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Abstract

In recent years, the Earth Observation (EO) industry has experienced rapid growth
and development, but the tools to analyze EO constellations and space systems are
lagging behind the curve. In particular, as costs continue to decrease to the point
where constellations are treated like commodities, it is critical to look past cost and
towards value creation when designing future EO constellations. In particular, there
is an increasing need for value driven tradespace methods that can assist in the
development of future EO space systems. Although there exist a few value driven
approaches towards EO constellation design, they tend to be non-general and rely on
detailed information such as expert knowledge or detailed probability distributions.
Due to these limitations and the growing need for value driven trade methods, this
thesis presents a new quantitative approach, using a novel Value Function, that can
be applied generally to EO constellation trade studies.

This thesis hypothesizes that the value generated by an EO constellation can be gen-
eralized in that the quantity and quality of data drives value to various stakeholders.
By focusing on this simple hypothesis, this thesis will derive the Value Function to
highlight these key attributes. The Value Function can be applied to a EO constella-
tion, and using this new metric, various constellations can be compared against one
another in a standardized way. To help show this, three case studies are used.

The first case study, Case Study A, looks at two existing EO constellations: Landsat
8 and RapidEye. Their tradespaces are re-examined, and it is shown that the designs
that are currently in operation are not optimal. There exists a single satellite Landsat-
like architecture that generates 19.44% more value as compared to the current Landsat
satellite in orbit. There also exists a five satellite RapidEye-like constellation that
generates 35.76% more value as compared to the existing RapidEye constellation.

The second case study, Case Study B, examines the make versus buy decision. In
particular, it provides a hypothetical case study to determine if the Governor of Cal-
ifornia should purchase satellite imagery directly from Planet Labs, or if the state
should fund a new constellation. This case study that shows the importance of un-
derstanding both costs and benefits when making important and high-investment
decisions. For example, this thesis will discover an architecture that has 2 satellites,
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where each satellite is similar to a Planet Flock 2p CubeSat, and an orbital geometry
that emphasizes California as compared to global coverage. The value ratio of this
architecture is 5.01, and it is always greater than the cost ratio. This implies that
it is in the state’s best interest to build the constellation as opposed to purchasing
imagery directly. Other architectures will be shown that do not lead to this same
conclusion.

The third case study, Case Study C, examines a proposed Synthetic Aperture Radar
small satellite constellation, MicroX-SAR, by exploring a small set of potential archi-
tectures. These architectures are compared quantitatively using the Value Framework
presented in this thesis, and it is shown that proposed constellations that are Sun-
synchronous and at altitudes of 600 km generate the most value for a global region of
interest. This information can be used when designing the mission parameters, such
as orbital geometry, that will be important for constellation implementation.

Overall, this thesis contributes a new model to evaluate EO constellations that relies
on value driven methods as opposed to commonly used cost based metrics.

Thesis Supervisor: Olivier de Weck
Title: Professor, Aeronautics and Astronautics and Engineering Systems

Thesis Supervisor: Afreen Siddiqi
Title: Research Scientist, Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

The aerospace industry has recognized the benefits of deploying distributed small
satellite constellations as opposed to single monolithic satellites. With recent tech-
nological advents such as component miniaturization, advanced data processing al-
gorithms, and substantially cheaper launch costs, satellite providers have recognized
the importance of thinking small and distributed when it comes to developing the
next generation of satellite missions.

Some of the biggest gains in small satellite constellations have come from the Earth
Observation (EO) sector. For example, Planet Labs Inc., has transformed the EO
landscape by providing frequent Earth imagery on a daily basis. By focusing on large
scale, small satellite constellations, Planet has been able to quickly adapt to market
and environmental changes, and provide users with data that they require. The
Planet constellation currently consists of about 150 distributed satellites that include
over 130 Planet designed and manufactured Doves, 15 SkySats, and 5 RapidEye
satellites [1]. By deploying such a large and diverse fleet of small satellites, Planet
has been able to provide users with data and information that is enabling them to
better understand the world we live in and is providing policy makers with the power
to make more informed decisions [2] [3].

Although small satellite constellations are becoming the norm within the space and
EO industries, there is still a lack of general understanding of how to model and
design such large scale systems. Design formulation, tradespace exploration, and
optimization criteria are just a few concepts that become much more difficult when
satellite missions begin to scale in size and complexity. Because of this, it has become
apparent that more sophisticated tools are needed in order to design and analyze
future constellation designs. Also, it has become clear that standard single-objective
metrics such as cost and risk are no longer sufficient to meet the complex goals of
mission designers and stakeholders [4]. Thus, new computational tools as well as
a more value-focused optimization scheme will be needed in order to design future
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constellations that will help in the multitude of EO-driven applications [5]. Some key
applications include the following:

1. Agriculture [6]

2. Urban Planning [7]

3. Disaster Relief [8]

4. Climate Change Analysis [9]

The purpose of this thesis is to examine the potential for both computational tools
and value-driven optimization within the systems engineering of small satellite con-
stellations. In particular, this thesis will focus on EO constellations as they represent
a domain that rapidly growing in importance. With the tools presented in this thesis,
future mission designers will hopefully have a much stronger ability to build EO satel-
lite constellations that will be more efficient, have higher performance, and provide
greater return on investment - thus helping promote the intelligent and rapid growth
of small satellite constellations.

1.2 Research Questions

This thesis examines the tradespace of distributed EO constellations from both a
methodological and conceptual framework. This will be done by examining and ob-
taining answers to these primary research questions.

1. How is value defined in the scope of designing and operating EO satellite con-
stellations? In particular, what drives value within the EO design tradespace,
to both primary and secondary stakeholders?

2. Can EO constellations be traded against one another using a generalized concept
or metric of value that can be used for different applications, spectral bands,
and Earth Science disciplines?

3. Assuming a generalized value measure exists, can it be used to help guide search
strategies to find optimal EO constellation designs for a given mission?

4. What are the limitations when using a value-based approach towards constel-
lation design, specifically, what level of fidelity or resolution is necessary to be
useful and credible?

5. Can the value function presented in this thesis be applied to the design of
constellations outside of EO, such as communications or deep space exploration
systems?

The first two research questions look qualitatively at the concept of value based
tradespace methods, and determine if they are necessary for rigorous analysis. The
third and fourth research questions assume a value-based tradespace method exists,
but looks at how capable it is in assisting the optimization process. The final research
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question looks at synergies between various constellation domains, and whether dis-
parate systems can use similar tools in order to design more intelligent space systems.

1.3 Scope & Research Contributions
This thesis has three primary goals:

1. Clarify the importance of using value-driven tradespace analysis as opposed to
standard cost based methods.

2. Give a detailed derivation and walk through of the newly developed value func-
tion that has been built and iterated upon over the past two years.

3. Provide users of the NASA sponsored Tradespace Analysis Tool for Constella-
tions (TAT-C) a simple and intuitive documentation to assist in future devel-
opment and maintenance of the tool.

By focusing on these three goals, this thesis will be focusing on the design and anal-
ysis of satellite constellations, primarily with considerations of the EO domain. This
thesis will give a comprehensive overview of small satellite EO constellations, with
particular emphasis on the instruments or payloads that they host. This thesis will
not look at specific technical aspects when it comes to small satellites, such as physical
limitations of actuators or heaters, but rather assume that the spacecraft subsystems
and components satisfy the baseline mission requirements in order to make intelli-
gent decisions about the constellation as a whole. The only subsystem that will be
examined in detail is the payload subsystem given that the most valuable output,
information, of EO constellations comes from the instruments on board the satellite
bus. The performance of these instruments will strongly influence the results of a
successful trade study. This thesis will also not examine the impact of distributed
ground stations or various communication delays or total downlink time. Although
these are critical elements that can and should be modeled, the goal of this thesis is
to examine constellations at a higher level of abstraction, meaning communications
and downlink performance will be held constant for each architecture. Beyond the
subsystems, constellation characteristics such as orbital altitude & inclination as well
as the specific region of interest on the surface of the Earth will be of importance. By
examining EO satellite constellations at the systems engineering level, rather than the
subsystem level, this thesis will provide users with a tool and methodology to answer
critical questions that will impact performance and cost of future EO satellites.

In its totality, this thesis contributes to the field by providing a novel approach to
the design and analysis of small satellite constellations in Low Earth Orbit (LEO).
In particular, it provides a value driven framework that can be generalized across
constellation types for EO missions. This framework will assist in the design opti-
mization of constellations, and will help create the next generation of small satellite
EO constellations. The author hopes that this work will be utilized as a helpful start-
ing point and refined further so that generalized valuation measures can be looked at
across the heavily cost-focused space sector.
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1.4 Thesis Overview
As discussed, this thesis will attempt to answer the above research questions as well as
satisfy the goals listed above. In Chapter 2, this work will breakdown current trends
in the EO industry. Chapter 2 will also provide a paradigm for EO constellations
that will provide terms and definitions that will be critical to the understanding of
this thesis. Current and past missions will be used as references in order to exemplify
the terms used.

Once the general EO landscape is understood and defined, this thesis will transition
to discuss the Tradespace Analysis Tool for Constellations (TAT-C). This tool will be
used to simulate constellations and provide the mechanism used to make comparative
trades of EO constellations. This chapter will provide a high level overview of the
software architecture, as well as discuss its current capabilities and limitations. The
chapter will breakdown each module within TAT-C and provide a qualitative and
quantitative explanation of each. Breaking down TAT-C will enable future users to
utilize the tool and build upon it given that it is published as open source software.
Chapter 3 will enable Goal 3 to be satisfied.

Following the TAT-C description, this thesis will then dive into value-based evaluation
approaches. Chapter 4 will begin with a detailed literature review, showing current
capabilities and gaps when it comes to detailed value modeling. This thesis will then
first provide an overview of the original value function derived for EO constellations,
and then dive deeper in to the mechanism behind its derivation. Once the value
function is defined, Chapter 5 will utilize the value function through three case studies.
The first case study will look at two existing EO missions (Landsat and RapidEye),
and re-run the tradespace analysis for these missions, but this time using the value
function defined in this thesis. The second case study will show the importance
of value-based optimization through the classic make vs buy decision. The third
case study will conduct a proof-of-concept tradespace simulation for a proposed SAR
satellite system.

Lastly, Chapter 6 will discuss future work, with an emphasis on machine learning
optimization techniques, and then a detailed summary of the thesis will be provided
in Chapter 7. The thesis breakdown can be visualized in Figure 1-1.
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Figure 1-1: Thesis Flow Chart
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Chapter 2

Earth Observation Constellations

2.1 Current Earth Observation Market Overview
One of the primary motivating factors for the work in this thesis comes from the fact
that the EO market is experiencing tremendous growth, and it is being driven by EO
satellite constellations [10], [11]. Given the increased demand for data, and increased
demand for highly specific, high-resolution, daily imagery; advanced, optimized con-
stellations will be needed in order to satisfy market demand. It is also worth noting
that the increase in computational techniques and capabilities has helped create even
more demand for satellite imagery [12], [5]. Machine learning methods such as Con-
volutional Neural Networks (CNNs) have allowed basic satellite imagery to represent
more than just a standard RGB image [13]. Now, substantial insights can be gathered
that make the data provided even more valuable than before. We have come a long
way from the days in the 1960s when intelligence analysts manually inspected images
under a magnifying glass to detect features of interest. Planet Labs is one of the
leading satellite operators and data providers in the world. They understood that
the market was demanding strong insights from satellite imagery, and have created
full scale analytic platforms to provide useful insights to end users [14]. Before diving
into the details of specific EO terms that will assist in the remainder of the thesis,
a couple of important EO trends need to be discussed because they help put into
perspective the rise of EO constellations.

2.1.1 Earth Observation Trends

2.1.1.1 Diminishing Launch Costs

One of the most important trends that has helped enable the rise in the number
of EO satellites launched is the large reduction in launch costs. Historically, the
cost of launch was a large barrier to entry. Only well established and well funded
organizations had the financial ability to launch assets into orbit. Due to advances
in technology as well as a rise of market competition, the cost to launch an asset
has decreased tremendously. References [15] and [16] provide a great summary of
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Figure 2-1: Decreasing Launch Costs from 1950 to 2020 [15]

the priming cost reduction mechanisms that have helped fuel this drop in launch
cost. Figure 2-1 shows how the cost per kilogram has greatly diminished recently
as well. A major contribution was made by SpaceX and their continually improving
launch vehicle the Falcon9. Also, international launch providers such as the Indian
Space Research Organization and their Polar Satellite Launch Vehicle have been very
active in enabling EO constellations such as the Doves to be launched. Overall, the
reduction in launch cost has enabled smaller satellite operators such as Planet to
enter the landscape and transform the quantity and quality of EO data available to
the public.

2.1.1.2 Small Satellite Revolution

In addition to decreasing launch costs, the miniaturization of satellites has also been
an important EO trend. Historically, EO satellites have been large and expensive.
Landsat 8, an important mission that will be discussed further in Section 2.2.2.1,
cost roughly $855 million and has a mass of about 2,600 kg [17], [18]. With cost
barriers to entry such as these, it was difficult to provide highly specialized and
optimized constellations to end users. However, this all changed with the advent of
small satellites, primarily CubeSats. A CubeSat is used to describe a small satellite
that has a basic unit in the form of a 10 cm cube [19]. A standard 10 cm CubeSat
has a form factor of 1U. Variations in form factor, such as 3U, are quite common
and represent a 30 cm x 10 cm x 10 cm satellite. A 3U CubeSat is about the size
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of a shoe box, and can have a mass of about 5 kg. When compared to the Landsat
8 satellite , this is a difference in mass of about 520 times. The minimization of EO
satellites is important because they will come in at a much smaller cost and can be
rapidly iterated in order to constantly add performance and new features that end
users desire. Low launch cost and the advent of CubeSats has created a perfect storm
where large barriers to entry have essentially been broken down, which has allowed
more market competition, which in turn provides better services at lower costs. With
these advances, the commercialization of space has become a reality [20]. To show just
how important CubeSats have become, Figure 2-2 depicts the number of CubeSats
launched from 2001 to 2018. Note, 2018 numbers are expected since the numbers
come from Reference [19] which was published in October 2018.

Figure 2-2: Number of CubeSat Launches from 2001 to 2018 [19]

Overall, with new technologies such as CubeSats, lower launch costs, and a rise in
market providers, the EO constellation industry as a whole is experiencing substantial
technical and financial growth. However, it is important to note that with advances
in technologies come added complexities. Larger and more complex EO constella-
tions are becoming the norm, and there are many design issues involved with these
constellations [21]. Thus, efficient and intelligent means of comparison will be needed
to keep up with the rapid development of EO constellations. As an example, one of
the most important trade-offs is the one between revisit frequency and resolution (a
proxy for image quality). This trade-off will be discussed in further detail throughout
the thesis, but Figure 2-3 provides a plot of this trade-off [22]. In particular, it shows
the difference in image resolution and refresh frequency, which is simply the inverse
of revisit time.
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Figure 2-3: Ground Resolution and Refresh Frequency for Selected EO Satellites [22]

2.2 Earth Observation Paradigms & Terminology

In order to understand the individual components involved in EO constellations, it is
critical to establish formal terms and definitions that will be used in the remainder
of this thesis. Many of these terms will be used in the value function and TAT-C
tool that will be discussed in the following chapters. This section will break down
two broad concepts, EO constellations and EO instrument/payloads, and dive into
specific cases of each. To begin, let’s examine the highest level term of the complete
satellite system, or a constellation.

2.2.1 Earth Observation Constellations & Architectures

A constellation is defined as a "set of satellites distributed over space intended to work
together to achieve common objectives." [23] Given that constellations can vary in the
number of satellites, the constellation pattern, the type of constellation, and even the
orbital geometry, the design space for constellations becomes complex very quickly.
Although there are many types of constellation architectures, this thesis will primarily
focus on two constellation architectures: Homogeneous Walker, & Heterogeneous
Walker Constellations. However, this thesis will also briefly discuss the following
three constellation architectures: Precessing, Train, and Ad Hoc.

2.2.1.1 Homogeneous Walker Constellation

The homogeneous walker constellation was first developed in the 1980s by J.G. Walker
[24]. In this type of constellation, all of the satellites within the constellation are
placed in a Walker delta pattern where all satellites are in an inclined circular orbit.
It is common to reference the total number of satellites as t, and there are s satellites
within each p evenly spaced orbital plane [23],[24]. The major assumption within
Homogeneous Walker Constellations is that all of the p orbital planes are at the same
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inclination, i, and there are the same number of satellites per orbital plane. Due to
this structure, the ascending nodes of the orbital planes are distributed uniformly
around the equator at intervals of 360/p degrees, and within each plane, the satellites
are phased evenly at intervals of 360/s degrees. Homogeneous walker constellations
also assume that all of the orbital planes must have the same relationship to each
other in phase difference, meaning the relative phasing must be an integer multiple
of 360/t. Because of this, Homogeneous walkers are usually described in shorthand
using i: t/p/f [23]. Homogeneous Walker Constellations are an important geometric
pattern, and from a design point of view, mission planners must decide the orbital
altitude and inclination, the number of satellites, and the number of orbital planes
upfront in order to create a Walker constellation.

Figure 2-4: GPS Homogeneous Walker Constellation (Additional Non-Operating
Satellites Included) i: t/p/f - 55∘: 24/6/90∘[25]

2.2.1.2 Heterogeneous Walker Constellation

The Heterogeneous Walker Constellation is a more dynamic case of the Homogeneous
Walker Constellation. Like the homogeneous constellation, the satellites are still ar-
ranged in circular orbits with an equal number of satellites per orbital plane. However,
the main difference between the heterogeneous and homogeneous Walker is that the
former allows variations in the orbital planes from an inclination and altitude per-
spective [26]. These constellations allow designers more flexibility when designing a
mission, but can dramatically increase the number of constellation architectures eval-
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uated for analysis. This is because each combination of altitude and inclination must
be evaluated, whereas the altitude and inclination are set as constant parameters for
all orbital planes and are therefore uniform in the homogeneous case.

2.2.1.3 Precessing Constellation

Precessing Constellations are a more novel constellation architecture that rely on the
gravitational perturbation effect that comes about due to the oblateness of the Earth,
or the 𝐽2 effect [26]. The 𝐽2 effect tries to pull the orbital plane of a satellite towards
the equatorial plane, but this resulting force does not change the inclination of the
orbit, but rather the location of the right ascension of the ascending node (RAAN)
of the satellite’s orbit [23]. When a satellite is North of the equator, the oblateness
of Earth causes a small pulling force southward that produces a torque which in turn
changes the direction of the angular momentum vector [23]. This force is amplified at
low orbits where the RAAN can rotate up to 7.7∘ per day [23]. In reality, Precessing
Constellations are created by launching a collection of satellites, and initially each
satellite is placed in a slightly different orbital plane. Over time, the 𝐽2 effect will
cause the RAAN and mean anomaly of these satellites to spread out thus creating
the constellation network as seen in the rightmost image in Figure 2-5.

Figure 2-5: Evolution of a Precessing Constellation [26]

2.2.1.4 Train Constellation

Train Constellations are a unique class of constellation architectures where all satel-
lites within the constellation are placed in the same orbital plane. When it comes to
phasing, the satellites can be phased uniformly across the plane or separated by a spe-
cific phasing angle [27]. What makes Train constellations unique is that all satellites
maintain the same ground track. It is important to note that Train constellations are
not the same as a repeating ground track orbit that focuses on repeating a specific
ground track over an interval of time. The NASA A-Train constellation is an example
of a Train constellation that consists of 5 currently operating satellites [28].
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Figure 2-6: NASA A-Train Constellation
Glory & OCO Not Operational, [28]

2.2.1.5 Ad Hoc

The last classification of constellation architectures that will be discussed in this
thesis are labeled as Ad Hoc. The Merriam Webster dictionary defines the term ad
hoc as "formed or used for specific or immediate problems or needs." [29]. Following
this definition, Ad Hoc constellations are created when satellite operators launch new
spacecraft as needed. These constellations have become viable due to the fact that
CubeSats can ride as secondary payloads on many standard launch vehicles [30].
These missions are built as launch opportunities arise, and can bring substantial cost
benefits because of this [26]. Since Ad Hoc constellations can be almost random given
that they arise due to piggyback launch opportunities rather than through planning,
they have been somewhat challenging to appropriately model.

2.2.1.6 Example Missions

In this section we discuss some representative EO missions that fall into these four
constellation architecture types.
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Constellation Architecture Example Mission Description

Homogeneous
Walker

Global Positioning
System (GPS)

24 satellites, 6 orbital planes
Altitude of 20,200 km

Inclination of 55∘

i: t/p/f : 55∘: 24/6/90∘

Heterogeneous
Walker

BeiDou Navigation
Satellite System

22 satellites that fly in the GEO,
MEO, and inclined geosynchronous

orbital planes

Train A-Train
5 EO satellites of varying nationality
Sun-synchronous orbital inclination

Altitude of 705 km.

Ad Hoc Planet Labs
Flock

Planet launches their PlanetScope satellites
when launch opportunities arise,

Over 170 satellites have been deployed.

Table 2.1: Existing Constellation Architecture Examples

2.2.2 Earth Observation Instrument Classification

One of the most performance critical subsystems involved in a EO satellite is the
instrument or payload subsystem. This subsystem performs the imaging or the ra-
diometric measurements needed to satisfy mission requirements and objectives. Since
this thesis is focusing on EO systems, and in particular, EO imagery, this thesis will
focus on two families of instruments: Passive Optical Scanners & Synthetic Aperture
Radars.

2.2.2.1 Passive Optical Scanners

This thesis defines passive optical scanner instruments as any EO imaging payload
that operates at the visible or near-visible wavelength spectrum. Near-visible wave-
lengths include infrared (IR) and ultra-violet (UV). A classic example of a passive
optical scanner is the Operational Land Imager (OLI) that is currently being used on
the Landsat-8 mission [31]. The Landsat-8 mission is an example of a large mono-
lithic satellite mission, but has an immense history given that the program has been
imaging the Earth since the 1970s [32]. Figure 2-7 below shows the actual OLI on
the left and the schematic view on the right. Table 2.2 also shows the spectral bands
and corresponding wavelengths of the bands the OLI operates within.
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(a) Actual OLI [31] (b) OLI Schematics [33]

Figure 2-7: Landsat-8 Operational Land Imager

Band Name Central Wavelength [nm]
Coastal/
Aerosol 443

Blue 482
Green 562
Pan 590
Red 655
NIR 865

Table 2.2: OLI Bands & Corresponding Wavelengths

As an example of a small EO satellite constellation, the Planet Labs’ PlanetScope
satellite contains a much smaller EO passive optical scanner. The PlanetScope satel-
lite is a 3U-form CubeSat, implying that the entire satellite is 30cm x 10cm x 10cm
[1]. The PlanetScope passive optical scanner collects imagery in the RGB and near
IR bands [34]. Table 2.3 below breaks this down.
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Figure 2-8: PlanetScope Satellite [1]

Band Name Central Wavelength [nm]
Blue 475
Green 555
Red 657

Red Edge 710
NIR 805

Table 2.3: PlanetScope Visible Bands & Corresponding Wavelengths [34]

2.2.2.2 Synthetic Aperture Radar

Synthetic Aperture Radars (SAR) are a special case of EO imaging instruments that
use active radar techniques. What makes SAR so powerful is it can effectively "see"
through clouds and fog and even take images during the night [35]. SAR images
represent a two dimensional map of the radar reflectivity of a target scene which
includes dimensions of range and azimuth. For a more detailed description of SAR, see
reference [35]. SAR instruments have been historically more expensive, but given new
technologies and cost reductions, more small SAR satellite constellations are being
developed and launched, as seen by the recent developments by the SAR startup
Capella Space [36]. Figure 2-9 below shows an example image constructed by the
SAR instrument from the Sentinel-1 satellite, in comparison to a passive optical
scanner natural color image created by the Sentinel-2A satellite. Sentinel-1 operates
at the C-band with a central frequency of 5.404 GHz [37]. Table 2.4 breaks down the
Sentinel-2A satellite operating bands.
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(a) SAR Image of Boston, MA [38]

(b) Passive Optical Scanner Image of Boston, MA [38]

Figure 2-9: SAR vs Passive Optical Scanner Imagery
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Band Name Central wavelength (nm)
Coastal aerosol 442.7

Blue 492.4
Green 559.8
Red 664.6

Vegetation Red Edge I 704.1
Vegetation Red Edge II 740.5
Vegetation Red Edge III 782.8

NIR 832.8
Narrow NIR 864.7
Water Vapor 945.1

SWIR I 1373.5
SWIR II 1613.7
SWIR III 2202.4

Table 2.4: Sentinel-2A Operating Bands [39]

2.2.3 Earth Observation Instrument Performance Metrics

There is a famous idiomatic expression within the business world that claims "You
can’t manage what you can’t measure." What this implies is that no matter the in-
frastructure, human capital, etc., if the business can’t measure its performance, it
is doomed to fail. This concept can be directly applied to EO instrument perfor-
mance. If there is no way to measure the performance of the instruments on board
the satellite, then designers will be unable to evaluate constellations in an effective
way. At the highest level, the value of payloads comes from the usefulness of their
data. For example, if a scientists is interested in observing rainforests in South Amer-
ica, obtaining high quality imagery of the region would be valuable. Imagery that
contains clouds, is low resolution, blurry, poorly calibrated, etc., would not perform
well for the scientists. Thus, it is critical to evaluate these instruments based upon
the value they can provide to end users. The following sections will break down the
performance metrics for Passive Optical Scanners and SAR instruments.

