
Motion Planning with Dynamic Constraints Through Pose Graph
Optimization

by

Nadya L. Balabanska

B.S. Computer Science
Massachusetts Institute of Technology, 2019

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

© 2020 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:
Department of Electrical Engineering and Computer Science

August 14, 2020

Certified by:
Sertac Karaman

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by:
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

1

Motion Planning with Dynamic Constraints Through Pose Graph
Optimization

by

Nadya L. Balabanska

Submitted to the Department of Electrical Engineering and Computer Science
on August 14, 2020 in Partial Fulfillment of the Requirements for
the Degree of Master of Engineering in Electrical Engineering and

Computer Science

ABSTRACT

This contribution is an optimization-based method for robotic path-planning that is able to recover vehicle
controls in addition to discovering an optimized, feasible trajectory from start to goal for vehicles with
arbitrary dynamics. The motion planner extends the application of factor-graph optimization commonly
used in simultaneous localization and mapping tasks to the path-planning task, specifically the “timed elastic
band” trajectory optimization approach [1] for control input extraction functionality. This is achieved by the
introduction of control input-dependent vertices into the factor-graph along with a way to systematically
design dynamics violation costs without relying on hand-picked geometric parameters. An implementation
of the planner successfully recovers vehicle control inputs and produces feasible trajectories in simulation
testing.

Thesis Supervisor: Sertac Karaman
Title: Associate Professor of Aeronautics and Astronautics

2

Contents
1 Introduction and Background 4

1.1 Timed-Elastic Band . 6
1.1.1 Hyper-graph Optimization . 7

2 Approach 8
2.1 Penalties Associated with Dynamics Constraints . 10
2.2 Solving the Optimization Problem . 11

3 Results 12
3.1 Implementation . 12
3.2 Vehicle Models . 13

3.2.1 Double Integrator System . 13
3.2.2 Dubins Car-like System . 13
3.2.3 Point Mass Airplane . 14

3.3 Testing . 15

4 Conclusion and Future Work 17

List of Figures
1 Hyper-graph . 9
2 Testing Environments . 18
3 Experimental Trajectories . 22
4 Total Errors . 23
5 Component Errors - Double Integrator in 3D Walls Environment 24
6 Component Errors - Dubins Car in 2D Maze Environment 25
7 Component Errors - Point-Mass Airplane in Crowded Environment 26
8 Component Errors - Point-Mass Airplane in 3D Walls Environment 27

3

1 Introduction and Background

The motion planning problem in robotics refers to finding a sequence of valid configurations for a mobile

robot starting at some initial state and trying to arrive at a specified goal state. Robot motion operates in

a configuration space C [1], which is the vector space of all possible configurations, or poses of the robot.

Planning problems are defined in terms of a state space, which describes all the possible situations which

could arise. A state could, for example, represent a position and orientation of the robot [2].

Low-dimensional problems can be solved with grid-based algorithms that overlay a grid on top of the

configuration space, or geometric algorithms that compute the shape and connectivity of the free space. For

high-dimensional systems under complex constraints, exact motion planning is computationally intractable.

Potential-field algorithms, which treat the robot as a particle under the influence of an artificial potential field

constructed to locally reflect the structure of the free C-space, are efficient, but fall prey to local minima [2].

Sampling-based path planning algorithms, on the other hand, conduct a search that probes the C-space

instead of constructing the obstacle space directly. A sampling-based algorithm samples the C-space and

uses a collision detection module to handle the particular geometric models. Sampling-based planners are

currently considered state-of-the-art for motion planning in high-dimensional spaces, and have been applied

to problems which have dozens or even hundreds of dimensions. Multi-query planners build a roadmap of

the entire environment that can be used for multiple queries. The Probabilistic Roadmap algorithm (PRM)

[3] is an example of a multi-query planner. The algorithm builds up a roadmap across the space by taking

valid random samples from the space and connecting the configurations to each other. Once a start and

goal configuration are added, a graph search algorithm is employed to find a path within the roadmap.

Single-query planners planners typically grow a tree of states connected by valid motions. An example of

a single-query planner is the Rapidly-exploring Random Tree (RRT) algorithm [4], which incrementally

builds a tree of states sampled randomly from the search space beginning at the start state and is biased to

grow towards large unsearched areas of the space.

