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Abstract

MIT Lincoln Laboratory is developing a software-reconfigurable imaging architecture
called ReImagine, the first field programmable imaging array (FPIA), which reflects
a broader trend in the increased use of FPGAs in sensor systems in order to re-
duce size and power consumption without a corresponding loss in performance or
flexibility. At the same time, the field of machine learning is diversifying to include
distributed deep learning methods like split learning, which can help preserve privacy
by avoiding the sharing of raw data and model details. In order to continue to ex-
pand the capabilities of architectures like ReImagine’s and enable split learning and
related techniques to be used in the growing body of FPGA-based sensor systems,
we examine the relationship of emerging split learning applications to FPGA-based
image processing platforms. We determine that the implementation of split learning
methods on FPGAs is feasible, and outline use cases in the areas of health and short
timescale physics that demonstrate the usefulness of these implementations to both
organizations concerned with privacy-preserving machine learning methods and orga-
nizations concerned with the deployment of efficient, flexible, and low-latency sensor
systems. We begin by conducting a survey of the modern FPGA landscape in terms
of technical attributes, use in sensor systems, security and privacy features, and cur-
rent machine learning implementations. We also provide an overview of split learning
and other distributed deep learning methods. Next, we synthesize an example split
learning model in HDL code to demonstrate the feasibility of implementing such a
model on an FPGA. Finally, we develop use cases for split learning applications on
FPGA-based sensor systems and offer conclusions about the future development of
distributed deep learning on heterogeneous processing platforms.
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Chapter 1

Introduction

1.1 Motivation

The world is blanketed in imaging sensors, from ubiquitous cell phone cameras to

MRI machines to the powerful telescopes that document the night sky around the

world. As has been observed time after time, there has been an unprecedented explo-

sion in the collection of visual data, which in turn has led to the rapid and widespread

development of machine learning techniques that allow individuals, governments, and

industries transform that glut of raw data into understandable and actionable infor-

mation.

Machine learning has the potential to improve the human conditions in countless

ways—researchers imagine a world where self-driving cars using computer vision al-

gorithms dramatically reduce the incidence of car accidents and health providers are

able to use machine learning methods to offer more accurate diagnoses and improve

health outcomes. However, as small, mobile sensors intrude more deeply into our

everyday lives, transmitting personal data to central servers, concerns about individ-

ual privacy, particularly with respect to sensitive information like health data, have

increased.

In order to enable organizations to train and implement useful machine learning

algorithms without sacrificing privacy, the MIT Media Lab is developing split learn-

ing, a distributed deep learning method that allows multiple clients to train models
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without sharing raw data with each other or a central server. Split learning has been

developed for use on CPUs and GPUs—the microprocessors on which most machine

learning algorithms are implemented. However, not all valuable data is collected on

sensor nodes based on microprocessors. A growing number of sensor nodes are based

on FPGAs—reconfigurable hardware for which the development of applications offers

a different set of challenges.

DARPA’s ReImagine project, under development at MIT Lincoln Laboratory,

is one example of an FPGA-based imaging sensor. ReImagine is a single, multi-

functional imaging platform that can accommodate multiple modes of operation and

interface with multiple types of imaging sensor. Ultimately, ReImagine is intended to

be able to autonomously toggle between different modes using machine learning al-

gorithms; however, FPGA developers face resource constraints and design difficulties

that developers working with CPUs and GPUs do not.

This work seeks to explore the potential application of split learning and other

distributed deep learning methods to FPGA-based sensor systems like ReImagine.

1.2 Problem Statement

This paper examines the possibility of conducting split learning on FPGAs from two

perspectives. First is the perspective of the user of an FPGA-based sensor system like

ReImagine, who is seeking to expand the set of tools that can be used on their de-

vices and leverage the power of machine learning methods without prohibitively high

communication, computation, and storage burdens and with some assurance of the

privacy of the raw data that the sensor nodes in the system collect. The second is the

perspective of a split learning application developer who has strict requirements with

respect to factors like latency and SWaP, where FPGAs can frequently be optimized

to outperform microprocessors.

In order to determine whether the implementation of split learning applications

on FPGAs offers advantages to groups seeking to deploy privacy-preserving machine

learning methods and groups seeking to add additional capabilities to FPGA-based

14



sensor systems, we seek to answer the following questions:

∙ Is it technically feasible to implement split learning applications on FPGAs?

∙ How have developments in FPGA technology changed the landscape and po-

tential of FPGAs as platforms for sensor systems and for new machine learning

applications?

∙ What current and future use cases exist for the implementation of split learning

on FPGAs?

1.3 Research Methodology

In this paper, we provide background for the ongoing ReImagine and split learning

projects. We then conduct a literature review focused on the current landscape of

FPGA technology, including the technical attributes of FPGAs, the current uses

of FPGAs in sensor systems, the security and privacy features of modern FPGAs,

and the tools and limitations that exist for the implementation of machine learning

algorithms on FPGAs.

Next, we implement a simple client-side split learning model on a simulated FPGA

in order to provide an initial demonstration of the technical feasibility of implementing

split learning algorithms on FPGAs. We then conduct further analysis on the current

uses of FPGAs in sensor systems and their features supporting security and privacy,

comparing these with the requirements of split learning in order to develop potential

use cases for split learning on FPGAs. Finally, we summarize our findings and offer

conclusions and suggested directions for future work in the area of split learning on

FPGAs.

15
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Chapter 2

Background and Literature Review

2.1 Background

In this section, we provide overviews of the histories and current statuses of the

ReImagine project at Lincoln Laboratory and the split learning effort at the Media

Lab.

2.1.1 Overview: ReImagine Project

In 2016, the Defense Advanced Research Projects Agency (DARPA) announced a new

program that aimed to create a single, multi-functional imaging sensor that could

accommodate simultaneous, distinct modes of operation and interface with nearly

any type of optical detector array [40]. The program, called ReImagine (short for

Reconfigurable Imaging), would ultimately result in a camera able to autonomously

respond to the images it receives in real time, using algorithms developed by industry

partners to toggle between different imaging modes and adjust factors like frame rate

and resolution. This system would be able to “adapt and change [its] personality and

effectively morph into the type of imager that provides the most useful information

for a given situation” [5].

A system like ReImagine would be relevant to a wide variety of military and com-

mercial applications. At the time ReImagine was proposed, existing imaging systems

17



were becoming increasingly powerful and flexible. For example, the previous year, the

Department of Energy had approved the construction of the Large Synoptic Survey

Telescope, which would be used in astronomy and at 3.2 gigapixels would have the

highest resolution of any camera created [31]. The year before that, MIT Lincoln Lab-

oratory had developed a digital-pixel focal plane array (DFPA) that overcame some of

the limitations of conventional focal plane arrays, allowing for higher dynamic ranges,

lower size, weight, and power (SWaP), and some on-chip image processing capabili-

ties [36]. For the most part, imaging systems are single-sensor systems that must be

relegated to larger vehicles and platforms. They are also limited in application due

to the way their readout integrated circuits, or ROICs, are traditionally implemented

[40]. ROICs are integrated circuits that sample the signals that each pixel in a cam-

era is receiving and transfer that data away for processing. Traditionally, ROICs are

designed as application-specific integrated circuits (ASICs), hardware dedicated to a

specific task that is very efficient, but with fixed logic that renders the ROIC, and

thus the imaging system, inflexible.

ReImagine was conceived as a smaller, cheaper, and more power-efficient alter-

native to designing and manufacturing multiple large single-sensor imaging systems

with traditional ROICs. Most importantly, ReImagine’s architecture would be more

similar to field-programmable gate array (FPGA) architecture than to ASIC archi-

tecture, creating a software-reconfigurable imaging system that supports real-time

analysis of complex images in multiple modes, improving situational awareness and

enabling more informed decision-making [40]. Further comparison between ASIC and

FPGA architectures can be found in Section 2.2.2.

In place of an imaging system with a traditional ROIC, ReImagine would have a

new architecture referred to as a field-programmable imaging array (FPIA). FPIAs are

reconfigurable digital circuits with integrated FPGA processing. They combine ROIC

circuitry that interfaces with sensors and FPGA circuitry, resulting in a reconfigurable

ROIC that allows the imaging system to interface with many detectors and support

many modes of operation [21].

Overall, the ReImagine architecture includes three tiers, layered one on top of

18



the other. The lowest tier is an FPIA. This tier is being developed by MIT Lincoln

Laboratory’s Advanced Imager Technology group. The first generation of FPIA in

development at MIT Lincoln Laboratory, the architecture of which is pictured in

Figure 2-1 is called the Griffin FPIA.

Figure 2-1: MIT Lincoln Laboratory FPIA [52].

Tiers 2 and 3 of the ReImagine architecture are not common to all applications,

and comprise a variety of industry-produced analog detectors (Tier 3) and detector-

specific interfaces that allow analog detectors to interface with the common digital

circuit below (Tier 2) [52]. This three-tier architecture is shown in Figure 2-2. This

thesis will focus primarily on the capabilities of Tier 1, the FPIA, and related archi-

tectures.

The first generation Griffin FPIA exists today, and meets many of the goals out-

lined by DARPA. As of 2018, the chip was the largest integrated circuit ever developed

within the Department of Defense, with over 6.6 billion transistors and 9km of internal

wiring on a 320 mm2 area [52]. This was achieved using the 14 nm FinFET process,

a method of fabrication that has allowed Lincoln Laboratory to reduce pixel size to

a fraction of that of previous projects like the DFPA, which used a 65 nm CMOS

process to create pixels with an area of 625 𝜇m2. The resulting decrease in pixel pitch

allows the Griffin FPIA to consume less power than the DFPA, which means the chip

can support an increased number of pixels in the array as well as on-chip processing

[27]. While the 14 nm process is more expensive than the 65 nm process, the on-chip

processing and reconfigurable design allows this cost to be amortized over multiple

projects, as the same hardware can be used with many different detectors and for

19



Figure 2-2: DARPA ReImagine program 3D sensor architecture [52].

many different applications [52].

With the first-generation Griffin FPIA fabricated, we are able to examine the

algorithms that may be implemented using the available on-chip processing to ac-

complish DARPA’s goal of creating an imaging system that can autonomously toggle

between different imaging modes. One potentially fruitful area is machine learning:

specifically, the use of convolutional neural networks (CNNs) similar to those that

are already frequently used for image classification, like VGGNet and ResNet [25].

The Griffin FPIA’s resources are constrained relative to the powerful GPUs or TPUs

often used in machine vision, however, and so may not be appropriate for CNNs

with computational costs measuring in the tens of billions of FLOPs. Therefore, it

is worthwhile to examine machine vision techniques that are less computationally

intensive for the edge devices involved. These include a new technique called split

learning, which is being developed by MIT Media Lab’s Camera Culture group in

conjunction with the MIT Alliance for Distributed and Private Machine Learning.
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Table 2.1: Technical summary of the Griffin FPIA [52].

2.1.2 Overview: Split Learning

Split learning is a new distributed deep learning method being developed by the

MIT Media Lab’s Camera Culture group. The goal of split learning is to preserve the

privacy of clients’ raw data by allowing servers to use deep learning models for training

and/or inference without that data being shared directly [2]. This project is a part of

the MIT Alliance for Distributed and Private Machine Learning, which has the goal

of reducing the friction in data sharing that currently presents a challenge to large-

scale machine learning. The split learning project is a part of their privacy-preserving

machine learning research area. Additional research areas include automated machine

learning and data markets [1].

At its simplest, split learning works by having the client, in possession of the

input data, train the first layers of a deep network (such as a CNN, the type of neural

network this thesis will primarily focus on). At a specific layer designated as the “cut

layer,” the client sends the outputs of that layer to a server, which then completes

the rest of the training. The resulting gradients are then propagated back to the cut

layer, and the gradients at the cut layer are sent back to the client. Finally, the client
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back-propagates gradients from the cut layer to the beginning of the network, and the

process repeats until the split learning network is trained. Split learning, then, allows

a full deep network to be trained (and subsequently used for inference) without the

server ever having possession of the client’s raw data [46].

Figure 2-3: Simplest split learning model architecture (single client) [46].

