 3011.57 (-30.78%) 5363.92 (-55.26%) 

2 (Warehouse) 1.000 0.431 1.000 36.041 5000.02 (14.92%) 11974.05 (-0.12%) 

3 (Distributor) 1.000 0.124 1.000 40.590 3899.12 (-10.38%) 8236.14 (-31.3%) 

4 (Factory) 1.000 0.123 1.000 35.932 3878.33 (-10.86%) 10109.82 (-15.67%) 

BOBYQA 

1 (Retailer) 0.037 0.126 0.903 36.039 3045.79 (-29.99%) 5339.04 (-55.47%) 

2 (Warehouse) 1.000 0.430 1.000 36.045 4999.24 (14.9%) 11972.4 (-0.14%) 

3 (Distributor) 1.000 0.147 1.000 38.135 3872.17 (-11.0%) 8495.61 (-29.14%) 

4 (Factory) 1.000 0.124 1.000 35.848 3875.32 (-10.93%) 10110.16 (-15.67%) 

Amplification-
Based Cost 

Box Constraints 

1 (Retailer) 0.066 0.098 0.963 34.792 2942.53 (-32.37%) 4619.74 (-61.47%) 

2 (Warehouse) 0.535 0.058 1.000 53.933 4093.06 (-5.92%) 7708.04 (-35.71%) 

3 (Distributor) 0.009 0.065 0.716 68.554 4048.29 (-6.95%) 4445.03 (-62.92%) 

4 (Factory) 0.001 0.307 0.979 36.206 4394.05 (0.99%) 9336.76 (-22.12%) 

Conjugate Gradient 

1 (Retailer) 0.070 0.091 0.997 35.992 2962.26 (-31.91%) 4546.02 (-62.08%) 

2 (Warehouse) 0.020 0.078 0.591 36.086 2920.19 (-32.88%) 3548.06 (-70.4%) 

3 (Distributor) 0.005 0.197 0.789 36.010 3146.15 (-27.69%) 5958.71 (-50.3%) 

4 (Factory) 0.001 0.063 0.000 71.312 4954.99 (13.89%) 8080.82 (-32.6%) 

BOBYQA 

1 (Retailer) 0.067 0.096 0.996 35.991 2972.28 (-31.68%) 4639.12 (-61.3%) 

2 (Warehouse) 0.951 0.084 0.567 35.975 3795.99 (-12.75%) 8078.25 (-32.62%) 

3 (Distributor) 0.005 0.199 0.801 36.044 3144.56 (-27.72%) 5963.92 (-50.25%) 

4 (Factory) 0.000 0.341 0.990 35.915 4324.07 (-0.61%) 9407.94 (-21.53%) 
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Table 5. Results from Switching Ordering Behavior After Recognizing Amplification 

Refer to Table 1 in the main text above for the specific time steps at which the ordering parameters were shifted from the baseline values to the 

optimized values (both sets of which correspond to Table 3).  

Cost Function 
to Optimize 

Optimization 
Method 

Entity 
Optimized 

Total Cost (Inventory-Based)  
when changing ordering strategy at: 

Total Cost (Amplification-Based)  
when changing ordering strategy at: 

First Maximum in 
Entity Orders 

Upstream 
(Entity+1) Orders 

Exceed Own  

Downstream 
(Entity-1) Orders 

Exceed Own 

First Maximum in 
Entity Orders 

Upstream 
(Entity+1) Orders 

Exceed Own  

Downstream 
(Entity-1) Orders 

Exceed Own 

BASELINE N/A N/A 3589.96 2783.47 

Net 
Inventory-
Based Cost 

Box 
Constraints 

1 (Retailer) 3414.39 (-4.89%) 2276.06 (-36.6%) NA 2098.59 (-24.61%) 576.68 (-79.28%) NA 

2 (Warehouse) 4167.57 (+16.09%) 4379.59 (+22.0%) 3897.67 (+8.57%) 2622.75 (-5.77%) 2605.32 (-6.4%) 1977.64 (-28.95%) 

3 (Distributor) 4011.26 (+11.74%) 3952.71 (+10.1%) 3728.73 (+3.87%) 1970.44 (-29.21%) 1803.14 (-35.22%) 1481.47 (-46.78%) 