In some cases, finding any valid path between the start and goal states is not enough; the problem may

require optimizing some path quality metric. This metric could be the length of the path, or it could be

some general cost framework inclusive of a variety of path properties such as path length, clearance from

4

obstacles, and any metric specific to the problem and robot. Optimizing variants of standard path-planning

algorithms exist. PRM* [5] and RRT* [6] are respectively asymptotically optimal variants of the PRM and

RRT algorithms described above.

Another optimization method is trajectory modification, which modifies an initial feasible trajectory that

a global planner generated beforehand. Dynamic modification of a preplanned path is beneficial over offline

trajectory planning for situations that require coping with changes of a dynamic environment by incorpo-

rating the most recent sensor data for local refinement of the trajectory [2]. In most realistic applications

the model of the environment is subject to continuous change due to partial, incomplete maps and dynamic

obstacles, and the computation of a large scale global path is often not feasible in real-time applications.

Thus local modifications to the trajectory are beneficial. An example of a trajectory modification algorithm,

the CHOMP algorithm, improves the quality of sampled trajectories using covariant gradient techniques [7].

Additionally, robots have differential constraints, which are the restrictions on allowable velocities for

the vehicle at each point. These constraints may for example arise out of the kinematics and dynamic

constraints of the robot [8]. Many robot motion planning applications ignore dynamics and other differential

constraints and focus primarily on the translations and rotations required to move the robot. Many path-

planning solutions apply such path-planning techniques as explained above without considering dynamics

constraints, and then use control techniques to ensure that a computed path is executed as closely as possible.

For example, the planned path could be the result of running a sampling-based approach (without considering

dynamics) and a pure pursuit controller [9] can be used to follow the path. This type of solution relies

on the assumption that a path can be easily determined between any two configurations in the absence of

obstacles. For example, the sampling-based roadmap approach assumes that two nearby configurations can

be connected by a “straight line” in the configuration space [2].

However, this is not always a reasonable assumption. Some vehicles have dynamics constraints that

require consideration in the path-planning stage, because a path generated without considering the robot’s

dynamics would not be meaningful. An example of such a system would be a vehicle gliding on the an icy

surface. In cases like these, it is beneficial to consider the vehicle’s dynamics constraints in the planning

process. Incorporating the vehicle dynamics in the path-planning stage yields trajectories which are perfectly

feasible for the vehicle to follow.

5

Control theory refers to designing inputs to physical systems described by differential equations. In

control theory literature, motion planning sometimes refers to the construction of inputs to a nonlinear

dynamical system that drives it from an initial state to a specified goal state. This is the problem targeted in

this contribution. Rather than using geometric models as in the aforementioned approaches, models based

on differential constraints will be considered [2].

Differential models are typically expressed as ẋ = f (x,u). The problem becomes finding a sequence of

control inputs u(t,x) such that the robot will travel from the start state xstart to the goal xgoal .

Extensions to path-planning algorithms can be made to incorporate dynamics constraints. RRT can be

easily modified to incorporate dynamics [10]. States are sampled as mentioned previously and the inverse

value problem is solved to obtain the controls to arrive at the state at each extension of the tree, for example.

This can slow down planning time though, since the inverse value problem can be computationally expen-

sive, and is run at each sample step. Trajectory modification may be a more efficient approach in this case

[2]. A trajectory modification planner with dynamics is the timed elastic band method, which is expanded

on in this contribution.

The target contribution is a flexible motion planner that

1. handles simple specifications of arbitrary dynamics models

2. provides a simple and flexible way to define an optimization objective for the trajectory

3. optimizes both trajectory and control inputs based on the objective with reasonable efficiency

1.1 Timed-Elastic Band

The Timed-Elastic Band [11]approach is a trajectory modification approach. The Timed Elastic Band (TEB)

as a motion-planning approach optimizes trajectories by modifying an initial trajectory generated by a global

planner and formulating the motion-planning problem as a scalarized multi-objective optimization problem.

The Timed-Elastic Band represents the problem of trajectory optimization in a hypergraph structure. The

trajectory is described in terms of a sequence of robot poses and the time intervals between two consecutive

6

poses. The TEB is defined as a tuple of both these sequences:

B := (Q,τ) (1)

Q = {qi}i=0...n (2)

τ = {∆Ti}i=0...n−1 (3)

where qi corresponds to the vehicle pose with index i along the trajectory, and ∆Ti corresponds to the time

difference between consecutive poses qi and qi+1 in the trajectory.