Split learning also allows for more complicated configurations, such as configura-

tions where the data are “vertically partitioned” (i.e. spread between multiple clients

that do not communicate with each other) or where the final layers are computed by

the client, so that the resulting labels are not shared with the server. This flexibility

makes split learning a tool that may be used in a wide variety of applications in sec-

tors including finance and health [1]. Split learning can also be used in conjunction

with techniques to reduce the invertibility of intermediate representations, thereby

reducing the ability of the server to reconstruct the client’s raw data from the out-

puts from the cut layer that the client sends. Members of the Camera Culture group

have demonstrated a method that can reduce distance correlation (as measured by

KL-divergence) from 0.95 to 0.19 in one example and 0.92 to 0.33 in another, without

a corresponding loss of model accuracy [45]. This further reduces the server’s ability

to make inferences about client raw data.

Split learning was not the first distributed deep learning method to be devel-
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oped, but in certain settings it has so far been shown to be the most accurate and

resource-efficient. We will briefly describe two other prominent distributed deep learn-

ing methods, federated learning and large-batch synchronous stochastic gradient de-

scent (SGD), and compare their performance with split learning.

In large-batch synchronous SGD, all clients are sent a copy of the current model by

the server. Each client then uses its local dataset to train its copy of the model further,

then sends the updated model weights to the server. The server then aggregates that

information to improve the canonical model and repeats the process. Unlike previous

asynchronous SGD approaches, synchronous SGD synchronizes updates between the

server and client so that clients are not wasting resources and adding noise by updating

old copies of the model. It also adds additional “workers” to compensate for the

slowest clients, so that the server does not have to rely on the slowest client to

provide its updates to update the canonical model [13]. Like split learning, large-

batch synchronous SGD does not share raw data with the server.

Federated learning is very similar to large-batch synchronous SGD. In federated

learning, however, only a fraction of the clients are sent a copy of the current model

by the server. Each client then uses its local dataset to train its copy of the model

further. When training its copy of the model, the client makes multiple passes, rather

than one single update, then sends the updated model weights to the server. The

server then aggregates that information to improve the canonical model and repeats

the process. These changes make federated learning a more appropriate form of

distributed deep learning than large-batch synchronous SGD in cases where there is

a large number of clients, where client datasets are not very uniform in terms of size

and distribution, and client communication may be limited [32]. Like split learning

and large-batch synchronous SGD, federated learning does not share raw data with

the server.

In experiments conducted using widely-used image datasets and image classifica-

tion neural networks, split learning achieved much higher accuracy than large-batch

SGD and federated learning methods on 100- and 500-client trials [47]. As shown

in Figure 2-4, the validation accuracy of the neural network trained using the split
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learning method improved much more quickly (in terms of client-side computation

required) than those trained using the federated learning or large-batch synchronous

SGD methods.

Both the federated learning or large-batch synchronous SGD methods eventually

achieved similar validation accuracy, but required significantly more computation and

bandwidth than the split learning method. This difference is illustrated in Tables 2.2

and 2.3.

Figure 2-4: Validation accuracy vs. client-side computation (left: 100 clients with
VGG neural network trained on CIFAR 10 dataset; right: 500 clients with Resnet-50
neural network trained on CIFAR 100 dataset) [47].

Table 2.2: Per-client bandwidth when training ResNet-50 neural network on CIFAR
100 dataset) [47].

Table 2.3: Per-client computation when training VGG neural network on CIFAR 10
dataset) [47].
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The communication and computation efficiency of split learning makes it a good

candidate for implementation on chips like the Griffin FPIA, which is resource-

constrained relative to the CPUs, GPUs, and other microprocessors commonly used

in machine learning applications. However, it is important to note that in cases

where the number of clients and/or the number of model parameters is relatively

low, federated learning can be more communication efficient than split learning [39].

Therefore, in use cases with a notably low number of clients or model parameters

where bandwidth limitations are the limiting factor for a successful split learning

application, federated learning may be a more appropriate method of training neu-

ral networks. Potential use cases and their numbers of clients and parameters are

explored in Chapter 4.

Split learning and other forms of distributed deep learning have a wide variety of

potential uses. Their flexibility allows them to be used in a number of different set-

tings, including within individual datacenters, between multiple datacenters holding

different kinds of data, and across very large numbers of mobile devices. A number

of applications in fields like medicine, finance, and manufacturing have already been

proposed [24]. This combination of efficiency and flexibility makes split learning an

appropriate choice to study in relation to ReImagine, a project that is intended to be

adaptable to a wide range of use cases, including those that may even be determined

after the hardware itself has been deployed. In Chapter 4, we will further examine the

potential areas where split learning might be fruitfully executed on the Griffin FPIA

based on number of clients, distribution of data between devices, and the importance

of offering privacy guarantees in different use cases.

2.2 Literature Review

In this section, we offer an overview of FPGAs in general, and give background

on how the technology works. Next, we offer an overview of their advantages and

disadvantages compared with other commonly used integrated circuits, such as ASICs

and microprocessors, in order to justify why a split learning application on an FPGA
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might on balance offer advantages in cost, performance, and flexibility. Finally, we

will examine the relationship of FPGAs to the three major areas that would enable

the productive use of split learning applications on imaging systems like ReImagine:

the proliferation of the use of FPGAs in sensor systems, the general use of machine

learning applications on FPGAs, and capabilities related to security and privacy that

FPGAs offer.

2.2.1 What is an FPGA?

An FPGA is, at its most basic level, an integrated circuit that can be reconfigured

by the user after it has been manufactured, allowing a single device to be used for

a wide variety of different applications by a number of different end users. The

world’s first commercial FPGA, the Xilinx XC2064, debuted in the mid-1980s. It

was designed to improve on existing devices that already supported programmable

logic, like Programmable Array Logic (PALs), which were difficult to scale up without

becoming slow and physically unwieldy [43]. Both PALs and FPGAs developed as an

alternative to application-specific integrated circuits (ASICs), non-reprogrammable

integrated circuits which were at the time the dominant form of custom IC.

ASICs were fast, easy to use, and generally cheap to manufacture per unit. How-

ever, ASICs required large non-recurring engineering (NRE) costs that could not be

amortized across different customers or projects. Additionally, ASICs faced a large

number of design failures and product changes during the design process that meant

that meant many designs never went to market, and did not realize any profit for the

manufacturer or the customer [43]. While ASICs are still in use today, particularly

in applications where computations must be performed as fast as possible or where

the number of units being produced is in the millions, in many cases FPGAs offer

significant advantages. Despite their higher per-unit costs, FPGAs may be overall

cheaper for customers due to the amortization of NRE costs across many different

customers, and their reprogrammability, which may allow FPGAs to be used in many

different applications. Additionally, FPGAs faced fewer design problems related to

certain elements like I/O blocks, which no longer needed to be designed from scratch
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for each new application.

Figure 2-5: Visualization of how NRE cost savings affect individual clients. For a
number of units to the left of the crossover point, the total cost of an FPGA is
cheaper than that of an ASIC [35].

The XC2064 was tiny by modern standards—it only contained 64 logic blocks, for

a total of fewer than 1000 gates [43]. FPGAs that small could be programmed entirely

by hand, without the tools for automated synthesis, placement, and routing required

in order to program large, modern FPGAs [41]. However, their basic architecture

was the same: a grid-like layout of configurable logic blocks (CLBs) that are used to

implement arbitrary boolean functions, connected to one another by programmable

interconnects, and surrounded by I/O blocks to allow data to be read on and off the

chip. Today’s CLBs are implemented in look-up tables (LUTs).

Over the next thirty years, the density of transistors in integrated circuits in-

creased exponentially with Moore’s Law. This, along with new manufacturing pro-

cesses in foundries, allowed the capacity (in terms of CLB count) and speed (in terms

of same-function performance) of FPGAs to skyrocket, even as their price and power

usage per CLB decreased [43]. These changes made FPGAs desirable for larger and

larger applications, eventually making automated tools for the synthesis, placement,

and routing of FPGA programs not just desirable but required. New hardware-

descriptive languages (HDLs) emerged, most famously Verilog and VHDL, allowing

developers to automate the low-level programming of the device and create larger and

more complex applications [41]. HDLs and other, higher-level synthesis tools will be
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Figure 2-6: General FPGA architecture block diagram [4].

discussed further in Section 2.2.5.

Figure 2-7: Xilinx FPGA attributes relative to 1988 [43].

Modern FPGAs include not only configurable logic blocks, but dedicated logic

blocks that allow them to comply with widely used communications standards and

offer further cost and performance savings, as well as offer additional functionality

like protection of the FPGA application design through encryption. These dedicated

blocks include memory blocks, microprocessors, bitstream encryption, and ethernet

connections [43]. Many modern FPGAs contain heterogenous computing elements on
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a single chip, and are referred to as System on a Chip (SoC) FPGAs.

2.2.2 FPGAs, ASICs, and Microprocessors

When examining the usefulness of FPGAs, it is important to compare them to the two

other categories of computing hardware that can also be used for the implementation

of any given application. The two other categories are ASICs, very fast and efficient

custom integrated circuits that are designed for specific applications, and processors

like CPUs and GPUs, which are the most widely used type of computing hardware in

machine learning applications, and are extremely cheap, flexible, and easy to program.

In the previous section, we discussed what limitations on ASICs spurred the inven-

tion and development of FPGAs. FPGAs also offer a number of advantages compared

to CPUs and GPUs, which are generally the same as their disadvantages when com-

pared with ASICs. In fact, it is useful to think of FPGAs in general as a middle

ground between ASICs and microprocessors—in most areas where ASICs perform

well and CPUs/GPUs perform poorly, or vice versa, FPGAs fall somewhere in be-

tween. This means that, for example, for applications that require more flexibility

than ASICs can provide but also require hardware that consumes less power than

CPUs or GPUs do, FPGAs provide a desirable or vital alternative.

The major exception to the rule of FPGAs’ position as a middle ground between

ASICs and CPUs/GPUs is programmability. By programmability, we don’t mean re-

configurability but the ease of development of new applications by developers. Where

ASICs and CPUs/GPUs require either little programming at all or support a large

number of very popular high-level languages that are relatively easy for human devel-

opers to understand, tools for high-level synthesis on FPGAs, while a rapidly growing

area, are much less robust. High-level synthesis tools for FPGAs will be discussed

further in Section 2.2.5.

Below, Figure 2.4 offers a visualization of broad trends in the attributes of FPGAs

as compared to ASICs and processors like CPUs and GPUs. These attributes have

influenced the use of FPGAs in sensor systems and to implement machine learning

applications, efforts which will be discussed in the next two sections.

29



Table 2.4: A visualization comparing the attributes of FPGAs to ASICs and CPU-like
processors.

2.2.3 FPGAs in Sensor Systems

When we discuss sensor systems, we refer to a set of one or more sensor nodes,

each containing a sensor, a processing element, a power source, and a transceiver

that allows the node to communicate with other nodes or a central server. The

sensor systems we are most concerned with in this paper are imaging systems like

ReImagine.

Many sensor systems were developed for use in military applications, such as the

identification, classification and tracking of objects in the battlefield [15]. However,

due to the flexibility of sensors available, their underlying processing elements, and

the possible configurations of networks of nodes, sensor systems are used in a wide

variety of domains, from controls to agriculture to health to environmental monitor-

ing. In general, the implementation of sensor systems is limited by the fabrication

costs and power consumption of the individual nodes [15]. As discussed previously,

ASICs that consume little power incur very large non-recurring engineering costs,

which are often not amortized across enough devices to make their development cost

effective. Processors like CPUs and GPUs, however, require significantly more power,

and therefore much larger or more frequently replaced batteries. Often, nodes would

have benefited from being smaller and lighter, or else are widely distributed enough

to make manually changing or recharging batteries a time-consuming task.

FPGAs do not have to be used as standalone processing elements in sensor nodes,

but can also be combined with other processing elements to take advantage of FPGAs’
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particular benefits as an accelerator for tasks they may be overall less suited for [15].

Each sensor system has its own particular set of requirements, which may or may

not favor the use of FPGAs. Imaging systems with computer vision applications,

for example, might simply do image capture and simple arithmetic operations, might

do more complex segmentation, preprocessing, or convolution, or do highly complex

image recognition and classification tasks [20]. Even among imaging systems, different

requirements might favor dramatically different types of hardware.

The ReImagine project is an example of one such system. The requirements

particular to ReImagine that go beyond general trends in power, programmability,

and performance and that led to the implementation of its processing elements as

FPGAs are summarized in Table 2.5.

Table 2.5: Hardware attribute considerations specific to ReImagine [52].