4 (Factory) 3597.03 (+0.2%) NA 3352.22 (-6.62%) 2437.17 (-12.44%) NA 2236.23 (-19.66%) 

Conjugate 
Gradient 

1 (Retailer) 3484.37 (-2.94%) 2406.3 (-32.97%) NA 1910.67 (-31.36%) 439.75 (-84.2%) NA 

2 (Warehouse) 4199.43 (+16.98%) 4430.25 (+23.41%) 3930.99 (+9.5%) 2691.7 (-3.3%) 2691.67 (-3.3%) 2030.3 (-27.06%) 

3 (Distributor) 3698.24 (+3.02%) 3604.8 (+0.41%) 3353.59 (-6.58%) 1976.19 (-29.0%) 1850.33 (-33.52%) 1482.25 (-46.75%) 

4 (Factory) 3617.14 (+0.76%) NA 3382.5 (-5.78%) 2437.07 (-12.44%) NA 2236.66 (-19.64%) 

BOBYQA 

1 (Retailer) 3529.23 (-1.69%) 2449.06 (-31.78%) NA 1922.23 (-30.94%) 417.52 (-85.0%) NA 

2 (Warehouse) 4198.99 (+16.96%) 4429.56 (+23.39%) 3930.55 (+9.49%) 2690.67 (-3.33%) 2690.45 (-3.34%) 2029.52 (-27.09%) 

3 (Distributor) 3622.25 (+0.9%) 3528.86 (-1.7%) 3261.66 (-9.15%) 1990.35 (-28.49%) 1877.69 (-32.54%) 1491.76 (-46.41%) 

4 (Factory) 3614.85 (+0.69%) NA 3379.12 (-5.87%) 2437.12 (-12.44%) NA 2236.78 (-19.64%) 

Amplification-
Based Cost 

Box 
Constraints 

1 (Retailer) 3255.83 (-9.31%) 2460.82 (-31.45%) NA 1561.59 (-43.9%) 287.09 (-89.69%) NA 

2 (Warehouse) 4005.94 (+11.59%) 3917.37 (+9.12%) 3717.12 (+3.54%) 1745.49 (-37.29%) 1538.44 (-44.73%) 1220.46 (-56.15%) 

3 (Distributor) 6702.09 (+86.69%) 4917.65 (+36.98%) 4293.88 (+19.61%) 1862.36 (-33.09%) 942.4 (-66.14%) 657.81 (-76.37%) 

4 (Factory) 4498.65 (+25.31%) NA 4409.24 (+22.82%) 2266.44 (-18.58%) NA 1394.12 (-49.91%) 

Conjugate 
Gradient 

1 (Retailer) 3261.32 (-9.15%) 2477.33 (-30.99%) NA 1534.89 (-44.86%) 286.19 (-89.72%) NA 

2 (Warehouse) 3977.61 (+10.8%) 6034.17 (+68.08%) 5766.65 (+60.63%) 1352.48 (-51.41%) 890.94 (-67.99%) 839.47 (-69.84%) 

3 (Distributor) 4514.6 (+25.76%) 3801.57 (+5.89%) 3416.92 (-4.82%) 2139.03 (-23.15%) 897.92 (-67.74%) 603.19 (-78.33%) 

4 (Factory) 8813.75 (+145.51%) NA 5092.18 (+41.84%) 2354.21 (-15.42%) NA 1306.98 (-53.05%) 

BOBYQA 

1 (Retailer) 3279.72 (-8.64%) 2475.9 (-31.03%) NA 1560.2 (-43.95%) 302.99 (-89.11%) NA 

2 (Warehouse) 3716.18 (+3.52%) 3646.14 (+1.56%) 3493.64 (-2.68%) 1763.89 (-36.63%) 1507.25 (-45.85%) 1288.12 (-53.72%) 

3 (Distributor) 4500.09 (+25.35%) 3802.71 (+5.93%) 3419.71 (-4.74%) 2130.81 (-23.45%) 897.18 (-67.77%) 603.03 (-78.34%) 

4 (Factory) 4413.68 (+22.95%) NA 4194.95 (+16.85%) 2288.19 (-17.79%) NA 1384.24 (-50.27%) 
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