2.2.3.1 Passive Optical Scanner Performance Metrics

When a passive optical scanner acquires an image in the visible spectrum, there are
certain characteristics of this image that users can observe to determine the perfor-
mance. There are many possible performance measurements, but as seen in Chapter
4, the value function derived in this thesis will utilize a combination of two critical
performance metrics: the signal-to-noise ratio (SNR) and the ground pixel resolu-
tion. The ground pixel resolution is strongly determined by the point spread function
(PSF) of the imager.

The SNR is an important and commonly used performance metric for visual-based
imagery. At the most basic level, the SNR represents the ratio of of a desired signal
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to the level of noise [40]. To put it in laymen terms, the SNR provides a metric to
measure the amount of useful information as compared to irrelevant information (or
noise) in the data. When it comes to image data from a passive optical scanner,
the SNR can be used as a way for a scientist to understand the quality of an image
once it is captured from the passive optical scanner. When the SNR is greater than
1, then the image provides the scientist with more useful information since there is
more information as compared to noise. If the SNR is less than 1, then there is more
noise in the image, which means less useful information for potential end users. For
passive optical scanners, equation 2.1 below breaks down how the SNR is calculated
[23].

𝑆𝑁𝑅 =
𝑁𝑠

𝑁𝑡

(2.1)

𝑁𝑠 represents the number of photocarriers available, and 𝑁𝑡 represents the total
number of noise electrons. These two quantities have extensive calculations that
relate to a multitude of variables, and this will be discussed further in Section 3.5.4.
In summary, the SNR is an important metric because it provides end users with a
simple and intuitive metric for the quality of an image. If a particular instrument
captures images with higher SNR as compared to an alternative instrument, then
scientists and mission planners would like to utilize the first instrument, holding all
else constant.

The second critical performance metric for passive optical scanners is the ground pixel
resolution. This thesis defines ground pixel resolution in a similar way to the ground
sampling distance (GSD). The GSD is defined as the distance on the ground at which
the passive optical scanner samples the scene [23]. To put it in a more concrete way,
the ground pixel resolution represents the spatial distance of a single pixel on an
image. For example, the Landsat-8 OLI has a ground pixel resolution of 30 meters,
whereas the PlanetScope imager has a ground pixel resolution of 3 meters [32], [34].
This means that one pixel for the OLI represents an area of 30x30 meters, and the
PlanetScope imager represents an area of 3x3 meters. One pixel for Landsat 8 covers
approximately 100 pixels in a PlanetScope image.

As discussed above, the ground pixel resolution is dependent on the PSF. It relies on
the PSF because no matter how good the quality of an imager, there are fundamental
limits in resolution due to diffraction [41]. Diffraction causes a point source image to
not appear as a focal plane but as a pattern of circles that get dimmer away from the
center. This pattern is referred to as the PSF [41]. A helpful way to think about the
PSF is to think of it as an impulse response of an imaging system, i.e. how the image
system reacts when a single point source is in view [42]. Thus, the ground resolution is
limited by the PSF of an imaging system. This can be expressed through the quality
factor which is defined as the ratio between the pixel size and the diameter of the
PSF. Figure 2-10 shows this relationship and how the relative sizing of the ground
pixel and the PSF impact overall image quality. Given that the PSF impacts the
fundamental physics of observation systems, it is easy to see how this concept can
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have wide reaching consequences on ground pixel resolution and even SNR. This is
beyond the scope of this thesis, but it is a critical concept that should be addressed
further in future work.

Figure 2-10: PSF Quality Factor Explanation [41]

The lower the ground pixel resolution, the higher the image resolution is. The higher
the image resolution, the more distinct features can be examined. On average, higher
resolution imagery is much more useful to end users, however this can vary depending
on the specific use cases of the end user. To clearly demonstrate this point, Figure
2-11 shows the an image from the Landsat OLI, and the same image taken from the
PlanetScope imager. Ground pixel resolution is determined from the focal length and
aperture diameter of the passive optical scanner, as well as the orbital altitude and
pointing direction of the satellite. Section 3.5.3 will go into further details of the
orbital geometry involved and break down a more detailed formula for the ground
pixel resolution. One area where Landsat 8 is superior to the imagery provided by
PlanetScope’s imager is the color calibration. While taken at different times one can
clearly see that the colors in Figure 2-11 of the same area are quite different. The
issue of calibration of distributed EO constellations is outside the scope of this thesis
but could be addressed in future research.
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(a) Landsat-8 OLI Boston, MA Image [43]
30 meter Resolution

(b) PlanetScope Boston, MA Image [43]
3 meter Resolution

Figure 2-11: Image Resolution Comparison
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2.2.3.2 Synthetic Aperture Radar Performance Metric

Although the SNR of an image can be calculated for SAR instruments, this thesis
will use a variation of SNR to measure SAR instrument performance. This thesis will
utilize the achievable noise equivalent reflectivity, or 𝜎𝑁 for SAR instruments . This
metric is also known as the Noise Equivalent Sigma Zero, or 𝜎𝑁𝐸𝑍0. This metric gives
us the scaled inverse of the SNR of the SAR generated image, as equation 2.2 shows
[44].

𝜎𝑁 =
𝜎0

𝑆𝑁𝑅
(2.2)

In this equation, 𝜎0 is the distributed target reflectivity. Given that this metric is a
scaled inverse of the SNR, then smaller values implies a higher quality of image, or
better performance of the instrument. Smaller 𝜎𝑁 implies large SNR, which as in the
passive optical scanner case, means a better quality image and stronger instrument
performance. It is also important to note that it is quite common for 𝜎0 to be
negative. Because of this, smaller values also means a larger negative 𝜎𝑁 . 𝜎𝑁 is
typically measured in units of decibels. Figure 2-12 shows how a changing 𝜎𝑁 can
drastically impact the quality of the resulting image and reflect the performance of
the instrument. The images are taken of the Capitol building in Washington D.C.,
and the lower the 𝜎𝑁 , the better the resolution and the more information is available
from the image [44].

44



(a) Capital Building SAR Image [44]
𝜎𝑁 < -30 dB

(b) Capital Building SAR Image [44]
𝜎𝑁 = -15 dB

Figure 2-12: SAR Image Resolution Comparison
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2.3 Summary
This section gave an overview of the EO market & landscape, as well as provided a
technical breakdown of common EO paradigms and terminologies. With this founda-
tion in place, this thesis will now move to describe a software tool, TAT-C, that will
incorporate these EO concepts in order to help enable the tradespace analysis of EO
satellite constellations.
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Chapter 3

Trade-Space Analysis Tool for
Constellations

3.1 Introduction & Software Overview

The Tradespace Analysis Tool for Constellations is the end product of a multi-year
research effort led by the NASA Goddard Space Flight Center (GSFC). Outside of the
GSFC, this project was developed by multiple team members from a few institutions
that included the Stevens Institute of Technology, the Bay Area Environmental Re-
search Institute (in collaboration with NASA Ames Research Center), Texas A&M
University, and the Massachusetts Institute of Technology. Given the rise of dis-
tributed spacecraft missions and EO constellations, TAT-C was developed in order to
provide a framework that enables Pre-Phase A constellation design exploration and
optimization with respect to specified a-priori science goals [45]. To do this, TAT-C
was built using a modular framework that centers on 6 key modules: Orbits & Cov-
erage, Instrument, Cost & Risk, Launch, Tradespace Search Executive, and Value.
Each of these modules takes in specific input information and generates specific out-
put files that either feed into other modules or are returned to the end user. Figure
3-1 depicts the complete modular architecture for TAT-C.

3.1.1 TAT-C Execution Process

Users can run TAT-C through a command line interface, as well as through a graph-
ical user interface (GUI). At the heart of TAT-C is a tradespace search JavaScript
Object Notation (JSON) file that defines the search parameters that will be eval-
uated by the various modules. All the user has to do is generate this JSON file,
either through manual creation or through the GUI, and TAT-C will take care of
the rest. This JSON file consists of values for each of the Knowledge Base Object
Schemas that were generated for TAT-C. Object schemas are helpful because they
help standardize the module inputs and outputs. This enables human and machine
readable documents and more formal semantic definitions for easy interoperability
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Figure 3-1: TAT-C Architecture [46]

between modules [47]. There are a wide variety of variables that the user can control
in order to increase or decrease the size of the design space. For a detailed list of these
variables and their corresponding object schema, please visit the following website:
https://tatckb.org/schema.html. Some of the most important variables that users
are able to explore include:

∙ Mission Start Date

∙ Mission Duration

∙ Constellation Architecture Type

∙ Number of Satellites

∙ Number of Orbital Planes

∙ Satellite Bus

∙ Instrument Specifications

∙ Ground Stations Used

∙ Search Strategy

Once all of the objects are defined in the JSON file, depending on the search strategy
utilized, TAT-C generates a collection of constellation architectures that each module
will evaluate. Once TAT-C is complete, the user will have an immense amount of data
that relates to each constellation. The GUI contains some pre-built post-processing,
but since the end user has access to all lower-level data outputs of TAT-C from each
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module, they are then able to perform post-processing to their own unique standards.
In summary, TAT-C was created in order to assist in the design and development of
complex EO constellations by creating a tool that efficiently searches the exploration
space for novel and interesting designs.

3.2 Current Capabilities
TAT-C is a powerful modeling tool, however, there are some important limitations
to its capabilities that are critical to know before running a tradespace search. In
order to better understand TAT-Cs capabilities, this thesis will enumerate the valid
options for key design variables.

To start, let’s examine the highest level of the design space, or the type of constella-
tion architecture employed. The following table lists the constellation architectures
that can currently be selected within the TAT-C platform. Note that a hybrid con-
stellation implies a constellation that deploys a subset of satellites to one constellation
architecture such as a Train and another subset of satellites to a different architecture
such as Ad-Hoc. Note all of the constellation architectures were discussed in Section
2.2.1

Constellation Architecture
Homogeneous Walker
Heterogeneous Walker

Train
Ad-Hoc
Hybrid

Table 3.1: TAT-C Constellation Architecture Capability

A constellation’s orbit is an important design choice and there are many variables
involved with selecting the orbital trajectory of a satellite. The following table breaks
down the key orbital variables and their respective bounds [48].

Orbital Variable Bounds
Altitude 300-1000 km

Inclination 0∘ - 180∘

True Anomaly 0∘ - 360∘

RAAN 0∘ - 360∘

Table 3.2: TAT-C Orbital Geometry Capability

The following instrument types are currently supported through the Instrument Mod-
ule. Note a Basic Sensor represents any instrument that is not a Passive Optical
Scanner or a SAR. This was modeled to assist in edge cases that users may create.
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Instrument Type
Passive Optical Scanner

Synthetic Aperture Radar
Basic Sensor

Table 3.3: TAT-C Instrument Capability

Lastly, there exist three types of search strategies that end users can specify when
running TAT-C. These search strategies tell TAT-C how to explore the tradespace,
either using optimization or not.

Search Strategy
Full Factorial

Evolutionary Algorithm
Knowledge Driven Optimization

Table 3.4: TAT-C Search Strategy Capability

Given these parameters, there exists a large design space that is filled with many
interesting and novel constellations. It is also worth noting that given the way TAT-
C is formulated, it is also possible to create a "mega" constellation that consists of
multiple standard constellations. This essentially means that a complete constellation
can consist of multiple smaller constellations, where each small constellation may
represent a different constellation type, deploy a different instrument, etc. This allows
for more complex architectures to be generated, thus increasing the effectiveness of
the tool overall! That being said, it is worth noting two key limitations in the TAT-C
formulation.

3.2.1 TAT-C Limitations

The first limitation is that a specific constellation architecture can only utilize a single
type of spacecraft. This means that if an end user wants to simulate a constellation
with two satellites, where each satellite is unique, TAT-C cannot create a single
tradespace search to express this. However, there is a standard workaround to this
issue, and it has to deal with the "mega" constellations discussed previously. A user
can specify two sub-constellations within a single "mega" constellation, where each
sub-constellation contains one of the unique satellites. This is a practical work around,
but makes it somewhat more difficult to model a heterogeneous constellation in terms
of the satellites involved with the architecture. To make this even more clear, one
can think of an example where a designer specifies three types of unique satellites,
and TAT-C will generate a single constellation architecture for each satellite, rather
than a single architecture that deploys all three satellites. If the end user is only
examining how orbital altitude will affect performance, for example, and they only
want to examine a 400 and 500 km altitude orbit, a total of 6 architectures will be
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generated. Two architectures, one for each altitude, will be created for each unique
satellite.

The second limitation is similar to the first limitation; only a single instrument can
be modeled on a spacecraft. Real world satellites tend to place several instruments
or sensors on the same satellite bus. Unfortunately, TAT-C only allows a single
instrument to be placed within a satellite. This was a design choice made early in
the TAT-C development process, and an important limiting factor. However, the user
still has the ability to trade various instruments by specifying the varying instruments
in the initial tradespace search JSON file. An architecture will be generated for each
instrument, and if all else is held constant, the end user can make an educated trade
on the instruments by examining each architecture in a post-processing sense.

3.3 Tradespace Search Exploration Process

One of the most important aspects of any tradespace exploration is the methodology
used to generate and explore the design space. In TAT-C, there are two classes of
search strategies: Full Factorial (FF) and Optimized.

FF enumeration is intuitive but quite costly. A FF search implies examining all possi-
ble combinations of an architecture generated by TAT-C. In a hypothetical example, a
user specifies 10 different orbital altitudes, 20 orbital inclinations, and 40 satellites to
trade on. A FF search will generate each combination of the three variables, resulting
in 8000 different architectures. Although the FF search strategy is exhaustive, sim-
ulating 8000 architectures is computationally burdensome (see Table 3.6 in Section
3.4.2 for an execution time discussion). It would take a long time and then the user
would have to parse through each architecture in order to find the set of architectures
that they deem optimal.

Optimized search strategies on the other hand do not explore the entire design space.
Rather, using heuristics or gradient-based methods, optimized search strategies will
explore the trade space in an "intelligent" manner in order to find architectures that
meet objective criteria described by the end user. Unfortunately, for most optimized
search strategies, there are no algorithms and cases that guarantee global optimality,
but empirically these methods can still produce relevant results that are superior to
FF search, without exploring the entire design space. TAT-C deploys two types of
optimized search strategies: an evolutionary algorithm & knowledge driven optimiza-
tion.

This thesis will not dive into the specific details of these two optimized search strate-
gies given that the work is outside of the scope the thesis. However, it is worth noting
these algorithms for future use of the tool. At a very high level, the evolutionary al-
gorithm utilizes variable length chromosomes to help find new architectures, and the
knowledge driven search strategy uses existing knowledge from a database to help
find better architectures faster [46]. The following references also provide excellent
explanations of the TAT-C specific optimized search algorithms: Reference [49] &
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Reference [50].

To show the power of these optimized algorithms, the following figures depict a FF
search vs a search that deploys an evolutionary algorithm, respectively. The FF
search generates 5000 architectures, where as the evolutionary algorithm only had to
search through 500 architectures in order to converge to an ’optimal’ solution [51].
This tradespace compares the lifecycle cost of an EO constellation versus the revisit
time (lower is better for both). The utopia point in this case is in the lower left of
this plot towards the origin.

(a) Full Factorial - 5000 Generated Architec-
tures [46]

(b) Evolutionary Algorithm - 500 Generated
Architectures [46]

Figure 3-2: TAT-C Search Strategy Comparison

3.4 Orbits & Coverage Module
At the foundation of TAT-C is the Orbits & Coverage Module, also referred to as
the Orbit Maintenance Module (OMM). This module completes all of the orbit prop-
agation and calculates all critical coverage metrics such as revisit time for each ar-
chitecture generated by the tradespace search executive. This module completes its
orbital propagation calculations by making a direct call to the General Mission Anal-
ysis Tool (GMAT) through an application programming interface (API). GMAT was
created and maintained through NASA GSFC, where it is was designed to help model,
optimize, and estimate satellite trajectories [52]. Typically, GMAT is a standalone
software program that anyone can download due to its open source license. However,
given that the development of TAT-C was lead at GSFC, a more light-weight API
was developed for TAT-C use.

At the most basic level, the orbits module allows direct numerical simulation, written
and compiled in C++, of the constellation architectures that are being evaluated.
The propagation uses a point mass model of the Earth and also considers gravita-
tional effects such as 𝐽2-perturbations [46]. Given the user’s requirements, it is also
possible to include atmospheric drag in the simulation. This is particularly helpful for
low altitude EO constellations where atmospheric drag can cause orbits to degrade
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quite rapidly without station-keeping [23]. For a detailed breakdown of how the grav-
itational perturbations and atmospheric drag are modeled, see Reference [48]. During
the numerical simulation, the orbits module propagates a satellite forward in time by
a particular time constant, and then thanks to the physics-based models built inter-
nally within GMAT, calculates the eccentricity, inclination, semimajor axis, argument
of perigee, RAAN, mean anomaly, altitude, the x,y,z components of the satellite’s po-
sition in the Earth Centered Inertial (ECI) frame, and the velocity components in
the ECI frame as well. As stated above, it builds into the model orbital degradation
effects, and the module can even specify how the satellites can maintain their orbit
through phasing maneuvers or Hohmann transfers, given propellant reserves [48]. To
give an example of this, Figure 3-3 below shows an output file from the orbits module
for a generic satellite that records each of these orbital quantities.

Figure 3-3: TAT-C Orbits & Coverage Sample Output

In order to get a more detailed picture of the entire Orbits & Coverage module, the
following figure taken from Reference [48] provides an excellent block diagram of the
entire system and breaks down its inputs and outputs.
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Figure 3-4: Orbits & Coverage Module Block Diagram [48]

3.4.1 Regions of Interest & Grid Spacing

What makes the orbits module an even more powerful tool is that it also calcu-
lates coverage metrics, in addition to performing the general satellite propagation
calculations. In order to do this, the module produces a set of grid points within a
user defined region of interest. A user defines a region of interest (ROI) by defining
boundaries on the Earth’s surface through latitude and longitude values. Note that
this implies ROIs have to be a closed rectangle. Table 3.5 and Figure 5-25 depict a
ROI that covers California and most of Nevada.

Figure 3-5: Example ROI Visual

Latitude Longitude
Min 33 -124
Max 42 -115

Table 3.5: ROI Description
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Note that a user can define multiple ROIs which can be helpful when determining
coverage metrics for various independent regions. A user can also examine global
coverage by setting the region of interest latitude bounds to be (-90,90) and longitude
bounds to be (-180,180).

Within a ROI, the orbits module produces a set of internal grid points where it
calculates specific coverage metrics. This can best be explained graphically with the
following diagram that shows the grid points overlayed on the entire Earth, which
represents a global ROI.

Figure 3-6: Orbits Module Grid Representation

Representing individual grid points, which can also be represented as a unique point
of interest (POI), does come with an important limitation. This limitation has to
deal with the sparsity of the grid generated by the orbits module.

3.4.2 Effects due to Grid Sparsity

In an ideal world, the grid generated by the orbits module would be dense. Each grid
point would represent a unique latitude, longitude pair. Unfortunately, this would be
very computationally expensive for the coverage portion of the Orbits and Coverage
module. It would be inefficient to create such a dense grid. However, the alternative
also represents a limitation of the model. Having a sparse grid implies that there are
very few grid points generated within a ROI. At first glance, this may not seem to be
a problem. However, the coverage module calculates coverage metrics only when a
grid point is within the field of view of the instrument on the satellite [53].
To help break this down, it is important to understand what an access event is.

An access event is defined as an observation made of a point on the ground by an
instrument on a satellite. These events are only recorded when a grid point is within
the field of view of an instrument. In the theoretical case where the grid is infinitely
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dense, the instrument would pick up a grid point at every single instance during
its orbit. This is essentially what happens in real life (without worrying about slight
variations in timing, etc.). Since the grid tends to be sparse for computational reasons,
the total number of access events will be less than what would occur in the physical
world, meaning the number of access events will be underestimated.

Not only will there be an underestimated number of access events, but the resulting
data could also become somewhat skewed due to the sparsity of the grid. The field
of view of the sensor can be broken down into ground pixels that capture the data on
the Earth’s surface. Another way to think about when an access event is recorded is
to think that a grid point, or POI, has to be within one of the ground pixels in the
sensor field of view. Figure 3-7 below shows a similar picture to Figure 3-6, but now
shows what happens when a grid point is not within the ground pixel generated by
the instrument. The figure has been dramatically simplified and the sensor only has
three ground pixels. Each blue dot in the diagram represents a POI.

Figure 3-7: Mock Up of Sparse Grid Effect on Orbits & Coverage Module

Since an access event is not being recorded, overall coverage metrics such as revisit
time, percent coverage, and response time can become skewed. These metrics are
critical not only to the end user, but they feed into the Instrument Module as direct
inputs. In Chapter 4, the Value module will also discuss how it takes inputs from the
Instrument module, meaning small numerical errors can propagate throughout the
TAT-C program.

Although the above section breaks down the important limitation of the Orbits &
Coverage Module, there still is a lot of value in this model. The model itself has been
validated through detailed comparisons to its private counterpart, Analytical Graph-
ics, Inc.’s Systems Tool Kit, which is used extensively in industry. Also, TAT-C gives
the user the ability to manually adjust the number of grid points during simulation.
This is a powerful feature because it allows users to create higher fidelity simulations
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if they can afford the extra computational time. To emphasize this point further,
a simple TAT-C simulation was created in order to understand the relationship be-
tween grid spacing and execution time. Using the Landsat-8 satellite specifications,
a global ROI, a 10 day simulation time, and a single satellite placed in an SSO orbit
at 705 km in altitude, the execution time was recorded for various grid times. A Mac
computer was used for this study with 8 GB of RAM and an Intel Core i5-2540M @
2.60GHz processor. Table 3.6 below depicts the results. Note the third column shows
the multiple of each row as compared to the run with 1000 grid points.

Grid Points Execution Time [s] Factor
1000 332 1
2000 741 2.23
4000 1257 3.78
6000 2176 6.54
8000 2762 8.31
10000 2814 8.47

Table 3.6: TAT-C Example Execution Time Table

As the above table shows, the execution time increases essentially linearly with the
number of grid points. However, the absolute time for analysis is quite high, meaning
the number of grid points should be set to meet specific time requirements. Also,
since TAT-C was designed as a architecture comparison tool, any numerical errors
within the orbits module will impact all constellation architectures, which means
direct comparison of architectures is still valid.