A more detailed analysis of the trends in the use of FPGAs in sensor systems

will be given in Chapter 4. It is worth noting here, however, that the use of FP-

GAs in sensor systems is already occurring across a number of domains, including in

synthetic-aperture radar systems to create detailed images of landscapes [29] and a

number of different medical imaging applications, including nuclear medical imaging

[54] and a number of different portable, high-frame rate ultrasound imaging systems

[33][50][12]. Health in particular is a domain that is highly relevant to early split

learning efforts, and could demonstrate fruitful uses of split learning on FPGAs. In

31



the next two sections, we will review the attributes of FPGAs as they relate to two

more areas vital to split learning efforts: machine learning and security and privacy.

2.2.4 Security and Privacy on FPGAs

Split learning applications are designed to help preserve privacy by preventing the

sharing of clients’ raw data with central servers. However, in addition to preventing

the sharing of raw data or easily invertible intermediate representations through split

learning and differential privacy techniques, split learning implementations must also

account for two other privacy concerns. The first concern is the way the information

flow of intermediate representations might leave the model vulnerable to malicious

client or server actors. The second concern is verifiability, which allows clients or

servers to prove they are faithfully executing the model without sharing raw data

being used in that execution [24].

The latter two concerns go beyond questions of the design of split learning al-

gorithms and depend in large part on the hardware on which these algorithms are

executed. In particular, these concerns depend on the execution of algorithms in

trusted execution environments (TEEs), secure, isolated areas of processors that pro-

vide guarantees of confidentiality (that the state of the code’s execution remains

secret), integrity (that the code’s execution cannot be affected by an outside source)

and attestation (that the code is executing faithfully based on its starting state) [24].

Security and privacy have also long been concerns for developers who design and

use FPGAs. As discussed in Section 2.2.1, one of the earliest uses of dedicated logic

blocks on FPGAs was for bitstream encryption, which protected the code being run

on the FPGA from being read while it was being loaded onto the chip, or from being

read off the chip itself. These blocks are now near-ubiquitous among commercial

FPGAs.

FPGA developers leverage a number of additional techniques for device security

throughout its life cycle. These techniques are leveraged during design manufacturing

of the base array itself, the application design phase, the configuration of the FPGA,

and the actual execution of applications on the device [42]. These techniques include,
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but are not limited to:

∙ Programs like the DoD Trusted Foundry Program that allow military and other

government buyers to access trusted and assured microelectronics specific to

their needs [8].

∙ Hardware trojan detection techniques like FANCI and VeriTrust that allow

for the detection of malicious hardware trojans inserted during the application

design phase [53].

∙ Bitstream authentication methods that detect tampering with the application

design [42].

∙ On-chip cryptography blocks that allow data encryption, along with physically

unclonable functions and other attributes unique to the physical device that

may serve as a unique identifier or private decryption key [42].

∙ The use of existing secure enclaves like the ARM TrustZone on SoC FPGAs

[19].

In Chapter 4, we will analyze which of the existing security and privacy features

of FPGAs may make them suitable for achieving the security and privacy goals of

split learning applications, and where FPGAs may still fall short as a platform.

2.2.5 Machine Learning on FPGAs

Possibly the clearest proof of the potential of machine learning applications on FP-

GAs is that a number of such applications are in use today. FPGAs are currently

used to supplement CPUs/GPUs and accelerate CNNs, similar to the type of joint

implementation sometimes used in FPGA-based sensor systems discussed briefly in

Section 2.2.3. There are also a number of standalone FPGA-based CNN implementa-

tions. In all cases the use of FPGAs allows the developer to leverage the parallelism

inherent to CNNs [6]. Despite these recent successes, there are a number of disadvan-

tages to conducting machine learning on FPGAs that have so far limited these joint
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implementations, as well as a number of advantages that allow for future growth. The

following sections will discuss the advantages and disadvantages of machine learning

on FPGAs.

Disadvantages of Machine Learning on FPGAs

We begin our survey by examining some of the disadvantages that might deter or

complicate the implementation of machine learning algorithms on FPGAs on a wider

scale. These include domain-specific knowledge requirements, longer development

times, and resource constraints unique to FPGAs.

Domain-Specific Knowledge Requirements Historically, application devel-

opment for FPGAs has required fluency in hardware descriptive languages (HDLs),

most commonly Verilog and VHDL. Programming in HDLs, unlike with traditional

high-level programming languages, requires an understanding of hardware-level de-

tails of the implementation, particularly if the developer wishes to take full advantage

of the optimizations that are possible with FPGAs, including reduction in latency due

to the proximity of the detector to the on-chip processing elements in imaging sys-

tems like ReImagine, the ability take advantage of the parallelism inherent to the

way FPGA applications can be routed through the device, and significantly reduced

power consumption of FPGAs compared to CPUs and GPUs. Experience with soft-

ware languages does not translate directly to proficiency with HDLs, which means the

software developers that traditionally write applications do not typically favor FPGA

implementations [26]. This disadvantage is increasingly mitigated by the emergence

of high-level synthesis (HLS) tools, which automate the synthesis of designs at the

register-transfer level (RTL) and below, allowing developers to create efficient appli-

cations for FPGAs by describing them at the algorithmic level. The existence of HLS

tools also allows for the proliferation of libraries of machine learning resources for

FPGAs. A survey of useful HLS tools is found in Section 3.1.
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Longer Development Times Another disadvantage of developing machine

learning algorithms for FPGAs is increased development time. This is mainly a

function of longer compile times. For FPGAs, the process of placing and routing a

design can take on the order of minutes to hours, as opposed to seconds or milliseconds

for processors like CPUs/GPUs [48]. This orders-of-magnitude difference is a high

cost to developers, who may need to compile many iterations of an application during

the design phase. FPGA’s dynamic reconfiguration abilities, while useful, are also

susceptible to delays and increased runtime. This cost of reconfiguration can be

mitigated to some extent by the use of pre-compiled compute kernels, or by the use

of kernel simulation during many parts of the debugging process [26]. Still, the impact

on developers is significant.

Resource Constraints The third major disadvantage of the use of FPGAs

in machine learning is that of resource constraints. Implementations of very simple

neural networks on FPGA actually emerged in 1992; however, in addition to the

nascence of the field of machine learning, their most important limitation was the

size constraints of FPGAs, as well as the number of operations per second they could

handle [14]. As discussed in Section 2.2.1, FPGAs have evolved dramatically in the

decades following this implementation, and now typically contain hardened multiply-

accumulate (MAC) blocks, which allow them to do arithmetic much more quickly and

efficiently. Additionally, the density of transistors on FPGAs has increased dramati-

cally, increasing the complexity of applications that can be implemented on them as

well as decreasing the time and power those applications consume. Although these

trends still continue today, and are leveraged in modern designs of machine learning

algorithms of FPGA, resource constraints remain a significant consideration [38].

The specific capabilities of FPGAs, in terms of storage, external memory band-

width, and computational resources available, are highly dependent on which FPGA

is being discussed. A summary of the available resources on a subset of Altera (ac-

quired by Intel in 2015) and Xilinx devices, demonstrating the wide range of FPGA

capacities, is shown in Table 2.6. However, popular and powerful image classification
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algorithms, such as AlexNet or VGGNet, which have tens of millions of parameters

and require billions of operations per second, require more storage than is available

on most commercial FPGAs. Therefore, model weights must be stored externally

and transferred to the FPGA during evaluation of the model, significantly slowing

computation. Repeatedly accessing external memory reduces the advantages of archi-

tectures like ReImagine, for which having computing resources physically very close

to image inputs is an enormous advantage. This limitation makes careful optimiza-

tion of FPGA designs and parallelization that reflects the requirements of a specific

layer of a given convolutional neural network paramount.

Table 2.6: Select Altera and Xilinx devices with available resources [37].

FPGA storage and computation are improving (as are interconnects that allow

multi-FPGA configurations) just as machine learning algorithms are growing in size

and complexity. Therefore, resource constraints will be a perennial challenge [38]. It

should also be noted, however, that in cases where split learning is implemented, the

existence of a cut layer relieves much of the storage and computation burden from

the sensing device, as a number of the later layers are handed off to a central server
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for computation.

Advantages of Machine Learning on FPGAs

The disadvantages of FPGAs are offset by a number of high-level tools that can

enable more rapid development of FPGA applications, as well as advantages inherent

to FPGA hardware in terms of performance, flexibility, and potential for optimization.

High-Level Synthesis Tools The two major commercial vendors of FPGAs,

Xilinx and Intel, have both long supported the use of HLS tools, which allow devel-

opers to avoid programming FPGAs at the RTL. There are many types of FPGAs,

from HDL-based frameworks like SystemVerilog to C-based frameworks like Xilinx

Vivado to CUDA/OpenCL-based frameworks with a strong focus on parallelism [7].

These HLS tools make FPGA programming accessible to many developers who would

otherwise focus on CPUs and GPUs, and allow the development of complicated appli-

cations in a much shorter period of time, and in many fewer lines of code. HLS tools

can also automatically perform optimizations that are difficult or time-consuming to

achieve when programming at a lower level [26]. Section 3.1 presents a summary of

the HLS tools that include interfaces for machine learning on FPGAs.

Optimization and Flexibility Another advantage of the use of FPGAs in ma-

chine learning is the ability to pursue optimizations that are not possible on micropro-

cessors. On FPGAs, the bottleneck in communication between processor and memory

can be alleviated by the laying of flexible data paths, and the programmer can take

advantage of distributed on-chip memory. FPGAs are also highly parallelizable, and

well-suited for the feed-forward nature of many machine learning models. Addition-

ally, modern FPGAs generally support partial dynamic reconfiguration. This means

that in a machine learning model implemented on an FPGA, individual layers can be

reprogrammed while computation is still occurring in other layers, alleviating some

of the memory constraints that are inherent to FPGAs. Together, these capabilities

allow programmers to pursue optimizations that simply cannot occur on processors
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like CPUs and GPUs, although many types of hardware-level optimizations cannot

be implemented using HLS tools, removing that advantage [26].

As discussed previously, many of the hardware optimization advantages that exist

for FPGAs, but not for CPUs/GPUs, are also present in ASICs. However, ASIC

platforms have extremely long design cycles compared to FPGAs, and are not re-

configurable once a design cycle has been completed. FPGAs, on the other hand,

are highly flexible, allowing their designs to be optimized even after they’ve been

deployed, or reconfigured for a new application entirely [48]. This flexibility can

save both time and development costs in the design phase, especially given the rapid

improvements on and changes to machine learning algorithms.

Performance Improvements FPGAs generally offer very high performance

per watt, especially compared to processors like GPUs. As an example, one 2017

comparison of an LSTM algorithm implemented on an FPGA, a GPU, and a CPU

found that the FGPA was 11.5 times more energy efficient than the GPU, and 40

times more energy efficient than the CPU [22]. The same algorithm was 3 times

faster than the GPU and 43 times faster than the CPU. Similar results across a

variety of studies [38] demonstrate that the power efficiency of FPGAs can be a

significant advantage in two cases. On one hand, large-scale deployments of FPGAs

in server-based applications can result in significant energy savings. On the other,

in cases where FPGAs are embedded in systems with significant resource limitations

can make possible applications that might otherwise be simply too energy intensive

to run [26]. The speedups of the algorithms also constitute a significant advantage,

as they increase throughput, meaning less time and/or fewer devices are required to

implement the algorithm, resulting in cost and time savings.
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Chapter 3

Implementation of Split Learning on

FPGAs

When software developers program general-purpose processors like CPUs, they gen-

erally use high-level, human-readable languages like C or Python, which are then

compiled or interpreted into binary or bytecode that the CPU can execute. Unlike

CPUs, FPGAs must be configured with a bitstream that is loaded onto the device

and determines how the device is programmed.

As is the case with binary executables, it is not feasible for humans to generate

bitstreams of any significant complexity without the aid of higher-level languages.

However, the toolchain required to translate high-level languages to an FPGA bit-

stream is significantly different from the toochain required to create executables for

CPUs. In general, high-level languages for FPGAs require greater knowledge of the

underlying hardware, and are often more difficult to use than high-level languages for

CPUs. A high-level language must be translated into code in a hardware descriptive

language (HDL) using a high-level synthesis tool. The HDL code must then be syn-

thesized by a synthesis tool like Xilinx Vivado into a bitstream specific to the model

of FPGA it will be loaded onto.