The hypergraph is optimized using the weighted sum model:

f (B) = ∑
k

γk fk(B) (4)

B∗ = argminB f (B) (5)

where B∗ denotes the optimized TEB, f (B) is the underlying global objective function, formulated in terms

of cost functions that penalize the violation of a constraint, and γk is a variable multiplier for each error

function allowing harsher penalization for some constraints violations than others [11].

Because most objectives are local, relating only to parameters associated with few consecutive robot

states, the resulting system matrix is sparse, allowing the use of fast and efficient optimization techniques.

The formulation of the problem into this type of hypergraph representation serves as the inspiration for this

contribution.

1.1.1 Hyper-graph Optimization

Optimizing the factor graph requires solving a sparse scalarized multi-objective optimization problem. An

additional advantage to this approach is the ease of modularizing objectives and constraints.

The nonlinear optimization problem has the following form

7

F(x) = ∑
k=i, j∈C

Fk = ∑
k=i, j∈C

ek(xi,x j,zi j)
T

Ωkek(xi,x j,zi j) (6)

x∗ = min
x

F(x) (7)

where x is the parameter to be optimized, which is replaced with the TEB tuple B. By means of using

scalar error terms, Fk simplifies to Fk = Ωe2
k with substitutions from equation (4), Ωk = γk and ek =

√
fk

[12]. Equation (6) is solved using the Levenberg-Marquardt [13] method:

(H+λ I)x∗ =−b (8)

H = ∑JT
k ΩkJk is the system matrix (Hessian), λ is a damping factor, x∗ is the optimal timed-elastic band

states and b = ∑eT
k Jk is the error term. Jk represents the Jacobian of the error function, which is calculated

by numerical approximation from linearization at the current solution [12].

When H is sparse, this equation is solved in a numerically efficient way via sparse Cholesky decom-

position algorithms [14] and a-priori ordering. Thus, the sparsity of the TEB system matrix H makes it

efficiently optimizable [11].

2 Approach

Extension to the TEB-based path-planner is required to recover the control inputs of the vehicle. This is

achieved by the introduction of control input-dependent vertices into the hypergraph along with a way to

systematically design dynamics violation costs without relying on hand-picked geometric parameters.

A rough trajectory estimate (in this case, a shortest Euclidean-distance path generated by a sampling-

based planner) is used to initialize the optimization planner. The trajectory is parameterized as a tuple

B := (Q,U,τ) (9)

8

of discretized arrays of poses Q, time differences τ between poses (as in the original TEB specification), and

corresponding control inputs U ,

U = {ui}i=0...n (10)

where ui is the control input value corresponding to the i-th segment. Figure 1 demonstrates the hyper-graph

structure.

Figure 1: Hyper-graph structure. Poses (x), control, and time difference nodes are shown along with labels
for hyper-edges.

Within the objective function f (B), the classes of error included are:

• Time Optimality: A penalty proportional to each ∆Ti

ftime opt(∆Ti) = ∆Ti (11)

• Obstacle Avoidance: A penalty inversely proportional to the distance of the nearest obstacle to each

qi. A signed distance field is computed for the obstacle map and cost is assigned as follows with dmin

as the minimum allowed distance to an obstacle and d(q) the signed distance at configuration q.

9

fobs(qi) =


0 d(qi)> dmin

-(d(qi)−dmin) otherwise

• Control Bounds Violations: A penalty proportional to the amount by which control bounds are

violated for each ui

fu bounds(ui) = max(ui−umax,0)+max(umin−ui,0)

• Dynamics Constraints: Penalties enforcing dynamics constraints for position, velocity, and acceler-

ation of the vehicle (further detailed in section 2.1).