3.4.3 Orbits & Coverage Outputs

Figure 3-3 showed the output of the orbits module, specifically the outputs that
relate to the position and velocity of the satellite that is being simulated. The orbits
module also produces coverage metrics for each access event that is recorded. Table
3.7 depicts the metrics calculated for each access event by the orbits module. These
metrics, in addition to the satellite position and velocity, is recorded in a csv file
called *accessInfo.csv where the * represents the satellite in question.
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Access Event Metric Description

POI The POI index that is observed
during the access event

Duration The duration of the access event
in seconds

Access From [Days] Start of the access event
referenced to the starting epoch

Time [Days] Time when the access event
is recorded

Table 3.7: Access Event Metrics

Given that grid points, or POIs, are important, the average, minimum, & maximum
access time and revisit time are also calculated for each POI. In addition, the total
number of POI access events and a metric called the time to coverage is recorded.
Note that time to coverage is defined as the time in seconds before the first access
event is recorded of a particular POI. Each architecture generates a file labeled lcl.csv
that contains this information.

Finally, the orbits module generates a JSON file labeled gbl.json that creates aggre-
gate statistics over each POI in order to find the average, maximum, & minimum for
the following coverage metrics.
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Global Coverage Metric Description

Access Time The POI index that is observed
during the access event

Data Latency The duration of the access event
in seconds

Coverage Percent of POIs observed
out of all generated POIs

Downlink Time
per Pass

Start of the access event
referenced to the starting epoch

Number of Ground
Station Passes per Day

Number of ground station
passes recorded per day

Number of POI
Passes

Number of access events recorded
for a POI

Response Time Time between access event
and completion of downlink

Revisit Time Time between access events
for a particular POI

Time to Coverage [s] Time before the first access event
is recorded for a POI

Downlink Time
per Day

Total access time spent per day
when access event over a

ground station occurs

Table 3.8: Global Coverage Metrics from the Orbits & Coverage Module. The Value
Function Utilizes the Coverage Metric

3.5 Instrument Module

The goal of the Instrument Module within TAT-C is to provide instrument related
metrics, such as SNR, to help emphasize the importance of the end products involved
with a specific constellation architecture. The Instrument Module uses numerical
methods in order to evaluate specific data metrics, rather than analytical approaches
due to limitations in orbital approximations [54]. At the highest level, the Instrument
module takes as input the satellite position and velocity vectors, the orientation of the
satellite, the position of the target ground point, the instrument specifications such
as field of view (FOV), and space environmental conditions. Reference [54] provides
an excellent breakdown of these inputs in a much more detailed way. Once these
inputs are provided to the module software, the data metrics are calculated through
physics-based models. Depending on the instrument used, different data metrics are
output to the end user. Figure 3-8 depicts the overall input-output relationship for
the instrument module.

Currently the instrument module supports three classes of instruments: Passive Op-
tical Scanners, Synthetic Aperture Radars, and Basic Sensors. The first two have
been discussed previously in this thesis, where as the basic sensor represents a sim-
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Figure 3-8: Instrument Module Block Diagram

ple model for any sensor instrument that is not a Passive Optical Scanner or SAR
instrument. Due to its generality, it does not provide very meaningful information to
the end user. Because of this, this thesis will not discuss it in further detail.

3.5.1 Instrument Module Limitations

The instrument Module is a powerful tool that greatly influences the overall per-
formance of TAT-C, but it does have some important limitations. The first major
limitation is that it requires a great deal of knowledge about an instrument’s speci-
fications. Given that TAT-C is a pre-phase A tool, some mission planners may not
have this information for an instrument that has not been developed. Thus, existing
reference instruments must be used if information about a developing sensor is not
available at the time of analysis. Fortunately, there are many instrument specifica-
tions publicly available which enable users to sample various instruments.

Another key limitation of the instrument module has to deal with orbital geometry.
Data metrics are evaluated for a specific ground pixel based on the geometry of the
satellite and target ground point. This can best be represented graphically. For
a simple Matrix imager, it is possible to model its ground footprint as a series of
detectors on the Earth’s surface. These detectors can be represented in a 2x2 grid,
where the number of rows and columns of detectors is determined by the instrument
specifications. Each individual detector cell, i.e. a row and column element, represents
a ground pixel. The instrument module breaks down metrics for each individual
ground pixel, but with a minor caveat. Although two ground pixels maybe in view
of the sensor, only ground pixels that are observed purely at a side-looking angle,
meaning they are in the cross-track direction, are utilized in data-metric calculations
[54]. Figure 3-9 provides a graphical representation of this phenomena. In the figure,
at time t = 1, only ground pixel 1 is utilized for data metric calculations, where as at
t = 2, only ground pixel 2 is utilized for data metrics. Also, the modeled instruments
do not have the ability to look-ahead or look-back to keep a target point in view as
the satellite moves through its orbit.
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(a) GP 1 Observation at Time 1 [54] (b) GP 2 Observation at Time 2 [54]

Figure 3-9: Instrument Module Side Look Angle Requirement

Modeling specific instrument performance is non-trivial, and thus limitations with
this model are expected. However, this thesis will assume that due to the specificity
and completeness of the entire model, the results obtained from the module are still
considered useful.

3.5.2 Instrument Module Outputs

Before diving into the calculations for the key data metrics provided by the instrument
module, it is worth noting the various outputs for each specific instrument. This thesis
will focus primarily on the SNR and 𝜎𝑁 , but the instrument module produces the
following outputs for each instrument.

Passive Optical Scanner SAR Basic Sensor

SNR 𝜎N
Observation

Range

Dynamic Range Observation Zenith
Angle

Solar
Zenith

Noise-Equivalent-Delta
Temperature

Ground Pixel
Resolution

Ground Pixel Resolution

Table 3.9: Instrument Module Outputs by Sensor Class. Value Function will utilize
variables in bold.

3.5.3 Satellite Target Viewing Geometry

Prior to breaking down the instrument performance metric calculations, a detailed
understanding of the satellite viewing geometry utilized by TAT-C is needed. Figure
3-10 below shows a simple diagram of a satellite in Earth orbit and the key angles
due to its looking geometry.
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Figure 3-10: EO Satellite Viewing Geometry Angles
Adapted from [55]

The main viewing angles for this satellite and Earth geometry are as followed: 𝛾
which represents the look angle or nadir angle; 𝜃𝑖 represents the incidence angle as
viewed from the ground; and 𝜑 represents the depression angle. Before the equations
for these terms can be presented, two other variables are also critical to understand,
T and S. T is the position vector of the target point on the Earth, in an Earth
centered inertial (ECI) frame. Put simply, T provides the coordinates of the ground
point being examined by a satellite. S is the position vector of the satellite also in
the ECI frame. S provides the coordinates of the satellite for orbital analysis. Using
these terms, it is possible to mathematically construct the viewing angles.

R = T − S (3.1)

𝛾 = arccos (
R

‖R‖
· −S
‖S‖

) (3.2)

𝜃𝑖 = arcsin (sin 𝛾
𝑅𝐸 + ℎ

𝑅𝐸

) (3.3)

𝜑 = 90∘ − 𝛾 (3.4)

The above picture is the first step in understanding the overall satellite viewing ge-
ometry. Due to non-spherical Earth effects as well as discrepancies in the orbit prop-
agation timing due to computational constraints, TAT-C utilizes a representation of
the satellite geometry called the derived satellite position [54]. The derived satellite
position is the position of the satellite at which the line from the target ground pixel
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to the satellite is perpendicular to the satellite velocity (at zenith). This derived
position works due to the large curvature of Earth and short time intervals involved
in the calculations [54]. Figure 3-11 provides a useful graphical understanding of this
derived satellite position.

Figure 3-11: Derived Satellite Position Breakdown [54]

With this understanding of the derived satellite position, it is possible to update
R and S using the equations below. Note, these updated terms provide the means
to calculate the derived look angle, 𝜃𝑑𝑟𝑣𝑖 , which will be utilized in upcoming SNR
calculations.

Rdrv = R − (R · vsc)vsc (3.5)

Sdrv = T −Rdrv (3.6)

3.5.4 Passive Optical Scanner Metric Calculations

In the previous chapter, equation 2.1 showed how to calculate the SNR. The remainder
of the equation derivation is as follows. Note, all equations come from [23].

𝑆𝑁𝑅 =
𝑁𝑠√︀

𝑁𝑠 +𝑁2
𝑟

Signal to Noise Ratio (3.7)
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𝑁𝑠 = 𝑁𝑝ℎ𝑄𝐸 Signal Electrons (3.8)

The above equations calculate the SNR for an access event and rely on the number
of signal electrons at the detector and the number of noise electrons.

𝑁𝑝ℎ = 𝑅𝑑𝑒𝑡
𝑇 |𝑝ℎ𝑇𝑖 Photons at Detector (3.9)

𝑅𝑑𝑒𝑡
𝑇 |𝑝ℎ = 𝑅𝑠𝑒𝑛

𝑇 |𝑝ℎ𝜏𝑜𝑝 Rate of Photons at the Detector (3.10)

𝑅𝑠𝑒𝑛
𝑇 |𝑝ℎ = (

𝑅𝑟𝑎𝑑
𝑇 |𝑝ℎ
‖R‖2

)(
𝐷𝑎𝑝

2
)2𝜋 Rate of Photons at Sensor Aperture (3.11)

𝑅𝑟𝑎𝑑
𝑇 |𝑝ℎ = 𝐿𝑇𝐴𝑔𝑝 Rate of Photons Radiated (3.12)

𝐿𝑇 = 𝐿𝐸 + 𝐿𝑢𝑤
𝑆 Total Radiance from Target (3.13)

The above equations are used to calculate the radiance to signal electrons. Notice
how the Aperture Diameter, 𝐷𝑎𝑝, and vector between the satellite and the target, R,
are included.

𝐿𝐸 =

∫︁ 𝜆2

𝜆1

𝐿𝜆𝜏
𝑎𝑡𝑚
𝜆 cos 𝜃𝑑𝑟𝑣𝑖 Radiance from Earth in Direction of Target (3.14)

𝐿𝜆 =
2Υ𝑐2

𝜆5
1

exp ϒ𝑐
𝜆𝑘𝐵𝑇

− 1
Planks Spectral Body Radiance Equation (3.15)

𝐿𝑢𝑤
𝑆 =

𝑅𝑢𝑤
𝑆 |𝑝ℎ

4𝜋𝐴𝑔𝑝

Upwelling Solar Radiance from Target (3.16)
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𝑅𝑢𝑤
𝑆 |𝑝ℎ = 𝑅𝑑𝑤

𝑆 |𝑝ℎ cos 𝜃𝑑𝑟𝑣𝑖 Upwelling Photon Rate from Target (3.17)

𝑅𝑑𝑤
𝑆 |𝑝ℎ = 𝐿𝑑𝑤

𝑆 𝐴𝑔𝑝
𝜋𝑟2𝑆𝑜𝑙𝑎𝑟

‖VSun2T‖2
Downwelling Photon Rate at Target (3.18)

𝐿𝑑𝑤
𝑆 = 𝐿𝑆 cos 𝜃𝑆𝑜𝑙𝑎𝑟𝑖 Downwelling Radiance at Target (3.19)

𝐿𝑆 =

∫︁ 𝜆2

𝜆1

𝐿𝜆𝜏
𝑎𝑡𝑚
𝜆 Radiance from Sun (3.20)

𝜃𝑆𝑜𝑙𝑎𝑟𝑖 = arccos(
T ·VSun2T

‖T‖‖VSun2T‖
) Solar Incidence Angle at Target (3.21)

VSun2T = T −PSun Vector from Sun to Target (3.22)

The above equations determine the radiance with Earth as a reflector of Solar Energy.
It assumes Earth is a black body and a Lambertian surface [54]. These calculations
are critical to get a sense for how the Sun impacts image quality. The last four
equations are important because they help determine the ground pixel resolution,
which is an important quality metric itself. The area of a ground pixel is also used
in equation 3.18.

𝐴𝑔𝑝 = 𝜌𝐶𝑇𝜌𝐴𝑇 Observation Target Area (3.23)

𝜌𝐴𝑇 = 𝜉‖Rdrv‖2 Along-Track Ground Pixel Resolution (3.24)

𝜌𝐶𝑇 = 𝜉
‖Rdrv‖2

cos 𝜃𝑑𝑟𝑣𝑖

Cross-Track Ground Pixel Resolution (3.25)
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𝜉 =
𝑑

𝑓
Instantaneous Field of View (3.26)

As is evident, there are multiple equations that need to be solved in order to calculate
the SNR for a particular ground point. Given the complexity involved with these
equations, it is a worthwhile exercise to point out which variables come from user-
defined inputs and those that are generated from the Orbits & Coverage module.
Understanding where the variables come from is important because by knowing which
values are user-defined, end users can tune these parameters in order to achieve a
specific level of instrument performance. In the following table, each variable involved
with the SNR calculation will be marked as either an instrument specification or a
variable that comes from the specific orbital geometry. One variable that is important
to note is 𝜆, or the Wavelength. Typically, a satellite sensor will produce data across
multiple bands and wavelengths. In TAT-C, the user specifies a single band, and a
central wavelength for this band, for an instrument. Thus, if a user wants to model
separate bands, then they must create a "new" instrument, rather than using a single
instrument with multiple bands. Although this is a structural limitation, there is a
simple work around that can assist in analysis.

Instrument Specification Variable Description
d Detector Width
f Focal Length
𝜉 Instantaneous FOV
𝜆 Wavelength
Dap Aperture Diameter
𝜏𝑜𝑝 Optic System Efficiency
QE Quantum Efficiency
Nr Read Out Noise Electrons

Table 3.10: Instrument Specific SNR Calculation Inputs

Orbital Geometry Variables Description
𝜃𝑑𝑟𝑣𝑖 Derived Look Angle
Rdrv Derived Range Vector
T Position Vector of Target Ground Point

PSun Position Vector of Sun
rSolar Solar Radius
𝜏𝑎𝑡𝑚𝜆 Wavelength Dependent Atmospheric Loss
R Range Vector from Satellite to Target

Table 3.11: Orbital Geometry SNR Calculation Inputs
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To emphasize the importance of these independent variables, in particular the user
defined instrument specifications, the TAT-C tool was used to simulate two archi-
tectures. Each architecture contained a single satellite placed at an orbital altitude
of 500 km and in a SSO inclination representing PlanetScope and RapidEye. The
only variation between the architectures were the instruments used. In particular,
the focal length, aperture diameter, number of read out electrons, and FOV are quite
different for these instruments. Table 3.12 shows the differences in the key instrument
variables between each instrument.

PlanetScope [34], [56] RapidEye Imager [56]
d [m] 0.0000075 0.0000065
f [m] 1.14 0.633

Along Track FOV 1.9773∘ 0.006∘

Cross Track FOV 2.9662∘ 7∘

𝜆 [m] 4.75e-7 4.75e-7
𝐷𝑎𝑝 [m] 0.091 0.145
𝜏𝑜𝑝 0.6 0.85
𝑄𝐸 0.5 0.45
𝑁𝑟 277 1688

Table 3.12: Instrument Specifications for PlanetScope & RapidEye

After running a 30 day simulation where the region of interest was the entire Earth,
Figures 3-12 and 3-13 display the SNR distributions for the PlanetScope and Rapid-
Eye instruments respectively. Note how both have similar distribution shapes, but
vary in the numerical magnitude of SNR. These results are just meant as an illustra-
tive example, and show how small variations in instrument parameters can influence
SNR numerical results.

Figure 3-12: PlanetScope SNR Distribution
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Figure 3-13: RapidEye SNR Distribution

3.5.5 Synthetic Aperture Radar Metric Calculations

The following explains how equation 2.2 calculates 𝜎𝑁 , also known as 𝜎𝑁𝐸𝑍0. The
remainder of the equation derivation is as follows. Note, all equations come from [44].

𝜎𝑁 =
265𝜋3𝑘𝑇

𝑐
‖R‖3𝑣𝑠 cos𝜓𝑔

𝐵𝑇𝐹𝑁𝐿𝑟𝑎𝑑𝑎𝑟𝐿𝑎𝑡𝑚𝑜𝑠

𝑃𝑎𝑣𝑔𝐺2
𝐴𝜆

3
0

(3.27)

𝐺𝐴 = 4𝜋
𝜂𝑎𝑝𝐷𝑎𝑧𝐷𝑒𝑙𝑣

𝜆20
Antenna Gain (3.28)

𝑃𝑎𝑣𝑔 = 𝑑𝑠𝑎𝑟𝑃𝑇 Average Transmit Power (3.29)

𝑑𝑠𝑎𝑟 = 𝑇𝑒𝑓𝑓𝑓𝑝 Duty Cycle (3.30)

𝜓𝑔 = 90∘ − 𝜃𝑑𝑟𝑣𝑖 Grazing Angle to Target (3.31)

Although there are fewer equations as compared to the Passive Optical Scanner SNR
calculation, these equations represent complex physics based calculations that help
model the detailed and intricate active SAR instrument. As done in the prior section,
the following tables break down the SAR instrument-specific variables and the orbital
geometry variables that impact 𝜎𝑁 respectively.
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Instrument Specification Variable Description
BT Chirp Bandwidth
𝜂𝑎𝑝 Atenna Aperture Efficiency
Daz Dimension of Antenna Along-Track
Delv Dimension of Antenna Cross-Track
𝜆0 Operating Center Wavelength of Radar
PT Peak Transmit Power

Lradar Radar Hardware Loss
fp Pulse Repetition Frequency
FN System Noise Figure

Table 3.13: Instrument Specific 𝜎𝑁 Calculation Inputs

Orbital Geometry Variables Description
𝜃𝑑𝑟𝑣𝑖 Derived Look Angle
vs Velocity of Satellite
R Range Vector from Satellite to Target

Table 3.14: Instrument Specific 𝜎𝑁 Calculation Inputs

3.6 Cost, Risk, & Launch Module

3.6.1 Cost & Risk Module

When conducting EO constellation architecture trade studies, understanding the cost
and risk associated with a constellation is important. Within TAT-C is a built-in
Cost & Risk module that generates multiple cost outputs and various risk categories.
Given that this thesis is focused on the value generated by an architecture, the author
recommends reviewing reference [27]. In reference [27], the author breaks down the
TAT-C Cost & Risk module in extensive detail. For the purposes of this thesis, the
outputs of the Cost & Risk module is of more importance. Tables 3.15 and 3.16 below
depict the cost-based outputs and the risk outputs respectively.

Cost Category
Ground Cost

Hardware Cost
Integration and Test Cost

Launch Cost
Non-Recurring Cost

Operations Cost
Program Cost
Recurring Cost
Lifecycle Cost

Table 3.15: TAT-C Cost Outputs
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Risks
Lack of flight heritage

Infant Mortality
Loss of coverage due to loss of one or more satellites

Orbital debris collision
Interrupted installation

Formation change due to atmospheric drag
Improper satellite spacing due to atmospheric drag

Instrument design flaw
Instrument deployment failure
Premature instrument failure

Radiation damage to instrumentation
Power subsystem degradation
Improper attitude alignment
Propellant related accident
Thermal subsystem failure

Table 3.16: TAT-C Risk Outputs

For each cost category, a cost estimate is provided as well as a calculated standard
error for that cost. Note that cost categories including Integration and Test, Ground,
Operations, and Program are calculated by taking set percentages of total satellite bus
cost. Recurring and Non-Recurring costs are calculated by taking summations of all
cost categories, but as Research, Development, Test & Evaluation costs and first-unit
costs respectively. For each risk category, a likelihood and consequence is provided.
These are ranked on a 1 through 5 ordinal scale, where 1 implies low likelihood or low
consequence, and 5 implies high likelihood or high consequence. Overall, the Cost &
Risk Module within TAT-C is a very helpful tool that provides mission planners with
cost and risk data that is critical from a pre-phase A standpoint.

3.6.1.1 Cost Model Limitations

Although the cost model in TAT-C is highly detailed and relies on historical data, it
has two primary limitations. The first limitation is that it is not high-fidelity for very
small satellites, or CubeSats. One of the primary variables that the cost model looks
at is the mass of a spacecraft. Table 3.17 breaks down the cost models utilized based
on the spacecraft mass. As the table shows, a decision tree is used for the cost model
when the spacecraft mass is less than 20 kg. The decision tree used is built on very
little data and thus the results are inflated. Upcoming Section 5.2.6 discusses this in
more detail and proposes a naive approach in order to obtain more accurate costs for
CubeSats.
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Cost Model Minimum Mass [kg] Maximum Mass [kg]
Unmanned Space Vehicle Cost Model 1000 -

Small Satellite Cost Model 20 1000
CubeSat Decision Tree Cost Model - 20

Table 3.17: Cost Model by Spacecraft Mass

The second limitation of the cost model is the learning curve. The learning curve
is applied in order to reflect the fact that it becomes easier and less costly to build
the same satellite. The lower the learning curve rate, the more cost savings are
realized. Reference [27] discusses the learning rate in great detail, and reference [57]
discusses how the learning curve rate for small satellites should be set to around 0.662.
In the cost model within TAT-C, the learning curve is set based on the number of
identical satellites produced. Table 3.18 shows the learning curve rate for three tiers
of production.

Learning Curve Rate Minimum Number of Satellites Maximum Number of Satellites
0.95 0 10
0.90 10 50
0.85 50 -

Table 3.18: Cost Model Learning Curve Rates

As Table 3.18 shows, the lowest learning curve rate that is currently applied is 0.85,
and this is only when more than 50 satellites are produced! For large spacecraft,
these learning curve rates are more realistic, but as reference [57] shows, CubeSats
require a much smaller learning curve rate. These high learning curve rates can have
large implications for large constellations, and is thus considered a limitation within
the scope of this thesis. As a result the costs for large constellations of satellites <20
kg in mass may be overestimated by TAT-C.

3.6.2 Launch Module

One of the most important cost drivers for a constellation comes from the one time cost
of launching the satellites into orbit. Although launch costs continue to decrease due
to increased competition and launch providers, it still can cost up to $100 Million to
launch a payload into orbit. When launching satellites into orbit, the key determining
factors are the target altitude, inclination, and payload mass. The higher the altitude,
the larger the payload mass, and the larger the inclination plane change relative to
the launch site latitude the more propellant is used which translates to higher costs.
Given the importance of understanding the launch cost, the author of this thesis
developed a simple optimal launch solver that works within the bounds of TAT-C.
This solver is called from the Launch Module, and quickly searches the available
launch vehicles in the launch vehicle database in order to find the lowest cost launch
option for a constellation.
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The launch vehicle database is critical given that the search algorithm looks through
the library of vehicles in order to find an optimal cost. The database was constructed
by examining all currently operational launch vehicles and examining their respective
user guides in order to learn information about payload performance. This is impor-
tant because many launch vehicles are specified to perform at a specific inclination,
and the payload mass varies as a function of altitude. This can be see in Figure
3-14 that reflects the Falcon 9 altitude versus payload mass chart. These charts are
critical because various altitudes and inclinations can have large differences in pay-
load mass available to reach target orbit. Since LEO orbits for EO constellations are
rarely highly eccentric, these altitude versus payload mass charts are almost always
linear. Because of this, the author of this thesis assumed all payload mass - altitude
relationships were linear.