In order to demonstrate the feasibility of implementing split learning algorithms

on FPGAs, we must understand the landscape of high-level synthesis tools available

that allow developers to translate models from common machine learning frame-
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works like PyTorch and Tensorflow to hardware descriptive languages like Verilog

and VHDL. We also must evaluate the resources available on modern commercial

FPGAs and select a split learning algorithm to implement. This chapter will discuss

those three areas, describe our synthesis of a split model on an FPGA, and provide

analysis on what the demonstration implies for future split learning implementations

on ReImagine and similar imaging platforms.

3.1 Interfaces for Machine Learning on FPGAs

A number of high-level synthesis tools exist that empower developers to more easily

design for FPGAs, as discussed in Section 2.2.5. Many of these tools are based on

CUDA or OpenCL, and are designed specifically for FPGA developers interested

in implementing neural networks. While CUDA is used frequently in popular deep

learning tools, it is also proprietary. Most of the tools we will look at use the parallel

programming platform OpenCL, which is open-source and currently offers support

for a wide variety of deep learning frameworks, notably Caffe [26].

These OpenCL-based implementations range from frameworks developed by aca-

demic researchers (for example, the “caffeinated FPGAs” framework developed in 2016

[16]), to more extensive development environments released by industry. For example,

Intel released the Intel FPGA SDK for OpenCL in 2016, implementing the AlexNet

image classification algorithm with performance similar to that of a high-end GPU

in terms of images per second, and with much greater power efficiency [23]. At the

end of 2019, Xilinx introduced Vitis AI, an extensive development environment that

contains a library of existing models, and offers support for mainstream frameworks

like Caffe and TensorFlow, as well as C++ and Python APIs [51].

Another important emerging HLS tool for machine learning development on FP-

GAs is hls4ml [18], a package for machine learning inference in FPGAs that is intended

for use in low-latency particle physics application, and translates trained machine

learning models from frameworks like PyTorch and Keras to Vivado HLS code, which

can then be translated by Vivado to a HDL. hls4ml is the package which we have
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chosen to use to implement our split learning algorithm in Verilog code.

While support for machine learning on FPGAs is still not as extensive as it is

for processors like CPUs, the field continues to see very rapid development as FPGA

developers seek easier means of implementing neural networks, and FPGA manufac-

turers seek to expand the range of applications for their devices. With time, the

available set of HLS tools will grow more powerful and accessible, increasing the

feasibility of machine learning on FPGAs.

3.1.1 Sample Workflow

The possible workflows for the implementation of machine learning algorithms on

FPGAs are varied, but they share a common overall structure, namely the translation

of a model description and target platform specifications to a specialized model (often

described in C or C++), then to Vivado HLS code, and then to Verilog. In this

section, we will examine the workflow of one common tool, fpgaConvNet, in order to

provide an example of how implementation might look for a developer.

fpgaConvNet was first released in May 2016 by the Intelligent Digital Systems

Lab at Imperial College London. It supports input from the developer using both

Caffe and Torch. fpgaConvNet also takes in the specifications of the FPGA to be

targeted. fpgaConvNet automatically converts this input into Vivado HLS, which

means it is limited to Xilinx FPGAs. The Vivado HLS code is then input to Vivado,

which generates a bitstream that can be loaded directly onto an FPGA, as well as a

report on the resource utilizations of the design [44].

The internal workflow of fpgaConvNet, which is very similar to that of hls4ml, is

shown in Figure 3-1, and benchmarks for the performance of several common image

recognition algorithms as generated by fpgaConvNet and implemented on FPGAs are

shown in Table 3.1.
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Figure 3-1: Flowchart of the fpgaConvNet framework [30].

Table 3.1: Performance of common object recognition algorithms implemented using
fpgaConvNet [30].
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3.2 FPGA Resources

A summary of the resources on a subset of modern, commercially available FPGAs

was provided in Section 2.2.5. Additionally, an analysis of the resources available on

the first generation Griffin FPIA, developed through the ReImagine program, was

provided in Section 2.1.

Comparing these tables, we see that ReImagine, though a unique platform, con-

tains resources within the range of existing commercial FPGAs (it contains 275,032

LUTs and 1,736 DSP tiles, very similar to Xilinx’s Virtex 6 SX’s 290,600 LUTs and

2,016 DSP tiles), allowing us to compute resource consumption of designs on avail-

able commercial FPGA synthesis tools, specifically Xilinx’s Vivado, that will be able

to guide estimates of resource consumption on platforms like ReImagine, which are

programmed using MIT Lincoln Laboratory’s programming toolset for ReImagine,

with an eye towards future applications.

3.3 Split Learning Algorithm

For our split learning algorithm, we modified a split learning neural network developed

by the MIT Media Lab that uses four clients and a single server to train and evaluate

a convolutional neural network that classifies handwritten digits from the MNIST

database. The modifications of the network included the translation of the model

from PyTorch to Keras due to hls4ml’s current support for 2D convolutional layers

in Keras, the use of a single client to simplify FPGA simulation, and the reduction

in size of the first convolutional layer, which produced memory and runtime issues

in Vivado HLS at its original size. The final model architecture is shown below, and

had a validation accuracy of 98.9% over ten epochs:

1 client = Sequential ()

2 client.add(Conv2D (16, (3, 3), input_shape =( input_shape)))

3 client.add(Activation(’relu’))

4 client.add(MaxPooling2D(pool_size =(2, 2)))

5 client.add(Conv2D (32, (3, 3)))
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6 client.add(Activation(’relu’))

7 client.add(MaxPooling2D(pool_size =(2, 2)))

8

9 server = Sequential ()

10 server.add(Flatten ())

11 server.add(Dense (256))

12 server.add(Activation(’relu’))

13 server.add(Dense (10))

14 server.add(Activation(’softmax ’))

3.4 Implementation

The code run on Google Colaboratory and used to generate the model architecture

and weight files is included in Appendix A. The resulting JSON file containing the

architecture of the sequential Keras model is included in Appendix B.

Using the JSON from Appendix B and the corresponding H5 file containing the

trained weights of the model, we used the hls4ml package to synthesize the model in

HDL code. The operating system used was RHEL 7.8, and the Vivado version used

was 2020.1. The target device was Xilinx’s Kintex UltraScale 115.

The report on the synthesis of the model, including resource utilization, can be

found in Appendix C.

3.5 Results and Analysis

The results of the synthesis show that even before optimizations are conducted, the

split learning algorithm can be implemented on a commercial FPGA. The Kintex Ul-

traScale 115, however, has more available resources than a custom FPGA architecture

like ReImagine. In Table 3.2, we have compared the utilization of four vital resources

(LUTs, DSP tiles, I/O, and BRAM) in the split learning model, the Kintex UltraScale

115, and the first generation Griffin FPIA. It must be noted that resource implemen-

tations are individual to each FPGA manufacturer, meaning that Griffin LUTs, DSPs,
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or BRAMs may not be strictly equivalent to Xilinx Kintex LUTs, DSPs, or BRAMs.

The estimates in the table below are therefore approximations.

Table 3.2: Resource utilization of the split learning model compared to device at-
tributes.

Even without optimizations, the Griffin FPIA contains the volume of resources

required to implement the split learning model in each category except I/O. However,

this table accounts only for perimeter I/O. In a real-world use-case, an FPGA-based

sensor system like the Griffin FPIA would not receive input data from its perimeter

I/O, but from its vast 3D inputs where the Tier 3 detector interfaces with Tier 1 of

the platform (see Figure 2-2 for reference). This reduces the amount of perimeter I/O

needed, as the device would only need to output the weights at its cut layer and (in

training) the gradients at the cut layer during back propagation. Image data would

not be received across the perimeter, reducing the need for perimeter I/O.

These results demonstrate the technical feasibility of the implementation of split

learning models on FPGA-based sensor nodes in the case of not just large commercial

FPGAs, but also more resourced-constrained platforms like the Griffin FPIA that are

still under development.

A caveat to the demonstrated feasibility is that the MNIST dataset, while useful

as a tool for proof of concept, is a relatively easy dataset to train an image classifica-

tion model on, with ten clear categories and an individual image size of only 28x28.

Useful split learning models of the kind discussed in Chapter 4 will likely be trained

and evaluated on significantly larger images that are more difficult to create effective

models for. These models will require more and larger layers, and utilize more re-

sources. However, the team that created the hls4ml package has demonstrated success

in optimizing machine learning models and reducing their resource utilization.

One important technique is the compression of models by pruning, meaning the
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removal of weights that are shown to have little or no effect on the model’s accuracy.

In one example provided, pruning reduced the number of model parameters by 69.5%

and the number of DSP tiles used by 66.3% with only a 0.13% loss in accuracy [18].

The DSP utilization of this optimization is shown in Figure 3-2.

Figure 3-2: DSP utilization in pruned model [18].

Another useful optimization is reuse, where instead of being fully parallelized, the

FPGA only processes a fraction of the model at a time, allowing individual multipliers

to be reused multiple times. The resulting computation is slower, but requires far

fewer LUTs, as Figure 3-3 illustrates. The figure also reflects that synthesis reports

generally overestimate the resource utilizations of implementations of HDL designs

on physical devices.

These kinds of optimizations will be vital in deploying larger, more complex split

learning applications on resource-constrained platforms in the future, and can be

implemented on a case-by-case basis dependent on the requirements of the specific

pairing of device and model.
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Figure 3-3: LUT utilization in reused and implemented ML model [18].
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Chapter 4

The Future of FPGAs in Sensor

Systems

In this chapter, we provide analysis of the ways that the economic and technical vi-

ability of developing sensor systems on FPGAs has shaped the current landscape of

such systems in order to provide an overview of what types of systems split learning

applications might be deployed in. Next, we further analyze the security and pri-

vacy requirements of split learning in order to understand what advantages FPGAs

might offer those trying to implement privacy-preserving machine learning methods,

and where FPGAs still fall short. Finally, we outline a use case in which the imple-

mentation of split learning applications on FPGA-based sensor systems might offer

significant advantages.

4.1 FPGA Sensor Systems: The Current Landscape

The landscape of FPGA sensor systems is as diverse as the devices themselves are.

FPGAs are used in single-sensor systems, distributed systems featuring moderate

numbers of nodes, and in large numbers in large-scale datacenters. Each type of

system has its own economic and technical motivations for the use of FPGAs. Large-

scale datacenters fall outside the scope of this work, which is focused on device counts

at the scale shown in Figure 4-1. We will examine the economic and technical moti-
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vations for the use of FPGAs and the applicability of split learning methods in more

detail in the following section by looking at individual examples of FPGAs in use in

unique single-sensor systems and distributed systems featuring moderate numbers of

nodes.

Figure 4-1: Visualization of the part quantities at which ASICs become cheaper than
FPGAs [27].

4.1.1 Unique Single-Sensor FPGA-Based Systems

One example of an FPGA-based single-sensor system is found in NASA’s Soil Mois-

ture Active/Passive (SMAP) mission. SMAP monitors global soil moisture and

freeze/thaw cycles in order to help improve weather and climate forecasting, which

in turn improves agricultural productivity, improves human health outcomes through

flood and famine prediction, and improves national security by enabling better un-

derstanding of ground mobility. SMAP contains the Radiometer Digital Electronics

(RDE) subsystem, which conducts digital signal processing (DSP) and radio frequency

interference (RFI) mitigation [11].

Two of the major technical concerns of the RDE were high temporal resolution,

which allows a sufficiently high sampling rates to conduct sub-millisecond RFI de-

tection and mitigation, and low power usage, which allows it to fly and operate on

the resource-constrained SMAP satellite mission. Achieving low enough power usage

required logic-level optimizations of the kind possible on FPGAs, but not general-
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purpose processors [10]. These types of concerns—the achievement of high sampling

rates and low SWaP without the incurring expensive non-recurring engineering costs

that ASIC designs require for single devices—make FPGAs the natural choice for the

RDE and similar single-sensor systems, or systems that only use a handful of devices.

These types of systems are generally less subject to privacy concerns, given that

they rarely handle personal data that necessitates privacy guarantees. In cases where

single-sensor systems are implementing machine learning methods, split learning could

be used between the FPGA-based sensor and a central server in order to reduce the

resource utilization of the machine learning model on the FPGA by offloading the

later layers to a separate server while speeding computation by allowing the FPGA

to compute the layers up to the cut layer. However, single-sensor systems are unlikely

to be the most fruitful area for the application of split learning techniques given that

privacy considerations are generally not a central concern.