2.1 Penalties Associated with Dynamics Constraints

To remove the dependence on geometric information, a method of ensuring dynamics constraints based only

on the current poses, vehicle controls, and independent vehicle parameters was developed. The error classes

associated with dynamics constraints such as position, velocity, and acceleration constraints are specified as

follows:

fposition(ui,qi) = qi−h(0)(ui,qi) (12)

fvelocity(ui,qi, q̇i) = q̇i−h(1)(ui,qi, q̇i) (13)

facceleration(ui,qi, q̇i, q̈i) = q̈i−h(2)(ui,qi, q̇i, q̈i) (14)

which compare the pose derivatives of the trajectory extracted by finite differencing values of pose and time

nodes with those calculated using the corresponding control input node value, current pose, and further

derivatives of the current pose. The pose derivatives on the left-hand side of the equation, calculated using

10

finite differencing as follows:

q̇i =
qi+1−qi

∆Ti
(15)

q̈i =
2(q̇i−qi−1)

∆Ti+1 +∆Ti
(16)

...

h(n)(ui,qi, q̇i, q̈i) propagates the nth pose derivative according to the current pose qi, its derivatives, and

the corresponding control input ui. The specification for the h(n)(...) function is specific to each vehicle

type and can be specified easily allowing for flexible use. This allows the enforcing of arbitrary vehicle

dynamics. The Vehicle Models section below details the specifications of the h(n)(...) function for various

vehicles simulated for evaluating the contribution.

2.2 Solving the Optimization Problem

The hyper-graph used in this contribution is optimized similarly to that in the original timed-elastic band

problem. The requirement to optimize this graph efficiently enough for path-planning applications is that

the graph remain sufficiently sparse. A sparse graph is one where the number of edges is much less than

the possible number of edges between vertices. After the modifications to the hyper-graph this contribu-

tion presents, sparsity of the graph is sufficiently preserved if each edge in the graph depends only on few

neighboring nodes. The addition of control input vertices and the control input-dependent edge penalties

preserves the sparsity of the hyper-graph as each penalty edge still depends on few neighboring vertices.

The penalties preserve the sparsity of the hyper-graph as shown:

• Penalty edges related to each ∆Ti are dependent only on one vertex each.

• Penalty edges related to distance to nearest obstacle depend only on one position vertex qi each

• Penalties enforcing dynamics constraints depend on a cluster of pose vertices, control vertices, and

time vertices that has size O(n) where n is the highest derivative specified in the vehicle model.

11

• Penalty edges for control bound violations depend only on one control vertex ui each

Since sparsity is retained, Levenberg-Marquardt with sparse Cholesky decomposition algorithms can

optimize the graph efficiently [14] . Indeed, results show optimization time in the order of seconds.

3 Results

3.1 Implementation

The hyper-graph structure was implemented in C++ using a custom datastructure with functionalities for

adding and deleting vertices, updating weights of edges and vertices, and updating the hypergraph structure

accordingly. Interchangeable edge and vertex types were implemented.

The Open Motion-Planning Library (OMPL) [15] provides implementations of many sampling-based

motion planning algorithms. It was used to provide an initialization trajectory for the optimization. The

initialization trajectory was calculated using a Probabilistic Roadmap [3] planner with no information about

vehicle dynamics or vehicle orientation information. Obstacle, start, and goal pose nodes remain fixed

during optimization. All pose orientations were initialized to the goal orientation. All control inputs were

initialized to the same value, an average of the minimum and maximum value for the control input.

Arriving at a feasible trajectory requires that during the optimization, the trajectory maintains some level

of resolution such that an update does not result in a trajectory with two consecutive poses that are too close

or too far apart. As such, it was necessary to implement graph resizing functionality. The hyper-graph

resizes by adding or removing nodes as needed when any two consecutive poses exceed a set minimum or

maximum distance from each other. The hyper-graph adds a pose node that is obtained by interpolating

between the two poses and automatically makes the necessary connections. Since these connections affect

few neighboring nodes, the rest of the graph is unchanged, and therefore graph resizing is not exceedingly

expensive as long as only few nodes are added or deleted.

For optimization of the hypergraph, the open-source framework for sparse system solvers ”g2o” [16]

was used. The results of the tests were visualized using a custom-built GUI.

12

3.2 Vehicle Models

The contribution was tested with simulated vehicle models with varying dynamics. In line with the main

goal of this project, the planner is able to accept simple parametric vehicle descriptions specified in terms

of their dynamical equations of motion. The specification of the models is done by outlining the pose and

control input types, and the definition of the h(n) function for the vehicle type, along with independent vehicle

parameters. The dynamics models used in testing the contribution are outlined below.