Figure 3-14: Falcon 9 Payload Mass vs Altitude vs Inclination [58]

Table 3.19 displays the features needed for each launch vehicle within the database.
Note, end users are able to define new vehicles within TAT-C.
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Feature Units Description
name Name of the Launch Vehicle

acronym More descript name of the Launch Vehicle - includes inclination
inclination Inclination capability of the Launch Vehilce

maxAltitude km Maximum altitude of a circular orbit of the Launch Vehicle given the inclination
maxAltitudePayloadMass kg Maximum payload capacity of the Launch Vehicle at the highest altitude

minAltitude km Minimum altitude of a circular orbit of the Launch Vehicle given the inclination
minAltitudePayloadMass kg Maximum payload capacity of the Launch Vehicle at the lowest altitude

mass kg Total Vehicle Wet Mass
finalStageDryMass kg Dry mass of the Launch Vehicle’s Final Stage

finalStagePropellantMass kg Propellant Mass of the Launch Vehicle’s Final Stage
finalStageSpecificImpulse s Specific impulse of the Launch Vehicle’s Final Stage
finalStageBurnDuration s Burn time of the Launch Vehicle’s Final Stage
finalStageRestartable Whether or not the Launch Vehicle’s Final Stage is restartable
maxNumberRestarts Maximum number of restarts of the upper stage engine. Not well documented, default to 5 if restartable

reliability Launch Vehicle reliability: number of successes/total launch attempts
cost Millions Total cost to launch the vehicle.

operatingNation The country that operates the launch vehicle
fairingDiameter meters Total fairing diameter of the launch vehicle
fairingHeight meters Total fairing height of the launch vehicle

Table 3.19: Launch Module Database Features & Descriptions

The only other consideration that is important to note is that of a primary versus
secondary launch. This thesis defines a primary launch as a launch that is completely
owned by a single satellite operator. A primary launch implies only a single payload,
that can consist of multiple spacecraft, and the entire launch cost is paid for by the
satellite operator. There are new small launcher companies coming online, such as
Rocket Labs, that make this a realistic option even for small satellites. A secondary
launch is a launch where a satellite operator essentially ride-shares on a launch vehicle.
For secondary launches, this thesis assumed that the satellite(s) payload can only
make up at most 49% of the launch vehicle payload capacity and volume. This
is because the secondary payload does not constitute the majority of the payload
mass by definition. From a cost perspective, this thesis assumes that secondary
payloads pay the launch provider the cost per kilogram where the cost is the standard
primary launch vehicle cost. Because of this, there are substantial cost savings when
a secondary launch is used. The following two sections break down the solver used to
find the optimal launch cost for both primary and secondary launches.

3.6.2.1 Primary Launch Formulation

The solver used to find the lowest cost launch manifest is a simple integer program
(IP). Although there are more launch providers, there still do not exist a large, over
100, set of vehicles which makes performing a large search quite easy and compu-
tationally efficient. Note that in implementation, the maximum number of launches
required for a specific launch vehicle is calculated and each launch vehicle instance is
considered a unique vehicle. This implies more than one of the same vehicle can be
used. Let’s first break down the variables involved in the IP formulation. Table 3.20
shows the variables and their corresponding variable abbreviation. It is worth noting
that Variable 𝑌𝑗 is an indicator variable that is used to ensure that the costs obtained
for a complete manifest represents only vehicles that have satellites on board.
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Variable Description
𝑚 Number of Launch Vehicles
𝑛 Number of Satellites

𝑋𝑖𝑗
1 if Assign Satellite 𝑖

to rocket 𝑗

𝑌𝑗
1 if Launch Vehicle

𝑗 is Utilized

𝐶𝑗
Cost of Launching

Vehicle 𝑗

𝑉 𝐶𝑗
Payload Volume of
Launch Vehicle 𝑗

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗
Payload Mass Capacity

of Launch Vehicle 𝑗
𝑀𝑖 Mass of Satellite 𝑖
𝑉𝑖 Volume of Satellite 𝑖

Table 3.20: Primary Launch Module Variables

Using these variables, the equations below depict the IP formulation for a primary
payload launch. The formulation is very similar to the classic knack-sack problem.
Equation 3.32 represents the minimization function and can be expressed in words as
the minimum cost over all launch vehicles that were selected for launch. Equation 3.33
represents the constraint that only one launch vehicle can be assigned to a satellite.
Equation 3.34 represents the constraint that the satellites placed on a launch vehicle
must have a mass less than that of the launch vehicle payload capacity. Similarly,
equation 3.35 represents the constraint that the satellites placed on a launch vehicle
must take up a volume less than that of the launch vehicle volume capacity. Finally,
equation 3.36 forces the decision variables to be binary which makes it a strict IP.

𝑚𝑖𝑛
𝑚∑︁
𝑗=1

𝐶𝑗𝑌𝑗 (3.32)

𝑠.𝑡

𝑚∑︁
𝑗=1

𝑋𝑖𝑗 = 1 for all satellites 𝑖 (3.33)

𝑛∑︁
𝑖=1

𝑋𝑖𝑗𝑀𝑖 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗𝑌𝑗 for all Launch Vehicles 𝑗 (3.34)

𝑛∑︁
𝑖=1

𝑋𝑖𝑗𝑉𝑖 ≤ 𝑉 𝐶𝑗𝑌𝑗 for all Launch Vehicles 𝑗 (3.35)
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𝑋𝑖𝑗, 𝑌𝑗 ∈ {0, 1} (3.36)

3.6.2.2 Secondary Launch Formulation

The secondary launch formulation uses the same variables as the primary launch
formulation, but with one revision. The variable 𝐶𝑗, which previously represented the
cost of launching a Launch Vehicle 𝑗, now represents the cost per kilogram of launching
Launch Vehicle 𝑗. Also, variables 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗 & 𝑉 𝐶𝑗 represent 49% of vehicle payload
capacity and volume capacity respectively. The equations below depict the revised IP
for the secondary formulation. Equation 3.37 represents the minimization function
and can be expressed in words as the sum over the cost per kilogram for each launch
vehicle multiplied by the total payload mass on that launch vehicle. Note that an
indicator variable is not needed because if no satellites are assigned to a vehicle, then
the second part of the summation will be equal to 0. Equation 3.38 represents the
same constraint as equation 3.33, i.e. a satellite can only be placed on a single launch
vehicle. Equations 3.39 and 3.40 are the same as equations 3.34 and 3.35 but without
the indicator variable. Lastly, equation 3.41 forces the decision variable to be binary
which forces the formulation to be a strict IP.

𝑚𝑖𝑛
𝑚∑︁
𝑗=1

𝐶𝑗

𝑛∑︁
𝑖=1

𝑋𝑖𝑗𝑀𝑖 (3.37)

𝑠.𝑡
𝑚∑︁
𝑗=1

𝑋𝑖𝑗 = 1 for all satellites 𝑖 (3.38)

𝑛∑︁
𝑖=1

𝑋𝑖𝑗𝑀𝑖 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗 for all Launch Vehicles 𝑗 (3.39)

𝑛∑︁
𝑖=1

𝑋𝑖𝑗𝑉𝑖 ≤ 𝑉 𝐶𝑗 for all Launch Vehicles 𝑗 (3.40)

𝑋𝑖𝑗 ∈ {0, 1} (3.41)

3.6.2.3 Launch Module Summary

In summary, the Launch Module is a very simple and easy to understand model that
enables the end user to determine the optimal launch manifest from a cost perspective.
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In the real world, there are more constraints such as launch site and changes to payload
mass due to payload adapters, but given the publicly available data, these were not
included in the formulation. Future iterations of the launch module should include
these factors. Also, the Launch Module can be improved by mapping the altitude
versus payload mass function explicitly, rather than making a linear assumption.
In the distant future, there may become a large set of launch vehicles and a new
bin-packing algorithm maybe needed to reduce computational time. Currently, the
Launch Module requires about one second of CPU time to execute which means it
is capable of calculating an optimal launch manifest for thousands of architectures if
needed. It is also worth noting that the user can add new launch vehicles, disable the
search process if they must use a specific launch vehicle, and mark each constellation
architecture as primary or secondary. These end user tags are critical in that they
provide the user with more flexibility from a programming perspective.

3.7 Summary
As Chapter 3 showed, TAT-C is a complex and sophisticated tool that can help mis-
sion designers and planners find more optimal constellation architectures. It provides
a large quantity of useful data, and is quite flexible to specific user needs. It does
have some important limitations, but given the scale and overall performance, TAT-C
is a tool that can add substantial value and help improve the design process over-
all. TAT-C is intended be open source which will not only allow anybody to use the
tool, but it will also enable users to tune the software to fit specific needs. This will
make it even more capable, which will add more value to the end user. The author
looks forward to the open-source release so the community will be able to utilize the
program to its full potential.
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Chapter 4

Value Driven Trade Approaches

4.1 Value Function Overview

Value modeling allows mission planners and designers the ability to look past simple
cost metrics when exploring the constellation design tradespace. Value modeling has
historically been quite specific and focuses on monetary flows or stakeholder require-
ments [59], [60]. These methods are intuitive and are built on the principle of defining
value from the lens of a specific user, which makes sense given that value is subjective
from person to person or organization to organization. However, this thesis crafts
a new value model that can decipher value by examining spacecraft and instrument
design choices. By creating a value formulation that is dependent on mission param-
eters, mission planners will have the ability to compare constellation architectures
that evaluate performance rather than cost, and across scientific domains or specific
user requirements. The power of a generalized value model is that it can be used by
any potential end user, which is why the value model developed in this thesis was
built in tandem with the TAT-C tool. In order to make the Value Function general,
this thesis developed the following hypothesis.

The value of an Earth Observation constellation architecture is driven
primarily by the quantity and quality of data that is returned to the end
user. Thus, architectures that generate large quantities of high quality,
useful data are more valuable than architectures that produce less useful
data.

This hypothesis can be extended further to understand the key differences between
constellations that return large quantities of lower quality data versus constellations
that return smaller quantities of higher quality data. This key trade-off is balanced
in the real world, where various EO providers, such as Planet, Maxar, and the federal
government (Landsat), provide different variations in quality and quantity of EO
data. Currently, the market determines how much value each constellation provides,
thus enabling us to understand where end users put more emphasis - quantity or
quality.
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At the core of the hypothesis is the quantity and quality of data collected by a con-
stellation architecture. Thus any Value Function formulation will need to determine
accurate proxies for these terms. In the following sections, we will discuss existing
literature on the topic, and then derive the proposed Value Function that will utilize
information generated by TAT-C in order to find suitable proxies for quantity and
quality of data, and therefore value.

4.2 Literature Review
Before diving into the details of the proposed Value Function in this thesis, it is criti-
cal to understand the previously published approaches to quantifying value within the
scope of EO constellations. To start, the National Academies of Sciences, Engineer-
ing, and Medicine discussed in 2015 the need for methods and metrics that NASA can
use to make programmatic decisions about the scope and design of EO systems [61].
To put this in layman terms, it was only five years ago when the National Academy
of Sciences determined that value-based trades were critical to designing the next
generation of EO systems. Historically, there has been a large emphasis on cost.
Designers attempted to satisfy mission requirements with the smallest cost. This
was exemplified by two main factors. The first was sophisticated instruments and
parts were larger in a physical sense, and thus required more mass and volume which
made the overall satellite system larger, more complex, and more expensive. To make
matters worse, larger satellites are harder to get into orbit, meaning they were more
expensive to launch as well. Given these dynamics, it makes sense that there was
a strong emphasis to minimize cost while satisfying mission requirements. However,
due in part to miniaturization, smaller and yet effective instruments, and rapidly de-
creasing launch costs, as discussed in section 2.1.1, it is easier and cheaper than ever
to get assets into orbit. These trends have pushed mission designers and planners to
examine value-based metrics and methodologies. Examining the previous literature,
this thesis categorizes previous work in the following categories: value network mod-
eling, value of information, commercially-driven value, rules-based approaches, and
case studies.

4.2.1 Value Network Modeling

The idea of value network modeling, also known as value flow mapping, was proposed
by Dr. Bruce Cameron in 2007 and extended by Dr. Wen Feng in 2010 [62], [63]. In
Cameron’s PhD thesis, he postulated that it is possible to compare space exploration
architectures by considering the various stakeholder value delivery chains in order to
prioritize certain objectives [62]. Value network models help map the indirect benefit
delivered to stakeholders, and a numerical method is used to prioritize paths through
the network. These value networks allow space exploration architectures to help make
critical decisions that drive value across organizations and national agencies.

In order to understand this work, it is critical to understand what a stakeholder is.
Cameron uses the following definition that comes from Freeman’s Strategic Manage-

78



ment: A Stakeholder Approach [64] which defines stakeholders as those entities that
have an interest in the value creating organization. By examining the direct and in-
direct stakeholders, Cameron’s work utilizes network diagrams to represent the value
flows across each stakeholder or agent. Once these networks are established, it is pos-
sible to determine the network flows that maximize stakeholder value. These methods
work well for large public space architectures because they do not have easily derived
requirements and non-technical needs force the examination of various indirect value
loops [65]. An example value network map is displayed below.

Figure 4-1: Value Map for Government-Based Space Architecting [62]

These value network maps do an excellent job distinguishing various stakeholders
and creating a very well defined map that describes where value creation occurs.
This is useful because it forces mission planners to focus on value-driving activities
to stakeholders, rather than standard technical requirements or mission objectives.
By definition, the optimal architecture is the one that maximizes stakeholder value,
which this work identifies.

The primary limitation of this model is what also makes it intuitive and robust:
the need to define all stakeholders. Understanding all of the direct and indirect
stakeholders apriori is challenging. Not only that, stakeholders can change during
the mission, which can change the optimal architecture selection. In the case of EO
constellations, it would be possible to map out the various stakeholders, but this
would become quite complex as constellation architectures become more complicated
and sophisticated. Due to this fact, this thesis believes that value network modeling
is not the preferred way to calculate the value of an EO constellation. Ideally, a more
general model could be built that uses theoretical data from potential architectures
in order to drive the decision making process. Another way to think about this is
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that Stakeholder Value Networks focus more on the demand side of EO, whereas
this thesis believes a more supply-side based approach can generate more fruitful and
general results.

4.2.2 Value of Information

A very interesting way to capture the value of EO constellation is to examine how
much value is lost if the constellation does not exist. By examining this gap, it is
possible to quantify, even in a dollar sense, the value of a EO constellation. This idea
was postulated in by Brathwaite & Saleh, or reference [60]. In this paper, the authors
utilize a Bayesian framework to determine the overall system value. They view space
systems as information sources, and stakeholders as information sinks. The key idea
behind the authors’ work is that the information generated by a constellation allows
stakeholders to update their beliefs and thus make more optimal decisions on the
ground. The increase in expected payoffs can thus be ascribed to the value of the
system. Brathwaite & Saleh propose a new metric, the Value of Design, to quantify
the increased value.

The authors provide a concrete example where an EO architecture provides hurricane
information to oil rig operators in the Gulf of Mexico. The information allows the
oil rig operator to have a better estimate of the forecasted track of a hurricane. By
understanding this information, the operators are able to make a more informed
decision on whether they should close the rig or keep it open. Closing the rig will
incur lost revenue opportunities. Thus it is possible to price the value of having the
more accurate forecasting model. What makes this methodology interesting is that
is very easy to trade against specific EO constellation systems. For example, various
instruments can be traded on, as long as it is possible to extrapolate how the various
instruments impact the decision criteria metric, in this case the track of the hurricane.
The model developed relies extensively on Bayesian probabilistic inference, thus it is
able to generate the Value of Design for various EO constellation designs, as seen in
Figure 4-2.

Brathwaite & Saleh’s work utilizes a well thought-out and detailed model in order to
define the value of an EO constellation. The idea behind the model is intuitive, and
the fact that it can provide value in terms of dollars is valuable. However, their work
does come with some limitations. For one, their model requires probability models
of stakeholder’s beliefs, as well as economic models of expected pay-offs. These can
be very difficult to evaluate, especially at the very beginning of the design process.
Theoretically this model could be applied to situations where the economic piece
is not directly known, but without further work, it would be difficult to establish
the value generated of non-priced-based services. Overall, Brathwaite & Saleh’s work
provides an intuitive and clever way to approach the value process. Their work allows
for various trades, but can only be traded upon within the scope of a single case or
specific application, for example the hurricane tracking. This has the potential to
lead to an underestimate of the value of an EO system as new uses of such data are
discovered almost every day. Thus, a more general model that examines the value
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of information, but does not rely on probabilistic models and a specific output scope
would be desirable.

Figure 4-2: Value of Design Trade [60]

4.2.3 Commercially-driven Value

An alternative way to measure the value of a space system is through direct revenue
generation activities, and calculating the Net Present Value (NPV) of the system.
NPV has its historical roots in the financial sector, where it is commonly used to
value companies, investment opportunities, and other capital budgeting and capital
allocation activities [66]. At the highest level, the NPV is simply the difference of the
present value of all expected future cash inflows and the present value of all future
cash outflows. Another way to think about it is as the present value of revenue minus
the present value of costs. In the upcoming section 4.3.3.3, a more detailed description
of present value is given in order to assist in the value function derivation.

Geng et al. utilize the NPV concept and apply it to a telecommunication space system
[67]. In their work, they develop a complex revenue model of the spacecraft, as well as
a detailed spacecraft lifecycle cost model. What makes their model interesting from a
trade space exploration point of view is that they incorporate the key design choices
such as the number of transponders and mission lifetime in order to determine which
system produces the most NPV. The NPV model is quite useful because it not only
shows which spacecraft design maximizes NPV, but also shows the expected time to
break even, i.e. when NPV is equal to 0. Figure 4-3 shows their paper’s calculated
NPV as a function of the number of transponders. Figure 4-4 shows a NPV plot that
explains the time required to make NPV positive, in particular when two different
launch costs are assumed.

The benefit of this type of model is that it is backed by extensive financial theory, and
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the value accrued can be expressed in dollar terms. However, the biggest limitation to
this type of model is that the system must generate positive cash flows in order to be
used. Information can serve as a proxy for cash flows, but then other problems arise
that are addressed in the value of information work described above [60]. Since not all
EO constellations will be generating cash flows directly, i.e. the constellation owners
will not be selling data services, it is difficult to use this model in practice (note
that there are EO data providers that sell data gathered from their constellation, and
thus this type of methodology would work quite well for them). Constellations that
provide data as a public service, on the other hand, such as the European Sentinel
satellites which are part of the Copernicus program generate their data as a public
service. Again, a more general method of calculating value is needed in order to
overcome the limitations of this type of model.

Figure 4-3: NPV of Spacecraft with 3 Levels of Transponders [67]
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Figure 4-4: NPV of Spacecraft with 2 Launch Cost Situations [67]

4.2.4 Rules-Based Value Trades

Outside of direct value calculations, an alternative methodology to approach the value
problem is through rules-based systems. This methodology towards value discovery
was introduced by Dr. Daniel Selva in his PhD thesis [68]. His work was also discussed
in the following article: Reference [69]. It is important to note that Selva’s work served
as one part of the inspiration of the TAT-C tool, and he was actively involved with
the TAT-C formulation and implementation. In particular, he and his team focused
on the search strategies used in TAT-C, as discussed in section 3.1.1.

Selva’s work used rules-based systems in order to explore the architectural trade space
of EO constellations. In particular, Selva defined value as the ability to satisfy mission
requirements and satisfy the needs of the Earth Science Decadal Survey. Similar to
TAT-C, Selva formulated the architecture problem as a combinatorial optimization
problem. The key decision variables where what instruments to use, which instru-
ments to place on a satellite, and mission scheduling. As Selva explains, the rules-
based expert system uses expert knowledge to generate logical rules. In the scope of
Selva’s paper, these rules represent knowledge from domain experts that help guide
the optimal heuristic search process to find feasible and value driving architectures.
Figure 4-5 helps depict this process graphically.

Selva’s method is sophisticated and does an excellent job exploring the EO constel-
lation trade space. However, the largest limitation of the model is that rules-based
systems require expert knowledge, and modeling expert knowledge is time consuming
and expensive. Not only that, but by relying on rules derived by expert knowledge,
more novel or complex architectures may be neglected due to the tendency to focus
on what has worked in the past rather than what will work in the future. Thus a
value metric that does not rely on expert knowledge would be beneficial because it
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Figure 4-5: Selva Rules-Based Architecture Exploration Process [68]

could help discover new architectures that may have been sidelined in the past.

4.2.5 Case Studies

Similar to the value of information approach, another common way to determine the
value of a specific EO space system is through detailed case studies that attempt to
measure the direct and indirect benefits that arise due to the system. One of the
largest studies was conducted by the ACIL Allen Consulting group in 2015. This
group attempted to quantify the benefits that can be attributed to EO data, specif-
ically within Australia [70]. The results of this study are depicted in the following
figure.
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Figure 4-6: ACIL Allen Summary of Findings [70]

As Figure 4-6 shows, the total economic value add due to EO data was roughly $500
Million in 2015, and the total social and environmental impact was about $860 Million.
These are significant numbers, and reflect just the impact on Australia! ACIL Allen
went about this study by estimating the consumer surplus through various willingness
to pay studies as well as by examining the impact of EO services on the productivity
of downstream users of data. This study also looked at what would happen if there
was a loss of service, similar to the value of information approach. In summary,
the ACIL Allen case study provided a detailed breakdown of the value created by
EO data products. Unfortunately, the methods used in the case cannot be used at
the individual EO architecture level, and are thus not feasible for the scope of EO
constellation trades.

Another case study example comes from the United States Geological Survey (USGS).
The USGS examined the value that users derive from use of Landsat data products
by sending a survey to users who use medium resolution imagery in any capacity in
their work [71]. Over 2,500 people responded to the USGS survey, and through the
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study, the USGS learned about the value of Landsat data primarily by postulating
about what users would do if Landsat data no longer existed. They also examined
the willingness to pay for replacement imagery if Landsat data ceased to be provided
as well. This can be shown in the Figure 4-7. Similar to the ACIL Allen study,
these methods cannot be used at the architecture level, and thus are infeasible when
conducting large scale trades.

Figure 4-7: Willingness to Pay per Image Scene for Imagery to Replace Landsat
Imagery [71]

4.2.6 Literature Review Summary

As the previous section described, there have been efforts to utilize a value framework
to help mission planners and designers make more optimal decisions when it comes to
EO constellation architecting. Table 4.1 provides a summary of each primary method,
as well as their key limitations.

With the knowledge of the existing literature, it is evident that a standard value
based trade approach currently does not exist. A highly general model that can be
applied to hundreds or thousands of architectures is a crucial need in the industry.
The following section will derive a Value Function that overcomes the limitations
of the previous methodologies, and help establish a value based approach that the
National Academy of Sciences is currently searching for.
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Existing Value Approach Description Limitations

Value Network Modeling Utilizes stakeholder value flows
to determine optimal architecture

Need to understand all stakeholders
and various connections

Value of Information Looks at the benefits that arise from
having more information

Need probabilistic and economic models
to capture all architecture dynamics

Commercially-driven Value Use NPV theory to model
architecture value

Hard to expand beyond commercial,
revenue generating spacecraft

Rules-Based Value
Uses expert knowledge to guide the

optimal search of constellation
architectures

Modeling expert knowledge is time
and resource consuming and may not
be feasible during early design stages

Case Studies Examine benefits of EO after the fact
and applied to large scale systems

No way to scale down to the
individual architecture level

Table 4.1: Literature Review Summary

4.3 Value Function Derivation

4.3.1 Important Terminology

Before diving into the Value Function derivation, it is important to discuss two terms.
The first term, region of interest, was discussed in section 3.4.1. From the lens of the
end user, ROIs are set up to define the geographical bounds of interest. For example,
if the US government decided to create an EO constellation that emphasized the
continental United States, then it would set the ROI to represent the latitude and
longitude values that bound this geographic area. It is also possible to set up multiple
ROIs. By expanding the previous example, let’s say the United States government
wants to emphasize the continental United States and Alaska. This implies there are
two discrete ROIs. ROIs are important because they define the area of interest, i.e.
the area most valuable to the end user. It is possible to set the ROI to represent
the entire globe, but more useful information can often be gathered, especially in an
optimization sense, when a user sets a clear ROI or set of ROIs of a more regional
nature. From now on, this thesis will index a single ROI with the subscript 𝑘, and
represent the set of all ROIs with the variable 𝑅.

However, this leads to an important follow-up question. What if a user wants to
emphasize a subset of ROIs, more than others? This is a natural follow-up, but can
be quickly solved by applying weights to each individual ROI. If the end user weighs
each ROI uniformly, then the weights can be all set to 1. Following the above example,
if the US wants to emphasize the value coming from observing the continental United
States, it would assign a weight to the continental area that is higher than the weight
assigned to Alaska. From now on, this thesis will represent the weight of a single ROI
with the variable 𝑤𝑘 and note that all weights across all ROIs need to sum to 1 for
normalization purposes.

The second term has been developed to represent the combination of quality & quan-
tity of data. This term is called the Effective Data Acquired (EDA) [4]. Given that
each ROI can have its own unique quantity and quality of data gathered, or simply
put, its own EDA, this thesis will represent the EDA of a particular region 𝑘 with
the following notation: 𝐸𝐷𝐴𝑘.
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4.3.2 Function Overview

This thesis proposes that the value of an EO constellation architecture can be de-
scribed with a simple summation formula.