4.1.2 Distributed FPGA Sensor Systems (Moderate Device

Count)

When describing distributed systems with a device count that could be classified as

“moderate,” we are describing systems with devices that are manufactured at a scale

not large enough to make the use of ASICs a more cost-effective option (so are not

used in ubiquitous devices like cell phone cameras). These types of systems may

be spread across multiple physical locations and may be operated by one or more

independent actors. As can be seen in Figure 4-1, this generally means device counts

on the scale of tens, hundreds, or thousands, and includes most DoD quantities.

While not forming a single cohesive system, the set of radiology appliances like

CT scanners and MRI units in health care settings throughout the world comprise a

distributed set of imaging systems that contain vast amounts of useful data. There

were roughly 10,000 CT scanners and 8,000 MRI units in the United States as of

2007 [3], placing them on the upper end of the estimated range of device counts

for which FPGAs are advantageous from a cost perspective (some estimates place
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that range higher). It is a reasonable assumption that any data-sharing collaboration

between health care entities would occur on the scale of tens or hundreds of devices.

Therefore, we will apply radiology as our use case for moderately-sized distributed

sensor systems.

Radiology appliances ideally have a number of attributes in common with the

platform developed by the ReImagine program. It is often not possible to make a

diagnosis with a single technique, so radiology appliances are multi-modal, combining

techniques like CT, MRI, and ultrasound into a single appliance with multiple sub-

systems. Radiology also benefits from lower latency. In static imaging cases, lower

latency allows scans to be taken more quickly and reduces the amount of radiation

patients are exposed to. In interventional radiology, real-time imaging is required,

and efficient dataflow is paramount [34].

These factors make FPGAs a good fit for many radiology applications, and a

number of radiology devices already employ FPGAs, including the imaging systems

referenced in Section 2.2.3. A number of FPGA architectures for the capture and

reconstruction of radiology images are also described in [34].

Unlike the single-sensor systems that capture unique data described in Section

4.1.1, imaging of people’s internal organs and the associated health information that

can be derived from it is highly sensitive, and benefits from strong privacy guarantees.

Deep learning methods for health, however, can be employed in a variety of useful

applications for diagnosis if the barriers to collaboration between entities that may

not individually hold adequate data to train models effectively can be lowered. These

two factors have made health one of the primary initial research areas for the split

learning effort, as described in [46]. The growing prominence of FPGAs in this field,

combined with efforts to increase collaboration between entities, make health and

other applications on a similar scale a promising early use case of split learning on

FPGAs.
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4.2 Meeting Security and Privacy Goals with FP-

GAs

As discussed in Section 2.2.4, in order for split learning implementations to realize

the security and privacy guarantees of their algorithm, they must also include guar-

antees about 1) the information flow of intermediate results in the process and 2)

verifiability, or the client or server’s ability to prove that it has executed the desired

behavior faithfully without revealing the raw data it holds. In this section we ana-

lyze the existing ability of FPGAs to provide those guarantees and the areas where

improvement is still required.

Split learning methods on all types of hardware are also vulnerable to attacks

like data poisoning, which can occur independently of the base hardware. Therefore,

it is important to note that this section is not an exhaustive list of vulnerabilities,

but focuses on areas where FPGAs differ most from general-purpose processors like

CPUs.

4.2.1 Information Flow

The primary threat models related to the information flow throughout the split learn-

ing process are related to the administrator, the client, and the server. An admin-

istrator like an engineer or analyst may be enabled to act maliciously when granted

access to various outputs from the system [24]. This is an important consideration,

but not one tied directly to the hardware upon which the split learning model is

implemented, so we will focus instead on threats from the client and server.

A malicious client or server is able to tamper with the training process, compro-

mising the training and subsequent evaluation of the model for the rest of the parties

in the system. These threats may be mitigated by tools like Secure Multi-Party Com-

putation (MPC) and Trusted Execution Environments (TEEs) [24]. Secure MPC has

been implemented previously on FPGAs [49]. This section will focus on TEEs on

FPGAs, which are specific to the device being used.
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On CPUs, TEEs like the ARM TrustZone can provide secure enclaves that enable

the user to establish the confidentiality and integrity of the code running within

them and provide attestation about that code’s execution. TEEs cannot prevent

physical/side channel attacks that both CPUs and FPGAs are vulnerable to, and

they have limited memory, requiring the application designer to pick and choose key

portions of the code to execute there [24].

TEEs like TrustZone are also present on certain FPGA SoCs, such as the Xilinx

Zynq-7010 device. These enclaves offer the same protections on FPGA SoCs as they

do on CPUs, and face the same limitations. However, FPGA SoCs are additionally

vulnerable to the insertion of malicious IP, either by an engineer or from a third-

party library, during the application design phase. Attacks like these, called hardware

trojans, have been demonstrated several times with results including denial of service,

privilege escalation, leakage of secure information, and the installation of malicious

software [9].

Hardware trojan detection techniques like FANCI and VeriTrust, mentioned in

Section 2.2.4, have shown partial success in countering these types of attacks. How-

ever, these kinds of attacks on the secure enclaves of FPGA SoCs have not been

exhaustively studied, and the effectiveness of FPGA TEEs, though promising, re-

mains an open question.

4.2.2 Verifiability

The TEEs discussed above are also important for the verifiability of split learning

implementations. Additionally, many modern FPGAs offer not just bitstream en-

cryption, which can help prevent attacks like model theft, but also bitstream authen-

tication. Bitstream authentication can verify that an FPGA’s configuration has not

been changed from a trusted initial configuration [17].

Overall, the security and privacy capabilities of modern FPGAs are fairly robust.

However, they are not as thoroughly explored as the equivalent capabilities on CPUs,

and are sometimes vulnerable to additional types of attacks. Moreover, many security

capabilities are present on high-end FPGA SoCs, but are unlikely to be available on
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particularly small or custom-designed FPGAs like the Griffin chip. In the future, this

may change as projects like HETEE (Heterogeneous TEE), which are intended for

heterogeneous computing environments and do not require specific hardware to be

embedded into the SoC, emerge [55].

However, as these tools are still in their infancy, split learning developers wish-

ing to implement their models on FPGAs, or FPGA developers looking to leverage

the privacy protections of split learning, should integrate device security into their

considerations from the outset. In implementing split learning on FPGAs, it will be

important to evaluate the factors discussed in Section 4.3 and seek creative solutions

to potential threats rather than relying on bitstream encryption, differential privacy

techniques that distance intermediate representations from their raw data, and other

inbuilt elements to fully guarantee the privacy and security of data and model.

4.3 Use Case for Split Learning on FPGAs

As described in Section 4.1, one highly promising use case for implementations of split

learning models on FPGAs is in health, particularly radiology applications that can

be built on existing FPGA-based imaging sensors and used to enable health entities

to collaboratively develop models that will allow for more accurate diagnoses.

When considering the implementation of a split learning network on FPGAs in a

healthcare environment, the developer may wish to take into account the following

factors:

∙ The number of clients. The precise number of clients may be flexible, but an

estimate of how many health care entities will participate and the number of

devices per client can help the developer determine whether split learning is

the most communication- and computation-efficient approach. It can also help

determine whether the FPGA is the most appropriate hardware to use.

∙ The size of the input data and the number of parameters in the model. Like

the number of clients, this can help determine the communication and compu-
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tation efficiency of split learning as compared to other distributed deep learning

methods.

∙ The overall size of the model. This can be quickly estimated through a single-

device simulation using an HLS tool like hls4ml, and can help quickly determine

whether optimization and implementation are worth pursuing on the target

device.

∙ The importance of security guarantees. If a Trusted Execution Environment

is deemed necessary to the security of the implementation, the developer will

have to carefully select or create entirely new FPGA-based sensor systems that

currently support TEEs like ARM TrustZone.

∙ The importance of privacy guarantees. Given sensitive health data, intermedi-

ate representations of raw data from health care entities should not be shared

without a measure of differential privacy imposed on the data.

∙ The required latency. In situations like interventional radiology, FPGAs may

be required instead of devices like CPUs to meet timing constraints.

∙ SWaP-C. An important consideration that depends on the resources of the

health entities participating in the collaboration.

Additional areas where split learning’s distribution of the burden of calculation

(rather than preservation of privacy) might appeal to those looking to implement ma-

chine learning methods include particle physics and ultra-fast astronomy. Both fields

currently leverage the extremely low latency of FPGAs to detect and record phe-

nomena occurring on the nanosecond scale—in particle physics at the Large Hadron

Collider [18], and in ultra-fast astronomy at the Assy-Turgen Astrophysical Obser-

vatory in Kazakhstan [28]. At that timescale, “triggers” are used that do simple,

very fast analyses of incoming data to determine which frames should be saved for

later analysis as they are exfiltrated off the device [18]. A split learning-type method

might be used to train a model where the very early layers are shared by the simple
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trigger task and a more complex analysis task before the complex task forks over to

a different device.

Finally, as the ReImagine program is sponsored by DARPA, there could be a num-

ber of defense applications for a reconfigurable imaging platform that could conduct

complex image recognition tasks. Defense applications may have common ground

with health applications, in terms of number of devices, and with particle physics

or ultra-fast astronomy applications, in terms of the low latency required for an ap-

plication such as identifying a missile launch and calculating its trajectory. Defense

applications are also unlikely to require strong privacy guarantees for their raw data.

However, they may have stricter SWaP requirements, as they may, for example, be

deployed remotely on UAVs and be required to persist for a long time without recharg-

ing or a change of battery. At the same time, they are more likely to face malicious

external actors, and so may require even stronger security guarantees.

It is this ability to delicately balance important factors against one another, across

all domains, that makes FPGA-based sensor systems appealing for split learning

implementations.
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Chapter 5

Summary and Conclusion

This work has explored the potential application of split learning and other distributed

deep learning methods on FPGA-based sensor systems like ReImagine. In exploring

this area, we sought to determine whether the implementation of split learning appli-

cations on FPGAs offers advantages to groups seeking to deploy privacy-preserving

machine learning methods, as well as to groups seeking to add additional capabilities

to FPGA-based sensor systems. In order to determine what advantages, if any, this

approach might offer, we sought to answer three questions: Is it technically feasible to

implement split learning applications on FPGAs? How have developments in FPGA

technology changed the landscape and potential of FPGAs as platforms for sensor

systems and for new machine learning applications? And, what current and future

use cases exist for the implementation of split learning on FPGAs?

In determining the answers to these questions, we provided an overview of the

technologies relevant to the implementation of split learning on FPGAs. We then

synthesized a client-side split learning model for an FPGA. Next we conducted an

analysis of the current use of FPGAs in sensor systems and the security and pri-

vacy capabilities thereof. Finally, we offered a number of potential use cases for the

implementation of split learning on FPGAs.

Our survey found that there are a number of existing implementations of machine

learning algorithms on FPGAs, and our successful synthesis of such a split learn-

ing model in HDL code showed that an implementation of a simple split learning
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algorithm is achievable on modern, commercial FPGAs, including relatively resource-

constrained FPGA-based platforms like the Griffin chip being developed under the

ReImagine program. This implementation was possible using tools that are accessi-

ble to developers operating without a granular knowledge of the hardware that these

algorithms may be deployed on. Therefore, we affirm that the implementation of

split learning algorithms on FPGAs is technically feasible. However, much progress

is still required before these implementations achieve the accessibility of such tools

for general-purpose processors.

Our analysis of developments in FPGA technology included the increased resource

density that has led to performance improvements, the specialized logic blocks that

have made certain operations more efficient and made a number of security and

privacy capabilities native to FPGAs, and the high-level synthesis tools that have

enabled developers to rapidly develop, test, and deploy increasingly complex appli-

cations. These developments have increasingly led to FPGAs taking the place of

processors like CPUs and GPUs in settings where minimizing power usage and la-

tency is of the utmost importance, and the place of ASICs in settings where long

development cycles and high non-recurring engineering costs make the use of ASICs

prohibitively expensive in terms of money and time. This has led to the use of FP-

GAs as processing elements in sensor nodes and motivated the development of projects

like ReImagine. We have determined that in combination, these developments make

FPGAs a promising future platform for sensor systems and machine learning applica-

tions, and that the future of distributed deep learning on sensor systems will include

the deployment of such applications on FPGAs as well as more traditional platforms

for neural networks.