3.2.1 Double Integrator System

The 3D double-integrator system is a simple system where the control inputs are the target accelerations. For

a 3D double integrator, the poses qi are defined by the Cartesian coordinates of the system and the control

inputs are the target accelerations.

qi = [x,y,z] (17)

ui = [ax,ay,az] (18)

The dynamics specified by the h(n) function are:

h(2)(ui, ·, ·, ·) = ui

3.2.2 Dubins Car-like System

The Dubins car model [17] describes a car that can either turn right at maximum, turn left at maximum, or

drive forward. The poses for a Dubins car are defined by the Cartesian coordinates x,y,z and the yaw angle

θ .

qi = [x,y,z,θ] (19)

The control input is determined by two parameters: the steering angle φ and acceleration a of the vehicle.

13

ui = [φi,ai] (20)

The model is parameterized by two independent values, the wheelbase L of the vehicle, and d, the

distance from the ground.

p = [L,d] (21)

The dynamics specified by the h(n) function are:

h(0)(·,qi) = [q(x)i ,q(y)i ,d,q(θ)i] (22)

h(1)(ui,qi, q̇i) = [|q̇i|cos(q(θ)i)|q̇i|sin(q(θ)i),φi,atan2(L,
|q(x,y)i |
q(θ)i

] (23)

h(2)(ui,qi, ·, q̈i) = [q̈i
(x)+ai cos(q(θ)i), q̈i

(y)+ai sin(q(θ)i),0, q̈i
(θ)] (24)

3.2.3 Point Mass Airplane

The point mass airplane model requires a five-dimensional pose which includes a 3D Cartesian coordinate

position and orientation specified by yaw ψ and pitch γ [18].

qi = [x,y,z,ψ,γ] (25)

The control input is composed of the roll angle φ , forward thrust force magnitude FT and lift coefficient

CL.

ui = [FT ,CL,φ] (26)

14

Parameters for the airplane model are gravity g, air density ρ , aircraft mass m, wing surface area S,

constant K = 1
πeAR where e is the wing efficiency and AR the aspect ratio, and zero-lift drag coefficient CD0

[18].

The dynamics of the point mass airplane are given by the following equations:

h(1)(ui,qi, q̇i) =



|q̇i|cos(q(γ)i)cos(q(ψ)
i)

|q̇i|cos(q(γ)i)sin(q(ψ)
i)

|q̇i|sin(q(ψ)
i)

−FL(u
(CL)
i ,|q̇(x,y,z)i |,p(S),p(ρ))sin(u(φ)i)

p(m)|q̇(x,y,z)i |cos(q̇(γ)i)

FL(u
(CL)
i ,|q̇(x,y,z)i |,p(S),p(ρ))cos(u(φ)i)

p(m)|q̇(x,y,z)i |
− p(g)

|q̇(x,y,z)i |
cos(q̇(γ)i)


(27)

h(1)(ui,qi, ·, q̈i) =



q̈i + cos(q(γ)i)cos(q(ψ)
i)atarget

q̈i + cos(q(γ)i)sin(q(ψ)
i)atarget

q̈i + sin(q(ψ)
i)atarget

q̈(ψ)
i

q̈(γ)i


(28)

atarget =
u(FT)

p(m)
+

FD(u(CL), |q̇(x,y,z)i |, p(S), p(ρ), p(CD0), p(K))

p(m)
− p(g) sin(q(γ)) (29)

FL(CL,v,S,ρ) =
1
2

ρv2SCL (30)

FD(CL,v,S,ρ,CD0 ,K) =
1
2

ρv2S(CD0 +KC2
L) (31)

3.3 Testing

The environments simulated for testing are shown in Figure 2. The path planner was tested for each of

the simulated vehicle dynamics in each testing environment. Results are shown for the following experi-

ments: traversing the 2D maze environment with the Dubins car, the 3D walls environment with the double

integrator, the 3D walls environment with the point-mass airplane, and the crowded environment with the

airplane.

15

Figure 3 shows the optimized and initial trajectories of each of these test cases. In this figure, it can be

seen that the initial trajectory does not take into account vehicle dynamics or pose orientation, evidenced by

the sharp and geometric look of direction changes in the initial paths, while the optimized trajectory does

both. The optimized trajectories can be followed by simulations of the vehicle models exactly.