Architecture Value =
𝑅∑︁
𝑘

𝑤𝑘𝐸𝐷𝐴𝑘 (4.1)

As alluded to in the previous section, since each ROI is independent, the ROIs will be
evaluated individually and the data collected, quality of this data, and the weight of
the ROI will be used to create a value-based metric. 𝑤𝑘 is dimensionless, whereas the
EDA has units of bits [note that these units can be scaled to whatever form the end
user views as useful such as Megabytes or Gigabytes]. This functional form is simple,
but also very intuitive. Value is driven by the weighted summation of the quantity
and quality of data, which is conveniently wrapped in the EDA variable. Thus, the
structure, complexity, and usefulness of this proposed value function comes almost
entirely from the way EDA is defined and calculated.

4.3.3 Effective Data Acquired Calculation

Prior to diving into the EDA equations, a disclaimer must be given. Due to the
limitations of TAT-C, in particular the grid spacing effects described in section 3.4.2,
as well as the nuanced nature of capturing the quantity and quality of data, the EDA
formulation has rapidly evolved over the last year and a half. Constant iterations and
improvements have been made in order to make the most robust and accurate model
as possible. The functional form of the EDA could change in the future, thus the
formulation that will be proposed should be examined as a living model that can and
most likely will be updated in the future. The author of this thesis utilizes versions
in order to keep track of the various iterations. At the time of writing, the EDA
functional form represents the 2𝑛𝑑 complete version, or simply version 2.0.

The EDA of ROI 𝑘 can be expressed as followed:

𝐸𝐷𝐴𝑘 =

𝑁𝑘∑︁
𝑖=1

𝐴𝑖∑︁
𝑗=1

(𝑄𝑖𝑗𝜇𝑖𝑗)𝑓(𝑗; 𝜃) (4.2)

Let’s break down each of the variables described in the above equation.
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Variable [Units] Description

𝑁𝑘
Total Number of Points of Interest

observed by the Architecture over Region 𝑘

𝐴𝑖
Total Number of Access Events

where Point of Interest 𝑖 is observed

𝑄𝑖𝑗 [Bits] Data Collected of Point of Interest 𝑖
during Access Event 𝑗

𝜇𝑖𝑗
Instrument Quality Metric of

Point of Interest 𝑖 during Access Event 𝑗
𝑓(𝑗; 𝜃) Access Event Scaling Function

Table 4.2: Variable Description for EDA Calculations

𝑁𝑘 and 𝐴𝑖 are purely dependent on the way the Orbits & Coverage module generates
the grid points within each ROI as well as how the orbits are propagated during the
numerical simulation. It is also worth noting that the longer the simulation in terms
of the overall mission duration, which is set by the end user, the larger 𝐴𝑖 will be.
𝐴𝑖 is an important variable because it serves as a proxy for time. As the 𝑗 index
in the EDA function increases towards 𝐴𝑖, this by definition also implies that the
time of the mission is increasing. This is important because by having a proxy for
time, it is possible to consider timing related effects such as discounting or scaling.
𝑓(𝑗; 𝜃) represents this time scaling function and it will be discussed in section 4.3.3.3.
Variables 𝑄𝑖𝑗 and 𝜇𝑖𝑗 are more nuanced variables and will be explained in sections
4.3.3.1 and 4.3.3.2 respectively.

4.3.3.1 𝑄𝑖𝑗 Breakdown

Understanding how much data is collected is critical for understanding how much
value a constellation is generating. Unfortunately, this is a non-trivial problem. For
one, the data collected by a satellite instrument does not automatically translate to
data received by an end user. There are many limiting factors such as downlink
issues, command and data handling issues, and many more that make it difficult to
acquire an image and transmit this raw data down to the ground immediately. Also,
due to the grid spacing issues within the Orbits & Coverage module, the way access
events are recorded can impact the quantity of data. Thus, it is important to note
that the quantity of data metric proposed in this thesis, 𝑄𝑖𝑗, serves as a proxy of
the actual data collected by the satellite. The actual amount of data collected could
be more or it could be less. Usually this is a cause of concern when examining this
in an absolute sense. However, the goal of the value model is to produce a model
that can be used in architecture comparison. Because of this fact, absolute data
quantity is not as important as relative comparison. What this means is that even
though the model may not produce an absolutely accurate representation of data
quantity, if architecture A collects 5 times as much data as architecture B, then it
is rational to conclude that architecture A collected more data than architecture B.
Note, for architecture selection purposes it is not important to know how much data
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was actually collected by architecture A, rather, it is just worth noting the relative
amount of data collected between the two architectures. With this knowledge in
mind, it is now possible to derive the equations needed to generate the proxy amount
of data collected.

𝑄𝑖𝑗 = Number of Ground Pixels * Bits per Pixel (4.3)

Number of Ground Pixels =
Access Event Footprint Area

Ground Pixel Area
(4.4)

Ground Pixel Area = 𝜌𝐶𝑇𝜌𝐴𝑇 (4.5)

Access Event Footprint Area = Footprint Length * Footprint Width (4.6)

Footprint Length = 2ℎ tan
𝐶𝑟𝑜𝑠𝑠𝑇𝑟𝑎𝑐𝑘𝐹𝑂𝑉

2
(4.7)

Footprint Width = 2ℎ tan
𝐴𝑙𝑜𝑛𝑔𝑇𝑟𝑎𝑐𝑘𝐹𝑂𝑉

2
(4.8)

As the above equations show, the amount of data collected during access event 𝑗
and of POI 𝑖 is a function of the bits per pixel of the instrument, the ground pixel
resolution of that access event, 𝜌𝐴𝑇/𝐶𝑇 , and the footprint area of the image on the
Earth’s surface.

The bits per pixel of the instrument is provided in the instrument specifications, and
will be held constant assuming a single instrument is being analyzed. The bits per
pixel describes the quantization of the imager, or the number of bits contained in
a single pixel. The footprint area, or the size of the image captured, is a function
of the Cross Track Field of View (FOV) and the Along Track FOV. Although the
instrument module only calculates ground pixels that are observed in the cross-track
direction, when determining the footprint area both along and cross track must be
considered. The instrument module limitation will impact when an access event
is recorded, but when an event is recorded, obtaining an accurate measure of the
footprint area requires both along and cross track directions. Similar to the bits per
pixel, these two terms are also specified in the instrument specifications meaning they
are held constant for a single instrument. The footprint area is also a function of the
altitude of the satellite. This is important to note because all else being constant,
the higher the altitude the larger the footprint, and thus the larger quantity of data
collected. However, as the altitude increases, the ground pixel area decreases. These
two forces tend to cancel each other out which is important because it means that
higher altitudes do not explicitly imply larger quantities of data collected, which is
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true in practice. The footprint area equation above represents a rectangular sensor
type. In practice, an instrument could have a rectangular sensor or even a conical
sensor. These can be expressed visually in Figure 3-6 that is also shown below for
reference.

Figure 4-8: Representation of Conical and Rectangular Sensor

For a conical sensor, the footprint area can be calculated as followed.

Conical Radius = ℎ tan
𝐶𝑜𝑛𝑖𝑐𝑎𝑙𝐹𝑂𝑉

2
(4.9)

Conical Sensor Footprint Area = 𝜋(Conical Radius)2 (4.10)

In summary, the amount of data collected at each access event for a single POI is
primarily driven by the orbital mechanics and the instrument specifications. These
two factors do impact the actual quantity of data in reality, thus 𝑄𝑖𝑗 can be looked
at as a reasonable proxy for the amount of data collected.

4.3.3.2 𝜇𝑖𝑗 Breakdown

The second component of the Value Function term 𝐸𝐷𝐴𝑘 is to consider the quality
of data that has been acquired. Each time an instrument takes an image of the
Earth, this data can be high or low quality. Higher quality data is preferred, in
that scientists and end users can use it for more useful purposes. The reason why this
quality metric is labeled the Instrument Quality metric, is because it varies depending
on the instrument class.

91



For Passive Optical Scanners, this thesis proposes the use of the SNR. For a detailed
description and functional decomposition of the SNR, see sections 2.2.3.1 and 3.5.4
respectively. Based on the way the EDA metric is formulated, see equation 4.2, the
higher the instrument quality metric, the higher the EDA and thus architecture value,
all else constant. This makes sense because a higher quality of data implies more value
to the end user. Because increasing SNR implies higher quality of data, this thesis
sets 𝜇𝑖𝑗 to be equivalent to the SNR at an access event 𝑗 for a POI 𝑖.

𝜇𝑖𝑗 = 𝑆𝑁𝑅𝑖𝑗 For Passive Optical Scanners (4.11)

For Synthetic Aperture Radars, this thesis proposes the use of the Achievable noise
equivalent reflectivity, also known as the 𝜎𝑁 or 𝜎𝑁𝐸𝑍0 as the instrument quality
metric. However, unlike SNR, where increases in the SNR imply an increase in image
quality, for 𝜎𝑁 , the reverse is true. The lower the 𝜎𝑁 , the higher the image quality.
In order to accurately capture these dynamics, 𝜇𝑖𝑗 must be cleverly transformed to
ensure that the proper value hypothesis dynamics still function properly. 𝜇𝑖𝑗 for SAR
instruments is defined as followed

𝜇𝑖𝑗 = −(𝜎𝑁)𝑖𝑗 + 𝐶 For Synthetic Aperture Radars (4.12)

The first and most important question that comes from this formulation is what is the
𝐶 value in the equation. Here, 𝐶 represents a constant value that will be applied to
all architectures that are being compared. The reason for 𝐶 is to create a functional
structure that allows the EDA to increase while data quantity is increasing, and data
quality is increasing. In the SAR case, data quality increases when the instrument
quality metric, 𝜎𝑁 , decreases. This can best be expressed visually in the following
figure. Figure 4-9 depicts the 𝜇𝑖𝑗 function for SAR instruments. In this case, it shows
it for a 𝐶 set to 30.
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Figure 4-9: Example 𝜇𝑖𝑗 Functional Form for SAR Instruments

The above figure shows how the SAR instrument quality will increase even as 𝜎𝑁
decreases, thus achieving the desired functional form. Currently, this thesis sets 𝐶 to
be the maximum value of 𝜎𝑁 across all architectures for the given simulation. This is
by no means the best way to set C, but enables numerical results to be bounded within
a reasonable range. This concept will be revisited in Section 5.3, which discusses a
SAR case study.

In summary, this thesis uses two common and well understood instrument perfor-
mance metrics in order to capture the quality of data that is being obtained by the
architecture. These metrics were used not only due to their large use in the field, but
because they also are outputs of the Instrument Module from TAT-C. This means
the Value Module has all of the necessary pieces from a computational standpoint
from the standard outputs of TAT-C.

4.3.3.3 Scaling Factor: 𝑓(𝑗; 𝜃) Breakdown

The last core component of the EDA function is the time scaling factor, or 𝑓(𝑗; 𝜃).
As the formula suggests, this scaling factor is a function of the 𝑗𝑡ℎ access event of POI
𝑖, parameterized by a value 𝜃. The parameter 𝜃 will be discussed shortly. Given the
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way the function is created as well as in practical implementation, all of the access
events for a POI 𝑖 are sorted according to their time from the start of mission. This
implies 𝑗 = 1 is the first access event for POI 𝑖 and 𝑗 = 𝐴𝑖 is the last access event for
POI 𝑖.

This time function was inspired by an important concept in Finance: the time value
of money [72]. In the financial world, assets received today are worth more than assets
received tomorrow. This is because assets that are received today can be deployed
and put to work in order to generate returns prior to receiving assets tomorrow. In
the standard form, the time value of an asset can be expressed mathematically. Let’s
say an asset, 𝐴, is received in T days time. If the daily interest rate 𝑟 is assumed,
and the time horizon is set to 𝑇 days, then the value of this asset today, 𝐴0, can
be written as follows in its time discretized form. (Note: a continuous time version
contains the exponential 𝑒−𝑟𝑡).

𝐴0 =
𝐴

(1 + 𝑟)𝑇
(4.13)

As this formula shows, as long as the interest rate is greater than 0, then the value of
an asset received in the future is less than the asset value 𝐴0 had we simply received
it today. This formulation can also be generalized for various other asset flows - such
as information - that occur at each time step.

𝐴0 =
𝑇∑︁
𝑡=1

𝐴𝑖

(1 + 𝑟)𝑡
(4.14)

Following on this analogy, this thesis also postulates that the value of data gathered
by a satellite today is worth more than data gathered tomorrow, assuming constant
downlink latency. The more data a scientist or end user has today, the higher like-
lihood that they can deploy models, algorithms, etc., that generate value to various
stakeholders. Just how in the financial world different agents have different interest
rates to express their sensitivity to time, different end users could also have different
time based rates as well. For example, given that glaciers move very slowly, scientists
that observe glacier movements have a smaller sensitivity to time compared to scien-
tists who track hurricanes since hurricanes move at 10 m/s whereas glaciers move at
less than 0.0001 m/s, meaning data taken today that is also received today is only
slightly more valuable than data taken today received tomorrow [73]. Following the
financial example, this would imply an interest rate close to 0. Hurricane monitor-
ing is the opposite, where timely data is absolutely key to mitigate loss of life and
property. In this case, 𝑟 would be set quite high. The question then becomes how
does the time value of data work its way into the EDA formulation, i.e. how is 𝑓(𝑗; 𝜃)
defined?

When developing the 𝑓(𝑗; 𝜃) function, simplicity and physical intuition are paramount.
Following the financial analogy, the scaling function could be set as follows:
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𝑓(𝑗; 𝜃) =
1

(1 + 𝜃)𝑗
(4.15)

As 𝑗 increases, the scaling factor 𝑓 gets smaller assuming a constant 𝜃. To help depict
this, a simple example case can be created. By setting 𝜃 to be equal to 0.05, and 𝐴,
which can be thought of as 𝑄𝑖𝑗𝜇𝑖𝑗, to 10, then we can plot the cumulative sum similar
to how the EDA is formulated.

Figure 4-10: Scaling Factor Represented as Time Value of Data
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The above figure not only depicts the formulation that is similar to the financial time
value of money concept, but also compares it to a scaling function that is set to 1,
meaning there is no scale applied. This is important because as the curves show, the
scaling function is never above the non-scaled version. This mathematically makes
sense, but may not make much sense in a physical intuition sense. What this means
is that the first one or two access events, for example, may be most valuable to
the end user. In fact, these two access events may provide more value than when
no scaling factor is applied at all. However, as 𝑗 increases, the value of additional
observations decreases as well. This concept is best known as having diminishing
returns, meaning each subsequent contribution to the EDA decreases until the EDA
overall roughly levels out. Equation 4.15 exhibits this behavior, but it does not allow
for that increase in value that is sought after at the key beginning stages. In order to
exhibit this behavior, the function must be updated as followed.

𝑓(𝑗; 𝜃1, 𝜃2) =
1

(1 + 𝜃1)𝑗−𝜃2
(4.16)

As the equation shows, there are now two parameters, 𝜃1 and 𝜃2. 𝜃1 controls the rate,
where as 𝜃2 gives the function the ability to increase at the beginning by making the
exponent negative, and then decrease overall. Figure 4-11 depicts this graphically,
where again 𝐴 was set to 10, and 𝜃1 was set to 0.05 and 𝜃2 was set to 5.

Figure 4-11: Scaling Factor with Increasing Returns at
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Although this functional form captures the dynamics that are desired, there are now
two parameters that must be determined. In order to maintain the functional form
and reduce the parameter dimension, the following functional form will be used from
now on in order to describe the scaling function.

𝑓(𝑗; 𝜃) =
1

(𝑗 + 1) * 𝜃
(4.17)

This new equation provides the same diminishing returns, while also enabling higher
value to be associated to earlier access events. The only negative of this functional
form is that it no longer adheres to the standard time value of data concept. This is
because lower values of 𝜃 actually increase the value for early access events. Using
the same 𝐴 as for Figures 4-10 & 4-11, the following figure was generated to depict
how the cumulative sum changes as a function of 𝑗 for varying levels of 𝜃. As Figure
4-10 shows, depending on the 𝜃 used, the amount of value attributed to the early
onset access events can be greatly influenced. What is important to examine is where
each 𝜃 curve intersects the linear curve. These critical points help determine how
much increased value to attribute to a certain number of access events. In actual
implementation, the 𝜃 value can be set by the end user, or even tuned using standard
validation practices in order to find an optimal value.

As a concrete example, using Figure 4-12 as reference, Table 4.3 shows example 𝜃
values for two applications: hurricane and glacier analysis.

Application 𝜃 Range Rationale

Hurricane Tracking 0.1 - 0.2 Majority of the value comes
from first few images.

Glacier Analysis 0.5 - Linear Glacier data today is minimally
more valuable than data in the future.

Table 4.3: 𝜃 Ranges for Hurricane & Glacier Applications

One final point is that 𝐴𝑖, which already serves as a proxy of time, also indirectly
contains information about the number of satellites in a constellation. As the number
of satellites in a constellation increases, the number of access events for a given POI
will also increase since there are more eyes in the sky able to observe it.

4.3.3.4 EDA Formulation Summary

Pulling together the above analysis, the EDA function can be re-written as follows:

𝐸𝐷𝐴𝑘 =

𝑁𝑘∑︁
𝑖=1

𝐴𝑖∑︁
𝑗=1

(𝑄𝑖𝑗𝑆𝑁𝑅𝑖𝑗)(
1

(𝑗 + 1) * 𝜃
) For Passive Optical Scanners (4.18)
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Figure 4-12: Simplified Scaling Factor Functional Decomposition

𝐸𝐷𝐴𝑘 =

𝑁𝑘∑︁
𝑖=1

𝐴𝑖∑︁
𝑗=1

(𝑄𝑖𝑗
1

|(𝜎𝑁)𝑖𝑗
|)( 1

(𝑗 + 1) * 𝜃
) For Synthetic Aperture Radars (4.19)

Thus, the value of a single EO constellation architecture that consists of 𝑅 ROIs can
also be re-written as:

Architecture Value =
𝑅∑︁
𝑘

𝑤𝑘

𝑁𝑘∑︁
𝑖=1

𝐴𝑖∑︁
𝑗=1

(𝑄𝑖𝑗𝜇𝑖𝑗)(
1

(𝑗 + 1) * 𝜃
) (4.20)

The additional outer sum here sums the value of the EO observation architecture
across all regions of interest specified on the surface of the Earth.
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4.4 Value Function Limitations

Although the Value function as formulated above does an effective job capturing
the various dynamics that impact value at a general level, there still exist some key
limitations to the current formulation.

4.4.1 Expert Knowledge

One of the most important limitations to the value model is that it does not use pre-
vious expert knowledge about EO constellations to calculate value. This is by design
- the model was developed to not require previous knowledge, but this can still cause
certain problems that are worth addressing. According to the value formulation, EO
constellations that gather more high quality data are valued more than those that
gather less high quality data. This in a sense gives value to the supply side of Earth
Science data as opposed to the demand side. To calculate the quantity and quality of
data, 𝑄𝑖𝑗 and 𝜇𝑖𝑗 respectively, calculations that involve orbital geometry and instru-
ment specifications are used. However, these calculations do not consider important
geometric concepts such as how Sun-synchronous Orbits (SSO) allow almost constant
lighting conditions when the satellite is overhead [23]. This can be useful for a wide
variety of applications that use EO observation data [74]. Ideal geometric concepts
like SSO can trickle through 𝜇𝑖𝑗, but this single metric may not capture all of the
valuable dynamics involved. Utilizing expert knowledge can be an efficient way to
address the value trade approach, similar to how Selva used it to develop rules-based
systems [68]. Although this is a limitation of the model, the lack of explicit repre-
sentation of expert knowledge enables the metric to be used in the absence of expert
knowledge which can be costly to acquire.

4.4.2 Missing Data

The value function formulation can be looked at as a post processing tool, thus the
inputs to this model are critical. Using a tool such as TAT-C provides the necessary
data to calculate the value metric, however, if a user does not have access to TAT-C,
then it may be difficult to utilize the value function. It cannot be calculated using
simple hand calculations, even though it may be approximated that way. This is
emphasised by the need for instrument specific observation data which is non-trivial
to calculate. This makes large scale use of the value metric, which is ideal because it
will enable continuous improvement, more challenging. However, given the reliance
on data from TAT-C, the value function has been implemented directly into the code
base so end users can calculate value while executing TAT-C in its entirety.

4.4.3 Relative vs. Absolute Results

Although the Value Function produces results that have a familiar unit of measure-
ment, the actual numerical representation may not be particularly helpful to the end
user. If one architecture produces 1,000 GB of value as defined by the Value Function,
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this may seem like a large quantity, but it can only be compared against other archi-
tectures in a comparative sense. Thus it is a relative metric, not an absolute metric.
On the surface, this is not a major limitation, but it is worth noting so that future
users do not get confused by the scale of results. Once a particular architecture has
been selected during pre-Phase A using TAT-C a more detailed analysis and absolute
data output predictions can be made.
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Chapter 5

Value Function Case Studies

In order to better understand the underlining dynamics of the Value Function, this
thesis completed a set of case studies. The first set of case studies, which will now be
referred to as Case Study A, focus on existing EO constellations. In particular, Case
Study A will perform a value-driven trade on the existing Landsat and RapidEye
constellations. This will provide validation that the value framework developed here
is applicable to existing architectures. The second set of case studies, which will be
referred to as Case Study B, will focus on a particular use case: the make or buy
decision (should an organization purchase off-the-shelf imagery or launch a dedicated
EO constellation?). Case Study B will highlight the importance of value-driven trade
studies in order to make the critical make or buy decision from an EO data per-
spective. Finally, Case Study C will perform a small architecture exploration for a
proposed SAR small satellite constellation. This case study will show how the Value
Framework can be applied to future missions and those with SAR instruments.

5.1 Case Study A: Existing Earth Observation Mis-
sion Trade Analysis

Case Study A will examine two existing EO constellations: Landsat and RapidEye.
Although Landsat is not a multi-spacecraft constellation, its extensive use, impor-
tance, and publicly available information make it a suitable candidate for analysis.
The RapidEye constellation consists of 5 small-size & identical EO satellites, which
makes it a very interesting case study to evaluate [1].

5.1.1 Landsat

Before diving into the results of the Landsat trade analysis, it is important to under-
stand the Landsat satellite and how the trade analysis was developed. For this case
study, the Landsat 8 satellite was utilized as a reference. The Landsat 8 mission was
created in order to continue the United States government’s effort to maintain EO
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data continuity [18]. The Landsat 8 satellite was launched on February 11, 2013 by
the United Launch Alliance from the Vandenberg Air Force Base in California [75].
The primary mission objectives of Landsat 8 included the following [76].

∙ Collect and archive multispectral & thermal data affording to seasonal coverage
of the globe for a period of no less than five years

∙ Ensure that the Landsat Data Continuity Mission data are consistent with data
from previous Landsat Missions

∙ Distribute Landsat data products to users at no cost

The following two tables show the high level attributes of the Landsat 8 satellite,
which include spacecraft mass and orbital geometry, and the instrument specifications
for the OLI onboard instrument [18], [77]. Note the wavelength used represents a
single image band, visible blue, for analysis.

Attribute Value
Spacecraft Mass 2623 kg

Altitude 705 km
Inclination SSO - 98.22∘

Table 5.1: Landsat 8 High Level Attributes

Instrument Specification OLI Value
Mass [kg] 450

d [m] 0.000036
f [m] 0.8451

Along Track FOV 0.00244∘

Cross Track FOV 15∘

𝜆 [m] 4.82e-7
𝐷𝑎𝑝 [m] 0.132
𝜏𝑜𝑝 0.9
𝑄𝐸 0.9
𝑁𝑟 20

Bits per Pixel 12

Table 5.2: Landsat 8 Instrument Specifications

Now that we have a better understanding of the existing Landsat satellite, it is possible
to design a trade study to re-evaluate the existing mission design in a value-focused
framework. In particular, this thesis examines how the high level attributes of orbital
altitude and inclination impact the value function, and whether the existing design
of Landsat 8 is the optimal design from a value-focused mindset.