Finally, we examined the landscape of FPGA-based sensor systems to identify

use cases for the implementation of split learning on FPGAs. We found that the

implementation of split learning on FPGAs is applicable to health-oriented use cases,

particularly in radiology, due to the current use of FPGAs in radiological appliances

and the importance of the preservation of privacy of raw data in healthcare settings,

where a number of machine learning methods are already being developed collabora-
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tively. We also identified future potential for use cases in particle physics, ultra-fast

astronomy, and defense.

Overall, this work concludes that the implementation of split learning algorithms

on FPGAs is a promising area for both groups seeking to deploy privacy-preserving

machine learning methods and groups seeking to add additional capabilities to FPGA-

based sensor systems. The expansion of split learning implementations to FPGAs

allows developers of split learning algorithms to leverage data found on devices where

traditional machine learning platforms like GPUs simply cannot meet latency, power,

or other system requirements. Meanwhile, the use of split learning, or in certain cases

other distributed deep learning methods, allows groups that have already deployed

FPGA-based sensor systems to take advantage of the reconfigurable nature of the

platform and add machine learning capabilities, even in cases where an individual

device does not have enough data to effectively train a model, the data being collected

is sensitive, or a complex machine learning model might be too large for the constraints

of the device.

To make the deployment of split learning implementations on FPGAs a reality,

rather than a theoretical possibility, there is still more work that must be done. On the

technical side, future work in this area should include the loading and verification of

split learning models onto physical FPGAs. This will also allow better benchmarking

of resource utilization, allowing developers to understand the complexity of the models

they will be able to implement. HLS tools for machine learning on FPGAs must

continue to expand their capabilities and interfaces, making them more accessible

to all developers, even those without extensive hardware experience. These HLS

tools should also be a consideration in the development of programming toolsets

specific to programs like ReImagine. Finally, we must demonstrate the training of

split learning models on FPGAs, rather than simply demonstrating inference, at the

same time analyzing the bandwidth limitations of such implementations, which might

be significant depending on the dimensions of the cut layer.

Beyond these considerations, programs like the MIT Alliance for Distributed and

Private Machine Learning should seek to collaborate with groups that deploy plat-
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forms not traditionally used for machine learning applications, but that nonetheless

process valuable and sensitive data and can support split learning implementations.

At the same time, groups that have deployed FPGA-based sensor systems should

understand that distributed deep learning applications are among the tools available

for use on their highly reconfigurable platforms, and evaluate their own privacy and

resource needs to determine whether they can benefit from the advantages that split

learning offers.

Overall, machine learning techniques on FPGAs are rapidly expanding, as is the

use of FPGAs in sensor systems. The profusion of data on these platforms raises

concerns about the privacy of the raw data that is shared across devices, but also

creates opportunities for the development of new machine learning techniques that

can result in better outcomes across a variety of domains. Throughout our survey of

machine learning on FPGAs, it became clear that there is no existing paradigm that

has dominated the deployment of machine learning methods on FPGAs. This presents

a significant opportunity for the deployment of split learning methods on FPGAs:

consideration of privacy and efficiency issues that are sometimes afterthoughts for

researchers seeking to train accurate models, placed at the heart of the development

of a new set of tools. Together, these challenges and opportunities make split learning

on FPGAs a rich area worthy of future study.
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Appendix A

Generating Split Learning Keras

Model

1 # -*- coding: utf -8 -*-

2 """ split_learning_hls4ml.ipynb

3

4 Automatically generated by Colaboratory.

5

6 Original file is located at

7 https :// colab.research.google.com/drive /1

X0mSVxTAdJ1wAUL1CtwOa_bBNsIfww1C

8

9 referenced https :// github.com/transcranial/keras -js/blob/master/

notebooks/demos/mnist_cnn.ipynb , Sept 01 2020

10 """

11

12 KERAS_MODEL_FILEPATH = ’../../ demos/data/mnist_cnn/mnist_cnn.h5’

13

14 import numpy as np

15 np.random.seed (1337) # for reproducibility

16

17 from keras.datasets import mnist

18 from keras.models import Sequential , Model

19 from keras.layers import Dense , Flatten , Activation , Input
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20 from keras.layers import Conv2D , MaxPooling2D

21 from keras.utils import np_utils

22 from keras.callbacks import EarlyStopping , ModelCheckpoint

23

24 num_classes = 10

25

26 # input image dimensions

27 img_rows , img_cols = 28, 28

28

29 # the data , shuffled and split between train and test sets

30 (x_train , y_train), (x_test , y_test) = mnist.load_data ()

31

32 x_train = x_train.reshape(x_train.shape[0], img_rows , img_cols , 1)

33 x_test = x_test.reshape(x_test.shape[0], img_rows , img_cols , 1)

34 input_shape = (img_rows , img_cols , 1)

35

36 x_train = x_train.astype(’float32 ’)

37 x_test = x_test.astype(’float32 ’)

38 x_train /= 255

39 x_test /= 255

40 print(’x_train shape:’, x_train.shape)

41 print(x_train.shape [0], ’train samples ’)

42 print(x_test.shape [0], ’test samples ’)

43

44 # convert class vectors to binary class matrices

45 y_train = np_utils.to_categorical(y_train , num_classes)

46 y_test = np_utils.to_categorical(y_test , num_classes)

47

48

49 ’’’

50 referenced https :// stackoverflow.com/a/48612403/10728413 , Sept 01

2020 for example of composing two sequential keras models

51 ’’’

52 alice_seq_split_small = Sequential ()

53 alice_seq_split_small.add(Conv2D (16, (3, 3), input_shape =(

input_shape)))
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54 alice_seq_split_small.add(Activation(’relu’))

55 alice_seq_split_small.add(MaxPooling2D(pool_size =(2, 2)))

56 alice_seq_split_small.add(Conv2D (32, (3, 3)))

57 alice_seq_split_small.add(Activation(’relu’))

58 alice_seq_split_small.add(MaxPooling2D(pool_size =(2, 2)))

59

60 server_seq_split_small = Sequential ()

61 server_seq_split_small.add(Flatten ())

62 server_seq_split_small.add(Dense (256))

63 server_seq_split_small.add(Activation(’relu’))

64 server_seq_split_small.add(Dense (10))

65 server_seq_split_small.add(Activation(’softmax ’))

66

67 seq_model_split_small = Sequential ()

68 seq_model_split_small.add(alice_seq_split_small)

69 seq_model_split_small.add(server_seq_split_small)

70

71 seq_model_split_small.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’, metrics =[’accuracy ’])

72

73 alice_seq_split_small.summary ()

74 server_seq_split_small.summary ()

75 seq_model_split_small.summary ()

76

77 # Train

78 batch_size = 128

79 epochs = 10

80 seq_model_split_small.fit(x_train , y_train , batch_size=batch_size ,

epochs=epochs , verbose=2,

81 validation_data =(x_test , y_test))

82 score = seq_model_split_small.evaluate(x_test , y_test , verbose =0)

83 print(’Test score:’, score [0])

84 print(’Test accuracy:’, score [1])

85

86 from google.colab import files

87
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88 json_config_a = alice_seq_split_small.to_json ()

89 alice_seq_split_small.save_weights("alice_seq_split_small.h5")

90 with open("alice_seq_split_small.json", ’w’) as f:

91 f.write(json_config_a)

92 files.download(’alice_seq_split_small.h5’)

93 files.download(’alice_seq_split_small.json’)
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Appendix B

Client-Side Split Learning Model

Architecture

1 {

2 "class_name": "Sequential",

3 "config": {

4 "name": "sequential",

5 "layers": [

6

7 {

8 "class_name": "InputLayer",

9 "config": {

10 "batch_input_shape": [ null , 28, 28, 1 ],

11 "dtype": "float32",

12 "sparse": false ,

13 "ragged": false ,

14 "name": "conv2d_input"

15 }

16 },

17 {

18 "class_name": "Conv2D",

19 "config": {

20 "name": "conv2d",

21 "trainable": true ,
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22 "batch_input_shape": [ null , 28, 28, 1 ],

23 "dtype": "float32",

24 "filters": 16,

25 "kernel_size": [ 3, 3 ],

26 "strides": [ 1, 1 ],

27 "padding": "valid",

28 "data_format": "channels_last",

29 "dilation_rate": [ 1, 1 ],

30 "groups": 1,

31 "activation": "linear",

32 "use_bias": true ,

33 "kernel_initializer": {

34 "class_name": "GlorotUniform",

35 "config": { "seed": null }

36 },

37 "bias_initializer": {

38 "class_name": "Zeros",

39 "config": {}

40 },

41 "kernel_regularizer": null ,

42 "bias_regularizer": null ,

43 "activity_regularizer": null ,

44 "kernel_constraint": null ,

45 "bias_constraint": null

46 }

47 },

48 {

49 "class_name": "Activation",

50 "config": {

51 "name": "activation",

52 "trainable": true ,

53 "dtype": "float32",

54 "activation": "relu"

55 }

56 },

57 {
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58 "class_name": "MaxPooling2D",

59 "config": {

60 "name": "max_pooling2d",

61 "trainable": true ,

62 "dtype": "float32",

63 "pool_size": [ 2, 2 ],

64 "padding": "valid",

65 "strides": [ 2, 2 ],

66 "data_format": "channels_last"

67 }

68 },

69 {

70 "class_name": "Conv2D",

71 "config": {

72 "name": "conv2d_1",

73 "trainable": true ,

74 "dtype": "float32",

75 "filters": 32,

76 "kernel_size": [ 3, 3 ],

77 "strides": [ 1, 1 ],

78 "padding": "valid",

79 "data_format": "channels_last",

80 "dilation_rate": [ 1, 1 ],

81 "groups": 1,

82 "activation": "linear",

83 "use_bias": true ,

84 "kernel_initializer": {

85 "class_name": "GlorotUniform",

86 "config": { "seed": null }

87 },

88 "bias_initializer": {

89 "class_name": "Zeros",

90 "config": {}

91 },

92 "kernel_regularizer": null ,

93 "bias_regularizer": null ,
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94 "activity_regularizer": null ,

95 "kernel_constraint": null ,

96 "bias_constraint": null

97 }

98 },

99 {

100 "class_name": "Activation",

101 "config": {

102 "name": "activation_1",

103 "trainable": true ,

104 "dtype": "float32",

105 "activation": "relu"

106 }

107 },

108 {

109 "class_name": "MaxPooling2D",

110 "config": {

111 "name": "max_pooling2d_1",

112 "trainable": true ,

113 "dtype": "float32",

114 "pool_size": [ 2, 2 ],

115 "padding": "valid",

116 "strides": [ 2, 2 ],

117 "data_format": "channels_last"

118 }

119 }

120 ]

121 },

122 "keras_version": "2.4.0",

123 "backend": "tensorflow"

124 }
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Appendix C

Vivado HLS Synthesis Report

This report was generated by the version of the hls4ml tool found at the repository

https://github.com/vloncar/hls4ml.git,

commit 0613c5e635d8e39c23177f18092a6006800171c7.

1 Copyright 1986 -2020 Xilinx , Inc. All Rights Reserved.

2 ---------------------------------------------------------------------

3 | Tool Version : Vivado v.2020.1 (lin64) Build 2902540 Wed May 27

19:54:35 MDT 2020

4 | Date : Mon Aug 31 17:56:21 2020

5 | Host : llcad -grid02.llan.ll.mit.edu running 64-bit Red Hat

Enterprise Linux Workstation release 7.8 (Maipo)

6 | Command : report_utilization -file vivado_synth.rpt

7 | Design : myproject

8 | Device : xcku115flvb2104 -2

9 | Design State : Synthesized

10 ---------------------------------------------------------------------

11

12 Utilization Design Information

13

14 Table of Contents

15 -----------------

16 1. CLB Logic
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17 1.1 Summary of Registers by Type

18 2. BLOCKRAM

19 3. ARITHMETIC

20 4. I/O

21 5. CLOCK

22 6. ADVANCED

23 7. CONFIGURATION

24 8. Primitives

25 9. Black Boxes

26 10. Instantiated Netlists

27 11. SLR Connectivity

28 12. SLR Connectivity Matrix

29 13. SLR CLB Logic and Dedicated Block Utilization

30 14. SLR IO Utilization

31

32 1. CLB Logic

33 ------------

34

35 +----------------------------+-------+-------+-----------+-------+

36 | Site Type | Used | Fixed | Available | Util% |

37 +----------------------------+-------+-------+-----------+-------+

38 | CLB LUTs* | 95395 | 0 | 663360 | 14.38 |

39 | LUT as Logic | 87715 | 0 | 663360 | 13.22 |

40 | LUT as Memory | 7680 | 0 | 293760 | 2.61 |

41 | LUT as Distributed RAM | 0 | 0 | | |

42 | LUT as Shift Register | 7680 | 0 | | |

43 | CLB Registers | 40891 | 0 | 1326720 | 3.08 |

44 | Register as Flip Flop | 40891 | 0 | 1326720 | 3.08 |

45 | Register as Latch | 0 | 0 | 1326720 | 0.00 |

46 | CARRY8 | 10564 | 0 | 82920 | 12.74 |

47 | F7 Muxes | 2304 | 0 | 331680 | 0.69 |

48 | F8 Muxes | 0 | 0 | 165840 | 0.00 |

49 | F9 Muxes | 0 | 0 | 82920 | 0.00 |

50 +----------------------------+-------+-------+-----------+-------+

51 * Warning! The Final LUT count , after physical optimizations and

full implementation , is typically lower. Run opt_design after
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synthesis , if not already completed , for a more realistic count.