Figure 4 shows the value of the total error given by the objective function f (B) over the optimization

time for each of the test cases. The total error is reduced to below an order of magnitude within 60 seconds

for the airplane, and much faster, within the order of a few seconds, for the double integrator and Dubins

car. This is expected as the airplane has a much more non-linear dynamics model. The optimization time

calculated includes visualization and I/O in the optimization loop and is therefore simply for evaluation of

convergence, rather than a rigorous measurement of the runtime of the algorithm.

Figure 5 shows the plots for the test case of the double integrator system in the 3D walls environment.

The errors for each penalty category except time optimality are below 10−6 with time optimality remaining

low, below 1. This is expected, since a certain amount of time optimality error will always be present due

to the value of the error being proportional to the time required to traverse the trajectory, whereas the other

penalties are hard constraints associated with a high cost multiplier in the objective. Spikes in these errors are

apparent which correspond to resizing of the graph, which momentarily increases errors as nodes and edges

are added and deleted. The velocity of the system follows the shape of the trajectory, decreasing around

turns and increasing along straighter segments. Acceleration in each direction follows what is expected for

the shape of the trajectory.

Figure 6 displays significant plots for the Dubins car in the 2D maze environment experiment. On the

left of the figure are plots for each category of error making up the total objective. All types of error remain

below the order of 10−6, with the exception of the error associated with time optimality, which is on the

order of 10. The figure also shows the plot for the velocity of the car along the optimized trajectory and

the resulting values for its two control inputs: linear acceleration and steering angle. The velocity of the car

along the path aligns with the shape of the trajectory. The car speeds up to its maximum speed of 5m/s,

remains there for the majority of the trajectory time, and slows down as it nears the goal. The control inputs,

linear acceleration and steering angle, also qualitatively correspond with the output trajectory. The car starts

the trajectory at its maximum acceleration of 2m/s2, then levels off close to zero around the time of the

16

velocity peak, then decelerates. The steering angle plot shows maximum steering around corners in the

environment. The optimization seems to recover control inputs that resemble a bang-bang policy, which is

the expected optimal control policy of the vehicle.

Figure 7 shows these plots for the airplane traversing across the crowded environment. As in previous

experiments, the errors for each category of penalty, except time optimality, are very close to zero. The time

optimality error is also small, on the order 10−2. The velocity plot and resulting control inputs qualitatively

correspond with expectation in this case as well. Velocity is constant and high for the majority of the

trajectory time, decreasing sharply to stop at the goal position. The output thrust force FT increases to

a maximum at the beginning of the trajectory, then gradually decreases to zero. The lift coefficient CL

increases and decreases along more prominent turns in the trajectory. The roll angle φ follows the shape of

the horizontal component of the trajectory. As the trajectory is close to a straight line with slight vertical and

horizontal turns, this corresponds with expectations.

Figure 8 shows the same plots for the airplane traversing the 3D walls environment. As in the previous

experiments, the errors associated with each penalty category remain below several orders of magnitude,

with the exception of time optimality, which is within an order of 10−2. Small spikes occur within each of

these error plots which can be attributed to moments of resizing of the graph. The velocity plot and resulting

control inputs qualitatively correspond with expectations. The velocity increases sharply along straight

segments and decreases at turning points in the environment. The resulting forward thrust force magnitude

FT increases as the trajectory of the plane turns horizontally and lifts over a wall. The lift coefficient CL and

the roll angle φ increase to a maximum at the beginning and end of the trajectory, decrease as the plane dips

along a straight path, and increase to a maximum around the horizontal turn in the trajectory.

4 Conclusion and Future Work

The goal of this project was to design a motion planner well-suited for application to these less traditional

planning problems by avoiding having to sacrifice flexibility and expressiveness in the specification of the

target vehicle’s dynamics model. The results from simulation conclude that the approach presented can

reliably produce feasible trajectories and accurately return control inputs. The planner is able to accept

17

(a) Simple environment with a corner and elevated surface. (b) Simple environment with high walls to be flown over

(c) Crowded environment with many obstacles (d) Maze environment with many corners

Figure 2: Environments simulated for testing

simple and elegant parametric vehicle descriptions in terms of their dynamical equations of motion while

showing good performance in the evaluation carried out so far.