From a trade space perspective, this thesis utilizes 5 design variables. Table 5.3 breaks
down the design variables and the values that were traded upon for each. Table 5.4
shows the design parameters that were held constant for the analysis.

102



Design Variable Traded Values
Number of Satellites [1, 2, 3, 4]

Number of Orbital Planes [1, 2]
Orbital Altitude [500, 550, 600, 650, 700, 710, 750, 800]

Inclination [0∘, 30∘, 60∘, 90∘, SSO]

Table 5.3: Landsat Trade Analysis Design Variables

Design Parameter Constant Values
Constellation Type Homogeneous Walker
Region of Interest Global

Simulation Duration 40 days
Maximum Grid Size 1000 Grid Points

Table 5.4: Landsat Trade Analysis Constant Design Parameters

Given the range of design variables, 320 unique architectures were generated using
the TAT-C program. It is worth noting that more values of inclination, altitude,
etc., could have been used, but this would have dramatically increased the size of the
tradespace. Also, the ROI for each architecture was held constant to encompass the
entire globe, and the type of constellation was also set constant to represent a Homo-
geneous Walker. Heterogeneous Walker constellations, although more interesting due
to the increased combinatorial space, become computationally extensive, and thus
were not considered. Also in a heterogeneous constellation other parameters such
as GSD and image quality may be more difficult to compare to Landsat 8 and thus
undermine the data continuity part of the mission.

5.1.1.1 Results

It is first worth examining the distribution of grid points, or POIs, generated by
TAT-C during this case study. As explained prior, the target region was set to be the
entire globe, and the maximum number of grid points was set to 1000. Because of this,
Figure 5-1 displays the Earth as a flat globe, specifically an equirectangular projection,
and where each POI was centered from a latitude and longitude perspective.
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Figure 5-1: TAT-C Global Grid Point Distribution (1000 points)

One of the best ways to analyze the Value Function metric is to plot it against the
estimated lifecycle cost of the architecture. Figure 5-2 below depicts this relationship.
Note, that this plot is showing the relationship between architecture value and cost
when 𝜃 from the access event scaling function is set to 0.1. Changing the 𝜃 value will
simply change the scale of the Architecture Value, but the relative shape of the graph
will stay constant. See Appendix A for detailed representations of the Architecture
Value plots for various values of 𝜃. It is also worth noting that in the below figures,
the variation of colors for each data point is based on a specific attribute of the
constellation. For example, in the first plot shown, Figure 5-2, the color is based on
the altitude of the satellites in the constellation. In the figure, the actual Landsat-8
architecture is labeled with the purple X on the left side. Visualizing where this
architecture exists within the tradespace is important and will be the main focus in
the upcoming discussion. Also, a polynomial line of best fit of degree 2 was added to
each graph to help display the non-linear nature of the Value Function as a function
of lifecycle cost (which is primarily driven by the number of satellites - see Section
3.6.1 for a detailed breakdown of the TAT-C cost module). This shows a relationship
of diminishing returns as would be expected. Also higher altitude orbits appear more
valuable, presumably because of improved POI revisit frequency as discussed below
in more detail. The coefficient of determination, or 𝑅2, is also displayed for this line
of best fit.
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Figure 5-2: Landsat Architecture Value Analysis
Color Scheme: Altitude

The following three figures show the architecture value and cost relationship, just
as Figure 5-2, but the color of each data point is based on the inclination of the
constellation orbit, the number of POIs observed per architecture, and the average
revisit time for each architecture respectively. From these charts, it becomes clear
that the Pareto-optimal set of architectures exist when specific conditions are met.
If the number of satellites is held constant, the optimal architectures always have an
inclination of 90∘ and an altitude of 800 km. The following section will take a deeper
look into this phenomena.
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Figure 5-3: Landsat Architecture Value Analysis
Color Scheme: Inclination
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Figure 5-4: Landsat Architecture Value Analysis
Color Scheme: POI Observations

With regards to the number of POIs observed, there is no guarantee that all 1000
POIs will be observed during a simulation, especially if specific orbital elements do
not prohibit certain areas to be observed or the simulation time is not sufficient.
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Figure 5-5: Landsat Architecture Value Analysis
Color Scheme: Revisit Time

Another useful visualization is to display the architecture value as a function of aver-
age revisit time. Average revisit time is a very common metric that mission designers
care about, so understanding the dynamics involved is quite helpful. Figure 5-6
displays this relationship. Again, as in Figure 5-2, 𝜃 from the access event scaling
function is set to 0.1. Note how in Figure 5-6, the average revisit time tends to de-
crease as the number of satellites increase. (The worst case revisit time for the actual
Landsat 8 satellite is 16 days [18]. This difference is due to the grid spacing and the
way the Orbits & Coverage module calculates revisit.)
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Figure 5-6: Landsat Value - Revisit Time Analysis
Color Scheme: # of Satellites

After exploring the data, another useful way to evaluate the relationship between
value and revisit time is by showing the inclination of each architecture as the color
scheme of the figure. Figure 5-7 depicts this, and helps explain the stratification
within the data.
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Figure 5-7: Landsat Value - Revisit Time Analysis
Color Scheme: Inclination

108



5.1.1.2 Discussion

From all of the figures displayed above, it is evident that the existing Landsat constel-
lation architecture is not optimal within the value framework presented in this thesis.
To break this down, it is important to isolate variables in order to see which variables
were having the strongest effect. Given that the Landsat constellation consists of a
single spacecraft, this thesis will pay close attention to the simulated architectures
that only contain a single satellite.

This trade analysis generated 32 architectures that have a single satellite. The actual
Landsat architecture had the 10𝑡ℎ highest architecture value of these 32 architectures.
It is again worth noting that the actual numerical value generated by the Value
Function is not relevant in an absolute sense, rather, the relative comparison of value
across architectures is important. By normalizing the value generated by the actual
Landsat 8 architecture (architecture index 232), it is easy to see how much more
or less value each architecture generates, as seen in Figure 5-8. From this figure,
the best architecture, as defined by the value function, generates 19.44% more value
as compared to the actual Landsat architecture. Thus for the same lifecycle cost,
architecture 304 gets roughly 20% more value per dollar spent! Let’s dive deeper into
this to understand why this maybe the case.

Figure 5-8: Top 15 Single Satellite Architectures
Actual Landsat Highlighted Blue

Architecture Normalized Value Cost [$M] POIs Observed Revisit Time [hr] Inclination Altitude
arch-304 119.44 746.89 999 119.72 90 800
arch-232 100.00 746.89 986 124 98 710

Table 5.5: Landsat Architecture Compared to Best Single Satellite Architecture
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By examining Table 5.5, a couple of things become apparent. The first is that archi-
tecture 304 observed 13 more POIs as compared to the actual Landsat architecture.
(Note that if the simulation time was increased, we would expect all POIs to be
observed by the Landsat reference architecture.) Given the way the value function
is formulated, this will cause more value to be accrued since more POI observations
implies more data generated. However, 13 more POIs only represents a 1.32% dif-
ference. The next key set of parameters to examine are the inclination and altitude
of the respective orbits. Architecture 304 has a higher altitude and a perfect polar
orbit. Initially, it is difficult to understand how this would cause a large difference
in value, but by digging deeper into how this impacts the SNR distribution, a clear
difference arises.
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Figure 5-9: Landsat Architecture SNR Comparison to Best Single Satellite Arch.
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Figure 5-9 shows the actual Landsat SNR distribution in red and architecture 304
distribution in Blue. Notice how architecture 304 has higher density of larger SNR
observations, which implies higher quality data. This is an important discovery, and
helps drive the bulk of the difference between architecture 304 and the actual Landsat
architecture. As section 3.5.4 breaks down, there are a multitude of factors that go
into calculating the SNR for a single observation. Thus it is hard to make a statement
about how the SNR is impacted by altitude and inclination given they impact a wide
variety of competing sub-functions including 𝜌𝐶𝑇/𝐴𝑇 and 𝜃𝑆𝑜𝑙𝑎𝑟𝑖 . However, what is
evident is that the max SNR value for the Landsat architecture is 1140 db, and the
max SNR for architecture 304 is 1400. This is a 22.8% difference. Equation 3.12 shows
that the GP Area is directly proportional to 𝑁𝑠, which is the numerator in the SNR
equation. 𝑁𝑠 is also in the denominator. Since 𝑁𝑟 is an instrument specification, we
can back out 𝑁𝑠 for each architecture. Table 5.6 depicts the 𝑁𝑠 values for architecture
232 and 304 and the percent difference.

Architecture 𝑁𝑠

232 1299999.8769609
304 1960399.9184006

Difference 51%

Table 5.6: 𝑁𝑠 Data Table for Landsat Architectures

As the above table shows, there is a large difference in the number of photons at the
detector for each architecture. This is driven primarily by the ground pixel area, but
can also be influenced by R and 𝑇𝑖, the integration time of the ground pixel. What
is clear from this comparison is that higher altitudes and the polar orbit allows for
more signal photons to be detected, which results in a larger SNR distribution.

Attribute Architecture 304 Architecture 232 Percent Difference
Altitude [km] 800 710 12.676%

Average Cross Track GP Resolution [m] 34.2882001 30.4500131 12.605%
Average Along Track GP Resolution [m] 34.1770352 30.341798 12.64%

Average GP Area [𝑚2] 1171.86902 923.908144 26.838%
Average GP Area [𝑘𝑚2] 0.00117187 0.00092391 26.838%
Footprint Area [𝑘𝑚2] 29.211887 23.0089254 26.959%

Number of Ground Pixels 24927.6041 24903.9101 0.095%

Table 5.7: Landsat and Best Single Spacecraft 𝑄𝑖𝑗 Detailed Breakdown

To further compare these two architectures, it is also important to examine the inputs
that feed into the 𝑄𝑖𝑗, or data quantity calculation. The major inputs for the data
quantity calculation, as seen in section 4.3.3.1, include the altitude of the satellite,
the ground pixel resolution, and footprint area. Table 5.7 compares these attributes
for architecture 304 and the Landsat architecture, and shows how they differ. What
is important to note is that although the ground pixel resolution is 26.84% higher,
thus worse, for architecture 304, the difference in altitude and footprint area implies
more ground pixels covered in each POI access event. These two forces counteract
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one another, and yield a slight difference in the number of ground pixels observed
per access event which also helps explain the difference in value obtained by each
architecture. Overall, the big driving factor behind the enhanced performance from a
value framework of architecture 304 as compared to the actual Landsat 8 architecture
232 is the superior SNR distribution. The amount of data collected is also higher due
to more POI observations driven by the higher altitude and an increased number of
ground pixels gathered per access event, but these impact the spread in a smaller
fashion.

While thinking about the SNR distribution, this thesis will now briefly discuss the
impact of band choice in the tradespace. For this case study, a single band was used,
the blue band, at a central wavelength, 𝜆, of 4.82e-7 meters. The way the Value
Function is formulated, 𝜆 will not impact the quantity of data collected, but will
impact the SNR calculated at each orbital pass. In particular, 𝜆 directly impacts
the equation that calculates the radiance from Earth in the direction of the target,
or 𝐿𝐸. (For further breakdown of this equation, see Equation 3.14) While, this does
not directly imply that certain bands provide more quality over others, it is a useful
exercise to see how the Value metric and SNR distribution would change if the 𝜆 used
was different. To show this, architecture-304, the best single satellite architecture,
was re-run but using the red, green, and NIR bands. The 𝜆 for these bands are shown
below in Table 5.8.

Band Name Central Wavelength [m]
Red 6.45e-7

Green 5.55e-7
NIR 8.65e-7

Table 5.8: Alternative Bands for Architecture Analysis

As stated prior, the band wavelength will impact the SNR of an observation. For
architecture-304, the following plots show the SNR distribution compared to the
standard blue band that was used for the analysis in this case study.
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Figure 5-10: Architecture 304 Red Band Comparison
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Figure 5-11: Architecture 304 Green Band Comparison

113



0 200 400 600 800 1000 1200 1400
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0 Blue Band
NIR Band

SNR

Pr
ob

ab
ili

ty
 D

en
si

ty
 %

Figure 5-12: Architecture 304 NIR Band Comparison

Figure 5-13 shows the SNR distribution plot but comparing all four bands: blue, red,
green, and NIR.
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Figure 5-13: Architecture 304 All Band Comparison
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As the above figures show, changing the band used for analysis can have both minor
and large changes to the overall SNR distribution. This would also imply that the
value obtained by each architecture would change as well. Table 5.9 below shows the
amount of value gathered by each architecture, and how it compares to the blue band
architecture 304.

Band Architecture Value [GB] Normalized Value to Blue Band Normalized 𝜆 to Blue Band
Red 127.8048347 105.76% 133.82%

Green 126.9076275 105.02% 115.15%
NIR 116.4014198 96.32% 179.46%

Table 5.9: Architecture Value Comparison for 3 Alternative Instrument Operating
Bands

Equation 3.14 shows that a simple change in 𝜆, all else constant, does not impact the
SNR calculation in a direct linear fashion. When examining Table 5.9, what is critical
to focus in on is that different bands will generate different amounts of value, both
positively and negatively. The pure amount of value will differ by a few percentage
points, but it does create a change. This analysis should not be used to say a band
is superior to another band, but rather show how the numerical results are impacted
by an important instrument parameter. Future work will discuss the importance of
evaluating multi-band instruments.

To finalize the Landsat tradespace analysis, it is important to view the architectures
that had the highest architecture value across the entire tradespace. Figure 5-14 dis-
plays the top 20 architectures along with the actual Landsat architecture highlighted
in blue.

Figure 5-14: Top 20 Architectures as Ranked by Value Function
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From the above table, some very important factors come into focus. The first is
that almost all of the top 20 best architectures have 4 satellites, i.e. the maximum
amount allocated during the tradespace search. This makes intuitive sense because
more satellites can capture more data. However, it is worth noting that these archi-
tectures do not have the best ratio of architecture value to number of satellites. Given
the scaling function used, there is not a linear relationship between the number of
satellites and architecture value. Table 5.10 shows the top 20 architectures, but with
their respective ratio of value per satellite. What immediately becomes apparent is
the actual Landsat architecture has a value per satellite 78% greater than the best
architecture overall, even though the best architecture generates 123.55% more value
overall. This is all driven by the scaling function utilized when calculating value, and
helps create these diminishing returns.

Architecture Architecture Value [GB] Satellites Value per Satellite
arch-309 226.174679 4 56.543670
arch-310 225.893933 4 56.473483
arch-311 225.821556 4 56.455389
arch-270 221.894289 4 55.473572
arch-271 221.881209 4 55.470302
arch-269 221.668485 4 55.417121
arch-231 219.439849 4 54.859962
arch-230 218.284511 4 54.571128
arch-229 217.075559 4 54.268890
arch-191 215.743412 4 53.935853
arch-189 215.737805 4 53.934451
arch-190 215.432049 4 53.858012
arch-303 209.131841 4 52.282960
arch-302 208.651106 4 52.162776
arch-301 204.459757 4 51.114939
arch-317 203.556272 4 50.889068
arch-318 202.969463 4 50.742366
arch-319 202.928500 4 50.732125
arch-308 202.576819 3 67.525606
arch-150 201.595130 4 50.398782
arch-232 101.173471 1 101.173471

Table 5.10: Value per Satellite for top 20 Landsat-like architectures
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Returning to Figure 5-14, another key insight is that polar inclined orbits are the
most value generating architectures. In total 14 out of the top 20 architectures all
have polar orbits. Given the complex components that build out the value function,
it is difficult to make a direct claim about how inclination impacts architecture value.
However, it is evident from this study that for Landsat-like architectures, polar orbits
tend to provide the best value. It is important to note that this may not be the case
for all global-looking constellations, and particularly for more specific ROIs. Thus,
all that can be said is polar orbits work best when conducting a Landsat comparative
trade study. An important point is that perfectly polar orbits at i=90 degrees may
lead to improved POI revisit statistics but at the expense of giving up the sun-
synchronous orbit. Thus while more POI imagery is obtained by non-SSO orbits the
range of illumination conditions may be different making the data continuity part of
the mission objective of Landsat more difficult. This may or may not be acceptable
to mission planners. If SSO orbits are required, it is worth noting that the existing
Landsat 8 architecture is nearly optimal in the single satellite case. Table 5.11 below
shows how the two architectures with a larger altitude produce only 5% and 4% more
value respectively. Figure 5-15 shows the architecture value-cost plot for all SSO
architectures as well.

Architecture Normalized Value Cost [$M] POIs Observed Revisit Time [hr] Inclination Altitude
arch-312 105.53 746.89 986 106.898845 98 800
arch-272 104.034211 746.89 986 121.648983 98 750
arch-232 100.00 746.89 986 124 98 710

Table 5.11: SSO Orbit, Single Satellite Landsat Architecture Comparison
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Figure 5-15: SSO Architecture Value Analysis

Also, higher altitude orbits tend to produce more value in this framework. This
is most likely due to the increased number of ground pixels, and thus greater data
collected. Again, this is only within the scope of this Landsat trade study, so no
generalized comments can be made. In summary, the value function as formulated in
this thesis creates a metric that is useful when making relative architecture compar-
isons. Important and useful trends arise due to the value function that are helpful for
mission designers and planners. When comparing the value metric to lifecycle cost,
the metric also provides the ability to see which architectures provide the most value
given a level of cost, which means value for money is maximized. This thesis will now
conduct a similar trade study, but with the RapidEye constellation.
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5.1.2 RapidEye

For the second component of Case Study A, the RapidEye EO constellation was
examined. The RapidEye constellation is an important EO system in that it was
the first fully commercial operational class EO system that used multiple spacecraft
[78]. The primary objective of the RapidEye system is to provide EO products and
services to a large network of users across the globe [79].

The following two tables summarize the high level attributes of the RapidEye con-
stellation, which include spacecraft mass and orbital geometry, and the instrument
specifications for the RapidEye Earth Imaging System instrument on board [80], [81],
[82]. Again, the visible blue band was used for analysis.

Attribute Value
Number of Spacecraft 5

Spacecraft Mass 150 kg
Altitude 630 km

Inclination SSO - 97.9∘

Table 5.12: RapidEye Constellation High Level Attributes

Instrument Specification Value
Mass [kg] 43

d [m] 0.0000065
f [m] 0.633

Along Track FOV 0.0006∘

Cross Track FOV 7∘

𝜆 [m] 4.75e-7
𝐷𝑎𝑝 [m] 0.145
𝜏𝑜𝑝 0.85
𝑄𝐸 0.45
𝑁𝑟 1688

Bits per Pixel 12

Table 5.13: RapidEye Instrument Specifications

From a trade perspective, this thesis utilizes the same 5 design variables as for the
Landsat case study. Table 5.14 breaks down the design variables and the values that
were traded upon for each. Table 5.15 shows the design parameters that were held
constant for the analysis.

Given the design variables, 448 unique architectures were generated using the TAT-C
program. It is worth noting that more satellites were examined due to the size of of
the RapidEye satellites. The RapidEye satellite is about 15 times smaller than the
Landsat 8 satellite, which makes it an excellent large-scale, multi-spacecraft trade
study candidate. Note that the upcoming Results and Discussion sections will follow
a similar pattern as those from the Landsat case study.
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Design Variable Traded Values
Number of Satellites [2, 3, 4, 5, 6, 7, 8]

Number of Orbital Planes [1, 2]
Orbital Altitude [500, 550, 600, 630, 650, 700, 750, 800]

Inclination [30∘, 60∘, 90∘, SSO]

Table 5.14: RapidEye Trade Analysis Design Variables

Design Parameter Constant Values
Constellation Type Homogeneous Walker
Region of Interest Global

Simulation Duration 40 days
Maximum Grid Size 1000 Grid Points

Table 5.15: RapidEye Trade Analysis Constant Design Parameters

5.1.2.1 Results

The grid point generation for this trade study is the same as the Landsat case study.
See Figure 5-1 for the global grid map. Similar to the Landsat results, Figure 5-16
depicts the architecture value to cost relationship. Note, that this plot is showing the
relationship between architecture value and cost when 𝜃 from the access event scaling
function is set to 0.1. Also, Figures 5-17, 5-18, 5-19 display the same relationship but
the color scheme is based on the inclination of the constellation orbit, the number
of POIs observed per architecture, and the average revisit time for each architecture
respectively.
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Figure 5-16: RapidEye Architecture Value Analysis
Color Scheme: Altitude
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Figure 5-17: RapidEye Architecture Value Analysis
Color Scheme: Inclination
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Figure 5-18: RapidEye Architecture Value Analysis
Color Scheme: POIs Observed
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Figure 5-19: RapidEye Architecture Value Analysis
Color Scheme: Revisit Time

The following figures depict the relationship between architecture value and the av-
erage revisit time. Again, as in Figure 5-16, 𝜃 from the access event scaling function
is set to 0.1.
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Figure 5-20: RapidEye Value - Revisit Time Analysis
Color Scheme: # of Satellites
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Figure 5-21: RapidEye Value - Revisit Time Analysis
Color Scheme: Inclination

5.1.2.2 Discussion

It is evident that the existing RapidEye constellation architecture is not optimal
within the value framework presented in this thesis. Let’s first examine the architec-
tures that contain the same number of satellites as the existing RapidEye constella-
tion.

This trade analysis generated 32 architectures that consist of 5 satellites. Of these
32 architectures, the actual RapidEye constellation (architecture 232) generated the
19𝑡ℎ highest value. The top 20, five-satellite architectures, thus including the actual
RapidEye constellation, and their resulting information can be seen in Figure 5-22.
From this figure, the best architecture, as defined by the value function, generates
35.76% more value as compared to the actual RapidEye architecture. Thus for the
same lifecycle cost, architecture 457 gets roughly 35% more value per dollar spent.
This can also be seen in Table 5.16.

Architecture Normalized Value Cost [$M] POIs Observed Revisit Time [hr] Inclination Altitude
arch-457 135.76 1879.889448 993 50.615307 90 800
arch-232 100.00 1873.889448 986 62.069149 98 630

Table 5.16: Actual RapidEye Architecture Compared to Best Five Satellite Architec-
ture
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Figure 5-22: Top 20 Five Satellite Architectures
Actual RapidEye Highlighted Blue

Similar to the analysis conducted in the Landsat case study, by examining Table
5.16 a couple of things become apparent. The biggest differences between the two
architectures are the orbital inclination and altitude. Although the inclinations are
somewhat similar, the altitudes are quite different. Let’s see how this impacts the
SNR distribution.
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Figure 5-23: RapidEye Architecture SNR Comparison to Best Five Satellite Arch.

The SNR distribution for architecture 457 and the actual RapidEye constellation are
quite different. It is important to point out that since both of these architectures
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represent 5 satellites, these distribution plots show the SNR for all access events
over all satellites. The first thing to notice is that the value of the SNR for these
architectures is much lower as compared to the SNR from the Landsat case study.
There is no inherent positive or negative to this, but it helps show the differences
between the two instruments. Also, architecture 457 has almost a uniform SNR
distribution, where as the actual RapidEye constellation has a more right-tail heavy
distribution. This is most likely due to the SSO orbit and lower altitude as compared
to architecture 457. However, the big difference between each SNR distribution is the
fact that architecture 457 obtained access events that had a SNR greater than 0.65,
whereas the actual RapidEye constellation did not. This increase in SNR is critical
and directly impacts the value generated by each architecture.

Attribute Architecture 457 Architecture 232 Percent Difference
Altitude [km] 800 630 26.984%

Average Cross Track GP Resolution [m] 8.219407092 6.473648748 26.967%
Average Along Track GP Resolution [m] 8.224508712 6.478516155 26.951%

Average GP Area [𝑚2] 67.60058524 41.939638 61.185%
Average GP Area [𝑘𝑚2] 0.00006760 0.00004194 61.185%
Footprint Area [𝑘𝑚2] 3.2916 2.0413 61.250%

Number of Ground Pixels 48692.4794 48673.0759 0.04%

Table 5.17: RapidEye and Best Five Spacecraft 𝑄𝑖𝑗 Detailed Breakdown

Table 5.17 shows the 𝑄𝑖𝑗 attributes for architecture 457 and the RapidEye architec-
ture. Although there are large differences between average ground pixel area and
footprint area, the number of ground pixels is relatively constant across each archi-
tecture. This implies that the largest factor behind the enhanced performance from a
value framework of architecture 457 as compared to the actual RapidEye architecture
is the superior SNR distribution. The amount of data collected is also higher due to
more POI observations and an increased number of ground pixels gathered per access
event, but these impact the spread in a smaller fashion.