52

53

54 1.1 Summary of Registers by Type

55 --------------------------------

56

57 +-------+--------------+-------------+--------------+

58 | Total | Clock Enable | Synchronous | Asynchronous |

59 +-------+--------------+-------------+--------------+

60 | 0 | _ | - | - |

61 | 0 | _ | - | Set |

62 | 0 | _ | - | Reset |

63 | 0 | _ | Set | - |

64 | 0 | _ | Reset | - |

65 | 0 | Yes | - | - |

66 | 0 | Yes | - | Set |

67 | 0 | Yes | - | Reset |

68 | 2169 | Yes | Set | - |

69 | 38722 | Yes | Reset | - |

70 +-------+--------------+-------------+--------------+

71

72

73 2. BLOCKRAM

74 -----------

75

76 +-------------------+------+-------+-----------+-------+

77 | Site Type | Used | Fixed | Available | Util% |

78 +-------------------+------+-------+-----------+-------+

79 | Block RAM Tile | 60.5 | 0 | 2160 | 2.80 |

80 | RAMB36/FIFO* | 0 | 0 | 2160 | 0.00 |

81 | RAMB18 | 121 | 0 | 4320 | 2.80 |

82 | RAMB18E2 only | 121 | | | |

83 +-------------------+------+-------+-----------+-------+

84 * Note: Each Block RAM Tile only has one FIFO logic available and

therefore can accommodate only one FIFO36E2 or one FIFO18E2.

However , if a FIFO18E2 occupies a Block RAM Tile , that tile can
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still accommodate a RAMB18E2

85

86

87 3. ARITHMETIC

88 -------------

89

90 +----------------+------+-------+-----------+-------+

91 | Site Type | Used | Fixed | Available | Util% |

92 +----------------+------+-------+-----------+-------+

93 | DSPs | 3286 | 0 | 5520 | 59.53 |

94 | DSP48E2 only | 3286 | | | |

95 +----------------+------+-------+-----------+-------+

96

97

98 4. I/O

99 ------

100

101 +------------+------+-------+-----------+-------+

102 | Site Type | Used | Fixed | Available | Util% |

103 +------------+------+-------+-----------+-------+

104 | Bonded IOB | 634 | 0 | 702 | 90.31 |

105 +------------+------+-------+-----------+-------+

106

107

108 5. CLOCK

109 --------

110

111 +----------------------+------+-------+-----------+-------+

112 | Site Type | Used | Fixed | Available | Util% |

113 +----------------------+------+-------+-----------+-------+

114 | GLOBAL CLOCK BUFFERs | 1 | 0 | 1248 | 0.08 |

115 | BUFGCE | 1 | 0 | 576 | 0.17 |

116 | BUFGCE_DIV | 0 | 0 | 96 | 0.00 |

117 | BUFG_GT | 0 | 0 | 384 | 0.00 |

118 | BUFGCTRL* | 0 | 0 | 192 | 0.00 |

119 | PLLE3_ADV | 0 | 0 | 48 | 0.00 |
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120 | MMCME3_ADV | 0 | 0 | 24 | 0.00 |

121 +----------------------+------+-------+-----------+-------+

122 * Note: Each used BUFGCTRL counts as two GLOBAL CLOCK BUFFERs. This

table does not include global clocking resources , only buffer

cell usage. See the Clock Utilization Report (

report_clock_utilization) for detailed accounting of global

clocking resource availability.

123

124

125 6. ADVANCED

126 -----------

127

128 +-----------------+------+-------+-----------+-------+

129 | Site Type | Used | Fixed | Available | Util% |

130 +-----------------+------+-------+-----------+-------+

131 | GTHE3_CHANNEL | 0 | 0 | 64 | 0.00 |

132 | GTHE3_COMMON | 0 | 0 | 16 | 0.00 |

133 | IBUFDS_GTE3 | 0 | 0 | 32 | 0.00 |

134 | OBUFDS_GTE3 | 0 | 0 | 32 | 0.00 |

135 | OBUFDS_GTE3_ADV | 0 | 0 | 32 | 0.00 |

136 | PCIE_3_1 | 0 | 0 | 6 | 0.00 |

137 | SYSMONE1 | 0 | 0 | 2 | 0.00 |

138 +-----------------+------+-------+-----------+-------+

139

140

141 7. CONFIGURATION

142 ----------------

143

144 +-------------+------+-------+-----------+-------+

145 | Site Type | Used | Fixed | Available | Util% |

146 +-------------+------+-------+-----------+-------+

147 | BSCANE2 | 0 | 0 | 8 | 0.00 |

148 | DNA_PORTE2 | 0 | 0 | 2 | 0.00 |

149 | EFUSE_USR | 0 | 0 | 2 | 0.00 |

150 | FRAME_ECCE3 | 0 | 0 | 2 | 0.00 |

151 | ICAPE3 | 0 | 0 | 4 | 0.00 |
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152 | MASTER_JTAG | 0 | 0 | 2 | 0.00 |

153 | STARTUPE3 | 0 | 0 | 2 | 0.00 |

154 +-------------+------+-------+-----------+-------+

155

156

157 8. Primitives

158 -------------

159

160 +----------+-------+---------------------+

161 | Ref Name | Used | Functional Category |

162 +----------+-------+---------------------+

163 | LUT2 | 48748 | CLB |

164 | FDRE | 38722 | Register |

165 | LUT4 | 25300 | CLB |

166 | LUT3 | 25133 | CLB |

167 | CARRY8 | 10564 | CLB |

168 | LUT6 | 7228 | CLB |

169 | LUT5 | 5999 | CLB |

170 | SRLC32E | 5632 | CLB |

171 | LUT1 | 4660 | CLB |

172 | DSP48E2 | 3286 | Arithmetic |

173 | MUXF7 | 2304 | CLB |

174 | FDSE | 2169 | Register |

175 | SRL16E | 2048 | CLB |

176 | OBUF | 582 | I/O |

177 | RAMB18E2 | 121 | Block Ram |

178 | INBUF | 52 | I/O |

179 | IBUFCTRL | 52 | Others |

180 | BUFGCE | 1 | Clock |

181 +----------+-------+---------------------+

182

183

184 9. Black Boxes

185 --------------

186

187 +----------+------+
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188 | Ref Name | Used |

189 +----------+------+

190

191

192 10. Instantiated Netlists

193 -------------------------

194

195 +----------+------+

196 | Ref Name | Used |

197 +----------+------+

198

199

200 11. SLR Connectivity

201 --------------------

202

203 +-------------------------------+------+-------+-----------+-------+

204 | | Used | Fixed | Available | Util% |

205 +-------------------------------+------+-------+-----------+-------+

206 |SLR1 <-> SLR0 | 0 | | 17280 | 0.00 |

207 | SLR0 -> SLR1 | 0 | | | 0.00 |

208 | Using TX_REG only | 0 | 0 | | |

209 | Using RX_REG only | 0 | 0 | | |

210 | Using Both TX_REG and RX_REG| 0 | 0 | | |

211 | SLR1 -> SLR0 | 0 | | | 0.00 |

212 | Using TX_REG only | 0 | 0 | | |

213 | Using RX_REG only | 0 | 0 | | |

214 | Using Both TX_REG and RX_REG| 0 | 0 | | |

215 +-------------------------------+------+-------+-----------+-------+

216 |Total SLLs Used | 0 | | | |

217 +-------------------------------+------+-------+-----------+-------+

218

219

220 12. SLR Connectivity Matrix

221 ---------------------------

222

223 +-----------+------+------+

77



224 | FROM \ TO | SLR1 | SLR0 |

225 +-----------+------+------+

226 | SLR1 | 0 | 0 |

227 | SLR0 | 0 | 0 |

228 +-----------+------+------+

229

230

231 13. SLR CLB Logic and Dedicated Block Utilization

232 -------------------------------------------------

233

234 +----------------------------+------+------+--------+--------+

235 | Site Type | SLR0 | SLR1 | SLR0 % | SLR1 % |

236 +----------------------------+------+------+--------+--------+

237 | CLB | 0 | 0 | 0.00 | 0.00 |

238 | CLBL | 0 | 0 | 0.00 | 0.00 |

239 | CLBM | 0 | 0 | 0.00 | 0.00 |

240 | CLB LUTs | 0 | 0 | 0.00 | 0.00 |

241 | LUT as Logic | 0 | 0 | 0.00 | 0.00 |

242 | LUT as Memory | 0 | 0 | 0.00 | 0.00 |

243 | LUT as Distributed RAM | 0 | 0 | 0.00 | 0.00 |

244 | LUT as Shift Register | 0 | 0 | 0.00 | 0.00 |

245 | CLB Registers | 0 | 0 | 0.00 | 0.00 |

246 | CARRY8 | 0 | 0 | 0.00 | 0.00 |

247 | F7 Muxes | 0 | 0 | 0.00 | 0.00 |

248 | F8 Muxes | 0 | 0 | 0.00 | 0.00 |

249 | F9 Muxes | 0 | 0 | 0.00 | 0.00 |

250 | Block RAM Tile | 0 | 0 | 0.00 | 0.00 |

251 | RAMB36/FIFO | 0 | 0 | 0.00 | 0.00 |

252 | RAMB18 | 0 | 0 | 0.00 | 0.00 |

253 | URAM | 0 | 0 | 0.00 | 0.00 |

254 | DSPs | 0 | 0 | 0.00 | 0.00 |

255 | PLL | 0 | 0 | 0.00 | 0.00 |

256 | MMCM | 0 | 0 | 0.00 | 0.00 |

257 | Unique Control Sets | 0 | 0 | 0.00 | 0.00 |

258 +----------------------------+------+------+--------+--------+

259 * Note: Available Control Sets based on CLB Registers / 8
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260

261

262 14. SLR IO Utilization

263 ----------------------

264

265 +-----------+-----------+---------+------------+----------+

266 | SLR Index | Used IOBs | (%) IOBs | Used IPADs | (%) IPADs |

267 +-----------+-----------+---------+------------+----------+

268 | SLR1 | 0 | 0.00 | 0 | 0.00 |

269 | SLR0 | 0 | 0.00 | 0 | 0.00 |

270 +-----------+-----------+---------+------------+----------+

271 | Total | 0 | | 0 | |

272 +-----------+-----------+---------+------------+----------+

273

274 +-----------+------------+----------+-----+

275 | SLR Index | Used OPADs | (%) OPADs | GTs |

276 +-----------+------------+----------+-----+

277 | SLR1 | 0 | 0.00 | 0 |

278 | SLR0 | 0 | 0.00 | 0 |

279 +-----------+------------+----------+-----+

280 | Total | 0 | 0.00 | 0 |

281 +-----------+------------+----------+-----+

79



THIS PAGE INTENTIONALLY LEFT BLANK

80



Bibliography

[1] Distributed deep learning and inference without sharing raw data.
https://splitlearning.github.io/.

[2] Project Overview ‹ Split Learning: Distributed and collaborative learning.
https://www.media.mit.edu/projects/distributed-learning-and-collaborative-
learning-1/overview/.

[3] Table 120. Number of magnetic resonance imaging (MRI) units and computed
tomography (CT) scanners: Selected countries, selected years 1990–2007. Tech-
nical report, Centers for Disease Control, National Center for Health Statistics.,
2010. https://www.cdc.gov/nchs/data/hus/2010/120.pdf.