The innovation of this planner is to augment the timed elastic band with controls and parameter infor-

mation. The TEB approach, which is originally unable to recover controls and whose vehicle models rely

on hand-picked geometric features of admissible paths, is extended in two major ways: control input ver-

tices are introduced, and a systematic way of designing the dynamics violation costs is introduced. It has

been demonstrated that the planner exhibits a sparse system structure as the TEB, and can therefore also be

solved efficiently using sparse nonlinear optimization solvers. Experiments have shown that the planner can

produce high-quality trajectories in reasonable runtime. In a similar manner to the TEB, the planner is also

suitable for higher dimensional spaces.

18

Future work could focus on a more rigorous evaluation of this method. Optimality guarantees as well as a

thorough investigation into the method’s efficiency should be explored. Efficiency can be improved through

various means such as providing analytical Jacobians to the optimization algorithm. A clear extension of

this method is the joint optimization of additional parameters, such as the handpicked vehicle parameters

included in the vehicle models used for testing. These parameters could be incorporated as nodes in the

hyper-graph with corresponding hyper-edges and optimized in synchronization with the trajectory and con-

trol inputs. Methods to maintain sparsity of the graph with the addition of parameter nodes will need to be

explored.

19

References
[1] A. Abrams and R. Ghrist. Finding topology in a factory: Configuration spaces. The American Mathe-

matics Monthly, 109:140–150, February 2002.

[2] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[3] D. Aarno, D. Kragic, and H. I. Christensen. Artificial potential biased probabilistic roadmap method.
In Proceedings IEEE International Conference on Robotics & Automation, 2004.

[4] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11,
Computer Science Dept., Iowa State University, October 1998.

[5] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. The
International Journal of Robotics Research, 30(7):846–894, June 2011.

[6] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. CoRR,
abs/1105.1186, 2011.

[7] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa. CHOMP: Gradient opti-
mization techniques for efficient motion planning. In 2009 IEEE International Conference on Robotics
and Automation. IEEE, May 2009.

[8] David G Luenberger. Introduction to dynamic systems : theory, models, and applications. Wiley, 1979.

[9] R C Coulter. Implementation of the pure pursuit path tracking algorithm. 1992.

[10] J. Kim and J. P. Ostrowski. Motion planning of aerial robot using rapidly-exploring random trees with
dynamic constraints. In Proceedings IEEE International Conference on Robotics & Automation, 2003.

[11] Christoph Rosmann, Wendelin Feiten, Thomas Wosch, Frank Hoffmann, and Torsten Bertram. Effi-
cient trajectory optimization using a sparse model. In 2013 European Conference on Mobile Robots.
IEEE, September 2013.

[12] Christoph Rösmann, Wendelin Feiten, Thomas Wösch, Frank Hoffmann, and Torsten Bertram. Trajec-
tory modification considering dynamic constraints of autonomous robots. Proc. 7th German Confer-
ence on Robotics, Munich, Germany, page 74–79, 2012.

[13] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quar-
terly of Applied Mathematics, 2(2):164–168, July 1944.

[14] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. Algorithm
887. ACM Transactions on Mathematical Software, 35(3):1–14, October 2008.

[15] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Library. IEEE Robotics
& Automation Magazine, 19(4):72–82, December 2012. https://ompl.kavrakilab.org.

[16] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. G2o: A general framework
for graph optimization. In 2011 IEEE International Conference on Robotics and Automation, pages
3607–3613, 2011.

20

[17] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American Journal of Mathematics, 79:497–516, 1957.

[18] Lesley A. Weitz. Derivation of a point-mass aircraft model used for fast-time simulation. Technical
report, The MITRE Corporation, 2015.

21

(a) Double integrator system in 3D walls environment (b) Dubins car in 2D maze environment.

(c) Plane in crowded environment (d) Plane in 3D walls environment

Figure 3: Trajectories of the experiments. Green shows the optimized trajectory, blue shows the initialization
trajectory. Arrows indicate orientation at a point.

22

0 10 20 30 40

Time (s)

101

103

105

107

T
ot
al

E
rr
or

Value of Objective Function Over Time

(a) Double integrator system in 3D walls environment

0 2 4 6 8 10 12 14 16
Time (s)

100

102

104

106

108

To
ta

lE
rr

or

Value of Objective Function Over Time

(b) Dubins car in 2D maze environment.