Given that the RapidEye trade space evaluated architectures both larger and smaller,
it is possible to identify architectures that provide the same value for less cost. The
Table 5.19 breaks down 16 architectures that come in at a lower cost as compared to
the actual RapidEye constellation, and generate at least 97.5% of the value. As the
table shows, there are 16 architectures that produce similar, if not slightly more value
as compared to the actual RapidEye constellation, for substantially less cost. Table
5.18 shows the architecture information from architectures 273 and 333 as compared
to the actual RapidEye architecture. (Note that absolute cost data is not numerically
accurate due to the small size of each satellite. Section 5.2.6 will break this down
further.

125



Architecture POIs Observed Inclination Altitude Satellites Normalized Value Normalized Cost
arch-273 986 90.0 650.0 3 101.79 60.85
arch-333 993 90.0 700.0 3 101.52 60.85
arch-232 986 98.0 630.0 5 100.00 100

Table 5.18: RapidEye Low Cost Architecture Attributes

Architecture Normalized Value Normalized Cost Satellites
arch-273 101.79 60.8538 3
arch-333 101.52 60.8538 3
arch-34 100.50 80.4269 4
arch-259 99.54 80.4269 4
arch-199 98.50 80.4269 4
arch-261 101.82 82.5615 4
arch-35 101.20 82.5615 4
arch-36 101.01 82.5615 4
arch-260 101.00 82.5615 4
arch-201 99.88 82.5615 4
arch-470 99.65 82.5615 4
arch-471 99.41 82.5615 4
arch-200 98.25 82.5615 4
arch-95 97.73 82.5615 4
arch-141 97.70 82.5615 4
arch-320 97.56 82.5615 4
arch-232 100.00 100.00 5

Table 5.19: Architectures that Generate at least 97.5% of Value at a Lower Cost

To conclude the RapidEye tradespace analysis, let’s examine the architectures with
the best architecture value across the entire tradespace. Figure 5-24 displays the
top 20 architectures along with the actual RapidEye architecture highlighted in blue.
Similar to the Landsat analysis, the architectures with the highest value come from
those with the most satellites. However, when the constellations with the best ratio
of value per satellite are examined, the top 20 architectures change drastically. Table
5.10 shows the top 20 architectures as ranked by the value per satellite. Unlike
the Landsat case, the highest ranked architecture as scored by architecture value,
architecture 464, also has a higher value per satellite as compared to the RapidEye
constellation - 0.0302 vs. 0.0295. But the architecture with the best value per satellite,
architecture 450, has a value per satellite almost double that of architecture 464 - 0.064
vs 0.03.

Similar to the Landsat analysis, polar inclined orbits are the most value generating
architectures. It is noticeable that 18 out of the top 20 architectures all have polar
orbits. Also, higher altitude orbits tend to produce more value in this framework.
This is most likely due to the increased number of ground pixels, and thus greater
data collected. Although these are similar results to the Landsat case study, it is
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Figure 5-24: Top 20 RapidEye-like Architectures as Ranked by Value

not sufficient evidence to make a generalized claim about architecture value and its
relationship with orbital altitude and inclination. Upcoming section 5.2 will prove
this by showing a counter example to this existing relationship.

In summary, using the value framework provided in this thesis, a new family of
architectures were generated that provide more value as compared to the existing
RapidEye constellation.

5.1.3 Differences Between Landsat & RapidEye

Now that both Landsat and RapidEye have been evaluated, an important factor is
worth discussing. A direct comparison between Landsat and RapidEye in terms of
overall architecture value was not the goal of this case study. However, a quick glance
at the results shows that while RapidEye can visit significantly more POIs over time,
Landsat provides about 600 times more value than RapidEye in an absolute sense.
By definition, the value metric should not be compared in absolute terms, however,
the scale of architecture value was much difference for each constellation class. This
is driven primarily by the SNR. The average SNR across all Landsat architectures
and access events was 884.79 db, whereas the average SNR for RapidEye was 0.48 db.
From an architecture value comparison, the average Landsat architecture value was
142.51 GB, where as the average RapidEye architecture value was 0.15 GB. These are
very different numbers, and are even more meaningful because more satellites were
used in the RapidEye case. This shows that the implicit quality of the instrument
used is quite important. Although Landsat is a large and not as responsive (in terms
of revisit) constellation, the quality of the images are far superior in a SNR sense.
The GSD of the images is higher, but the overall image quality is much better. This
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Architecture Normalized Value Architecture Value Satellites Value per Satellite
arch-450 86.99 0.128436 2 0.064218
arch-451 86.55 0.127789 2 0.063894
arch-452 86.36 0.127506 2 0.063753
arch-390 83.68 0.123548 2 0.061774
arch-392 83.47 0.123238 2 0.061619
arch-391 83.33 0.123036 2 0.061518
arch-332 80.54 0.118909 2 0.059454
arch-330 80.04 0.118172 2 0.059086
arch-331 79.81 0.117828 2 0.058914
arch-272 79.43 0.117279 2 0.058639
arch-271 78.97 0.116597 2 0.058299
arch-270 78.28 0.115579 2 0.057790
arch-210 77.74 0.114783 2 0.057391
arch-436 76.54 0.113003 2 0.056502
arch-211 76.35 0.112725 2 0.056362
arch-212 76.03 0.112251 2 0.056126
arch-435 75.70 0.111768 2 0.055884
arch-437 75.30 0.111173 2 0.055587
arch-453 107.25 0.158343 3 0.052781
arch-393 105.02 0.155049 3 0.051683
arch-232 100.00 0.147642 5 0.029528

Table 5.20: RapidEye Top 20 Value per Satellite Architectures

makes intuitive sense since the instrument onboard the Landsat spacecraft is much
larger and more sophisticated as compared to the much smaller instrument on board
the RapidEye satellite (a similar claim can be made with the imager on the Planet
satellite as well).
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5.2 Case Study B: Make or Buy Decision
This case study will look at the all important make vs. buy decision that high level
decision makers need to make when evaluating cost and benefits [83]. The make vs.
buy decision is when a manager is faced with either building a product in house or
purchasing the same product from a third party vendor. In this case study, the make
or buy decision will focus on an EO constellation that provides information through
the data products derived from the satellite system. To focus on a specific idea, as
well as to show the importance of ROI optimization, this case study will analyze at
the costs and benefits from the point of view of the governor of California.

5.2.1 The Need & Decision

The California governor desires high resolution imagery of the entire state in order
to assist in agricultural management, disaster preparation, and general resource al-
location. The governor has two options. The first is to simply purchase EO imagery
from Planet Labs, in particular, from their Flock 2p constellation. The second option
is to contract a third party to build and operate a new EO constellation specifically
optimized for the needs of California. The reason for designing a new constellation
would be the Planet Labs Flock 2p is not designed to provide optimal coverage of
California, and the governor wants to ensure the data is the best it can possible be.
By comparing the estimated lifecycle cost of the new California-customized constel-
lation with the costs of purchasing imagery from a general purpose constellation, and
also comparing the difference in value from each option, the governor will be able to
make an educated decision to move forward.

5.2.2 Region of Interest

One of the most important attributes of this case study relates to the specific area of
interest. This case study was modeled in order to find the family of EO constellations
that provide the most value to a specific ROI. In the previous section, the Landsat
and RapidEye constellation were trying to capture the most value at a global level.
In this case study, the constellations are trying to capture the most value within the
state of California. The specific ROI was referenced in section 3.4.1. Figure 5-25 and
Table 3.5 were shown in that section, but are displayed below for reference. Also,
given this specific ROI, the POIs generated by TAT-C can be expressed visually, as
in Figure 5-26. These POIs are critically important because they represent the only
parts of the Earth that generate value to the end user, i.e. in this case the governor of
California. Using a specific ROI provides an excellent use case for the value framework
presented in this thesis since it highlights value generated only within a particular
region, not the entire Earth overall. This will become evident in the upcoming case
study results.
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Figure 5-25: Example ROI Visual for Cal-
ifornia

Latitude Longitude
Min 33 -124
Max 42 -115

Table 5.21: ROI Description:
Lat/Lon intervals

Figure 5-26: Grid Points Generated by TAT-C for California ROI

5.2.3 Planet Labs Flock 2p

On June 22, 2016, Planet Labs launched 12 Flock 2p satellites into a SSO orbit at
an altitude of 500 km [84]. Planet currently operates a much larger fleet of satellites,
but for the purpose of this case study, this thesis will only evaluate Flock 2p. This
flock of satellites represent the 13𝑡ℎ design iteration of the Planet Dove spacecraft,
and images in the RGB and NIR bands. The red band is centered at 655 nm, the
green band is centered at 545 nm, the blue band is centered at 475 nm, and the NIR
band is centered at 835 nm [56]. The satellites were placed in an SSO orbit in order
to take images at the same sun angle. The constellation will pass each spot on the
ground at the same time every day which makes it easier to observe trends over time
[84]. Let’s examine the specifications of the spacecraft and the imaging instrument
[1], [85], [34]. One of the most important attributes of the Planet Flock is the size of
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the spacecraft. Each spacecraft represents a 3U cubesat. Compare the mass of each
spacecraft, 5 kg, to that of the Landsat satellite, 2623 kg, (a ratio of about 1:500)
and it is quite evident to see the difference in the satellites.

Attribute Value
Number of Spacecraft 12

Spacecraft Mass 5 kg
Altitude 500 km

Inclination SSO

Table 5.22: Planet Labs Flock 2p Constellation High Level Attributes

Instrument Specification Value
Mass [kg] 1.6329

d [m] 0.0000075
f [m] 1.14

Along Track FOV 1.9773∘

Cross Track FOV 2.9662∘

𝜆 [m] 4.75e-7
𝐷𝑎𝑝 [m] 0.091
𝜏𝑜𝑝 0.6
𝑄𝐸 0.5
𝑁𝑟 277

Bits per Pixel 12

Table 5.23: Planet Labs Flock 2p Instrument Specifications

5.2.4 Custom Constellation

A large trade space was designed in order to find an optimal constellation for the
California ROI. In order to make a better comparative study, the Planet Flock 2p
Dove was used as the satellite for analysis. Given that the spacecraft is a CubeSat
built with many off the shelf parts, this thesis believes it is reasonable to trade on
the same Planet spacecraft for analysis [86]. Thus, the satellites used for the trade
will have the same attributes and instrument specifications as seen in tables 5.22 and
5.23. For the trade study, the number of satellites as well as the orbital altitude and
inclination will be traded on. The complete set of design variables and their respective
values can be seen in Table 5.24, and the simulation parameters can be seen in Table
5.25.

5.2.5 Planet Labs Image Cost

As stated prior, we assume that the two options for the California Governor are to
purchase imagery from Planet or to design and build its own specific constellation.
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Design Variable Traded Values
Number of Satellites [2,3,4,5,6,8,10,12,14]

Orbital Altitude [400,450,500,550,600,650,700,750,800]
Inclination [10∘,20∘ 30∘, 35∘, 40∘, 50∘, 60∘, 80∘, 90∘, SSO]

Table 5.24: Custom Constellation Trade Analysis Design Variables

Design Parameter Constant Values
Constellation Type Homogeneous Walker
Region of Interest California

Simulation Duration 50 days
Maximum Grid Size 10000 Grid Points

Table 5.25: Custom Constellation Trade Analysis Constant Design Parameters

The lifecycle cost of the built constellation will be discussed in the following section.
First, this thesis will discuss the cost of Planet Labs imagery.

Due to the private nature of Planet, it is difficult to get an exact price estimate.
However, the Minnesota Department of Transportation conducted a study in 2018
and received a ball-park estimate of roughly $500,000 per year [87]. This ball-park
cost was for their SkySat imagery which is their best resolution imagery. Although
this imagery is better resolution and quality as compared to the Flock 2p, since the
state of Minnesota is about half of the size of California, this thesis will utilize the
ball-park price of $500,000 per year as the benchmark for purchasing Planet imagery.

5.2.6 CubeSat Costing

As discussed in Section 3.6.1, the cost estimates generated by TAT-C are not ideal
for CubeSats. The model was built using data from larger spacecraft, and thus do
not reflect the most up-to-date cost numbers and learning curve effects for CubeSats.
Because of this, a new cost methodology is needed in order to create a better analysis
for this case study.

In order to go about this, this thesis examined existing or proposed CubeSat missions
that publish cost data. Table 5.26 shows CubeSat missions with their relevant costs,
CubeSat size, and the number of satellites in the mission. All data was obtained from
the Nanosats Database [88]. As the table shows, there is a wide distribution of costs
as well as not a large quantity of data which makes it hard to create a robust model.
It is useful to know summary statistics from this table, though. Table 5.27 shows the
mean project cost, the mean cost per satellite, and the mean cost per form factor (1U
size).

Since the Planet Labs Flock 2p Satellite is a 3U-form CubeSat, this model will look
closer at the data that represents this type of satellite. Table 5.28 shows the mean
project cost, the mean cost per satellite, and the mean cost per form factor (size)
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when just examining 3U form factor CubeSats. These costs do not include launch
costs.
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Project CubeSat Size Number of Satellites Project Cost
Clyde Orbcomm 3U 2 $5,900,000

Deorbitsail 3U 1 $3,200,000
HERMES-SP 3U 6 $3,950,000
Intuition-1 6U 1 $1,200,000
LLITED 1.5U 2 $2,520,000
MarCO 6U 2 $18,500,000

PEARLS 6U 8 $5,950,000
SEAM 3U 1 $3,000,000

Buccaneer 6U 1 $2,500,000
CAPSTONE 12U 1 $13,700,000

DAILI 6U 1 $2,850,000
DUPLEX 6U 1 $1,700,000
Hyperion 1 12U 1 $3,850,000

IOD Mission 6 3U 4 $1,880,000
Kleos Scouting Mission 6U 4 $2,830,000
Link-16 CubeSat (XVI) 12U 1 $10,000,000

OPS-SAT 3U 1 $2,660,000
TEMPEST-D 6U 1 $8,200,000

VPM 6U 1 $4,500,000

Table 5.26: CubeSat Projects with Total Cost Breakdown (FY2019)

Cost Category Mean Value
Project Cost $5,204,736.84

Cost per Satellite $3,863,135.96
Cost per Form Factor $667,613.3

Table 5.27: Statistics on CubeSat Database Costs

Cost Category Mean Value
Project Cost $3,742,000.0

Cost per Satellite $2,493,666.67
Cost per Form Factor $831,222.22

Table 5.28: Cost Statistics on 3U CubeSats
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Utilizing the information from Table 5.28, this thesis will apply a very simple and
naive method when generating architecture costs. First, the average cost per satellite
will be multiplied by the total number of satellites in the constellation. After this,
the launch cost generated by the secondary launch solver within TAT-C will be added
in order to generate a proxy for the lifecycle cost. The equations below depict this
formulation.

Total Cost Part 1 = Average Cost per Satellite * Number of Satellites (5.1)

Total Cost Part 2 = Secondary Launch Cost Estimate (5.2)

Total Estimated Cost = Total Cost Part 1 + Total Cost Part 2 (5.3)

This is by no means an exhaustive exercise, but given the lack of detailed cost data,
it is quite difficult to create a more complex and accurate model. That being said,
organizations such as the Jet Propulsion Laboratory and The Aerospace Corporation
are currently working on developing a CubeSat cost model. However, what is impor-
tant to recognize is that given the CubeSat nature of the constellations generated in
this case study, this new cost model will reflect a much more realistic cost estimate.
TAT-C will produce cost estimates in the billions of dollars due to the large number
of spacecraft involved, which is not valid and not helpful when analyzing the make
vs. buy decision using 1U-12U class satellites. Using this new cost methodology, the
most expensive constellation comes in at an estimated cost of just over $50 million,
where as the TAT-C estimate for this same architectures is just shy of $2 billion. This
is a large difference, and the new cost methodology for CubeSats reflects a much more
reasonable cost as compared to the model within TAT-C.

5.2.7 Results & Analysis

Based on the way the trade space was designed, 810 constellation architectures were
generated. Note that for the remainder of this section, a 𝜃 value of 0.1 was utilized
for the access event scaling function. Different values of 𝜃 will not impact the rela-
tive difference between architectures, but the overall scale of the architecture value
obtained per architecture. Architecture 659 represents the current Planet Flock 2p
constellation. Table 5.29 below depicts the architecture value generated from this
architecture. Again, this architecture value will be treated as a baseline.

Planet Flock 2p
45.129 GB

Table 5.29: Planet Flock 2p Architecture Value
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Figure 5-27 depicts the distribution of architecture values generated in the case study.
The red dashed line represents the value produced by the existing Planet Flock con-
stellation.
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Figure 5-27: Case Study B Trade Space Architecture Value Distribution

From the figure, it is quite evident that the majority of the constellations generated
in the trade study provide more value as compared to the Planet Flock 2p. To be
more specific, 87.25% of the architectures generated produce more value. Table 5.30
breaks down the architecture value summary mean and median for the trade space.

Statistic Value in GB
Mean 202.04

Median 188.17

Table 5.30: Case Study B Mean & Median Statistics

The following figure helps visualize the architecture value by plotting it as a function
of the number of satellites. Also, the variation of colors for each data point is based
on an attribute of the constellation. Figure 5-28 color is based on the orbital altitude.
Figure 5-29 color is based on the orbital inclination. These figures are helpful because
they show that inclinations of 40∘ to 50∘, in combination of altitudes of about 600
km produce the most value when only one cluster of architectures, from a number
of satellites perspective, is evaluated. Another way to think about these results is
to realize that the highest value generating architecture, architecture 765, produces
about 1000% more value as compared to the Planet Flock, when only considering
California as ROI. This is a 10 times multiple compared to baseline and is quite
substantial.
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Figure 5-28: Architecture Value - # of Satellites Analysis
Color Scheme: Altitude
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Figure 5-29: Architecture Value - # of Satellites Analysis
Color Scheme: Inclination

Let’s investigate why architecture 765 produces more value than the baseline. Similar
to Case Study A, understanding the SNR distribution is quite important. Figure 5-
30 shows the SNR distribution of both the Planet Flock 2p constellation and the
distribution from architecture 759.
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Figure 5-30: Case Study B SNR Distribution Comparison

The above figure shows a large difference in the SNR distribution. Architecture
765 produces much more high SNR access events which helps explain the significant
difference in value.

5.2.8 Make vs Buy Analysis

In order to perform a robust make vs. buy analysis, a detailed financial picture is
needed from both a cost and benefit perspective. In order to do this within the scope
and data of this case study, some simplifying assumptions will need to be made,
particularly on the cost.

As discussed prior, this case study will use a proxy cost of Planet data of $500,000 per
year for a particular client like the State of California. This case study will examine
a time horizon of 10 years. A horizon of 10 years was selected because it represents
a midpoint of sorts for the orbital lifetime of a Planet Satellite. This number comes
from Planet Labs and their analysis of the orbital lifetime of their CubeSats as a
function of altitude [89].
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Figure 5-31: Planet Labs Estimated Orbital Lifetime [89]

Figure 5-31 depicts the relationship as calculated by Planet. Since Planet’s current
spacecraft don’t have propulsion they can’t raise their orbits to do station-keeping.
Since the constellations generated vary in altitude, they will all have different orbital
lifetimes. To simplify the case study, the 10 year orbital lifetime was utilized.

Now that the time horizon has been established, a more robust financial picture
can be obtained. Using standard cash flow methods, a total non-discounted and
discounted cost can be associated to the purchasing of Planet data and the building
of a constellation. Purchasing of the Planet data is the more straightforward case.
The only question is what to set as the cost growth rate of purchasing Planet data each
year. This thesis will assume a cost growth rate per year of 2%. This is target inflation
rate set by the Federal Reserve and thus is deemed a reasonable assumption [90]. A
discount rate is also needed for discounted cash flow analysis. Rather than arbitrarily
selecting a single discount rate, this thesis examined the costs for a wide range of
discount rates. The discount rates used varied from 0% to 15% in 1% intervals.
Using these rates, Table 5.31 depicts the total discounted cost of purchasing Planet
data for the state of California for a 10 year period.
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Discount Rate Total Cost
0% $5,474,860.50
1% $5,228,757.19
2% $5,000,000.00
3% $4,787,113.99
4% $4,588,767.24
5% $4,403,755.47
6% $4,230,988.45
7% $4,069,478.03
8% $3,918,327.50
9% $3,776,722.19
10% $3,643,921.06
11% $3,519,249.36
12% $3,402,091.96
13% $3,291,887.48
14% $3,188,123.06
15% $3,090,329.64

Table 5.31: Total Discounted Cost of Purchasing Planet Data for 10 Years (FY 2020)

Now that the cost associated with purchasing Planet data is better understood, it
is critical to understand how a comparable cost figure will be generated for each
architecture. In order to do this, some simplifying assumptions must be made. The
first set of assumptions relate to the cost per satellite and launch cost as explained in
Section 5.2.6. A 2% cost growth rate is also used for the building of a constellation.
The major question to evaluate is what to set the recurring costs to be. Note, recurring
costs can include data processing, analysis, and maintaining data architectures. This
is because the launch and satellite costs are all assumed to hit in the first year. Due
to this situation, this thesis applied a percentage of the satellite costs to generate the
yearly recurring costs. Similar to the discount rate, rather than arbitrarily selecting
a single percentage of satellite costs, a range was evaluated and examined. Recurring
cost percentages of 1% to 10% were examined in increments of 1%.

To provide a concrete example, let’s first examine architecture 765. This architecture
generated the most value, roughly 10 times as much value as the standard Planet
Flock 2p when focusing on this particular ROI. The table below depicts the yearly
cost analysis. Note how it is broken down into launch, satellite, and recurring costs.
For this example, the recurring cost percentage was set to 5% and the discount rate
was also set to 5%.
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Year 0 1 2 3 4 5 6 7 8 9
Launch Cost $4,868,106.00 $- $- $- $- $- $- $- $- $-
Satellite Cost $34,911,333.38 $- $- $- $- $- $- $- $- $-

Recurring Cost $- $1,745,566.67 $1,780,478.00 $1,816,087.56 $1,852,409.31 $1,889,457.50 $1,927,246.65 $1,965,791.58 $2,005,107.41 $2,045,209.56
Yearly Cost $39,779,439.38 $1,745,566.67 $1,780,478.00 $1,816,087.56 $1,852,409.31 $1,889,457.50 $1,927,246.65 $1,965,791.58 $2,005,107.41 $2,045,209.56

Total Non-discounted Cost $56,806,793.64
Yearly Discounted Cost $39,779,439.38 $1,662,444.45 $1,614,946.03 $1,568,804.72 $1,523,981.73 $1,480,439.39 $1,438,141.12 $1,397,051.38 $1,357,135.62 $1,318,360.32
Total Discounted Cost $53,140,744.14

Table 5.32: Architecture 765 Cost Analysis Recurring Cost Percentage of 5% Discount
Rate of 5%

With this cost breakdown, it is now possible to make a direct comparison. To do this,
the relationship between the following ratios will be evaluated:

Value Ratio =
Value Generated from Custom Architecture
Value Generated from Planet Labs Flock 2p

(5.4)

Cost Ratio =
Cost of Custom Architecture

Cost of Imagery from Planet Flock 2p
(5.5)

Using these ratios, the governor of California may decide to build a constellation if the
Value Ratio is greater than the Cost Ratio. A purely cost-driven decision would be to
only build the custom constellation when the Cost Ratio is less than 1.0. There was
not a single architecture generated that had a Cost Ratio less than 1.0. Architecture
8 had the lowest Cost Ratio, with a value of 1.61.