[4] Introduction to field programmable gate arrays (FPGA), August 2017.
https://microcontrollerslab.com/fpga-introduction-block-diagram/.

[5] A Camera That Can See Unlike Any Imager Before It . Defense
Advanced Research Projects Agency News And Events, September 2019.
https://www.darpa.mil/news-events/2016-09-16.

[6] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Serot, and François Berry. Accel-
erating CNN inference on FPGAs: A Survey. May 2018. arXiv: 1806.01683.

[7] David F. Bacon, Rodric Rabbah, and Sunil Shukla. FPGA programming for the
masses. Communications of the ACM, 56(4):56–63, April 2013.

[8] Kristen Baldwin. DoD Electronics Priorities. In NDIA Electron-
ics Division Kickoff Meeting, January 2018. https://www.ndia.org/-
/media/sites/ndia/divisions/electronics/past-proceedings/ndia-ed-baldwin-
18jan2018-vf.ashx?la=en.

[9] E. M. Benhani, L. Bossuet, and A. Aubert. The Security of ARM TrustZone in a
FPGA-Based SoC. IEEE Transactions on Computers, 68(8):1238–1248, August
2019.

[10] D. Bradley, C. Brambora, A. Feizi, R. Garcia, L. Miles, P. Mohammed, J. Peng,
J. Piepmeier, K. Shakoorzadeh, and M. Wong. Preliminary results from the
soil moisture active/passive (smap) radiometer digital electronics engineering
test unit (etu). In 2012 IEEE International Geoscience and Remote Sensing
Symposium, pages 1077–1080, 2012.

81



[11] Molly E. Brown, Vanessa Escobar, Susan Moran, Dara Entekhabi, Peggy E.
O’Neill, Eni G. Njoku, Brad Doorn, and Jared K. Entin. NASA’s Soil Mois-
ture Active Passive (SMAP) Mission and Opportunities for Applications Users.
Bulletin of the American Meteorological Society, 94(8):1125–1128, August 2013.

[12] Damian Cacko, Mateusz Walczak, and Marcin Lewandowski. Low-Power Ul-
trasound Imaging on Mixed FPGA/GPU Systems. In 2018 Joint Conference -
Acoustics, pages 1–6, September 2018.

[13] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting Dis-
tributed Synchronous SGD. 2016. https://static.googleusercontent.com/media/
research.google.com/en//pubs/archive/45187.pdf.

[14] C. E. Cox and W. E. Blanz. Ganglion-a fast field-programmable gate array im-
plementation of a connectionist classifier. IEEE Journal of Solid-State Circuits,
27(3):288–299, 1992.

[15] Antonio de la Piedra, An Braeken, and Abdellah Touhafi. Sensor Systems Based
on FPGAs and Their Applications: A Survey. Sensors, 12(9):12235–12264,
September 2012.

[16] Roberto DiCecco, Griffin Lacey, Jasmina Vasiljevic, Paul Chow, Graham Taylor,
and Shawki Areibi. Caffeinated FPGAs: FPGA Framework For Convolutional
Neural Networks. September 2016. arXiv: 1609.09671.

[17] Saar Drimer. Authentication of FPGA Bitstreams: Why and How. In Pe-
dro C. Diniz, Eduardo Marques, Koen Bertels, Marcio Merino Fernandes, and
João M. P. Cardoso, editors, Reconfigurable Computing: Architectures, Tools
and Applications, volume 4419, pages 73–84. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[18] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Ben-
jamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan Rivera, Nhan Tran, and
Zhenbin Wu. Fast inference of deep neural networks in FPGAs for particle
physics. Journal of Instrumentation, 13(07), July 2018. arXiv: 1804.06913.

[19] M. E. S. Elrabaa, M. Al-Asli, and M. Abu-Amara. Secure Computing Enclaves
Using FPGAs. IEEE Transactions on Dependable and Secure Computing, August
2019.

[20] Gabriel García, Carlos Jara, Jorge Pomares, Aiman Alabdo, Lucas Poggi, and
Fernando Torres. A Survey on FPGA-Based Sensor Systems: Towards Intelligent
and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal
Processing. Sensors, 14(4):6247–6278, March 2014.

[21] Peter J. Grossman, Matthew Stamplis, Kate Thurmer, Bryan Tyrell, and John
Frechette. Methods for enabling in-field selection of near-sensor digital imaging
functions, April 2019. US Patent Application Publicaton No. US 2019/0104269
A1.

82



[22] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, and William J. Dally. ESE:
Efficient Speech Recognition Engine with Sparse LSTM on FPGA. February
2017. arXiv: 1612.00694 version: 2.

[23] Intel. Efficient Implementation of Neural Network Systems Built on FPGAs, and
Programmed with OpenCL. 2016. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/solution-sheets/efficient_neural_networks.
pdf.

[24] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, Rafael G. L. D’Oliveira, Salim El Rouayheb, David
Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan
Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar,
Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri,
Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel
Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng
Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu
Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao.
Advances and Open Problems in Federated Learning. December 2019. arXiv:
1912.04977.

[25] Navdeep Kumar, Nirmal Kaur, and Deepti Gupta. Major Convolutional Neural
Networks in Image Classification: A Survey. In Maitreyee Dutta, C. Rama Kr-
ishna, Rakesh Kumar, and Mala Kalra, editors, Proceedings of International Con-
ference on IoT Inclusive Life (ICIIL 2019), NITTTR Chandigarh, India, Lecture
Notes in Networks and Systems, pages 243–258, Singapore, 2020. Springer.

[26] Griffin Lacey, Graham W. Taylor, and Shawki Areibi. Deep Learning on FPGAs:
Past, Present, and Future. February 2016. arXiv: 1602.04283.

[27] Jay Lewis. Reconfigurable Imaging (ReImagine). ReImagine Proposers
Day, September 2016. https://www.darpa.mil/attachments/Final_Compiled_
ReImagineProposersDay.pdf.

[28] Siyang Li, George F. Smoot, Bruce Grossan, Albert Wai Kit Lau, Marzhan
Bekbalanova, Mehdi Shafiee, and Thorsten Stezelberger. Program objectives
and specifications for the Ultra-Fast Astronomy observatory. AOPC 2019: Space
Optics, Telescopes, and Instrumentation, December 2019. arXiv: 1908.10549.

[29] Rui Liu, Daiyin Zhu, Die Wang, and Wanwan Du. FPGA Implementation of SAR
Imaging Processing System. In 2019 6th Asia-Pacific Conference on Synthetic
Aperture Radar (APSAR), pages 1–5, November 2019.

83



[30] Imperial College London. fpgaConvNet: A framework for
mapping Convolutional Neural Networks on FPGAs. 2017.
http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html.

[31] LSST Project Summary. Project summary, Rubin Observatory, December 2019.
https://docushare.lsst.org/docushare/dsweb/Get/Document-13936.

[32] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. Communication-Efficient Learning of Deep Networks from De-
centralized Data. In JMLR: W&CP, number 54 in Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), February
2017.

[33] Mickael Njiki, Abdelhafid Elouardi, Samir Bouaziz, Olivier Casula, and Olivier
Roy. A multi-FPGA architecture-based real-time TFM ultrasound imaging.
Journal of Real-Time Image Processing, 16(2):505–521, April 2019.

[34] Daniele Passaretti, Jan Moritz Joseph, and Thilo Pionteck. Survey on FPGAs
in Medical Radiology Applications: Challenges, Architectures and Programming
Models. In 2019 International Conference on Field-Programmable Technology
(ICFPT), pages 279–282, December 2019.

[35] Alexander Ruede. A Scientist’s Guide to FPGAs. iCSC, 2019.
https://indico.cern.ch/event/766995/contributions/3295773/attachments/1802
757/2940958/Alexander_Ruede_-_A_Scientists_Guide_to_FPGAs_AScien
tistsGuideToFPGAs.pdf.

[36] Kenneth I Schultz, Michael W Kelly, Justin J Baker, Megan H Blackwell,
Matthew G Brown, Curtis B Colonero, Christopher L David, Brian M Tyrrell,
and James R Wey. Digital-Pixel Focal Plane Array Technology. Lincoln Labora-
tory Journal, 20(2):16, July 2014.

[37] L. Shannon, V. Cojocaru, C. N. Dao, and P. H. W. Leong. Technology scaling
in fpgas: Trends in applications and architectures. In 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing Machines,
pages 1–8, 2015.

[38] Ahmad Shawahna, Sadiq M. Sait, and Aiman El-Maleh. FPGA-based Accel-
erators of Deep Learning Networks for Learning and Classification: A Review.
IEEE Access, 7:7823–7859, 2019. arXiv: 1901.00121.

[39] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar.
Detailed comparison of communication efficiency of split learning and federated
learning. September 2019. arXiv: 1909.09145.

[40] Special Notice DARPA-SN-16-68. Reconfigurable Imaging (ReImagine) Pro-
posers Day, Defense Advanced Research Projects Agency, Defense Advanced
Research Projects Agency Microsystems Technology Office, 675 North Randolph
Street, Arlington, VA 22203-2114, September 2016.

84



[41] Russell Tessier, Kenneth Pocek, and André DeHon. Reconfigurable Computing
Architectures. Proceedings of the IEEE, 103(3):332–354, March 2015.

[42] Stephen Trimberger and Jason Moore. FPGA Security: From Features to Ca-
pabilities to Trusted Systems. June 2014.

[43] Stephen M. Trimberger. Three Ages of FPGAs: A Retrospective on the First
Thirty Years of FPGA Technology: This Paper Reflects on How Moore’s Law
Has Driven the Design of FPGAs Through Three Epochs: the Age of Invention,
the Age of Expansion, and the Age of Accumulation. IEEE Solid-State Circuits
Magazine, 10(2):16–29, 2018.

[44] Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis.
Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey
and Future Directions. March 2018. arXiv: 1803.05900.

[45] Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar.
Reducing Leakage in Distributed Deep Learning for Sensitive Health Data. 2019.
https://aiforsocialgood.github.io/iclr2019/accepted/track1/pdfs/29_aisg_iclr2
019.pdf.

[46] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar.
Split learning for health: Distributed deep learning without sharing raw patient
data. 32nd Conference on Neural Information Processing Systems (NIPS 2018),
December 2018.

[47] Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta, and
Abhimanyu Dubey. No Peek: A Survey of private distributed deep learning.
December 2018. arXiv: 1812.03288.

[48] Teng Wang, Chao Wang, Xuehai Zhou, and Huaping Chen. A Survey of FPGA
Based Deep Learning Accelerators: Challenges and Opportunities. December
2018. arXiv: 1901.04988 version: 1.

[49] Pierre-Francois Wolfe, Rushi Patel, Robert Munafo, Mayank Varia, and Martin
Herbordt. Secret Sharing MPC on FPGAs in the Datacenter. July 2020. arXiv:
2007.00826.

[50] Xun Wu, Jean L. Sanders, Xiao Zhang, Feysel Yalçın Yamaner, and Ömer
Oralkan. An FPGA-Based Backend System for Intravascular Photoacoustic and
Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, 66(1):45–56, January 2019.

[51] Xilinx. Vitis AI User Guide. December 2019. https://www.xilinx.com/support/
documentation/sw_manuals/vitis_ai/1_0/ug1414-vitis-ai.pdf.

[52] Richard Younger. Photons Reimagined: Large format digital sensors for fast
photon counting and HDR imaging. CPAD Instrumentation Frontier Workshop
2018, December 2018.

85



[53] Jie Zhang, Feng Yuan, Linxiao Wei, Yannan Liu, and Qiang Xu. VeriTrust:
Verification for Hardware Trust. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 34(7):1148–1161, July 2015.

[54] Zhixiang Zhao, Siwei Xie, Xi Zhang, Jingwu Yang, Qiu Huang, Jianfeng Xu,
and Qiyu Peng. An Advanced 100-Channel Readout System for Nuclear Imag-
ing. IEEE Transactions on Instrumentation and Measurement, 68(9):3200–3210,
September 2019.

[55] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao, Lu-
tan Zhao, Fengkai Yuan, Peinan Li, Zhongpu Wang, Boyan Zhao, Lixin
Zhang, and Dan Meng. Enabling Privacy-Preserving, Compute- and Data-
Intensive Computing using Heterogeneous Trusted Execution Environment.
https://arxiv.org/ftp/arxiv/papers/1904/1904.04782.pdf.

86