0 10 20 30 40 50 60

Time (s)

10−1

101

103

105

107

T
ot
al

E
rr
or

Value of Objective Function Over Time

(c) Plane in crowded environment

0 10 20 30 40 50 60

Time (s)

100

101

102

103

104

105

106

107

T
ot
al

E
rr
or

Value of Objective Function Over Time

(d) Plane in 3D walls environment

Figure 4: Value of the total objective function over optimization time for each test case.

23

0.0

0.5

1.0

1.5

2.0

2.5

V
el
o
ci
ty

(m
/s
)

0.25

0.00

0.25

u 0

0.25
0.00
0.25

u 1

0 20 40

Time along trajectory (s)

0.25

0.00

0.25

u 2

0.0e+00

1.0e-06

2.0e-06
dynamics: goal acceleration error

0.0e+00

2.5e-06

5.0e-06
control bounds error

0.0e+00

1.0e+00

2.0e+00
time optimality error

0.0e+00

2.5e-06

5.0e-06
dynamics: start acceleration error

0.0e+00

1.0e-06
obstacle map error

0 20 40

Time along trajectory (s)

0.0e+00

2.5e-06

5.0e-06
dynamics: acceleration error

Figure 5: Errors by category for the double integrator system in the 3D walls environment (right). The
control inputs u0, u1, u2 correspond to the acceleration in the x, y, and z directions respectively. Velocity of
the vehicle along the trajectory is shown in the top left with resulting control input values below.

24

0

2

4

V
el

oc
ity

(m
/s

)

−2

0

2

u 0

0 5 10
Time along trajectory (s)

−0.25

0.00

0.25

u 1

0.0e+00

1.0e-06
dynamics: velocity error

0.0e+00

1.0e-06
dynamics: acceleration error

0.0e+00

1.0e-06
dynamics: position error

0.0e+00

1.0e-06
obstacle map error

0.0e+00
1.0e-01
2.0e-01

time optimality error

0 5 10 15
Time along trajectory (s)

0.0e+00

1.0e-06
control bounds error

Figure 6: Velocity and control inputs (right) for the optimized trajectory for the Dubins car in the 2D maze
environment. The control input u0 corresponds to linear acceleration. The control input u1 corresponds to
steering angle. The error plots for each category in the sum of the objective function are shown (left). Each
category of error remains below 1e−6, with the exception of time optimality.

25

0

5

10

15

V
el
o
ci
ty

(m
/s
)

0

1

u 0

0.0

2.5

u 1

0 2 4

Time along trajectory (s)

1
0
1

u 2

0.0e+00

1.0e-06
dynamics: velocity error

0.0e+00

1.0e-06
control bounds error

0.0e+00

1.0e-02

2.0e-02
time optimality error

0.0e+00

1.0e-06
dynamics: acceleration error

-5.0e-02
0.0e+00
5.0e-02
1.0e-01

dynamics: position error

0 2 4

Time along trajectory (s)

-5.0e-02
0.0e+00
5.0e-02
1.0e-01

obstacle map error

Figure 7: Errors by category for the plane in the crowded environment (right). The control input u0 cor-
responds to the forward thrust force magnitude FT , u1 to the lift coefficient CL, and u2 to the roll angle φ .
Velocity of the vehicle along the trajectory is shown in the top left with resulting control input values below.

26

0

5

10

15

V
el
o
ci
ty

(m
/s
)

0

2

u 0

0.0

2.5

u 1

0.0 2.5 5.0 7.5 10.0

Time along trajectory (s)

0

1

u 2

0.0e+00

2.5e-03

5.0e-03
dynamics: velocity error

0.0e+00

1.0e-03

2.0e-03
control bounds error

0.0e+00

5.0e-02

1.0e-01
time optimality error

0.0e+00

2.5e-06

5.0e-06
dynamics: acceleration error

0.0e+00

5.0e-05

1.0e-04
dynamics: position error

0.0 2.5 5.0 7.5 10.0

Time along trajectory (s)

0.0e+00

1.0e-06
obstacle map error

Figure 8: Errors by category for the plane in the 3D walls environment (right). The control input u0 cor-
responds to the forward thrust force magnitude FT , u1 to the lift coefficient CL, and u2 to the roll angle φ .
Velocity of the vehicle along the trajectory is shown in the top left with resulting control input values below.

27