The Value Ratio for architecture 765 is 10.01. Since the discount rate and recurring
cost percentage are variable, Figure 5-32 depicts the Cost Ratio table for all of the
discount rates and recurring cost percentages. To help visualize this, Figure 5-32
colors Cost Ratios that are less than the Value Ratio in green, and Cost Ratios that
are greater than the Value Ratio in red.

Figure 5-32: Architecture 756 Cost Ratio Table

As Figure 5-32 shows, there are few instances when building architecture 756 is more
optimal than purchasing Planet data directly. This is an important discovery, and
shows the value framework developed in this thesis can be used to make a critical
decision that many city, state, and federal governments are making.
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To show another example, Figure 5-33 shows the Cost Ratio Table for architecture 44.
Architecture 44 consists of 2 satellites placed in 600km altitude and 40∘ inclination
orbit. Architecture 44 has the best value per satellite in the trade space, and a
Value Ratio of 5.01. This is clearly evident in that the entire Cost Ratio Table is
highlighted green meaning the constellation should always be built! Having fewer
satellites would increase the value per satellite, but the inclination of the orbit is also
very advantageous when observing the California ROI.

Figure 5-33: Architecture 44 Cost Ratio Table
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5.2.9 Summary

Utilizing the value framework developed in this thesis supported a critical business
decision to be made in a more rigorous framework than is typically considered. It is
relatively straightforward to understand the costs associated with purchasing EO data
or building and launching a EO satellite constellation, but understanding the benefits
obtained from both alternatives is non-trivial. The value framework developed in this
thesis enabled direct comparison of both the make and buy options. By comparing
Value and Cost Ratios, decision makers can clearly understand that if the make option
costs X times as much as the buy option, it may still be worthwhile since the make
option provides Y times as much value as the buy option. Overall, Case Study B
proved that the value framework can be used in a critical real world setting and help
give the insights needed to make large scale decisions that has the potential to impact
a large swath of individuals.
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5.3 Case Study C: Synthetic Aperture Radar Small
Satellite Mission

This case study will focus on a small SAR satellite constellation. Traditionally, SAR
instruments were quite complex and large and thus were not prime candidates for
small satellite constellations. However, due to advancements in SAR technology and
part miniaturization, several small satellite SAR constellations have been proposed
and are being developed [91]. Once such small SAR satellite that has been developed
is the Mi croX-SAR satellite. This satellite is being developed in Japan by Synspective
[91]. The satellite designers have developed a satellite concept that has a mass of 130
kg and has the potential of acquiring 1-3 meter resolution SAR imagery. This satellite
plans on launching at the end of 2020. At the time of writing, Synspective has not
publicly announced an orbital geometry for the mission.

Although the satellite has been designed, this thesis would like to examine the archi-
tecture tradespace for a global constellation of MicroX-SAR satellites. By simulating
various constellation architectures and applying the Value Framework, future mission
planners can determine the optimal architecture design to maximize value.

The following table summarize instrument specifications for the SAR instrument on
board the MicroX-SAR satellite [91].

Instrument Specification Value
Mass [kg] 130

Pulse Width [m] 31e-5
Data Rate [Gb/s] 2

Antenna Along Track Dimension [m] 4.9
Antenna Cross Track Dimension [m] 0.7

Antenna Aperture Efficiency 0.5
Peak Transmit Power [kW] 2
Chirp Bandwidth [MHz] 75

Minimum Pulse Repetition Frequency [kHz] 3
Maximum Pulse Repetition Frequency [kHz] 8

System Noise Figure [db] 4.3
Bits per Pixel 16

Table 5.33: MicroX-SAR Instrument Specifications

From a trade perspective, this thesis utilizes 3 design variables. Table 5.34 breaks
down the design variables and the values that were traded upon for each. Table 5.35
shows the design parameters that were held constant for the analysis.

Given the design variables, 96 unique architectures were generated using the TAT-C
program. The upcoming Results and Discussion sections will follow a similar pattern
as those from Case Study A.
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Design Variable Traded Values
Number of Satellites [1,2, 3, 4, 5, 6]

Orbital Altitude [400, 500, 600, 700]
Inclination [30∘, 60∘, 90∘, SSO]

Table 5.34: MicroX-SAR Analysis Design Variables

Design Parameter Constant Values
Constellation Type Homogeneous Walker
Region of Interest Global

Simulation Duration 40 days
Maximum Grid Size 3000 Grid Points

Table 5.35: MicroX-SAR Trade Analysis Constant Design Parameters

5.3.1 Results

Before jumping into the results, it is important to understand the grid generated
by TAT-C for this case study. Unlike Case Study A, this case utilized 3000 grid
points, as opposed to 1000. For the global region, 41, 252 grid points are possible,
meaning 3000 represents a small portion. Keeping the grid points low greatly reduces
the computation burden, and thus decreases the execution time. However, unlike
Case Study A that obtained high fidelity results with 1000 grid points, the complex
modeling involved with SAR instruments required more grid points to be generated
in order to capture a larger number of events where an access event was actually
recorded. Thus, figure 5-34 shows the grid points generated for this case study.

Figure 5-34: Grid Points Generated for Case Study C
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Just as in Case Study A, this case study will depict the architecture value to cost
relationship. Note that cost is directly related to the number of satellites deployed
in an architecture, meaning the stratification in the upcoming plots represent 1, 2, 3,
4, 5, and 6 satellite architectures respectively. 𝜃 for the following plots is set to 0.1.
Also, as Section 4.3.3.2 explains, the 𝐶 utilized in the instrument quality calculations
for this case study was set to 0. All of the observations recorded in this case study
had a 𝜎𝑁 less than 0, which enabled this thesis to set 𝐶 accordingly. Figure 5-35
shows architecture value plot and the color scheme is based on the altitude of the
orbit. Figure 5-36 shows the plot but with the inclination as the color scheme. Figure
5-37 also depicts the value cost relationship but with the number of POIs observed
by each architecture.
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Figure 5-35: MicroX-SAR Architecture Value Analysis
Color Scheme: Altitude
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Figure 5-36: MicroX-SAR Architecture Value Analysis
Color Scheme: Inclination
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Figure 5-37: MicroX-SAR Architecture Value Analysis
Color Scheme: POIs Observed

As explained above, the number of grid points needed to be increased in order for
architectures to record a higher number of access events. Also, as Figure 5-37 depicts,
the maximum number of POIs observed by any architecture in this simulation is just
over 70. With a simulation time of 40 days, this seems highly unlikely. This is
most likely due to the complex nature of how access events are recorded for SAR
instruments within the TAT-C module. In particular, the instrument specifications
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currently being used can cause issues when calculating whether or not an observation
has occurred. Future work should focus on highlighting the key bounds of TAT-C for
this instrument class. Due to the issues discussed, many architectures did not observe
the same POI more than one time. Thus, unlike in Case Study A, architecture value
plots as a function of revisit time are not shown.

5.3.2 Discussion

MicroX-SAR is a proposed mission meaning this thesis will not benchmark the archi-
tectures with a specific nominal architecture. However, it is still possible to examine
the current tradespace and develop some interesting conclusions. Let’s first exam-
ine the architectures that generate the most value. Figure 5-38 displays the top 20
architectures in the tradespace.
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Figure 5-38: Top 20 MicroX-SAR Architectures

From the above figure and the SAR Architecture Value plots, it becomes evident
that value is accrued primarily by architectures with a sun-synchronous orbit, or an
inclination around 98∘. Similar to Case Study A, architectures with higher orbits also
tend to produce more value. This makes sense given that higher orbits tend to have
larger sensor footprints which imply higher quantities of data collected. However, in
this particular case study, it is almost entirely driven by the number of POIs observed
by an architecture.

For this simulation, the average number of POIs observed across all architectures
is 9.236. This is quite low (the rationale for which is explained in the previous
subsection, section 5.3.1. Due to this, this thesis also will examine the architecture
value per POI observed. Figure 5-39 shows the top 20 architectures, but measured
by value per POI observed.
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Figure 5-39: Top 20 Architectures Measured by Architecture Value per POI Observed

The Figure above paints an interesting picture. Architecture 70 had the highest raw
architecture value score, but it is not even in the top 10 architectures when measured
by value per POI observed. Given that there are many architectures with very few
POIs observed, future work should focus on running a longer duration simulation
in order to see if similar results, from a value per POI observed perspective, are
gathered. Although higher altitude orbits are still dominating, only one architecture,
architecture 71, has an SSO in this top 20 list. While examining the architectures
with the worst value per architecture, as seen in Figure 5-40, this thesis realized that
the spread in architecture value per POI observed was quite low.
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Figure 5-40: Bottom 20 Architectures Measured by Architecture Value per POI Ob-
served

The total spread in architecture value per POI observed is just over 0.1 GB. This
is a much tighter and reasonable range as compared to the spread in raw architec-
ture value, which is 43.76 GB. As stated prior, the limited number of POIs observed
across the simulation reduce the effect of trading pure architecture value. However,
normalizing value by the number of POIs observed help show interesting trend. For
example, it is interesting to examine two architectures that vary greatly in raw archi-
tecture value, but are relatively similar in value per POI observed: architectures 23
and 70. Table 5.36 below shows these two architectures and their raw architecture
value and value per POI observed.

Architecture Architecture Value [GB] POIs Observed Architecture Value per POI Observed [GB]
Architecture 70 44.282194 76 0.582660
Architecture 23 5.111046 10 0.511105

Table 5.36: SAR Architecture Comparison

The difference in raw architecture value can be explained almost entirely in the differ-
ence between the number of POIs observed, but the value per POI observed is quite
similar. In fact, architecture 70 only has an architecture value per POI observed 14%
greater than architecture 23. Thus, there must be an underlying factor in architecture
23 that is enabling each observation to have almost as much value as architecture 70.
It is also worth noting that architecture 23 is in a SSO orbit, just like architecture
70, but is at a lower altitude of 400 km.
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Figure 5-41: 𝜎𝑁 Distribution Plot

In order to answer this question, it is important to look at the distribution of 𝜎𝑁
produced by each architecture. Figure 5-41 shows a distribution plot for 𝜎𝑁 for each
architecture.

The above figure shows how the distribution of 𝜎𝑁 for architecture 23 is more optimal
as compared to the distribution for architecture 70. Remember, the more negative
𝜎𝑁 implies a higher quality of data acquired. To think about this another way, the
average 𝜎𝑁 value for architecture 23 and 70 is -22.12 and -14.84 db respectively. The
average 𝜎𝑁 for architecture 23 is 49% lower, or higher quality, than architecture 70.
This difference shows the importance of trading off both the quantity and quality of
recorded access events of a satellite system. Architecture 70 provides a large quantity
of solid data, where as architecture 23 is providing much less data, but at a higher
quality. The value metric provides users with a metric to help better understand this
trade-off.

5.3.3 Summary

The previous case study focused on the proposed MicroX-SAR satellite system. SAR
instruments are of increasing importance, and thus value-driven metrics for this class
of instrument is vital. The Value Framework provided in this thesis was utilized
to show the relative differences in a small family of architectures. Comparing SAR
constellations is more complex as compared to a standard passive optical scanner,
however, the Value Framework was able to distinguish high performing architectures
from low performing architectures. This information is valuable to end users and can
help the mission planners design the next generation MicroX-SAR constellation.
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Chapter 6

Future Work

The previous two chapters derived the Value Function and applied it to two case
studies to show the impact the Value Function can have on real-world Earth imaging
applications. The Value Function was shown to help in the trade space analysis of EO
constellations, and it can be used to get a better understanding of cost and benefits.
However, the Value Function is not a perfect metric, and future work will be needed
in order to overcome limitations and add features that will enable it to become even
more useful. Future work should focus on overcoming current modelling limitations,
combining Machine Learning with the Value Function, and incorporating calibration
effects for increased functionality. Given that the limitations were already discussed
in Section 4.4, Machine Learning and calibration effects will be discussed here.

6.1 Machine Learning Optimization

Machine Learning (ML) is a rapidly developing field, and is being applied to a wide
variety of applications and domains. At the highest level, ML attempts to make
decisions and predictions based on data [92]. ML algorithms find patterns in data,
and then apply these patterns to new data in order to make predictions. What
makes ML such an important part of the field of Artificial Intelligence is that it can
be applied to a wide variety of tasks, across multiple domains. Some of the most
common tasks include classification and regression. The power of ML comes from
the fact that different domains, such a the medical field and self driving cars, can use
similar ML algorithms in order to make predictions about the likelihood of a tumor
or the likelihood of a pedestrian being present, respectively. One of the best ways to
think about ML is through an input-output representation. Traditional programming
uses human knowledge and expertise to devise a set of rules. Data is fed into these
systems, and output is generated. There is typically no probability associated with
the resulting answers. ML does almost the opposite. ML systems take in data, as
well as the output, and produce the rules to go from input to output. This can be
seen visually in Figure 6-1.
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Figure 6-1: Machine Learning vs Classical Programming [93]

In reference to TAT-C, the trade space exploration process has the ability to use
ML to help guide the optimal search process. This is helpful because it will help
find which set of design variables are the most important, in reference to a specific
objective. With regards to the Value Function, TAT-C has the ability to utilize the
Value Function as a metric to help guide the optimized search. The user can set the
primary objective to be the Value Function, and using the optimal search strategies,
architectures will be generated that have higher architecture value. This capability
currently exists, and can be utilized today. There is another way ML can be used to
help make the Value Function even more powerful.

Within the scope of the Value Function itself, ML can be used in the following way.
ML will be applied to the scaling function, or 𝑓(𝑗; 𝜃) within the Value Function.
The author purposely parameterized the scaling function with the 𝜃 so it could be
applied to ML systems in the future. Currently, the scaling function is set by the
user. This thesis proposed a single way to describe the scaling function, shown below
for reference.

𝑓(𝑗 : 𝜃) =
1

(𝑗 + 1)𝜃
(6.1)

This formulation came about by understanding the importance of diminishing re-
turns, but using ML, the form of the scaling function can be learned, rather than
assumed. In order to do this, a training dataset will be needed for each existing
satellite constellation, and a large assumption will need to be made. The assumption
that must be made is that the optimal, value-generating architecture for an existing
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constellation is the one that is currently operating or has operated in the past. As an
example, the five satellite, 630 km SSO orbit of RapidEye would be considered the
most value generating architecture.

If this assumption is made, then the next step is to use this information to build
a training database. Each data point of the database will consist of a generated
constellation architecture. An initialized 𝜃 will be supplied, and the Value Function
will be calculated for each architecture using that 𝜃. Once this process is complete,
standard back-propagation will be used in order to update 𝜃 and push it towards its
optimal value. Figure 6-2 depicts this process.

Figure 6-2: Example ML Workflow for Future Work

To do this, the ML system needs an output prior. Ordinal ranking can be used for this
task since the assumption was made that the best architecture is the existing one.
Each architecture that is not the existing constellation can be ranked poorly, let’s
say with a 0. The existing architecture will be ranked 1. Using ordinal regression,
or ranking regression, techniques, the model should be able to learn what causes
the architecture to have the specific ranking scheme. Standard logistic regression
could also be used depending on the output style of the training data. This type of
technique will require a large quantity of data, which may not make it feasible to use
in the next few years. However, as CubeSat constellations continue to be deployed,
the number of constellations to analyze will increase and make this training scheme
more realistic.

6.2 Radiometric Calibration Effects
Another key piece of future work has to deal with incorporating calibration effects
into the Value Function derivation [94]. Instrument calibration is important. Poor
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calibration will greatly reduce the quality of the image captured. This refers mainly
to the radiometric calibration of the RGB and NIR bands. What is the percent error
between the colors recorded by the imager and the actual images on the ground?
Within the scope of the Value Function, instrument calibration effects will directly
impact 𝜇𝑖𝑗. What will need to be determined in future work is the magnitude of
calibration, i.e. how much quality is lost per unit of calibration loss. Calibration loss
can be thought of as a number between 0 and 1, where close to 0 implies minimal
losses due to good calibration, and a numbers close to 1 implies large quality losses
due to poor calibration. Determining how calibration loss effects value will be critical,
and then the calibration loss can be directly applied to the 𝜇𝑖𝑗 term.

One way to determine the effect of the calibration loss uses ML. Using a pre-trained
or off-the-shelf building or road detection algorithm, for example, the performance
of the model can be looked at with well calibrated and poorly calibrated images
[95]. It will be important to control for calibration in the training of the model, but
using the change in performance of correct object classification (false positives, false
negatives) as a proxy for the reduction in calibration could be a useful and relatively
straightforward way to determine the magnitude of the calibration effect. Future
work should focus on applying this technique and exploring other ideas for how to
quantity the magnitude of calibration losses.

6.3 Extending the Value Framework

An exciting area of future work comes from expanding the current value framework
to include non-Earth observing payload systems. Specifically, it would be interesting
to look at constellations that combine both EO payloads as well as telecommunica-
tion payloads. To do this, the value framework would have to be extended in order
to quantify the value derived from the system. Luckily, valuing telecommunication
payloads is a more straightforward and current methods exist, as discussed in Section
4.2. As constellations evolve and payloads become more sophisticated and complex,
it will make logical sense to deploy space systems that combine both communication
transmitters and EO systems. For example, SpaceX is currently deploying 1000’s
of small telecommunication satellites that will provide internet access to individuals.
Given that these satellites will be covering the globe well due to the sheer number of
spacecraft in orbit, it is easy to think of a world where the company decides to put an
imager on the spacecraft in addition to the telecommunication payload. This would
require additional engineering, but would enable SpaceX to become one of the largest
EO providers while also achieving its telecommunication mission goals. These future
hybrid-constellations are exciting and are ripe for future research, especially in value
driven trade approaches.

Another key extension of the Value Framework would be to focus on modelling instru-
ments that have multiple bands. Currently, both TAT-C and the Value Framework
only examine a single band at a time. This makes intuitive sense because the in-
strument in question is not being traded on directly, however, many payloads exist
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that observe frequencies in a wide range of operating wavelengths. Understanding
the synergies of bands, and the weights applied to each band will be critical in order
to extend out the Value Framework for multiple operating bands.

6.4 TAT-C Multi-Payload Capability
The last area of future work includes adding multiple payload analysis to the TAT-
C software tool. TAT-C is currently available for use by NASA employees, and it
will hopefully be open sourced in the near future. Although TAT-C is a powerful
tool, one of the biggest limitations is the fact that only one instrument can be placed
on a satellite. Many satellite systems have multiple payloads, and modeling these
dynamics is key to understanding overall constellation value. Reference [69] discusses
the importance of payload synergies and the non-trivial exercise that must be worked
through in order to effectively model multiple payload value. Future work should focus
on implementing this feature in TAT-C, and then extending the value framework in
incorporate multiple payloads as well.
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Chapter 7

Summary & Conclusions

This thesis examined the tradespace analysis of EO constellations through a value-
focused lens. It first examined EO terms and paradigms that are important to the
EO industry at large. This thesis provided a detailed breakdown of the TAT-C tool,
and then dove into value-driven trade approaches. It provided a literature review on
existing value approaches, and then described a new formulation that can be used.
Three case studies were then discussed in order to show the scope and usefulness that
can come from using the newly derived Value Function.

In order to evaluate the contributions of this thesis, it is important to revisit the goals
that were discussed in Chapter 1. This thesis had three goals that can be summarized
as followed:

1. Show the importance of using value driven tradespace analysis.

2. Provide a detailed derivation and breakdown of the Value Function.

3. Give future users of TAT-C a form of documentation that explains how to use
the tool from end to end.

In Section 4.1, this thesis discussed why there is a need for value-driven trades. This
is even more important in today’s world where larger and more complex constel-
lations are being designed and developed every year. Section 4.2 also showed how
the valuation of satellite constellation is of research interest, and there are varying
methodologies used to calculate space system value. This large research effort com-
bined the discussion on value trade approaches and the limitations imposed when
using cost based trade approaches, as seen in Section 3.6.1.1, show that the first goal
of the thesis was achieved.

As seen above, the second goal was to provide a detailed derivation of the Value
Function. The bulk of Chapter 4 was spent discussing the Value Function, and
in particular, its derivation. This thesis broke down each individual element, and
discussed not only its importance, but the rationale for where it came from. It is
important to note that the Value Function described in this thesis is the culmination
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of almost two years of work and many iterations. Because of this fact, this author
strongly believes that each element that is involved with the Value Function has an
important piece to play and that it directly relates to the generalized concept of value
that was hypothesized. The detailed description and derivation of the Value Function
in Chapter 4 shows how the second goal of this thesis was satisfied.

Finally, the entirety of Chapter 3 was spent discussing how TAT-C was designed and
built, and the various inputs and outputs of the software system. Users should be able
to use Chapter 3 of this thesis to better understand what is going on underneath the
hood of TAT-C. Because of this, this thesis can stand in as a form of documentation
that users can utilize when debugging or configuring TAT-C. Because of this, goal 3
was satisfied which means this thesis contributed to each of the three primary thesis
goals.

It is also worth noting that by satisfying the thesis goals, the majority of the research
questions were analyzed as well. Referring back to Section 1.2, the first four questions
focused on understanding where value comes from within the EO domain, whether
or not it is possible to build a value-driven framework, if the Value Function can
be used to guide optimal search strategies, and are the limitations such that useful
results can still be gathered. Chapter 4, as well as the case studies in Chapter 5,
answered the first four research questions. This thesis made clear the need for value
driven frameworks, discussed where value comes from within the EO domain, talked
about how the Value Function can be used to guide optimal searches, especially with
the power of TAT-C optimized search functionality, and discussed the limitations of
the existing cost-driven model. The last research question focused on expanding the
value framework to constellation design outside of EO. Unfortunately, this thesis was
not able to directly answer this question. That being said, as Section 6.3 explains,
the author hopes that future work will be conducted that can examine whether or
not a similar model framework can be used for a larger set of constellation domains.

One of the most interesting questions in Earth Observation today is the trade off
between large quantity but low quality, and low quantity but high quality data. This
implies the difference between large constellations of small and cheap satellites, and
constellations of a few larger and more sophisticated spacecraft. With the value-
driven framework developed here, coupled with the use of TAT-C, this question can
be examined in a rational way during early conceptual design of new EO missions.

In summary, this thesis showed the importance of value-driven trade approaches in
the rapidly evolving EO constellation domain, and created a new value framework in
order to evaluate a large set of possible distributed Earth Observation architectures.
One of the most important takeaways of this thesis is that not only can mission plan-
ners and designers use the Value Function to help find more optimal constellations,
but high-level decision makers also can use and understand this model in order to
make decisions that are critical. Case Study B in Chapter 5 shows a perfect example
of this. As EO data becomes more prolific, cities, states, and federal governments will
become more interested in it and the scope and use-cases will grow dramatically. Un-
derstanding costs and benefits is absolutely critical, and before this thesis developed
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the Value Framework, understanding benefits was non-trivial.

It is the author’s hope that this framework continues to be improved and can be well
understood so future users have the ability to apply it to their specific problems in
the future. Using the Value Function model allows more optimal EO constellations
to be discovered, which will help push the already fast-growing EO industry further
into the future and help improve life on our planet.
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Appendix A

Case Study A Landsat Plots with
Varying 𝜃
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Figure A-1: Landsat Architecture Value Analysis
Color Scheme: Altitude
Scaling 𝜃: 0.2
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Figure A-2: Landsat Architecture Value Analysis
Color Scheme: Altitude
Scaling 𝜃: 0.3
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Figure A-3: Landsat Architecture Value Analysis
Color Scheme: Altitude
Scaling 𝜃: 0.4
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Figure A-4: Landsat Architecture Value Analysis
Color Scheme: Altitude
Scaling 𝜃: 0.5
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Figure A-5: Landsat Architecture Value Analysis
Color Scheme: Altitude
Scaling 𝜃: 0.6
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Figure A-6: Landsat Architecture Value Analysis
Color Scheme: Altitude
Scaling 𝜃: 0.7
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Figure A-7: Landsat Architecture Value Analysis
Color Scheme: Altitude
Scaling 𝜃: 0.8
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Figure A-8: Landsat Architecture Value Analysis
Color Scheme: Altitude
Scaling 𝜃: 0.9
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Figure A-9: Landsat Architecture Value Analysis
Color Scheme: Altitude
No Scalling Applied
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